

....

International Atomic Energy Agency

INTERNATIONAL NUCLEAR DATA SCIENTIFIC WORKING GROUP

INDSWG/70年
December 1964

USSR STATE COMMITTEE ON THE UTILIZATION OF ATOMIC ENERGY
PHYSICS AND POWER INSTITUTE

RADIATIVE CAPTURE CROSS-SECTIONS FOR FAST NEUTRONS IN In, Re AND Ta

V.N. Kononov and Yu.Ya. Stavissky

Obninsk, November 1964

OOCC72

IAEA

NUCLEAR DATA UNIT

MASTER COPY

Using a liquid scintillation detector to record capture events and the time-of-flight technique to measure neutron energies, the radiative capture cross-sections were measured for a number of elements in the neutron energy range from 30 to 170 keV.

As neutron source the authors used the $T(p,n)He^3$ reaction on the target of a pulsed accelerator with a maximum proton energy of 1.2 MeV. The dimensions of the detector were 0.5 x 0.5 x 0.5 m. The cross-section measurements were done with a resolving time of 30 ns and a path length of 1.5 m.

 A correction for the detector's different recording efficiency for captures in U and In was made by the same means as in references $\int 1$ and $\int 5$. The average ratio of the capture cross-sections in In obtained in this work to those reported in reference $\int 1$ is 1.67 ± 0.03 . The corresponding figure obtained by comparing references $\int 5$ and $\int 1$ is 1.61 ± 0.05 . Figs. 2 and 3 show the capture cross-sections for Re and Ta, obtained by means of the new value for the cross-section in In.

Figure Captions

- Fig. 1 Neutron energy dependence of the radiative capture cross-section in indium
 - - this work
- Fig. 2 Neutron energy dependence of the radiative capture cross-section in rhenium
 - - this work
- Fig. 3 Neutron energy dependence of the radiative capture cross-section in tantalum
 - - this work

фиг. I. Зависимость сечения радиационного захвата в индии от энергии нейтронов. — настоящая работа; $\triangle +$ _gibbons[i]; $\mathbf{x} = \cos \left\{h^{\dagger}; \;\; \mathbf{z} = \text{viven [5]}.$

Фиг. 2. Зависимость сечения радиационного захвата в рении от энергии нейтронов.

- настоящая работа;
- маскlin [9].

Фиг. 3. Зависимость сечения радиационного захвата нейтронов в тантале от энергии нейтронов. • - настоящая работа; A - Gibbons [I]; x -Cox [i]; -Diven [5].