
International Atomic Energy Agency
INDCfCCP)-344

Distr.: G

I N DC INTERNATIONAL NUCLEAR DATA COMMITTEE

GRUKON - A PACKAGE OF APPLIED COMPUTER PROGRAMS

SYSTEM INPUT AND OPERATING PROCEDURES OF

FUNCTIONAL MODULES

V.V. Sinitsa and A.A. Rineiskij
Institute of Physics and Power Engineering

Obninsk, The Russian Federation

Translated by Dr. A. Lorenz for the IAEA

April 1993

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

INDC(CCP)-344
Distr.: G

GRUKON - A PACKAGE OF APPLIED COMPUTER PROGRAMS

SYSTEM INPUT AND OPERATING PROCEDURES OF

FUNCTIONAL MODULES

V.V. Sinitsa and A.A. Rineiskij
Institute of Physics and Power Engineering

Obninsk, The Russian Federation

Translated by Dr. A. Lorenz for the IAEA

April 1993

Abstract

This manual describes a software package for the
production of multigroup neutron cross-sections from
evaluated nuclear data files. It presents the
information necessary for the implementation of the
program's modules in the framework of the execution
of the program, including: operating procedures of
the program, the data input, the macrocommand
language, the assignment of the system's procedures.
This report also presents the methodology used in the
coding of the individual modules: the rules, the
syntax, the method of procedures. The report also
presents an example of the application of the data
processing module.

Reproduced by the IAEA in Austria
April 1993

93-01214

TABLE OF CONTENT

Introduction 5

1 . GENERAL DESCRIPTION OF THE PROGRAM 7

1.1 Principal Objectives of the Program 7

1.2 Operating Procedures 8
1.3 Standard Representation of the Data 10
1.4 Library of Standard Parameters 13
1.5 Input/Output Procedures 16

2. THE MACROCOMMAND LANGUAGE 19

2 . 1 Macrocommand Language S t r u c t u r e 20
2.2 Types of Command 22
2.3 Rules of Omission 25
2.4 Sequence of Data P r o c e s s i n g S t e p s 26
2.5 Data Process ing Procedures 28
2.6 Data Process ing Program 33

3 . SYSTEM INPUT 36

3 . 1 The System's Registers 36
3.2 Control Procedures 40
3.3 Linkage and D i a g n o s t i c s Procedures 46

4. FUNCTIONAL MODULES 55

4.1 The In fo rm a t ion Environment of the Module 56
4.2 Organizat ion of Data Transfer 57
4.3 Methods Using Addresses 60
4.4 The Funct ions of Main Procedures 61
4.5 C o n v e r t i b i l i t y of the Programming Language 64
4.6 Data Process ing Example 64

REFERENCES ; 67

APPENDIX 1. S t r u c t u r e of Processed Data 69

APPENDIX 2. Funct iona l Module *R/E-S Code
Example of a Problem So lu t ion 75

Introduction

The software package for the production of multigroup data

"GRUKON" was conceived toward the end of the 1970's as part of

the SOKRATOR [1] project whose overall objective was to create an

automated system of computer programs for the production of

raultigroup data for the calculation of nuclear reactors and

radiation shielding. This system was to replace the existing set

of individual computer programs, which were used in a semi-

automated manner to calculate multigroup data using a variety of

representations of evaluated neutron data in the form of

resonance parameters [2], averaged resonance parameters [3],

detailed cross-section dependences [4] and angular [5] and energy

[6] distribution of secondary neutrons.

The need for a replacement of the available programs was dictated

by a widespread increase in the sophistication of evaluated

neutron data files which required a correspondingly high level

automated computational tools. In order to satisfy the

requirements of multigroup system developers and evaluated data

processors, it was necessary to create an extensive system of

computer programs to support this effort. After considering the

existing requirements, it was decided to replace the extensively

used existing programs [7], which had inflexible interfaces and

were incompatible with the dynamic character of the data, and

develop a new set of computer programs to form an integrated

software package with a standardized input [8].

In context of the nature of the problem, the following features

of this software package were deemed important: flexibility in

the computational control, dynamic adjustment of the data,

independence of each program component and potential increase in

the functional capabilities of the program. These features

constituted the principle guidelines in the development of the

programs.

The first stage in the development of this package of applied

programs (PAP-GRUKON) consisted in the creation of a specialized

systematic input, the development of a macrocommand language, and

the adoption of existing algorithms. This stage in the

development of the program was concluded with the running of the

first version of this program on the BESM-6 computer [9,10].

Although the capabilities of this first version were limited to

the production of the simplest type of data, such as group-

averaged cross-sections, it was enough to demonstrate the

efficiency of the system and justify the precepts used in its

development.

The development of the subsequent three versions of this program

[11-14], was concentrated on satisfying the more basic

requirements of the data processing system. The capabilities of

these versions consisted of the calculation of self-shielding

factors, subgroup parameters of the resonance structure of cross-

sections, and probability transfer matrices. Starting with the

4th version, two independent versions of the PAP-GRUKON program

were developed: one for the BESM-6 computer and another for the

ES computer (the adaptation of the program package to the ES

computer and the extension of its capability to process angular

and energy distribution data were Written by A.A. Rineiskij).

As the capabilities of this software package grew, so did the

number of specialists interested in its development. This was

evidently due to the fact that the functions of this package were

easily applied to related problems requiring the generation of

group data (resulting from the analysis of experimentally

measured cross-section dependences such as transmission functions

etc.), as well as to the subsequent steps required in the

production of evaluated data files and in the preparation of

macroscopic nuclear data for specific component materials. It

was therefore anticipated that the number of programmers who

would be interested to take part in the development of the

individual program modules would grow.

The documentation of the GRUKON program that have been released

so far have been addresses primarily to the users of this

program, namely those involved in the development of multigroup

data libraries. This report comprises the first systematic

description of the problems which arise in the design of

individual modules of the GRUKON package and illustrates its

implementation.

1. GENERAL DESCRIPTION OF THE PROGRAM

1.1 Principal Objective of the Program

The package of applied programs, PAP-GRUKON, is designed for the

automated calculation of multigroup microscopic neutron data

using computer libraries of evaluated data. The PAP-GRUKON

package is designed to be used for the solution of problems

directly or indirectly applicable to the production of nuclear

data - ranging from the analysis of experimentally measured

transmission functions to the generation of evaluated nuclear

data file.

The basic input required to run this version of the GRUKON

program consists of evaluated neutron data files MF= 1,2,3,4,5

written in ENDF/B format. These are:

File MF=1 - special neutron reaction quantities.

File MF=2 - resolved and unresolved resonance parameters.

File MF=3 - tabulated energy dependent cross-sections in
the non-resonance region and the resonance
background cross-sections,

File MF=4 - parameters of angular distributions of secondary
neutrons,

File MF=5 - parameters of energy distributions of secondary
neutrons.

The basic output generated by the program consists of:

- group-averaged cross-sections,

- resonance self-shielding factors,

- the temperature dependence of these factors,

- sub-group parameters normalized to the average
cross-section including the temperature
independent part,

- probability matrices and angular components of the
inter-group transfers for elastic and inelastic
scattering and (n,2n) and (n,3n) reactions,

- energy production cross-sections.

Additional quantities can be obtained using an expanded output:

- transmission functions and self-indicators
measured under conditions of good geometry,

sensitivity coefficients of the cross-section
functions to the average resonance parameters,

detailed cross-section dependence for given target
temperatures.

All of the output data can be printed in the form of annotated

tables. Detailed cross-section dependences can be represented in

the MF=3 file format of the ENDF/B library as well as

graphically.

1.2. Operating Procedure.

The flow diagram of the GRUKON program is shown in Fig.1.1.

The main elements of the software package are:

- control procedures and linkage procedures
(system input),

- set of functional modules (functional input)

- macrocommand language.

The data used by the program in the solution of a problem consist

of basic nuclear cross-section data, so-called "processed" data

(PD), and auxiliary data which define the nature of the problem,

so-called "control" data (UD); these are stored in the working

file of the program, the so-called "library of standard

parameters", or BSP library.

A run of this program begins with the reading in of the

information defining the problem to be solved, by the so-called

"processing program", written in the macrocommand language. The

processing program (PP) generates various commands, such as:

"read the data from punched cards and store them in the BSP

library" (for the input of UD data), or "transfer data from the

evaluated data library and store the results in the BSP library",

or "output the data to the printer", etc... (See Chapter 2 for

the description of the system's commands).

After the command "end of PP" has been read in, the control

program executes the PP program. Some of the commands, which do

not require input from the BSP library (as in the case of the

editing of the catalog) are executed by the control procedures.

8

BSP
Catalog

Control
Program

PP

Set of
Functional
Modules

Output
Modules

Processing
Modules

Output
Modules

UD

Fig. 1.1 Overall Schematic of the GRUKON Program

PP - Processing program
UD - Control data
BOD - Evaluated data library
BTK - Multi-group data library
BSP - Standard parameters library

If a command requires the input from the BSP library (as in the

case of input, processing or output data), the control program

performs the following tasks: (a) prepares the information

consisting of the formats of the input PD and UD data and the

address allocation of the processed data in the BSP library, (b)

stores the processed information in a special part of the memory

(the so-called "system register"), and finally (c) transfers the

control to the main part of the functional module.

To summarize, the functions performed by the functional module

(excluding modules which do not exercise any control of the data

and input-output modules) consists of the following steps:

- retrieval of the control data from the BSP library,
- retrieval of the processed data from the BSP library,
- execution of the data processing,
- storage of the results in the BSP library, and
- return control.

The exchange of data between the BSP library and the functional

modules is performed with the help of special system procedures,

consisting of linkage mechanisms which are controlled and

implemented by the system's registers.

After a module has executed a given function, the controlling

(main) program determines the size of the output on the basis of

the value of the system's register, and enters it in a catalog.

The main program then proceeds to execute the next commands until

all of the data processing functions have been executed.

1.3. Standard Representation of the Data.

All data stored in the BSP library, PD as well as UD data, have

the same structure, so called "standard representation" (SP),

which has the following format:

<SP> ::= <HEADING> , IM(LI), RM (LR)

<HEADING> ::= <NAME>, MAT, MZA,LI,LR

where

IM(LI) is a set of integers of length LI,

RM(LR) is a set of real numbers of length LR,

<NAME> is a two word hollerith label defining the
system's data name (see below),

MAT is a data identification label, normally
corresponding to the material number used in the
evaluated data library,

MZA is the charge-mass (ZA) label which identifies the
nuclide: MZA=Z*1000+A (where Z is the charge and A
is the mass).

The length of the "heading" is fixed to a maximum of 6 words.

With the use of the SP format, it is possible to represent data

in a uniform manner, especially in those cases when it is

convenient and justified, as in operations involving reading in,

copying or retrieving data. Generally speaking, however, SP

formats must be different from one another. Their differences

are dependent on the structure of the IM and RM data. The

formats of these data depend on the type and function of the

data, and are identified in the system by unique system names

10

which are used to help in their recognition. In the present

version of the program, the system has 9 assigned names (and

consequently 6 formats) for the PD type data, and approximately

50 names for UD type data.

The following rules must be observed in assigning formats to IM

and RM data: all descriptive information must precede the basic

information so as to be able to determine the nature of the

subsequent information when these data sets are read. The

separation of the information into two separate sets, namely the

integers IM and the numerical variables RM, does not contradict

any rule inasmuch as the integers are used as flags, indexes,

rule numbers, etc..., and are definitive in nature. Although the

separation of the data according to' type is not obligatory, it

has been introduced here so as to have the option to print the

content of the SP utility module. If such a separation leads to

undesirable limitations, it can be omitted, by entering the

integer type information in the RM data memory block. The only

disadvantage of this approach would be that, when executing

operation *OUTPU, the integer data would be printed in tables

having the same format as the numeric variable data.

The following guidelines were adopted in the assignment of names

in the GRUKON system.

- A system name can be composed of not more than 6 characters

consisting of latin alphabet letters and symbols * / and -.

- The system name must start with the symbol * (and in the

case of PD data it must end with the characters IM).

- The following names have been assigned to processed data:

* R * - resolved resonance parameters,

* U * - averaged resonance parameters,

* S * - tabular representation of energy or temperature

dependence of the cross-section,

* A * - secondary neutron angular distribution parameters,

* E * - secondary neutron energy distribution parameters,
* F * - designator of the type of cross-section (for group

as well as point-wise data, for the unresolved
resonance region),

11

p * - subgroup parameters of the resonance structure
(for group as well as pointwise data, for the
unresolved resonance region),

D * - detailed energy dependence of neutron
distributions and their angular moments,

M * - inter-group transfer matrix.

Any set of PD data is designated by the name *DATA. Control data

names are normally designated using the format *I/P-1, where I

corresponds to the type of input cross-section data, 0 to the

type of output data, and P is a mnemonic variable which

corresponds to a descriptive parameter in the UD file:

C - concentration,

D - dilution cross-section,

E - approximation or interpolation accuracy,

I - method of interpolation,

G - group boundary,

T - medium temperature.

For instance:

*S/C-S - designation of UD data for the multiplication
of tabulated cross-sections with given
concentrations,

*S/T-S - designation of UD data for the adjustment of
cross-sections to a given temperature, etc...

When data processing is performed on any type of data, or if

input or output data have a non-standard format (i.e. non-GRUKON

format), one can use the abbreviations of the English word which

designates the type of processing or nature of the input or

output data, instead of the parameter names. For instance:

*ENDF - the name of input or output UD data in ENDF format

*EXTRA - the name of UD data to be retrieved according to a
given criterion (e.g. a given material number
MZA), etc...

12

If certain data are not to be processed, these data are described

by a single name. For instance:

*INPUT - the name of an "empty file" of UD data to be
entered from punched, cards in the internal BSP
format.

*TRANS - the name of a file to be copied into the BSP
library (e.g., transfer of data).

In the case of "empty files", it is not necessary to enter UD

headings in the BSP library, it is enough to have these names

stored in the BSP catalog.

The list of control data names used in the system are given in

Section 1.5, together with the functions of the corresponding

modules.

1.4. Library of Standard Parameters.

All data to be processed, UD as well as PD data, are entered into

the BSP library using input modules; after processing, the data

are stored in the BSP library. The location of the data in the

BSP library is controlled by PP commands originated by the

processing program. Questions related to the rational

utilization of the resources available to the BSP library are

described in more details in subsequent sections of this report

which analyze the individual PP commands. The general structure

of the BSP library and the data cataloging procedures will also

be described at that point. The BSP library is made up of

internal BSP memory sectors, each of which is characterized by a

sector number, consisting of its address (i.e., the number of the

first word), and the dimension of the sector (i.e., the number of

allocated words). In order to describe the configuration of the

BSP library in the BESM-6 computer, it is necessary to indicate

in the "job description" (problem documentation) where each

sector is going to be located. Within the BSP library it is

possible to use MB elements, system or working MD elements, as

well as individual MD and ML elements. For instance, the entry in

the problem documentation requesting a specific amount of BSP

library storage space, reads

13

sector 51 (2C)~
sector 52 (2C)"
sector 50 (200-3P)"

requests the creation of a BSP library consisting of three

sectors, two of which (designated 51 and 52) to be located on the

system's disc, and one (number 53) on the individual ML #200.

For EC computers, the configuration of the BSP library, is

defined in the main program of the software package (see Section

3.2). BSP sectors correspond to direct access files designated

by the operator DEFINE; the numeration of the sectors corresponds

to the numeration of the files.

Data stored in the BSP library are registered in the library's

catalog. The BSP catalog is located in the MR block region

C0MM0N/CATAL/MR(8) ,MC(6,84). It consists of 84 records, of 6

words each.

The format of a catalog record is as follows:

<record> :: = <name> ,N,M,L

where <name> is a three-word Hollerith label, the first two of

which (only one for the BESM-6 computer) combine to form the

system's data name,

N - number of the BSP sector (corresponding to the file
number in the EC computer, and to the number of the
facility in the BESM-6 computer),

M - number of the word which signals the beginning of the
data array,

L - the number words taken up by the data array.

The catalog records are numbered from 1 to 84; the first 64

records are reserved for the registration of the data; the

remaining 20 records are used to store the names of the

processing functions without parameters. In the current version

of the program there are eight such processing functions which

are located in the following record's of the catalog:

65 "INPUT 69 *SELEC
66 *OUTPU 70 *TABLE
67 *TRANS 71 *CONTE
68 *TRANC 72 *CONDE

(t h e d e s c r i p t i o n of t h e s e f u n c t i o n s i s g i v e n i n S e c t i o n 1 .5)

14

Initially the first 64 catalog records are empty (contain zeros),

subsequently they contain the above-stated names.

With the name *INPUT listed in the catalog it is possible to call

upon the input module to transfer UD data from punched cards to

the BSP library for their eventual processing, and at the same

time register their names in the BSP catalog under the name DATA.

If any of the UD data entered are in the ENDF format, they are

first translated into the SP format by the format translation

module. After all of the data have been entered, the pertinent

module is called upon to perform the required processing steps on

the entered UD data array. After each processing step, the name

of the resulting quantity is entered in the BSP catalog. The

results of this operation can be retrieved using the command

*TABLE.

At any point during the processing operation, it is possible to

copy the data to the BSP segment designed for long-term storage

and at the same time print the pertinent catalog record together

with its address., The catalogued data can be accessed at a

subsequent stage of their processing by entering their catalog

name and address using the special catalog editing command (see

Section 2.2). In this manner, the correspondence of the catalog

content with the status of the BSP library can be maintained.

Although the same system names are used in the BSP library and

the catalog, their information content differs depending on

whether they are UD or PD data.

In the catalog, the largest information content is carried by the

UD names which are used to determine the name of the module that

is required for the execution of the processing. PD names in the

catalog are rarely used (such as in the use of *ENDF, *SELECT and

*EXTRA in the processing, or for the specification of output

data). In general, these names can take any form other than a

blank (these ,however, can in some cases be interpreted as a

signal requiring a specific response, see Section 2.3). In the

BSP library, on the other hand, the information content is

carried primarily by the PD names; they are used for searching

procedures and data identification, while the use of UD names are

needed very rarely, except in modules where external UD data are

15

foreseen to be used (at the present time this option is used only

in the module *F/G-F for *S/G-F data).

The option to use the same data to perform different functions

improves the flexibility of the command language. This can be

illustrated by the following examples.

The first example refers to the processing functions *PLUS,

*MINUS, *MULTI and *DIVID. In order to execute these operations

(addition, deduction, multiplication, division) on two given

operands which have the same structure, it is necessary to assign

the name of the processing function to the first operand and

define it as a UD datum so that it can be retrieved by the

processing module.

The second example has to do with the adjustment of data

parameters. In this type of operation, the UD and PD data

usually interchange their roles: the name of the adjustment

operation is assigned to the PD data, and the UD data is

processed accordingly. At the present time this operation is

applied only to the quantification of data (see Section 2.5).

1.5. Input/Output Procedures

At the present time, the input procedure consists of a group of

seven module.

Data input/output.

*INPUT - input of data from punched cards in internal format
into the BSP library.

*IN - input of data stored in sequentially accessed files
into the BSP library.

*ENDF - input of data from files 1-5 of the evaluated data
library in ENDF/B format with translation into the
SP format.

*OUTPU - output of data in internal format from the BSP
library to the ATPU1

*OUT - output of data from the BSP library in the form of
sequential accessible files.

'Translator's Note: no definition of ATPU is provided.

16

*ENDF - output of data of the type *S* from the BSP library
in the format of file 3 of the ENDF/B library.

•TABLE - output of data of the type *S* *F* *P* and *M*
in the form of annotated tables.

*GRAF - output of data of the type *S* to the plotter
(valid only for the ES computer)

BSP library maintenance

*TRANS - copy data to a designated location within the BSP
library.

*TRANC - copy data that are not registered and merge with
data stored in a given location in the BSP library.

*SELEC - select data according to their names and copy them
to a designated location within the BSP library.

*EXTRA - select data according to their identification
number (i.e., MAT number), charge-mass number MZA,
or type of interaction MT, and copy them to a
designated location in the BSP library.

*ORDER - sort data according to their increasing
identification number.

*CONDE - delete blanks in the data stored on the BSP
library.

*CONTE - output and print the names and addresses of data
located in a given location in the BSP library.

Data editing

*REMAT - change the identifying MAT number.

*RENUM - change the numbering of group intervals for *F*
data.

*ABAND - enter nuclear concentrations in *R* and *U* data
and multiply by the nuclear concentrations of the
S data.

*DISTU - merge perturbation coefficients with the
unresolved resonance parameters (for the
calculation of sensitivity coefficients).

Adjustment of the control data

*QUANT - merge information on energy interval boundaries and
information on reaction type (deduced from the data
on cross-section type *R*, *U*, and *S*) with the
*S/C-S and *U/D-F data.

17

Computation nodules

*R/T-S - reestablish the cross-section energy dependence on
the, basis of resonance parameters using Breit-
Wigner, Adler-Adler and Reich-Moore formalisms.

*S/T-S - Doppler broadening of resonance cross-sections
given in the form of detailed dependence.

*S/I-S - change of the energy interpolation method for the
detailed representation of the cross-section with
a check on the interpolation accuracy of the new
(normally linear-linear) interpolation method.

*S/E-S - delete of redundant energy reference values for
given interpolation accuracies in the cross-section
tables .

*S/C-S - average detailed cross-section sets at
commonly chosen reference energies;
cross-sections for the same reactions, weighted by
the concentration.

*S/A-S - average and calculate detailed cross-section
dependences for different reactions (for example
the calculation of total cross-section as the sum
of partial cross-sections).

*S/G-F - calculate group parameters of cross-sections
on the basis of their detailed energy dependence.

*U/D-F - derivee point-wise dependence of cross-
section attribute values in the unresolved
resonance region from averaged resonance parameter
values.

*F/G-F - group-average cross-section attributes on the
basis of their energy dependence.

*F/C-F - fold in cross-section attributes, that is,
derive summed cross-section parameters on
the basis of given parameters for the cross-section
components.

*F/E-P - calculate sub-group parameters from cross-
section attributes such as the cross-section
moment, with the guarantee that the required
approximation accuracy of the parameter dependence
on the dilution cross-section parameters is
satisfied.

*P/D-F - calculate the cross-section attributes on the
basis of sub-group parameters.

*AE/-D - calculate detailed energy distribution of
secondary neutrons, and their angular momenta on
the basis of angular and energy distribution
parameters.

18

*S/D-M - calculate inter-group transfer matrices on the
basis of the detailed dependence of the cross-
section and the distribution of secondary neutrons.

*M/C-M - multiply inter-group transfer matrices.

*KERMA - calculate energy production cross-sections
(in the *S* format) on the basis of the detailed
cross-section energy dependence and the angular and
energy distribution of secondary neutrons.

Data repackaging modules

*S/-S - unfold tabulated cross-sections for a few
types of interactions, separate for each type.

*F/-S - translate averaged cross-section format *F* to
S .

*F/-F - create table of combined cross-section
attributes from individual attribute data tables.

Modules for the calculation of final results

*SOS - Derive a function from a detailed cross-
section energy dependence and storage it in the
S format.

*FOF - Derive special cross-section attributes,
such as self-shielding factors, Doppler broadening,
shielding of cross-sections, and store them in
F format.

*PLUS, *MINUS, *MULTI, *DIVID - execute arithmetic
operations (addition, subtraction, multiplication
and division) in *S* and *F* formats.

2. THE MACROCOMMAND LANGUAGE

The execution of the GRUKON program consists of two parts.

The first part, concerned with the data processing (PP) program

is made up of the computational system and is written in

macrocommand language. The writing of the data processing

program (PP) presupposes a knowledge of the characteristics of

each data processing step, familiarity with the data structures,

and an ability to handle them in a rational manner using external

resources. This macrocommand language is concise and is not

evident to the layman.

19

The second part is concerned with the internal manipulation of

the (UD) data by the functional modules. It consists of

information (such as energy range, temperature regime, energy

group boundaries, etc..) that has a simple structure and is

easily understood by the user. It is also possible to annotate

these data so as to make them easily understood.

The first part is more "conservative" 2. It is possible to

construct a few typical data processing programs which would

satisfy most users, and which would only require for the user to

assimilate the program and its associated control UD data. This

offers the possibility to assign to the programers, or to a small

number of qualified users, the task to develop the data

processing (PP) programs, who are in any case responsible for the

development of the entire software package. In keeping with the

objective of this report, this chapter deals with questions

concerning the development of the first part of the task, namely

the structure of the macrocommand statements used in the (PP)

program, the distribution of the available resources of the BSP

library, the formulation of the data processing scheme and its

realization in the form of the data processing program.

2.1. Macrocomnand Language Structure

The PP macrocommands have the following general structure:

<COMMAND> .: :. = I, J, K <NAME> , N, M, L, where I,J,K
are command indexes, given in base ten integers;

<NAME> label consisting of up to three Hollerith words;

N, M, L are address variables, given in base ten integers
(but in octal notation in the BESM-6 computer),
used in the location specification in the memory
of the BSP library:

N - number of the BSP segment,
M - address of the first word of a field in that

segment,
L - length of the field (L>0), or address of the

first word following a field (L<0).

The quantities M and L are expressed in the following notation:

i,K + i2 where i, and i2 are integers (e.g. 10K + 1012). This

'Translator's Note: the same word is used in the Russian text.

20

form of notation is convenient in describing BSP library

locations: "K" represents the page in the BSP library, i, gives

the number of filled pages, i2 gives the number of words entered

in the last unfilled page. In the case of the ES computer, "K"

is usually taken to be equal to the length of the disc track

given in terms of words, K=1823,i (see the description of L R E

and C in Section 3.2). In the BESM-6 computer, K is the length

of the ML zone, K=2000, . As an example, 10K+1012 in the BESM

computer is interpreted as the number (10, * 2000,) + 1012, =

21012, ; and in the ES computer, as the number (10*1823) + 1012 =

19242.

The notation used to write macrocommands permits the use of

abbreviations as well as blanks. Depending on the type and

function of the command, it can have the following form:

I, J, K <NAME> (if I is omitted, M and L are deleted)
I, J, K (if the name is omitted, N,M,L)
, , , <<NAME> (if I, J and K are omitted, N, M, and L

are deleted).

Even if I is very short, it is better to use the notation I,,, to

avoid any misunderstanding. Addresses can be given in modified

notation; thus the notations for the following three examples are

equivalent:

10K + 1012 = 10K1012 = 19242
0K + 723 = 0K723 = 723
17K + 0 = 17K 0 = 17K

The constant L can have two interpretations, depending on whether

it is positive or negative. If L<0 it is accepted by the system

without any change; if a minus sign "-" precedes L (e.g. -

10K+1012, or -723, or -17K), then its notation is changed to

|L|-M (in accordance with the interpretation given above).

On punched cards, the commands are entered starting in the first

column (in the BESM-6 computer, starting in the second column),

and can take as many as 72 columns. Only one command can be

entered on one card, and text for a given command cannot be

continued on another. If an error is detected in any one of the

seven parts of a command (each separated by a comma) as they are

21

entered, the program returns the following error message:

"*** error in n" (where n is the number of the part). A gap in

the entry is interpreted as a 0 or a blank, depending on whether

the gap occurred in a number or a name.

2.2. Types of Commands

Data processing commands.

Data processing commands are the most fundamental and most

numerous of all. The basic elements of data processing commands

are the following:

I - number of the catalog record which contains the
registration of the input data to be processed;

J - number of the catalog record which contains the
control data ;

K - number of the catalog record which contains the
processed data;

<NAME> - three Hollerith words, the first two of which (the
first only in the case of the BESM-6 computer)
represent(s) the name assigned by the system, and the
remaining word(s) are arbitrary;

N - number of the BSP sector that will be used to
accommodate the processed data;

M - the address of the word in the sector that defines
the beginning of the processed data field;

±L - the maximum number of words that can be assigned to
output data (+), or the ..uppermost address that defines
the beginning of the BSP sector which cannot be used
(-) •

Of all of the data processing commands, the data input/output

commands are the most numerous. Depending on whether the type of

data stored in the BSP library are input or output data, the

commands take the following form:

, J,K, <NAME> ,N,M,L for input data, and
I,J for output data.

Address Allocation Commands.

It is possible to do without the address part of the data

processing commands (i.e., omit N, M, L) if the output data are

stored in the "main segment" of the BSP library.

22

In the ES computer, the system assigns segment 1 as the main

segment of the BSP library, in the BESM-6 computer it is segment

11, (MB). The length of this segment is unlimited (the

operational system will indicate if there is not enough space

available). If for any reason there is a need to assign a

different segment to function as the main segment, it is

necessary to use the command ,,, FIELD, N, M, L where N, M and

L are the segment parameters; if M is omitted, it is assumed to

be equal to J, and L to be unlimited.

Catalog Editing Commands

Let us assume that certain data are stored in a known location of

the BSP library, but they are not registered in the catalog and

consequently not accessible (such a situation arises when data

are calculated and saved). In order to register such data in the

catalog, the following command must be used:

,, K, <NAME> ,N,M,L.

As a result of this command, the name and address of the data

specified in the command will be registered in the Kth record of

the catalog.

In another example, there may be a need to change the parameter

of certain data registered in the Ith record of the catalog.

This can be done by executing the command:

I,,K, <NAME> ,N,M,L

As a result of this command, the information stored in the Ith

record will be moved to the Kth record, with the exception of

those parameters specified in the command which will be set equal

to those parameters that were entered with the command. For

instance, changing the name of certain data, but at the same time

preserving their address, can be done by giving the command

I,,K, <NAME> where <NAME> is the new assigned name of the data.

With the help of this method, it is possible to address various

modules using the same UD data (if the structure of UD data

corresponds to that specified in these modules, or if there is a

23

provision to convert the structure of UD data from one module to

another, as it is implemented for instance in *F/G-F with respect

to the parameters *S/G-F). The content of the catalog can be

queried with the help of this command3, where I is the number of

the record which defines the beginning of the desired catalog

content. All catalog records, starting with the Ith record to

the 64th record inclusive, which contain information are printed

out.

Control Commands

This group consists of commands which affect the sequential

execution of the data processing programs. The general format of

this set of commands is:

, , K,, (((

I2, Ji, K2,)))

where K,, I,, J2, K2 2: 0

With the help of this command, it is possible to execute all

commands specified within the parentheses K, number of times. If

one or the other of the repeated commands, which has the form

such as I,J,K <NAME>, is encountered by the program during the

first cycle of this procedure, then the counter of the indexes

I,J and K will be advanced to I2, J2 and K2 after each cycle of

the procedure, respectively:

= J+J2, K = K+K2, <NAME>

With the help of this cyclical command, it is possible to

formulate long chains of data processing functions in a concise

manner. For instance instead of having to write

10, 1, 11, *DATA*
11,
12,
13,

2,
3,
4,

12,
13,
14,

DATA
DATA
DATA

the same
command can

be written as

, ,
10
I,

6, (1
,1,11"
1,1, !

[(
"DATA*
1))

14, 5, 15, *DATA*
15, 6, 16, *DATA*

' Translator's note: the command is omitted in the original
text.

24

The use of the assigned name DATA, as is shown in this example,

is permissible inasmuch as the names of the processed data are

not used by the system. The command which indicates the end of

the data processing program is: , ,, END.

2.3. Rules of Omission

Some of the elements of the data processing commands (e.g., the

name of the data, the segment number N, the address of the first

word M, the total number of words) are assigned by the system and

can therefore be omitted in the input of the command. In

addition to the convenience that the commands are shorter, this

rule of omission provides a more significant advantage,

particularly in the assignment of the M and L parameters.

First, the system possesses the required information to optimize

the representation of the dynamic character of the data in

accordance with the current status of the BSP library, which

permits a more economical usage of the internal memory.

Second, by omitting the entry of the M and L parameters, the

correspondence of the catalog content with the BSP library status

is guaranteed and precludes accidental omission of data in the

data processing operations. The method used to determine a

missing parameter depends on its type. There is, however, one

rule that is valid for all parameters without exception: if the

value of a parameter of a given command is neither a zero or a

blank, it is accepted by the system as such (except for identical

operations from the point of view of the system). In the

following list, the parameters that are singled out are presumed

to be omitted in the command:

<NAME> - the omission of the name is allowed only if the Kth
record, used to enter the command parameters, already
has a name entered. The absence of a name in the
command is interpreted by the system as an
instruction to store the results of the data
processing behind the data that are entered in that
record and to retain the previously assigned name (in
this case, the parameters M and L must also be
absent) .

N - the number of the segment is taken from the Kth
record. If the record is empty, N is assumed to be

25

equal to the number of the main segment of the BSP
library.

Case 1. Both the name and the segment number N are
given. M is taken to be equal to the first
free word in the segment N.

Case 2. The name is given, the number N is omitted.
If the record is empty, M is taken to be
equal to the number of the first word in the
main segment. If the record contains
recorded data, the value for M is taken from
the record.

Case 3. The name is omitted, the number N is given.
Number M is taken to be equal to the number
of the first free word in the N segment, the
name is taken from the Kth record in the
catalog.

Case 4. Both name and the N number are omitted. The
results are stored behind the data
registered in the Kth record of the catalog.

If the kth record is empty, L is taken to be equal to
the length of the memory section of the segment
located after the word whose address is given by M.
If the record contains data, L is first taken to be
equal to the length of these data; thereafter, the
catalog is checked whether there are data in the N
segment (in the order of their distribution), if that
is the case, then the value of L is increased
according to the remaining length of the segment.

2.4. Sequence of Data Processing Steps

The address part of the catalog record (e.g. parameters N, M and

L) define a given section of the BSP library which, generally

speaking, can accommodate not one, but a number of PD as well as

UD data formats. The total number of formatted data, stored one

behind the other in a single segment of the BSP library, and

registered under one name in the catalog, will be referred in

this report as a "data cluster"

A data cluster can be entered from punched cards using the *INPUT

operation. Data obtained after the *ENDF operation, which

converts files of evaluated data into a standard format, are also

registered as data clusters. It is also possible to consolidate

data into clusters in data processing operations; the command

language provides for such a possibility (see the input of the

name in the "rules of omission" section above).

26

Let us stop here and analyze the question how data clusters are

interpreted by the data processing modules, and the manner in

which they aide in the execution of data processing commands.

The programming rules used in the creation of functional modules

(see Section 4) foresee the cyclical input of PD and UD data.

Each functional module executes a "series" of data processing

steps using data contained in the clusters. At the present time,

two separate schemes are used in the organization of cycles.

The first and most widely used scheme is implemented at the

beginning of each processing step, when one set of PD and UD data

are required to be retrieved from the series at a time in order

to produce a single set of PD data.

Letting I(i) be the ith set of input PD data, P(j) be the jth set

of UD input data, and O(i,j) be the set of PD output data which

were derived from the I(i) and P(j) input data, then the

sequential processing of a data cluster can be expressed in the

form of the following cycle-.

where N is the number of PD input data, and M the number of UD

input data. The resultant O(i,j) set of data will be stored in

the BSP library in the form of a data cluster in the order of

their sequential input. In practice, it is customary in

sequential calculations to organize the input data in the form of

clusters.

The following rules are observed in the processing of data

clusters. If a given cluster I contains data that are not

foreseen as input in the called functional module, or if the

input data parameters do not correspond to the UD parameter

values (e.g., the energy range of the given PD data, or lies

outside of the energy range boundaries of the UD data), then such

PD data are left out. If a cluster does not contain data types

that are to be processed, then the entry in the catalog will

consist of the registration of a set of output data having a

length L=0 (i.e., it will exist formally in the catalog only, but

will not exist in the BSP library).

27

In practice, the use of UD data clusters in serial calculations

is related only to the data quantification procedure (see next

Section): in order to subdivide the energy range of a given data

set into smaller intervals, and to perform independent

calculations in each of them, it is convenient to store the

information pertaining to these intervals (which may be quite

numerous) in the form of UD data, rather than PD data. The

number of UD data in a cluster will be equal to the number of

energy intervals. As a result, the output will consist of a data

cluster for each interval. A cluster of UD data (that underwent

the *S/C-S and *U/D-F conversion) is generated with the *QUANT

operator. Other such cases where UD data clusters are used occur

primarily in the generation of evaluated data.

At the present time, the second procedure is used only in four

modules: *S/C-S, *F/C-F, *M/C-M and *F/-F. These modules are

used primarily to, merge data. (The term "merge", used here,

encompasses any data operation in which more than one set of

input data results in one set of output data, independent of the

data conversion algorithm). Since this operation is based on a

cyclical operation processing input data within the conversion

algorithm, the series of operations is performed with one UD data

cluster at a time. The number of output PD data is determined by

the number of UD data in a cluster. (The number of output data

can, however, be smaller if part of the UD data in the input

cluster are not given in terms of parameters).

The use of data clusters and serial processing of data makes the

whole data processing program independent of the number of

attributes (such as the number of levels of the system, the type

of interactions, the number of energy intervals for which the

data are given) and of the qualitative characteristics of the

evaluated data structure (such as the presence of unresolved

resonance regions). Because of this characteristic, this

processing program, although designed for general applications,

is also applicable to the solution of more specific problems.

2.5. Data Processing Procedures

In the development of this data processing program, the

calculational operations were postulated on the basis of a

28

standardized representation of the data structure which are

generated at each step of the data processing operations.

In the selection of individual data processing modules, and in

the determination of the sequence in which they are called during

data processing operations, it has proven to be convenient to

represent the relative position of the standard quantities along

the energy axis in the form of a data structure.

Let us look at a typical standard data structure of the ENDF/B

library (see Fig.2.1). Upon inspection it can be seen that it

has the following features:

- a preponderance of S-, R- and U-data (that is, a presence
of a few similar representations in the same as well as in
different energy regions);

- a total or partial overlapping of R- and S-data;

- a total or partial overlapping of U- or S-data;

- a total overlapping of R-data;

- a total overlapping of U-data;

- a total or partial overlapping of S-data;

- an absence of any overlapping of R- and U-data.

Note that in the case of partial overlapping, the overlapping can

be eliminated by subdividing the sets of data into smaller energy

groups defined by the group boundaries of the other data sets

(shown in Fig. 2.1 by the dashed lines). Partial overlapping

constructions can be avoided by executing the commands: *S/C-S

and *U/D-F\

Let us define data that completely overlap as "quantiles" of

data, and the operations involved in their processing the

" quantilization" of data. It is assumed from now on that data

can either overlap entirely or not al all. It is thus possible

'Actually, the need for quantification arises because of the
variety of ways which can be used to merge detailed information
entered with the *R* and *S* parameters and the probabilities given
by parameters *U* in the calculation of non-linear functions. The
detailed information is merged at the *S* level, using the command
*S/C-S, and the probability at the *F* level using the command
*F/C-F. The quantification operations are used to separate the
detailed data representations from the probability representation.

29

s

g

s

s
s

s

p

p

P

u

u
.
s
s

1 S
1

—

s
s

1

s1
1
i S

i s
1
1
1 S

; s

! s

s

Fig. 2.1 Infrastructure of Cross-Section Data
in the Evaluated Data Library

P - Resonance parameters
U - Average resonance parameters
S - Cross-sections

to identify two types of relationships of contiguous data sets:

in one case, the data belong to the same "quantile" and the

relationship is denoted by the symbol "X", and in the other, the

data belong to different "quantiles" and the relationship is

denoted by the symbol "+"; for example RxS or R+U. It is natural

to represent most data as the result of a "multiplication by a

whole number", or of an "exponentiation to a given power",

depending on whether most of the data belong to different or the

same quantile:

S + S + .

R * R * .

+ S = nS

* R = R"

As mentioned in the previous section of this report, as long as

the quantitative characteristics of the infrastructure can be

omitted in the development of the data processing program, the

value of n is not important; what is important is the large

number of data.

30

Using these data infrastructure designations, the information

given in Fig. 2. can be represented by the following expression:

2S5 + 2(R3 * SJ) + U3 * S3 + U5 * S4 + UJ * Ss + S7 + S1 + S9

or, taking into account the comment regarding the large number of

data-.
nS + n{R" * S") + n (Un * S")

The possible procedures to calculate the cross-section attributes

from the evaluated data S, R and U (in ascending order), in the

framework of the GRUKON software package, are given below.

Procedure 1.

Calculation of group cross-section attributes F from
separate S- , R- and U- data:

S * " " ' • "

R ' " f -

II I / 1 - F

Procedure 2.

Calculation of F with consideration given to the large
number of data:

, , o l J / I - l _ o l S/C-l o * / t - f o

nS *- nS • - S •- S
n R . i / t - i , . n S . i / c - i . s i / f - i ^ s . i ^

* -

nU1 - ^ i ^ s nF"

A secondary integration of *F/G-F is necessary for the
elimination of the quantile boundaries in the data group
structure.

Procedure 3.

For infrastructures which are made up of combinations of
detailed data dependencies and resonance parameters, the
calculation of the attributes can be calculated using the
following scheme:

R/T-S

nS1 + n(R" * S') < > nS1 l/c '» S1 '"-'- S "er.
S/I-S

In this configuration, the R/T-S and S/I-S operations are
executed using the same data cluster, whereby the R/T-S
operation is executed on R-type data, and the S/I-S

5The parameters are quantified

31

is executed on S-type data; the results of these operations
are merged to form a single cluster nS°. This is done so
that the S/I-S operation is not executed on S-type data
that are derived from R data, since they are always produced
in a linear form.

Procedure 4.

For those materials whose c ross - sec t ions include regions of
unresolved resonances, the following procedure is used
to process the data:

nS1 + n(R* * S1) + n(U* * S1)

I/T

^ ^ « / i

\ I/I

_ •

-1 CI .

• I/C - i n S I / t -8 ^

F / c - r

p i F / C - F F/C-F . . p

In this configuration the data are split into two clusters,
each of which is processed independently until the group
attributes have been calculated. The combining of the
detailed and probability information is executed
independently.

Procedures 2, 3 and 4 take care of all cases that can be
encountered in the ENDF/B evaluated data library; whereby
procedure 3 can be applied to the case treated in procedure
2, and procedure 4 can be applied to the cases treated in
procedures 2 and 3.

Procedure 4 can also be used in those cases that have not
been foreseen in ENDF/B, but which are important when
resolved and unresolved resonance regions are
superimposed: n(RB * Un * S n).

Procedure 5.

In the case of linear attributes of averaged group cross-
sections, the complex processing algorithm F/C-F can be
omitted if the format conversion module F/-S is used,
allowing for the conversion of average cross-section data
from an F format to the S format. In the most general
case, this procedure has the following configuration:

S/G-F
n(R' * U' * S1) — 1 / T ' » n(U" * S')

U/n-F

>• nF *• no *• o —~

It is expedient to merge the results of the R/T-S operation
with the input data cluster. Since the cross-sections are
constructed at the group level, it is not necessary to use
linear interpolation of the data.

32

2.6. Data Processing Program

Let us look at some of the methods used in the data processing

program (PP) which were developed for the solution of various

computational problems.

Assuming that the processing method has already been defined,

the next step in the processing is the selection of the most

optimal configuration of the BSP library. Normally this problem

is solved in the following manner.

In the case of simple processing tasks, when the amount of data

is not large, and the program flow does not have any branching

(such as in the first case described in Section 2.4), it is

possible to limit the required amount of memory to a single BSP

library segment. For longer processing procedures having a

linear dependence, it is more efficient to use an additional

segment of the BSP library so as to be able to copy the data from

one (segment) to the other, deleting the input data that were

entered in the preceding step. This technique allows for a

significant reduction in internal memory requirement, which is

particularly important if the computation is performed on the

BESM-6 computer.

In order to perform procedures with multiple branchings, as in

the case of procedure 4 above, it is convenient to have two

memory segments, in addition to the main one, so as to be able to

exchange data between the main and the first working segments,

and the main and second working segment alternatingly. Finally,

if it becomes necessary to save the intervening data and to break

up the computation into a number of stages, one could use one of

the working segments as an archival memory segment (which allows

for a long term storage of data), or use an additional, fourth,

memory segment.

Concentrating on this last option, as one which is the more

general, thus dedicating three BSP library memory segments, one

would have: a main segment (designated as segment 1), and two

working segments (designated 2 and 3). The data in the archival

file, which will be used for subsequent access, will be stored in

the internal format. Each category of information recorded in

33

the catalog is assigned a specific number of records in the

catalog. For example:

- control data;
- input data to be processed and UD data that

have to be quantified;
- intervening PD data;
- processing results.

Using these conventions, the data processing program could

have the following appearance:

1 -
20 -

30 -
60 -

19
29

59
63

PP Text

/ /65,1,*ENDF
/ /,65,2,*R/T-S
/ /,65,3,*S/I-S
/ /,65,4r*S/T-S
/ /,65,25,*S/C-S
/ /,65,26,*U/D-F
/ /,65,7,*S/G-F

7, ,8,*F/G-F
/ /,65,9,*F/C-F
/ /,65,10,*OUT
/ /,65,11,*F/-F
/ /,65,12,*MODF

/ /,1,20,*DATA*

20,2 1,*QUANT
25,21,5, *S/C-S
26,21,6,*U/D-F

20,2,52,*S*,2

20,3,52

52,5,53,*S*,3

Comments

Control data input is executed by the
*INPUT operator which is always
entered in the 65th record of the
catalog. The UD data S/C-S and
*U/D-F data require quantification.
The input of the *F/G-F is replaced
by the renamed *S/G-F data. Data
are entered in the main segment.

Input of processed data from the
library in ENDF/B format. This is
carried out by the ENDF/B operator
registered in the first record of the
catalog. The name *DATA* indicates
that there are many data types in the
cluster (e.g., *R*, *U*, *S*, etc.).

Quantification of data. In order to
execute this operation on the entered
PD data the *QUANT designator is
adopted, which gives the possibility
to use them as UD data in the *S/C-S
and *U/D-F conversions. This
operation results in the formation of
*S/C-S and *U/D-F UD clusters, which
break up the entire energy region
into non-overlapping intervals.

Data processing
Calculation of the detailed energy
dependance at zero degrees
from resonance parameters. The
results are entered into the 2nd
segment of the BSP library.
Linear interpolation of point-wise
cross-sections and background cross-
sections and their addition to
resonance cross-sections.

Addition of the resonance cross-
sections to the background cross-
sections and storage of the
results in the 3rd BSP segment.

34

53,4,52,*S* Adjustment of the detailed cross-
section dependence to the given
temperature, and their storage in the
2nd segment of the BSP library.

20.6.52 Calculation of the detailed dependence
of the spin statistical factor of
the cross-sections from averaged
resonance parameters and their storage
in the 2nd segment.

52,7,53,*F* Calculation of the group-averaged
values of the spin statistical factor
from the detailed dependence of
the cross-section, and their storage
in the 3rd segment of the BSP library
superseding earlier data.

52.8.53 Calculation of the group-averaged
values of the cross-section spin
statistical factor from the
detailed dependence of the spin
statistical factor, and their
storage in the 3rd segment.

53,9,52,*F* Merging of the spin statistical
factors and their storage in the 2nd
segment.

52,8,53,*F* Second integration within each group
in order to eliminate the quantile
boundaries from the group structure
and storage of the results in the 3rd
segment.

53,10 Storage in the archive is executed
using the operator *OUT; the UD data
of this operator defines the
parameters of the subsequently
accessed file and the entry format.

53,11,62,*F*,2 Preparation of the data for output
includes the selection of the spin
statistical factors to match the
set of output parameters (e.g., the
reaction type, the temperature, the
dilution cross-section) using the
*F/-F operator.

62, 12,63,*F*,3 Calculation of the required attributes
(e.g., self-shielding factors of
shielded cross-sections, effects of
temperature increase).

63,70 Printing of the output data in the
form of annotated tables is executed
by the TABLE operator which is
permanently entered in the 70th record
of the catalog.

,,,END End of the processing program.

35

3. SYSTEM INPUT-

Two groups of input procedures can be identified in the GRUKON

program: the data processing control procedures, and the data

linkage procedures (see Fig. 3.1).

The control procedures organize the calling of functional modules

and the preparation of the data for their subsequent processing

by data processing program.

The linkage procedures facilitate the exchange of data between

the BSP library and the scratch file of the functional module.

The control procedures provide a pool of information to the

functional modules, and the linkage procedures provide data from

that pool of information to the functional module, at the same

time guaranteeing its integrity. The interaction between the

control and linkage procedures is realized by the system's

registers; these consist of special regions of COMMON which hold

information on the location of data required for the execution of

the module's functions (conversion register), and on the exchange

interface of data between the BSP library and the scratch file of

the module (exchange register). The system has a diagnostics

provision, included in procedure ERROW, which contains a list of

errors which can be encountered in the data processing

operations. The linkage procedures, together with the

diagnostics procedure, make up a group of programs available to

the programmer of functional modules; they are incorporated in

the body of the module and constitute its system support.

3.1. The Systea's Registers

The exchange of information between the components of the input

system and between the input system and the functional modules is

realized by the system's registers located in specially assigned

regions of COMMON.

The system has two registers.

The first is the conversion register located in the first eight

words of the COMMON/CATAL/MR(512) region. It is used for the

36

pp

BSP
Catalog

Control
Procedures

Scratch
File

Functional
Module

Linkage
Procedures

*—m
Conversion
Register

Exchange
Register

Fig. 3.1 Interaction of System Conponents
with Functional Modules

transmission to the functional modules of information on the

locations of BSP fields (containing input, control and processed

data) and of the scratch file regions reserved for the storage of

intermediate data.

The second is the exchange register located in the COMMON/LIST/ML

(18) region and contains information on the location and status

of a memory block composed of three buffers reserved for the

storage of those sections of the BSP library that participate in

the exchange of data. The exchange register is used by the

linkage procedures (see Section 3.3).

The controlling programs define the initial values stored in the

registers; the functional modules, using the linkage procedures,

execute the exchange of data with the BSP library on the basis of

37

the values stored in the registers. In the course of the

exchange process the values stored in the registers are redefined

in accordance with the status of the information. At the end of

a data processing operation, the control of the registers is

returned to the control procedures, and their parameters changed

to the values corresponding to the initial condition which are

then used to determine the next initial values, etc.

The elements of the conversion module are defined as follows:

MR(i) ,i = l,2,3 the number of the element MR in the
memory block which is followed by the
catalog record which contains the address
of the ith BSP field (i=l,2,3 for input,
control and processed data fields,
respectively).

MR(3+i),i = l,2, 3 the number of the current word of the ith
BSP field (initially, this number is equal
to the number of the first word of the ith
field).

MR (7) upper limit of the scratch file region
of the module, field 0 (which is equal to
the maximum allowed number of a word in
the undesignated region of COMMON).

MR (8) the number of the current word in this
field (initially, this number is equal to
the address of the first unused word).

After the completion of the data processing operation, the

functional module assigns the value of 0 to the MR(1), MR(2) and

MR(3) elements. The zero value of these register elements serves

as a flag to the main program indicating that the function of

this module has been performed. At the time of the end of the

performed function, the main program uses only one of the

remaining register elements, namely element MR(6) which contains

the address of the first unused word in the 3rd BSP field, and

which follows the results. This information is then used to

determine the length of the output data fields as they are

registered in the catalog.

The exchange register has the following structure:

COMMON/LIST/LC(3),LF(3),LP(3),LW(3),LT(3)

The value of the index corresponds to the number of the buffer,

which is equal to the number of the BSP field used in the sector-

38

wise exchange of data (i.e., that is equal to the number of the

exchange channel).

The following information is contained in the ith channel of the

buffers (where i=l,2,3):

LT(i) the number of the directly accessible file that
contains the ith BSP field (for the BESM-6
computer, it is the mathematical number of the
installation') .

LF(i) the registration number of the BSP section from
that file given in the ith buffer of the
memory block. If the the buffer is empty, the
the value for LF(i)=-l.

LW(i) the number of the word in the undesignated
COMMON/P(i) region which indicates the location
of the beginning of the ith buffer.

In the case of the BESM-6 computer, the following
additional information is provided:

LP(i) the number of the 03U sector which contains the
ith buffer. The LP memory block is not used in
the ES computer.

With the aid of the buffers mentioned above, it is possible to

effectuate the exchange of data with the use of "split channels",

that is, when each channel has its own corresponding LF file

number (for the BESM-6 computer it is the number of the

installation) different from all of the others. When processing

data from the BSP library, it is possible that two or even all

three BSM fields ,are stored in a single file (in one

installation), and consequently in the same sector. It is

evident that in the exchange of data with the BSP library, the

sector used is the one that is located in the operational part of

the memory even if it is transferred via another exchange

channel. There is a provision in the linkage procedures for an

automatic transition to a more optimal operational mode, a so-

called "integration of channels" mode, which comes into effect as

soon as the condition for a one-to-one correspondence of the

channel and file numbers (or the installation number) ceases to

exist. This integrated operational mode leads to the necessity

to choose the least "needed" sector in the available buffers for

'Translator's Note: literal translation of the original.

39

the subsequent restoration (to the beginning of the next cycle),

and to keep track which exchange (reading or writing) mode was

used in each of the buffers. At the present time, the choice

criterion used (to choose the least needed sector) is based on

the addressing frequency: that is, when restoration is required,

the sector which was addressed the least number of times since

the last exchange is omitted. The concept of "restoration" needs

clarification; although it will be discussed in more detail in

the description of the linkage procedures (see Section 3.3), at

this point it is only necessary to note that one can extract an

address from a buffer (or enter an address into a buffer) in the

form of a simple variable, as well as in the form of a memory

block (or more exactly, that part of the memory block that is

included in the buffer). The following buffers are used in the

integrated operational exchange mode:

LC(i) - the number of addresses to the ith buffer since
the last exchange performed with the BSP library.

LR(i) - flag that determines whether a buffer
participated in an entry channel exchange
(channel 3); it is equal to the channel number
that is used for the exchange in a sequential
addressing mode until the point at which there is
a channel 3 exchange, after which the last value
is retained. This flag is used to determine
whether the content of the ith buffer must be
entered into the BSP library before its
sequential restoration, or not.

The exchange register controls the operation of the functional

module implicitly by using the linkage procedures, and does not

expect an automatic address to be originated from the module. If

the need arises to change the register values in order to alter

the exchange mode, it is necessary to use the system's DISPAG

procedure (see Section 3.3).

3.2. Control Procedures

The principal control procedures are: the main program (in the

BESM-6 version it is the GRUKON PROGRAM), and procedures MONIT,

CODE, REGIST and PROCESS. The interaction of these procedures

with each other and with the functional module FM is shown in

Fig. 3.2. The function of the main program consists in the

setting of the global parameters of the GRUKON program; after

40

GRUCON

MONIT

PROCESS REGIST CODE

Functional
Module

Fig. 3.2 Interactions of Control Procedures

this initialization, control is passed to the MONIT procedure.

The global parameters consist of the following quantities:

- the length of the working field dedicated to a given
module for the storage of intermediate data on the
scratch file, and

- the unit length of the word used in the BSP library.

In the case of the BESM-6 computer, it is also necessary to

define the BSP segment, that is, to designate and allocate the

direct access files (in the BESM-6 computer the BSP segments are

defined in the "job description" on the basis of the nature of

the required MB, MD and ML elements). It is convenient to

dedicate 2 to 3 segments in the BSP library so as to be able to

manipulate data in recurrent operations using the same memory

segments (see Section 2.5).

The selection of global parameters is different for the BESM-6

and ES computers. In the BESM-6 computer, all of the free memory

available from the resident memory, estimated on the basis of the

size of the problem and the maximum size of the functional

module, is assigned to the scratch file. The standard length of

a BSP sector is equal to 1024 words. Consequently, the text of

the main program on the BESM-6 computer does not have any free

parameters, and can therefore be recorded in a straight forward

manner. On the ES computer, on the other hand, even though the

larger size of the operational memory allows for an increased

size of the working field of a functional module, it is not

41

required that it be used in its entirety: only individual modules

divide up the working memory available from the entire working

field. In some cases an increase in the size of the field can

improve the efficiency of the program, however, it is better to

incorporate such improvements in the programming of the

functional modules; for example by repeating calculational

operations using more efficient usage of memory, or by printing

out a message indicating the need to increase the size of the

module working field in the scratch file. The parameter used as

a standard is practically the same as that for the BESM-6

computer, and is apparently of a length which guarantees an

acceptable program efficiency in the solution of typical

problems.

The second global parameter, namely the length of the BSP

segment, is usually taken to be equal to the track length of a

disc element measured in words, and depends on the disc type

being used. For 29 Mb discs it is equal to 1823. The criterion

used to select these parameters, such as the number and lengths

of files required for the storage of the BSP library, depends

very much on the type of problem to be solved and it is difficult

to give any recommendations as to their sizes. It is suggested

that the users of this program define these values themselves

giving due consideration to the nature of the data that are to be

processed as well as to the type of processing envisaged. In the

worst case, the program will issue an error message that there is

not enough available memory, requiring the job to be resubmitted.

If the sequence of calculational operations were properly

planned, making p.roper use of information archiving, the

computational sequence can then be picked up at the point at

which it was interupted.

The listings of the main programs of the standard ES and BESM-6

versions of the GRUKON software package are given below.

For the EC computer For the BESM-6 computer

COMMON//P(20000) PROGRAM GRUKON
COMMON/LREC/LREC COMMON//P(16384)
LREC = 1823 " COMMON/LREG/LREG
DEFINE FILE (1,500,1823,U,NREC) LREG = 1024
CALL MONIT (20000) CALL MONIT
STOP CALL EXIT
END END

42

In the case of the ES computer, the working field of the module

consists of 20000 words,- one direct access file, which has a

capacity of 500 entries, is dedicated to the BSP library; the

length of an entry corresponds to the track length of a 29 Mb

disc, and consists of 1823 words.

In the case of the BESM-6 computer, the length of a working field

consists of 20, 03U leaves (?) and the BSP library entry is

fixed at 1024 words; the CALL EXIT command implies a change from

a computational to a data processing operational mode.

The MONIT procedure executes the overall data processing

operation. Its sole parameter is the length of the COMMON field

(i.e., the maximum value of the module working field address).

The function of the MONIT procedure consists of the following:

1. Definition of the initial status of the system's registers.

2. Definition of the initial status of the BSP catalog, and
entering of the names of the data processing operations to
be executed without enumerating their parameters.

3. Input of the data processing subroutine (effectuated with
the help of the CODE procedure).

4. Implementation of the control commands.

5. Implementation of the allocation commands.

6. Implementation of the catalog editing commands.

7. Implementation of the data processing commands which
includes:

a) pre-designation of command parameters implied by virtue
of their omission (see Section 2.3.),

b) definition of the conversion register parameters
requiring

- the setting of the BSP fields allocation on the basis
of the content of the processing commands, input data
and command parameters, and

- the allocation of a BSP field for the storage of
results in accordance with the address given in the
command, or if it not given, assigning a block of free
space on the basis of information given in the
catalog;

c) re-definition of the exchange register parameters (with
the help of the REGIST procedure);

d) calling the functional module (with the help of the
PROCES procedure);

43

e) entering the length of the data processing results into
the BSP catalog;

f) printing of the information on the number of
interruptions during the execution of the processing
operation (if such did occur);

g) transfer of the buffer contents into the BSP library;

h) execution of the next data processing command.

The CODE procedure is used to transfer the data processing

subroutine from punched cards in accordance with the command

syntax given in Section 2.1. The following error message is

printed out if the program comes across a command that it cannot

understand:

* * * ERROR B n COMMAND PART

where n is one of seven parts of the command, separated by a

comma.

The REGIST procedure determines the parameters of the exchange

register on the basis of its preceding status. Using the free

buffer LC, the correspondence between the channel number and the

number of the file (number of the installation) needed at each

successive processing step is provided. If, after comparing this

correspondence with that stored in the LF buffer, it turns out

that this file was used in a different channel, the address of

the LW buffer is re-assigned. If the file was not used in the

preceding step, then this buffer, which remained undetermined, is

declared to be empty (i.e., LF(i)=-l) and is combined with this

file (i.e., the value of LT is taken to be equal to the number of

the file), and the LR and LC registers are taken to be equal to

zero. As a result, the information stored in the buffers becomes

available for the next processing step without any need for

additional exchange or transfer operations.

The PROCES procedure establishes the correspondence between the

names of the command parameters (the system's name of the

functional module) and the module initiation procedure, and

transfers command to that procedure.

The name of the main program is derived from the system's name by

the elimination of the * symbol and the replacement of the

symbols / and - by the symbol X; for instance: *R/T-S becomes

44

RXTXS. Before the transfer of control, the name of the module

and the time when it was initiated is printed out in the form of

the following message:

* * * MODULE . . . INITIATED AT ... SEC

In the event that control was not transferred, or if the module

was incorrectly described (e.g., if the values of the first

three elements of the conversion register were not changed to

zero), the following error message is printed-.

* * * MODULE ... IS MISSING

and the computation is interupted.

In the case of the BESM-6 computer, the name of the initiation

procedure is derived automatically from the control parameters,

and the control transfer is carried out with the help of the

LOADGO procedure which loads the module initiation procedure in

the form of a dynamic(?) heading. "The text string that defines

the name of the module initiation procedure is a parameter of the

LOADGO procedure. Consequently, the names of the functional

modules are not stored explicitly anywhere and the addition of

new modules does not require any changes to the system.

In the case of the ES computer, the system's names are determined

by the DATA operator in the PROCES procedure, and the command

transfer is carried out by the conditional operator IF, under the

condition that the names and parameters are equivalent to those

of the system's.

The addition of a new module requires the following:

- the determination of the system's name with the help of
the DATA operator, and

- the introduction of a conditional operator for
addressing the module initiation procedure.

For example: REAL*8 MRXTXS
DATA ARXTXS/*R/T-S

IF_(M.EQ.ARXTXS)_CALL_RXTXS

where M is a variable which contains the names of the control

parameters.

45

3.3. Linkage and Diagnostics Procedures

The linkage procedures are subroutines designed specifically for

simplifying the access to the data in the framework of the

system's rules and conventions. The utilization of these

procedures by the functional modules guarantees the preservation

of the integrity of the system's information content and of the

information compatibility.

The linkage procedures consists of the following :

- the MFIND procedure for the search of data in the BSP
library;

- the DISPAG procedure for the restructuring of the exchange
register;

- procedures for the transfer of data blocks between the
scratch tape and the BSP library at various levels of
processing: such as procedures CANAL, MWORD, TRAC,
MWTRAC, LOADR, LOADU and other procedures of the
general type LOADX, where X refers to the type of
processed data defined in accordance with the program's
classification system (see Section 1.3).

In addition to the linkage procedures, programers of individual

functional modules have at their disposal an error diagnostics

system in the form of procedure ERROW, whose functions are

described below.

The function of the MFIND(NAME,MAT) procedure is to organize the

sequential transfer of the processed and control data. The

following parameters are entered with the input:

- NAME, the name assigned to the data consisting of two
alphanumeric words (one word in the case of the BESM-6);

- MAT, the material number, used also as searching
criterion.

This procedure fulfills the following functions:

Mode 1 - MAT*0. Starting with the current address of the input

element MR(4), the program searches field 1 for data having the

name NAME and the material number MAT if MAT > 0, or any other

material number if MAT < 0. If such data exist, the address of

the beginning of these data is assigned to the MR(4) element,

46

MFIND is given the value 1, and control is returned to the

calling data processing procedure. If no more data are found

after the search of field 1 is completed, MFIND is given the

value 0, control is returned to the originating program, and the

data search is terminated.

Mode 2 - MAT=0. Under this condition, the search of field 1 is

executed as part of the control data cycle. The location of the

UD data is assigned on the basis of the element MR(5) (the

address of the current word in field 2). The data whose names

correspond to NAME and whose MAT numbers correspond to the

identification number given in the heading of the UD data, are

searched for in field 1. If the MAT number is equal to 0, the

search using the MAT number is not executed. If data are found,

then MR(4) is given the value of the address of the PD data

block, MFIND is given the value 1, and control is returned to the

originating program. After the completion of the search of field

1 for one set of UD data, the address of MR(5) is shifted by the

length of the data set, and the search of field 1 starts again

from the beginning. After field 1 had been searched to the end

of the last of the UD data sets, MFIND is assigned the value 0,

MR(1) , MR(2) and MR(3) are also assigned the value 0, control is

returned to the originating program, and the search is

terminated.

In this manner, procedure MFIND can organize the processing of

both UD and PD input data clusters using one of two schemes: "in

parallel" as described under Mode 1, and "in series" as described

under Mode 2.

The DISPAG(NI,NO) procedure makes it possible to redistribute

buffers directly from a functional module. The purpose of this

option is to be able to increase the transmission capacity of one

of the channels by temporarily using an free channel. The

parameters of this procedure are:

NI - the number of the channel from which the buffer is
removed;

NO - the number of the channel to which the buffer is
assigned.

47

The use of this procedure makes it possible to increase the

number of buffers assigned to channel NO to two (provided that

they were not used simultaneously before).

The redistribution of buffers is accomplished in the following

manner:

- the number of the file dedicated to the NI channel is
determined by the exchange register: NTI=LT(NI);

- the number of the file dedicated to the NO - NTO channel
is determined by the BSP catalog with the help of the
conversion register;

- if the two are equal, NTI=NTO (i.e, the channels already
coincide), control is returned; otherwise:

- if the buffer sector for channel NI was used in the
recording mode (LR(NI)=3), it is recorded in the BSP
library;

- the NTO:LT(NI)=N0 file is assigned to channel NI, and the
buffer is declared to be "empty": LF(NI)=-1, LR(NI)=0, and
control is returned to the originating program

After the requirement in the sector is satisfied, the value of

the exchange register is redetermined; this is done with the help

of the DISPARG procedure by setting the parameters NO and NI

equal to the channel number from which the buffer originates:

CALL DISPAG(NO,Ni;) .

Exchange procedure. Direct access to data stored in the BSP

library, consisting of input PD and UD data and the results of

data processing, provides the exchange procedure with structured

data blocks. In the organization of these exchange procedures,

it is convenient to identify four levels of operation: from the

zeroth to the third level (see Fig. 3.3). It is suggested that

the programmers of functional modules use only 3rd level (for the

PD data transfer) and 2nd level (for the loading of UD data and

exchanging working data blocks) operations. These procedures,

consisting of the LOADX family of procedures and of the TRAC and

MWTRAC procedures, guarantee an effective means of data transfer

and exchange, protected from programming errors with respect to

the rules regarding the utilization of the BSP library. In the

case of the lower level procedures MWORD and CANAL, there are no

built-in controls to adhere to the rules in the utilization of

the BSP library; it is therefore not recommended to call on these

procedures directly from the functional modules.

48

>

LOADX

/

HHTRAC

\

TRAC

MWORD

.

CANAL

3

2

1

0

, OBMEN •

l_

Fig. 3.3 Interactions of Exchange Procedures
at Different Exchange Levels

The LOADX family of procedures are designed for the exchange of

standard structured data of the type "X" (the data type is

defined by the last letter of the procedure name) with the BSP

library, consisting of the input and output of the data being

processed. Currently, there are procedures for the processing of

data of type R, S, U, F, P, A, E and M (see data classifications

in Section 1.3). The parameter of this procedure is:

NC - number of the exchange channel and the direction of the
exchange (NC=1 or 2 data transfer from the BSP library,
NC=3 data transfer into the BSP library).

In order allocate data in the computer memory, it is necessary to

define the standard COMMON region corresponding to the data type

X, and the unnamed COMMON P(l) region which is the working field

of the functional module. The location of data in the BSP

library is determined by the value of the current conversion

register address.' Loading of data in the computer memory is

executed in the following manner: the simple variables and the

addresses of the buffers are transferred to the COMMON region of

the memory; the buffers themselves are stored one behind the

other in the unnamed region of the memory starting at the first

49

free word location. Should the size of a buffer be too large to

be accommodated in the working field of a functional module

(under normal circumstances singling out such a memory block

requiring "individual treatment" does not present any

difficulty), it is left in the BSP library; if this occurs during

data input, the current location address is shifted by the length

of the memory block. After the data have been loaded, the

location address will correspond to the location of the memory

block in the BSP library. An analogous situation may occur

during data input: a data block that is formed directly in the

output field of the BSP library shall be left out and the current

location address shall be shifted by the length of the data block

(a more detailed description of the treatment of large data

blocks is given in Chapter 4 of this report).

The TRAC(NC,L,A) procedure serves to transfer information from

the data blocks A(L) to the BSP library and vice versa. The

input parameters of this procedure are:

±NC - channel number and direction of the transfer (in
the case of channel 3, the + sign is used for
data entry, and the - sign is used for the
reading/retrieval of data);

L - the length of the data block;

A(L) - the name of the data block being transferred.

The location of data in the BSP library is determined by the

current location addresses, which correspond to the BSP channel

number in the conversion register (element MR(NC+3)) of the

COMMON/CATAL/MR(512) region of the memory. After the transfer of

the information, the value of the current location address is

shifted by MR(NC+3)=MR(NC+3)+L. Thus, if the value of the

location address is not changed, each subsequent data block is

positioned in the BSP library one after the other.

In the course of its operation, the TRAC procedure uses the MWORD

procedure which is designed for the transfer of data sectors.

However, its use is implemented when the first element of the

shifted information is called; after that, MWORD calculates the

number of sectors which were transferred into the buffer, and

transfers them to the memory block A (or vice versa). After

50

this, the call for the MWORD procedure is repeated for the

transfer of the first sector that did not get into the buffer,

and so on until all of the information has been transferred in

the specified direction. As a result, the effectiveness of the

transfer operation increases as length L increases. During the

transfer procedure, a controlling operation is performed in order

to ascertain that the location addresses of the shifted

information corresponds to the BSP library fields which

participated in the transfer. The same diagnostics procedure is

used as that used in the MWORD procedure.

The MWTRAC(NCI,L,NCO) procedure serves to transfer information

within memory fields allocated by the system to the functional

modules. There are four such fields: input (1), control (2),

output (3) fields of the BSP library, and the working field of

the functional module (0) located in the operational part of the

memory. Fields 1 and 2 are used only for reading, and fields 3

and 0 for reading and recording of information. This procedure

has the following input parameters:

NCI - the number of the input channel (reading channel)
(NCI-0,1,2,3);

L - the number of words in the transferred information;

NCO - the number of the output channel (recording channel)
(0,3).

The output parameter of this channel is:

MWTRAC- the location address of the beginning of the data
in the output channel.

The location of the data in the input and output fields is

determined by the current location addresses stored in the

conversion register (the elements /CATAL/, MR(5), MR(6) and MR (8)

for fields 1, 2, 3 and 0 respectively). The location address

values for the memory fields participating in the transfer are

increased by L. No transfer takes place if NCI=NCO; only the

current location address of the NCI=NCO field is changed.

The values of the current location addresses and the proper use

of the fields are controlled by the following conditions: the

size of the information cannot exceed the size of the dedicated

51

field, and information can be recorded only in fields 0 and 3.

If these conditions are not met, the program prints one or the

other error message:

* * * INFORMATION OUTSIDE BOUNDARIES OF FIELD . . .

* * * RECORDING IN F I E L D . . . I S NOT ALLOWED

The MWORD(NCMW) procedure makes it possible to access any word

in the BSP library fields that is dedicated to the functional

modules with due consideration given to their function using a

sector-wise mode of transfer.

The input parameters used in this procedure are:

NC - channel number and transfer direction;

NW - location address of the word in the channel for which
access is requested.

The output parameter is:

MWORD - the location address of the requested word in the
unassigned COMMOM region (in the part of the region
that is used by the buffers).

The MWORD procedure performs the following functions on the basis

of the values stored in the exchange register:

1) using a given location address MW and the global

parameter LREC, the procedure calculates the number of

the requested sector NF of the MT=LT(NC) file.

2) using the memory block LF, the procedure checks whether a

requested information sector is located in one of the

buffers.

Assuming that a requested sector is found in the NB buffer,

LT(NB=NT and LF(NB)=NF

In this case, the address counter (that counts the number of

times that this sector has been addressed) is increased by one,

that is LC(NB)=LC(NB)+1; if the NB buffer did not take part in

the 3rd (recording) channel transfer, the following channel

number is registered:

IF_(LR(NB) .NE.3) _LR(NB)=NC

52

and control is returned to the originating program. Otherwise:

3) the procedure determines whether there is an "empty" buffer;

if there is a buffer NB, such that

LT(NB)=NT and LF(NB)=-1

the required sector NF is read into the buffer, it is assumed

that LF(NB)=NF and LR(NB)=NC, and the address counter for all

buffers that are dedicated to that same file are assumed to be

zero; furthermore,

LC(IB)=0, if LT(IB)=NT for IB=l,2,3

the location address of the word in the working field of the

MWORD procedure is calculated and the control is returned to the

originating program.

4) If all of the .buffers are occupied, there is one among them

that is dedicated to the NT file, which has been addressed a

minimum number of times, thus:

LC(NB)=minLC(IB) and LC(IB)=NT for IB=1,2,3.

If it was implemented in channel 3 (i.e., LR(NB)=3), then it is

registered in the BSP library under the number LF(NB); the

required sector NF is then read in, it is assumed that LF(NB)=NF,

and the address counter is set to zero:

LC(IB)=0 if LT(IB)=NT for IB=l,2,3

the location address of the word in the working field MWORD is

calculated, and the control is returned to the originating

program.

During the transfer procedure, a controlling operation is

performed by the MWORD procedure to ascertain that the MW

location address corresponds to the BSP library field which

participates in the transfer. If it turns out that the requested

word lies outside of the memory boundary, the following message

is printed out:

THE OUTPUT LIES OUTSIDE OF FIELD n

where n is the number of the field in which this event has been

registered.

In this manner, the MWTRAC procedure regulates the exchange of

data in accordance with the system's rules and conventions,

minimizing at the same time whenever possible the number of times

the memory is addressed.

53

The CALL(NC) procedure controls the read-write operations of BSP

sectors at the zero level of exchange. BSP sectors are used as

units of exchange. The input parameter for this procedure is.-

+ NC - the exchange channel number with a (+ or -) sign
specifying the direction of the transferred
information. For the input direction (indicated by
the + sign) the following convention is observed:
read (output) only for the 1st and 2nd channels, and
write (input) for the 3rd channel (where the number of
the BSP field that is taking part in the transfer
corresponds to the channel number). In order to read
data from the output field of the BSP library, the
3rd channel can also be used to transfer data in the
opposite direction (using the - sign). The length of
the sector (data transfer unit) is a global parameter
used throughout the program; the location of a sector
in the operational part of the memory and in the other
parts of the system is determined by the LW(NC) and
LF(NC) buffer elements of the exchange register (in
the case of the BESM computer, the sector number 03U-
LP(NC) is used as well).

In the ES computer, the reading and writing of BSP sectors is

executed with the use of the READ and WRITE commands. On the

BESM-6 computer, the data transfer functions are executed by

means of the "self-coded" procedure OBMEN [15], by transposing

the 03U sector into an MB channel or an ML zone and vice versa,

avoiding the use of the system's buffers.

The diagnostics procedure ERROR(NAME,N,I,R) is designed to issue

messages to identify the reasons for typical errors. There are

two kinds of errors: incidental and fatal. In the case of

incidental errors, the procedure prints out the reason for the

interruption of the program and then proceeds with the

computation. If the number of messages exceeds 5, their output

is stopped, and instead, the information on all of the

interruptions during any given processing step is printed out at

the end of that step. In the case of a fatal error, only one

error message is issued, and the computation is stopped.

The parameters of this procedure are:

NAME - the name of the procedure where the error occurred
(an alphanumeric constant consisting of 6 bytes).

±N - the number of the error, with an indication as to the
type of error (incidental error by a + sign, fatal
error by a - sign);

54

I - integer identifying a given error parameter (see
examples below);

R - a number giving the value of an error parameter (see
examples below).

Error Messages

1. * * * THE OUTPUT LIES OUTSIDE OF FIELD I
2. * * * WRITING IN FIELD I IS FORBIDDEN
3. * * * ITERATION WAS INTERUPTED AT STEP I AT WHICH POINT

THE ACHIEVED ACCURACY WAS R
4. * * * ERROR IN THE CONTROL PARAMETERS
5. * * * CROSS-SECTION OF TYPE I IS NEGATIVE AT POINT R
6. * * * MODULE IS MISSING

This list can be extended to include additional types of errors

by adding two statements to the procedure-.

IF_(NI.EQ7) PRINT 7

7 FORMAT (IX,/_***_/,/ message text)

(the I and R parameters are assigned upon inspection).

4. FUNCTIONAL MODULES

The GRUKON software package is made up of a number of programs

designed to accept standardized input; this implies the existence

of fixed data formats and well-defined rules in the construction

of functional modules which guarantee the reliability of the

system. On one hand, such rules would seem to curtail the

programmers freedom, and increase the complexity of the

programming; on the other hand they permit the use of a number of

operations inherent in the module's logic and in the

technological process under consideration, thereby reducing the

need for time consuming creative effort.

This chapter describes the system "as seen by an insider", such

as it would be seen by the programmer of a functional module. It

describes the information structure as it is used by the

functional module, the programming methods and procedures used in

its development, and the typical construction of the principal

procedures of functional modules. In conclusion, the methods and

procedures used in the development of the functional modules are

illustrated in examples using simplified data formats and data

processing algorithms.

55

4.1 The Information Environment of the Module

The nodule's resources. Three BSP library fields are dedicated

to a functional module7: an input field (field 1) used for the

storage of input PD data, a control data field (field 2) used for

the storage of UD datar and an output data field (field 3) , used

for the storage of data processing results in standard PD format.

A BSP library field consists of a region in a memory segment

defined by the location address of the first word and the number

of words in the set. In each segment, the numbering of words

starts with a zero address; the transfer of information proceeds

through the buffers in fixed length sectors.

In addition to these BSP fields, a module can use a working field

located in the operational part of the memory. The allocation of

such a field is executed by the statements

COMMON P(l)
DIMENSION M(l)
EQUIVALENCE_(P(1),

The location address of data in a working field is defined by the

number of the memory element P(l) or M(l), which marks the

location of integer or numerical data respectively. The working

field of a module is used to store arrays or sub-arrays of input

data, for the storage of auxiliary blocks of data consisting of

intermediary calculational results, and for the storage of output

data arrays (or sub-arrays) prior to their transfer to the BSP

library. Parts of field 3 which do not contain any useful data

can also be used as working fields.

Initial information that defines the BSP fields at the outset of

a run is stored in the linkage register. This register is

accessed through the region COMMON/CATAL/MR(512) (see Section

3.1). The BSP catalog, together with the complete field

allocation information pertinent to temporary modules, is also

located in that region.

7This chapter describes data processing modules only. As
input-output modules, conversion modules and data reduction modules
are modifications of data processing modules, they do not need to
be described separately.

56

The order in which data are called from the BSP fields is

determined by the processing rules for PD and UD data clusters:

field 1 is foreseen for the sequential buildup of UD data called

from field 2, and the PD data which are to be processed are

loaded into the operational part of memory. The input PD data

can be processed one at a time, in the given order, or in bunches

in the order specified by the UD data. The series of data

processing operations is terminated after the last UD data set

has been processed. Depending on the type of data processing

operation, the number of output data will be equal to either the

product of the number of input PD parameters and the number of UD

data, or to the number of UD data. It is suggested to use

procedure MFIND to organize the sequential input of data clusters

(see Section 3.3); its use should guarantee the correspondence of

the input data with the type of processing; at times however,

this is not enough and it is necessary to check the

correspondence of the input PD parameters and the UD data

explicitely (for instance, to insure the correspondence of the

energy intervals .specified in the PD and UD data). If the PD

parameters do not agree with the processing conditions, they are

ignored.

End of nodule utilization. At the end of the utilization of a

module, the values of the current location addresses of fields 1,

2 and 3, MR(4), MR(5) and MR(6) must be reset to point to the

first word which follows the last word of the corresponding BSP

field, and their values must be set to zero. The control of the

program is returned with the use of the RETURN command.

4.2. Organization of Data Transfer

Exchange of data with the BSP library. The exchange of data

between the operational memory and the BSP library is performed

with the use of the system's exchange procedures (see Section

3.3). The standard quantity parameters in the operational memory

are assigned to standard COMMON regions. In the case of PD data,

the names as well as the structures of these regions are fixed

(see Appendix A); in the case of UD data on the other hand,

because of the uniqueness of each processing operation, the

structure of these regions must be worked out independently. The

names assigned to these regions are constructed by using the name

57

of the main module, with a symbol B added as a prefix: for

instance, for the module RXTXS, the name of the COMMON region

would be COMMON/BRXTXS.

The order in which the variables and the buffer addresses are

stored in the standard COMMON region is the same as that in which

they are presented in the standard parameter set (including the

block of SP heading data).

When data are loaded, only the simple variables and the buffer

addresses are loaded into the COMMON region, the actual buffers

are stored in the module's working field or left in the BSP

library. When loading data with the LOADX procedure, the last

data block, consisting of the first data table, is left in the

BSP library because its size is, as a rule, too large to fit into

the operational memory. The address of this data block,

allocated at the end of the LOADX procedure, actually corresponds

to the location of the data block in the BSP library. In such a

case, it is the responsibility of the programmer to organize the

transfer of data block sections in such a way so as to be most

efficient in the data processing operation.

The loading of all logical control data also rests with the

programmer. It is suggested that the exchange procedures TRAC

(for simple variables) and MWTRAC (for the exchange of data

arrays and address allocation) be used for such operations.

In the data processing operation, the initial table of output

data is built up in sections. As they are generated, these

sections are stored in specially reserved space in field 3 of

the BSP library. After all of the sections of the table have

been entered and its size has been determined, the data table

heading, the other defining parameters, and the output data array

are formulated. They are loaded by means of the LOADX procedure

which stores all of the data blocks, except the initial data

table which is already located in the BSP library (instead of

storing that table, a gap is introduced and the register element

MR(6) is increased by an increment equal to its length). After

the set of input PD and UD data has been processed and the

results stored, the current location addresses of the BSP library

fields must be reset to point to the first word which follows the

58

stored data, and the address of the working field must be set to

equal to the value it had at its initial entry point. The

program can then proceed with the processing of the next data

section.

Moving data within the module. As a rule, a data processing

module is made up of a few procedures. For instance, it is

convenient to separate linkage functions from calculational

functions; the former are usually the same in all modules and are

constructed using the same logic, and the latter are specific for

each module and are often modified. The degree to which a module

can be structured depends on the complexity of the processing,

that is, on the extent to which general procedures and utilities

can be used in its execution, as well as on other factors.

Aiming at a standardized procedure design, the following method

is proposed to be adopted for the transfer of information from

one procedure to another. All input data arrays are stored in

the working field of a functional module one behind the other

starting at the location of the first free word (the address of

its location is stored in the MR(8) register element). These

blocks are followed by space allocated for the output data

arrays. At the same time, the value of the MR(8) register

element is increased by the length of these data blocks in

accordance with its function. Parameters consisting of simple

variables and addresses of data blocks are combined in the COMMON

region by the calling procedure, and its name is modified by

prefixing the letter B to the name of the procedure. In this

manner, the basic information is transmitted through the COMMON

region whose structure is determined by the requirements of the

calling procedure. The names of the procedure parameters are

suggested to be used primarily as mnemonics, in order to make it

easier to remember their function. It is therefore desirable to

choose a parameter name which characterizes the principal

function of the computation.

It is possible that additional memory blocks may be needed by the

procedure for the execution of the computation. In such a case,

before storing the various memory blocks in the working field one

behind the other, it is necessary to record the content of the

MR(8) register element in the beginning of the procedure. Should

it be necessary to change to a lower level procedure, a COMMON

59

region is created by the calling procedure, its input and output

memory blocks are assigned in the working field, and the MR(8)

register element is increased by the length of the memory blocks,

etc... (see above). When returning control to the higher level

procedure, it is mandatory to reinstate the initial entry point

value of the MR(8) register element. In the process of

allocating the memory blocks in the working field, it is

necessary to control the extent to which it is filled: that is,

the condition MR(8)^MR(7) must be satisfied. If this condition

is not satisfied, it is necessary to change over to a more

economical utilization of the working field required in the

computation (for instance, by decreasing the size of the data

arrays, or by making provisions for space in field 3 of the BSP

library, etc...). Alternatively, if such measures are not

taken, the program can be designed to issue an error message

(using the ERROR procedure) and interrupt the computation

process.

4.3. Methods Using Addresses

Arrays of numeric variables and integer data.

With the scheme describe above, it is possible to allocate the

working field of a module in a dynamic manner by reducing all

limitations imposed on the length of a memory block to one common

parameter, namely to the length of the working field. The price

one pays for this is in the loss of clarity in working with

memory blocks, and it becomes necessary to deal with addresses.

In order to compensate for this shortcoming it is suggested to

use the names of corresponding memory blocks in the naming of

addresses by adding the prefix letter M to their names. For

instance, the address of the memory block A would be MA;

respectively, reference to the element A(I) would have to be

replaced by P(MA+I-1). The procedure is the same in the case of

integer arrays, except that instead of array P(l) one must refer

to the array M(I) with which it was joined.

Operations with Double Precision Arrays.

The use of double, precision causes certain difficulties. At this

stage of the program development, the following method is used to

overcome these difficulties. After creating a double precision

array it is entered in the working field using the statements:

60

COMMON P(l)
DOUBLE PRECISION_DP(1)
EQUIVALENCE^P(1) ,DP(1)

In order to allocate the double precision array in the working

field, the MR(8) address is changed so as to account for the

double length of the word, namely: MD=((MR(8)-1)/2)+l. The

element D(I) of the double precision array is handled in the

usual manner, namely DP(MD+I-1).

The address of the first free word in the working field following

the double precision array of length LD is determined by using

equation MR(8)=2*(MD+LD)-1.

4.4. The Functions of Main Procedures

In each functional module there is a procedure that is

responsible for the interaction of the module with the system,

and whose functions are determined to a large extent by these

interactions rather than by the more specific execution of data

processing operations. For instance, each functional module must

retrieve all of the initial data and control parameters from the

BSP library, and transfer the resulting data to the designated

part of the linkage register, regardless of its assigned data

processing objective and independent of the structure of the

data. It is therefore possible to develop for this part of the

module one programming scheme, common to a group of modules

designed to perform similar functional operations, and to devote

the rest of the programming to the technological objective of the

module. It is therefore natural to locate the functions of the

module devoted to its interaction with the system in the main

procedure of the module.

At the present time, two separate schemes are used in the

programming (of the main functional procedures) of data

processing modules. The first scheme assumes that the input data

are independent of each other and can therefore be processed

independently. In this case, the required functions must be

executed in the following order.

1. Record the address of the beginning of the working field,
element MR(8).

61

2. Call mode 2 of the procedure function MFIND. If its value
is equal to zero, then execute the RETURN command which
stops the data processing operation. Otherwise:

3. Call procedure LOADX for the first channel and load the PD
input data parameters into the operational part of the
memory (in this operation, the initial data table is left
in the BSP library).

4. Using the exchange procedures, enter the UD data in the
second channel: groups of simple variables located in the
COMMON region together with the control data, are read in
from the BSP library using the TRAC procedure. The blocks
of parameters are stored in the working field and are
simultaneously assigned addresses using the procedure
function MWTRAC.

5. Perform a check to ascertain whether the PD data parameters
satisfy the conditions given by the UD data. If the input
data do not satisfy these conditions, change the value of
the MR(8) element to its original value and return to point
2. Otherwise:

6. Proceed to formulate the output format: determine the
values of the simple variables on the basis of the input PD
and UD parameters and store the data arrays in the working
field (when possible together with the input data arrays).

7. Define the COMMON region for the procedure designed to
execute the algorithmic part of the data processing
operation: determine the values of the simple variables,
the addresses of the input data arrays and allocate space
on the scratch file for the storage of output data arrays.

8. Determine the value of the MR(8) element corresponding to
the beginning of the scratch file region not occupied by
data.

9. Record the .address of the channel for field 3 data (value
of the MR(6) element).

10. Determine the current addresses in the first and third
channels corresponding to the beginning of the input and
output data tables (MR(4) and MR(6) registers).

11. Execute the data processing operation by reading from field
1 one set of data at a time required for the execution of
the computational step and store the resulting data in the
space allocated in field 3 as they are generated.

12. If necessary, complete the determination of the output
parameter formats.

13. Determine the value of the current address in channel 3
(MR(6) register) of the location corresponding to the
beginning of the data and complete the writing of the
output format parameters in the third BSP field using the
LOADX procedure.

14. Confirm the agreement of the value of the current channel 1
address with the end of the data field (the MR(4) value

62

must point to the word which follows the last word of the
input PD data).

15. Restore the initial value of the MR(8) register, and return
to point 2.

The second scheme is implemented in those cases when there is a

requirement for a simultaneous processing of more than one input

PD data. This scheme is implemented by the execution of the

following steps:

1. Record the scratch file channel address MR(8).

2. Determine the upper boundary of the BSP field which holds
the control data (field 2).

3. Determine whether all of the UD data have been read in by
comparing the current field 2 address with the upper
boundary. If all data have been read in, set
MR(1)=MR(2)=MR93)=0, and execute the RETURN command.
Otherwise:

4. Search field 1 using the mode 1 procedure function MFIND
and record the addresses of the input PD data which must be
processed; retrieve the parameters needed for the
formulation of the output format parameters.

5. Formulate the output format parameters.

6. Record the addresses of the location corresponding to the
beginning PD data field in field 3 (MR(6)) and determine
the current address MR{6) of the beginning of the initial
output data table.

7. Read data from field 1 in sets as required for their
processing, execute the processing operation, and store the
results in field 3 as they are generated.

8. If necessary, complete the determination of the output
parameter formats (e.g., the length of the main data
table).

9. Determine the current field 3 address (MR(6)) corresponding
to the beginning of the output PD data array; complete the
formulation of the headings and parameter designations of
the main data table with the help of a dedicated procedure.

10. Determine the current address of the end of the input data
field in field 1 (MR(4)).

11. Restore the initial value of the MR(8) register and return
to point 3.

63

4.5. Convertibility of the Programming Language

The major part of the GRUKON program is written in a hybrid

version of the FORTRAN languages existing on the BESM-6 and ES

computers. As a rule, it is possible to achieve complete parity

in the coding of functions for these types of computers. Certain

differences may come up in file handling procedures or in the use

of system names for control data (such as in the conversion of UD

data). The following convention has been adopted: that part of

the coding which is machine dependent is written in two different

versions and is written within parentheses:

C(ES
coding for the ES computer

C)ES

C(BESM
coding for the BESM-6 computer

C)MESM

This gives the possibility to run the program on either one of

the two machines using normal means available to programmers.

4.6. Data Processing Example

Let us see how the rules and conventions described above apply to

a typical GRUKON data processing problem: namely, the calculation

of "the detailed cross-section dependence from resolved resonance

parameters. In order to be able to solve this problem in the

framework of this report, the probLem has to be simplified. The

nature of this simplification can be visualized by comparing the

hypothetical data structure *R* and *S* with the actual data

given in Appendix 1. The data processing algorithm is simplified

to a greater extent. Nevertheless, it is possible to maintain

the basic features of the functional module.

Description of the Problem.

The standard format *R* designed for the storage of resolved

resonance parameters has been fixed within the system:

NL - number of resonances

NR - number of types of reactions

LR(NR) - list of reaction types

64

EL - lower boundary of the energy interval within
which the cross-section is calculated

EH - upper boundary of that interval

C - coefficient

E,,G,(NR)- table of resonance parameters: resonance energies
E| for 1 = 1,...NL and resonance widths r,r; r j, = r, n;
r=l,...NR.

The data are assigned to the following standard common region:

COMMON/RRR/MRRR,NL,NR,MLR,EL,EH,MELGL

The requirement of this problem is to formulate the functional

module which would calculate the cross-section for given energies

using the calculational model described by the following

equation:

- J?Y TuFlr 1
E& Vrj 1+(E-Elr)~

ELzElEH

MR

r-1

The cross-section data parameters are not provided by the system.

Formulation of the data structures.

On the basis of the requirements of the problem, it is necessary

to develop two standard structures: one for the cross-sections

and the other for the processing control parameters. The first

set of data fall into the PD data category and requires

additional LOADX type procedures. This set of data is given the

system name *S*. The data set structure is defined in accordance

with the data representation rules using the established standard

data formats:

NC - number of cross-section types,
LC(NS) - list of cross-section types,
E - energy value,
S(NS) - set of cross-section values,

which will be assigned to a standard memory region

COMMON/SSS/MSSS,NS,MLS,E,MS

(where MSSS is the memory block address of the display title).

65

The conversion of the data given in the *P* format to the *S*

format is done by supplying only one parameter, namely the value

of the energy E. ' Having done this conversion, the program then

assigns the system's name *R/E-S which also serves as the name of

the corresponding UD data. The name assigned to the main

procedure of the module is RXEXS, and the name and structure of

the COMMON region for the UD data is: COMMON/BRXEXS/MRXEXS,E.

Program Execution.

Two types of procedures can be identified in a functional module:

- the main procedure, responsible for the preprocessing of the

input data, and the formulation of the output data representation

(SUBROUTINE RXEXS); and

-the computational procedures composed of algorithms designed

to calculate cross-sections from resonance parameters {SUBROUTINE

SIGMA(E)).

In accordance with the established rules, a COMMON region is

established to facilitate the exchange of data

COMMON/BSIGMA/NL,NG,MLR,C,MELGL,MS

(the nomenclature used corresponds to the description of the data

given above)

In the given example, there is a need to write a procedure for

the exchange of data in the standard *S* format:

SUBROUTINE LOADS(NC)

(where NC is the number of the exchange channel).

The coding of the procedures is given in Appendix 2.

Inclusion of the Module in the Program Package.

The module *R/E-S can be included in the BESM-6 version of the

GRUKON program by adding it to the existing modules stored in the

subroutine library of the program. To include it in the ES

computer version, it is necessary to edit the PROCES procedure by

adding the following statements:

REAL*8 ARXEXS
DATA ARXEXS/ '*R/ E-S'/

IF_(M.EQ.ARXEXS)_CALL_RXEXS

66

REFERENCES

1. NIKOLAEV, M.N., Nuclear Data for the Calculation of Fast
Reactors, Problems in Atomic Science and Technology.
Ser. Nuclear Constants 8(1) (1972) 3 (in Russian).

2. ABAGYAN, L.P., NIKOLAEV, M.N., SINITSA, V.V., Program
"MUF" for the Multi-Level Calculation of Cross-Sections
from Resonance Parameters. Moscow, Atomizdat, Nuclear
Physics Research in the USSR, Computer Program
Descriptions Vol. 1_5 (1973) 38 (in Russian).

3. ABAGYAN, L.P., NIKOLAEV, M.N., Computer Program for the
Calculation of Cross-Sections in the Unresolved
Resonance Region. Moscow, Atomizdat, Nuclear Physics
Research in the USSR, Computer Program Descriptions
Vol.15. (1973) 32 (in Russian).

4. SINITSA,' V.V., Computer Program for Averaging Cross-
Sections. Moscow, Atomizdat, Nuclear Physics Research
In the USSR, Computer Program Descriptions Vol. ljj_
(1973) 40 (in Russian).

5. NIKOLAEV, M.N., BAZAZYANTS, N.O., Computer Program
"UMBLOK" for the Calculation of the Scattering Cross-
Section Angular Distribution Parameters and of
Transmission Functions. Moscow, Atomizdat, Nuclear
Physics Research in the USSR, Computer Program
Descriptions Vol. 14. (1973) 43 (in Russian).

6. BAZAZYANTS, N.O., STAROSTENKA, M.B., Computer Program
"MANNERS" for the Calculation of Multi-Group Matrices of
Elastic and Inelastic Neutron Scattering Cross-Section
Angular Distribution Parameters with Self-Shielding.
Moscow, Atomizdat, Nuclear Physics Research in the USSR,
Computer Program Descriptions Vol. .15. (1973) 45 (in
Russian).

7. SINITSA, V.V., et al., GRUKON, A Library of computer
Programs for the Calculation of Multi-Group Data.
Moscow, Atomizdat, Nuclear Physics Research in the USSR
Vol. 2_7 (1979) (in Russian).

8. SINITSA, V.V., The SOKRATOR System: Subsystem GRUKON.
General Outline of the Programming System. Moscow,
TsNIIatominform, Military Technology and Economics.
General Technology Ser. Number 12_ (1978) (in Russian).

9. SINITSA, V.V., The GRUKON Computer Code Package. Part 1.
The Data Processing Program. Obninsk, Preprint FEI-1188
(1981) (in Russian).

10. SINITSA, V.V., The GRUKON Computer Code Package. Part 2.
The Control Data. Obninsk, Preprint FEI-1189 (1981) (in
Russian).

11. SINITSA, V.V., The GRUKON Computer Code Package. Part 3.
Modification of the Input Command Language and Extension
of the Possibilities to Process Tabulated Cross-
Sections. Obninsk, Preprint FEI-1332 (1982)(in
Russian).

67

12. SINITSA, V.V., The GRUKON Computer Code Package. Part 4.
Calculation of the Resonance Self-Shielding Cross-
Sections. Obninsk, Preprint FEI-1429 (1982)(in Russian).

13. SINITSA, V.V., RINEISKIJ, A.A., BULEEVA, N.N., The
GRUKON Computer Code Package. Part 5. The Calculation
of the Subgroup Parameters of the Resonance Structure of
the Cros.s-Section. Modification of the Program to Run
on the ES Computer. Obninsk, Preprint FEI-1666 (1985)
(in Russian).

14. YEVSTIFEEV, V.V., RINEISKIJ, A.A., The GRUKON Computer
Code Package. Utilization of Computer Graphics.
Obninsk, Preprint FEI-1747 (1985) (in Russian).

15. ZININ, A.I., SUSLOV, I.R., Exchange Programs and
Unformatted Data Input. Obninsk, Preprint FEI-1082 1980
(in Russian).

68

NU
NL
NR
LR(
LC(
LF(

LP(
LNU
EL,
EPS
A
B
SI
R

NR)
NU)
NF)

NR)
(NL)
EH

QR(NR)
SJ(
RC(
RF(

NU)
NU)
NRF)

APPENDIX 1. Structure of Processed Data.

R Parameter Set : Resonance Parameters.

NFORM Formula type
NFORM1 = Single level Breit-Wigner formula
NFORM2 = Multi-level Breit Wigner formula
NFORM4 = Adler-Adler formula
NFORM5 = Reich-Moore formula for non-fissile nuclei
Number of levels
Number of resonances
Number of reaction types
List of reaction types
Array of orbital momentum values
Data determining the means of including the contribution
of far-lying resonances (NF=NR if NF0RM=4, otherwise
NF=NU)
Number qf resonance parameters for each reaction
Array of level values
boundaries of energy region (eV)
Data accuracy (in relative units)
Nuclear mass (normalized to C12)
Nuclear concentration (in relative units)
spin of target nucleus
Channel width (FM)
Array of reaction energy values
Array of total momenta
Array of effective scattering radii (FM)
Array of background parameters (NRF is determined from
the values of LF)

TAB(EL,GL(IP),IP=1,NRP),IL=1,NL)
Tables of resolved resonance parameters: EL=resonance
energy, GL=resonance width vector or Adler-Adler
parameters (where NRP is the vector length determined
from the LP array)

U Parameter Set : Average Resonance Parameters.

NFORM=N1,N2,N3,N4 Flags with following meanings:
Nl = flag number which determines the nature of the

calculated parameters (1 - cross-section
parameters, 2 - transmission function)

N2 = inclusion of resonance width fluctuations
(1 - fluctuation included, 2 - not included)

N3 = inclusion of fluctuations of distance between
levels (1- included, 2- not included)

N4 = model used for the resonance cross-section
calculations (1 - single level Breit-Wigner, 2 -
multi-level Breit-Wigner, 7 - equal equidistant
isolated resonances model, 8 - equal equidistant
isolated resonances model corrected for
interference between levels)

NR Number of reactions
NE Number of energy points in the MERDG table
INT Number of the energy interpolation rule
LC Value of the orbital momentum
LR(NR) List of reaction types
LO(NR+i) List of statistical distribution laws (0 - does not

fluctuate, 1 - Porter-Thomas law, LO is the number of
degrees of freedom, 2 - Wigner law)

69

EL,EH Lower and upper energy boundaries
EPS data accuracy
A Atomic weight of the target nucleus (normalized to C12)
B Nuclear concentrations in the medium (in relative units)
SI Spin of target nucleus
SJ Value of total momentum
RC Channel radius (in FM units)
PD(NP) Array of statistical distribution parameters (NP is

determined from the LO array)
TAB(E,R,D,(GR(IR),IR=1,NR),(E=1,NI) Table of the energy

dependence of unresolved resonance parameters; the
following parameters are given as a function of energy
E: R - effective scattering radius, D = average
distance between levels, GR - resonance width vector

S Parameter set : Cross-Section Tables

NEP Number of energy points
NS Number of reaction types
NT Number of different temperatures
NINT Number of the energy interpolation scheme
LS(NS) List of the cross-section types
EL,EH Lower and upper energy region boundaries
EPS Data accuracy (relative units)
A Nuclear mass (normalized to C12)
B(NS) Reaction energy (eV)
T(NT) Temperature array
TAB(E,((S(IT,IS), IT=1,NT),IS=1,NS),(E=1,NEP)

Table of cross-sections as a function of energy E

A Parameter Set : Angular Distributions of Secondary Neutrons

LS Reaction type
LTT Type of data presentations

LTT=0 isotropic scattering
LTT=1 Legendre polynomial coefficients
LTT=2 tabular presentation

LCT Frame of reference
LCT=1 laboratory
LCT=2 center of mass

LRFLAG Flag identifying the particle x in the (n,nx) reaction
NK Number of elements in the transfer matrix
NINT Number of the energy interpolation scheme
NE Number of energy points at which data are given
N(NE) Expansion series, or the number of cosines given at each

energy point
EL,EH Lower and upper energy boundaries
EPS Accuracy (relative units)
AWR Nuclear to neutron mass ratio
0 Reaction energy yield
V(NK) Transfer matrix elements
AD Array of angular data, format depends on the LTT value:

LTT=0 the array is not used
LTT=1 ((E,A(L),L=1,N(J)),J=1,NE))
LTT=2 ((E,MU,P(MU))(I),I=1,N(J)),J=1,NE)
E=energy, A(L)=expansion coefficients, MU=cosine of
scattering angle, P(MU)=probability function

70

E Parameter Set : Energy Distribution of Secondary Neutrons

LS Reaction type
LF Type of presentation

LF=1 tabular
LF=5 general evaporation spectrum
LF=7 simple fission spectrum
LF=9 evaporation spectrum
LF=11 Watt spectrum with energy dependent parameters

NP Number of energy points for which the "distribution
fraction" is given

NE Number of energy points for which data are given
NX Number of points available for additional tabular

dependence (NT is not equal to 0 for LF=5 and LF=11)
INT Energy interpolation scheme
INX Interpolation scheme used for the additional tabular

dependence
NF(NE) Number of points in each table for each energy (used only

with LF=1)
EL,EH Energy interval
EPS Accuracy (relative units)
AWR Nuclear to neutron mass ratio
U Minimum energy loss in scattering event
D(NP) Distribution fraction data, D=(E,P(E))
ED Scattering data array:

LF=1 ((E, (E',P(E')) (I) ,I=1,NF(J)) ,J=1,NE)
LF = 5 (E,T(E)) (NE), (X,G(X)) (NX)
LF=7 (E,T(E))(NE)
LF=9 (E,T(E))(NE)
LF=11 (E,A(E))(NE),(X,B(X))(NX)
E=energy, E'=energy after scattering, P(E')=probability
function

Parameter Set : Cross-Section Attributes

NFUN Type of attribute (1 - cross-section moment, 2 -
transmission function

NG Number of groups or energy points
NINT Energy interpolation scheme
NT Number of individual temperatures
NS Number of cross-sections
NP Number of real parameter attributes
NL,NH Boundaries indicating a change of an attribute parameter
LS(NS) List of cross-sections
EL,EH Boundaries of energy region (eV)
EPS Data accuracy (relative units)
A Nuclear mass (normalizes to C12)
T(JT) Temperature array
P(NP) Array of real parameter values
TAB(RNG,ELG,EHG,SWG,(((((F(IN,IS,IT,IP),IN=NL,NH),IS=1,NS), IT=1,N

T) ,IP=1,N,T) ,IP=1,NP),IG=1,NG)
Table of attributes: RNG=FLOAT(number of group), ELG and
EHG are the group boundaries, SWG is the weight function
integral, F(NN,NS,NT,NP) are the values of the cross-
section attributes(NN=NH-NL+l)

71

lP* Parameter Set : Subgroup Parameters

NG Number of groups
NP Number of subgroups
NS Number of cross-sections
NT Number of individual temperatures
LS(NS) List of cross-section types'
EL,EH Boundaries of energy region (eV)
EPS MAX(EPSN) achieved approximation accuracy (relative

units)
FL,FH Boundaries of the region where the real parameter of the

attribute changes (T.N.:the "region" refers to the region
for which the subgroup approximation is being calculated)

A Atomic weight (normalizes to C12)
T(NT) Temperature values
TAB(RNG,ELG,EHG,SWG, (EPSN, (AN(INT, ((SN(IT,IS,IN) ,IT=1,NT) ,IS = 1,NS

),IN=1,NN=1,NM),IG=1,NG): Subgroup table:
RNG=FLOAT(GROUPS); ELG,EHG=group boundaries; SWG=weight
function integral; EPSN=accuracy of the approximation of
the attribute in the indicated region where there is a
parameter change for the NN number of subgroups;
AN,SN(NT,NS)=fractions and subgroup cross-sections; two
format modifications can be implemented:
Mode 1 - NP>0: only the maximum number of subgroups are

listed (NN=NP,NM=1),
Mode 2 - NP<0: only those subgroups for which NN=l,2,,,NM

(where NM=IABS(NP) are listed.

D Parameter Set : Neutron Scattering Probability

NW Flag determining which spectrum is going to be used in
the data averaging operation

LS Reaction Type
NG Number of groups
NL Number of Legendre coefficients to be used
NB Number of weight functions
MPC(NPC) Array of the NT,NGS,IGLO parameters, where NT=the point

number, NGS=number of groups into which scattering
occurs, IGLO=lowest number of the NGS groups

EL,EH Energy interval
EPS Accuracy
AWR Nuclear to neutron mass ratio
T Number of energy points in the tabulated spectrum
EG(NG(1) Array of group boundaries
SPECT (E,S)(IFIX(T)) - Tabulated spectrum
TAB(E, (((P(IB,IL,.IG) ,IB=1,NB) ,IL=1,NL) ,IG=1,NGS)) - Tabulated

scattering probabilities as a function of energy

M Parameter Set : Neutron Scattering Matrix

NW Flag determining which spectrum is going to be used in
the data averaging operation

LS Reaction type
NG Number of groups
NL Number of Legendre expansion elements

72

NB Number of weight functions
MPC(NPC) Array of NG,NGS,IGLO parameters, where NG=group number,

NGS=number of groups into which scattering occurs,
IGLO=lowest number of the NGS groups

EL,EH Energy interval
EPS Accuracy
AWR Nuclear to neutron mass ratio
T Temperature
EG(NG+1) Array of group boundaries: TAB(R(NB*2-1),

((((P(IB,JB,IL,IG),IB=1,NB),JB=1,NB), IL=1,NL),
IG=1,NGS)(NFO) - Tabulated integrals for the weight
function R and elements of the scattering probability
matrix for scattering from that group.

73

APPENDIX 2. Functional Module *R/E-S Code

C
SUBROUTINE RXEXS

C MODULE *R/E-S CALCULATES THE CROSS-SECTION AT A GIVEN
C ENERGY POINT FROM GIVEN RESONANCE PARAMETERS
P***
C *** MODULE REGISTERS

COMMON/CATAL/MR(512)
C *** WORKING FIELD OF THE MODULE

COMMON P(l)
DIMENSION M(l)
EQUIVALENCE (P(1),M(1))

C *** INPUT DATA *R*
COMMON/RRR/MRRR, NL, NR, MLR, EL, EH, C, MELGL

C *** CONTROL DATA
COMMON/BRXEXS/MRXEXS,EC

C *** OUTPUT DATA *S*
COMMON/SSS/MSSS,NS,MLS,E,MS

C *** ADDITIONAL DATA
COMMON/BSIGMA/NLB, NRB, CB, MELGLB, MSB

C *** SYSTEM NAMES
DATA MRM/'*R*'/,MSM/'*S*'/

C *** ADDRESS OF THE BEGINNING OF THE WORKING FIELD
MR8=MR(8)

10 MR(8)=MR8
C *** EXECUTE DATA SEARCH

IF (MFIND(MRM.0),EQ.,0) RETURN
C *** DATA ARE RETRIEVED
C *** LOAD INPUT DATA

CALL LOADR(l)
C *** LOAD CONTROL DATA

MRXEXS=MWTRAC(2,6,0)
CALL TRAC(2,1,EC)

C *** CHECK CORRESPONDENCE OF *R* DATA PARAMETERS
IF(EC,LT,EL,OR,EC,GT,EH) GO TO 10

C *** FORMULATE OUTPUT DATA ARRAY
C *** ARRAY OF INTEGERS

NS=NR
MLS=MLR

C *** ARRAY OF NUMERIC VARIABLES
E=EC

C *** DATA HEADING
MSSS=MRRR
M(MSSS)=MSM
M(MSSS+4)=1+NS
M(MSSS+5)=1+NS

C *** FORMULATE /BSIGMA/ ARRAY
NLB=NL
NRB-NR
CB=C

C *** ALLOCATE WORKING FIELD MEMORY TO DATA BLOCKS
MELGLB=MR(8)
MSB=MELGLB+NR+1
MR(8)=MSB+NS

C *** CHECK IF THERE IS ENOUGH ROOM IN THE WORKING FIELD FOR THE
C DATA BLOCKS

IF(MB(8),GT,MB(7)) CALL ERROR('RXEXS',-1,0,0,)
C *** DETERMINE THE CURRENT ADDRESSES OF THE 1ST AND 3RD FIELDS
C OF THE BSP LIBRARY ASSIGNED TO THE BEGINNING OF THE ELGL

75

C AND S BLOCKS
MR(4)=MELGL
MR6=MR(6)
MR(6)=MR(6)+8+NS

C *** EXECUTE THE CALCULATION
CALL SIGMA(EC)

C *** DETERMINE THE CURRENT ADDRESS OF THE BEGINNING OF THE DATA
C ARRAY IN THE S FIELD

MR(6)=MR6
C *** RECORD THE RESULTS

CALL LOADS(3)
C *** PROCEED WITH THE SEARCH FOR THE NEXT DATA

GO TO 10
END

C
SUBROUTINE SIGMA(E)

C CALCULATION OF THE CROSS-SECTION AT ENERGY E

COMMON P(l)
COMMON/BSIGMA/NL,NR,C, MELGL, MS

C *** PRE-CALCULATE THE COEFFICIENTS
CE=C/E

C *** ASSIGN ZEROES TO THE CROSS-SECTION BLOCK
DO 10 IR=1,NR

10 P(MS*IR-1)=O
C *** SUM UP ALL LEVELS

DO 100 IL=1,NL
C *** RETRIEVE THE IL LEVEL PARAMETERS FROM THE BSP LIBRARY

CALL TRAC(1,NR+1,P(MELGL)
C *** LEVEL ENERGY

EL=P(MELGL)
C *** NEUTRON WIDTH

GN=P(MELGL+1)
C *** CALCULATE TOTAL WIDTH

GT=0
DO 20 IR=1,NR

20 GT=GT+P(MELGL+IR)
C *** CALCULATE THE COMMON COEFFICIENT

X=2,*(E-EL)/GT
SE=CE*GN/GT**2/(1,*X**2)

C *** CALCULATE THE REACTION CROSS-SECTION
DO 30 IR=1,NR

30 P(MS+IR-1)=P(MS+IR-1)+SE*P(MELGL+IR)
100 CONTINUE

C *** ENTER THE CROSS-SECTION ARRAY INTO THE BSP LIBRARY
CALL TRAC(3,NR,P(MS))
RETURN
END

C
C

SUBROUTINE LOADR(NC)
r* *

C PROCEDURE TO EXCHANGE *S* DATA WITH THE BSP LIBRARY
C PARAMETER SET *S* CROSS-SECTION VECTOR AT POINT
C NS - NUMBER OF REACTION TYPES
C LS(NS) - LIST OF REACTION TYPES
C E - ENERGY VALUE
C S(NS) - ENERGY VALUES ARRAY

76

COMMON P(l)
DIMENSION M(l)
EQUIVALENCE (P(1),M(1))
COMMON/SSS/MSSS,NS,MLS,E,MS
IF(NC,EQ,3) GO TO 10

C *** READ IN DATA USING CHANNEL NC
MSSS=MWTRAC (NC, 6,0)
CALL TRAC(NS,1,NS)
MLS=MWTRAC(NC,NS,0)
CALL TRAC(NC,1,E)

C *** TRANSMIT CROSS-SECTION TABLE
MS=MWTRAC(NC,NS,NC)
RETURN

C *** RECORD DATA
10 CALL TRAC(NC,6,M(MSSS))

CALL TRAC(NC,1,NS)
CALL TRAC(NC,NS,M(MLS))
CALL TRAC(NC,1,E)

C *** TRANSMIT CROSS-SECTION TABLE
MS=MWTRAC (NC, NS, NC)
RETURN
END

C
C

SUBROUTINE LOADR(NC)
t ^T ^K rt Iff ^K »̂ W W W ^* ^K ^ »̂ v̂ ^C V̂ B̂ ^» ^J V̂ ^T ^T ^T ^W ^» ^* ^* W iff Iff Iff ^» »̂ ^(fff ^T Ĉ ^* Iff "̂< Iff MT ^» ^f H W ^T I T W W JV l l

C PROCEDURE TO EXCHANGE *R* DATA WITH THE BSP LIBRARY
C PARAMETER SET *R* - RESONANCE PARAMETERS
C NL - NUMBER OF RESONANCES
C NR - NUMBER OF REACTION TYPES
C LR(NR) - LIST OF REACTION TYPES
C EL - LOWER ENERGY INTERVAL BOUNDARY
C EH - UPPER ENERGY INTERVAL BOUNDARY
C C - CONSTANT
C E,GL(NR) - TABLE OF RESONANCE ENERGIES AND WIDTHS
I • Tl Ĉ Vt ^* ^* ^* ^ ^ ^* ^̂ ^* ŵ Iff ^^ ^̂ " Iff ^* Ĉ *̂ ^r ^^ iff *̂ W Iff W ^̂ W •T W W ^̂ v̂ ĉ ^f ^̂ A w W T* *r "•

CO1-1MON P(l)
DIMENSION M(l)
EQUIVALENCE (P(1),M(1))
COMMON/RRR/MRRR. NL, NR, MLR, EL, EH, C, MELGL
IF (NC,EQ,3) GO TO 10

C *** READ IN DATA FROM THE BSP LIBRARY
MRRR=MWTRAC (NC, 6,0)
CALL TRAC(NC,2,NL)
MLR=MWTRAC (NC, NR, 0)
CALL TRAC(NC,3rEL)

C *** TRANSMIT TABLE *R*
MELGL=MWTRAC(NC,NL* (NR+1) ,NC)
RETURN

C *** RECORD DATA IN THE BSP LIBRARY
10 CALL TRAC((NC,6,M(MRRR))

CALL TRAC(NC,2,NL)
CALL TRAC(NC,NR,M(MLR))
CALL TRAC(NC,3,EL)

C *** TRANSMIT TABLE. *R*
MELGL=MWTRAC (NC, NL* (NR+1), NC)
RETURN
END

77

EXAMPLE OF A PROBLEM SOLUTION
AND OUTPUT OF RESULTS

DATA PROCESSING PROGRAM *

*
*

ENTER CONTROL DATA *******************
(DATA CLUSTER *2/E-5)

,65,1,*R/E-S *

ENTER INPUT DATA *R* *******************
,65,10,*R*

PRINT BSP CATALOG
1

PRINT RESULTS ********************

COMPLETE PROCESSING
.END

* * * * *

MODULE *INPUT WAS CALLED AT 0.0 SEC

*R/E-S; E=1.E3
*R/E-S; E=5.E3
*R/E-S; E=10fE3

MODULE *INPUT WAS CALLED AT 0.123 SEC

R; NL=2, NR=2,LR=2,102
EL=1.E3, EH=10.E3
C=2.61E6
ER=1.E3,GN=90., GG=10
ER=1.E4,GN=90., GG=10

MODULE *R/E-S WAS CALLED AT 0.253 SEC

* **i *

N * DATA NAME * DATA ADDRESS (K=1611) **
1

10
* 20
*************:

*R/E-S
R
S

1 0K+ 0 0K+ 21
1 0K+ 21 0K+ 19
1 0K+ 40 0K+ 36 *
t***********<

MODULE *OUTPU WAS CALLED AT 0.357 SEC

S
2

1.00000+3

S

0
2

2.11416+3

0
2

0
102

2.34907+2

0
102

5.00000+3 1.08333-1 1.20370-2

S 0 0
2 2 102

1.00000+4 2.11416+2 2.34907+1

78

