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Abstract
The development of the full folding model has set new standards for detailed micro-

scopic calculations of nucleon-nucleus scattering. Based on realistic nucleon-nucleon
interactions, this model samples the explicit off-shell behavior and the intrinsic energy
dependence of the effective internucleon force in the nuclear medium as driven by the
Fermi motion of the target nucleons. As a result, we have a reliable parameter-free
framework to calculate with reasonable accuracy nucleon-nucleus scattering observ-
ables in the 20-500 MeV energy range. In this paper we present the foundations of the
full folding model and discuss its scope and limitations. Results from calculations of
differential cross sections and spin observables for proton elastic scattering from light
and heavy nuclei are presented and compared to available data. The predicting power
of the theory is also explored with calculations of total cross sections for neutron scat-
tering from nuclei as a function of the projectile energy. Furthermore, we shall discuss
the sensitivity of the full folding results to different choices of realistic internucleon in-
teractions. In particular, we present recent developments based on the use of quantum
inversion potentials constructed directly from nucleon-nucleon phase-shift data.

1 Introduction

It is now almost twenty years since the first microscopic optical potential calculations
for elastic nucleon scattering from nuclei, starting from a realistic nucleon-nucleon (NN)
interaction, were reported [1]. There, the effort was centered in determining a simplified
internucleon effective force in the nuclear medium which, in turn, could be folded with the
target ground state density to give a first-order description of the nucleon-nucleus (NA)
optical potential. The main success of that approach was to show that a parameter-free
description of the scattering process led to a fair description of the data in a reasonable
range of energies, say 30 - 100 MeV. Further developments in the mid eighties extended the
range of applicability of the model to incident nucleon energies of the order of 200 MeV
[2, 3]. Thus, the possibility of calculating detailed optical potentials as a result of a deeper
understanding of the nuclear dynamics became certain. At the same time, it diminished
the role of the simpler phenomenological picture represented by the empirical models.

In recent years, new ways of approaching the NA scattering problem have provided a
more complete theoretical framework for calculating the corresponding optical potentials [4,
5, 6, 7]. The efforts of several groups have been centered mainly in the 200 - 400 MeV energy
range and the results obtained allow a quite accurate description of the scattering data,



particularly spin observables. The essential new features introduce an explicit treatment
of the off-shell behavior of the underlying NN interaction and its energy dependence as
driven by the momentum distribution of nucleon in the ground state of the target nucleus.
Although these new approaches were initially developed for nucleons with incident energies
in the intermediate energy range, their extensions to lower incident energies have proved
reasonably successful [8, 9]. Indeed, simplified nuclear matter models have been used to
describe the particle propagation in the nuclear medium rather than a target-specific model,
in an attempt to describe the global properties of the phenomena.

2 The Full-Folding Model

The description of the elastic scattering of a nucleon of energy E from an A-particle
target relies on the reduction of the many-body Hamiltonian HA+I to an effective one-body
Hamiltonian h(E) which correctly describes the elastic scattering channel. In the simplest
formulation of the problem, let us consider an (A + l)-particle Hamiltonian,

HA+i = HA + K0 + V, (1)

where HA is the target Hamiltonian, KQ is the projectile kinetic energy and V is the
nucleon-nucleus coupling, namely

with v, the bare internucleon potential between the incident nucleon and the zth nucleon
in the target. Then, the one-body Hamiltonian h(E) for an incident nucleon of energy E
becomes

h(E) = K0 + U(E), (3)

and U(E) is the one-body optical potential operator [10, 11, 12]. In a momentum repre-
sentation, the optical potential can be expressed as

U{k',k;E) = <£';*o\T{E+Eo)\k;*o>A, (4)

that is, the antisymmetrized matrix elements of an (.4 + l)-body transition matrix T evalu-
ated at the total energy E + Eo in the initial state. The $„ are eigenstates of the A-particle
target Hamiltonian HA,

HA\*n >= En\*n > , (5)

and £o is the ground-state energy.
The problem of simplifying the general expression which defines the optical potential

is a crucial one. It has become usual to express the many-body T-matrix in terms of a
multiple-scattering series [12],

(6)

with T,(z) the effective interaction between the incoming particle and the tth nucleon in the
target and GA+I the (.4 + l)-particle propagator for the intermediate states. The leading



term of this series defines the full-folding model,

A
Eo)\k;90> . (7)

The calculation of the 7̂  transition matrix is still prohibitive due to its many-body
nature. However, it has been argued that if only two-nucleon correlations are important in
the nuclear medium while other nucleons propagate without interacting with the pair, then
the T{ matrix elements can be expressed in terms of the matrix elements of a two-body
force F, [6],

< k'k[ Jfc^TilibJfc!,...,^ > « 6(k[ - k*1)...8{k'A - kA)< k'k\\Fi\kki > . (8)

The effective two-body force F accounts for multiple scattering of the interacting nucleons
to all orders in the ladder approximation,

F(«) = t; + vA(u)F{u), (9)

with A(w) a two-body propagator for nucleons propagating in the intermediate states [9].
The optical potential can now be casted as the convolution of an antisymmetrized two-

body effective interaction with the target ground state single particle wave functions [10,
11, 12]. In momentum space reads

U{k',k;E) = Jdpdp' £ 4>l{p'){k'p' \F(E + ea)\kp)A 4>*{P) (10)
a<tF

where {4>a, «o} are the target ground state single-particle wave functions and corresponding
energies, ep is the Fermi energy. The momenta k{k') and p{p') correspond to the initial
(final) momenta of the projectile and target struck nucleon respectively. The general ma-
trix elements of the effective interaction F are not simple to evaluate due to the lack of
translational invariance for the interacting nucleons in the medium. In order to have a bet-
ter insight about the behavior of these matrix elements, we have proposed to use a mixed
representation for the F-matrix [9],

(k'p' | F(u,) | kp) = - ~ „(«;*) kr ) • (11)' 0+0''

Here we have defined the initial and final two-nucleon center-of-mass (cm.) momenta,

Q = k + p , Q' = k' + p ' , (12)

and the corresponding relative momenta by

kr = ±(k-p), kr'=\{k'-p'). (13)

The function (kr'\f^(u\ R)\kr) corresponds to the matrix elements of a reduced two-body
effective interaction. In the case of no dependence of the / matrix upon the spatial coor-
dinate (R) one restores total momentum conservation of the interacting pair as the radial



integral in Eq. (11) leads to a cm. momentum conserving Dirac (^-function. Using the
two-body force F(u), as expressed in Eq. (11), we obtain

U(k',k;E) = 7^T3
{Zn> a<tF

\ \ ) , (14)

where we have denoted

K'=\{K-P-q), K=\(K-P+q), (15)

with K and g* defined by

/? = * ( £ + * ' ) , q = k-k', (16)

corresponding to the average and transferred momentum of the projectile respectively; the
ground state density pa associated with the state a is given by

P a ( P + | p , P - ^ = n o ^ ( P + i ^ a ( P - ^ j 3 ) , (17)

with na the occupancy of level a.
Eq. (14) represents the most general expression for the leading term of the optical

potential when the effective interaction is calculated taking into account finite size effects.
An advantage of this approach over now standard finite nucleus models [1, 3] is that we
do not require an explicit local density assumption to convolute the effective force with the
target density. Furthermore, we are able to keep track of the approximations that need to
be introduced when establishing the connection between the finite many-body problem and
the construction of an effective force which incorporates nuclear correlations in a realistic
way.

The calculation of the optical potential as expressed by Eq. (14) is quite challenging.
It involves the calculation of the reduced force / from Eq.(e9) and the evaluation of multi-
dimensional integrals. In order to find a simplified expression for the optical potential, the
Wigner transform [13] Wa of the single-particle density pa can be introduced, namely

WQ(R;P) = ̂ jdpe-^PoiP+faP- \p). (18)

Then, replacing Eq. (18) in Eq. (14) and making the change of variable p —¥ p+ q, we
obtain

U(k',k;E) = — -̂3 Y. [dRdR'dPdpeiA'-*Wa{R';P)eiiS-lil'-R'>

Now we realize that the role of the momentum p*in Eq. (19) is to give a measure of the
delocalization of the average bound nucleon (R') with respect to the average incoming par-
ticle (R). Since the /-matrix elements do not depend on p for an R independent interaction
/ , we have assumed in the general case that a weak dependence on p justifies taking p = 0



when evaluating the /-matrix elements in the integrand of Eq. (19). Although this approx-
imation has not been tested, we expect it to be reasonable since the off-shell sampling is
still dominated by the variation of the average momentum P of the target nucleons. Thus,
the optical potential becomes

f dPWa(R;P) (« ' | fR+p(E + ea;R)\ K)A . (20)

Eq. (20) is an explicit expression for the optical potential in terms of the local nuclear
density in phase space (Wa) and the reduced effective force acting between the interacting
nucleons at each R coordinate in the system. When the /-matrix is calculated using infinite
nuclear matter correlations, then Eqs.(19) and (20) for U provide a framework for developing
the local density (and other) approximations. Thus, our derivation overcomes some of the
heuristic arguments often used to relate nuclear matter and finite nucleus results.

In the limit of a medium independent internucleon interaction, as in the case when using
the free NN ^-matrix as the effective interaction, we recover the standard expression for the
full-folding optical potential [6, 14], namely U{k',k;E) -*• U0(k',k;E), with

(21)

In general, the optical potential requires the calculation, at each R coordinate, of /
matrices off-shell as their relative momenta obey no constraints apart from those imposed
by the ground state mixed density of the target.

3 Some Results

3.1 Calculations

The results presented later in this work include several further approximations which we
estimate shall not alter our findings significantly, mostly above 100 MeV incident nucleon
energy.

• We take an average binding energy ? for each single-particle state of the bound nu-
cleons [14]. In this case, Eq. (20) reduces to

U(k',k;E) = j'dtij'dPei?nW(R;P)(K'\fR+p(E + e;R)\K)A , (22)

with W(R; P) the Wigner transform of the target mixed density,

W(R;P) =

p ~ ^ - ( 2 3 )

• The Wigner transform is calculated using an approximated form for the mixed density
[14, 15],

P ^ e[k{R) ~ P]' ( 2 4 )

with p the target ground state density.



The reduced /-matrix is identified with a nuclear matter ^-matrix calculated self-
consistently at given values of the density [9]. This is most likely a poor approximation
for nucleon scattering below 100 MeV. However, the ^-matrix retains nuclear medium
correlations associated with the nuclear mean field and Pauli blocking. The R depen-
dence of the force is obtained via the relationship between the local density and a
corresponding (Fermi) momentum k,

(25)

More realistic calculations of the effective interaction are not yet available.

• We have taken different bare NN interactions for performing optical potential calcu-
lations. They do not differ significantly in their results provided they are consistent
with NN data below pion threshold. Most of the results reported here come from cal-
culations done with the Paris potential. We have also investigated the role of newly
developed NN inversion potentials [16, 17] obtained directly from NN phase-shift data
in NN scattering.

3.2 Data Analysis

An interesting test for the full-folding model is the calculation of neutron total cross
sections. In this case, high quality data which cover a wide range of energy and targets are
available. In Fig. 1 we present calculations and data [18, 19] of total cross sections {or) for
neutron scattering from 40Ca, ^Zr and 208Pb as a function of the neutron incident energy.

100 200 300

En (MeV)
Figure 1: Measured and calculated (solid lines) total cross sections for neutron scattering
from 40Ca, ^Zr and 208Pb.

The solid curves correspond to calculations based on full-folding optical potentials with
medium effects included through the ^-matrix. It is worth noting that although these full-



folding calculations do not describe CTT(E) in detail, they do follow, on average, the energy
dependence of the respective data, even at energies as low as 10 MeV. We also observe that
for the heavier nuclei, particularly 208Pb, the data exhibit more structure than the calculated
a-r. This feature is different from that exhibited by phenomenological calculations where
the cross section is overestimated but its structure is accurately reproduced [20].

We should emphasize that the present calculations include the symmetry potential
through the treatment of the folding of the effective force with the neutron and proton
densities. However, the average information about the nuclear medium as provided by sym-
metric nuclear matter may not be sufficiently accurate to give the details of the effective
force required to explain these extensive and high-precision data.

Applications have also been made for elastic scattering of protons on 40Ca and 208Pb.
Here, calculations of differential cross sections (da/dQ) and analyzing powers (Ay) have
been performed at energies between 30 and 400 MeV.

Figure 2: Measured and calculated observables for p+208Pb elastic scattering at 40, 98 and
160 MeV.

In Fig. 2 we have chosen to present our results for p+208Pb elastic scattering corre-
sponding to measured observables at energies of 40 [21], 98 [22] and 160 [23] MeV. Overall,
the theory improves its description of data as the energy of the proton increases. Indeed,
the agreement becomes remarkable for incident proton energies of the order of 60 MeV and
above [9]. Nevertheless, such a feature is not well reproduced for proton elastic scattering
on lighter nuclei (40Ca for example) where full-folding calculations still provide a systematic
and qualitatively correct description of data but not at the level of agreement shown in the
208Pb case. This result is consistent with the hypothesis used in calculating the effective



NN interaction, namely the nuclear matter ^-matrix.
The full-folding model predictions for proton elastic scattering above 200 MeV will be

shown for the p+40Ca system. In this case, we present results obtained from the Paris
potential [24] and from NN inversion potentials [17] constructed from the SM94 phase-
shift analysis [25]. The main difference between the two potentials is its different on-shell
behavior above pion threshold, with the Paris potential giving unconstrained and, therefore,
arbitrary NN phase-shifts in that region.

In Fig. 3 we show our results for p+40Ca at 200 and 300 MeV. The full line corresponds
to the results from the inversion potential and the dashed curve to the results from the
Paris one. The data was taken from Ref.[26] at 200 MeV and from Ref.[27] at 300 MeV. At
these energies we can analyze two aspects. Firstly, the full-folding model keeps providing
a detailed description of the data starting from the different bare NN forces. Secondly, we
start noting some departure in the predictions of the Paris and the inversion potentials,
with a tendency of the latter to be relatively closer to the NA scattering data and mainly
for the spin observables. Our findings are confirmed with calculations at 400 and 500 MeV.

10*
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0.5
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*°Ca(p,p) <°Ca(p,p)

E - 300 MeV
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Figure 3: Calculated and measured differential cross-section and analyzing power for p+40Ca
elastic scattering at 200 and 300 MeV. Solid (dashed) curves correspond to results obtained
with the inversion (Paris) potential.

4 Comments

We have presented the full-folding model to calculate the NA optical potential. Its main
characteristic is an accurate treatment of the off-shell effects and the energy dependence
of the effective NN interaction as prescribed by the Fermi motion of the nucleons in the



nucleus. This approach provides a general framework for understanding, to first order, how
nucleoas interact in the nuclear medium.

The strong points of the model are: the wide energy range of applicability; its reasonable
accuracy for reproducing systematically the data, mainly above 100 MeV and for heavier
targets; its sensitivity to the off-shell effects of the underlying NN interaction and to medium
effects represented by the Pauli blocking and the nuclear mean field.

Among the weak points of the model, at this stage of development, is the use of an
infinite nuclear matter p-matrix as an effective interaction. This approximation needs to
be improved before assessing the importance of higher order terms in the optical potential
at different energies of the projectile. Also, for energies above 200 MeV, difficulties do
remain in the description of spin-observables at momentum tranfers below ~ 1 fm"1. The
origin of these difficulties is not well understood.
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