International Atomic Energy Agency

INDC(CCP)-387 Distrib.: G

INTERNATIONAL NUCLEAR DATA COMMITTEE

ATLAS OF ENERGY-ANGULAR DISTRIBUTIONS OF GAMMA RAYS PRODUCED IN NEUTRON REACTIONS

A.I. Blokhin, V.V. Vozyakov, M.V. Mikhailyukova, S.M. Nasyrova Institute of Physics and Power Engineering, Obninsk, Russia

February 1996

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

INDC(CCP)-387 Distrib.: G

ATLAS OF ENERGY-ANGULAR DISTRIBUTIONS OF GAMMA RAYS PRODUCED IN NEUTRON REACTIONS

A.I. Blokhin, V.V. Vozyakov, M.V. Mikhailyukova, S.M. Nasyrova Institute of Physics and Power Engineering, Obninsk, Russia

February 1996

Translated by IAEA from a Russian original published in Voprosy Atomnoj Nauki i Tekhniki, Jadernye Konstanty, issue 2/1993.

Reproduced by the IAEA in Austria February 1996

CONTENTS

<u>Page</u>

Introduction	1
Experimental work included in the Atlas	5
Bibliography of experimental work	17
Part 1: Atlas of energy-angular gamma ray distributions	21
Part 2: Atlas of gamma-ray production cross-sections	.07

UDC 539.17

ATLAS OF ENERGY-ANGULAR DISTRIBUTIONS OF GAMMA RAYS PRODUCED IN NEUTRON REACTIONS

A.I. Blokhin, V.V. Vozyakov, M.V. Mikhailyukova, S.M. Nasyrova Power Physics Institute, Obninsk

ABSTRACT

ATLAS OF ENERGY ANGULAR DISTRIBUTIONS OF GAMMA RAYS PRODUCED IN NEUTRON REACTIONS. An atlas of energy angular differential gamma-ray production cross-sections was produced using EXFOR data for 52 elements and some of their isotopes. In some cases experimental and evaluation data from BROND-2 and ENDF/B-VI were compared.

One of the main steps towards the compilation of the BROND-2 library of recommended evaluated neutron data [1, 2] is the evaluation of nuclear data on processes responsible for the production of gamma rays in various neutron reactions. For a number of elements the BROND-2 library includes evaluated nuclear data on gamma-ray production, but there are many elements for which this work remains to be done. One of the preparatory stages of such work is the compilation and analysis of existing experimental information on the processes in question and its comparison with the available evaluated data.

We have compiled the information available on differential gamma-ray production cross-sections in the region of the continuum for the absorption and radiative capture of neutrons of different energies on the basis of the EXFOR international library of experimental data which was established as a result of the work of the network of international nuclear data centres [3]. The atlas, containing 353 graphs, was produced on the basis of this compilation. The available experimental data were compared with evaluated data from the BROND-2 and ENDF/B-VI libraries [4]. The atlas covers the following elements as well as many of their isotopes: N, O, F, Na, Mg, Al, Si, P, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ag, In, Sn, Sb, I, Cs, Ba, La, Ce, Pr, Gd, Tb, Ho, Lu, Ta, W, Re, Os, Pt, Au, Tl, Pb, Bi, ²³⁸U.

The substance of the experimental information studied is presented in the table. The nuclides are listed in ascending order of atomic number, and the table gives for each nuclide the first author, the main bibliographical reference, and significant characteristics of the experiment: the value measured, the energy range of the neutrons and gamma radiation, the angle relative to the neutron beam axis at which the detector was placed for the gamma measure and some information on the experimental conditions. The step change in the neutron energy varied from experiment to experiment; for example, it was 2 MeV in the

measurements at the ORELA facility. In the EXFOR library, $\frac{d^2\sigma_{\gamma} prod}{dE_{\gamma}d\Omega}(E_{\gamma})$, spectra and

cross-sections σ_{γ} prod (E_{γ}) are given for each neutron energy step. In our atlas graphs of the measured values are not given for all E_n , as the differences between neighbouring steps are small.

The bibliography contains references to the experimental work included in the table, giving a complete list of authors, the code and name of the laboratory where the work was carried out, and a full list of references in which the results obtained were published.

The atlas itself comprises two parts: Part 1 contains data on the energy angular distributions of gamma rays produced in neutron reactions; Part 2 includes work in which data on integral gamma-ray production cross-sections in specific energy intervals were obtained. The figures are given in ascending order of atomic number, and for each atomic number in ascending order of initial neutron energy.

The experimental material compiled, together with the comparison with available evaluated data, provide a basis for future evaluations of gamma-ray production cross-sections for neutron reactions.

REFERENCES

- [1] BLOKHIN, A.I., IGNATYUK, A.V., KUZMINOV, B.D., et al., Proc. Int. Conf. on Nuclear Data for Science and Technology, Japan, Mito (1988) 611.
- [2] BROND-2: Library of Recommended Evaluated Neutron Data. Documentation of Data Files. Editors: BLOKHIN, A.I., IGNATYUK, A.V., MANOKHIN, V.N., NIKOLAEV, M.N., PRONYAEV, V.G., Journal Yadernye Konstanty, v. 2 & 3 (1991).
- [3] McLANE, V., NORDBORG, C., LEMMEL, H.D., MANOKHIN, V.N., Proc. Int. Conf. on Nuclear Data for Science and Technology, Japan, Mito (1988) 1157.
- [4] ENDF/B-VI Summary Documentation, Compiled and Edited by P.F. Rose. Report ENDF-201, BNL (1991).

Nuclide	Reference	Quantities measured	Neutron energy, MeV	Energy angular characteristics of γ -radiation, φ , degrees; $E\gamma$, MeV	Measurement method, detectors	Remarks
°N	J.K.Dickens et al. R, ORNL-4864, 1973 Exf. 10351002	$\frac{d^2 \sigma_{\gamma prod}}{d\Omega \ dE_{\gamma}}$	2-20	90° 0.8-11.	ORELA n: Ta(γ ,n), TOF; scintillation detectors γ : NaI, heavy shielding + LiH,	
¹⁶ O	G.L.Morgan et al. R, ORNL-5575, 1979 Exf. 10847002		6.5-20	125° 0.7-11.	paraffin	
¹⁹ F	J.K.Dickens et al. NSE,62,515,1977 Exf. 10502002		1-20	125 [°] 0.7-10.6		
²³ Na	D.C.Larson et al. NSE,75,151,1980 Exf. 10926002	-	0.2-20	125 ⁰ 0.4-10.6		
°Mg	J.K.Dickens et al. NSE,62,515,1977 Exf. 10582002	$\frac{d^2\sigma_{prod}}{d\Omega \ dE_{\gamma}}$ in (n,x γ) reactions	0.76-20	90°,125° 0.7-10.6		
⁰ Mg	M.Budnar et al. NP/A,213,525,1973 Exf. 30532003	$\frac{d \sigma_{n\gamma}}{d E_{\gamma}}$ in (n,x γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: T(d,n) ⁴ He, recoil proton method γ : anticoincidence, scintillation detector	Absolute measurements in 4π geometry
²⁷ Al	M.Budnar NP/A,213,525,1973 Exf. 30532005					
²⁷ Al	G.L.Morgan et al. NSE,62,515,1977 Exf. 10582002	$\frac{d^2\sigma_{prod}}{d\Omega \ dE_{\gamma}}$ in (n,x γ) reactions	0.85-20	90°,125° 0.7-10.6	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : NaI, heavy shielding + LiH, paraffin	

EXPERIMENTAL WORK ON $\gamma\text{-}SPECTRA$ AND $\sigma_{\gamma \text{ production}}$ IN NEUTRON REACTIONS INCLUDED IN ATLAS

Nuclide	Reference	Quantities measured	Neutron energy, MeV	Energy angular characteristics of γ -radiation, φ , degrees; $E\gamma$, MeV	Measurement method, detectors	Remarks
°Si	J.K.Dickens et al. NSE,62,515,1997 Exf. 10397002 10397003	$\frac{d^2\sigma_{prod}}{d\Omega \ dE_{\gamma}}$ in (n,x γ) reactions	1-20	90°,125° 0.7-10.6	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : NaI, heavy shielding + LiH, paraffin	
⁰Si	M.Budnar et al. NP/A,213,525,1973 Exf. 30532003	$\frac{d \sigma_{n\gamma}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4$ He, recoil proton method γ : anticoincidence, scintillation pair spectrometer, scintillators - plastic and NE-102A	
°Si	W.E.Tucker BAP,15,1667,1970 Exf. 10091002	$\frac{d \sigma_{\gamma prod}}{dE_{\gamma}}$ in (n, x \gamma) reactions	5,8,9,10,11	55° 0.4-9	Van de Graaf and tandem n: D(D,n) ³ He, T(p,n) ³ He TOF, recoil protons γ : GeLi, NaI(Tl), NaI(Gr)	
³¹ P	M.Budnar et al. NP/A,213,525,1973 Exf. 30532009	$\frac{d \sigma_{ir\gamma}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4$ He, recoil proton method γ : anticoincidence, scintillation pair	Absolute measurements in 4π geometry
°S	M.Budnar et al. NP/A,213,525,1973 Exf.30532011				spectrometer	
°Ca	M.Budnar et al. NP/A,213,525,1973 Exf. 30532013					
°Ca	J.K.Dickens et al. NSE,53,277,1974 Exf. 10350002	$\frac{d^2 \sigma_{\gamma prod}}{d\Omega \ dE_{\gamma}}$ in (n, x \gamma) reactions	0.7-20	1 25° 0.7-10.6	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : NaI, heavy shielding + LiH, paraffin	
⁴⁵ Sc	M.Budnar et al. NP/A,13,525,1973 Exf. 30532015	$\frac{\frac{d \sigma_{n\gamma}}{dE_{\gamma}}}{\text{in } (n,\gamma) \text{ reactions}}$	14.1±0.6	12-24	Cockcroft-Walton accelerator n: T(d,n) ⁴ He, recoil proton method γ : anticoincidence, scintillation pair spectrometer	Absolute measurements in 4π geometry
	I	I	1			

δ

Nuclide	Reference	Quantities measured	Neutron energy, MeV	Energy angular characteristics of γ -radiation, φ , degrees; E γ , MeV	Measurement method, detectors	Remarks
⁴⁵ Sc	J.Voignier et al. NSE,93,43,1986 Exf. 22006042	$\frac{d^2\sigma_{n\gamma}}{d\Omega \ dE_{\gamma}}$	0.5-3	90° 0.7-9.2	Van de Graaf n: ⁷ Li(p,n) ⁷ Be, ³ H(p,n) ³ He, TOF, BF ₃ counters	Below $E_{\gamma} = 1.5$ MeV data taken from calculation
°Ti	J.Voignier et al. NSE,93,43,1986 Exf. 22006043	multiplicity			γ: NaI annular, heavy shielding + paraffin + Li + B	
°Ti	G.L.Morgan et al. R, ORNL-TM-6323,1978 Exf. 10790002	$\frac{d^2 \sigma_{\gamma prod}}{d\Omega \ dE_{\gamma}}$	0.3-20	125 ⁰ 0.3-10.6	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : NaI, heavy shielding + LiH,	
⁵¹ V	E.Newman et al. NSE,62,515,1977 Exf. 10657002	- in $(n, x\gamma)$ reactions	0.2-20	125 ⁰ 0.3-10.6	paraffin	
51V	M.Budnar et al. NP/A,213,525,1973 Exf. 30532017	$\frac{d \sigma_{my}}{dE_{\gamma}}$	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4$ He, recoil proton method γ : anticoincidence, scintillation pair	Absolute measurements in 4π geometry
°Cr	M.Budnar et al. NP/A,213,525,1973 Exf. 30532019				spectrometer	
⁰Cr	G.L.Morgan et al. R,ORNL-TM-5098,1976 Exf. 10581002	$\frac{d^2 \sigma_{y prod}}{d\Omega \ dE_y}$	0.2-20	125° 0.3-10.6	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : NaI, heavy shielding + LiH,	
⁵⁵ Mn	G.L.Morgan et al. R,ORNL-TM-5416,1976 Exf. 10580002	$-\ln(n,x\gamma)$ reactions $-$			paraffin	
⁵⁵ Mn	M.Budnar et al. NP/A,213,525,1973 Exf. 30532021	$\frac{d \sigma_{n\gamma}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: T(d,n) ⁴ He, recoil proton method γ : anticoincidence, scintillation pair	Absolute measurements in 4π geometry
⁰ Fe	M.Budnar et al. NP/A,213,525,1975 Exf. 30532023				spectrometer	

 $\overline{}$

/

X

Nuclide	Reference	Quantities measured	Neutron energy, MeV	Energy angular characteristics of γ -radiation, φ , degrees; $E\gamma$, MeV	Measurement method, detectors	Remarks
⁰ Fe	G.T.Chapman et al. R,ORNL-TM-5416,1976 Exf. 10580002	$\frac{d^2 \sigma_{\gamma prod}}{d\Omega \ dE_{\gamma}}$ in (n, x \gamma) reactions	0.85-20	125 ⁰ 0.7-10.6	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : NaI, heavy shielding + LiH, paraffin	
⁵⁹ Co	M.Budnar et al. NP/A,213,525,1973 Exf. 30532025	$\frac{d \sigma_{n\gamma}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4$ He, recoil proton method γ : anticoincidence, scintillation pair spectrometer	Absolute measurements in 4π geometry
°Ni	J.K.Dickens et al. R,ORNL-TM-4379,1973 Exf. 10402002	$\frac{d^2 \sigma_{\gamma \rho rod}}{d\Omega \ dE_{\gamma}}$ - in (n,x γ) reactions -	1-20	125 ⁰ 0.7-10.6	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : NaI, heavy shielding + LiH, paraffin	
°Cu	G.L.Morgan et al. R,ORNL-TM-5499,1979 Exf. 10977003		1-20	130° 0.8-10.		
°Cu	М.В.Савин С,80 Kiev,2,17,1980 Exf. 40518002	$\sigma_{\gamma prod} (E_n, E_{\gamma})$ in (n, x γ) reactions	1-10	125° 1-5	Linac n: TOF, stilbene detector γ: liquid scintillator detector	Absolute measurements
°Cu	M.Budnar et al. NP/A,213,525,1973 Exf. 30532021	$\frac{d \sigma_{n\gamma}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4$ He, recoil proton method γ : anticoincidence, scintillation pair spectrometer	Absolute measurements in 4π geometry
°Cu	J.Voignier et al. NSE,93,43,1986 Exf. 22006044	$\frac{d^2\sigma_{n\gamma}}{d\Omega \ dE_{\gamma}}$	0.5-3	3 90° 0.7-8	Van de Graaf n: ⁷ Li(p,n) ⁷ Be, ³ H(p,n) ³ He, TOF, BF ₃ counters	Below $E_{\gamma} = 1.5$ MeV data taken from calculation
⁶³ Cu	J.Voignier et al. NSE,93,43,1986 Exf. 22006045	multiplicity			γ: Nal + Nal annular, heavy shielding + paraffin + Li + B	
⁶⁵ Cu	J.Voignier et al. NSE,93,43,1986 Exf. 22006046					

œ

Nuclide	Reference	Quantities measured	Neutron energy, MeV	Energy angular characteristics of γ -radiation, φ , degrees; $E\gamma$, MeV	Measurement method, detectors	Remarks
°Zn	J.K.Dickens et al. R,ORNL-TM-4464,1974 Exf. 10398002	$\frac{d^2\sigma_{\gamma prod}}{d\Omega \ dE_{\gamma}}$ in (n,x\gamma) reactions	0.85-20	125 ⁰ 0.7-10.6	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : Nal, heavy shielding + LiH, paraffin	
°Se	M.Budnar et al. NP/A,213,525,1973 Exf. 30532029	$\frac{d \sigma_{n\gamma}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4$ He, recoil proton method γ : anticoincidence, scintillation pair	Absolute measurements in 4π geometry
°Br	M.Budnar et al. NP/A,213,525,1973 Exf. 30532031			spectrometer	-	
⁰Rb	J.Voignicr et al. NSE,93,43,1986 Exf. 22006047	$\frac{d^2 \sigma_{n\gamma}}{d\Omega \ dE_{\gamma}}$ and gamma-ray multiplicity	0.5-3	90° 0,7-8	Van de Graaf n: ⁷ Li(p,n) ⁷ Be, ³ H(p,n) ³ He, TOF, BF ₃ counters γ : NaI + NaI annular, heavy shielding + paraffin + Li + B	Below $E_{\gamma} = 1.5$ MeV data taken from calculation
°Sr	M.Budnar et al. NP/A,213,525,1973 Exf. 30532033	$\frac{d \sigma_{ny}}{dE_{\gamma}}$	14.1±0.6	12-24	Cockcroft-Walton accelerator n: T(d,n) ⁴ He, recoil proton method γ: anticoincidence, scintillation pair	Absolute measurements in 4π geometry
⁸⁹ Y	M.Budnar et al. NP/A,213,525,1973 Exf. 30532035				spectrometer	
⁸⁸ Y	J. Voignicr et al. NSE,93,43,1986 Exf. 22006048	$\frac{d^2 \sigma_{iny}}{d\Omega \ dE_{\gamma}}$	0.5-3	90° 0.7-8	Van de Graaf n: ⁷ Li(p,n) ⁷ Be, ³ H(p,n) ³ He, TOF, BF ₃ counters γ : Nal + Nal annular, heavy shielding + paraffin + Li + B	Below $E_{\gamma} = 1.5$ MeV data taken from calculation
°Zr	J.Voignicr et al. NSE,93,43,1986 Exf. 22006049	- and gamma-ray . multiplicity				
⁹³ Nb	J.Voignicr et al. NSE,93,43,1986 Exf. 22006050					

Nuclide	Reference	Quantities measured	Neutron energy, MeV	Energy angular characteristics of γ -radiation, φ , degrees; E γ , MeV	Measurement method, detectors	Remarks
⁹³ Nb	J.K.Dickens et al. NSE,62,515,1977 Exf. 10553002	$\frac{d^2\sigma_{\gamma prod}}{d\Omega \ dE_{\gamma}}$	0.65-20	90° 0.7-10.6	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : NaI, heavy shielding + LiH,	
°Mo	G.L.Morgan et al. R,ORNL-TM-5097,1975 Exf. 10584002	$-$ in $(n, x\gamma)$ reactions	0.2-20	125° 0.3-10.6	paraffin	
⁰Мо	М.В.Савин С, 80 Kiev,2,17,1980 Exf.40518007-40518013	$\sigma_{\gamma prod} (E_n, E_{\gamma})$ in (n, x γ) reactions	1-10	125° 1-5	Linac n: TOF, stilbene detector γ: liquid scintillator detector	Absolute measurements
°Mo	J.Voignier et al. NSE,93,43,1986 Exf. 22006051	$\frac{d^2 \sigma_{iiy}}{d\Omega \ dE_{\gamma}}$ and gamma-ray multiplicity	0.5-3	90° 0.7-8	Van de Graaf n: ⁷ Li(p,n) ⁷ Be, ³ H(p,n) ³ He, TOF, BF ₃ counters γ : Nal + Nal annular, heavy shielding + paraffin + Li + B	Below $E_{\gamma} = 1.5$ MeV data taken from calculation
°Āg	J.K.Dickens et al. NSE,62,515,1977 Exf. 10400002	$\frac{d \sigma_{\gamma prod}}{d\Omega \ dE_{\gamma}}$ in (n, x \gamma) reactions	0.65-20	125° 0.3-10.6	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : NaI, heavy shielding + LiH, paraffin	
°In	M.Budnar et al. NP/A,213,525,1973 Exf. 30532037	$\frac{d \sigma_{n\gamma}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4$ He, recoil proton method γ : anticoincidence, scintillation pair spectrometer	Absolute measurements in 4π geometry
°Sn	J.K.Dickens et al. NSE,62,515,1977 Exf. 10351002	$\frac{d^2 \sigma_{\gamma prod}}{d\Omega \ dE_{\gamma}}$ in (n, x \gamma) reactions	0.75-20	125°	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : NaI, heavy shielding + LiH, paraffin	
⁰Sb	M.Budnar et al. NP/A,213,525,1973 Exf. 30532039	$\frac{d \sigma_{it\gamma}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4$ He, recoil proton method γ : anticoincidence, scintillation pair spectrometer	Absolute measurements in 4π geometry

Nuclide	Reference	Quantities measured	Neutron energy, MeV	Energy angular characteristics of γ -radiation, φ , degrees; $E\gamma$, MeV	Measurement method, detectors	Remarks
127 <u>I</u>	M.Budnar et al. NP/A,213,525,1973 Exf. 30532041	$\frac{d \sigma_{ny}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: T(d,n) ⁴ He, recoil proton method γ : anticoincidence, scintillation pair spectrometer	Absolute measurements in 4π geometry
¹²⁷ I ¹³⁷ Cs	J.Voignier et al. NSE,93,43,1986 Exf. 22006052 J.Voignier et al. NSE,93,43,1986	$\frac{d^2 \sigma_{ny}}{d\Omega \ dE_{\gamma}}$ and gamma-ray multiplicity	0.5-3	90° 0.7-8	Van de Graaf n: ⁷ Li(p,n) ⁷ Be, ³ H(p,n) ³ He, TOF, BF ₃ counters γ : NaI + NaI annular, heavy shielding + paraffin + Li + B	Below $E_{\gamma} = 1.5$ MeV data taken from calculation
⁰ Ba	M.Budnar et al. NP/A,213,525,1973 Exf. 30532043	$\frac{d \sigma_{n\gamma}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4$ He, recoil proton method γ : anticoincidence, scintillation pair spectrometer	Absolute measurements in 4π geometry
¹³⁹ La	J.Voignier et al. NSE,93,43,1986 Exf. 22006054	$\frac{d^2\sigma_{n\gamma}}{d\Omega \ dE_{\gamma}}$	0.5-3	90 [°] 0.7-8	Van de Graaf n: ⁷ Li(p,n) ⁷ Be, ³ H(p,n) ³ He, TOF, BF, counters	Below $E_{\gamma} = 1.5$ MeV data taken from calculation
°Ce	J.Voignier et al. NSE,93,43,1986 Exf. 22006055	and gamma-ray multiplicity			γ: NaI + NaI annular, heavy shielding + paraffin + Li + B	
¹⁴¹ Pr	J.Voignier et al. NSE,93,43,1986 Exf. 22006056					
¹⁴¹ Pr	M.Budnar et al. NP/A,213,525,1973 Exf. 30532045	$\frac{d \sigma_{n\gamma}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4$ He, recoil proton method γ : anticoincidence, scintillation pair spectrometer	Absolute measurements in 4π geometry
⁰Gd	J.Voignier et al. NSE,93,43,1986 Exf. 22006057	$\frac{d^2 \sigma_{ity}}{d\Omega \ dE_{\gamma}}$ and gamma-ray multiplicity	0.5-3	90° 0.7-8	Van de Graaf n: ⁷ Li(p,n) ⁷ Be, ³ H(p,n) ³ He, TOF, BF, counters γ : NaI + NaI annular, heavy shielding + paraffin + Li + B	Below $E_{\gamma} = 1.5$ MeV data taken from calculation

Nuclide	Reference	Quantities measured	Neutron energy, MeV	Energy angular characteristics of γ -radiation, φ , degrees; E γ , MeV	Measurement method, detectors	Remarks
¹⁵⁵ Gd	J.Voignier et al. NSE,93,43,1986 Exf. 22006058	$\frac{d^2\sigma_{n\gamma}}{d\Omega \ dE_{\gamma}}$	0.5-3	90° 0.7-8	Van de Graaf n: ⁷ Li(p,n) ⁷ Be, ³ H(p,n) ³ He, TOF, BF ₃ counters	Below $E_{\gamma} = 1.5$ MeV data taken from calculation
¹⁵⁶ Gd	J.Voignier et al. NSE,93,43,1986 Exf. 22006059	and gamma-ray multiplicity			γ: NaI + NaI annular, heavy shielding + paraffin + Li + B	
¹⁵⁷ Gd	J.Voignier et al. NSE,93,43,1986 Exf. 22006060					
158Gd	J.Voignier et al. NSE,93,43,1986 Exf. 22006061					
¹⁶⁰ Gd	J.Voignier et al. NSE,93,43,1986 Exf. 22006062					
¹⁵⁹ Tb	J.Voignier et al. NSE,93,43,1986 Exf. 22006063					
¹⁶⁵ Ho	J.Voignier et al. NSE,93,43,1986 Exf. 22006064		-			
¹⁶⁵ Ho	M.Budnar et al. NP/A,213,525,1973 Exf. 30532047	$\frac{d \sigma_{n\gamma}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4He$, recoil proton method γ : anticoincidence, scintillation pair spectrometer	Absolute measurements in 4π geometry
⁰Lu	J.Voignier et al. NSE,93,43,1986 Exf. 22006065	$\frac{d^2 \sigma_{iiy}}{d\Omega \ dE_{\gamma}}$ and gamma-ray multiplicity	0.5-3	90° 0.7-8	Van de Graaf n: ⁷ Li(p,n) ⁷ Be, ³ H(p,n) ³ He, TOF, BF ₃ counters γ : NaI + NaI annular, heavy shielding + paraffin + Li + B	Below $E_{\gamma} = 1.5$ MeV data taken from calculation

Nuclide	Reference	Quantities measured	Neutron energy, MeV	Energy angular characteristics of γ -radiation, φ , degrees; $E\gamma$, MeV	Measurement method, detectors	Remarks
⁰Ta	G.L.Morgan et al. ORNL-TM-3702,1972 Exf. 10399002	$\frac{d^2\sigma_{prod}}{d\Omega \ dE_{\gamma}}$ in (n,x γ) reactions	0.007-20	125° 0.7-10.6	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : NaI, heavy shielding + LiH, paraffin	Fission chamber for neutrons
¹⁸¹ Ta	P.Ramakrishnan NSE,98,348,1988 Exf. 13168002		2-100	45°, 55°, 90°, 125°, 140° 0.8-25.	Meson physical facility in LANL n: TOF, fission chamber with ^{235}U γ : detectors with bismuth germanate crystals	
¹⁸¹ Ta	M.Budnar et al. NP/A, 213,525,1973 Exf. 30532049	$\frac{d \sigma_{n\gamma}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4$ He, recoil proton method γ : anticoincidence, scintillation pair spectrometer	Absolute measurements in 4π geometry
¹⁸¹ Ta	J.Voignier et al. NSE,93,43,1986 Exf. 22006066	$\frac{d^2 \sigma_{n\gamma}}{d\Omega \ dE_{\gamma}}$ and gamma-ray multiplicity	0.5-3	90 ⁰ 0.7-8	Van de Graaf n: ⁷ Li(p,n) ⁷ Be, ³ H(p,n) ³ He, TOF, BF ₃ counters γ : NaI + NaI annular, heavy shielding + paraffin + Li + B	Below $E_{\gamma} = 1.5$ MeV data taken from calculation
°W	М.В.Савин R,YFI,27,5,1979 Exf. 40533002	$\sigma_{\gamma prod} (E_n, E_{\gamma})$ in (n, x γ) reactions	1-10	125° 1-5	Linac n: TOF, stilbene detector γ : liquid scintillator detector	Absolute measurements
°W	M.Budnar et al. NP/A, 213,525,1973 Exf. 30532051	$\frac{d \sigma_{n\gamma}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4$ He, recoil proton method γ : anticoincidence, scintillation pair spectrometer	Absolute measurements in 4π geometry
⁰ W	J.K.Dickens et al. R,ORNL-4847,1973 Exf. 10353002	$\frac{d^2\sigma_{\gamma prod}}{d\Omega \ dE_{\gamma}}$ in (n,x γ) reactions	1-20	125° 0.7-10.6	ORELA n:Ta(γ ,n), TOF, scintillation detectors γ :NaI, heavy shielding + LiH, paraffin	
⁰ W	W.E.Tucker BAP,15,1667,1970 Exf. 10091003	$\frac{d\sigma_{\gamma prod}}{dE_{\gamma}}$ in (n,x\gamma) reactions	8,9,10,11	55° 0.4-6.5	Van de Graaf, tandem n: D(D,n) ³ He, T(p,n) ³ He, TOF γ: NaI(Tl), NaI(Cr), GeLi	

Nuclide	Reference	Quantities measured	Neutron energy, MeV	Energy angular characteristics of γ -radiation, φ , degrees; E γ , MeV	Measurement method, detectors	Remarks
٥W	J.Voignier et al.	$d^2\sigma_{n\gamma}$	0.5-3	90 ⁰	Van de Graaf	Below $E_{\gamma} = 1.5 \text{ MeV}$ data
l	NSE,93,43,1986 Exf. 22006067	$d\Omega \ dE_{\gamma}$		0.7-8	BF_3 counters	taken from calculation
¹⁸² W	J.Voignier et al.	and gamma-ray			γ : NaI + NaI annular, heavy shielding	
	NSE,93,43,1986	multiplicity			+ parattin + L_1 + B	
18311/	Exf. 22006068					
vv	J. Voignier et al. NSE 03 43 1086					
	Exf. 22006069					
¹⁸⁴ W	J.Voignier et al.			•		
	NSE,93,43,1986					
¹⁸⁶ W	Ext. 22000070 I Voignier et al					
	NSE,93,43,1986					
	Exf. 22006071					
'Re	J.Voignier et al.					
	NSE,95,45,1980 Exf. 22006072					
¹⁹⁰ Os	J.Voignier et al.					
	NSE,93,43,1986					
19200	Exf. 22006073					
Us	NSE.93.43.1986					
	Exf. 22006074					
¹⁹⁴ Pr	J.Voignier et al.					
	NSE,93,43,1986					
197 Au	L Voignier et al		:			
/ 14	NŞE,93,43,1986					
	Exf. 22006077					

-

Nuclide	Reference	Quantities measured	Neutron energy, MeV	Energy angular characteristics of γ -radiation, φ , degrees; $E\gamma$, MeV	Measurement method, detectors	Remarks
¹⁹⁷ Au	G.L.Morgan et al. R,ORNL-1973,1975 Exf. 10551002	$\frac{d^2\sigma_{prod}}{d\Omega \ dE_{\gamma}}$ in (n,x γ) reactions	0.2-20	125° 0.3-10.6	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : NaI, heavy shielding + LiH, paraffin	Fission chamber for neutrons
TI	J.Voignier et al. NSE,93,43,1986 Exf.22006078	$\frac{d^2\sigma_{n\gamma}}{d\Omega \ dE_{\gamma}}$ and gamma-ray multiplicity	0.5-3	90° 0.7-8	Van de Graaf n: ⁷ Li(p,n) ⁷ Be, ³ H(p,n) ³ He, TOF, BF ₃ counters γ : NaI + NaI annular, heavy shielding + paraffin + Li + B	Below $E_{\gamma} = 1.5$ MeV data taken from calculation
۹LI	M.Budnar et al. NP/A,213,525,1973 Exf. 30532053	$\frac{d \sigma_{n\gamma}}{dE_{\gamma}}$	14.1±0.6	12-24	Cockcroft-Walton accelerator n: T(d,n) ⁴ He, recoil proton method γ : anticoincidence, scintillation pair	Absolute measurements in 4π geometry
°Pb	M.Budnar et al. NP/A,213,525,1973 Exf. 30532055				spectrometer	
⁰₽b	C.T.Chapman et al. NSE,62,515,1977 Exf. 10586003	$\frac{d^2 \sigma_{\gamma prod}}{d\Omega \ dE_{\gamma}}$ in (n, x \gamma) reactions	0.6-20	125° 0.3-10.6	ORELA n: Ta(γ ,n), TOF, scintillation detectors γ : NaI, heavy shielding + LiH, paraffin	
²⁰⁸ Pb	J.K.Dickens et al. NSE,63,101,1997 Exf. 10692003	$\sigma_{y prod}$ in (n, x γ) reactions	5.4-8	55° 0.55-4.8	Pulsed Van de Graaf accelerator n: d(d,n) ¹ H, TOF γ, GeLi	
²⁰⁹ Bi	J.K.Dickens et al. NSE,63,101,1997 Exf. 10692002					
²⁰⁹ Bi	B.Joensson et al. AF,39,295,1969 Exf. 20164039	σyprod	14.7-15.5	80o 0.9-2.7	Van de Graaf n: T(d,n)⁴He, BF ₃ counters γ: Ge(Li) spectrometer	
²⁰⁹ Bi	M.Budnar et al. NP/A,213,525,1973 Exf. 30532057	$\frac{d \sigma_{ny}}{dE_{\gamma}}$ in (n, γ) reactions	14.1±0.6	12-24	Cockcroft-Walton accelerator n: $T(d,n)^4$ He, recoil proton method γ : anticoincidence, scintillation pair spectrometer	Absolute measurements in 4π geometry

Nuclide	Reference	Quantities measured	Neutron energy, MeV	Energy angular characteristics of γ -radiation, φ , degrees; E γ , MeV	Measurement method, detectors	Remarks
²⁰⁹ Bi	J.Voignier et al. NSE,93,43,1986 Exf.22006079	$\frac{d^2 \sigma_{m\gamma}}{d\Omega \ dE_{\gamma}}$ and gamma-ray multiplicity	0.5-3	90 ^o 0.7-8	Van de Graaf n: ${}^{7}Li(p,n){}^{7}Be$, ${}^{3}H(p,n){}^{3}He$, TOF, BF ₃ counters γ : NaI + NaI annular, heavy shielding + paraffin + Li + B	Below $E_{\gamma} = 1.5$ MeV data taken from calculation
²³⁸ U	J.Voignier et al. NSE,93,43,1986 Exf.22006080					

 W.E.TUCKER, P.S.BUCHANAN, T.C.MARTIN, D.O.NELLIS, G.H.WILLIAMS NEUTRON INDUCED GAMMA-RAY PRODUCTION CROSS SECTIONS FOR SILICON AND TUNGSTEN. R,DASA-2333,6907; J.BAP,15,1667,7012

R, DASA-2333, 0907; J, BAP, 13, 1007, 7012

2. J.K.DICKENS, T.A.LOVE, G.L.MORGAN
NEUTRON-INDUCED GAMMA-RAY PRODUCTION IN CALCIUM IN THE ENERGY RANGE 0.7 TO
20 MEV.
L NSE 52 277 7403; L NSE 62 515 7703; D OPNULTM 4252 7307

J,NSE,53,277,7403; J,NSE,62,515,7703; R,ORNL-TM-4252,7307

3. J.K.DICKENS, T.A.LOVE, G.L.MORGAN GAMMA-RAY PRODUCTION DUE TO NEUTRON INTERACTIONS WITH NITROGEN FOR INCIDENT NEUTRON ENERGIES BETWEEN 2.0 AND 20 MEV-TABULATED DIFFERENTIAL CROSS SECTIONS. P. OP.NL-4864, 7304: UNSE 62, 515, 7703

R,ORNL-4864,7304; J,NSE,62,515,7703

4. J.K.DICKENS, T.A.LOVE, G.L.MORGAN GAMMA-RAY PRODUCTION DUE TO NEUTRON INTERACTIONS WITH TUNGSTEN FOR INCIDENT NEUTRON ENERGIES BETWEEN 1.0 AND 20 MEV-TABULATED DIFFERENTIAL CROSS SECTIONS. R,ORNL-4847,7301; J,NSE,62,515,7703

5. J.K.DICKENS, T.A.LOVE, G.L.MORGAN GAMMA-RAY PRODUCTION DUE TO NEUTRON INTERACTIONS WITH TIN FOR INCIDENT NEUTRON ENERGIES BETWEEN 0.75 AND 20 MEV-TABULATED DIFFERENTIAL CROSS SECTIONS.

R,ORNL-TM-4406,7311; J,NSE,62,515,7703

6. J.K.DICKENS, T.A.LOVE, G.L.MORGAN GAMMA-RAY PRODUCTION FROM NEUTRON INTERACTIONS WITH SILICON FOR INCIDENT NEUTRON ENERGIES BETWEEN 1.0 AND 20 MEV-TABULATED DIFFERENTIAL CROSS SECTIONS.

J,PR/C,10,958,7408; R,ORNL-TM-4389,7312

7. J.K.DICKENS, T.A.LOVE, G.L.MORGAN GAMMA-RAY PRODUCTION DUE TO NEUTRON INTERACTIONS WITH ZINC FOR INCIDENT NEUTRON ENERGIES BETWEEN 0.85 AND 20 MEV-TABULATED DIFFERENTIAL CROSS SECTIONS. R,ORNL-TM-4464,7402; J,NSE,62,515,7703,REVIEW

8. G.L.MORGAN, T.A.LOVE, J.K.DICKENS, F.G.PEREY GAMMA-RAY PRODUCTION CROSS SECTIONS OF TANTALUM AND CARBON FOR INCIDENT NEUTRON ENERGIES BETWEEN 0.007 AND 20.0 MEV R,ORNL-TM-3702,7202; J,NSE,62,515,7703

9. J.K.DICKENS, T.A.LOVE, G.L.MORGAN GAMMA-RAY PRODUCTION DUE TO NEUTRON INTERACTIONS WITH SILVER FOR INCIDENT NEUTRON ENERGIES BETWEEN 0.3 AND 20 MEV-TABULATED DIFF. CROSS SECTIONS. R,ORNL-TM-5081,7511; J,NSE,62,515,7703

- 10. J.K. DICKENS, T.A.LOVE, G.L.MORGAN GAMMA-RAY PRODUCTION FROM NEUTRON INTERACTIONS WITH NICKEL FOR INCIDENT NEUTRON ENERGIES BETWEEN 1.0 AND 20-MEV -TABULATED DIFF. CROSS SECTIONS. R,ORNL-TM-4379,7311; J,NSE,62.515,7703 W,DICKENS,7412; W,PURSER,7312
- 11. J.K.DICKENS, T.A.LOVE, G.L.MORGAN GAMMA-RAY PRODUCTION DUE TO NEUTRON INTERACTIONS WITH FLUORINE AND LITHIUM FOR INCIDENT NEUTRON ENERGIES BETWEEN 0.55 AND 20 MEV-TAB:DIF.CROSS SECTIONS. R,ORNL-TM-4538,7404; J,NSE,62,515,7703,REVIEW

12. G.L.MORGAN, E.NEWMAN

THE AU(N,X GAMMA) REACTION CROSS SECTION FOR INCIDENT NEUTRON ENERGIES BE-TWEEN 9.2 AND 20.0 MEV.

R,ORNL-TM-4973,7508; J,NSE,62,515,7703,REVIEW

 13. J.K.DICKENS, G.L.MORGAN, E.NEWMAN THE NB(N,X GAMMA) REACTION CROSS SECTION FOR INCIDENT NEUTRON ENERGIES BE-TWEEN 0.65 AND 20.0 MEV.
P. OPNL TM 4072 7509: LNSE 62 515 7703 DEVIEW

R,ORNL-TM-4972,7509; J,NSE,62,515,7703,REV1EW

 14. G.T.CHAPMAN, G.L.MORGAN, F.G.PEREY
A RE-MEASUREMENT OF THE NEUTRON-INDUCED GAMMA-RAY PRODUCTION CROSS-SECTIONS FOR IRONIN THE ENERGY RANGE FROM 850 KEV TO 20.0 MEV.
R,ORNL-TM-5416,7607

15. G.L.MORGAN, E.NEWMAN THE CR(N,X GAMMA) REACTION CROSS SECTION FOR INCIDENT NEUTRON ENERGIES BE-TWEEN 0.2 AND 20.0 MEV. R,ORNL-TM-5098,7601; J,NSE,62,515,7703,REVIEW

- 16. J.K.DICKENS, T.A.LOVE, G.L.MORGAN GAMMA-RAY PRODUCTION DUE TO NEUTRON INTERACTIONS WITH MAGNESIUM FOR INCIDENT NEUTRON ENERGIES BETWEEN 0.8 AND 20 MEV-TABULATED DIF.CROSS SECTIONS. J,NSE,62,515,7703; R,ORNL-TM-4544,7405
- 17. G.L.MORGAN, E.NEWMAN THE MO(N,X GAMMA) REACTION CROSS SECTION FOR INCIDENT NEUTRON ENERGIES BE-TWEEN 0.2 AND 20.0 MEV. J,NSE,62.515,7703; R,ORNL-TM-5097,7512
- 18. G.T.CHAPMAN, G.L.MORGAN THE PB(N,X GAMMA) REACTION CROSS SECTION FOR INCIDENT NEUTRON ENERGIES BE-TWEEN 0.6 AND 20.0 MEV.

R,ORNL-TM-4822,7502; J,NSE,62,515,7703

19. G.L.MORGAN

THE MN(N,X GAMMA) REACTION CROSS SECTION FOR INCIDENT NEUTRON ENERGIES BE-TWEEN 0.2 AND 20.0 MEV. R,ORNL-TM-5531,7608

20. E.NEWMAN, G.L.MORGAN

THE V (N,X GAMMA) REACTION CROSS SECTION FOR INCIDENT NEUTRON ENERGIES BE-TWEEN 0.2 AND 20.0 MEV.

R,ORNL-TM-5299,7604; J,NSE,62,515,7703

21. J.K.DICKENS

NEUTRON-INDUCED GAMMA-RAY PRODUCTION IN LEAD-208 FOR INCIDENT-NEUTRON ENERGIES BETWEEN 4.9 AND 8.0 MEV AND IN BISMUTH-209 FOR AN INCIDENT-NEUTRON ENERGY OF 5.4 MEV.

J,NSE,63,101,7705

22. G.L.MORGAN, D.C.LARSON

THE TI(N,XG) REACTION CROSS SECTION FOR INCIDENT NEUTRON ENERGIES BETWEEN 0.3 AND 20.0 MEV.

R,ORNL-TM-6323,7806

23. G.L.MORGAN, G.T.CHAPMAN

THE O-16(N,X)GAMMA REACTION CROSS SECTION FOR INCIDENT NEUTRON ENERGIES BE-TWEEN 6.5 AND 20.0 MEV.

R,ORNL-5575,7909

24. D.C.LARSON, G.L.MORGAN

MEASUREMENT AND ANALYSIS OF THE NA-23(N,X-GAMMA) REACTION CROSS SECTION FOR NEUTRON ENERGIES BETWEEN 0.2 AND 20 MEV.

J.NSE,75,151,8008; R,ORNL-TM-6281,7805

25. G.L.MORGAN, F.G.PEREY CROSS SECTIONS FOR THE AL(N,XN) AND AL(N,X-GAMMA) REACTIONS BETWEEN I AND 20 MEV. J,NSE,61,337,7611; R,ORNL-TM-5241,7602 26. G.L.MORGAN CROSS SECTIONS FOR THE CU(N,XN) AN CU(N,X-GAMMA) REACTIONS BETWEEN 1 AND 20 MEV. R.ORNL.5499,7902 27. P.RAMAKRISHNAN, G.E.MITCHELL, C.R.GOULD, S.A.WENDER, G.F.AUC'HAMPAUGH PHOTON PRODUCTION CROSS SECTION FOR 181TA. J,NSE,98,348,88 28. B.JOENSSON, K.NYBERG, I.BERGOVIST HIGH RESOLUTION MEASUREMENTS OF GAMMA RAYS PRODUCED BY 15 MEV NEUTRONS. J.AF.39.295.6904 29. J.VOIGNIER, S.JOLY, G.GRENIER CAPTURE CROSS SECTIONS AND GAMMA-RAY SPECTRA FROM THE INTERACTION OF 0.5 TO 3.0 MEV NEUTRON WITH NUCLEI IN THE MASS RANGE A=63 TO 209 J.NSE,93,43,86 30. M.BUDNAR, F.CVELBAR, E.HODGSON, A.HUDOKLIN, V.IVKOVIC, A.LIKAR, M.V.MIHAILOVIC. R.MARTINCIC, M.NAJZER, A.PERDAN, M.POTOKAR, V.RAMSAK PROMPT GAMMA-RAY SPECTRA AND INTEGRATED CROSS SECTIONS FOR THE RADIATIVE CAPTURE OF 14 MEV NEUTRONS FOR 28 NATURAL TARGETS IN THE MASS REGION FROM 12 TO 208 R, INDC (YUG)-6, 7912 SUMMARY AND REVISED NUMERICAL VALUES FOR ALL MEASURED NUCLEI R, INDC(YUG)-5,7701 DETAILED DESCRIPTION OF METHOD. NUMERICAL VALUES FOR SC,Y,PR,HO SUPERSEDED J.NIM, 44, 292, 6610 SPECTROMETER DESCRIBED R,NIJS-R-470,6511 SAME AS NUCLINSTR.44.292 J,NP/A,213.525,7310 SUPERSEDED J,FIZ,5,37,73 SUPERSEDED J,FIZ/S,4,53,7212 SUPERSEDED J,FIZ/S,4,55,7212 SUPERSEDED C,72BUD, (D-21),7208 SUPERSEDED J.NP/A.158.251.7012 SUPERSEDED J,FIZ,2,41,70 SUPERSEDED J,NP/A,138,412,6911 SUPERSEDED J,NP/A,130,401,6903 SUPERSEDED J,IZV,32,1972,6812 SUPERSEDED J, BAS, 32(12), 1816, 69 ENGL. TRANSL. OF IZV. 32, 1972 R,NIJS-R-545,6810 SUPERSEDED 31. M.V.SAVIN, JU.A.KHOKHLOV, I.N.PARAMONOVA, V.A.CHIRKIN, V.N.LUDIN, N.N.ZALJALOV GAMMA-QUANTA PRODUCTION CROSS-SECTION AT THE INTERACTION OF THE FAST NEUTRONS ON THE NUCLEI OF THE CARBON, LEAD AND RHENIUM J,AE,49,(4),236,8010 GRAPHS ARE GIVEN C,75KIEV,4,191,7506 PRELIMINARY RESULTS 32. M.V.SAVIN, I.N.PARAMONOVA, V.A.CHIRKIN, V.N.LUDIN, N.N.ZALJALOV TOTAL GAMMA-EMISSION CROSS-SECTIONS AT THE FAST NEUTRONS INTERACTION WITH THE COPPER AND MOLYBDENUM NUCLEI. R,YK-4(39),17,8011 NUMERICAL DATA; C,80K1EV,2,17,8009 GRAPHS ONLY 33. M.V.SAVIN, JU.A.KHOKHLOV, I.N.PARAMONOVA, V.A.CHIRKIN, V.N.LUDIN, N.N.ZALJALOV TOTAL GAMMA-PRODUCTION CROSS-SECTION IN THE (N,X-GAMMA) REACTION ON THE

TUNGSTEN IN THE NEUTRON ENERGY RANGE 1-10 MEV

R,YFI-27,5,7911 DATA ARE GIVEN

PART 1.

ENERGY-ANGULAR GAMMA RAY DISTRIBUTIONS

• .

.

δì

94

95

PART 2.

GAMMA-RAY PRODUCTION CROSS-SECTIONS

119

Nuclear Data Section International Atomic Energy Agency P.O. Box 100 A-1400 Vienna Austria e-mail, INTERNET: SERVICES@IAEAND.IAEA.OR.AT e-mail, BITNET: RNDS@IAEA1 fax: (43-1) 20607 cable: INATOM VIENNA telex: 1-12645 atom a telephone: (43-1) 2060-21710

online: TELNET or FTP: IAEAND.IAEA.OR.AT username: IAEANDS for interactive Nuclear Data Information System username: NDSOPEN for FTP file transfer