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AVERAGE CROSS-SECTIONS USING R-MATRIX THEORY

A.A. Lukyanov, A.G. Vysotskij, N.B. Yaneva[*]

ABSTRACT

We present an analytical method for resonance
cross-section averaging. A general formula for
averaging the capture cross-section is derived
exactly in the framework of the R-matrix formalism
and using our resonance cross-section statistical
model.

The description of average resonance cross-sections for

neutron reactions i3 normally carried out using the

Hauser-Feschbach formalism with corrections for the effect of

resonance parameter fluctuations [1, 2]. This entails the use of

certain approximations based on either a single-level description

of resonance cross-sections in an averaging interval or on the

assumption of a large number of reaction channels [2, 3] . In

this paper, using our previously-proposed simplified model for

multi-level description of cross-section energy structure taking

into account resonance interference [2, 4], we propose an

analytical method for cross-section averaging which is not

dependent on the ratio between average widths and the spacings

between levels.

Resonance cross-section model

We take as our starting point the expression for the

diagonal collision matrix element in the framework of the

R-matrix formalism [1]:

5»(E)' e'*fu-'Lfi)~i« + iR)Jw , (i)

[•*] Nuclear Research Institute of the People's Republic of Bulgaria, Sofia.
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where « is the potential scattering phase, and R is the matrix
with elements

Here the radiation channels are taken into account by a

corresponding imaginary addition to energy lTy/2 [1, 2].

We shall confine ourselves here to an example of single-channel

elastic scattering with competing radiation capture. Then

instead of matrix (2) we have the function

where:

and D is the average resonance spacing.

scattering function

The corresponding

determines the energy dependence of the cross-sections, both

total

and radiative capture

in the model under consideration [4, 5].

By the average value of a certain physical functional F(R)

we shall mean the result of the averaging F of both for an energy

interval (group) which contains a large number of resonances and

for the statistical distribution functions of the distribution of

the xx and ftA parameters:

where
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is the Porter-Thomas distribution [2]. For the fl4 values we

selected a Cauchy-type distribution:

with a distribution width equal to 6 / -« < bk < •• .

Average total cross-section

Let us first find the average value exp(iRt) in our model
~r

, ' -> tioi

(y'= y+ft). The integral for 64 is solved by contour integration

using the calculus of residues. In extending the summing for X

(3) from - » to + «, let us take an infinite product formula (see

[6] p. 51) :

then

" U 2 )

In solving the integral by the calculus of residues we used the

periodicity of the integrand, having substituted the energy

averaging with a calculation of the average values for the period

-x/2 < £ < x/2.

The result obtained makes it possible to determine the

average value of the functional (1-iR)"1 in (5), using the

integral identity:

f e"*<e***>-77T • [13]



Consequently,

and

6 2 ^2?) , [15]

which is completely analogous to certain formulae in reaction

resonance theory for average scattering functions and averaged

total resonance cross-sections [1, 2].

In a similar way it is not difficult to show that

and

The agreement between the results achieved using our model

and the general conclusions of R-matrix theory, where averaging

of the S-matrix elements is equivalent to the transition to

averaged elements < RpS > = is6ps in definition (1), illustrates

the consistency of the approach and the potential for applying

our model in the derivation of average cross-sections and also

average resonance transmission cross-sections in filtered beams

and group characteristics [7].

Average Capture Cross-Section

Let us represent the expression for the capture

cross-section (6) in the form of a double integral:'

[fi(u +y)-fC(u-v)J. (18)

then, in order to calculate < o7 > it is necessary to find the

average value
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where: p=f+Sv} a -fsvrf »7§IVi*29ffu *y2 .

Here we have used the same scheme for reducing a multi- to a

single-level integral scheme as in conclusion (12), disregarding

fluctuations in level spacings, i.e. as an approximation of

equivalent resonances. Such an approximation has no apparent

effect on the calculation of average < or > values, which is

shown by the results of the corresponding straightforward

numerical calculations [3, 8].

Let us now determine the derivative

(201
where

Here, E is an elliptic integral of the second kind, and

fi

As a result of his operation we obtain an expression for average

cross-sections (18) in the form of a double integral

where it is possible to use a straightforward interpolation

formula for the elliptic integral which gives an error of less

than 1% for K < 1 [9]:

$ * g (24'
This result using our model to determine the average capture

cross-section does not depend on the value of S, i.e. it is

suitable for a random degree of resonance interference. Therefore

it is obviously desirable to use the results of the calculation

based on formula (2) in order to analyse the fluctuation

correction to the average cross-section, which is calculated in a
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Hauser-Feschbach approximation which does not give any allowance

for resonance parameter fluctuation. For small values of S this

correction is known and amounts to less than 35% [2, 3]. For

random S values it can be determined by

(25)

where IQ1 is calculated in a model of identical resonances.

In our approach, the identical resonance model is

represented by an assumption of identical xx = 1 values in the

determination of R(£)(3) [2]:

(26)

then oy represented by the integral:

(27)

-V/3.

which corresponds to the most elementary Hauser-Feschbach result

for small values of S = %Tn/2D and for y = «rT/2D [1, 2].

The figure shows the results of the calculation of the

F(s,y) function in our model for three values of S. Also given

here are the data from our calculations of this function obtained

earlier using the Monte Carlo method [4]. The good agreement

illustrates the consistency of the proposed method, whose

advantage, apart from the possibility of obtaining an analytic

form o- and the saving of computer time during the numerical

calculations, lies in the potential for testing Monte Carlo data

directly.
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0.7-

Function F, takes into
account neutron width
fluctuations in an
average capture cross
-section; it is
expressed as a function
of the a = y(l+S)V2S
parameter for S = 10'3

(1), 10"1 (2), 1 (3) .
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Appendix A. Integral (12)

When using the substitution u=tg £, the integral (12), which

occurs during calculation of < exp(iRt) >, reduces to the form

where z=y'+2st. If we now close this integral in a complex plane

with a semicircle of infinite radius downwards from the real

axis, we will determine its value as the residue at the pole

u=-i :

Appendix B. Form of Function F(u,v)(19)

Function F (19) is represented in the form of an integral in

the following way:

?*y JJ

where

P-sv+ft o -f-sir,f-Vs*o* * 2syu * y* '

Next, using the formula for infinite product (11) and

substituting the energy averaging with the average period

-%/2 < £ < %/2, we obtain the integral form F(u,v) (19). This

is the real function, which can also be represented in the form

of a total elliptic integral of the third kind.
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Appendix C. Integral (21)

Let us write the integral (21) in the form:

f
J ax /

fx. ctiA pig*- Ty^cciA ^ igx. ~4.y&

and let us proceed to the variable z - to j|r = tgac dA y . Then,

having specified

i \

we can r e w r i t e (C.I) to the form:

P'W W%r (sKSfi'jdz fcfirn * cvsfe *-in)J . (C .2)

Using the identity:

( C . 3 )

by means of which using direct computation we obtain

jcLz. [cKm •*• cos(2 * i/DJ ~^/iJ/n / vcnm *cosr^ dri = (C.4)
-x

where E is a total elliptic integral of the second kind [6]. By

substituting (C.4) for (C.2) and denoting the parameter

(C.6)

we come t o t h e r e p r e s e n t a t i o n of • which we ob ta ined in (21) .

so that

4 is ̂  sfi2fsR2;
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APPLICATION OF THE INCREMENTAL DECONVOLUTION METHOD
TO ANALYSE DELAYED NEUTRON INTENSITY DECAY CORVES

S.V. Krivasheev

ABSTRACT

In order to evaluate the cumulative yields of the main
precursors of delayed neutrons, it is proposed that the
incremental deconvolution method be used to analyze the
experimental data of the delayed neutron intensity
decay curves. The advantages of this approach are
illustrated for thermal neutron fission of 233U and 235U.

As was shown in Reference [1], the incremental

deconvolution method [2] can be applied to the decomposition of

spectral multiplets into their components in a composite

amplitude spectrum. Using the incremental deconvolution method,

the iteration algorithm for finding an approximate solution to

the system of equations

f

(where A(i) is the observed spectrum, N is the number of

experimental points, B(j) is the real spectrum, M is the number

of unknown components, and F(i,j) is the instrumental form of the

line) consists only of addition and subtraction operations, and

is therefore expedient for processing on a microcomputer.

Additional advantages of the method are that the unknown

parametrization coefficients B(j) in equation (1) are positively

constraint as required when dealing with many physical problems,

and there is no need for initial approximations (B0(j) = 0),

thereby eliminating subjectivity from the analysis of

experimental data. As will be shown below, the incremental

deconvolution method can be used to analyse delayed neutron

intensity decay curves derived from an unseparated mixture of

fission products in the determination of the cumulative yields of
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individual precursors. It should be noted that in the qiven
case, the least squares method is not suitable for solving

equation system (1) because there is no positivity constraint

when a large number of parameters are being determined.

Furthermore, the error matrix is badly conditioned.

By definition, the following relationship is valid for a

given delayed neutron precursor:

where Yn(j) is the delayed neutron yield from a precursor with

index j, Yc(j) is its cumulative yield, and Pn(j) is the

probability of neutron emission by a daughter nucleus of the

precursor.

In the given case, the B(j) coefficients from Eq. (1) are

equal to Yn(j) which has an accuracy which includes the number of

fissions in the sample for per unit time and the detector

efficiency. F(i,j) is the time dependent function describing

the delayed neutron decay in successive time intervals and is

dependent on the experimental conditions [3], consisting of

repeated cyclical neutron irradiation of the sample, transfer of

the container with the sample to the measuring position by a

pneumatic transport system and measurement of the delayed neutron

intensity itself with respect to time using a neutron counter.

At the present time, approximately 200 delayed neutron

precursors are known. However, by subdividing them according to

their half-lives T1/2(j), we find that the main contributors to

the delayed neutron intensity originate from long-lived

precursors with T1/2 > 2 s. These consist of 9 to 12 nuclides

depending on the fuel type (see Table 1). The data in Table 1

are based on studies reported in Refs [4, 5]. The contribution

of other precursors, not included in Table 1, to the delayed

neutron yield for the four long-lived groups of the conventional

six time groups [6] is less than those given in the table. Our

purpose in selecting the 249Cf, 235U, and 236U nuclei for analysis
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of the delayed neutron contributinq nuclides was to show that in
the broad range of fissile actinides at various neutron energies,

the set composition of the main precursors remains roughly the

same.

Thus, the integral delayed neutron intensity decay curve can

be analysed for nine (M = 9) main contributors with account taken

that in the time it takes to transfer the sample from the

irradiation to the measuring position (namely, approximately 2

s), the short-lived fission products would have already decayed .

As a rule, the yield of the delayed neutron group for which T1/2 =

2 s should not be attributed to any particular precursor since

the group includes 90Br, 85As and other nuclei with shorter

half-lives.

The authors of Ref. [8] were the first to show that the

integral curve of delayed neutron intensity decay can be broken

down into yields from individual precursors using the method of

least oriented divergence. This method is analysed in parallel

with the incremental deconvolution method below.

We need to check that the integral curve of delayed neutron

intensity decay can actually be subdivided according to their

half-lives T1/2(j), as shown in Table 1. In doing this, we obtain

randomized curves for distinct real experiment statistics and a

selection of precursors. The pseudo-experimental points were a

sampling from a Poisson distribution. Since the incremental

deconvolution method (like most iteration methods) does not

permit evaluation of the B(j) error values, the recommended

curves were modelled several times for the same statistic. In

order to evaluate the error, unbiased sampling dispersions were

taken for similar measurements with allowance given for Student

coefficients for a confidence level of 0.70 and the given number

of degrees of freedom. The results are given in Table 2.

Analysis of these results yields the following conclusions.

First, in order to obtain unbiased evaluations for the values of

B(j) we need to increase the number of evaluated curves and

experiment statistic; in practice this means increasing the

number of experiment cycles, as discussed earlier, and also
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increasing the mass of the measure sample and the density of the

neutron flux. Second, in order to reduce the error in

determining B(j) for long-lived delayed neutron precursors we

need to increase the irradiation time of the measured sample, and

correspondingly similarly reduce it for short-lived precursors.

Otherwise, we cannot include exponential curves with T1/2(j) - 5 s

or less.

The incremental deconvolution and least oriented divergence

methods were investigated jointly on three pseudo-experimental

curves obtained for 68 delayed neutron precursors, including

short-lived nuclides (T1/2(j) - 0.8 s) , for thermal neutron

fission of 235U. From Table 3 it can be seen that the least

oriented divergence method yields more biased evaluations (- 3o)

than the incremental deconvolution method although it has great

resolution stability. During the checking of the methods it was

found that the least oriented divergence method was neither as

efficient (the method converges quickly only in the first

iteration steps) or as fast-acting as the incremental

deconvolution method. The incremental deconvolution method was

also verified using real experimental data (obtained using the

method described in Ref. [3]) for thermal neutron fission of 235U

and 233U, , with admissible statistics and a number of analysed

curves. The 235U and 233U nuclides were selected because of the

reliability of the known cumulative yields of the delayed neutron

precursors. Since the values of Yn(j) derived from the analysis

of the experimental curves are accurate to within a constant

multiplier factor, referred to earlier, normalization was carried

out using the total relative yields of the five delayed neutron

groups in the evaluation of the same curves by the least squares

method for 5-group approximation and the corresponding

recommended values given in Table 4. There was satisfactory

agreement within the error margin between the cumulative yields

measured here and those recommended in Ref. [4]. It should be

noted that minor deviations in the measured yields might result

from the fact that no account was taken of the decay dynamics of

the precursor nuclides with their parent nuclide having a half
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life lonqer than 3 s, as this would have doubled the number of
parameters to be determined. Evaluations of this phenomenon

indicate that with the exception of 238U and 232Th fission [7], the

results may have an error of up to 5%.
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Table 1

Calculation of delayed neutron yields from individual
precursors per 104 fissions

j

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

e 3Br

1 3 7 I

i36T e

88B r

1 0 3Nb

138T

93Rb

e 9Br

97y

94Rb

139T

85As

98y

9 0Br

143Cs

99y

2

5 5 . 7

2 4 . 5

1 9 . 0

16.0

15.7

6 . 5

5.86

4.38

3 . 7

2.76

2.38

2.03

2.00

1.80

1.78

1.40

3

2.54±0.10

7.2±0.7

0.910.4

6 .910 .3

0.1310.00*

2 .610 .3

1.3710.08

13.911.0

0.3310.00

10.310 .5

10.2+0.9

22.018.0

0.5410.00

21.212.4

1.610.2

1.210.8

Total contribution of delayed
precursors

% of delayed neutron yield for four
groups

4

0.31

5 . 8

0.11

0.57

0 .28

0.52

0 .47

0 .49

0 .36

1.4

0 .44

0 .06

0 .39

0 .30

0 . 0 1

0.44

A

71

5

5 . 4

2 4 . 0

1.4

1 5 . 6

0 .32

4 . 4

4 . 5

2 4 . 9

1.7

2 2 . 6

6 . 5

5 . 7

2 . 0

17 .4

0 .29

2 . 7

B

91

6

4 . 2

1 6 . 0

0 . 6

1 1 . 5

0 . 1 3

2 . 6

4 . 4

19 .2

1 .6

2 1 . 1

3 . 8

5 . 5

0 .82

1 2 . 1

0 .06

2 . 5

C

92

1

2

3

4

5

6

- Precursor nucleus

- T" (j), sec.

- Pn(j) ± APn(j), %

- 24»Gf (T), Y(3)
n(j)

- 2"U (F), Y(J)»(j)

- 23iU (NF), Y(;))
n(j)

- Pn(j=5) value from Ref.[7]

A - 12.013.0

B - 139.4+16.0

C - 105.9±11.4

T - thermal neutron fission

F - fast neutron fission

NF - 14.8 MeV neutron fission
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Table 2

Analysis of randomized delayed neutron curves
using the incremental deconvolution method

p

87Br

137I

88Br

13SJ

93Rb

89Br

94Rb

139j

A

B

C

D

E

1

T

1300

7952

4241

3344

1675

6872

6405

3841

6573

32

V

1289±56

7679+212

4736+249

2966+375

1769±69

63871480

80171909

3470+693

545911443

32

20000

10

5

2

T

130

795

424

334

167

687

640

384

657

32

V

14416

738+25

495146

307194

155152

666+164

700+133

413+137

509+157

32

3000

60

5

3

T

130

795

424

334

167

687

640

384

657

32

V

189144

6431144

5661151

2941106

126179

6411129

9581253

3041117

4831363

32

1900

10

5

P - Delayed neutron precursor

A - *°Br, "As and others

B - Background

C - Radiometer capacity, n/s

D - Irradiation duration, s

E - Numfcer or curves

T - values of B(j) prescribed by the curve modelling

V - values of B(j) derived from curve evaluation
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Table 2(continued)

p

87 B r

137j

88Br

138J

93Rb

89Br

94Rb

139j

A

B

C

D

E

4

T

3250

19880

10604

8360

4188

17182

16014

9603

16434

80

V

3210

19980

10580

7245

6948

13700

18320

10450

14010

80

26000

60

1

5

T

-

-

-

-

-

-

4804

2880

4930

24

V

-

-

-

-

-

95±58

39701208

257811284

5953±1182

24

3000

60

5

P - Delayed neutron precursor
A - "'Br, esAs and others
B - Background
C - Radiometer capacity, n/s
D - Irradiation duration, s
E - Number of curves
T - values of B(j) prescribed by the curve modelling
V - values of B(j) derived from curve evaluation



- 19 -

Table 3

Analysis of randomized curves using the incremental
deconvolution and best directed discrepancy method

A
87Br

137J

88Br

138J

93Rb

8 9 B r

94Rb
139j

F

G

H

B

55.7

24.5

16.0

6.5

5.86

4.38

2.76

2.38

2.0

0.8

CO

c

1564

7093

3639

2508

1444

5156

4804

2881

5800

6200

24

D

1571+60

7189±191

43591254

18341927

1598+264

5392+1721

7882+1059

2347+1074

3986+1286

766713499

24

E

1739134

6415162

5058128

2581132

2597120

2915115

4195164

4799179

56361122

1199011234

24

A - delayed neutron precursor
B - Half-life T4(j), s
C - Incremental deconvolution method. B(j), T
D - Least oriented diversion method 'B(j)
E - MNNP "B(j) method
F - *°Br, 95As and o t h e r s
G - 1AtCs, 100Y and o t h e r s
H - background
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Results

Table 4

of the determination of the cumulative yields
of delayed neutron precursors

Delayed
neutron

precursor

87Br

137I

8 8 B r

138j

93Rb

89Br
94Rb

139j

Normalized
yield

235U

This work

2.21±0.32

3.1010.53

2.1710.34

2.1210.48

3.6810.60

1.1710.23

1.7710.37

1.0010.20

[4]

2.0210.06

3.33+0.13

1.9110.11

1.5610.09

3.5410.05

1.1810.05

1.6910.05

0.9610.03

1.5810.04

233U

This work

2.3310.39

1.7610.33

1.1210.24

0.8410.28

2.5810.64

0.7510.17

0.6410.23

0.2110.07

[4]

2.1610.13

1.66+0.07

1.3210.11

0.5910.09

2.1110.49

0.6510.05

0.6510.42

0.2110.09

0.6710.04
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DERIVATION OF THE STATISTICAL CHARACTERISTICS OF THE ENERGY
DEPENDENCE OF TOTAL NEUTRON CROSS SECTIONS FROM TRANSMISSION DATA

IN SAMPLES OF VARYING THICKNESS

V.K. Basenko, G.A. Prokopets

ABSTRACT

A new approach to process neutron transmission
experimental data in the unresolved resonance energy
region is described. The efficiency and reliability of
the method is demonstrated for several cases. The
process consists of deriving the statistical
characteristics of the total cross-3ection energy
dependence from transmission data in samples of various
thicknesses. The results of this process are compared
with other known approaches to this problem.

The analysis of the continuous neutron transmission spectrum

as a function of sample thickness has long been used successfully

together with high resolution experimental data to derive group

data for reactor physics [1-3]. At the same time we know that as

neutron energy increases, the counting equipment resolution AE

becomes too poor to identify the resonance structure reliably,

consequently, experimental transmission data assumes greater

importance as a source of information to determine average

characteristics of the energy dependence of the total cross

sections in the AE energy interval.

For a collimated neutron beam with an energy density

distribution f(E), transmission in a sample T(y) of thickness d

and nuclear density N is determined as follows

where y = nd,

P(E) = f(E)//f(€)d€
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whole region for which values are being determined. This task is

made significantly easier by the fact that even in the case of a

fast oscillating dependence of ot(E), the function T(y) remains

fairly smooth. When the experimental results for oeff(yi) are

presented in the form

T l (5)

they tend to follow curves of a low order with respect to y.

Therefore, it is useful to perform numerical differentiation and

integration in expressions (3) and (4) by approximating the

discreet set oeff(yi) with a suitable analytic expression which

takes account of the physical requirements which condition its

shape in the vicinity of y - and y •* «. These requirements

include that

(a) Oeff(y) is finite and positive over the whole range in
which values are being determined, including y - 0 and
y - «;

(b) the following condition is satisfied

where otin is the lowest value of the total interaction
cross section in the averaging range, so that

iun ¥S*L-O: (7)

(c) It shows from expression (3), that the semi-invariance
of the total cross section when averaging over the AE
range will be simply expressed by the derivatives
°f Oeff(y) at zero:

In particular,
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and ot(E) is the total interaction cross-section for neutrons of

energy E with nuclei in the sample. If we further assume that

the energy distribution f(E) is suitably narrow, i.e. that its

width at half maximum of AE is significantly lower than the

characteristic range in the variation of the neutron detector

efficiency, we can equate the transmission level value, as given

by Eq. (1), with the experimental difference between the neutron

counting rate without sample in the beam and the counting rate

with the sample. The energy shift caused by the inelastic

scattering in the sample causes a noticeable increase in AE, and

necessitates the usual corrections for scattering in the

detector. It is clear from equation (1) that, by measuring the

transmission level T for different thicknesses y and, therefore,,

assuming the function T(y) to be known, we can immediately

correlate the results of such measurements with the whole set of

initial values

?, (2)
o

which characterize the energy dependence of the total neutron

cross sections in the AE( v = 0,1,2,3,...).

o

(3)

What follows relates to the algorithm of the calculations based

on equations (3) and (4).

The experimental data is available in the form of a discreet

set of values of K(yJ obtained for a finite number M of y±

values. This set does not include the extreme points y = 0 and

y = M or the points lying close to them. Thus, we can only use

expressions (3) and (4) to find <ot
¥> by extrapolating the

behavior of T(yjin the measured range of yi values over the
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which means that the first derivative at zero cannot be positive

Since expression (4) must be numerically integrated to find the

"inverse" momenta of the cross section (v < 0), it is desirable

to replace the variable y with the variable z which approaches a

finite limit when y - « and would automatically ensure that

condition (7) is satisfied at infinity. .We chose the following

transform for the variables

fifly, • (10)

where k > 0 and

(y) -O • &m z(y)-

This means that condition (7) is fulfilled since

Another advantage of the transform given by equation(10) is the

possibility of approximating oeff with orthogonal polynomials

using a finite orthogonalization interval:

where T/z) = ̂ T/5 z' is the displacement of the Chebyshev

polynomial. The approximation parameters X, Ak, kmax, which are

determined using the least squares method, usually satisfy the

conditions set out under points A-C. Using the conditions set

forth in equations (3, 4, 6, 8), the functions oeffd/Z)

determined in this way can be used to produce data, on the

statistical characteristics of the energy dependence of the total

neutron cross sections such as the set of "direct" (v >; 0) and

"inverse" (v < 0) initial or central conditions, as well as otmin.

The uncertainty of the coefficients Ak and, similarly, that of

the derived coefficients are obtained in the usual way using the

error matrix.
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We checked the objectivity and accuracy of this method to

derive the statistical characteristics of the energy dependence

of the total neutron cross sections from data on the transmission

for varying sample thicknesses, by performing inverse convolution

of the real excitation functions otE obtained under high

resolution conditions, and beams in the form of a Gaussian

function or a square pulse of width AE given by expression (1) in

order to generate the transmission function T(y). The

experimental error were simulated by a random distribution of

sample values within a 3% error range which is typical for

transmission measurements. The excitation functions were taken

from the KFK-1000 reference. For some of these excitation

functions, the statistical characteristics obtained by direct

averaging of ovt(E) using equation (2) were compared with those

obtained from an analysis of the model transmission levels. A

typical result of this kind of comparison is given in Table 1.

Data on otE for natural chromium isotope mixture in the

750.1 < E < 889.7 keV and 905.2 < E < 1049.9 keV energy range

were used. Figure 1 shows the corresponding portions of o2(E).

In both cases, the parameter K,iax in Eq. (12) which ensures a

minimum %2 value, was Kmax = 3 . As can be seen, the level of

agreement is on the whole good and breaks down only for the

semi-invariance K 0 where v > 3, namely when the inverse momenta

are reproduced usually up to a value of |v | «= 5. There is also

a tendency to overestimate of the minimum cross section otmin in

the range of values derived from the analysis of the transmission

T(y) .

In order to improve the determination of 0^,, ,and in view

of the need to find such an important value as the highest total

cross-section value otmax in a given range, the transmission data

processing procedure was extended to include an approximate

calculation of the probability density function f(x) to determine

the probability of observing in the AE range the value

(13)
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-where

Without loosing any generality, f(x) can always be represented in

the form of a polynomial

<f>()£B£ (14)

where P, (x) are Legendre polynomials. The coefficients Bp can

now be calculated starting with the condition of non-negativity

of f(x) at all points in the region where x is to be determined

and the reproduceability of the full set of previously determined

"direct" (v i 0) and "inverse" (v < 0) momenta < oBt >. In

particular, by determining the variable x in the form given in

Eq. (13) we can produce a simple algorithm for calculating Bp for

inverse momenta since Q *r2Jyj<Pf(x)> . Then the number

of members in the polynomial given by the series (14) is limited

by the number of non-inverse momenta so that, usually, pmax i, 5.

The condition of the non-negativity of f(x) and the

reproducibility of the first direct momenta of the cross-section

calculated using f(x) are fulfilled by varying the parameters d

and f) which means we can then find otmin and 0^*. Figure 2a shows

the probability density function f(l/ot) determined in this

manner which was obtained by modelling T(y) using experimental

Ot(E) data for chromium in the 1074.1 i E * 1204.8 keV energy

range alongside the distribution directly calculated for this

section of the excitation function (histogram). If we take into

account the non-smooth nature of the experimental distribution

which was obtained from a finite number of intervals we may judge

the general level of agreement of both distributions to be

satisfactory. This is especially so when we compare the derived

values of atmin and 0^* with their real values (see Table 1) .

However, despite the generality of the method used, the limited

number of determined momenta and their possible error levels in

some cases means that we cannot find values of otrain and otmax which

satisfy the condition of non-negativity of f(x). Therefore, we
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also tried finding f(ot) via a priori specification of the type

of distribution. Use of the two parameter 0 distribution whose

parameters are fixed only by the < ot > and Dot values, yields

good results (see Figs 2b, 3). The quality of the reproduction

of the total set of inverse momenta and 0^,,, o^x is

approximately the same as in the first example. One positive

point is that the difficulty in realizing the positivity of f(x)

associated with expression (14) does not occur here; however,

this is achieved at the cost of less generality since the

question as to how applicable the 0 distribution is to an

analysis of a sufficiently extensive set of types of excitation

function has not been investigated. It should be stressed that

we only use the concept of probability density for the

cross-section in the averaging interval when we are deriving the

single characteristic otmax; data on the momenta < o
Y
t
 > a r e

derived independently directly from the transmission data T(y).

In contrast to other sources [2, 5], we set the cross-section

distribution function for the range otmin s o s otmax and not for

the 0 * o < » region which does not exclude the possibility of

observing very high cross-section values or unjustifiably low

values with a finite probability within the limits of AE.

Another advantage of this method is the simplicity of the

algorithm which eliminates the need to numerically solve the

integral equations in Ref. [2] and the instabilities associated

with this, or the need to turn to a specific theoretical model

[3,4]. Furthermore, with respect to any influence that the beam

shape P(E) might have on the derived values for < ont >/ we

checked this in the calculations for two cases: an even

distribution with a width of AE and a Gaussian shape with the

same width at half maximum. The differences were no more

than 1%.

The transmission curve processing method was then applied to

real experimental transmission data T(y). Data for natural

uranium were chosen for comparison. Uranium has been fairly

extensively studied from the point of view of a knowledge of its

group constants in the badly resolved resonance region



- 30 -

2 £ E i, 100 keV. However, even here the effect of the spread of

the data from various sources on the average group total

cross-sections exceeds the error levels given and the differences

for the resonance self-shielding factors can be as high as

several tens of percent (see Refs [5,6], for example). To a

large extent this is linked to the behavior of the experimental

transmission values at very small thicknesses (d < 0.5 cm) where

there are major technical difficulties in carrying out the

measurements.

Therefore, since our main aim was to check the adequacy of

our procedure for analyzing transmission data, we selected the

data from Ref. [5] which were obtained over a wide range of

thicknesses d > 0.5 cm where the results from various sources

agree overall. In the original, these data were processed using

the method of least directed divergence [2] . Table 2 gives the

uranium group constants which we derived and the results obtained

by analyzing the original source [5] and the recommendations in

ABBN-78 [7].

Figure 3 illustrates a type of derived total cross-section

density distribution f(ot)for the second group (otmin = (7.0 +; 0.3)

barns; otmax = (45 _+ 4) barns) alongside the one obtained in

Ref. [5]. The level of agreement is in all cases entirely

acceptable. An analogous comparison was also carried out for the

data on the transmission of quasi-monochromatic beams of fast

neutrons in a natural chromium isotope mixture obtained in

Ref. [8]. This element is also important in nuclear power

technology. Table 3 gives the results for two average neutron

energy values < E >. The widths AE of the energy distribution of

the incident beam at half maximum are also given.

The energy dependences of the mean total cross-sections for

chromium and of the self-shielding factors in the

0.49 £ D £ 1.355 MeV region, which we obtain by analyzing the

transmission values in Ref. [8], are shown in Fig. 4 alongside

the results from Ref. [8]. As we can see, the differences in the
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< ot > values found using these two analysis techniques comprise

on average -5%. The anomalously high difference at the point

< E > = 0.553 MeV was mainly caused by the relatively poor

quality of the experimental source data together with the

excessively small beam width. If we exclude this point, the

differences in the derived total cross-sections would be on

average around 3%. On the other hand, the values which we

obtained for < ot > are a little higher than those given in

Ref. [8] at lower energies and rather lower in the upper part of

the energy region. The Ft values differ on average by -4%,

mainly owing to the fact that our values are slightly higher than

the ones given in Ref. [8] for E > 1 MeV. Upon averaging of the

group intervals (ABBN groupings [7]), our results agree quite

well with the data given in Ref. [9] produced using the analysis

technique from Ref. [3], and with the data in Ref. [10] which

were produced using the analysis technique from Ref. [2] (see

Table 4).

The observable differences are less than 10% and reflect the

need to further refine the group data of chromium.

With respect to the calculations which use the experimental

data on the detailed dependence of ot(E), as we can see from Fig.

4 which shows the values of <ot> and Ft obtained by averaging the

KFK-1000 values in the same intervals as the transmission data

which we analysed from Ref. [8], the cross-sections are on

average lower and the shelf-shielding factors higher than those

derived from transmission experiments. As a rule, this indicates

resonance omission and smoothing of the minima as a result of the

finiteness of the energy resolution in the ot(E) measurements.

Owing to the simplicity of the algorithms used, the

calculations could be performed on a small SOU-1 computer with

about the same memory, capacity and speed as the well-known

Ehlektronika-60. The operating programs were written in BASIC,

and the calculation time for the momenta <ovt> from the

transmission data was 2-3 minutes. It took approximately 30
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minutes to determine ot min and ot max. In conclusion, we may

claim that the technique which we put forward here for deriving

the statistical characteristics of the energy dependence of total

neutron cross-sections from data on transmission levels in

samples of varying thickness is sufficiently objective and

accurate.
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750 toe ASff EB MeV 9S5 1005 EB MeV

Fig. 1. Energy dependence pof the total neutron cross-sections
of chromium in the 750.1 i E £ 889.7 keV energy range (a), and in
the 905.2 i E s 1049.9 keV energy range (b). (Data from KFK-1000)

Q.f

no s

D 0.25 0.7S'/r 0
barn barn

Fig. 2. Density distribution (a) f (l/ot) and (b) f (ot) for
chromium in the 1074.1 s E s 1204.6 keV energy interval. The
histogramshows results obtained via direct counting using the
experimental excitation function; the continuous line shows
results obtained via calculations using the method described.
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10

10

60 6?;, barn

Fig. 3. Density distribution f(ot)
for uranium (Group II). Histogram
data from Ref. [3]; continuous
line from calculation using
described method.

3.1,

2.0

2.6

*

1.6 En Mev MeV

Fig. 4. (a) average cross-sections <ot>, and (b) resonance self-
shielding factors Ft for chromium in the 490 £ E i 1355 keV
energy range:«-i-*our data; x data from Ref. [8]; A average of data
from KFK-1000.
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Table 1

Statistical characteristics of the energy dependence of the total
chromium cross-section derived from h-igh resolution data.

Characteristics

<<Jt>, &

Dot, 6

po t , 6

<ot"
x>, d-1

<o t
2 >, »"2

<ot°>, ft3

<o t«>, a-«
<ot"

5>, 6 5

°tmin

F t

(O tBin)f

(O».x)f

7 5 0 . 1 < E < 889 .7 keV

1

3.028

1.205

0 .453

0 . 3 8 1

0 .168

0 .085

0.048

0.029

1.189

0.748

1.189

5.873

2

3.036±0.005

1.26+0.01

0.75+0.02

0.380

0.168

0.08 5

0.04 8

0 .02 9

1 .182±0 .005

0.747+0.002

1.18310.006

6,. 3+0.2

905.2< E < 1049.2 keV

3

2.788

1.201

1.68

0.413

0.194

0.103

0.060

0.037

1.251

0.762

1.251

7.365

4

2 .78710 .001

1.14310.007

1.0610.03

0.412

0.194

0.102

0.059

0.036

1.36610.001

0.763

1.2610.08

6.4+0.7

1 - Averaged ot(E)
2 - Analysis of T(y) model
3 - Averaged ot(E)
4 - Analysis of T(y) model
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Table 2

Group constants for uranium

1

4.6 - 10
(12)

10 - 21 (11)

21 - 46 (10)

46 - 100 (9)

2

This paper

[5]

[7]

This paper

[5]

[7]

This paper

[5]

[7]

This paper

[5]

[7]

3

16.19±0.02

16.4±0.3

15.88

14.46±0.11

14.510.2

14.48

13.5610.03

13.510.2

13.46

12.7910.05

12.7110.10

12.57

4

0.68610.002

0.68

0.668

0.77210.007

0.76+0.002

0.755

0.83110.003

0.8310.02

0.855

0.90810.005

0.914

0.915

1
2
3
4

Energy interval (No. of ABBN group)
Reference

- Ft
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Table 3

Statistical characteristics of the energy dependence of the total
neutron cross-sections for a natural mixture of chromium isotopes

<E>, keV
( A E ) , keV

<ot>, 6
D o t , &2

<o t
1 >, a 1

<ot-
2>, a-2

<ot-
3>, a-3

F t

Origin

660
(150)

3.029+0.017

3.1110.20

0.440

0.256

0.189

0.568

This paper

2.814

2.02

0.456

0.279

0.231

0.580

[8]

820
(140)

2.9910.04
1.60+0.07

0.416

0.219

0.137

0.636

This paper

2.90

1.65

0.431

0.236

0.159

0.630

[8]

Table 4

Group constants for a natural mixture of chromium isotopes

Group
number

5

6

Energy
i n t e r v a l ,

MeV

14 - 0.8

0.8 - 0.4

< ot >, barn

This
paper

3.19

3.22

[9]

3.06

3.24

[10]

3.42

3.26

F t

This
paper

0.678

0.548

[9]

0.682

0.554

[10]

0.62

0.51
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