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Translated from Russian

UDC 621.039.51

STUDY OF NEUTRON CROSS-SECTIONS AND THE α=σγ/σf VALUE FOR U-235 IN
THE 1 meV-2 eV ENERGY RANGE

Yu.V. Grigoriev, V.V. Sinitsa
Russian Federation National Research Centre - Institute for Physics

and Power Engineering, Obninsk, Russia

S.B. Borzakov, G.L. Ilchev, H. Faikov-Stanczyk* , Ts.Ts. Panteleev
Joint Institute for Nuclear Research (JINR), Dubna, Russia

N.B. Yaneva
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

STUDY OF NEUTRON CROSS-SECTIONS AND THE α=σγ/σf VALUE
FOR U-235 IN THE 1 meV-2 eV ENERGY RANGE.  The time-of-flight
and amplitude spectra of low-energy capture gamma rays and prompt fission
gamma rays were measured on the 34 m and 27 m time-of-flight bases of the
IBR-2 at the Neutron Physics Laboratory of the JINR using HPGe and
Ge(Li) detectors.  The sample-radiator was a thin metal disk of 235U (90%)
and 238U (10%), 0.25 mm thick and 48 mm in diameter.  The alpha value
was obtained from the amplitude spectra for 27 energy groups in the
1 meV-2 eV energy range, as the ratio of the measured gamma-rays yields
per capture to fission events; this was normalized to the standard alpha value
for the thermal neutron energy.

The radiative capture and fission cross-sections for 235U have been measured and
remeasured by many authors, starting in the 1940s [1-3], since this isotope is the main fuel
material in the nuclear power sector.  However, the accuracy of the nuclear physics values
obtained is still far from the level required.  We have previously studied neutron
cross-sections, the alpha value, resonance shielding effects and the Doppler effect in 235U
cross-sections in the 1 eV-20 keV energy range using fission chambers and
radiation-multiplicity spectrometry [4-6].  We have now developed an apparatus for the time-
of-flight measuring the γ-ray and amplitude spectra from absorption of neutrons by the nuclei
of fissile materials.  This means that spectroscopic methods can be used to determine  σc, σf

and α = σγ /σf over a wide energy range, including at thermal neutron energies.  The time-of-
flight measurements are now being carried out of γ-ray and amplitude spectra using neutron
beams from the IBR-2 with a view to obtaining more accurate values for the energy
dependence of the cross-sections and the alpha value.

                                                          
* Permanent address:  Lódz University, Lódz, Poland.
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Experimental technique

Measurements were carried out on the 34 m and 27 m time bases of the IBR-2 using an
HPGe detector with a volume of 80 cm3 and a Ge(Li) detector with a volume of 55 cm3.  A
mirror neutron guide was installed on the 34 m time base of beam 6, enabling research to be
carried out in the 3-70 meV range and providing a 3·106 n/cm2·s thermal neutron flux with a
minimum background of around 1% fast and delayed neutrons from the burst and satellites.
The HPGe detector was installed at a distance of 15 cm from the 235U (90%) and 238U (10%)
metallic sample-radiator which had an overall thickness of 0.25 mm and weighed 8 g.  The
germanium detector was shielded from γ-rays and neutrons in all sides with 10 cm of lead and
boron carbide blocks with paraffin wax.  The detector scanned the entire sample at an angle
of 90o.  A Ge(Li) detector was used on the 27 m time-of-flight base of beam 1.  It was not
shielded, since the neutron beam had good collimation at a distance of 15 m from the reactor
and a trap at 30 m.  The neutron flux on the sample was approximately 106 �� �2·s.  There
was no mirror neutron guide on this channel, enabling measurements to be performed over the
3 meV–2 eV energy range.  A metallic disk of uranium 48 mm in diameter was used as the
sample-radiator for the measurements in beam 6.  A PC based measurement module was used
for data acquisition over a continuous period of 24 hours; the data was then sorted into
amplitude and time spectra in different energy groups.  The time-of-flight and amplitude
instrumental spectra are shown in Figs 1 and 2.  Filters made of Cd (2 mm), In (1 mm) and
Be (20 mm) were used to measure the delayed and scattered neutron and gamma-ray
background components.  They were installed in the beam at a distance of 15 m from the
reactor.  The background levels at the thermal spectrum maximum at an energy of 0.06 eV do
not exceed 1%.  They are around 90% at 0.005 eV.  Since the reactor power is stable, the
duration of the measurement was used to monitor the beam.  The energy resolution of the
HPGe detector was 3 keV, and for the Ge(Li) detector it did not exceed 5 keV.  These detector
characteristics were sufficient to distinguish the characteristic radiative capture and fission
line.
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Fig. 1. Time-of-flight spectra for absorption of neutrons by 235U nuclei, with an open
beam and an In sample-filter in the beam.  Time channel - 32 μs.
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Fig. 2. Gamma-ray amplitude spectra for absorption of neutrons by 235U nuclei with an
open beam.  Amplitude channel - 1 keV.

Processing and results of measurements

After sorting the amplitude spectra by energy group and calculating the background
components, the areas were determined under the peaks for the 642 keV radiative capture
gamma lines (c), the (910+912+915) keV triplet, the 707 and 815 keV “fission” gamma
lines (f), the (1178+1181) and (1222+1224) keV doublets, and 1279 keV.  The areas under the
peaks were calculated by two methods: using the “Activ” program in which the peaks were
approximated with Gaussian functions, and using the “Graphica” program where the total
counts were determined at set intervals under the peaks.  It is assumed that the areas under the
γ-lines are proportional to capture and fission cross-sections (Axi = Kxi σx ϕj, where Axi is the
area of the i-��� �	
����
����������
����x = c, f), Kxi is the proportionality coefficient; x is the
partial cross-section; and ϕj is the neutron flow).  If we assume that the cross-section x within
the boundaries of the energy group j is a constant, the cross-section may be expressed in the
following form:
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As we can see from formulae (1) and (2), to determine the cross-sections and the alpha
value, we must know the spectrum of the neutron beam ϕ and the proportionality coefficients.
The proportionality coefficients can be determined from the well-known values of the alpha
value in the lower resonance region and at thermal neutron energy.  The spectrum of the
neutron beam was measured using an SNM-13 boron counter, which was permanently placed
in the beam near the sample-radiator.  Moreover, in the amplitude spectra, the gamma lines
�
��� γ = 478 keV were calculated; it was therefore possible to determine the shape of neutron
spectrum averaged with respect to the energy dependence of the (n,γ) reaction in 10B
(ε ∼1/ E ).  For the purposes of comparison with the experiment, analogous values of σc, σf

and α were calculated using the GRUKON program [7] and evaluated data from the
BROND-2, ENDF/B-VI, JENDL-3, and JEF-2 libraries.  The data calculated using
ENDF/B-VI [8] at the thermal point were used as reference values.  Table 1 and Fig. 3 give
experimental and calculated values for α.  In addition, Fig. 3 gives the experimental values
from Ref. [9], which employs a similar methodology.
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Fig. 3. Experimental and calculated values for α = σc/σf for 235U.   - Ref. [9],  - this
paper.

Table 1

Experimental and calculated alpha values for 235U

En (meV) BROND-2 ENDF/B6 α (this work)

  6.0 0.176 0.185 0.171±0.045

  8.6 0.175 0.182 0.189±0.010

12.8 0.173 0.178 0.191±0.010

20.5 0.169 0.168 0.179±0.012

32.0 0.168 0.163 0.159±0.012

55.0 0.170 0.161 0.172±0.012
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As can be seen from Fig. 3 and the Table 1, our data and the data from Ref. [9] agree
with the calculated values.  It should be noted that the data on alpha in the various libraries
differ by 1-6%.

Conclusion

In view of the importance of such constants for reactor calculations, work should
continue in this area, and other methodologies should be applied such as radiation-multiplicity
spectrometry, for example.  Clearly, the results of this study could be used to refine the
parameters for negative resonances.  This is being planned for the future.
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GAMMA-RAY PRODUCTION CROSS-SECTION AND SPECTRUM
MEASUREMENT RESULTS FOR INELASTIC INTERACTION OF
14 MeV NEUTRONS WITH NUCLEI OF Na, S, Cl, Ti, V, Cr, Ni, Zn,

Ge, Nb, Cd, In, Sn, Bi, 235U and 238U*

 Yu.Ya. Nefedov, V.I. Nagornyj, V.I. Semenov, A.K. Zhitnik, R.A. Orlov, A.E. Shmarov
Russian Federal Nuclear Centre

All-Russia Scientific Research Institute for Experimental Physics, Sarov, Russia

GAMMA-RAY PRODUCTION CROSS-SECTION AND SPECTRUM
MEASUREMENT RESULTS FOR INELASTIC INTERACTION OF
14 MeV NEUTRONS WITH NUCLEI OF Na, S, Cl, Ti, V, Cr, Ni, Zn, Ge,
Nb, Cd, In, Sn, Bi, 235U and 238U*.  The measurements were carried out in
the 0.5-14 MeV gamma-ray energy region by the time-of-flight method. An
NaI(Tl) scintillation spectrometer was used. Total and differential gamma-
ray production cross-sections were obtained for 16 nuclei. The experimental
errors measured 9% for the total cross-sections and varied from 6% to 50-
70% for the differential cross-sections.

1. Measurements

The problem of obtaining reference data on gamma-ray production cross-sections and
spectra has still not been fully resolved. This is attributable to a number of objective
experimental difficulties which from the outset have been inherent both in the measurement
technique itself and in the procedure used to obtain physical gamma-ray spectra from the
distributions obtained in experiments.

For this reason, any new experimental information always arouses considerable interest,
particularly among the specialists whose task it is to evaluate elementary gamma-ray
production cross-sections and build up a bank of reference data.  Where thermonuclear
applications are concerned, there is special interest in measurements of the gamma-ray cross-
sections and spectra produced by the interaction of 14 MeV neutrons with the nuclei of
elements used in construction materials.

This paper presents the results of new measurements of the gamma-ray cross-sections
and spectra produced by inelastic interaction of neutrons with an effective energy of

                                                          
* Work carried out with financial support from the International Science and Technology Center, project

No. 731-97.
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14.3 MeV with nuclei of Na, S, Cl, Ti, V, Cr, Ni, Zn, Ge, Nb, Cd, In, Sn, Bi, 235U and 238U.
The measurement method is based on the use of a single-crystal scintillation spectrometer
containing a large NaI(Tl) crystal, ∅ 150 x 100 mm, and the time-of-flight technique [1, 2].
The measurement procedure and the geometry, as well as the approach used to evaluate the
results, are described in detail in [3].

Disc-shaped samples of natural isotopic content, 150 mm diameter and varying in
thickness between 1.14 and 30 mm, were arranged at a distance of 200 mm from the centre of
a titanium-tritium target.  The sample mass ranged from 294.7 g for 235U to 1183.6 g for
vanadium. The Cl measurements involved the use of LiCl salt. Gamma-ray production for Li
was assumed to be negligible. NaCl salt was used for the Na measurements. The gamma-ray
production cross-sections for Cl were subtracted from the results obtained for NaCl in order to
obtain the gamma-ray production cross-sections for Na.

For the measurements involving LiCl, NaCl, S, Cr, Ge, 235U and 238U, the samples were
placed in plastic containers weighing, respectively, 47.0, 47.0, 39.0, 39.5, 29.4, 39.0 and
39.0 g.

2. Results

Table 1 shows the results for total and differential cross-sections in 15 different energy
groups.

The errors given have a 95% confidence level.  The error magnitude of the differential
cross-sections depends on the energy range. The main source of error in the data in the
0.5-1.0 MeV range is uncertainty in corrections for multiple neutron and gamma-ray scattering
in the sample, owing to the considerable uncertainties in current gamma-ray production
constants.  In future, a useful way to improve the accuracy of the results in this energy range
would be to carry out additional measurements using thin samples, which are much less
affected by multiple neutron and gamma-ray scattering.

In the high-energy part of the spectra the major source of data error is statistical error in
the experimental amplitude distributions.  Achieving greater accuracy in this energy range is
solely a matter of increasing the statistical accuracy of the source data; this can be achieved by
carrying out additional measurements on samples having a greater mass.

In the central part of the spectra, the error in the differential cross-sections shown drops
virtually to the error attributable to the method.  Accordingly, no improvements will be
possible in this area unless new and more accurate measurement methods are developed.
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EVALUATED RESONANCE PARAMETERS OF 234U

G.B. Morogovskij, L.A. Bakhanovich
Radiation Physics and Chemistry Problems Institute

Belarus National Academy of Sciences

EVALUATED RESONANCE PARAMETERS OF 234U. Multilevel Breit-
Wigner parameters were obtained for the representation of neutron cross-
sections in the 10-5–1500 eV energy range from evaluation of 234U
experimental cross-sections in the resolved resonance region. The resonance
energies and parameters of 25 previously missing resonances were
calculated.

The evaluated 234U files that are currently available, Refs 1-3, are based on the resolved
resonance region from the same source data; since the ENDF/B-VI, Ref. 1, and JEF, Ref. 2,
files coincide in this region, the Ref. 2 evaluation will not be considered further.

The ENDF/B-VI file, Ref. 1, uses the parameters of James et al., Ref. 4, to represent the
resolved resonance region;  ���� ���	�� γ = 40 meV is taken for all resonances, while the
background resonance parameters are selected in such a way as to obtain thermal cross-
sections corresponding to Ref. 5.  At the same time, in the unresolved resonance region the
���	��
 γ> = 25 meV is used.

The JENDL-3.2 file, Ref. 3, takes the same base parameters from Ref. 4 as Ref. 1;
however, for all but the first two resonances��������	������ γ is not taken to be 40 meV, as in
Ref. 4, but 26 meV
��������������������������	�� γ = 25 meV from Ref. 6, and so the neutron
widths were modified.  �������	��
 γ> = 26 meV is also used in the unresolved resonance
region. The parameters of the first two resonances were selected in such a way as to obtain
thermal cross-section and resonance integral values that coincided with the values from
Ref. 7.

Table 1 shows the average resonance parameters, thermal cross-sections and resonance
integrals for these evaluations.
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Table 1

Average resonance parameters, thermal cross-sections and resonance integrals
of 234U. Comparison of evaluations1

Value ENDF/B-VI JENDL-3.2 Present paper

 n

0 >, meV 1.0957 1.2393 0.9565


 γ>, meV 40.00 25.97 40.00
< f>, meV 0.6839 0.6525 0.5881
<D>, eV 12.6627 12.6632 10.4499

 S 0 8.7262 × 10 −5 9.8698 × 10 −5 9.2168 × 10 −5

R’, fermi 8.930 9.80 8.9358
σt, barn 115.799 119.166 110.342
σγ, barn 103.034 99.751 99.055
σf, barn 0.464 0.0062 0.300
 σn, barn 12.301 19.409 10.987

gγ 0.9969 0.9970 0.9998
Gf 0.9953 1.0112 0.9985

 Iγ, barn
(0,5-1500 eV)

654.98 626.94 627.94

If, barn
(0,5-1500 eV)

0.5589 0.7563 0.7191

1 The values in the table were obtained using the PSYCHE and INTER programs, Ref. 14.

If we compare the curve of the σt� �� ���� σf � �� ��������������� ��������� 	����� ���
evaluation parameters in Refs 1 and 3 with the σt� ���������������������	������������������
by Harvey et al. in Ref. 8 and the σf� ���������������������	��������������������������� et al.
in Refs 4 and 6, we can see that:

1) There is appreciable disparity between the total cross-section values calculated
using the parameters in Refs 1 and 3, (taking into account the experimental
conditions), and those measured in Ref. 8. This is particularly noticeable in the
25-200 eV energy interval, where the resonances in σt � �
� ��! 8, are fairly well
resolved (see Figs 2 and 3);

2) By using the σf � �� ����	�������� �����  ���� "� ���� #� �� �	����� ��� �������
resonances can be identified and their parameters obtained. (According to James,
Ref. 4, they account for about 20%.)  This enables more accurate description of
the fission cross-section curve in the resonance energy region, as well as more
accurate average resonance parameters.
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The following source data were used in the present paper to calculate a system of
resonance parameters using multilevel Breit-Wigner formalism in the 10-5-1500 eV energy
interval: 

1) The evaluated cross-section values in the 10-5-1 eV region, scattering radius, and
background resonance parameters from Ref. 9, except for the value of σ, which
was taken to be 300 mb in line with Ref. 13 (see below), and, consequently, the
values of the background resonance values of f, which should be non-zero;

2) The experimental measurements of σt(E) from Refs 8 and 10;

3) The experimental measurements of σf (E) from Refs 4, 6 and 11;

4) The starting set of resonance parameters from Ref. 4.

Thus, the present paper includes practically all the information related to the resolved
resonance region.

Since the 234U fission cross-sections in Refs 4, 6 and 11 were normalized to the
f� � 

235U of various authors, and at various energy intervals, unified normalization is needed
for parameterization taking all these studies into account.  To that end, the normalization
values of σf � ��

235U from the above papers were reduced to the values calculated in the
relevant regions from the 235U ENDF/B-VI file. The coefficients thus obtained were used to
renormalize the measurements of σf � �

 234U in Refs 4, 6 and 11.

Since calculations of resonance parameters higher than 1 eV took all the available
experimental data into account in Refs 4, 6, 8, 10 and 11, each set of measurements was given
a statistical weighting based on a comparative evaluation of the quality of the authors’ cross-
section values.  An example of a similar evaluation for the thermal energy region can be found
in Ref. 9. This kind of procedure is especially necessary when calculating the resonance
parameters for r = 5.16 eV, where 7 sets of data are used in conjunction. (In the resonance
region in question, Ref. 10 gives three sets of measurements in samples of various
thicknesses.)  It should be pointed out that the total cross-section curve and, consequently, the
radiative capture cross-section curve for this resonance, have quite a strong influence on the
value of  Iγ 

obtained from parameterization.

Average radiative widths merit discussion in their own right, especially since the
�������	����� ��� ���� �������� ������ γ to the total width of practically every resonance is a
determining factor. In Refs 4 and 6, James et al. used the values 40 and 25 meV, respectively
and this was also reflected in the evaluations in Refs 1 and 3, as noted earlier. Two sets of
�������������������������������������
 γ> = 25 ��$�����
 γ> = 40 meV were obtained from
the parameterization process. It became clear that the cross-sections generated from the set of
���������������������
 γ> = 40 meV enable more accurate reproduction of the energy curve
of all the experimentally measured cross-sections taken into account when calculating the
parameters.  In the nucleus under investigation, the link between the magnitude of Γγ and the
parameter quality (understood as the degree of coincidence of the experimental cross-sections
and the cross-sections generated from the parameters, taking into account the experimental
conditions) is particularly evident for the resonance Er = 5.16 eV which has been measured
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repeatedly (see Fig. 1). The value which we obtained for this, Γγ = 41.97 meV, is the best one
for generating all the measured cross-sections used in our evaluation.  The authors of a recent
study, Ref. 12, measured a 234U fission cross-section and obtained parameters for 10 low-lying
resonances. It is clear from the figures presented in this paper that, as a result of the authors
taking the value Γγ = 25 meV for all levels, the resonance Er = 5.16 eV, reconstructed from
parameters based on experimental conditions, is significantly narrower than the resonance
measured experimentally. Our calculations showed that the value Γγ ≈ 51 meV is required in
order to describe the fission cross-section, Ref. 12, in the region of the first resonance. The
radiative width of the background resonance, which enables the given thermal cross-section
values (see below) to be obtained, was 57.22 meV. All of the above leads us to assert that the
value <Γγ> = 40 meV is more plausible than <Γγ> ≈ 25 meV, at least for the resolved
resonance region.
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Fig. 1. Comparison of the experimental fission cross-section and the fission cross-section
calculated using the various evaluation parameters of James et al., Fig. 4, in the
5.16 eV resonance region.
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During parameterization, the resonance energies of a number of resonances from the
starting set in Fig. 4 were made more accurate and for most of them new parameter values
were obtained. In addition, 25 previously missing resonances were identified, for which
resonance energies were determined and parameters were calculated. Taking these resonances
into account helped improve agreement between the cross-sections measured experimentally
and those calculated using the parameters in our paper, and also allowed us to obtain values of
<D> and S0  fairly close to those evaluated in Ref. 4. The resonance energy and width Γγ  of
the background resonance were assumed to be the same as in Fig. 9; the neutron and fission
widths were calculated on the basis that the following conditions should be met:

1) The values obtained for σt
2200 and σn

2200 should be as close as possible to the
evaluation in Ref. 9;

2) The magnitude of σγ
2200 should, fairly accurately, coincide with the weighted

average value of σγ
2200 obtained in Ref. 9 for the Maxwellian spectrum, taking into

account the value of gγ in the present paper;

3) The magnitude σf
2200 should be close to 0.3 b.

The reasons underlying the last requirement are as follows. In the previous evaluations,
Refs 1-3 and 9, the boundary condition σf

2200<0.65 b was used.  Ref. 12 gives a value of <σf>,
evaluated by the authors according to their measurements, in the 0.013-0.038 eV range of
140±43 mb. According to the authors of Ref. 13, evaluation of the experiment in Ref. 12 gives 
σf

2200 
= 110±70 mb.  At the same time, from their own measurements the authors of Ref. 13

obtained the value σf
2200

 = 300±20 mb. Thus, there are at least two different measured values of 
σf

2200.  The evaluation of σf
2200

, carried out using a statistical method

(σf
2200 = σt

2200 < >
< >

Γ
Γ

f
), for the same 0-300 eV and 0-200 eV energy intervals as in Fig. 13,

using our value of σt
2200 and the parameters in Table 2, yields 0.26 and 0.028 b respectively,

and this was also the basis for assuming σf
2200 ≈ 300 mb.

The average resonance parameters, thermal cross-sections and resonance integrals,
calculated from the parameters given in the present paper, are shown in Table 1.  From this
Table it is clear that:

1) Use in the JENDL-3.2 evaluation of the value Γγ  = 26 meV for all resonances and
the resulting neutron width modification in Ref. 4, leads to a substantial increase
in the value of <Γn

0> and, consequently of S0;

2) The values of <Γn
0> and <Γf > obtained in the present paper are somewhat lower

than in the evaluations in Refs 1 and 3 owing to the presence of the 25 additional
resonances that were missing from the previous evaluations;
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3) The values <D> = 10.45±0.46 eV and S0  = (9.2±1.1)·10-5 of the present paper are
in good agreement with the evaluated values of James et al. in Fig. 4:
<D> = 10.6±0.5 eV and S

0 = (8.6±1.1)·10-5.

Table 2

Resonance parameters of 234U

r , eV J
n , meV γ , meV f , meV

-2.140
5.162

22.100
23.700
31.110
45.610
48.560
77.380
94.290

106.130
111.060
130.00*
146.250
152.160
176.180
182.490
187.520
191.800
208.400
220.000
226.700
237.800
245.00*
254.300
258.300
267.00*
276.500
285.20*
290.700
307.500
322.600
331.100
342.50*
349.7 00
359.100
363.500
388.100
391.000
412.600

1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2

2.53706
3.95620
0.01800
0.16000
3.11640
0.45499
2.28220
5.41940

12.09400
2.33120
7.36840
5.98370
7.96100

12.02400
20.37200

6.26150
36.12000

4.13880
8.01210
0.34100

11.11000
10.16400

2.18150
12.79800

3.61080
5.16530
5.77000
0.10164

37.20000
16.40000
57.83000
16.88000

3.42670
35.19500
42.45800

1.79820
0.79000

14.86100
8.10000

57.22
41.97
41.29
37.58
39.71
36.07
33.63
41.53
34.98
37.56
34.29
36.25
37.47
34.20
42.95
35.34
43.71
38.19
54.67
36.75
46.57
51.87
40.18
38.51
45.98
36.62
44.95
43.38
39.91
35.48
46.99
42.73
33.86
44.52
54.63
33.67
33.35
39.41
30.86

0.190584
0.029728
0.125000
0.008175
0.026764
0.091769
0.001728
0.009325
0.081775
0.221440
0.689150
0.001747
0.042453
0.026504
0.128360
0.458060
0.016608
0.004110
0.052559
0.089100
0.013614
0.012541
0.006545
0.133730
0.410290
0.005197
0.103190
0.176830
0.177000
0.150000
0.017602
0.013892
0.020400
0.245650
0.012845
0.325890
2.160000
1.006600
0.411000

437.000
440.900
455.200
463.800
465.500
488.700

1/2
1/2
1/2
1/2
1/2
1/2

5.14000
2.44000

28.41000
32.00100

6.15000
93.31000

30.81
51.99
31.91
46.66
39.02
33.40

0.040800
1.430700
2.766700
0.562010
0.187000
0.584410
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r , eV J
n , meV γ , meV f , meV

503.900
511.000
515.800
518.900
526.100
547.400
555.700
560.900
574.400
582.300
585.100
593.900
614.300
625.700
636.900
643.400
658.00*
670.900
685.600
690.000
702.100
709.100
721.50*
726.100
734.600
745.50*
757.100
764.700
766.700
780.000
788.300
800.10*
813.300
814.800
822.500

1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2

29.39600
13.10000
15.46000
17.57300
17.50200
68.50000
46.30000

8.76000
26.30000

8.83000
6.76000
2.84000
8.17000

11.10000
1.68000
7.02000

23.00000
3.46000

14.95000
10.30000
16.14000
14.30000
22.91900

5.27000
5.27000

28.60000
90.30000

265.00000
69.30000

3.30000
39.00000

3.27000
25.80000

180.00000
7.98000

35.62
28.92
53.60
45.37
50.20
36.14
41.06
42.62
37.29
46.40
45.59
33.42
48.60
42.11
27.45
39.78
28.06
36.80
35.68
44.40
37.79
41.20
39.67
39.17
41.75
36.93
41.68
31.53
48.08
42.86
49.35
41.56
41.48
45.03
47.93

0.124180
0.298500
8.042500
1.238400
0.635260
0.054988
3.220000
5.050000
1.150000
6.970000
4.248400
0.560400
0.529100
0.690000
1.814100
4.970000
0.015556
1.500000
0.083979
6.578000
0.371950
0.019834
0.047174
5.640300
0.120360
0.026117
0.062824
0.043500
0.015836
0.713180
0.260780
0.199410
0.520380
0.161080
0.367000

836.00*
846.100
855.800
858.900
866.00*
876.00*
882.200
889.100
910.00*
920.00*
931.50*
945.00*
957.800
974.000
981.800
995.00*

1011.000
1037.700
1052.400
1067.300
1073.500

1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2

3.27000
3.27000

11.70000
15.40000

3.27000
3.27000

19.40000
33.10000
74.60001

6.49000
6.49000
6.49000
6.49000

159.40000
3.97000
6.49000

74.60001
64.30000
10.70000

6.75000
42.50000

37.15
34.28
32.96
46.01
37.81
42.19
35.46
30.24
34.21
40.61
39.42
48.84
38.85
40.96
35.56
42.75
43.62
45.46
42.89
34.81
34.84

0.096057
0.125400
0.484890
0.401350
0.073884
0.070708
0.208690
0.092880
0.024194
0.040397
0.047904
0.161670
0.095807
0.240830
0.624450
0.040397
0.037735
0.114530
0.158300
0.203820
0.048288
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r , eV J
n , meV γ , meV f , meV

1086.200
1093.100
1108.600
1114.00*
1126.100
1129.600
1134.000
1151.200
1157.500
1167.100
1183.600
1195.600
1216.500
1222.400
1231.400
1248.000
1254.900
1265.00*
1272.900
1279.800

1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2

113.80000
1.43000

49.50000
22.57900

6.00000
8.90000
1.50000

22.60000
7.40000

21.80000
11.10000

8.80000
24.30000
29.60000

138.00000
31.00000
36.40000
11.10000
40.40000

4.50000

34.79
33.84
48.21
37.25
46.95
42.73
41.86
36.87
47.31
46.30
36.45
40.80
38.57
49.75
42.64
25.44
28.19
41.74
45.12
39.57

0.023603
4.632400
0.058211
0.048412
0.190640
0.101330
1.815300
0.092951
0.040185
0.094149
0.054246
0.712800
0.169130
0.518600
0.264970
0.086215
0.186430
0.111140
0.000000
0.607470

1288.700
1295.300
1318.00*
1325.600
1327.800
1341.500
1345.50*
1354.200
1362.000
1373.000
1378.000
1385.50*
1391.00*
1397.000
1409.500
1411.500
1419.00*
1436.200
1439.300
1462.90*
1470.000
1481.400
1492.200

1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2

4.40000
11.90000

4.20000
56.50000
26.80000
65.90000

4.20000
4.20000

38.10000
38.09800
13.20000
13.20000
13.17900
71.40000

126.00000
24.80000

4.19870
29.70000

110.00000
82.80000
10.60000
10.60000
41.10000

46.59
41.28
37.95
48.30
31.45
35.04
40.02
32.17
45.04
40.33
36.48
40.61
38.21
35.60
45.94
29.43
41.58
37.73
39.84
40.74
40.15
37.61
36.87

0.210710
0.012066
0.081171
0.097085
0.325250
0.062795
0.194810
0.081171
0.019864
0.018058
0.066676
0.066676
0.049279
0.056906
0.073041
0.065625
0.076642
0.062105
0.042571
0.020592
0.041097
0.110020
0.032509

*- previously missing resonance
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Fig. 2. Comparison of the 234U experimental cross-sections and the 234U cross-sections
calculated according to the parameters of various evaluations in the energy
interval 25-100 eV.
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Fig. 3. Comparison of the 234U experimental cross-sections and the 234U cross-sections
calculated according to the parameters of various evaluations in the energy
interval 100-200 eV.
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Fig. 4. Comparison of the 234U experimental fission cross-sections and the 234U  fission
cross-sections calculated according to the parameters of various evaluations in the
energy intervals 790-1010 V and 1270-1500 eV.
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The cross-sections σt (E) and σf (E) obtained using the parameters of the present paper
(Table 2) better reproduce the energy curve of the experimentally measured cross-sections
used for parameterization than the evaluations in [1, 3] and this is shown clearly in Figs 2-4.

In conclusion, it should be pointed out that the resonance parameters of the
25 previously missing resonances were determined mainly on the basis of the σf(E)
measurements in [4, 6] and so will need to be improved when new total cross-section
measurements with good resolution become available.
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DETERMINATION OF THE POTENTIAL SCATTERING PARAMETER
AND PARAMETERIZATION OF NEUTRON CROSS-SECTIONS IN
THE LOW-ENERGY REGION.  Different cross-section parameterization
methods in the low-energy region are considered.  It is shown that the
potential scattering parameter value derived from analysis of experimental
cross-section data is dependent essentially on the method used to take
account of the nearest resonances.  A formula describing this dependence is
obtained.  The results are verified by numerical model calculations.

Introduction

The potential scattering parameter is one of the characteristics of the nucleus whose
determination is given significant attention when analysing experimental data on
cross-sections in the resonance region [1].  In the various formalisms this parameter is
associated with different values:  the optical radius, the potential scattering radius R′, the
potential scattering parameter R∞ (R-matrix approach), the potential scattering phase shift ϕ
(S-matrix approach), etc.  However, all these values are interrelated and may be regarded as
one and the same parameter.

Most information on the potential scattering parameter is obtained by analysing
cross-section data in the resolved resonance region.  The problems that occur in this region are
usually related to inadequate experimental resolution, possible partial resonance overlap, the
Doppler effect, etc.

Nevertheless, however accurate the experimental data and however reliable the
knowledge of the other resonance parameters, the reconstruction of the potential scattering
parameter can be ambiguous.  The cause, as will be shown below, lies in incorrect allowance
for the contributions of the nearest resonances.  

1. Influence of the number of resonances taken into account on the calculated
cross-sections

As an example we shall examine how a difference in the numbers of resonances taken
into account affects the neutron cross-section energy dependence.  We shall confine ourselves
to a very simple case of well isolated resonances of a non-fissionable even-even nucleus,
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taking only the s-wave into account.  In this case, both S- and R-matrix formalism employ
Breit-Wigner formulae to describe the cross-section energy dependence [2-5].  Specifically,
the total cross-section and radiative capture cross-section are represented as follows:
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where k is the wave number, ϕ is the potential scattering phase shift, Eλ is the energy of the
λ-th resonance and Γλn, Γλγ, and Γλ are its neutron, radiation and total widths:  λ = Γλn �� λγ.

Total neutron cross-sections (top) and scattering cross-sections (bottom)
calculated taking into account a different number of resonances to the left and
right of E°= 2000 eV:  100_100 - one hundred resonances on each side (o);
100_2 and 2_100 - 100 resonances to the left and 2 to the right and vice
versa.  The unbroken curves in both figures represent the 2_2 situation where
2 resonances are taken into account on each side.

In the upper figure, points are used to represent the total neutron cross-sections (1a) in
the 1980-2020 eV energy range, calculated using a set of equidistant resonances with identical

radiation widths (Γ λγ = Γ γ) and reduced neutron widths (Γλn
0  = Γ n

0 ) with the following

average values:



- 31 -

Γn
0  = 0.002 eV, Γ γ = 0.1 eV, D  = 20 eV, ϕ = 0.0776. (2)

In these calculations account was taken of 200 resonances arranged symmetrically
relative to E 0  = 2000 eV (we designate this case 100_100).  The broken curves show the
results of two other calculations:  for the variant 100_2, which takes into account
100 resonances to the left of 0 and 2 resonances to the right (upper curve), and for the reverse
situation 2_100 (lower curve).  Lastly, the unbroken curve (almost coinciding with the points)
corresponds to the 2_2 case, taking into account 2 resonances on either side of 0.

As the figure shows, a difference in the numbers of resonances taken into account on the
different sides of the energy level under investigation causes a clear and systematic increase or
decrease in the total cross-sections.  A similar situation may be observed for the scattering
cross-sections σs(E) = σt(E) - σγ(E) (lower figure).

Since the resulting deviations are small, the relative changes in the σt(E) or σs(E)
cross-sections caused by these differences are not significant near the resonances, but they
become noticeable between resonances, especially at the interference minima.  Therefore,
when solving the reverse problem of determining the resonance parameters from
experimentally observed cross-sections, one might expect that such differences would have
little effect on the parameter values of the resonances themselves but could noticeably
influence the value of the phase shift ϕ to be determined.

It is interesting that, in the radiative capture cross-sections σγ(E), there are practically no
differences caused by the different numbers of resonances taken into account.

2. Cross-section parameterization in R-matrix theory

We shall use the R-matrix approximation to evaluate how the numbers of resonances
taken into account affect the potential scattering parameter value to be determined.  In formal
R-matrix theory, cross-sections are expressed as elements of the collision matrix U, which in
turn is combined with the R-matrix [4, 5].

U = ΩΡ1/2 (1-RL0)(1-RL0*)-1P-1/2Ω, (3)

where R is the matrix with the elements

∑ −
=

λ λ

λλ γγ
EE

R ba
ab ; (4)

γλc are the width amplitudes in the channel c; Ω, L0, and P are diagonal matrices with the
elements Ωc = exp(-iϕc), Lc

0  = Sc
0 +iPc and Sc

0
 = Sc-Bc; Sc and Pc are the permeability and shift

factors, and Bc is the boundary condition parameter.

In moving from the matrix of channels (1-RL0*)-1 to the matrix of levels, the elements of
matrix (3) for isolated resonances may be represented thus:
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Here

Γλc = 2 2Pc cγ λ  is the partial width of the λ-th resonance in the channel c,

Γλ= ∑
n

n
~

~λΓ is its total width, and

Δλ= ∑−
c

ccS 20
λγ is the energy shift.

For neutral particles ϕc = φc is the scattering phase on an impermeable sphere.

The summation in (4) and (5) is carried out for all levels, which is clearly not feasible in
practice.  More acceptable expressions are obtained if the R-matrix element (4) is broken
down into two parts:  a resonance part 

~
Rab containing the sum for actually observable levels,

and a background part Rab
∞  which takes into account the contributions of all remaining

resonances:

abR  = abR
~ + ∞

abR , (6)
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Expressions (3) and (5) retain their form pursuant to the formal substitution R→ ~
R ,

L0→L’, S0→S’, P→P’, ϕ→ϕ’,

where
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For l=0 P0=ρ, S0=0, φ0=ρ (here ρ=ka; a is the channel radius, it being usual to assume
that a=1.35A1/3 fm [1]; and A is mass number).  Thus, when expression (6) is broken down in
the above case of a single neutron channel and a large number of radiation channels, the
neutron cross-sections σt(E) and σγ(E), expressed via the elements of the collision matrix (5),
can be represented in the form of expression (1), where

)( ∞−= Rarctg ρρϕ , (8a)
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and Eλ  incorporate the shifts

∞≈ RρΓΔ λλ 2

1 . (8c)

In the above expressions, and below, the neutron channel indices in the designation of
the element Rnn

∞  are omitted.

Owing to their simplicity, formulae of type (1) are used widely for neutron cross-section
parameterization in the low-energy region.  However, the applicability of these formulae, and
of expression (5), is limited by the condition [4]

 nΓ << D , (9)

where Γ n  is mean neutron width, and D  the mean distance between levels.  Even if there is
only partial resonance overlap, formulae (1) and (5) can not be applied.  Thus, even in the
2_100 example looked at above, the scattering cross-section, determined as the difference
between cross-sections (1a) and (1b), is negative at the interference minima.

It should be noted that, in contrast to (1a), expression (1b) is obtained from (5) using
another approximation - disregarding of the level cross-terms when calculating the elements  ⏐
U nγ ⏐

2.  However, by using the more detailed Breit-Wigner formulae to calculate the

cross-sections, which take into account these terms [6], does not substantially alter the
situation:  in the 2_100 case, the calculated values for the total cross-section at the
interference minima are not equal to the sum of the radiative capture and scattering
cross-sections.  The reason is that the unitarity of the properties of the collision matrix (5) is
not preserved.

A more systematic multi-level R-matrix approach which does preserve unitarity has
been proposed by Reich and Moore [7].  In this approach, when selecting the boundary
condition Bc=Sc (for l=0 this is equivalent to B=0) in the above example of s-neutron
interaction with a non-fissionable even-even nucleus, the diagonal element of the collision
matrix (3) may be expressed in the form:
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and the total neutron cross-section and radiative capture cross-section are, respectively,
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where a=Re K(E) and b=Im K(E).

Although in [7] the R-matrix was not broken down into the resonance and background
components in expression (6), the approach described there enables this to be done easily.
Breaking down expression (6), for the matrix C used in our paper (zero in our example) we
must assume C=P1/2 R∞ P1/2.   R∞ being the quadratic diagonal matrix,

ijiiij RPC δ∞= .

Consequently, the diagonal element of the collision matrix takes the form:
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φ , (12)

and in the expressions for the cross-sections (11) it must be assumed that a = Re K + PR∞ .

It can be shown [8] that, within the limit set by expression (9), the multi-level
expressions given above for the cross-sections convert to the corresponding Breit-Wigner
expressions.  When calculating the cross-sections shown in the figure, multi-level
approximation yields virtually the same result as approximation of isolated resonances.

3. Evaluation of resonance contribution

An evaluation of the contribution of different numbers of resonances in expression (4)
in the equidistant resonance approximation was carried out in [9].  Here we will examine how
such an evaluation may be carried out taking into account both types of fluctuation:  both of
the width amplitudes and the inter-level distances.

Assuming that the width amplitudes are distributed normally with a zero average (for
the widths this corresponds to the Porter-Thomas distribution [10]), averaging (7) with respect
to the amplitude distribution yields:

∑ −
=

λ λ
γ

EE
R

1~ 2 , (13)

where γ 2 is the average value of the square of the width amplitude.
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Let E0 be the energy of the resonance nearest to the point E.  If we assume that it is

zero and assign positive numbers in series to the resonances situated to the right of E0 (with
energies of Eλ > E0) and negative numbers to the resonances to the left (E-μ < E0), we get

λ= 0 +∑
=

λ

1i
iD , -μ= 0 - ∑

−

−=

μ

1j
jD . (14)

Let us assume that in the summation in (13) m resonances are taken into account to the
left of E0 and n to the right.  Then

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+
++

−
= ∑

∑
∑

∑ =

=

=
−

−=

n

i
i

m

j
j dx

x
dxD

R
1

1

1

1

111~ 2

λ
λ

μ
μ

γ , (15)

where 
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EE
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When averaging (15) with respect to the distributions of the di values, it is advisable to
switch to new independent variables, namely the summations of the di values contained in this
expression.  According to the central limit theorem, regardless of the specific distribution
pattern of the di values, the sum of k such terms may be assumed to be normally distributed
with a mathematical expectation k and a dispersion kη2, where η2 is the dispersion of di.  For
the Wigner distribution [11]

η2 = 
π
4 -1 ≈ 0.273. (16)

However, here for the sake of simplicity we shall assume that the values ∑
=

=
k

i
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Cauchy distribution:
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Averaging (15) with respect to the distributions (17) and then to the possible values of x
from the (-1/2, 1/2) range yields the following:
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Assuming for the sake of specificity that m<n,
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When m=n→∞, expression (19) yields the known limit value of (4), namely R=0 [5].

Therefore, in accordance with (6), the following formula may be used to evaluate R∞
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where, according to (16), In
2 ≈ 0.546 n.

Since In
2  is linearly dependent on n, in most cases the second terms in the numerator

and denominator in (20) may be disregarded in favour of the quadratic first terms.  Then
expression (20) equates to the formula we obtained earlier in our formula for approximation
of equidistant resonances [9].
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4. Numerical verification

The following calculations were performed to verify the formulae obtained.  In a process
similar to that used to construct the graphs in the upper figure, the total neutron cross-sections

( )σ t iE0  of an arbitrary nucleus (A=200) were calculated for 160 equidistant values of Ei in the

1980-2020 eV energy range using formulae (1) and (8).  Apart from the two resonances shown
in the figure, a further 99 resonances on either side of the energy range in question were taken
into account.  Their energies and the squares of their neutron width amplitudes were obtained
using the Monte Carlo method.  The general procedure for this is described in detail in [12].
It was assumed that inter-level distances had a Wigner distribution and the reduced neutron
widths a Porter-Thomas distribution.  The radiation widths were assumed not to fluctuate: Γλγ
= γΓ .  For the mean resonance parameter values, the set in (2) was used, with R∞=0.

The values obtained for ( )σ t iE0  were assigned 1% error levels; these cross-sections

were then treated as if they were experimental.  The advantage of such model cross-sections
as compared with actual experimental data for any specific nucleus is that we have an a priori
accurate knowledge of all the required resonance parameters, thus avoiding further
uncertainties.

As before, in each variant of the calculation different numbers of resonances were
assigned to the left and right of E0 (these numbers are given in the first column of the table).
Using the least squares method, the value of R∞ was varied to fit the calculated cross-sections

to the “experimental” cross-sections ( )σ t iE0 .  The R∞ values obtained in this manner are

given in the fourth column of the table.  The second and third columns of the table give the
values calculated using formulae (20) and (21).

In practice, another parameter is often used instead of R∞, namely the potential
scattering radius R′=a (1-R∞) [1].  Accordingly, in the fifth column of the table, alongside the
values obtained for R∞, the corresponding values for R′ are given; the sixth column gives the
phase shift values ϕ (8a).  The error levels given in brackets were obtained exclusively using
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the least squares method and do not incorporate fluctuation errors due to the
limitations on the number of resonances taken into account [5, 13].  As the table shows, on the
whole the calculated values of R∞ are fully consistent with those determined using (20) or
(21).  

Potential scattering parameter obtained taking into account different numbers of resonances to
the left and right of the energy interval under investigation

Calculation R∞ R’, fm ϕ
variant evaluation using

(20)
evaluation using

(21)
numerical
calculation

100_100    0.78·10-6    0.0   0.76(46)·10-5 7.89(1) 0.0776
2_2    0.0010    0.0  -0.0022(15) 7.91(1) 0.0777(1)
1_1    0.0026    0.0  -0.0044(33) 7.93(3) 0.0779(3)
1_5  - 0.0330  - 0.0375  -0.037(2) 8.19(2) 0.0805(2)
5_1    0.0358    0.0375   0.023(1) 7.71(1) 0.0757(1)

   1_100  - 0.116  - 0.121  -0.156(4) 9.13(3) 0.0897(3)
   100_1    0.118    0.121   0.120(2) 6.95(2) 0.0683(2)
       1_2000  - 0.202  - 0.207  -0.228(5) 9.69(4) 0.0953(4)

The calculations also showed that differences in the numbers of resonances taken into
account have little effect when determining other resonance parameters.  For example, at the
1% accuracy level assigned to the “experimental” cross-sections, for both the 100_1 and
1_100 case, the neutron widths of the two resonances shown in the figure are reproduced with
a minimum accuracy of 3%.

5. Discussion and conclusions

The numerical calculations also confirm the other important conclusions which may be
drawn from formulae (20) and (21).  Thus, the potential scattering parameter may be
determined correctly not only within the limit m=n→∞, but even where there are small but
equal numbers of resonances (m=n) on either side of the energy under investigation, if the
local strength functions are identical.  Conversely, if these numbers are not equal, errors
inevitably arise.

According to (20) or (21), if the relationship between m and n changes from m<<n to
m>>n, the parameter R∞ may, in principle, change from −∞ to +∞, which corresponds to a
change in the phase in (8a) over the whole period from ρ−π/2 to ρ+π/2.  Naturally, a spread of
this kind is unlikely in practice, although sometimes such errors can be significant.  Usually,
when studying neutron cross-sections in the very low energy region (e.g. thermal), there are a
large number of known resonances in the higher energy side but no information is available on
resonances on the lower energy side.  This situation does not change significantly even when
one, two or three negative levels are introduced, with a view to achieving a better description
of the cross-sections of a series of nuclei [1].

Finally, we would note that, although in this paper we have used a very simple case of
s-neutron interaction with an even-even nucleus as an example, the results obtained are also
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valid for the general case of non-zero spin and an arbitrary partial wave, since each
system of resonances J π  with a specific moment J and parity π may be studied independently.
Clearly, these conclusions are also valid for overlapping resonances.

This work was carried out with support from the International Atomic Energy Agency.

References

[1] S.F. Mughabghab, Neutron Cross Sections, Acad. Press Inc. (1987).
[2] R.L. Kapur, R.E. Peierls, Proc. Roy. Soc., 1938, V. A166, p. 277.
[3] D.B. Adler, F.T. Adler, Proceedings Conference on Breeding in Fast Reactors, Argonne,

ANL-6792 (1963) p. 695.
[4] A.M. Lane, R.G. Thomas, Rev. Mod. Phys., V. 30, No. 2 (1958) p. 257.
[5] J.E. Lynn, The Theory of Neutron Resonance Reactions, Oxford, Clarendon Press

(1968).
[6] P.F. Rose, C.L. Dunford, ENDF-6 Formats Manual, IAEA-NDS-76 (1992).
[7] C.W. Reich, M.S. Moore, Phys. Rev., V. 111 (1958) p. 929.
[8] G.M. Novoselov, V.M. Kolomiets, Voprosy atomnoj nauki i tekhniki, Ser.: Yadernye

konstanty, No. 5 (44) (1981) p. 10.
[9] G.M. Novoselov, L.L. Litvinskij, Yadernaya fizika, V. 60, No. 4 (1997) p. 1.
[10] C.E. Porter, R.G. Thomas, Phys. Rev., V. 104 (1956) p. 483.
[11] E.P. Wigner, Proceedings Conference on Applied Mathematics, Toronto, 1959, Univ.

Toronto Press (1959) p. 174.
[12] G.M. Novoselov, V.P. Vertebnij, Preprint KIYaI-77-9, Kiev (1977).
[13] G.M. Novoselov, Yadernaya fizika, V. 58, No. 1 (1995) p. 21.



- 39 -

01-10118 (121) [5]
Translated from Russian

UDC 539.173.8

NEUTRON AND γ-EMISSION FROM FISSION FRAGMENTS

O.T. Grudzevich
Institute of Nuclear Power Engineering, Obninsk, Russia

NEUTRON AND γ-EMISSION FROM FISSION FRAGMENTS. The
statistical model of nuclear reactions is applied to describe the fission
fragment neutron and gamma emission characteristics for spontaneous
fission of 252Cf and fission of 235U by thermal neutrons. Averaged excitation
energies of fission fragments were obtained from experimental neutron
multiplicities. The observable characteristics of an emission are reproduced
in a wide range of complementary fragments’ total kinetic energies and
fragment masses. Observed averaged spins are also reproduced.  The
fractional independent isomeric yield calculation method, based on the
gamma-cascade model, is used to describe experimental data for the
235U(nth,f) and 238U(α,f) reactions. The influence on the calculated isomeric
yields of two opposing assumptions regarding the nuclear population spin
distributions - one based on the rotational degrees of freedom and one on the
internal degrees of freedom of completely accelerated fragments - is
investigated.

Because of the complexity of the fission of atomic nuclei, owing to the fundamental
redistribution of charge and mass and the formation of highly deformed and highly excited
fragments, a detailed description of the dynamics and mechanism of this process has not yet
been produced. In this context, the use of consistent theoretical models to describe the fission
characteristics identified is a step forward towards a unified fission theory.  Such models have
been used successfully in research into the properties of other reactions.

In this paper we have chosen to study the pre-neutron fission fragment formation
processes and de-excitation (discharge) of such fragments through neutron and gamma
emission. It seems obvious that fragment discharge must be statistical in nature, since the
fission process itself passes through the compound nucleus stage. Consequently, use of the
statistical model of nuclear reactions [1-3] seems an entirely logical step, though it is complex
from a practical point of view.

The observable characteristics of excited fragment discharge are derived by averaging
with respect to many variables - charges, masses, excitation levels, kinetic energies, total
angular momenta, etc. Therein lies the complexity of describing these characteristics in terms
of a theory, since a large number of parameters are included in the calculations. The situation
is made more complex by the fact that the nuclei which comprise the fission products are, as a
rule, only formed during this process and their properties are not well known.
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In order to apply the statistical model of nuclear reactions successfully to describe the
properties of fission fragments, we must answer one basic question: what is the distribution of
the excitation energies and the total angular momentum of these fragments? Once this
distribution is known, and the difficulties caused by the undeterminacy of the parameters of
nuclei with surplus neutrons have been overcome, virtually any of the observable
characteristics of fission fragment discharge can be calculated, i.e. neutron and γ-ray spectra
and multiplicities, isomeric ratios and even nucleus yields.

By studying the formation process for the isomeric states of fission fragments of atomic
nuclei, we can obtain information on the formation mechanism and the total angular
momentum values of the fragments. The practical aspect of this research lies in the fact that, at
the current stage of development of nuclear power, when we are faced with the task of
creating a new generation of reactors with increased reliability, and research is being done into
the possibility of reprocessing and destroying radioactive waste from reactors now in
operation, we need more detailed and reliable data on the activity levels and composition of
spent fuel.

In this paper, a theoretical approach which has been used successfully to calculate
isomers in various reactions [4-7] and γ-ray spectra from fragments produced by spontaneous
fission of 252Cf [8] is used to calculate the isomer yields for fission fragments from the
235U(nth,f) and 238U(α,f) reactions. In order to test the feasibility of using the statistical model
of nuclear reactions to calculate the emission properties of fission fragments, experimental
data on γ-ray and neutron emission from fission fragments over a wide range of total kinetic
energies and masses were analysed, the mean excitation energies of primary fragments were
obtained and the energy balance of those energies checked.

1. THEORETICAL MODEL

The statistical model of nuclear reactions in Hauser-Feshbach-Moldauer formalism
[1-2] and its generalization for γ-decay of excited nuclei - the cascade-evaporation model [3] -
are used successfully for theoretical analysis of γ-ray and particle emission, and of isomeric
level yields in various nuclear reactions [4-8]. Use of the statistical model of nuclear reactions
and the cascade-evaporation model to describe processes related to emission from fission
fragments is hampered by a number of circumstances. The most important ones are as
follows:

1. Since the total kinetic energy of a pair of additional fragments varies within the
range 140-220 MeV, the excitation energies of the fragments may vary from 0 to
50� ��� The distribution of excitation energies between additional fragments is
not known;

2. A major change in the excitation energies must cause significant changes in the
population distributions for the total angular momenta, and the mechanism by
which these are generated in fragments is not well known;
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3. The reproduction in the calculations of the observable mean fission characteristics
requires the inclusion of a large number of nuclei in the calculations.
Consequently, special libraries of source data need to be created, different from
the data libraries used to calculate other reactions.

The number of γ-rays (multiplicity) Sγ(Z,A,U,εγ)dεγ with energy εγ in the energy range
from εγ to εγ+dεγ emitted by the nucleus (Z,A) at the excitation energy U is calculated using
the cascade-evaporation model. The number of γ-ray, emitted by fragments in the mass
number range from A1 to A2, per single fission event, can be calculated using the formula

� � � � � � � � � �� �
� � �

�

�

�

γ γ γ γ γ γε ε ε ε� � � � � � � � �= ⋅ ⋅∫∑
�

, (1)

where Yi is the independent yield of the fragment (Z,A) up to emission of neutrons, f(U) is the
primary population distribution function for the excitation energy. The summation is
performed for all the fragments in the specified mass range. The value obtained from
formula (1) we will call the γ-ray spectrum. A similar expression can be used to calculate
neutron spectra.

The total number of γ-rays μ and neutrons ν, emitted by fragments with mass A is
calculated by integrating the corresponding multiplicities and subsequent summation with
weighing of independent yields for all nuclei with the given mass number:
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The basic equation of the statistical model of nuclear reactions are well known and are
implemented in many computer programs as a standard procedure (GNASH [9],
STAPRE [10]). Thus it is not necessary to give the basic formulae here. We will merely point
out that the results of emission spectrum calculations using the statistical model of nuclear
reactions are determined by two model functionals: the level density of excited nuclei in the
entrance and exit channels of the reaction and the penetrabilities for particles and γ-quanta.
The level density is calculated using the version in [11] of the generalized superfluid nucleus
model with parameters from the specially created LDPL-98 library, which contains asymptotic
parameters for the level density a, shell corrections δW, corrections for even-odd differences
δ, energies of quadrupole phonons ϖ2+, and schemes of discrete excitation levels for almost
two thousand nuclei. The penetrability coefficients for neutrons are calculated using an optical
model of the nucleus with the set of global optical potential parameters in [12].
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Source data for calculations

LDPL-98 LIBRARY. Theoretical calculations of fission fragment disintegration taking
into account the laws of conservation of total angular momentum and parity are very
laborious, since a large amount of source data is needed, primarily on the excitation
characteristics: level density and discrete level schemes. The situation is complicated by the
fact that the fragments are neutron-excess nuclei for which, as a rule, no experimental
information on the neutron resonance density is available.

A lot of work has been done by an international expert group which, under the aegis of
the IAEA, has set up a library of source data for theoretical calculations of nuclear reaction
cross-sections [13]. Unfortunately, this library is devoted only to nuclei for which information
on the neutron resonance density is available, and the recommended data file on discrete
levels prepared from the file in [14] contains a number of fundamental and technical errors.

In order to calculate the cross-sections and spectra generated by transformations of
nuclei far from the stability line, a new version of the LDPL-98 library of discrete level
schemes and level density parameters containing information on two thousand nuclei. When
setting up the library, the advantages of the generalized superfluid nucleus model, which takes
into account shell, collective and superfluid effects, became fully apparent. In the generalized
superfluid nucleus model variant in [11], it is assumed that four values are needed to calculate
the level densities: a - the asymptotic level density parameter, δ - the effective correction for
even-odd differences, δW - the shell correction and ω2+ - the quadrupole phonon energy, which
may be assumed to be identical with the energy of the first level where Jπ=2+ for even-even
slightly deformed nuclei. The latter two values are determined from experimental data not
related to the level density. The shell corrections are calculated using the liquid drop model of
the nucleus, employing experimental nucleus masses. The effective correction for even-odd
differences in the level density is determined by fitting the calculated dependencies of the
number of levels on the excitation energy to experimental data on discrete levels. Here we can
see the advantages of the generalized superfluid nucleus model. On the one hand, the value to
be obtained is slightly dependent on the assumed value of the asymptotic level density
parameter and the discrete level schemes available can be used in those cases where no data
on the neutron resonance density is available. On the other hand, the values obtained are
satisfactorily described the simple systematics in [11] and, for nuclei, where we have no
discrete level scheme or it is insufficiently reliable, these systematics may be used. The second
generalized superfluid nucleus model parameter is satisfactorily systematized by the
dependency ã = 0.073A+0.115A2/3, and we may expect that the estimate of this value will be
satisfactory for nuclei on which no experimental data on the level density is available and for
which it is unlikely such data will become available in the near future. The reliability of the
LDPL-98 fission fragment data is discussed below.

RADIATION STRENGTH FUNCTIONS. For the majority of fission fragments no
experimental photoabsorption cross-sections are available and in calculations the systematics
of the parameters of the giant dipole resonance have to be used. The available data on the
energies Er, widths Γr and maximum cross-sections σr [15]; derived from a description of
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experimental data on photoabsorption cross-sections using the Lorentz formula, are shown in
Fig. 1. These parameters are satisfactorily described by the formulae:

σr = 0.085 · A5/3 , mb
Er = 51/A1/4 , MeV (3)
Γr = 6.1 – 0.012 · A, MeV.

Resonance splitting for highly deformed nuclei was not taken into account when
obtaining these formulae. The available data can clearly be described using the simple
equations in expression (3), with an accuracy of at least 50%. Thus, the strength functions in
the 10-20 MeV energy may be calculated with approximately the same level of accuracy using
expression (3).

The discharge of excited nuclei produces a large quantity of soft (εγ = 1-3 MeV) photons
and we must extrapolate the strength functions obtained for the giant resonance region
(10-20 MeV) to this energy region. The estimates yielded by the various methods for
calculating fE1 for low energies may differ by orders of magnitude, even when the same giant
dipole resonance parameters are used. The peculiarity of the KMF-PT method proposed in
[16] is that the parameter T is selected in such a way as to reproduce the maximum values of
fE1 observed in the characteristics of the transitions between discrete levels. It is assumed that
it is precisely the most intensive transitions which generate the spectra observed in the
reactions. The reasons for the existence of a distinct “step” in the maximum values of the
observable strength functions at Eγ < 2 MeV, which differ according to the nature of the nuclei
(superallowed transitions) [16], remains uncertain.

The distributions of the experimental strength functions of the dipole transitions
obtained in [16] using the data from [17] for various mass number ranges are shown in Fig. 2.
For all emitter nuclei mass ranges and both types of transition, there is a clear upper limit for
the values of fE,M1 - the superallowed dipole transitions. Transitions with different mean
strength function logarithms also occur - a peculiar splitting of the distribution which grows as
the mass number increases. The statistically significant values of fE,M1 lie within the range
10-15-10-8 MeV-3. In this case, any form of averaging of the gigantic differences leads to a
situation where the average values <fE,M1> are close to the maximum values f E,M1

max .  In this

article, we will use the KMF-PT method which describes the observable f E1
max  values.

2. NEUTRON EMISSION

Neutron spectra are clearly reproduced in the statistical model of nuclear reactions if the
reaction passes through a compound nucleus, i.e. there are no links between the entrance and
exit channels of the reaction, apart from those links that are determined by the laws of
conservation of energy, total angular momentum and parity. From this point of view, we may
assume that the formation process for fragments and the generation of their properties fully
meets the requirements for application of the statistical model of nuclear reactions.
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In normal nuclear reactions (such as (n...α,xn)), the excitation energy of the
neutron-emitting nucleus is determined with great accuracy. In fission, the excitation energies
of fragments may have a wide range of values from 0 to 50 MeV. Therefore, the first step in
using the statistical model of nuclear reactions is therefore to determine the mean excitation
energies of the fragments.

EXCITATION ENERGIES OF FRAGMENTS. Information on the excitation energies
of fission fragments prior to neutron emission may be derived from data on the mean numbers
of neutrons, assuming that the neutrons are emitted by fully accelerated and formed fission
product nuclei [8]. The reliability of the data obtained using such an approach is determined
by the fact that the number of neutrons is unambiguously dependent on the excitation energy
of a given nucleus. In order to demonstrate typical dependences of the number of neutrons
emitted ν on the excitation energy of the nucleus U, nuclei were selected corresponding to the
fission fragments of 252Cf with the largest (121Cd) and smallest (130Sn) multiplicities of
neutrons, and the maximum yield (140Xe) and a value of ν corresponding to the ν(U)
dependence plateau (Fig. 3). The maximum error in determining the excitation energy may be
2-3 MeV and is due to the fact that the ν(U) dependence contains plateaux for the values ν=1
(Fig. 3). Indeed Fig. 3 shows that, if the number of neutrons is equal to 1, then the inaccuracy
in the derived excitation energy is 2-3 MeV. This inaccuracy will drop if, in the procedure, we
use the dependence not for one nucleus, but an averaged dependence for several fragments.

For four fissile systems - fission of 233,235U and 239Pu nuclei by thermal neutrons and
spontaneous fission of 252Cf, the probabilities of emission of different numbers of neutrons by
fission fragments at excitations of up to 80 MeV were calculated. Calculations were carried
out for product nuclei with A=70-160 with yields of at least 0.1 of the maximum yield of
fragments with a specific mass. Source data from the LDPL-98 level density parameter library
were used. The distributions of the yields of fragments of a particular mass and charge Y(Z,A)
were calculated using the model in [18] based on experimental data. The dependence
ν(Z,A,U) were averaged with weighting of yields and then, by comparing the calculated
values of ν(A,U) and the experimental values of <ν(A)> [18-20], the values of <U> were
determined. Fig. 4 shows the mean fission fragment excitation energies obtained and the mean
neutron multiplicities used [18-20] relative to the fragment masses. Clearly, the sawtooth
structure of <ν(A)> must be and is repeated in the dependences <U(A)>. It is important to
emphasize that the experimental values of <ν(A)> are often insufficiently accurate. Thus, for
example, for 252Cf in the region A = 120 the accuracy is 15%, and for 235U in the mass region
A=115-125 the variation in the data given by different authors is 40% [18].

The dependences of the derived mean excitation energies of fragments with different
masses on the mean number of neutrons are shown in Fig. 5. In addition, data from [21] for
the various total kinetic energies of the fragments are used. It should be noted that, in seven
cases, the <U>(ν) dependences obtained are very similar. Moreover, they can all be described
using the formula:

245 νν ++>=<U . (4)
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The non-linearity of function (4) shows that the mean energy removed by the neutrons
increases as their number grows as the residual nucleus approaches the stability line. In
subsequent calculations, the mean energies obtained for fragments with specific masses at
mean total kinetic energies were used, and the mean square deviation of the Gaussian
distribution was assumed to be  equal to 5 MeV, based on the fact that the dispersion of full
kinetic energies is approximately 10-12 MeV and the width of the distribution has a slight
influence on the derived mean excitation energies.

ENERGY BALANCE. The procedure for deriving the mean excitation energies of
fragments does not take into account the fission energy balance; therefore the results may be
verified by comparing the values of the total mean energies of additional fragments
<U(AL,AH)> = <U(AL)>+<U(AH)> with the free energy TXE(AL,AH) calculated as follows:

),(),(),( HLHLHL AATKEAAQAATXE −= , (5)

where Q is the reaction energy, TKE is the total kinetic energy, and AL and AH are the masses
of the light and heavy fragments respectively. In the calculations experimental values for
TKE(AL,AH) from [19, 22] were used and nucleus binding energies from [23]. The
comparison of <U(AL,AH)> and TXE(AL,AH) is shown in Fig. 6 for fission of 252Cf and 235U
nuclei. The satisfactory level of agreement of the values shows, firstly, that the procedure for
deriving the mean excitation energies of fragments does not contradict the law of conservation
of energy and, secondly, that the free fission energy is almost completely converted into the
excitation energy of the fragments. The fact that TXE(AL,AH) is about 10� ���	igher than
<U(AL,AH)> for 235U in the mass-symmetric fission region may be explained by the
considerable inaccuracies in <νexp.>.

The verification of the energy balance would be incomplete if we did not break down
the energy received by the fragments into the components removed by neutrons and γ-rays. On
the one hand, the widely held assumption that the γ-ray energy Eγ constitutes approximately
half the neutron binding energy Eγ ≈ Bn/2 may be verified and, on the other hand, the method
in [8] for deriving the mean excitation energies of fragments may be verified once again.

Using multidimensional calculation matrices for the neutron spectrum Sn(Z,A,U,εn) and
the γ-ray spectrum Sγ(Z,A,U,εγ), we can obtain theoretical values for any of the observable
characteristics of fragments [8]. In particular, the energy removed by neutrons and γ-rays may
be calculated as follows:
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where the mean energies (<εn> and <εγ>) and multiplicities (ν and μ) are obtained from the
corresponding spectra.

Thus, comparing <U(A)> with (En+Eγ ) and Eγ calc.�
��	� �
γ exp. we can demonstrate that,
in the approach used, all the energy emission channels are in fact correctly taken into account.
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Fig. 7 compares the fragment excitation energies with the energy removed by neutrons and
γ-rays for fragments in the four fissile systems. Clearly, the balance of the energy received by
the fragments during fission and the energy removed during the discharge of these fragments
is maintained, as was to be expected. A few comparatively small discrepancies may be
explained by the fact that the energy balance is checked using mean values.

The γ-rays emitted by fission fragments remove up to 50% of the excitation energy
(Fig. 7), and therefore it is very important to check that the description of the radiation
discharge channel in the theoretical model is correct. The experimental mean γ-ray energies in
[24, 25] are compared with the calculated values in Fig. 8 for fragments generated by fission
of 235U and 239Pu nuclei by thermal neutrons. A satisfactory level of agreement is achieved
between Eγ calc. and Eγ exp., although the structure in Eγ exp.� �� ��� ���� ����������� ��� �	�
calculation. Curiously, Eγ  constitutes between 20 and 90% of the neutron binding energy.

LEVEL DENSITY. The derived values of <U(A)> are dependent on the parameters of
the models used to calculate the neutron and γ-spectra, primarily on the level density
parameters. Where the neutron spectra in the calculations are poorly reproduced, the values of
the mean excitation energies will be heavily distorted. Consequently, it is both important and
interesting to verify the description of the fission fragment neutron spectra. The nuclear
reactions calculated using the statistical model and employing the parameters from the
LDPL-98 library [8] are compared with the experimental neutron spectra [26], in Fig. 9. The
satisfactory level of agreement between the spectra indicates that the data in the LDPL-98
library are correct and that the statistical model of nuclear reactions may be used successfully
to describe the emission properties of fission fragments.

The LDPL-98 parameters may be indirectly verified by comparing them with the
empirical values obtained from the neutron spectra in [19, 26] (Fig. 10). The most convincing
evidence of the predictive capabilities of the level density model in [11] used to create the
LDPL-98 library is the detailed reproduction of the shell structure for fragments with A=130.
The shortcomings of the method for deriving the level density parameters used in [19, 26]
should be noted. Firstly, data are obtained for the neutron-emitting nuclei, whereas it is well
known that the spectra are determined by the parameters of the residual nuclei; secondly, a
procedure exists for deriving the absolute value of the level density from the emission
spectra [27], but it was not used; and thirdly, in the expression U=at2 used to obtain the
parameter “a” the temperature “t” does not correspond to the value derived from the spectra
using the Le Couteur-Lang equations [28].

NEUTRON MULTIPLICITIES. The correlations between the excitation energies were
obtained for the mean values of the total kinetic energies of pairs of additional fragments.
Since experimental data on νexp.(TKE,A) are available [19, 20, 29], we can verify these
correlations over a wider excitation range. Since the TXE(AL,AH) values are the sum of the
excitation energies of two fragments, the distribution of this energy between the fragments
will influence the calculated dependences νcalc.(TKE,A). In the calculations, the excitation
energy for a given fragment is taken to be equal to:
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i.e. proportional to the correlation obtained above for the mean kinetic energies. The
experimental [19] and calculated values of ν(TKE,A) are compared in Fig. 11 for six pairs of
additional fragments generated by spontaneous fission of 252Cf, four light fragments and
mass-symmetrical fission. The level of agreement between the νexp.(TKE,A) and νcalc.(TKE,A)
dependences is suitably convincing over a wide range of total kinetic energies. The excitation
energies of individual fragments also vary in the range from 0 to 40 MeV. Some discrepancies
in the absolute values are due to differences in TXE and <U> (see Fig. 6). A similar
comparison of the data from [29] with the calculation results for 235U is shown in Fig. 12.
Since the data in [20] were used to derive the mean energies and the νexp.(TKE,A) values are
taken from [29], the calculated dependences had to be renormalized to take account of the
differences in <ν> in Refs [20] and [29]. For six pairs of additional fragments generated by
fission of 235U by thermal neutrons, agreement was achieved between the calculated and
experimental values of ν(TKE,A) over a wide range of total kinetic energies (150-190� ���
and fragment masses (90-146) (Fig. 12). We may therefore conclude that, in the vast majority
of cases, fission fragments emit neutrons while in a state of equilibrium deformation. The
sharp reduction in the νexp.(TKE,A) values at TKE< ~150� �������� 11), shows that, for some
reason, the fragments receive less excitation.

Given the satisfactory description of the neutron spectra and multiplicities, and the high
level of agreement of the level density parameters for fragments with A≈130, the almost
twofold divergence in mean neutron energies <εn> for masses ranging from 125 to 135 is
unexpected (Fig. 13). In this connection, the experimental values of <εn>≈1.5-1.8 ��� ��
emitter nuclei excitation energies of 5-7 MeV seem unjustifiably large. For fragments with
other masses, the level of agreement of <εn>exp. and <εn>calc. is entirely acceptable.

THERMODYNAMIC EQUILIBRIUM. If we know the mean excitation energies of
additional fragments, we can verify the energy condition for splitting of a fissile nucleus, i.e.
answer the question as to what proportion of the free fission energy is passed on to a given
fragment and/or in what proportions this energy is divided between additional fragments. The
thermodynamic equilibrium condition is often used to answer this question, i.e. the fact that
the temperatures of the light tL and heavy tH fragments is the same at the point of splitting.
From this condition it follows that the excitation energy of a given fragment will be equal to:

)/1/( ,,, HLLHHL aaUU += , (8)

where U is the total excitation energy of the additional fragments and a is the level density
parameter. Since in the level density model in [11] the parameter a is dependent on the
excitation energy, an iterative procedure was used to solve equation (8).

Fig. 14 compares the “true” excitation energies of fragments (Fig. 6) and the values
obtained using expression (8), with U=<U(AL,AH)>, for the four fissile systems. The
distributions of the UL,H values are similar to the <U(A)> distributions because the level
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density parameters are dependent on the excitation energy and shell corrections. As was to be
expected, using formula (8) for spontaneous fission is not acceptable because the fissile
nucleus is in the ground state. For induced fission the results are incomparably better, despite
the fact that the excitation energy of the compound nucleus attributable to a single fragment
(3-4� �������������s a small part of its total excitation energy.

3. γ-RAY EMISSION

The first peculiarity of the experimental γ-ray spectra of fragments generated by
spontaneous fission of 252Cf, which is discussed in detail in [30], is the major difference in the
shape of the spectrum for fragments with A=126-136 from the shape of the spectra for
fragments with other masses (Figs 15 and 16). Indeed, in the spectra of fragments in the
vicinity of the doubly-magic nucleus 132Sn there is a significant surplus of γ-rays with energies
in the 3-8 ��������� An explanation of this fact is given in [19], based on an analysis of
neutron spectra, from which it appears that the level density parameters of nuclei in the
vicinity of the doubly-magic nucleus 132Sn have a clearly defined shell structure (see Fig. 10).
The second characteristic feature of the measured spectra is the essential similarity in the
shape of the spectra of heavy and light fragments (Fig. 17), apparently caused by the fact that
the radiation source is ambiguously identified in the measurements [30].

In this paper we are primarily interested in the level of agreement of the slope of the
experimental γ-spectra [30] and the calculated spectra, which were obtained using two
methods for calculating the strength functions of electric dipole transitions - the KMF-PT
method and Lorentz dependence method. Figs 15 and 16 compare the results spectrum
calculations employing experimental data from [30] for various mass ranges of heavy and
additional light fragments. Clearly, the change in the method for calculating the strength
functions yields a more acceptable level of agreement in the slopes of the spectra, especially
for heavy fragments. The most representative changes are those for the A=126-130, 142-146,
138-142 and 146-150 ranges. It is noteworthy that, for the A=126-130 and 130-134 ranges in
the vicinity of the doubly-magic fragment, with no extra effort, the surplus of γ-rays with
energies of 3-8� ������
���������������

Taking into account the aforementioned peculiarity of the measurement method, we will
conduct our subsequent analysis by comparing the data for additional fragments with the
corresponding calculated spectra obtained as mean values with weighting of yields of heavy
and light fragments (Fig. 17). In this comparison, there is an additional uncertainty caused by
possible differences in the observable and calculated dependences of the γ-ray multiplicities
on the fragment mass, in other words uncertainties in the normalization coefficients for the
calculated spectra. Fig. 17 shows that a satisfactory description has been achieved for the
observable γ-spectra for all fragment masses in the Eγ≥1� ���������������� What differences
there are may easily be eliminated by varying the normalization coefficients for the calculated
spectra of the additional fragments, since the required shapes are to be found in the
components comprising the total spectra (see Figs 15 and 16).

It should be noted that, for all cases (Figs 15 to 17), the calculated spectra are always
lower than the experimental values at low radiation energies Eγ<1� ��� If, despite the
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complex dependence of the detector efficiency on the energy in this range, the experimental
data are accurate, analysis of the divergences may provide interesting information on the
properties of excited states of fission fragments. For example, we will be able to evaluate the
contribution of the rotational degrees of freedom to formation of the initial fragment spins,
since the most natural explanation for the observed divergences may be the failure to take
account in the calculations of the enhanced probability of γ-decay during transitions between
members of rotational bands. In this connection, it would be useful to increase the mass
resolution of the spectra in [30]. Fig. 18 shows the effect of the method for calculating fE1 on
the calculated γ-spectra for the fission of 235U by thermal neutrons. The γ-ray emitted by
fragments with masses of A=80-160 were taken into account in the calculations.  Clearly, the
description of the experimental data in [31] is significantly improved by using the KMF-PT
method [16], which is therefore used in the calculations. The reasons for and possible ways of
eliminating the discrepancies in the calculated and experimental spectra for the energies
Eγ ≤ 1� ����������������������������in connection with the situation shown in Fig. 19.

γ-RAY MULTIPLICITIES.  The experimental γ-ray multiplicities μexp. in [24, 25]
relative to fragment mass have a “sawtooth” structure similar to the dependence <ν(A)>
(Fig. 19). The calculations do not reproduce this dependence. The reason for the discrepancies
may be that, in the calculations, the radiation mechanism, for the transitions between the
members of rotational bands of excited nuclei was not taken into account. A qualitative
corroboration of this assumption may be the characteristic rise in the number of γ-rays emitted
as we move further away from the spherical fragment with A=130 towards the deformed
fragments with A=140-150 (Fig. 19).

Let us continue our analysis of the possible reasons for the discrepancies between the
calculations and the experiment by comparing the energies removed by γ-rays relative to the
total kinetic energy of pairs of additional fragments. In the calculations, the excitation energy
of a fragment was correlated with the total kinetic energy of the pair in the same way as for
neutrons, i.e. using formula (7). Figs 20 and 21 compare the experimental data in [24, 32] and
the calculated data for fragments of various masses in two fission systems. The calculated
dependences Eγ(A,TKE) have a characteristic wave-form structure caused by the fact that the
opening and subsequent increase in strength of the neutron channel as the excitation energy of
the emitter nucleus increases (reduction in TKE) causes a decrease in strength in the radiation
discharge channel. The dependencies Eγ calc.(A,TKE) were not averaged with respect to the
distributions of the total kinetic energies and therefore the structure in these functions emerges
very clearly. The averaging process will smooth Eγ calc.(A,TKE) and facilitate a more
representative comparison of the experimental and calculated dependences. Nevertheless, a
number of conclusions may be drawn. Despite the divergences in the experimental and
calculated multiplicities, the total γ-ray energies for a pair of additional fragments are
sufficiently well reproduced for fission of 235U by thermal neutrons (Fig. 20). The picture is
different for spontaneous fission of 252Cf (Fig. 21): there are several pairs of fragments
(A=108, 111, 114, 117) where the slope of the calculated curve contradicts the experimental
data. These discrepancies may have the same origin as the differences in the γ-ray spectra in
the soft portion (Figs 15-18) and the differences in the mean γ-ray multiplicities (Fig. 19).
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Thus, the description of the observable characteristics of fission fragment emission
properties using the statistical model of nuclear reactions, shows that the model reproduces
the experimental data over a wide range of total kinetic energies and fragment masses. The
next stage of this investigation of the emission properties of fragments using the statistical
model of nuclear reactions and cascade-evaporation model is to study the population of the
isomeric levels of fragments.

4. ISOMERIC RATIOS

Currently, the method in [35] is used to calculate the isomeric ratios of independent
yields [33, 34]; this method is based on the assumption that the population distribution of an
isomeric nucleus with respect to the total angular momentum J is proportional to the spin
distribution of the density of excited levels:
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where σ2 is the spin dependence parameter. According to [35], population of the isomeric state
occurs via a number of γ-transitions the probability of which is determined by the level density
of the final states. It is also assumed that the parameter σ is not dependent on the excitation
energy and there is no energy dependence of the radiation strength functions. The method was
verified using experimental isomeric ratios for the radiative capture of thermal and resonance
neutrons, and isomeric ratios for the (γ,n) reaction in several nuclei. By varying within
reasonable limits the number of γ-rays μ emitted to populate the isomeric state and the value of
the parameter σ, an acceptable description was produced of the data available at that time for
28 nuclei in the (n,γ) reaction. The situation in photonuclear reactions is different. For
example, to describe the experimental data for the 115In(γ,n) reaction, we had to assume that

∞→σ .

The physical basis of the method in [35] is the assumption that the isomeric ratio is
formed by the cascade of γ-rays during decay of the isomeric nucleus. This assumption is
confirmed by analysis of the isomeric cross-sections of many reactions [4-7]. For example,
even for the (n,γ) reaction with 14� �V neutrons, direct population of the isomer by a neutron
emission is insignificant, i.e. the main contribution to the isomeric ratio comes from
γ-cascades which remove the remaining excitation after emission of a neutron [6]. However,
the shape of the distribution population prior to the γ-emission which leads to formation of the
isomer may differ significantly from expression (9), if the states of the isomeric nucleus are
formed by neutron emission and if the compound nucleus has high excitation levels. In this
case, the derived parameter σ will be overestimated, as demonstrated in [35]. Since the fission
fragments prior to neutron emission may have significantly high (up to 50� ���� ����������
levels, use of the method in [35] to analyse the isomeric ratios of independent yields would
not be appropriate.

The most consistent method of calculation for isomer formation cross-sections and
isomeric ratios is by using the statistical model of nuclear reactions and the
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cascade-evaporation model [1-3], as has been demonstrated in a large number of papers. An
acceptable description of the experimental data can be obtained for a wide spectrum of
incident particles (from photons to alpha-particles), a wide range of nucleus mass numbers
(from 20 to 240) and a wide range of energies (from thermal to 40� ���� However, this
approach has formerly not been used for the isomers formed during the fission process owing
to additional complexities and uncertainties of the initial conditions, caused by the
peculiarities of the fission process. Since the mean excitation energies of fragments have been
established above and the library of source parameters has been tested, there are no limitations
in principle on the use of the statistical model of nuclear reactions and the cascade-
evaporation model.

FRAGMENT ISOMER POPULATION MECHANISM. A specific state of a fission
product nucleus according to the cascade-evaporation model may be populated in the
following manners: 1. - during the fission process the fragment is in this state (cold fission);
2. - following neutron emission; and/or 3. - following a γ-ray cascade. Applying this
assumption regarding the isomer population mechanism, the isomeric ratios of independent
yields for the nucleus (Z,A) may be calculated using the formula:
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=
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where Yi is the independent yield of the fragment (Z,A+i) emitting i neutrons; Pi is the
probability of emitting this number of neutrons; and ri is the isomeric ratio for emission of
i neutrons. The summation in expression (10) is performed from zero neutrons (isomeric
nucleus formed actually during fission) up to a certain number of neutrons n, following whose
emission an isomeric nucleus is formed. Thus, (n+1) fission product nuclei are involved in the
formation of the isomeric state. Averaging is carried out with respect to the excitation energy
of the corresponding primary fragments taking into account the distribution function f(U).
Apart from the distribution of the excitation energies, the original distribution of the fragment
level populations must be specified with respect to the total angular momentum J when
calculating Pi and ri.

Fig. 22 shows the dependences of the values in formula (10) on the excitation energy of
the corresponding nucleus during emission of a varying number of prompt neutrons leading to
the formation of an isomer in the nucleus 123Sn.  Since the metastable state of the 123Sn
nucleus is low-spin (Jπ=3/2+), an increase in excitation energy causes a decrease in the
probability of population of this state in all 123Sn formation channels following emission of
neutrons (ν=1-4) and γ-rays (ν=0). Multiplying the function r(U) by P(U) produces “bell-
shaped” functions with almost identical maxima. Finally, if we take into account the
dependence Y(A+i), we obtain numerator terms in expression (10) which make it necessary to
take account of emission of 4 or 5 neutrons in the calculations even where <U>=10-15 MeV.
Thus, population of the isomer occurs for several channels with comparable probabilities. If
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we assume that isomers can also be formed following the emission of delayed neutrons, then
the calculations become so complex that further research would be required to perform them.

MEAN FRAGMENT SPINS. Use of the statistical model of nuclear reactions, taking
into account the laws of conservation of total angular momentum and parity to calculate the
emission properties of fission fragments requires a knowledge of the spin distributions of their
populations W0(U,J) before the emission of neutrons, i.e. of their mean spin values <J> and
shape of the dependence W0(U,J). In other words, when applying the statistical model of
nuclear reactions consistently we must specify the dependence of the fission barrier
penetrabilities on the orbital momentum of the relative movement of fragments at the time the
fissile nucleus Tf(l) is split. This question, which is of secondary importance when calculating
the emission spectra of fragments [8], becomes one of the most important when calculating
isomeric ratios. If, as is clear from [36], the value Tf(l) is not dependent on the orbital
momentum 1, then the dependence of the initial populations of fragments on the total
momentum will take the form:

),()12(~),( JUJJUWo ρ+ . (11)

The assumption in expression (11) may be verified using existing data on the mean
spins <J> of fission fragments [37] (Fig. 23). Although the results in [37] are not purely
experimental (the results of calculations of the mean momenta “removed” by neutrons and
γ-rays were also used to produce them), they are sufficiently informative for  the purposes of
comparison, since the main part of the mean spin value was obtained by experiment. The
calculation values of <J> in Fig. 23 were obtained using the assumption in expression (11)
and the mean excitation energies of primary fragments discussed in connection with Figs 4-6,
and two limit values for the moment of inertia of nuclei F - these correspond to the solid-state
Frig and semi-solid state Frig/2 moments. Clearly, the data in [37] lie within the limits of the
corridor defined by the calculation results. Consequently, use of the assumption in
expression (11) in the calculations results in a satisfactory level of agreement between the
calculated mean spins of primary fragments and the observable values.

POPULATION DISTRIBUTION WITH RESPECT TO SPIN. For the mean fragment
spins, it is impossible to verify the correctness of the assumption regarding the shape of the
dependence (11) on J, since different dependences may yield identical values of <J>. A broad
distribution of (11) may occur if primarily the single-particle levels of a fragment are
populated and they are linked to the collective levels of the rotational bands. In the opposite
case, i.e. if nuclear fission causes population of the collective levels and there is no link
between different kinds of level, the distribution of Wo(U,J) will take the form:

)(),( ><−= JJJUWo δ , (12)

where <J> is determined using (11) or from observed values, and δ is the Dirac delta function.
Fig. 23 shows that the mean fragment spins are better reproduced by calculation for F=Frig/2,
and therefore this variant will be used henceforth together with the assumption in
expression (12).
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The data in [38, 39] on the mean angular momenta of the rotational bands of fragments
generated by spontaneous fission of 252Cf, which were obtained by analysing γ-transitions, are
useful for verifying the assumptions in expressions (11) and (12).

The mean spins of fragments with mass A following emission of a specific number of
neutrons ν are dependent on the excitation energy of the primary fragment as:
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where Wν is the population of the nucleus following emission of ν neutrons. Integrating the
dependence Jν(U) with respect to the excitation energy of the primary nucleus with weighting
of the distribution function with respect to the energy f(U) and the emission probability of a
given number of neutrons Pν(U), yields the following mean fragment spin:
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Fig. 24 shows the mean spins of the nuclei 102Zr, 104Mo and 144Ba - spontaneous fission
fragments of 252Cf formed following neutron emission. The mean spin values calculated using
the assumption in expression (11) are significantly higher than the experimental values, even
taking into account experimental error and inaccuracies in the main parameter of the model
exerting the strongest influence on the calculated values of <J> - the moment of inertia of the
nucleus. In this case it is clear that an anomalously low moment of inertia of the nucleus
would be required to fit the values to <J>exp. On the other hand, use of the assumption in
expression (12) yielded a satisfactory level of agreement with the experimental data in
[38, 39]. Thus, the data on the mean total angular momenta of fission fragments shows that
the spin distribution in expression (12) of the populations of primary fragments is preferable
for low-energy fission.

ISOMERIC RATIOS. Experimental data on the isomeric ratios of independent yields
for fission of 235U by thermal neutrons [34] are available for 48 isomeric pairs of fragment
nuclei with A=79-148. The main characteristics of the isomeric levels of the nuclei studied are
shown in the table. It is important to note that the characteristics of the isomeric levels are not
unique, i.e. the difference in the spins of the ground and metastable levels comprises, as a rule,
several units � . Therefore, at first glance, describing the isomeric ratios of independent yields
for these levels should not cause significant difficulties [4-6]. The exception is the three
isomeric levels of the nuclei 120,122,130In which have high spins.

Fig. 25 compares the calculated (using the assumption in expression (11)) and
experimental [34] isomeric ratios of independent yields.  It is striking that the calculated ratios
are consistently higher for levels with high spin and consistently lower for levels with low
spin, irrespective of whether the level in question is ground or metastable. Attempts to change
the nucleus parameters (for example, changing the spin distribution parameter corresponding
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to the solid-state moment of inertia to a value corresponding to the semi-solid-state moment of
inertia), or changing the method for calculating the radiation strength functions, bring about
only insignificant changes in Fig. 25 but do not alter the overall picture.

Figs 26 and 27 compare the experimental isomeric ratios of independent yields and the
isomeric ratios calculated using the two limit assumptions in expression (11) and (12)
regarding the population distributions of primary fragments with respect to the total angular
momentum. Clearly, expression (12) yields a significantly better description of the
experimental data, which has not been possible using other methods for all nuclei
simultaneously. Of course, a number of discrepancies still remain even using expression (12);
and to eliminate these we may need to improve the description of the spectra (Figs 15-18) for
soft γ-rays and/or refine the discrete level schemes of isomeric fission fragment nuclei.

The fragment spin formation conditions during the fission process and their subsequent
modification during Coulomb acceleration of the fragments may differ for different fissile
systems, for example in thermal neutron fission and α-particle fission. In the first instance, the
excitation energy of the compound nucleus is 5-6 MeV, while in the second case it may be
several tens of MeV. Obviously, if the distribution in expression (12) predominates in the
(nth,f) reaction, the contribution of (11) must be greater in (α,f). This can be confirmed by
analysing the energy dependences of the isomeric ratios of independent yields from the latter
reaction. Fig. 28 shows experimental data on the isomeric ratios of eight nuclei, relative to
their average mean energies <U>, obtained taking into account multichance fission and
neutron emission [40]. The figure also shows the results of calculations using the two
assumptions concerning the spin distribution of primary fragment populations in expressions
(11) and (12). Clearly, the observed isomeric ratios of independent yields usually lie within
the corridor defined by the calculated lines. As might have been anticipated, at low fragment
excitation energies the “rotational” distribution (12) predominates and at high levels the
“thermal” distribution (11). This conclusion is also confirmed by the data for the 235U(nth,f)
reaction analysed from the point of view of fragment excitation energy (Fig. 29). In fact, the
greatest influence on the calculation results of substituting distribution (11) by (12), bringing
them closer to the experimental data, is observed at <U>=6-10� �� � �	�� ��!������� ������	
less at <U>=14-20� ���

The fission fragment spin formation mechanism may therefore consist of two processes.
Rotational movement of a fragment after splitting of the fissile nucleus and internal movement
of fragment nucleons. During the acceleration process, when the potential deformation energy
is converted into internal energy, the initial mono-distribution (12) “blurs” to distribution (11),
owing to the density of the internal non-collective movement types.

The author would like to thank the organizers and participants of the seminar on “The
time-scale and dynamics of fission-fusion process in heavy and super-heavy nuclei” held at
the Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dubna.
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Conclusion

The statistical model of nuclear reactions and the cascade-evaporation model for decay
of excited nuclei are used in this paper to analyse the emission properties and isomeric ratios
of fission fragments. In order to justify this approach the mean excitation energies of
fragments relative to fragment mass were obtained from experimental data on the mean
neutron multiplicities and verified with respect to the energy balance. The observable
emission spectra from fragments of differing masses were reproduced by calculating the
spectra from emitter nuclei at excitation energies equal to the mean fragment energies
obtained. The experimental dependences of the neutron and γ-ray multiplicities on the total
kinetic energy of additional fragments were modelled by dividing the total free fission energy
between the fragments in proportion to the derived mean excitation energies. The mean
fragment spin, calculated for the mean excitation energies assuming fission barrier
penetrability is not dependent on the orbital angular momentum agreed with the analogous
values derived from the experimental data. Two opposing assumptions regarding the nature of
the distribution of the total angular momenta of fragments after full acceleration were
analysed: a “rotational” distribution and a distribution corresponding to single-particle
movement. It was shown that the assumption regarding the spin distribution of primary
fragment populations is one of the key factors influencing the isomeric ratios of independent
yields. When describing the observable isomeric ratios, it proved necessary to introduce the
assumption that a component with a fixed total angular momentum value may be present in
the spin distribution of primary fragment populations.
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Fig. 21. As for Fig. 20, but for 252Cf fission fragments. Experimental data from [32].
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distribution in expression (12).
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Fig. 27. Distribution of the divergences in the relations of the experimental and calculated
isomeric ratios of independent yields for 235U thermal neutron fission fragments.
Thick line - results of calculations using the assumption in expression (12);
thin line - results of calculations using the assumption in expression (11).
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Fig. 28. Data on the isomeric ratios of the product nuclei from the reaction 238U(α,f) (o),
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thick lines - using the assumption in expression (12); thin lines - using the
assumption in expression (11).
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Fig. 29. As for Fig. 26, but relative to the mean fragment excitation energy.

Characteristics of the isomeric levels of 235U thermal neutron fission product nuclei whose
isomeric ratios are measured in [34]. The spins and parities J  of the ground and metastable

levels and the energy of the metastable level Em are shown

No. nucleus Jg
π Jm

π Em, MeV No. nucleus Jg
π Jm

π Em, MeV
1 79Ge 1/2- 7/2+ 0.188 2 81Ge 9/2+ 1/2+ 0.679
3 82As 1+ 5- 0.022 4 83Se 9/2+ 1/2- 0.231
5 84Br 5- 2- 0.048 6 90Rb 1- 4- 0.107
7 99Nb 9/2+ 1/2- 0.367 8 113Ag 1/2- 7/2+ 0.046
9 115Ag 1/2- 7/2+ 0.043 10 116Ag 2- 5+ 0.083

11 117Ag 1/2- 7/2+ 0.022 12 118Ag 1+ 5+ 0.130
13 119Cd 1/2+ 11/2- 0.149 14 120Ag 5+ 0+ 0.205
15 121Cd 1/2+ 11/2+ 0.149 16 123Cd 3/2+ 11/2+ 0.149
17 123In 9/2+ 1/2- 0.322 18 123Sn 11/2- 3/2+ 0.027
19 124In 3+ 8- 0.192 20 125In 9/2+ 1/2- 0.182
21 126In 6+ 3+ 0.152 22 127In 9/2+ 1/2- 0.162
23 127Sn 11/2- 3/2+ 0.070 24 128In 2+ 7- 0.192
25 128Sn 0+ 7+ 2.093 26 128Sb 8- 5+ 0.107
27 129In 9/2+ 1/2- 0.200 28 129Sn 3/2+ 11/2- 0.037
29 130Sn 0+ 7- 1.949 30 130Sb 8- 5+ 0.0220
31 132Sb 4+ 8- 0.022 32 133Te 3/2+ 11/2- 0.336
33 133I 7/2+ 19/2+ 1.636 34 133Xe 3/2+ 11/2- 0.235
35 134Sb 0- 7- 0.020 36 134I 4+ 8- 0.318
37 135Xe 3/2+ 11/2- 0.529 38 136I 2- 6- 0.642
39 138Cs 3- 6- 0.082 40 146La 2- 6- 0.022
41 148Pr 1- 6- 0.092 42 148Pm 1- 6- 0.140
43 120In 1+ 3+ 0.200 44 120In 1+ 8- 0.302
45 122In 1+ 4+ 0.102 46 122In 1+ 8- 0.222
47 130In 1- 10- 0.052 48 130In 1- 5+ 0.402
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SEMIMICROSCOPIC TREATMENT OF NUCLEAR FISSION
BARRIERS. The model is proposed to calculate the fission barriers of heavy
nuclei with account of their possible dependence on excitation energy. The
model is based on the shell correction method for calculation of potential
energy of deformation with nuclear shape parameterization in the lemniscate
coordinates.

The development of reliable fission barrier systematics is one of the main points in the
development of fission cross-section systematics itself especially in the fields where
calculated results cannot be compared with experiments directly. Besides, the well-known
semiempirical systematics of fission barriers [1] includes only range of traditional nuclei at
low excitation energy while the development of new nuclear accelerator-driven systems
(ADS) requires to expand the systematics in order to include neutron deficient nuclei with
sufficiently high excitations.

The Strutinsky method [2] of shell correction was used as a base for the new
systematics. The necessary single-particle level schemes were calculated with the DIANA
code [3]. The calculation of smooth “liquid drop” part of deformation energy is based on the
improved Yukawa potential (Yukawa-plus-exponential model [4]).

We used Cassini ovaloids as a basis for the description of nuclear shape defined in the
lemniscate coordinates [5]. The deviations of nuclear shapes from the basic figures which
define high deformation modes are described by coefficients at corresponding Legendre
polynomials. So, the configuration of the fissioning system is defined by the following
parameter set:

{αf} = (A, Z, ε, [αm], T), (1)

where A, Z are mass and charge numbers, ε is the deformation of the basic figure, [αm] are
coefficients at polynomials and T is the temperature of the fissioning nucleus.

The transformation of the (R,x) point in the lemniscate coordinate system to the
cylindrical coordinates is as follows:

r = 2-1/2 [R4 + 2 S R2 (2x2 –1) + S2)1/2 – R2(2x2 – 1) – S]1/2,
(2)

z = 2-1/2 sign(x) [R4 + 2 S R2 (2x2 –1) + S2)1/2 + R2(2x2 – 1) + S]1/2,
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and Pm are Legendre polynomials.

In this model the parameter ε can be considered as a fission coordinate. At ε=0
(and [αm]=0) the nucleus has the spherical shape. At 0<ε<0.4 the shape is close to an
ellipsoidal one. At 0.5<ε<1 the neck arises and develops and at ε=1 the neck radius is equal 0,
i.e. nucleus is divided in two fragments:

S = ε R0
2 , R0 = r0 A

1/3. (4)

It is commonly used to restrict the set of deformation parameters by degree N=4. Then
the coefficient α1 defines fragment mass asymmetry, α2 is correlated with ε and can be
omitted, α3 defines octupole deformation and α4 defines hexadecapole deformations.

The different fission stages for 240Pu are presented in Fig. 1 vs. parameter ε where ε
varies in the diapason 0-1 with step 0.1 and α1= 0.06, α3= 0 and α4= 0.016. This set of
parameters corresponds to the formation of pair fragments 100Y and 140Cs.

Fig. 1. Different 240Pu fission stages.

The potential energy of deformation at the ground state in the shell correction method
has the following form:

E=Ec ul+Enuc+δUn+ δUp + Epn + Epp, (5)

where E� �� is the coulomb energy of the charged liquid drop, Enuc is the nuclear part (surface
energy), δUn, δUp and Epn, Epp are shell corrections and pairing energies for neutrons and
protons correspondingly.
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The shell corrections as well as the pairing energies have been calculated on the base of
single-particle spectra obtained by means of the DIANA code in the deformed Woods-Saxon
well V({αf}).

According [4] the value of coulomb energy for axially symmetrical and uniformly
charged the liquid drop can be presented by the integral:

(6)
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where ρ is the charge density, F(a,b) and E(a,b) are the complete elliptical integrals of the first
and second kinds, correspondingly, and the value of the parameters a and b are defined by
equations:
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The nuclear part of energy in the Yukawa+exponential model [4] has the following
form:
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where σ=[r2(z) + r2(z’) – 2 r(z) r(z’) cos(φ) +z2 + z’2 – 2 z z’]1/2;
cs is the effective constant of surface energy, cs =as[1-ks (N-Z)2/(N+Z)2];
as is the constant of surface energy (as = 21.7 MeV);
ks is the constant of isospin asymmetry (ks = 3.0);
a is the radius of improved Yukawa potential (a = 0.65 fm);
r0 is the nuclear radius constant (r0 = 1.18 fm).

The example of deformation energy calculation is shown in Fig. 2 where the curves of
potential energy and its components for fission of 240Pu are presented as follows: liquid drop
part Elq (Elq = Ecoul + Enuc), shell correction Esc (Esc = δUn + δUp) and pairing energy Ep (Ep =
Epn and Epp) as a function of parameter ε. The heights of fission barriers are shown in the
same Figure.
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Fig. 2. Deformation energy E and its components Elq, Esc and Ep for 240Pu fission vs.
deformation and fission barriers Bf1 and Bf2.

The parabolic approximation near maximums was used for the evaluation of fission
barriers Bf1 and Bf2 as well as to estimate barriers curvatures as a second derivative of
deformation energy E at the barrier top (C) which is necessary for the calculation of
frequencies ω:

ω = k BC /  , (9)

B = 3m/(4π) r0
2 A5/3 /2, (10)

where k is the fitting coefficient, B is the hydrodynamic mass parameter and m is the
nucleon mass.

The potential energy E at each stage of fission has to be minimal on all deformation
parameters [αm]. For the definition of the optimal set of these parameters, the effective routine
of the multidimensional optimization has been developed which is based on the complex
algorithm [6]. However, in practice, there is no possibility to achieve the satisfactory
agreement between calculated fission barriers with known semiempirical systematics [1]. The
possible reason of this disadvantage may be due to the used shape parameterization which is
the main problem in the description of the fission evolution.

Such a circumstance forces to use some parameterization of deformation parameters in
the ground state of fissioning nucleus {αm} by some smooth functions which depend in their
turn on the mass and the charge numbers of nucleus or fissility parameter Z2/A. The example
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of barriers behavior as functions of α1, α4 fixed along fission path is presented in Fig. 3 (A,B)
for the case of 240Pu.

The coefficient α1 is connected with the formation of the fragment mass distribution. In
the actinide region the peak of the mass distribution of the heavy fragments is situated around
AH ≈ 140 a.e.m. and the asymmetry parameter can be fixed (from 0.12 up to 0.05 for transition
from Th to Cf). It is seen in Fig. 3 that the variation of α4 coefficient from –0.05 up to 0.1
leads to the monotonous increase of the heights for both barriers Bf1 and Bf2.

Other important values which define barriers heights are surface energy parameter CS

and coulomb radius R0 (Fig. 3 C,D).
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Fig. 3. The fission barriers heights vs. deformation parameters α1, α2, α3, α4 and
parameters CS, R0.

We used the parameters Cs and α4 as fitting parameters to construct the systematics. In
order to check the possible odd-even effects, the actinide region has been divided in three
groups: even group 232Th, 234Th, 236U, 240U, 240Pu, 244Pu, 250Cm; odd-even group 229Th, 233Th,
235U, 239U, 239Pu, 243Pu, 245Cm, 249Cm, 253Cf; even-odd group 232Pa, 234Np, 236Np, 238Np,
240Am, 242Am, 244Am, 250Bk; and odd-odd group of nuclides 231Pa, 235Np, 239Np, 243Am,
247Am, 249Bk. These nuclides uniformly cover the tables of the known fission barrier
systematics.

We defined the optimal set of parameters Cs and α4 from the condition of the best
concurrence with Back systematics [1]. The analysis of the results has not revealed any odd-
even staggering in the behavior of parameters. Such a circumstance allow to use the same
functions Cs(N,Z) and α4(N,Z) for the whole table. The values of parameters obtained from
fitting as well as their parameterization are presented in Table 1. The quality of these
parameterizations is sufficiently high – the deviations from data obtained with fitting on
barrier systematic are less than 2%.
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Table 1

Values of Cs and α4 and their (N,Z) dependencies

Nuclides Cs α4 Nuclides Cs α4

Th232 17.65 0.055 Cf253 18.9 -0.065
Th234 17.3 0.08 Pa232 18.01 0.046
U236 17.9 0.04 Np234 18.41 0.029
U240 17.55 0.035 Np236 18.15 0.029
Pu240 18.25 0.02 Np238 18.15 0.024
Pu244 17.85 0 Am240 18.24 0.022
Cm250 18 -0.035 Am242 18 0.015
Th229 17.85 0.06 Am244 17.91 0.005
Th233 17.4 0.065 Bk250 18.49 -0.035
U235 17.85 0.048 Pa231 18.07 0.05
U239 17.35 0.07 Np235 18.29 0.033
Pu239 18.05 0.04 Np239 17.9 0.024
Pu243 17.9 0.01 Am243 18.03 0.008
Cm245 18 0.005 Am247 17.97 -0.006
Cm249 17.95 -0.026 Bk249 18.29 -0.024

Cs = 20.54 (1 – 2.58 (N-Z)2/A2) – 6.72 + 0.185 Z2/A
α4 = 1.162 – 0.0036 Z – 0.0033 A

The obtained function Cs(N,Z) now contains two terms: the first one is close to the
function used in [4] (21.7-3(N-Z)2/A2); the appearance of the coulomb parameter Z2/A in the
second term is probably connected to the necessity to improve the coulomb part of the Nix
and Sierk model [4]. The hexadecopole deformation falls as mass number of nuclide growths
and values of α4 are close to the commonly used ones (see, for example [6]).

The comparison of the calculated barriers with values given by Back values [1] is
presented in Table 2 and Fig. 4. The quite satisfactory results have been obtained as it can be
seen in the presented data.
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Table 2

The heights of Bf1 and Bf2 and the values of hω1, hω2 (MeV)

Bf1 (calc.) Bf1 (Back) hω1(calc.) hω1 (Back) Bf2 (calc.) Bf2 (Back) hω2(calc.) hω2 (Back)
Th229 6.82 (6.02) 0.89 (0.9) 7.21 6.30±0.20 0.49 -
Th230 6.33 - 0.88 - 6.7 6.5±0.3 0.52 -
Th231 6.37 (6.02) 0.9 (0.9) 6.76 6.22±0.20 0.55 0.52±0.10
Th232 5.89 <5.50 0.88 - 6.34 6.15±0.20 0.58 0.50±0.10
Th233 5.91 (6.02) 0.91 (0.9) 6.38 6.28±0.20 0.63 0.45±0.10
Th234 5.51 6.15±0.20 0.88 1.00±0.10 6.06 6.52±0.20 0.66 0.75±0.10
Pa231 6.64 5.75±0.30 0.9 (0.8) 6.64 5.85±0.30 0.56 (0.45)
Pa232 6.67 5.75±0.30 0.91 (0.6) 6.76 6.10±0.30 0.6 (0.45)
Pa233 6.22 5.85±0.30 0.9 (0.8) 6.34 6.00±0.30 0.63 (0.4)
U232 6.2 5.54±0.20 0.86 0.80±0.10 5.99 5.45±0.20 0.58 0.55±0.10
U234 5.97 6.20±0.25 0.88 1.00±0.10 5.81 5.95±0.25 0.64 0.65±0.10
U235 6.17 6.10±0.30 0.93 (0.85) 5.91 5.65±0.30 0.68 (0.5)
U236 5.81 5.70±0.20 0.9 0.90±0.10 5.69 5.68±0.20 0.7 0.50±0.10
U237 6.07 6.35±0.30 0.93 (0.85) 5.86 5.95±0.30 0.74 (0.55)
U238 5.7 5.90±0.20 0.9 1.00±0.10 5.6 6.12±0.20 0.74 0.62±0.10
U239 5.93 6.55±0.30 0.93 (0.9) 5.76 6.30±0.30 0.77 (0.65)
U240 5.52 5.75±0.20 0.89 1.00±0.10 5.41 5.95±0.20 0.76 0.70±0.10
Np234 6.57 5.35±0.30 0.91 (0.6) 6.07 5.00±0.30 0.65 (0.42)
Np235 6.26 5.60±0.30 0.91 (0.8) 5.79 5.20±0.30 0.68 (0.55)
Np236 6.49 5.70±0.30 0.96 (0.6) 5.91 5.20±0.30 0.72 (0.42)
Np237 6.13 5.70±0.30 0.92 (0.8) 5.74 5.50±0.30 0.73 (0.55)
Np238 6.36 6.00±0.30 0.95 (0.6) 5.89 6.00±0.30 0.77 (0.42)
Np239 6.01 5.85±0.30 0.92 (0.8) 5.67 5.50±0.30 0.77 (0.55)
Pu238 5.83 5.90±0.20 0.9 0.80±0.10 5.19 5.20±0.30 0.72 0.55±0.10
Pu239 6.13 6.43±0.20 0.93 1.00±0.10 5.41 (5.5) 0.75 (0.55)
Pu240 5.88 5.80±0.20 0.91 0.82±0.10 5.23 5.45±0.20 0.74 0.60±0.10
Pu241 6.16 6.25±0.20 0.93 1.10±0.10 5.46 (5.5) 0.76 (0.55)
Pu242 5.86 5.60±0.20 0.89 0.82±0.10 5.22 5.63±0.20 0.74 0.59±0.10
Pu243 6.1 6.05±0.20 0.91 0.80±0.10 5.38 (5.6) 0.74 (0.55)
Pu244 5.81 <5.6 0.87 - 5.12 5.35±0.20 0.72 0.57±0.10
Pu245 6.06 5.72±0.20 0.88 0.90±0.10 5.33 (5.45) 0.72 (0.55)
Am240 6.32 6.35±0.20 0.94 0.70±0.10 5.36 (4.8) 0.77 (0.42)
Am242 6.33 6.38±0.20 0.93 0.50±0.10 5.37 (4.8) 0.76 (0.42)
Am243 6.1 5.98±0.20 0.91 0.75±0.10 5.14 (4.8) 0.73 (0.55)
Am244 6.31 6.18±0.20 0.92 0.50±0.10 5.3 (4.8) 0.73 (0.42)
Am245 6.02 5.88±0.20 0.88 0.85±0.10 5.02 (4.8) 0.7 (0.55)
Am247 5.83 5.60±0.20 0.85 0.90±0.10 4.73 (4.8) 0.65 (0.55)
Cm244 5.98 6.12±0.20 0.9 0.90±0.10 4.65 <4.9 0.67 -
Cm245 5.4 6.38±0.20 0.8 0.65±0.10 4.84 (4.2) 0.67 (0.55)
Cm247 6.41 6.20±0.20 0.89 0.70±0.10 4.93 (4.2) 0.65 (0.55)
Cm248 5.97 6.15±0.20 0.85 0.90±0.10 4.47 <4.6 0.62 -
Cm249 6.13 5.80±0.20 0.85 0.75±0.10 5.78 (4.2) 0.7 (0.55)
Cm250 5.79 5.15±0.20 0.82 0.72±0.10 3.84 3.90±0.30 0.37 0.69±0.10
Bk249 6.28 6.05±0.20 0.87 0.80±0.10 4.23 (4.2) 0.61 (0.55)
Cf253 6.7 5.60±0.30 0.85 1.10±0.10 3.46 (4.2) 0.42 (0.55)
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Fig. 4. The comparison of our results with data of Back [1].

The left part of the figures (Z2/A < 34) presents the data obtained for nuclides which are
very important for ADS technologies, i.e. isotopes of Pb and Bi (204,205,206,207,208,209Pb and
204,205,206,207,208,209Bi) where fission barriers are poorly investigated. The barriers in these cases
were calculated for α1=0 (symmetric fragment mass distribution). It is seen from the data that
the barrier heights decrease for more neutron-deficient isotopes.
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The interaction of high-energy particles (up to 1 GeV for ADS) with target nuclei leads
to the formation of high and very high excited nuclei which can undergo the fission. It is
necessary for these reactions to include the dependence of fission barriers on excitation energy
(or nuclear temperature T) into consideration. We use a simple model to demonstrate this kind
of dependence, )/exp()EE(E  E psc lq crTT−⋅++= , where Tcr is the parameter. The dependence of

deformation energy for the case of 240Pu on the temperature for Tcr = 0.75 MeV is shown in
Fig. 5 along the fission axes. The degeneration of structure effects with temperature growth is
clearly seen in the figure. At T ≥ 2 MeV the barrier is only defined by liquid drop nuclear
properties.
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Fig. 5. The temperature dependence of deformation energy.

So, the semimicroscopic model is proposed in this work which allows to calculate the
fission barriers of heavy nuclei with account of their possible dependence on excitation
energy.
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MULTICONFIGURATION FISSION CROSS-SECTIONS AT
TRANSITIONAL ENERGY REGION 20-200 MeV. The new approach to
the calculation of nucleon induced fission cross sections at 20-200 MeV is
presented. The cross sections of multiconfiguration fission (MCF) is
calculated as a mixture of (Z,A,p,h,U) configurations formed as a result of
fast stage of fission reaction with weights defined by the population
probability Y of (Z,A) nucleus in the (p,h) particle-hole state at the
excitation energy U. We use the intranuclear cascade model to compute the
probability Y and the precompound-statistical model for calculation of
fission and de-excitation cross section from state (Z,A,p,h,U). Calculated
results are presented for two absorption cross sections obtained with two
optical model parameter sets. Up to 15 fissioning nuclei in 10 (p,h) states at
the wide excitation region were taken into account in the calculation.

Introduction

The development of the future nuclear power energetics with application of hybrid
technologies using accelerator-based incineration systems requires a knowledge of data library
on cross-sections of nuclear reactions in a wide energy range of incident particles (from very
slow particles up to beams with energy of a few GeV). The systematic experimental research
for such wide energy range is complicated and for many targets in principle impossible.
Therefore a key role for the development of the required nuclear data library has a model
calculations which should have a sufficient predicting force for the description of fission
cross-sections and cross-sections of other competing nuclear reactions with necessary
accuracy. At the present time there are a lot of experimental data and rather reliable codes for
the calculation of fission cross-sections at incident particle energies up to 20 MeV. At
energies of particles about several hundreds MeV (from 200 MeV and higher), rather reliable
evaluations can be obtained by means of codes based on the most modern versions of an
intranuclear cascade model. At the same time, in an energy range from 20 up to 200 MeV
there is a lack of experimental data which are frequently not agreed among themselves and the
agreement of results of the best modern model codes is not better than within a factor of 2 or
more. Besides, in this energy range, the significant variation of cross section values is
observed for both beam energy growth and a transition from nucleus to nucleus.

The energy region of 20-200 MeV is a transitive one from well investigated low-energy
nuclear physics to the physics of intermediate energy. It is possible to divide the existing
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model codes used for calculation of the reaction cross-sections in this transition region into
two basic classes:

• Codes for the description of low energy reactions (up to several MeV) using the
statistical model based on the Hauser-Feshbach theory and the pre-equilibrium emission
model with total angular moment conservation (codes STAPRE, GNASH and others);

• Codes for the calculation of cross-sections at intermediate energies from several
hundreds MeV up to tens of GeV using the various versions of the intranuclear cascade
model (cascade-emission model of Ilyanov-Mebel, cascade-exiton model of Toneev-
Mashnik and others).

Unfortunately in the transition energy region where the contributions of pre-equilibrium
and direct emission, various fission chances, structures of fission barriers and low-energy
states are essential, the predicting ability of these model approaches is rather low due to a
wide and not always reasonable variation of model parameters for the description of
experimental data. The basic problems which need to be solved for this energy region are the
description of the entrance channel, the correctness of non-equilibrium process calculations
and the systematic of fission barriers including their energy dependence.

The example of fission cross-section description with both, the pre-equilibrium-
statistical model (STAPRE code) and the intranuclear cascade-exciton model (code CEM95)
with default parameters (i.e. without input parameters fitting) are shown in Figs 1 and 2 for
232Th(n,f) and 239Pu(n,f) reactions in comparison with experimental data. The crucial
discrepancy between the results of two model calculations and between the calculated and
experimental data is clearly observed.
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Fig. 1. Comparison of the default versions of CEM95 and STAPRE codes for
232Th(n,f) reaction. The points are the experimental data. Curve 1 is the
STAPRE result, curve 2 is the CEM95 result. See text for details.
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Fig. 2. The same as in Fig. 1, but for 239Pu(n,f) reaction.

1. Optical model calculation of reaction cross-sections for deformed targets

The realistic description of the entrance channel (i.e. calculation of the probability for
nucleon to penetrate inside nucleus) is the significant part of any nucleon-induced fission
cross-section calculations. The reaction cross-section calculation (absorption) for incident
particles at all energies is defined under consideration by nucleon transmission coefficients.
Moreover, transmission coefficients define decay widths of intermediate nuclear states at pre-
equilibrium and evaporation stage of disintegration of excited nucleus. This is a reason why
the reliability of the calculation of the transmission coefficient effects on an accuracy of
fission cross-section calculations.

At present the main (and unique) method for this kind of calculations is the optical
model of nuclear reactions. For spherical nuclei the calculations can be done with the well-
known code SCAT2 [1]. However, as a rule, fissioning nuclei are strongly deformed in their
ground states and also have a number of collective low energy excited states. The connection
with these states modifies the wave function of the nuclear system rather significantly. The
consideration of this modification requires the application of the generalized optical model
which has been formulated in the coupled channel method [2] and developed in the works of
T. Tamura et al. [3]. On the basis of the Tamura approach, the code ECIS was developed by
J. Raynal [4] which allows to calculate the cross-sections of nuclear reactions in the wide
energy region [5].

The rotational model level schemes presented in the RIPL library [8] and relativistic
kinematics are used in the calculations. The coupling of only three channels are taken into
account because the account of more numbers of channels modifies results less than 1%.
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On the base of this kind of calculations, the library of proton- and neutron-induced total
and reaction cross-sections for 35 nuclei (208Pb, 209Bi, 227Ac, 228,229,230,232Th,
232,233,234,235,236,238,239U, 237,238,239Np, 238,239,240,242Pu, 242,243Am, 243,244,245,246,247,248Cm, 247Bk,
248,249,250,251,252Cf) is developed for energies up to 220 MeV.

In Fig. 3 the results of total cross-section calculations are presented for 235U + n reaction
in the case of two optical model parameter sets (OMPS) – by Young [6] and by Konshin [7] in
comparison with experimental data (the Young potential has a restricted energy interval of
application, so results of calculations are shown up to 100 MeV). In both cases, our results
describe the experimental data quite well. But, as it can be seen in Fig. 4, the reaction cross-
sections are more sensitive to the choice of the potential: absorption cross-sections of neutron
by 238U are very different (up to 15% around 30 MeV). Due to the lack of the experimental
data on reaction cross-sections, the choice between OMPS is difficult and we carried out the
calculations for both cases. For the fission cross-section calculation, we used OMPS [7] where
the picture of the gross structure in the reaction cross-section is reproduced more reliably in
the whole energy region under consideration.
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Fig. 3. Total neutron cross section for 238U+n. Experimental data [8,9], curves are
results of OM calculations with OMPS [6] and [7].
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Fig. 4. Calculated cross-sections for 238U+n: σR is the reaction cross-section, σtot is the
total cross-section.

2. Simulation of entrance channel of fission reaction with intranuclear cascade model

We use the intranuclear cascade model for the description of the direct processes on the
first stage of fission reaction as it is realized in the CEM code [10] where the so-called
“cascade-exciton” model of nuclear reactions has been formulated.

It is assumed in this model that the nuclear reaction goes on three main stages. The first
one is the intranuclear cascade where primary particle may undergo a number of re-scattering
before its absorption or escape from nuclear volume occurs. The significant point of this
scenario is a formation after the cascade stage of excited residual nuclei in different particle-
hole configurations which serve as a start for the second pre-equilibrium reaction stage which
can be treated in the framework of the standard exciton model. And the third stage is the
particle evaporation and/or fission from the equilibrium state of the final nuclear system. The
important point of the CEM model is the substantial difference of particle-hole configurations
(characterized by exciton number n=p+h, where p and h are the numbers of particles and
holes, correspondingly) as well as excitation energy after completion of the first direct
reaction stage from the starting configurations of ordinary exciton models. Numerous
calculations show that the distributions of residual nuclei after the cascade stage are rather
wide on n, p, h and energy.

All calculations of intranuclear cascades are performed in the three-dimensional
geometry. The nuclear density distribution is described by the Fermi distribution with
parameters taken from the experimental data on electron-nucleus scattering. The target
nucleus is divided by concentric spheres at 7 zones where the nuclear density is assumed to be
a constant. The diffusiveness of nuclear density and potential edge is taken into account. For
intranuclear collisions of nucleons, the Pauli principle forbids the collision with energy of
secondary particles less than Fermi energy.
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The main condition of the intranuclear cascade model applicability is the smallness of
the length of de Broglie waves for all interacted particles; the wave length must be less than
the average distance between intranuclear nucleons ~1 fm. In this case, the picture of the
interaction is approximately the semiclassical one and it is possible to say about the particle
trajectories and two-particle collisions inside nucleus. This condition restricts the energy
region of incident particles above 50 MeV. Such a limitation is a significant point of the
model. However, in order to improve it, the way out of the frameworks of intranuclear
cascade is necessary with the description of reaction mechanism in the terms of rather strict
quantum-statistical approach. Practically the low limit of applicability of intranuclear cascade
can be established in the analysis of calculation results for the given case.

The results of our calculations for main characteristics of residual nuclei formed after
the cascade stage are presented in Figs 5-8 for 232Th in the transitive energy region
20-200 MeV. The yields of residual nuclei are presented in Figs 5-6 for protons and neutrons
in the entrance channel. The presented results show that at low energies almost all incident
particles are absorbed by target nucleus with formation of compound nucleus. For higher
energies the yield of compound nucleus falls down significantly. The maximal yield in this
case corresponds to the escape of one neutron or proton from target nucleus.

The yields in the direct reactions 232Th(n,2n)231Th and 232Th(n,n’)232Th with formation
of 231Th and 232Th in two particle-hole configurations are shown in Figs 7-9 as a function of
excitation energy for the given residual nucleus. As it can be seen, the configurations with the
low exciton number (p+h) have significantly higher yields as compared with the
configurations characterized by large exciton numbers. Nevertheless, these configurations
have a similar contribution to the fission cross-sections due to high excitation energies of
high-exciton configurations (Fig. 5).
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Fig. 5. The yield of residual nuclei after the cascade stage for 232Th+p reaction.
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Fig. 6. The same as in Fig. 5 but for 232Th+n reaction.
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Fig. 8. The same as in Fig. 7 but for the direct reaction 232Th(n,n’).

The modification of the CEM95 code has been necessary for these kind of calculations.
The block of intranuclear cascade has been separated from the code and the new module has
been written down for the data acquisition in the output file. The necessary accuracy is
achieved when 500 000 histories are taken into account. The configurations with yields more
than 1% are only taken into consideration.

This kind of results serves as an input data for the calculations of pre-equilibrium and
equilibrium decay of excited nuclei (code STAPRE). For each configuration, it is necessary to
carry out the calculations of particle emission and fission cross-sections which further are
summed with corresponding weights.

3. Calculation of multiconfiguration fission cross sections

The STAPRE code [11] was developed for the calculation of cross sections of reactions
caused by particles with a competition of several particles, γ-quanta and fission in the
assumption of sequential evaporation.

Each step of evaporation is described by the statistical model of nuclear reactions in a
Hauser-Feshbach-Moldauer formalism [12,13] which take into account the conservation laws
of the total angular momentum and parity. For the first particle the opportunity of pre-
equilibrium decay is taken into account.

The code provides that in entrance and in exit channels of reaction, there can be
neutrons, protons, alpha-particles and deuterons. There is an opportunity to set any particle or
nucleus in the entrance channel. The way of definition of nuclei which fission is in question is
thus realized.



- 91 -

During the 25 years of the code usage, a lot of changes and improvements were
included. Some special efforts were done for calculations of fission cross sections in the
20-200 MeV region. For the calculation of the particles emission and fission with particle
energies up to 200 MeV, the adaptation of the block of the statistical model of the STAPRE
code was executed:

• Additional (up to 30) cascades of the particle emission to cover the whole energy range
are included. The appropriate files are extended;

• The energy bin of integration is decreased from 2.5 up to 0.5 MeV to get necessary
accuracy of calculations for the near threshold energy. In the current version, the whole
energy region is divided into 380 bins;

• The doubled precision (REAL*8) for the maintenance of the protection from machine
overflows is added.

The usage of the statistical model of nuclear reactions in the STAPRE code leads to the
necessity to provide the large number of the input data: level density of the exited nuclei,
characteristic of discrete levels (energy, spin and parity), fission barriers, particle binding
energies, etc. It should be stressed that the large work on the preparation of the input data for
calculations of nuclear reaction cross sections with theoretical models is done by the experts
under the IAEA co-ordinated research program [14]. Unfortunately, in a part of level density
the attention is only given to nuclei close to the stability valley, and there are mistakes in files
of discrete levels.

The following work has been done in order to satisfy the input data needs for the
calculations of fission cross sections for nuclei far from a beta-stability valley:

  i) compilation of the schemes of discrete levels of nuclei with A=1-260,

 ii) the analysis of the schemes for the level missing,

iii) the analysis of the spins and parities of levels.

The information on the exited levels of nuclei is logically divided into two parts:
discrete levels described by energy, spin and parity; and continuum, where level density for
the given excitation energy is used. For the STAPRE code a LDP file containing the level
density parameters within the framework of the generalized model of a superfluid nucleus and
SEDL file containing the characteristics of discrete levels, 2821 nuclei were formed.

The preparation of the initial data is organized according to an output file of the
intranuclear cascade code, which contains the yields Y (Z,A,p,h,U) of nucleus (Z,A) in the
certain particle-hole configurations p-h distributed on the excitation energies U. Hence, all
nuclei, all configurations and all excitation energies have to be included in the entrance
channel for the STAPRE code. Additional feature of the initial files formation is needed to
take into account all steps of the particle emission for the fission cross section calculation (the
chance structure of cross sections).
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The PRESTAPR code is created and tested. It uses the data files as follows: LDP -
parameters of level densities, SEDL - discrete levels characteristics, BARRIER - doubled
humped fission barriers, GRD - parameters giant dipole resonances, Bn_MOL - energy of
separation for the neutrons, protons and alpha-particles.

The PRESTAPR code prepares initial files for the calculations of the fission cross-
sections by the STAPRE code using the list of nuclei, their particle-hole configurations and
excitation energies (Z,A,p,h,U) calculated by the intranuclear cascade code and using the
prepared LDP, SEDL, GDR, BARRIER, Bn_MOL files of initial parameters.

The result of the STAPRE code is the file of fission cross sections for the nuclei at the
given configuration with the given excitation energies for the n-th chance, i.e.:

).,,,,( UhpAZn
fσ

The processing of this file consists in calculation of fission cross sections as a
multiconfigurational mixture, that is as a sum on all residual nuclei (Z,A,p,h,U) with weight
Y(Z,A,p,h,U):
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The procedure of the summation according this formulae is realized in the service
program PROSTAPR.

4. The results of calculations

The preliminary calculations were performed for the case of 232Th and 239Pu neutron-
induced fission in the energy region 20-200 MeV. The analysis of the role of different residual
nuclei configurations in the fission cross-section formation were carried out. Up to 11 fission
chances have been taken into account.

The example of this kind of analysis is shown in Fig. 9 where fission cross-sections for
different residual nuclei formed in the reaction 232Th + n are presented in the units of
absorption cross-section. The results show that if for low energy fission the main part of total
fission cross-section is due to fission of the compound nucleus, then for higher energies the
role of first residual nuclei from (n,xn) reactions increases. Such a result is directly connected
with the formation probability and excitation energy distribution of residual nuclei which have
been obtained in the intranuclear cascade calculation.

The total fission cross-section is presented in Fig. 10 and Fig. 11. The cross-sections
have been calculated for two variants of absorption cross-section calculations, that is for
Konshin and Young potentials. It is seen that even these preliminary results are able to
reproduce the observed fission cross-section behavior. The Konshin potential for the
absorption cross-section gives a better description of the experiment.

The results obtained are only preliminary ones because the performance of detailed
calculations in a wide region of nuclei requires more accurate values of main model
parameters such as optical potentials, fission barriers and their dependence on excitation
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energy, level density at the saddle point and so on. The additional analysis of the role of
different configurations and fission chances is necessary, too, as well as the optimization of
main code routines in order to reduce computer time especially for the calculations of high
energy fission.
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INTERACTIVE INFORMATION SYSTEM ON THE NUCLEAR
PHYSICS PROPERTIES OF NUCLIDES AND RADIOACTIVE DECAY
CHAINS. A brief review is given of a computerized information system on
the nuclear physics properties of nuclides and radioactive decay chains. The
main difference between the system presented here and those already in
existence is that these evaluated databases of nuclear physics constants are
linked to a set of programs, thus enabling analysis of a wide range of
problems regarding various nuclear physics applications.

An interactive information system (IIS) has been set up containing comprehensive
information on the characteristics of more than 2600 nuclides of the 107 chemical elements
known to exist in 1999.  The following characteristics are given for each nuclide: charge,
mass, spin and parity of the ground state, mass excess, half-life, modes of decay and
branching ratios, average decay energies of gamma-, electron-, positron- and alpha-radiation,
and also the spectra of gamma and X-rays and of beta and alpha particles.

The main difference between this IIS and the widely available charts of the nuclides,
Refs 1-4, reference books, Refs 5 and 6, and computerized systems, Refs 7 and 8, is that these
evaluated databases of nuclear physics constants are linked to a set of programs, making it
possible to:

• automatically plot and visualize radioactive decay chains;
 

• calculate the number of nuclei, activity and radiation energy release, for both the
chain as a whole and the individual nuclides in it;
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• calculate the spectra of gamma- and X-rays, and of alpha and beta particles in the
chain, at a given moment in time;

 

• identify radionuclides from the measured gamma spectra; identification can be
carried out using the half-life, gamma-radiation energy or a combination of these
two parameters;

 

• analyse the spectra of individual radionuclides and radioactive chains, which
allows radiation spectral lines to be selected for a given energy and intensity
threshold.

The calculations can be made both for a “free” decay chain (for a given number of
nuclei in the parent radionuclide chain at the starting point) and also when the number of
nuclei in the parent radionuclide is supplemented from outside at a given rate (“target
activation”).  This algorithm enables the calculational capabilities of the IIS to be used in a
wide range of tasks requiring analysis of radioactive decay chain parameters because it does
not depend on the way in which the nuclei of the parent radionuclide are supplemented.

A user-friendly feature of the IIS is that, apart from information on nuclides and their
decay chains, it also contains additional information:  it gives the main physics properties of
all the elements in the periodic table; fundamental physics constants; or relations between the
various measurement units; information from the SI system for all the units used in nuclear
physics and its applications; the binding energies for all the nuclides; and the energies and
thresholds of any nuclear reaction can be calculated.  

All the information in the IIS is presented in numerical or graphical form. The IIS also
has a comprehensive HELP function.

1. The main principles underlying radioactive decay chain analysis and calculation

In setting up the IIS on the nuclear physics properties of radioactive chains we had to
solve several important problems relating to the automatic plotting of decay chain diagrams,
the calculation of radiation spectra and the determination of absorbed doses.  Conventional
numerical methods for computing the differential equation systems which describe radioactive
decay chains, make huge demands on machine resources, even when high-speed computers
are used.  We describe below a calculation method which has made it possible to set up a fast-
acting program package for analysing radioactive chains, and calculating the radiation
spectrum and energy release.

To set up the information system we analysed all the up-to-date material and, after
initial analysis, took the main data from Refs 5, 7 and 8.

1.1. Plotting radioactive decay chains

Hereafter, in accordance with the conventional notation system, we will identify
nuclides by the signature Z-A-I, where Z is the nuclear charge of the nuclide, A is the mass
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number and I is the isomer classification (‘g’ is ground state, ’m’,’m1’ is first excited state and
’m2’ the second, etc.).

In general terms, plotting a radioactive decay chain is formulated as follows:  finding,
for a given radionuclide (Z-A-I)0, all the nuclides which are formed during its decay process.

We note that, from the mathematical point of view, the decay chain is represented by a
directed graph.  The component nuclides of the chain are the vertices of the graph and the
edges correspond to the mutual transformations of the nuclides in the decay process.  A
feature of this graph is that it always has one initial vertex, representing the parent
radionuclide of the chain, and one or more pendant vertices, representing the stable nuclides
into which the given chain decays.  The edges of the graph run in the direction from the parent
to the daughter nuclide and never form cycles.  In this graph there is always at least one edge
sequence from the initial vertex to any of the pendant vertices.

The task of plotting a decay chain is thus one of plotting this directed graph.

The algorithm for solving this task is recursive.  Let us assume that we need to plot the
decay chain of the nuclide Z-A-I.  Each step of the recursion includes the following points:

1) Nuclide Z-A-I is added to the list of vertices already plotted; if the nuclide under
investigation is stable or is already in the list, plotting is complete and we return to
the previous step of the recursion;

2) If nuclide Z-A-I is unstable then, a list of daughter nuclides (for the given nuclide)
is drawn up from data on its decay modes;

3) Points 1-3 are carried out for each nuclide in the list of daughter nuclides obtained
in point 2.

As a result of plotting we obtain a list of graph vertices and lists of daughter nuclides for
every vertex.  Thus the directed graph corresponding to the decay chain of nuclide Z-A-I is
fully determined.  It should be noted that for point 2 of the algorithm information is needed on
how to identify the daughter nuclide (Z-A-I)d from the known parent nuclide (Z-A-I)m and its
decay mode.  This information can be obtained from nuclear physics data on radionuclide
decay.

1.2. Visualization of decay chains

The next task when plotting and calculating radioactive decay chains is placing the
graph describing the chain on a plane for representation on a computer screen or printing it out
in the usual way.

A fact that should be used when doing this is that a system of co-ordinates is already
given for the component nuclides of the chain.  This is the three-dimensional co-ordinate
system (Z,A,I).  Visualizing the chain is thus reduced to displaying the three-dimensional
arrangement of the nuclides in the chain on a plane (X,Y).



- 98 -

Let us consider the algorithm below as a solution to this problem.  It makes use of the
fact that the range of values along the I-axis in the three-dimensional space (Z,A,I) is limited
(according to available data) to three values:  

(a) I=‘g’ or is absent;
(b) I=‘m’,’m1’;
(c) I=‘m2’.

Let us place a grid (Z,A) on the plane and arrange the nuclides in the chain in the cells.
It may be that there will be two or three isomers in some of the cells.   (As already mentioned,
isomers are characterized by the same Z-A and their differences are shown in the
I classification).  In this case we will increase the width of the column and the line height of
the (Z,A) grid containing the relevant cell to accommodate the number of nuclide-isomers.
We will place the isomers in the cell diagonally from the bottom right to the top left-hand side
starting with the lowest isomeric state number.  Figure 1 gives an example of the 136Te decay
chain arrangement.
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Fig. 1. Example of the Te136
 decay chain arrangement.

1.3. Calculating the number of nuclei and the activity of the nuclides in the chain

The decay of a radioactive chain is described in general terms by the following system
of differential equations:
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where N is the total number of nuclides in the chain; xn is the number of nuclei of the
nth nuclide; and Sn is the decay rate of the nth nuclide.  In the case of radioactive decay,
Sn = n is the decay constant of the nuclide n; Si

n is the rate at which nuclide n is formed from
nuclide i.  If nuclide n is not the daughter for i, then Si

n = 0, if n is the only daughter nuclide
of i, then Si

n = λi, otherwise Si
n = λik

i
n, where ki

n is the branching coefficient for decay of the
parent nuclide i, leading to nuclide n.

The initial conditions for this system are written as:
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We note that for a linear chain the equation system (1) becomes:
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and has the analytical solution:
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This can be used in solving the general task of (1) and (2).

Assuming that we need to calculate the number of nuclei of a certain radionuclide X in
the chain, then we must first identify all the possible edge sequences for getting from the
parent nuclide of the chain to nuclide X.  Thus, we will select all the possible linear chains
leading to the formation of X.  Next, for every linear chain obtained, we calculate the number
of nuclei in nuclide X using the formulas in (4) and adding the results together.  This method
makes use of the fact that different modes of nuclide decay occur independently.

We note the singularity of solution (4) if there are two nuclides with identical decay
rates (Sk=Sj) in the chain.  The simplest way out of this situation is to change one of the decay
rates by a negligible amount within its error margin (by say 0.01%).  

Let us now consider the calculation for a chain where the number of nuclei of the parent
nuclide is supplemented from outside during the decay process.  A typical case in point is
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where a nuclide (target) is irradiated by a particle flux and, as a result of a nuclear reaction, the
parent nuclide of a chain is formed.

In this case, the equation for the first nuclide in the system (1) changes to:

110
1 ˆ xSS

dt

dx
−= , (5)

where �S0  is the rate at which the parent radionuclide of the chain is formed when the target is
activated.

The following algorithm can be used to solve this:  let us add an additional abstract
nuclide to the existing decay chain such that it becomes the parent nuclide of the chain.  Let us
set the following decay conditions for the newly introduced nuclide:

( ) ( ) 00000
ˆ0,0,0 SxSxS =∞→→ , (6)

where S0 is the decay rate of the added nuclide; and x0 is the number of nuclei of the added
nuclide.

Then the system of equations describing the task with activation is similar to the system
for the task in (1) and (2), and the formulas in (4) can be used to solve it.  The solution is
written as:
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This result has singularity for stable nuclides in the chain, since in this case the product
in the denominator for the two terms vanishes.   (S0=0 by definition, Sn=0, since the nuclide is
stable).

Once the uncertainty has been resolved, the solution to the task for a stable nuclide in
the chain is written as:
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If it is necessary to find a solution when activation has continued for a given time TA,
but then the chain has decayed without activation, the solution may be obtained from the
following algorithm:  up to the moment t=TA the problem is solved using activation (1, 5) and
(2), and after the moment t=TA the problem is solved with (1), (without an additional nuclide),
with the initial conditions obtained at the moment t=TA and for the time  τ=t-TA.
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It is obvious that when the target is activated under non-zero initial conditions, in (1, 5),
we may obtain the solution as the sum of solutions to the task with activation and zero initial
conditions and the task without activation with the given initial conditions.

From the number of nuclei calculated for a nuclide it is easy to obtain its activity by
using the well-known expression:

( ) ( )txtA λ= , (9)

where λ is the nuclide decay constant.

When the initial conditions for nuclides 2…N are not zero, the solution may be obtained
from the following algorithm:  for each nuclide in the initial chain a decay chain is plotted
(which is a part of the initial chain) and tasks (1) and (2) are solved.  The results obtained are
summed.

1.4. Calculating radiation energy release

If the average energies per radionuclide decay are known we can calculate the energy
release D from radionuclide decay using the following formula:

( ) ( )∫=
t

dxEKtD
0

ττλ , (10)

where x is the time dependence of the number of nuclei of the radionuclide; λ is the decay
constant of the radionuclide; E  is the average energy, released by a single radionuclide decay;
and K is the coefficient, depending on the choice of measurement units.  If E  is in MeV and
D is in Gy, then K = 1.602·10-13.

Henceforth, for reasons of simplicity, we shall consider the task of calculating the
energy release of ionizing radiation from the decay of one nuclide in the chain.  The radiation
energy release from the decay of all the nuclides in the chain can be obtained by adding the
energy release of the separate nuclides.

It is obvious that an analytical expression for the radiation energy release can be
obtained by integrating the expressions for �� �.  In particular, for a simple decay chain (1)
with initial conditions (2), the radiation energy release from decay of the nth nuclide is:
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The problem of obtaining the radiation energy release values for non-zero initial
conditions is solved in a similar way as for the number of nuclei:  the total energy release is
obtained by summation of the values obtained by solving independent tasks with initial
conditions (2) for each nuclide in the chain.
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Target activation is a rather more complex matter. In this case, the analytical expression
for energy release takes the form:
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This formula has a singularity, – uncertainty of the form 
0

0
.

To exclude the uncertainty it is sufficient to expand the exponent containing S0 in series
up to terms of the first order of an infinitesimal and replace S0 with zero:
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The power of radiation energy release is a simpler matter:

dt

dD
D =� (14)

From formula (10) and determination of activity A(t), we obtain:  

( ) ( ) ( )tAEKtxEKtD == λ� (15)

Obviously, the radiation energy release may be obtained for tasks using any combination
of activation and simple decay with different initial conditions by “joining together” the tasks
described above.

1.5. Calculating the radiation spectrum of the chain

The radiation spectrum of the chain is the sum of the radiation spectra of its component
nuclides.  On that basis, let us consider the question of obtaining the spectrum of an individual
nuclide in the chain at an arbitrary point in time.  If we know the spectral energies of the
nuclide radiation and their intensity we can obtain the spectrum by using the following
formula:
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where Ek is the energy of the kth line of radiation (or particle); Ik (Ek) is the radiation intensity
of the kth line (in %); Bk (Ek,t) is the number of quanta (or particles) emitted with an energy of
Ek at the time of t per second.
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It should be pointed out that a large computer memory is needed to calculate radiation
spectra because of the large volume of data on the spectral lines of nuclide radiation and the
need to calculate the spectrum of complex chains with a large number of nuclides.  In order to
reduce the volume of information in the proposed information system, radiation lines with an
intensity of less than 1% of the maximum line intensity in the given spectrum are sifted out.

2. Identifying gamma-emitting nuclides

We know that we can identify radioactive nuclides from the energy, gamma radiation
intensity and half-life values.  Despite the fact that modern nuclear spectrometry methods
enable us to determine with a rather high level of accuracy the above-mentioned parameters
for the radiation under investigation, identification of the nuclides (especially for complex
mixtures) is a very laborious task.  The main difficulty lies in interpreting the experimental
results with respect to known nuclear decay characteristics which, in the available reference
literature, are dispersed, firstly, over the nuclides (more than two thousand nuclides) and,
secondly, over the gamma-transition energies (the known number of gamma-lines
exceeds 60 000).

The proposed computerized information system has the following algorithm for
identifying gamma-emitting nuclides.  All the radionuclides are broken down into 13 groups
according to their half-lives. In each half-life range the gamma lines of the radionuclides
present are broken down into energy groups.  Having selected the half-life range of interest
and, subsequently, the gamma-radiation energy range, the user of the computerized system
obtains a table of energies and intensities of the selected gamma-lines with an indication of
where every line belongs.  The data given in the table may be represented graphically.
Moreover, the data in the table can be used to identify radiation lines which exceed the given
intensity threshold and/or to select radiation lines in a narrower energy and half-life range.

Conclusion

The IIS is intended for use by a wide range of specialists at different levels (students,
post-graduate students, engineers and scientists), who need reliable information (as of 1999)
on stable and radioactive nuclides.  The main difference between the IIS described above and
existing charts of the nuclides, reference books and computerized systems is that the evaluated
databases of nuclear physics constants are linked with a set of programs enabling analysis of a
wide range of problems in various nuclear physics applications.  This work is supported by a
grant from the Russian Fund for Fundamental Research (project No. 00-07-90376).
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EVALUATION OF HOW THE ACCURACY OF CALCULATIONS OF
THE TEMPERATURE COEFFICIENT OF REACTIVITY AFFECTS THE
SAFETY OF FAST REACTORS IN A ULOF TYPE ACCIDENT. This
paper provides preliminary evaluations of the possible uncertainty ranges in
conventional calculation of temperature coefficient of reactivity feedback
components in fast reactors.  It also analyses, using point kinetics
approximation, how these uncertainties affect maximum coolant
temperatures during unprotected loss of flow (ULOF) type accidents.

The calculation accuracy of reactivity coefficients may become the main factor in
achieving maximum self-protection in BN type fast reactors owing to the inherent feedback in
the reactor through the "temperature-reactivity" channel.  Perturbation theory, based on
diffusion approximation, is the standard and widely used approach taken to describe the
detailed spatial distributions of temperature coefficient of reactivity (TCR) components,
inserted into dynamic codes.  The reason for this is as follows:

• For traditional fast reactor layouts the diffusion approximation has been shown to
be sufficiently accurate, Ref. 1;

• The model of the TCR from thermal expansion uses the similarity theory formulas
obtained in the context of diffusion approximation, Ref. 2.  

The accuracy of the values obtained by this method is questionable when there are
regions adjacent to the core having very different neutron physics characteristics.  For
example, in prospective fast reactors with a sodium void above the core, Ref. 3, or in reactor
burners with steel shielding.  For such cores it has been shown, on the example of a large fast
reactor loaded with plutonium, that non-diffusion description of the sodium void may lead to a
change in the maximum sodium temperature during an accident of >20o simply on account of
the sodium density of the TCR component, Ref. 4.  Additional calculational investigation is
given below of the effect of the limiting error of the standard TCR component calculation on
an ~1300 MW(e) reactor of this type.
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1. Uncertainty of the TCRD  Doppler component

Evaluations carried out using different versions of the ABBN constants and different
diffusion codes for the same reactor (the BN-600, for example), have not revealed any
deviations greater than ±3%, Ref. 5, in the integral value T(MK/MT) of the separate fuel areas.
Calculations for a reactor with a sodium void which take into account corrections for
non-diffusion, Ref. 4, show that the spread of T(MK/MT) in the context of individual
constants and the program does not exceed:

• ~ 6% for integral values;
• ≤ 10% for spatial values (maximum deviations correspond to quite a narrow

(<20 cm) upper layer of the core, whose contribution to the total value of
T(MK/MT) <10%).  

However, variations in the value of T(MK/MT) ~20% (see Table 1) were observed
during international safety tests on the BN-800 type reactor with a sodium void, Ref. 6,
depending on the calculation method and the nuclear data system used.  In accordance with
this maximum evaluation, Fig. 1 shows the sodium temperature behaviour in a ULOF
accident, calculated using the point kinetics approximation.

Table 1

Doppler constant (TMK/MT)·10-2 in the 1500-2100 ���������	�����
����
���
�������������
(expert evaluation, Ref. 5) obtained using various programs

Unperturbed core state
Reactor

area
Russian evaluations IPPE

(diffusion calculation)
ENEA**)

(ITALY)
ERL**)

(HITACHI)
Calculation code CAFR*) RHEIN*) RHEIN**)

Low Enrichment Zone (LEZ) -0.406 -0.471 -0.462 -0.3746 -0.340
Medium Enrichment Zone (MEZ) -0.176 -0.147 -0.169 -0.1916 -0.172
High Enrichment Zone (HEZ) -0.092 -0.0843 -0.0890 -0.0767 -0.0965
Whole core -0.685 -0.683 -0.720 - -
Lower thermal shield -0.075 -0.0906 -0.0852 -0.0860 -0.0761
Side shield -0.052 -0.058 -0.0483 -0.0515 -0.0424

100% Na removal from core
Low Enrichment Zone (LEZ) -0.245 -0.239 -0.257 -0.222
Medium Enrichment Zone (MEZ) -0.096 -0.0952 -0.137 -0.0959
High Enrichment Zone (HEZ) -0.0572 -0.0520 -0.0767 -0.0507
Whole core -0.396 -0.398 -0.338 - -
Lower thermal shield -0.0605 -0.0688 -0.0724
Side shield -0.039 -0.0441 -0.0353

Note: *) calculations carried out using perturbation theory.
**) ������� eff calculations.
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Fig. 1. Effect of a parametric change in the TCR Doppler component of ±20% from the
initial value on the maximum sodium temperature in a ULOF accident (keeping
the weighting contribution of the separate parts of low and high enrichment zones
to the axial form-function of the Doppler constant).

Thus, variations in the integral value of the Doppler constant within the maximum
possible range of its calculated error of ±20% could lead to fluctuations in the calculated
sodium temperature of ~±30 ������������	����
���±20 �����
��������	���  Proportionally, the
spread of the maximum sodium temperatures on account of a similar uncertainty in the
integral value T(MK/MT), obtained as ~6% in diffusion programs, should not exceed ~10o,
which could be negligible.

Changes in the group spectra of the flux and worth during transition to a perturbed state
(with respect to temperature and density of the sodium) demonstrate their relatively weak
deformation in the energy region characteristic of the Doppler effect.  This means at least for
the central area with a thickness which is ~40% of the height of the core, Refs 4, 6, that, for
perturbations not connected with the phase transitions of materials, the initial values of
T(MK/MT) obtained in diffusion approximation can be used.

2. Sodium density component of the TCRNa

The possibility of inaccuracy in calculating the integral magnitude of TCRNa for the core
is illustrated using the example of nitride loading in Fig. 2.  Accordingly, a magnitude of
~20% is taken as the maximum error of the integral value of this component, it being the
value observed in comparison of the transport and diffusion calculations of the separate areas
of a reactor with a sodium void, Refs 4, 6, shown in Fig. 2.  
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calculations.

Figure 3 demonstrates how the error assumed in the TCRNa integral value for reactors
with a sodium void affects change in the maximum coolant temperature and the total
reactivity of the system in a ULOF accident.  For these reactors, which ensure that the sodium
void reactivity effect and the TCRNa are non-positive because of introduction of the sodium
void, the integral value of TCRNa is near zero (see Table 2) and hence the uncertainty under
investigation for the integral value of TCRNa (±20%) is negligible and in a ULOF accident it
ensures a maximum sodium temperature imbalance of only ~5 C.  At the same time, the
authors of Ref. 4 examined the effect of non-diffusion in the calculation model on the spatial
distribution of the sodium density TCR component (especially at the sodium void/core
boundary where there is maximum sodium heating in an accident) and found a temperature
imbalance of ~20 C.  
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Fig. 3. Impact of a parametric change of 20% in the TCR sodium density component on
the maximum sodium temperature in a ULOF accident.

Table 2

Feedback reactivity components, 10-5  (ΔK/K)/degrees

Reactivity components BN-600 BN-800*) BN-1300*)

depending on: (UO2) (Pu-U)O2  (Pu-U)N15 � 	!" 2

a) coolant temperatures:
    - sodium density -0.12 -0.01 0.332 0.232
    - radial expansion -0.75 -0.94 -0.64 -0.70
    - expansion of RCPS rods -0.12 -0.14 -0.13 -0.13

b) fuel temperature:
   - Doppler -1.59 -1.34 -0.804 -1.03
   - axial expansion -0.13 -0.23 -0.046 -0.052

Total TCR -2.59 -2.52 -1.2 -1.6

Temperature effect, % ΔK/K -0.35 -0.32 -0.22 -0.30

Power coefficient of reactivity,

10-6(ΔK/K)/MW

-5.58 -3.90 -1.5 -2.6

Power effect, % ΔK/K -0.82 -0.82 -0.48 -0.50

*) Cores with a sodium void.
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3. Reactivity components from thermal expansion

These components are determined by the model adopted for thermal expansion of
materials or fuel assembly bending.  When there is uncertainty in such a model caused by the
fuel assembly design, basic research is often limited by similarity theory formulas based on
diffusion approximation, Ref. 2.  Ref. 4 has demonstrated that for these formulas:

• When transport corrections are made to group fluxes and worths, the integral
values of the radial expansion (TCRR) component can vary by -1.3% from the
initial magnitude;

• The analogous change in the axial expansion component (TCRH) is ~6%.  

In the upper layers of the core these corrections provide the main contribution to change
in TCRR,H(z) and attain approximately 3% and 20%, respectively.  However, the contribution
of the radial expansion component itself to the total reactivity balance for a ULOF accident is
large (Table 2 and Fig. 4).  This forces us to look closely at possible error in its calculation.
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Fig. 4. Reactivity balance for a BN-1300 type reactor loaded with nitride (A) and the
effect of the TCRR magnitude on the sodium temperature in a ULOF accident (B).

The spatial distribution of TCRR,H(
�� ) is such that they have a maximum contribution in

peripheral areas of the core (see Fig. 5).  Thus, the calculation accuracy of group fluxes and
worths for TCRR when using the standard diffusion calculation can be less accurate in the area
where this component has the maximum contribution.

Δ K/K
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Fig. 5. Radial distribution of TCR components caused by axial and radial
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The similarity theory methods developed in Ref. 7 to evaluate the reactivity effects from
temperature deformation of the core, lead to differing results being obtained in the standard
diffusion model of neutron transport and the P1-approximation of the kinetic model.  The
following formulas hold, Ref. 8:
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is the "weight" of the main numbers of the processes.  FNW is the fission neutron worth (other
denotations are standard, Ref. 1).

Taking this into account, Table 3 gives the change in the TCRR and TCRZ components.
It is clear that the use of the diffusion approximation adds to the self-protection margin
(P1-approximation formulas lower the maximum sodium temperature by an estimated
10-15 "�

For TCRR there is uncertainty in the model of its appearance (for example, the transfer
to the fuel assembly bending model), and in this respect a similar margin is justified.
Although both groups of formulas are valid for the homogeneous expansion of a cylinder,
using them in a conical expansion model for separate axial layers and the entire core yields
results which are close to the direct calculation.

The role played by thermal expansion of the RCPS drive rod, depending on its position
in the core, is evaluated by lowering the maximum sodium temperature by 10-15 C (see
Fig. 6).

FNW
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Table 3

Change in feedback components from thermal expansion of the core when using improved
similarity theory formulas in the P1-approximation, relative units

Reactor zone Change in TCR*) components
Δ(TCRH) Δ(TCRR) Δ(TCRH) Δ(TCRR)

Upper shield (B4C) 3.96E-01 3.61E-01 2.54E-01 4.31E-01
Sodium void 3.90E-01 3.65E-01 2.54E-01 4.73E-01
Fuel element end pieces 2.82E-01 2.59E-01 1.42E-01 2.22E-01
Upper fuel part 2.74E-01 2.06E-01 1.50E-01 1.32E-02
Axial upper breeding zone (UBZ) 2.67E-01 2.40E-01 5.61E-02 -1.16E-02
Lower fuel part 2.83E-01 2.66E-01 1.37E-01 2.26E-01
Lower shield 3.60E-01 2.94E-01 2.50E-01 3.77E-01
Lower reflector -6.79E-01 -6.29E-01 8.38E-01 1.60E+00

*) For the first two columns the fluxes and worths were obtained with diffusion
approximation, for the third and fourth columns they were obtained with kinetic
approximation using the TWODANT program.   
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Fig. 6. Impact of taking account of thermal expansion of rods in a ULOF type accident,
q1 = 320 W/cm (TCRRCPS = -0.5·10-3 ΔK/K/oC, full reactivity for rod expansion
∼ 0.1% ΔK/K).
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Conclusion

1. The research carried out demonstrates that diffusion approximation is not sufficiently
accurate for the calculation of reactivity coefficients in reactors with zones that have
sharply differing neutron physics characteristics; for example, when there is a sodium
void.

2. Taking the kinetic effect into account in a single constant version and calculation code
leads to changes in the TCR integral components.  The Doppler constant remains more
or less the same but depending on the method and accuracy with which the Doppler
region is described in various programs its fluctuations are estimated to have a
maximum value of <20%.  The positive TCRNa is reduced by ~15%.  The axial fuel
expansion component increases by ~6%.  There is a very negligible increase in the radial
expansion component (<2%).  By this, the reactor self-protection is increased. The
maximum change in the aforementioned components occurs in the peripheral region of
the core and the sodium void where there are maximum increases in their determining
temperatures in an accident.  Various formulas of the similarity theory may result in an
increase in the reactivity components from axial and radial expansion of up to 20-30%
and 10-15%, respectively.  

3. Using integral values of the TCR components (such as the Doppler effect and the
sodium void reactivity effect) when comparing reactors in exploratory research does not
give a true picture of the level of self-protection.  Spatial distributions of the TCR
components and changes in the heating of materials must be taken into account.

4. The effect of the limiting evaluated error in TCR components has been demonstrated.
Its potential range in maximum evaluations corresponds to the following changes in the
total sodium temperature in a ULOF accident:

- Doppler component - (10-15) C
- Sodium density component -   (5-20) C
- Thermal expansion of reactor - (10-20) C
- Expansion of RCPS rods - (10-15) C

5. The estimated fluctuations in the total temperatures during an accident, related to the
maximum possible error in describing the spatial distributions and integral values of the
reactivity components of feedback, show the need for improved reactivity coefficient
calculation codes which take their detailed spatial distribution into account.  The current
calculation methods used for the cores under investigation give conservative estimates.
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