

INTERNATIONAL ATOMIC ENERGY AGENCY

INDC INTERNATIONAL NUCLEAR DATA COMMITTEE

Thermal Neutron Capture Data for A=1-25

ZHOU CHUNMEI

China Institute of Atomic Energy P.O. Box 275 (41), Beijing 102413 People's Republic of China

Research carried out under the IAEA Contract No. 10693/R0 CRP Development of a Database for Prompt γ-ray Neutron Activation Analysis

July 2000

IAEA NUCLEAR DATA SECTION, WAGRAMER STRASSE 5, A-1400 VIENNA

Produced by the IAEA in Austria July 2000

Thermal Neutron Capture Data for A=1-25

ZHOU CHUNMEI

China Institute of Atomic Energy P.O. Box 275 (41), Beijing 102413 People's Republic of China

Research carried out under the IAEA Contract No. 10693/R0 CRP Development of a Database for Prompt γ-ray Neutron Activation Analysis

Abstract:

This report presents a new evaluation of level properties, prompt γ -rays and decay schemes properties of thermal neutron capture for nuclides A=1-25. The cutoff date is indicated below. This evaluation may be considered as an update of the Prompt Gamma Ray from Thermal Neutron Capture data table as published in Atomic Data and Nuclear Data Tables 26, 511, (1981).

Cutoff date:

September 1999. All references from Nuclear Science References (NSR) and private communications received have been considered.

¹H(n,γ) E=thermal 94Ki27,82Va13,80Is02

Target $J\pi = 1/2 +$. Measured E γ and I γ , deduced S(n) (94Ki27,82Va13,80Is02,80Gr02). Evaluated S(n)=2224.57 keV (95Au04). ²H Levels E(level) $T_{1/2}$ Comments $J\,\pi$ 0.0† $1 + ^{\dagger}$ stable (2224.5725 22) 0 + , 1 + $J\pi {:}\ from \ s-wave \ neutron \ capture.$ † From 96FiZY. $\gamma(^{2}H)$ $I\gamma^{\dagger\ddagger}$ E(level) Eγ Comments 2223.245 3 (2224.5725) 100 Eγ: from level-energies difference. [†] Intensity per 100 neutron captures. [‡] For intensity per 100 neutron captures, multiply by 1. Level Scheme Intensity: I(y+ce) per 100 parent decays 2223.245 100 0+,1+ (2224.5725) 0.0 1+ stable ${}^{2}_{1}H_{1}$ ²H(n,γ) E=thermal 82Ju01,80Al31 Target Jn=1+. Measured E γ and I γ , deduced S(n) (82Ju01,80Al31). Evaluated S(n)=6257.25 keV (95Au04). ³H Levels E(level) Comments $J\pi$ $T_{1/2}$ 0.0† 1 / 2 + † 12.33 y† 6 (6257.2482 24) 1 / 2 + , 3 / 2 + $J\pi$: from s-wave neutron capture. † From 96FiZY. $\gamma(^{3}\mathrm{H})$ Eγ E(level) $I\gamma^{\dagger\ddagger}$ Comments 6250.258 3 (6257.2482) $1\,0\,0$ Eγ: from level-energies difference.

 † $\,$ Intensity per 100 neutron captures.

[‡] For intensity per 100 neutron captures, multiply by 1.

²H(n, γ) E=thermal 82Ju01,80Al31 (continued)

⁶Li(n,γ) E=thermal 85Ko47

Target Jπ=1+. 85K047: measured Εγ, Ιγ; deduced Q. Evaluated S(n)=7249.96 keV 9 (95Au04).

⁷Li Levels

E(level) [†]	Jπ	[‡]		Comments
0.0 477.612 3 (7249.96 9)	3 / 2 - [‡] 1 / 2 - [‡] 1 / 2 + , 3 / 2 +	stable 73 fs <i>2</i>	Jπ: from s-wave neutron capture.	

 $^\dagger~$ From Ey using least-squares fit to Ey's.

‡ From 96FiZY.

 $\gamma(^{7}Li)$

Εγ	E(level)	Iγ ^{§#}	Mult. [†]
477.595 [†] 3	477.612	38 <i>2</i>	M1 (+E2)
6768.81 5	(7249.96)	38 <i>2</i>	
7245.91 ‡ 5	(7249.96)	62 <i>2</i>	

[†] From 96FiZY.

[‡] From level-energy differences.

§ Intensities per 100 neutron captures from 85Ko47.

[#] For intensity per 100 neutron captures, multiply by 1.

Level Scheme

⁷Li(n,γ) E=thermal 91Ly01

Target $J\pi=3/2-$. 91Ly01: measured E γ , I γ ; deduced S(n). Evaluated S(n)=2033.8 keV 3 (95Au04).

⁸Li Levels

 $^\dagger~$ From Ey's using least-squares fit to data.

[‡] From 96FiZY.

⁷Li(n,γ) E=thermal 91Ly01 (continued)

$\gamma(^{8}Li)$

Eγ [‡]	E(level)	<u>Ιγ</u> §#	Mult.†
980.6 [†] 2	980.8	10.6 10	M1
1052.0 2	(2033.8)	10.6 10	
2032.5 3	(2033.8)	89.4 10	

[†] From 96FiZY.

From 90F1ZY.
 From 91Ly01.
 Intensities per 100 neutron captures from 91Ly01.
 For intensity per 100 neutron captures, multiply by 1.

Level Scheme

 ${}_{3}^{8}\text{Li}_{5}$

⁹Be(n,γ) E=thermal 83<u>Ke11,74JuZW</u>

Target J π =3/2-. 83Ke11: measured E γ ; deduced Q. 74JuZW: measured E γ , I γ and γ -production cross sections. Evaluated S(n)=6812.33 keV 6 (95Au04).

¹⁰Be Levels

E(level) [†]	Jπ‡	T _{1/2} ‡	Comments
0.0	0.	1 51,106	
0.0	0+	1.51×10 y b	
3368.03 <i>3</i>	2+	125 fs <i>12</i>	
5958.39 <i>5</i>	2 +	< 55 fs	
5959.9 6	1 –		
6179.3 7	0 +		
6263.3 50	2 –		
(6812.33 6)	1 - , 2 -		E(level): from evaluated S(n) (95Au04).
			Jπ: from s-wave neutron capture.

[†] From Eγ (96FiZY), except as noted.

[‡] From 96FiZY, except as noted.

 $\gamma(^{10}\text{Be})$

$E\gamma^{\ddagger}$	E(lev	/el) Ιγ ^{#@}	Mult. [†]	Comments
219.30 [§] 2	6179.	3 0.05 1		$\sigma(n,\gamma)=0.004 \text{ mb } 1 \text{ (74JuZW)}.$
547.41 [§] 1	5 (6812.	33) 0.16 <i>3</i>		$\sigma(n, \gamma) = 0.012$ mb 2 (74JuZW).
631.83 [§] 1	5 (6812.	33) 0.24 <i>3</i>		$\sigma(n, \gamma) = 0.018 \text{ mb } 2 (74 \text{JuZW}).$
853.605 6	6812.	33) 26.0 <i>26</i>		$\sigma(\mathbf{n}, \gamma) = 2.0 \text{ mb } 2 (74 \text{JuZW}).$
2589.999 6	5958.	39 23.3 27		$\sigma(\mathbf{n}, \gamma) = 1.7 \text{ mb } 2 (74 \text{JuZW}).$
2811.80 [§] 3	6179.	3 0.13 <i>3</i>	E2	$\sigma(\mathbf{n}, \gamma) = 0.010 \text{ mb } \mathcal{Z} (74 \text{JuZW}).$
2896.40 [§] 3	6263.	3 0.15 <i>3</i>		$\sigma(n, \gamma) = 0.011 \text{ mb } 2 (74 \text{JuZW}).$
3367.415 3	3368.	03 33.7 27	E2	$\sigma(\mathbf{n}, \gamma) = 2.5 \text{ mb } 2 (74 \text{JuZW}).$
3443.374 3	0 (6812.	33) 11.6 11		$\sigma(n, \gamma) = 0.86 \text{ mb } 8 (74 \text{ JuZW}).$
5955.9 5	5958.	39 1.75 <i>32</i>		$\sigma(n, \gamma) = 0.11 \text{ mb } 2 (74 \text{ JuZW}).$
6809.585 3	6812.	33) 63.8 <i>65</i>		$\sigma(\mathbf{n}, \gamma) = 4.9 \text{ mb } 5 (74 \text{JuZW}).$

† From 96FiZY.

 ‡ From 83Ke11 (0.12 keV has been added to the uncertainties), except as noted.

§ From 74JuZW.

 $^{\#}\,$ Intensities per 100 neutron captures deduced from γ production cross sections in 74JuZW.

@ For intensity per 100 neutron captures, multiply by 1.

Level Scheme

¹²C(n,γ) E=thermal 82Mu14

Target $J\pi=0+$. 82Mu14: measured $E\gamma$ and $I\gamma,$ deduced S(n).

Evaluated S(n)=4946.31 keV (95Au04).

¹³C Levels

E(level) [†]	Jπ‡	T _{1/2} ‡	Comments
0.0	1 / 2 –	stable	
3089.446 16	1 / 2 +	1.07 fs 10	
3684.475 17	1 / 2 -	1.10 fs 9	
(4946.3120 23)	1 / 2 +		$J\pi$: from s-wave neutron capture.

[†] From Eγ using least-squares fit to data.

[‡] From 96FiZY, except as noted.

 $\gamma(^{13}C)$

$E\gamma^\dagger$	E(level)	Iγ ^{§#}
595.013 11	3684.475	0.24 1
1261.764 † 12	(4946.3120)	32.36 44
1856.716 [‡] <i>12</i>	(4946.3120)	0.16 1
3089.049 20	3089.446	0.43 2
3683.921 23	3684.475	32.14 64
4945.301 [‡] <i>3</i>	(4946.3120)	67.47 92

[†] From 96FiZY, except as noted.

From level energy differences.
 § Intensities per 100 neutron captures from 82Mu14.

[#] For intensity per 100 neutron captures, multiply by 1.

Level Scheme

Intensities: $I(\gamma+ce)$ per 100 parent decays

¹³C(n,γ) E=thermal 82Mu14

Target $J\pi = 1/2 -$. 82Mu14: measured $E\gamma$ and $I\gamma$, deduced S(n). Evaluated S(n)=8176.44 keV 1 (95Au04).

¹⁴C Levels

E(level) [†]	Jπ‡	T _{1/2} ‡	Comments
0.0	0+	5730 y 40	$\%\beta^{-}=100.$
6093.82 20	1 –	<7 fs	

¹³C(n,γ) E=thermal 82Mu14 (continued)

¹⁴C Levels (continued)

E(level) [†]	J π^{\ddagger}	T _{1/2} ‡	Comments
6589.5 <i>3</i>	0 +	3.0 fs 4	
6902.7 <i>3</i>	0 -	25 fs 3	
(8176.44 1)	0-,1-		$J\pi$: from s-wave neutron capture.

[†] From Eγ using least-squares fit to data.
[‡] From 96FiZY, except as noted.

 $\gamma(^{14}C)$

$_{\rm E\gamma^\dagger}$	E(level)	Ιγ§#	Comments
495.4 3	6589.5	8.0 3	
808.9 2	6902.7	3.6 <i>3</i>	
1273.81 [‡] 17	(8176.44)	4.9 10	Eγ=1273.9 2 (82Mu14).
1586.92 [‡] 18	(8176.44)	8.5 5	$E_{\gamma}=1586.8 \ 2 \ (82Mu14).$
2082.53 [‡] 18	(8176.44)	2.5 5	$E_{\gamma}=2082.6 \ 3 \ (82Mu14).$
6092.4 2	6093.82	16.3 8	
8174.0 [‡] 3	(8176.44)	84.0 23	Eγ=8173.92 (82Mu14).

[†] From 96FiZY, except as noted.
[‡] From level energy differences.
§ Intensities per 100 neutron captures from 82Mu14.
[#] For intensity per 100 neutron captures, multiply by 1.

Level Scheme

¹⁴N(n,γ) E=thermal 97Ju02,94Ra17,90Is05

Target $J\pi = 1 + .$

97Ju02: measured Ey, Iy, and $\gamma\text{-production cross sections; deduced S(n).}$

94Ra17: measured Ey, Iy and DSA. Deduced $T_{1/2}.$

90Is05: measured Ey, Iy, and $\sigma(n, \gamma).$

Evaluated S(n)=10833.30 keV (95Au04).

Measured S(n)=10833.3015 keV 24 (95Di08), 10833.314 keV 12 (97Ju02), 10833.64 keV 13 (80Gr12).

E(level) [†]	$_{J\pi^{\ddagger}}$	§	Comments
0.0	1 / 2 -	stable	
5270.164 13	5 / 2 +	1.79 fs 10	
5298.824 15	1 / 2 +	17 fs 5	
6323.858 <i>13</i>	3 / 2 -	0.146 fs 8	
7155.089 16	5 / 2 +	12 fs 6	
7300.885 18	3 / 2 +	0.42 fs 4	
7563.53 15	7 / 2 +	8 fs +8-4	
8312.635 20	1 / 2 +	1.2 fs 8	
8571.20 4	3 / 2 +	0.5 fs 5	
9049.58 6	1 / 2 +	0.35 fs 6	
9151.97 5	3 / 2 -	0.97 fs 25	
9154.934 18	5 / 2 +	5 fs $+4-2$	
9222.48 14	1 / 2 -	<90 fs	
9760.26 7	5 / 2 -	1.8 fs 6	
9924.88 5	3 / 2 -	0.21 fs 4	
10065.45 7	3 / 2 +	0.069 fs 4	
10450.3 4	5 / 2 -		
10701.67 7	3 / 2 -		
(10833.3015 24)	1/2 + .3/2 +		$J\pi$: from s-wave neutron capture.

 † From E7's using least-squares fit to data. ‡ From 96FiZY and 91Aj01, except as noted.

§ From 96FiZY. See also 94Ra17.

 $\gamma(^{15}{\rm N})$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Εγ@	E(level)	Iγ§&	Mult. [†]	δ†	Comments
383.04 (10833.3015) 0.007 3 $\sigma(n,\gamma)=0.006 mb 2 (97Ju02).$ 583.754 9154.934 0.142 10 $\sigma(n,\gamma)=0.018 mb 8 (97Ju02).$ 608.35 9760.26 0.022 4 $\sigma(n,\gamma)=0.018 mb 8 (97Ju02).$ 767.847 (10833.3015) 0.062 4 $\sigma(n,\gamma)=0.008 mb 3 (97Ju02).$ 770.45 9924.88 0.010 4 $\sigma(n,\gamma)=0.025 mb 3 (97Ju02).$ 783.221 7155.089 0.031 4 $\sigma(n,\gamma)=0.0125 mb 4 (97Ju02).$ 908.414 (10833.3015) 0.159 5 $\sigma(n,\gamma)=0.0125 mb 4 (97Ju02).$ 1011.684 8312.635 0.136 5 M1 [‡] $\sigma(n,\gamma)=0.012 mb 3 (97Ju02).$ 1025.23 6323.858 0.015 4 $\sigma(n,\gamma)=0.012 mb 3 (97Ju02).$ 1053.93 6322.858 0.015 4 $\sigma(n,\gamma)=0.012 mb 3 (97Ju02).$ 10673.027 (10833.3015) 0.088 5 $\sigma(n,\gamma)=0.013 mb 2 (97Ju02).$ 1678.293 25 (10833.3015) 0.087 6 $\sigma(n,\gamma)=0.012 mb 3 (97Ju02).$ 1681.228 50 (10833.3015) 0.247 9 $\sigma(n,\gamma)=0.014 mb 3 (97Ju02).$ 1783.63 6 (10833.3015) 0.247 9 $\sigma(n,\gamma)=0.20 mb 7 (97Ju02).$ 1883.98 4 9154.934 0.645 9 $\sigma(n,\gamma)$	131.44 7	(10833.3015)	0.018 4			$\sigma(n,\gamma) = 0.015 \text{ mb } 3 \text{ (97Ju02)}.$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	383.0 4	(10833.3015)	0.007 3			$\sigma(n,\gamma) = 0.006 \text{ mb } 2 (97 \text{Ju} 02).$
608.3 5 9760.26 0.022 4 $\sigma(n,\gamma)=0.018 mb 3 (97Ju02).$ 767.84 7 (10833.3015) 0.062 4 $\sigma(n,\gamma)=0.050 mb 3 (97Ju02).$ 831.22 11 7155.089 0.010 4 $\sigma(n,\gamma)=0.025 mb 3 (97Ju02).$ 908.41 4 (10833.3015) 0.159 5 $\sigma(n,\gamma)=0.025 mb 3 (97Ju02).$ 1011.68 4 8312.635 0.136 5 M1 [‡] $\sigma(n,\gamma)=0.129 mb 4 (97Ju02).$ 1025.2 3 6323.858 0.015 4 $\sigma(n,\gamma)=0.013 mb 2 (97Ju02).$ 1053.9 3 6323.858 0.015 4 $\sigma(n,\gamma)=0.013 mb 2 (97Ju02).$ 1073.02 7 (10833.3015) 0.088 5 $\sigma(n,\gamma)=0.013 mb 2 (97Ju02).$ 1681.228 50 (10833.3015) 0.736 6 $\sigma(n,\gamma)=0.013 mb 2 (97Ju02).$ 1681.228 50 (10833.3015) 1.63 4 $\sigma(n,\gamma)=0.010 mb 3 (97Ju02).$ 1783.63 6 (10833.3015) 0.247 9 $\sigma(n,\gamma)=0.020 mb 7 (97Ju02).$ 1884.780 18 9154.934 0.645 9 $\sigma(n,\gamma)=0.020 mb 7 (97Ju02).$ 1988.46 25 8312.635 0.32 5 E1 [‡] $r(n,\gamma)=0.10 mb 7 (97Ju02).$ 1999.679 27 9154.934 4.11 5 $\sigma(n,\gamma)=0.26 mb 7 (97Ju02).$ 1999.679 27 9154.934	583.75 4	9154.934	0.142 10			$\sigma(n,\gamma) = 0.115 \text{ mb } 8 (97 \text{Ju} 02).$
767.847(10833.3015)0.0624 $\sigma(n,\gamma)=0.050$ mb 3 (97Ju02).770.459924.880.010 $\sigma(n,\gamma)=0.008$ mb 3 (97Ju02).831.2217155.0890.031 $\sigma(n,\gamma)=0.025$ mb 3 (97Ju02).908.414(10833.3015)0.159 $\sigma(n,\gamma)=0.129$ mb 4 (97Ju02).1011.6848312.6350.1365M1 [‡] $\sigma(n,\gamma)=0.013$ mb 2 (97Ju02). $\sigma(n,\gamma)=0.013$ mb 2 (97Ju02).1025.236323.8580.016 $E1^{\ddagger}$ $\sigma(n,\gamma)=0.013$ mb 2 (97Ju02).1073.027(10833.3015)0.088 $\sigma(n,\gamma)=0.071$ mb 4 (97Ju02).1610.791/4(10833.3015)0.073 $\sigma(n,\gamma)=0.059$ mb 5 (97Ju02).1610.791/4(10833.3015)0.073 $\sigma(n,\gamma)=0.29$ mb 5 (97Ju02).1610.791/4(10833.3015)0.247 $\sigma(n,\gamma)=0.20$ mb 5 (97Ju02).1681.22850(10833.3015)0.247 $\sigma(n,\gamma)=0.20$ mb 7 (97Ju02).1783.636(10833.3015)0.247 $\sigma(n,\gamma)=0.20$ mb 7 (97Ju02).1884.780187155.08918.77 ZO [M1+E2] $+0.014$ $+15-14$ $I_{\gamma}=0.37$ 1988.46258312.6350.325 $E1^{\ddagger}$ $I_{\gamma}=0.37$ $\sigma(n,\gamma)=0.26$ mb 4 (97Ju02).1988.46258312.6350.325 $E1^{\ddagger}$ $I_{\gamma}=0.37$ $g(1Aj01).$ $\sigma(n,\gamma)=0.27$ 9154.9344.11 $I_{\gamma}=3.99$ $g(1Aj01).$ $\sigma(n,\gamma)=0.26$ mb 4 (97Ju02). $\sigma(n,\gamma)=0.26$ mb 4 (97Ju02).1999.679279154.934	608.3 5	9760.26	0.022 4			$\sigma(n,\gamma)=0.018 \text{ mb } 3 (97 \text{Ju} 02).$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	767.84 7	(10833.3015)	0.062 4			$\sigma(n,\gamma) = 0.050 \text{ mb } 3 (97 \text{Ju} 02).$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	770.4 5	9924.88	0.010 4			$\sigma(n,\gamma)=0.008 \text{ mb } 3 (97 \text{Ju} 02).$
908.414(10833.3015)0.1595 $\sigma(n,\gamma)=0.129 \text{ mb } 4 (97Ju02).$ 1011.6848312.6350.136M1 [‡] $\sigma(n,\gamma)=0.110 \text{ mb } 4 (97Ju02).$ 1025.236323.8580.0163E1 [‡] $\sigma(n,\gamma)=0.013 \text{ mb } 2 (97Ju02).$ 1053.936323.8580.0154 $\sigma(n,\gamma)=0.012 \text{ mb } 3 (97Ju02).$ 1073.027(10833.3015)0.0885 $\sigma(n,\gamma)=0.012 \text{ mb } 3 (97Ju02).$ 1610.7914(10833.3015)0.0736 $\sigma(n,\gamma)=0.059 \text{ mb } 5 (97Ju02).$ 1678.29325(10833.3015)7.96 $\gamma(n,\gamma)=0.29 \text{ mb } 7 (97Ju02).$ 1681.22850(10833.3015)1.63 $\gamma(n,\gamma)=0.200 \text{ mb } 7 (97Ju02).$ 1783.636(10833.3015)0.247 $\sigma(n,\gamma)=0.200 \text{ mb } 7 (97Ju02).$ 1783.636(10833.3015)0.247 $\sigma(n,\gamma)=0.200 \text{ mb } 7 (97Ju02).$ 1883.9849154.9340.645 $\sigma(n,\gamma)=0.200 \text{ mb } 7 (97Ju02).$ 1883.46258312.6350.32E1 [‡] $\gamma(n,\gamma)=0.200 \text{ mb } 4 (97Ju02).$ 1988.46258312.6350.32E1 [‡] $\gamma(n,\gamma)=0.26 \text{ mb } 4 (97Ju02).$ 1999.679279154.9344.115 $\sigma(n,\gamma)=3.30 \text{ mb } 4 (97Ju02).$ 2002.347300.8850.24M1 [‡] $\sigma(n,\gamma)=0.56 \text{ mb } 12 (97Ju02).$ 2030.847300.8850.06915 $\sigma(n,\gamma)=0.056 \text{ mb } 12 (97Ju02).$	831.22 11	7155.089	0.031 4			$\sigma(n,\gamma) = 0.025 \text{ mb } 3 (97 \text{Ju} 02).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	908.41 4	(10833.3015)	0.159 5			$\sigma(n,\gamma)=0.129 \text{ mb } 4 (97 \text{Ju} 02).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1011.68 4	8312.635	0.136 5	M1 [‡]		$\sigma(n,\gamma)=0.110 \text{ mb } 4 (97 \text{Ju} 02).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1025.2 3	6323.858	0.016 3	E1 [‡]		$\sigma(n,\gamma)=0.013 \text{ mb } 2 (97 \text{Ju} 02).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1053.9 <i>3</i>	6323.858	0.015 4			$\sigma(n,\gamma) = 0.012 \text{ mb } 3 (97 \text{Ju} 02).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1073.02 7	(10833.3015)	0.088 5			$\sigma(n,\gamma) = 0.071 \text{ mb } 4 (97 \text{Ju} 02).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1610.79 14	(10833.3015)	0.073 6			$\sigma(n,\gamma) = 0.059 \text{ mb } 5 (97 \text{Ju} 02).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1678.293 25	(10833.3015)	7.96 9			Iγ=7.23 18 (91Aj01).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						$\sigma(n,\gamma) = 6.39 \text{ mb } 7 (97 \text{Ju} 02).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1681.228 50	(10833.3015)	1.63 4			Iγ=1.54 15 (91Aj01).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						$\sigma(n,\gamma)=1.32 \text{ mb } 3 (97 \text{Ju} 02).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1783.63 6	(10833.3015)	0.247 9			$\sigma(n,\gamma) = 0.200 \text{ mb } 7 (97 \text{Ju} 02).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1853.98 4	9154.934	0.645 9			$\sigma(n,\gamma) = 0.522 \text{ mb } 7 (97 \text{Ju} 02).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1884.780 18	7155.089	18.77 20	[M1+E2]	+0.014 $+15-14$	Iγ=18.66 25 (91Aj01).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						$\sigma(n,\gamma)=15.07 \text{ mb } 16 (97 \text{Ju} 02).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1988.46 25	8312.635	0.32 5	E1 [‡]		$I\gamma = 0.37 \ 9 \ (91 Aj 01).$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						$\sigma(n,\gamma) = 0.26 \text{ mb } 4 (97 \text{Ju} 02).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1999.679 27	9154.934	4.11 5			$I\gamma = 3.99 \ 9 \ (91Aj01).$
2002.347300.8850.245M1 $\sigma(n,\gamma)=0.19$ mb4 (97Ju02).2030.847300.8850.06915 $\sigma(n,\gamma)=0.056$ mb12 (97Ju02).						$\sigma(n,\gamma)=3.30 \text{ mb } 4 (97 \text{ Ju} 02).$
2030.8 4 7300.885 0.069 15 σ(n,γ)=0.056 mb 12 (97Ju02).	2002.3 4	7300.885	0.24 5	M1 ‡		$\sigma(n,\gamma)=0.19 \text{ mb } 4 (97 \text{Ju} 02).$
	2030.8 4	7300.885	0.069 15			$\sigma(n,\gamma)=0.056 \text{ mb } 12 (97 \text{Ju} 02).$

¹⁴N(n,γ) E=thermal 97Ju02,94Ra17,90Is05 (continued)

				(continuou)	
Eγ@	E(level)	Ιγ§&	Mult. [†]	δ†	Comments
2247 4 5	8571 20	0 015 4	F1‡		$\sigma(n x) = 0.012$ mb 3 (97 Ju02)
2261 83 10	$(10833 \ 3015)$	0 077 5	LI		$\sigma(n, \gamma) = 0.062 \text{ mb } \delta(0.75 \text{ d} 02)$
2293.15 16	7563.53	0.045 5	[M1+E2]	+0.028 12	$\sigma(n, \gamma) = 0.036 \text{ mb} 4 (97 \text{Ju} 02).$
2520.443 22	(10833.3015)	5.58 9	. ,		$I_{\gamma}=5.79$ 7 (91Ai01).
	(,				$\sigma(n,\gamma) = 4.48 \text{ mb } 7 (97 \text{Ju}02).$
2726.0 5	9049.58	0.020 5	E1‡		$\sigma(n,\gamma) = 0.016 \text{ mb } 4 (97 \text{Ju} 02).$
2830.805 <i>36</i>	9154.934	1.71 4			$I_{\gamma=1.75} 3 (91A_{j}01).$
					$\sigma(n,\gamma) = 1.37 \text{ mb } 3 (97 \text{Ju} 02).$
2898.4 5	9222.48	0.022 5			$\sigma(n,\gamma) = 0.018 \text{ mb } 4 (97 \text{Ju} 02).$
3013.55 10	8312.635	0.644 21	M1‡		$I\gamma = 0.69 \ 2 \ (91 Aj 01).$
					$\sigma(n,\gamma)=0.521 \text{ mb } 17 (97 \text{Ju} 02).$
3269.2 4	(10833.3015)	0.06 1			$\sigma(n,\gamma)=0.049 \text{ mb } 9 (97 \text{Ju} 02).$
3300.74 13	8571.20	0.150 11	[M1+E2]	+0.091 7	Iγ=0.16 2 (91Aj01).
					$\sigma(n,\gamma)=0.121 \text{ mb } 9 (97 \text{Ju} 02).$
3531.982 20	(10833.3015)	8.94 [#] 11			Iγ=9.24 9 (91Aj01).
					$\sigma(n,\gamma)=7.18 \text{ mb } 9 (97 \text{Ju} 02).$
3677.737 17	(10833.3015)	14.52 [#] 16			$I\gamma = 14.89 \ 15 \ (91Aj01).$
					$\sigma(n,\gamma)=11.66 \text{ mb } 13 (97 \text{Ju}02).$
3855.60 7	9154.934	0.811 26			$I\gamma = 0.70 \ 1 \ (91Aj01).$
					$\sigma(n,\gamma) = 0.656 \text{ mb } 21 (97 \text{Ju} 02).$
3880.9 <i>9</i>	9151.97	0.048 16			$\sigma(n,\gamma) = 0.039 \text{ mb } 13 (97 \text{Ju} 02).$
3884.20 9	9154.934	0.564 22			$1\gamma = 0.57 \ 2 \ (91 \text{ Aj} 01).$
					$\sigma(n,\gamma) = 0.456 \text{ mb } 18 (97 \text{Ju}02).$
3923.9 6	9222.48	0.0379			$\sigma(\mathbf{n}, \gamma) = 0.030 \text{ mb} \ \gamma \ (97 \text{J} \text{u} 02).$
4308.731 17	(10833.3015)	10.71" 17			$I\gamma = 16.54 I/(9IAJ01).$
AGEA 1 11	0094 99	0 0 9 9 6			$\sigma(\mathbf{n}, \gamma) = 13.42 \text{ mb} 14 (97J \text{u} 02).$
4034.1 <i>11</i> 5260 162 <i>17</i>	9924.00 5270 164	0.0280	[M2 E2]	0 121 12	$O(\Pi, \gamma) = 0.023 \text{ mb } 5 (973002).$
5205.102 17	5270.104	29.80 50	[ML+E5]	-0.131 13	$\sigma(n x) = 23.08 \text{ mb} 24.(97 \text{ Jull}2)$
5297 826 20	5298 824	21 23 [#] 22			$V_{1} = 21.31 I I (91\Delta_101)$
0207.020 20	0200.024	21.20 22			$\sigma(n \gamma) = 17.05 \text{ mb} 18.(97 \text{ Ju02})$
5533.391 18	(10833.3015)	19.58# 21			$I_{\nu}=19.75 \ 21 \ (91Ai01).$
	(,				$\sigma(n,\gamma) = 15.72 \text{ mb } 17 (97 \text{Ju} 02).$
5562.059 21	(10833.3015)	10.68# 12			$I_{\gamma}=10.65 \ 12 \ (91A_j01).$
					$\sigma(n,\gamma) = 8.58 \text{ mb } 10 \text{ (97Ju02)}.$
6322.433 16	6323.858	18.23 [#] 22	[M1+E2]	-0.132 4	$I\gamma = 18.67 \ 14 \ (91Aj01).$
					$\sigma(n,\gamma) = 14.64 \text{ mb } 18 (97 \text{Ju}02).$
7153.4 4	7155.089	0.063 7			$\sigma(n,\gamma)=0.051 \text{ mb } 6 (97 \text{Ju} 02).$
7298.980 <i>32</i>	7300.885	9.39 [#] 12	[E1+M2]	-0.017 + 5 - 8	Iγ=9.73 9 (91Aj01).
					$\sigma(n,\gamma)=7.54$ mb 10 (97Ju02).
8310.156 39	8312.635	4.12# 9	E1‡		$I\gamma = 4.22 \ 5 \ (91Aj01).$
					$\sigma(n,\gamma)=3.31 \text{ mb } 7 (97 \text{Ju} 02).$
8568.6 4	8571.20	0.069 7	[E1+M2]	-0.085 + 5 - 9	$I\gamma = 0.073 \ 4 \ (91 Aj 01).$
			+		$\sigma(n,\gamma) = 0.056 \text{ mb } 5 (97 \text{Ju} 02).$
9046.71 17	9049.58	0.202 11	E1 +		$I\gamma = 0.186 5 (91Aj01).$
					$\sigma(\mathbf{n},\gamma)=0.163 \text{ mb } 9 \text{ (97Ju02)}.$
9148.95 <i>9</i>	9151.97	1.47 6			$I\gamma = 1.6 \ 2 \ (91Aj01).$
					$\sigma(n,\gamma) = 1.19 \text{ mb } 5 (97 \text{Ju} 02).$
9151.9 /	9154.934	0.15 4			$\sigma(\mathbf{n}, \gamma) = 0.12 \text{ mb } 3 (97 \text{Ju02}).$
9219.5 11	9222.48	0.019 /			$1\gamma = 0.024$ 3 (91AJ01).
0757 1 5	0760 26	0 056 6			$\sigma(n, \gamma) = 0.015 \text{ mb } \delta(973002).$
9737.1 3	9700.20	0.030 0			$S(\Pi, \gamma) = 0.043 \text{ mb} 3 (973 \text{ mb} 2).$
5561.5 5	JJ & T . 00	0.120 10			$\sigma(n \gamma) = 0.102 \text{ mb } 8.(97 \text{ Ju} 02)$
10061 9 5	10065 45	0 057 6			$V_{\mu} = 0.062 \ 4 \ (91 \text{ Ai} 01)$
	10000.10	5.501 0			$\sigma(\mathbf{n}, \gamma) = 0.046 \text{ mb } 5 (97 \text{Ju} 02).$
10697.8 17	10701.67	0.010 5	[M1+E2]	-0.180 + 2 - 6	$I\gamma = 0.062 \ 4 \ (91Aj01).$
					$\sigma(n,\gamma) = 0.008 \text{ mb} 4 (97 \text{Ju} 02).$
10829.110 59	(10833.3015)	14.3# 6			Iγ=13.65 21 (91Aj01).
					$\sigma(n,\gamma) = 11.5 \text{ mb } 5 (97 \text{Ju}02).$

$\gamma(^{15}N)$ (continued)

[†] From 96FiZY and 91Aj01, except as noted.

‡ From 94Ra17.

¹⁴N(n,γ) E=thermal 97Ju02,94Ra17,90Is05 (continued)

$\gamma(^{15}\mathrm{N})$ (continued)

§ Intensities per 100 neutron captures. Values deduced from σ(n,γ) of 97Ju02, except as noted.
[#] From table 3 in 97Ju02.
[@] From 97Ju02, except as noted.
& For intensity per 100 neutron captures, multiply by 1.

Level Scheme

Intensities: $I(\gamma+ce)$ per 100 parent decays

¹⁴N(n,γ) E=thermal 97Ju02,94Ra17,90Is05 (continued)

¹⁶O(n,γ) E=thermal 77Mc05

Target $J\pi=0+$. 77Mc05: measured E γ and I $\gamma, \gamma-production.$

Evaluated S(n)=4143.33 keV 21 (95Au04).

¹⁷O Levels

E(level) [†]	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
0.0	5 / 2 +	stable	
870.73 10	1 / 2 +	179.2 ps <i>18</i>	
3055.36 16	1 / 2 -	0.08 ps +6-4	
(4143.33 21)	1 / 2 +		E(level): from evaluated S(n) (95Au04). Jπ: from s-wave neutron capture.

[†] From 96FiZY, except as noted.

 $\gamma(^{17}O)$

$E\gamma^{\dagger}$	E(level)	<u></u> Ιγ ^{§#}
870.71 12	870.73	100
1087.93 † 11	(4143.33)	82 <i>3</i>
2184.48 20	3055.36	82 <i>3</i>
3272.26 11	(4143.33)	18 3

[†] From 96FiZY, except as noted.
[‡] From level energy differences.

 $\$ Intensities fer 100 neutron captures from 77Mc05.

For intensity per 100 neutron captures, multiply by 1.

Level Scheme

Intensities: I(y+ce) per 100 parent decays

¹⁷O(n, γ) E=thermal 78LoZW, 79LoZT

Target $J\pi = 5/2 + .$

78LoZW,78LoZT: measured Ey, Iy, and $\sigma(n,\gamma).$ Deduced decay scheme. Evaluated S(n)=8044.4 keV 8 (95Au04).

¹⁸O Levels

E(level) [†]	Jπ‡	T _{1/2} ‡
0.0	0+	stable
1982	2+	
634	0 +	
921	2+	
4456	1 -	

¹⁷O(n,γ) E=thermal 78LoZW,79LoZT (continued)

¹⁸O Levels (continued)

E(level) [†]	Jπ‡	Comments
5096	3 -	
5377	3+	
6352	1,2	
(8044.4 8)	2+,3+	E(level): from evaluated S(n) (95Au04).
		$J\pi$: from s-wave neutron capture.

[†] From 79LoZT and 78LoZW. Uncertainty not given by author.

[‡] From 96FiZY, except as noted.

$\gamma(^{18}O)$ $E\gamma^{\dagger}$ E(level) Iγ‡ $E\gamma^{\dagger}$ E(level) Iγ‡ Iγ[‡] $E\gamma^{\dagger}$ E(level) 822 4456 28.9 1982 1982 100 3114 5096 14.1 6352 3396 5377 1652 3634 2429 28 14.69.3 1693§ (8044.4) 2473 $4\,4\,5\,6$ 21.3 $3\,5\,8\,8$ (8044.4) 37.8 1938 3921 17.3 2666 (8044.4) 11.1

[†] From 79LoZT and 78LoZW. Uncertainty not given by authors.

[‡] Relative intensities from 78LoZW and 79LoZT. Uncertainty not given by authors.

 $\$ Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: relative Iy

¹⁹F(n, γ) E=thermal 96Ra04,86Ke15,83Hu12

Target $J\pi = 1/2 + .$

96Ra04: measured Ey, and $\gamma\text{-production cross sections; deduced }S(n).$

83Hu12: measured E γ , I γ ; deduced levels, J π .

Evaluated S(n)=6601.31 keV 5 (95Au04).

Measured S(n)=6601.35 keV 4 (96Ra04), 6601.33 keV 14 (83Hu12), 6601.36 keV 5 (87Ke09).

²⁰F Levels

E(level) [†]	Jπ [‡]	T _{1/2} §	Comments
0.0	2+	11 00 s [#] 2	%B ⁻ -100
656 02 3	2 + 3 +	0.305 ns 21	$\pi p = 100$. T : other: 0.270 ns. 21 (96Fi7V)
822 73 3	4 +	$55 \text{ ns}^{\#} 4$	
983 59 3	1-	1 36 fs 6	T' other: 1 39 ps 14 (96FiZY)
1056 82 3	1+	5 1 fs 11	$T_{1/2}$, other: 31 fs 9 (96FiZY)
1309 19 3	2 -	$1 \ 31 \ fs \ 6$	$T_{1/2}$, other: 1 11 ns 2/ (96FiZY)
1843 80 3	~ 2 -	46 fs 3	$T_{1/2}$: other: 21 fs 14 (96FiZY)
1970 83 4	~ (3-)	0 43 fs 6	
2043.98 3	2+	$2.7 f_{s} 5$	T _{1.0} : other: 26 fs 11 (96FiZY).
2194.30 3	(3+)	2.8 fs 8	$T_{1/2}$: other: <8.3 fs (96FiZY).
2864.86 10	(3-)	20 fs 3	1/2
2966.11 3	3+	3.7 fs 7	T: other: 42 fs 28 (96FiZY).
3171.69 14	(1+)		1/2
3488.41 3	1+	8.1 fs 5	T _{1/2} : other: 30 fs 8 (96FiZY).
3526.31 4	0 +	3.8 fs 4	$T_{1/2}$: other: 21 fs 10 (96FiZY).
3586.54 3	(1, 2) +	0.76 fs 4	$T_{1/2}$: other: <42 fs (96FiZY).
3589.80 4			1/2
3680.17 4	1,2	15.3 fs 16	
3965.07 4	1 +	4.8 fs 16	
4082.17 4	(1)+	2.5 fs 5	
4277.09 4	(1,2)+	5 fs 3	
4371.47 11	(2+)	< 3 f s	
4591.72 7			
4892.76 17			
5226.1 4	(1,2)-	0.97 fs 8	
5282.79 10			
5319.17 4	0,1,2	3.4 fs 8	
5465.89 17	(1,2,3)+		
5555.34 4	1 , 2 +	4.2 fs 10	
5623.13 6			
5810.1 4	(1+)		
5936.13 <i>3</i>	2 -	<1.4 fs	
5939.10 10			
6017.78 <i>3</i>	2 -	2.3 fs 8	
6044.92 <i>3</i>	0,1,2		
6299.1 3			
(6601.35 3)	0+,1+		$J\pi$: from s-wave neutron capture.

[†] From $E\gamma$'s using least-squares fit to data. [‡] From 96FiZY and 87Aj02.

§ From Doppler-shift-attenuation method (96Ra04), except as noted.

From 96FiZY.

$\gamma(^{20}F)$

$E\gamma^{\dagger}$	E(level)	Ιγ ^{§#}	Mult. [‡]	δ‡	Comments
166.78 5	822.73	4.6 5			$\sigma(n, \gamma) = 0.44$ mb 4 (96Ra04).
252.65 23	1309.19	0.08 2			$\sigma(n,\gamma) = 0.008 \text{ mb } 2 (96 \text{ Ra} 04).$
302.2 3	(6601.35)	0.05 2			$\sigma(n,\gamma) = 0.005 \text{ mb } 2 (96 \text{ Ra04}).$
325.73 14	1309.19	0.43 4			$\sigma(n,\gamma) = 0.041 \text{ mb } 3 (96 \text{ Ra} 04).$
534.60 8	1843.80	0.14 2			$\sigma(n,\gamma)=0.013 \text{ mb } 2 (96 \text{ Ra} 04).$
556.41 3	(6601.35)	2.10 14			$\sigma(n,\gamma) = 0.202 \text{ mb } 13 (96 \text{ Rao} 4).$
583.55 <i>3</i>	(6601.35)	37.7 16			$\sigma(n,\gamma)=3.60 \text{ mb } 15 \text{ (96Ra04)}.$
620.44 5	3586.54	0.24 2			$\sigma(n,\gamma)=0.023 \text{ mb } 2 (96 \text{Ra} 04).$

$\gamma(^{20}{\rm F})$ (continued)

$E\gamma^{\dagger}$	E(level)	Ιγ ^{§#}	Mult. [‡]	δ‡	Comments
653 2 3	1309 19	0 21 3			$\sigma(n v) = 0.020 \text{ mb} 3.(96\text{R}_{2}04)$
656.00 <i>3</i>	656.02	20.8 10	[M1+E2]	-0.10 5	$\sigma(n, \gamma) = 1.98 \text{ mb } 10 (96 \text{Ra} 04).$
661.63 4	1970.83	1.58 21	. ,		$\sigma(n,\gamma)=0.151 \text{ mb } 20 \text{ (96Ra04)}.$
662.24 14	(6601.35)	1.07 16			$\sigma(n,\gamma)=0.102 \text{ mb } 15 \text{ (96Ra04)}.$
665.21 <i>3</i>	(6601.35)	15.6 8			$\sigma(n,\gamma)=1.49 \text{ mb } 8 (96 \text{Ra} 04).$
670.1 6	2864.86	0.03 1			$\sigma(n,\gamma)=0.003 \text{ mb } 1 (96\text{Ra}04).$
691.4 <i>3</i>	4371.47	0.04 2			$\sigma(n,\gamma)=0.004 \text{ mb } 2 (96\text{Ra}04).$
734.84 12	2043.98	0.06 2			$\sigma(n,\gamma) = 0.006 \text{ mb } 2 (96 \text{ Ra} 04).$
771.71 10	2966.11	0.09 2			$\sigma(n,\gamma) = 0.008 \text{ mb } 2 (96\text{Ra}04).$
791.2 4	(0001.35)	0.04 1			$\sigma(n, \gamma) = 0.004 \text{ mb } 1 (96 \text{Ra}04).$ $\sigma(n, \alpha) = 0.007 \text{ mb } 2 (06 \text{Ra}04).$
×803 65 11	3903.07	0.07 2			$\sigma(n, \gamma) = 0.007 \text{ mb } 2 (96 \text{Ra}04).$
820.9 4	2864.86	0.05 2			$\sigma(n, \gamma) = 0.005 \text{ mb } 2 (96 \text{Ra} 04).$
822.69 4	822.73	2.30 13			$\sigma(n,\gamma) = 0.219 \text{ mb } 12 (96 \text{Ra} 04).$
885.0 3	2194.30	0.05 1			$\sigma(n,\gamma) = 0.005 \text{ mb } 1 (96 \text{ Ra04}).$
894.1 5	2864.86	0.03 1			$\sigma(n,\gamma) = 0.003 \text{ mb } 1 \text{ (96Ra04)}.$
978.19 6	(6601.35)	0.64 10			$\sigma(n,\gamma)=0.061 \text{ mb } 10 \text{ (96Ra04)}.$
983.53 <i>3</i>	983.59	12.2 6			$\sigma(n,\gamma)=1.16 \text{ mb } 6 (96 \text{Ra} 04).$
987.2 4	1970.83	0.4 1			$\sigma(n,\gamma)=0.004 \text{ mb } 1 \text{ (96Ra04)}.$
1020.9 4	2864.86	0.03 1			$\sigma(n,\gamma) = 0.003 \text{ mb } 1 \text{ (96Ra04)}.$
x1035.0 3		0.09 2			$\sigma(n,\gamma) = 0.009 \text{ mb } 2 (96 \text{ Ra} 04).$
1046.00 4	(6601.35)	1.85 9			$\sigma(n,\gamma) = 0.177 \text{ mb } 9 (96\text{Ra}04).$
1056.78 3	1056.82	9.8 4			$\sigma(n, \gamma) = 0.94 \text{ mb } 4 (96 \text{ Ra04}).$
1135.38 17	(0001.35)	0.09 2			$\sigma(n, \gamma) = 0.009 \text{ mb } \mathcal{Z} (90 \text{ Rad} 4).$ $\sigma(n, \gamma) = 0.264 \text{ mb } 15 (96 \text{ Rad} 4).$
1140.00 4	1843 80	0 47 3			$\sigma(n, \gamma) = 0.045 \text{ mb} 3 (96 \text{ Ra04})$
1282.14 4	(6601.35)	0.90 5			$\sigma(n,\gamma) = 0.086 \text{ mb } 5 (96\text{Ra}04).$
1306.2 3	4892.76	0.09 2			$\sigma(n,\gamma) = 0.009 \text{ mb } 2 (96 \text{Ra} 04).$
1309.17 <i>3</i>	1309.19	7.9 <i>3</i>			$\sigma(n,\gamma)=0.76 \text{ mb } 3 (96 \text{Ra} 04).$
1318.52 10	(6601.35)	0.24 2			$\sigma(n,\gamma) = 0.023 \text{ mb } 2 (96 \text{Ra} 04).$
1371.53 4	2194.30	1.52 9			$\sigma(n,\gamma)=0.145 \text{ mb } 9 (96 \text{Ra} 04).$
1375.2 4	(6601.35)	0.05 2			$\sigma(n,\gamma)=0.005 \text{ mb } 2 (96 \text{Ra} 04).$
1387.90 <i>3</i>	2043.98	8.7 3			$\sigma(n,\gamma) = 0.83 \text{ mb } 3 (96 \text{Ra} 04).$
1392.22 5	3586.54	0.82 6			$\sigma(n,\gamma) = 0.078 \text{ mb } 6 (96 \text{Ra} 04).$
1542.50 4	3586.54	2.87 13			$\sigma(n,\gamma) = 0.274 \text{ mb } 12 (96\text{Ra04}).$
1545.87 10	3389.80	0.14 2			$\sigma(n, \gamma) = 0.013 \text{ mb } \mathcal{I} (96\text{Ra}04).$
1644 50 8	2804.80	0.05 1			$\sigma(n, y) = 0.003 \text{ mb } f(96\text{Ra}04)$
1708.52 22	(6601.35)	0.27 3			$\sigma(n, \gamma) = 0.026 \text{ mb } 3 (96 \text{Ra} 04).$
1742.7 3	3586.54	0.06 2			$\sigma(n,\gamma) = 0.006 \text{ mb } \mathcal{Z}$ (96Ra04).
1836.50 22	3680.17	0.17 2			$\sigma(n,\gamma) = 0.016 \text{ mb } 2 (96 \text{ Ra04}).$
1843.74 3	1843.80	6.4 3			$\sigma(n, \gamma) = 0.61 \text{ mb } 3 (96 \text{Ra} 04).$
1853.96 22	5936.13	0.14 2			$\sigma(n,\gamma)=0.013 \text{ mb } 2 (96\text{Ra}04).$
1935.50 5	6017.78	0.76 5			$\sigma(n,\gamma)=0.073 \text{ mb } 5 (96 \text{ Ra} 04).$
1970.73 4	1970.83	0.94 9			$\sigma(n,\gamma) = 0.090 \text{ mb } 9 (96 \text{Ra} 04).$
1970.95 5	5936.13	0.10 3			$\sigma(n, \gamma) = 0.010 \text{ mb } 3 (96 \text{ Ra} 04).$
2009.52 7	(6601.35)	0.49 4			$\sigma(n,\gamma) = 0.047 \text{ mb } 4 (96\text{Ra}04).$
2038.08 18	4082.17	0.16 2			$\sigma(n, \gamma) = 0.015 \text{ mb } 2 (96 \text{ Ra04}).$
2042.0 0	2043 98	0.03 1			$\sigma(n, \gamma) = 0.005 \text{ mb } 1 (30 \text{ Rad} 4).$ $\sigma(n, \gamma) = 0.068 \text{ mb } 5 (96 \text{ Rad} 4).$
2052 8 6	£043.38 6017 78	0 05 1			$\sigma(n, \gamma) = 0.005 \text{ mb } 3 (300 \text{ au } 4)$
2079.72 21	6044.92	0.12 2			$\sigma(n,\gamma) = 0.011 \text{ mb } 2 (96\text{Ra}04).$
2120.95 16	3965.07	0.15 2			$\sigma(n,\gamma) = 0.014 \text{ mb } 2 (96 \text{Ra} 04).$
2143.26 3	2966.11	2.05 9			$\sigma(n, \gamma) = 0.196 \text{ mb } 9 (96 \text{Ra} 04).$
2179.09 4	3488.41	0.95 6			$\sigma(n,\gamma)=0.091 \text{ mb } 6 (96\text{Ra04}).$
2187.96 20	3171.69	0.14 2			$\sigma(n,\gamma)=0.013 \text{ mb } 2 (96 \text{Ra} 04.$
2194.16 3	2194.30	1.39 6			$\sigma(n,\gamma)=0.133 \text{ mb } 6 (96\text{Ra}04).$
2208.5 7	2864.86	0.02 1			$\sigma(n,\gamma)=0.002 \text{ mb } 1 \text{ (96Ra04)}.$
2229.8 4	(6601.35)	0.54 5			$\sigma(n,\gamma) = 0.052 \text{ mb } 5 \text{ (96Ra04)}.$
2232.9 9	4277.09	0.22 3			$\sigma(n,\gamma) = 0.021 \text{ mb } 3 \text{ (96Ra04)}.$
2255.82 4	5936.13	0.91 5			$\sigma(n, \gamma) = 0.041 \text{ mb } 5 (96 \text{ Ra04}).$
2309.96 0 2227 11 2	2900.11 (6601 2 ^E)	U.434			$\sigma(n, \gamma) = 0.041 \text{ mD } 4 (90 \text{ KaU4}).$ $\sigma(n, \gamma) = 0.117 \text{ mb } 5 (06 \text{ P}_2 0.4)$
~J~7.11 J	(0001.33)	1.63 0			$O(n, p = 0.117 \text{ mb } \sigma \text{ (solvabl)}.$

$\gamma(^{20}F)$ (continued)

$E\gamma^{\dagger}$	E(level)	¥#	Comments
2337 58 14	6017 78	0 14 3	$\sigma(n, y) = 0.014$ mb 3 (96R a 0.4)
2346.30 16	5936.13	0.22 4	$\sigma(n, \gamma) = 0.021 \text{ mb } 4 (96 \text{Ra} 04).$
2349.55 13	5936.13	0.32 3	$\sigma(n,\gamma) = 0.031 \text{ mb } 3 (96 \text{Ra} 04).$
2352.44 21	5939.10	0.18 3	$\sigma(n,\gamma) = 0.017 \text{ mb } 3 (96 \text{Ra} 04).$
2370.88 21	3680.17	0.08 2	$\sigma(n,\gamma)=0.008 \text{ mb } 2 (96 \text{Ra} 04).$
2427.834	6017.78	1.99 7	$\sigma(n,\gamma)=0.190 \text{ mb } 7 (96 \text{Ra} 04).$
2431.08 3	6017.78	3.7 <i>3</i>	$\sigma(n,\gamma)=0.35 \text{ mb } 3 (96 \text{Ra}04).$
2431.43 3	3488.41	0.7 3	$\sigma(n,\gamma)=0.07 \text{ mb } 3 (96 \text{Ra} 04).$
2447.58 4	5936.13	1.48 7	$\sigma(n,\gamma) = 0.141 \text{ mb } 7 (96\text{Ra}04).$
2458.0 4	6044.92	0.06 1	$\sigma(\mathbf{n}, \gamma) = 0.006 \text{ mb } I (96\text{ Ra04}).$
2409.34 4	3 3 2 0 . 3 1	2.06 8	$\sigma(\mathbf{n}, \gamma) = 0.197 \text{ mb } \delta$ (96Ra04).
2519 05 6	(6601 35)	0.404	$\sigma(n, \gamma) = 0.030 \text{ mb } 4$ (50ka04).
2529 20 3	6017 78	6 1 .3	$\sigma(n, \gamma) = 0.576 \text{ mb} - 3 (36Ra04)$
2529.55 3	3586.54	0.9 3	$\sigma(n, \gamma) = 0.09 \text{ mb} 3 (96 \text{Ra} 04).$
2556.35 15	6044.92	0.17 3	$\sigma(n,\gamma)=0.016 \text{ mb } 3 (96\text{Ra}04).$
2600.3 6	5465.89	0.04 2	$\sigma(n,\gamma) = 0.004 \text{ mb } 2 (96 \text{Ra} 04).$
2602.75 9	3586.54	0.37 3	$\sigma(n,\gamma)=0.035 \text{ mb } 3 \text{ (96Ra04)}.$
2623.18 8	3680.17	0.46 3	$\sigma(n,\gamma)=0.044 \text{ mb } 3 (96 \text{ Ra} 04).$
2636.115	(6601.35)	1.02 5	$\sigma(n,\gamma)=0.097 \text{ mb } 5 (96 \text{Ra}04).$
2655.74 6	3965.07	0.82 6	$\sigma(n,\gamma) = 0.078 \text{ mb } 6 (96 \text{ Ra} 04).$
2690.5 3	5555.34	0.06 1	$\sigma(n,\gamma)=0.006 \text{ mb } 1 \text{ (96Ra04)}.$
2697.9 5	4892.76	0.04 1	$\sigma(n,\gamma) = 0.004 \text{ mb } 1 (96\text{Ra}04).$
2864.68 13	2864.86	0.17 4	$\sigma(\mathbf{n}, \gamma) = 0.016 \text{ mb } 4$ (96Ka04).
2921.01 8	3586 54	0.995	$\sigma(\mathbf{n}, \gamma) = 0.094 \text{ mb } 5 (96 \text{Ra} 04).$
2933.76 25	3589.80	0.24 3	$\sigma(n, \gamma) = 0.023 \text{ mb } 3 (96 \text{Ra} 04).$
2965.90 <i>9</i>	2966.11	0.95 5	$\sigma(n, \gamma) = 0.091 \text{ mb} 5 (96 \text{ Ra} 04).$
2969.7 4	5936.13	0.17 3	$\sigma(n, \gamma) = 0.016 \text{ mb } 3 (96 \text{ Ra04}).$
2981.25 18	3965.07	0.37 4	$\sigma(n, \gamma) = 0.035 \text{ mb } 4 (96 \text{ Ra04}).$
3014.58 3	(6601.35)	4.24 17	$\sigma(n,\gamma)=0.405 \text{ mb } 16 (96\text{Ra}04).$
3023.90 9	3680.17	0.34 4	$\sigma(n,\gamma)=0.032$ mb 4 (96Ra04).
3025.10 4	4082.17	0.79 5	$\sigma(n,\gamma)=0.076 \text{ mb } 5 (96 \text{ Ra} 04).$
3051.43 4	6017.78	3.11 12	$\sigma(n, \gamma) = 0.297 \text{ mb } 12 (96 \text{Ra}04).$
3070.9 3	5936.13	0.21 3	$\sigma(n,\gamma) = 0.020 \text{ mb} 3 (96\text{Ra04}).$
3074.81 6	(6601.35)	1.98 8	$\sigma(\mathbf{n}, \gamma) = 0.189 \text{ mb } \delta$ (96Ka04).
3112 72 6	4082.17	0.07 2 2 5 2 10	$\sigma(\mathbf{n}, \gamma) = 0.007 \text{ mb } 2 (90 \text{ ka04}).$
3152.1 4	6017.78	0.15 3	$\sigma(n, \gamma) = 0.014 \text{ mb } 3 (96\text{Ra}04).$
3219.89 <i>12</i>	4277.09	0.64 4	$\sigma(n,\gamma) = 0.061 \text{ mb} \ 4 \ (96 \text{Ra} 04).$
3293.23 22	4277.09	0.27 3	$\sigma(n,\gamma) = 0.026 \text{ mb } 3 (96 \text{ Ra04}).$
3387.56 11	4371.47	0.64 5	$\sigma(n, \gamma) = 0.061 \text{ mb } 5 (96 \text{Ra} 04).$
3475.34	5319.17	0.05 1	$\sigma(n,\gamma)=0.005$ mb 1 (96Ra04).
3488.13 4	3488.41	7.5 <i>3</i>	$\sigma(n,\gamma)=0.72 \text{ mb } 3 (96\text{Ra}04).$
3534.4 4	4591.72	0.15 3	$\sigma(n, \gamma) = 0.014 \text{ mb } 3 (96 \text{Ra} 04).$
3578.6 5	5623.13	0.09 2	$\sigma(n,\gamma) = 0.009 \text{ mb } 2 (96 \text{Ra} 04).$
3586.23 6	3586.54	3.04 12	$\sigma(n,\gamma) = 0.290 \text{ mb } I2 (96\text{Ra}04).$
3607 8 3	4591 72	1.87 7	$\sigma(n, \gamma) = 0.178 \text{ mb} 7 (90 \text{ Ra} 04)$.
3679.91 <i>23</i>	3680.17	0.91 6	$\sigma(n, \gamma) = 0.087 \text{ mb } b$ (00 ka 04).
3711.0 5	5555.34	0.13 3	$\sigma(n, \gamma) = 0.012$ mb 3 (96Ra04).
3741.44 11	5936.13	0.61 5	$\sigma(n,\gamma) = 0.058 \text{ mb } 5 (96 \text{ Ra04}).$
3823.05 9	6017.78	1.11 6	$\sigma(n,\gamma)=0.106 \text{ mb } 6 (96 \text{Ra}04).$
3891.39 25	5936.13	0.19 3	$\sigma(n,\gamma)=0.018$ mb 3 (96Ra04).
3894.2 4	5939.10	0.13 3	$\sigma(n,\gamma)=0.012$ mb 3 (96Ra04).
×3916.9 5	****	0.08 3	$\sigma(n,\gamma) = 0.008 \text{ mb } 3 (96 \text{Ra} 04).$
3964.85 4	5936.13	4.62 17	$\sigma(n,\gamma) = 0.441 \text{ mb } 16 (96\text{Ra04}).$
39/3.47 20	6017.78 5210 17	0.25 3	$\sigma(n,\gamma) = 0.024 \text{ mb} 3 (96\text{Ra}04).$ $\sigma(n,\gamma) = 0.010 \text{ mb} 2 (96\text{Ra}04).$
4046 71 22	6017 78	0.10.3	$\sigma(n, \gamma) = 0.036 \text{ mb } 3 (96Ra04)$
4070.0 6	4892.76	0.07 2	$\sigma(n, \gamma) = 0.007 \text{ mb } 2 (96 \text{Ra}04).$
4081.77 10	4082.17	0.57 4	$\sigma(n,\gamma) = 0.054 \text{ mb } 4 (96 \text{ Ra} 04).$
4092.2 4	5936.13	0.18 3	$\sigma(n,\gamma)=0.017 \text{ mb } 3 \text{ (96Ra04)}.$

$\gamma(^{20}F)$ (continued)

$E\gamma^{\dagger}$	E(level)	Ιγ ^{§#}	Comments
4095 01 23	5939 10	0 2 9 3	$\sigma(n, n) = 0.028 \text{ mb} - 3.06 \text{Pa}(0.4)$
4095.01 25		1 75 6	O(n, f) = 0.020 mb S(300000)
4173.34 3	6011.78	1.13 0	$S(n, j) = 0.107 \text{ mb} - 6 (30 \text{ km}^2)$
4200.30 /	5999 70	1.13 0	$S(1, \gamma) = 0.106 \text{ mb} \ b \ (50 \text{ Ka}) + 1.000 \text{ mb} \ b \ (50 \text{ Ka}) + 1.000 \text{ mb} \ (50 \text{ mb} \ $
4223.8 /	5282.79	0.00 1	$o(n, \gamma) = 0.000 \text{ mb} I (90 \text{ ka}) (90 \text{ ka})$
4245.65 8	5555.34	0.97 3	$\sigma(n, \gamma) = 0.093 \text{ mb } 5 (968304).$
4262.5 9	5319.17	0.03 1	$\sigma(n,\gamma) = 0.003 \text{ mb } I (90 \text{ ka}) 4).$
4313.29 25	5623.13	0.19 3	$\sigma(n,\gamma) = 0.018 \text{ mb} 3 (96 \text{ ka}) 4).$
4335.09 13	5319.17	0.49 4	$\sigma(n,\gamma) = 0.047 \text{ mb } 4$ (96ka04).
4556.81 4	(6601.35)	5.47 21	$\sigma(n,\gamma) = 0.522 \text{ mb } 20 (96 \text{ ka} 04).$
4626.5 5	5936.13	0.08 2	$\sigma(n,\gamma) = 0.008 \text{ mb } 2 (96\text{Ra04}).$
4630.6 9	(6601.35)	0.06 1	$\sigma(\mathbf{n}, \gamma) = 0.006 \text{ mb } I (96\text{Ra}04).$
4639.0 4	5623.13	0.24 4	$\sigma(n,\gamma) = 0.023 \text{ mb } 4 \text{ (96Ra04)}.$
4708.19 12	6017.78	0.54 4	$\sigma(n,\gamma) = 0.052 \text{ mb } 4 (96 \text{Ra}04).$
4735.22 10	6044.92	0.57 4	$\sigma(\mathbf{n},\boldsymbol{\gamma})=0.054 \text{ mb } 4 \text{ (96Ra04)}.$
4757.02 5	(6601.35)	1.98 8	$\sigma(n,\gamma)=0.189 \text{ mb } 8 (96\text{Ra}04).$
4878.8 6	5936.13	0.09 2	$\sigma(n,\gamma)=0.009 \text{ mb } 2 (96\text{Ra}04).$
4899.2 9	5555.34	0.07 2	$\sigma(n,\gamma)=0.007 \text{ mb } 2 (96\text{Ra}04).$
4951.91 25	5936.13	0.62 7	$\sigma(n,\gamma) = 0.059 \text{ mb } 6 (96 \text{Ra}04).$
4954.5 7	5939.10	0.22 3	$\sigma(n,\gamma)=0.021 \text{ mb } 3 \text{ (96Ra04)}.$
4960.3 4	6017.78	0.28 3	$\sigma(n, \gamma) = 0.027 \text{ mb } 3 \text{ (96Ra04)}.$
5033.50 4	6017.78	6.50 25	$\sigma(n, \gamma) = 0.620$ mb 24 (96Ra04).
5279.27 10	5936.13	4.42 21	$\sigma(n,\gamma) = 0.422 \text{ mb } 20 \text{ (96Ra04)}.$
5282.1 6	5282.79	0.08 2	$\sigma(n, \gamma) = 0.008 \text{ mb } 2 \text{ (96Ra04)}.$
5291.40 6	(6601.35)	2.47 11	$\sigma(n,\gamma) = 0.236 \text{ mb } 10 \text{ (96Ra04)}.$
5318.32 25	5319.17	0.20 3	$\sigma(n,\gamma)=0.019$ mb 3 (96Ra04).
5360.93 10	6017.78	1.05 5	$\sigma(n, \gamma) = 0.119 \text{ mb } 5 (96 \text{Ra} 04).$
5543.674	(6601.35)	4.30 17	$\sigma(n,\gamma) = 0.410 \text{ mb } 16 \text{ (96Ra04)}.$
5554.59 11	5555.34	0.54 4	$\sigma(n, \gamma) = 0.052 \text{ mb } 4 \text{ (96Ra04)}.$
5616.82 7	(6601.35)	1.45 6	$\sigma(\mathbf{n}, \gamma) = 0.138 \text{ mb } 6 \ (96 \text{Ra} 04).$
5622.5 6	5623.13	0.08 2	$\sigma(n, \gamma) = 0.008 \text{ mb } 2 (96 \text{ Ra} 04).$
5935.10 11	5936.13	1.02 10	$\sigma(n,\gamma)=0.097 \text{ mb } 10 \text{ (96Ra04)}.$
5938.1 7	5939.10	0.12 3	$\sigma(n,\gamma)=0.011 \text{ mb } 3 (96 \text{ Ra} 04).$
6016.72 6	6017.78	9.9 5	$\sigma(n,\gamma)=0.94 \text{ mb } 4 (96\text{Ra}04).$
6600.08 <i>8</i>	(6601.35)	9.9 5	$\sigma(n,\gamma) = 0.94 \text{ mb } 4 (96 \text{ Ra} 04).$

[†] From 96Ra04.
 [‡] From 96FiZY.

From 90r121.
 § Intensities per 100 neutron captures. Values deduced from σ(n,γ) of 96Ra04.
 # For intensity per 100 neutron captures, multiply by 1.
 x γ ray not placed in level scheme.

Level Scheme

Level Scheme (continued)

Level Scheme (continued)

²⁰Ne(n,γ) E=thermal 86Pr05

Target $J\pi=0+$.

Others: 70Se14, 71Be34.

86Pr05: measured E_Y, I_Y for energy rang 1.8 to 10 MeV with a high- resolution pair spectrometer; results differ significantly with those reported previously. Deduced neutron separation energy S(n)=6761.16 keV 4 with improved

precision.

Other measured S(n)=6759.5 keV 5 (71Be34), 6760.8 keV 15 (70Se14).

Evaluated S(n)=6761.11 keV 4 (95Au04).

Measured 2036.21-keV γ -ray production cross section, $\sigma(n,\gamma)=27$ mb 3 (86Pr05).

²¹Ne Levels

E(level) [†]	$J\pi^{\ddagger}$	[†]	Comments
0.0	3 / 2 +	stable	
350.728 <i>8</i>	5 / 2 +	7.17 ps <i>12</i>	
2788.83 8	1 / 2 -	81 ps 5	
2794.14 5	1 / 2 +	5.2 fs 6	
3663.67 10	3 / 2 -	65 fs 6	
4684.5 2	3 / 2 +	11 fs 3	
4725.36 4	3 / 2 –	7 fs 3	
5689.77 5	1 / 2 -	6 fs 3	
5992.56 5	3 / 2 –	<13 fs	
(6761.11 § 4)	1 / 2 +		$J\pi$: from s-wave neutron capture.

[†] From least-squares fit to Eγ data, except as noted.

‡ From 96FiZY, except as noted.

§ From evaluated s(n) (95Au04).

$\gamma(^{21}Ne)$

Εγ	E(level)	Ιγ ^{‡@}	Mult.#	δ#	Comments
350.72 [†] 6	350.728	62.0 10	(M1+E2)	-0.074 4	
769.06 [†] 23	(6761.11)	0.718 4			
1071.90 [†] 20	(6761.11)	14.1§ 1			
1931.08 6	4725.36	16.4 6			Iγ: 16.4 6 (86Pr05).
2036.21 [†] 20	(6761.11)	76.8§ 10			Eγ: 2035.67 4 (86Pr05).
					Iγ: 73.8 10 (86Pr05).
					$\sigma(n, \gamma) = 27 \text{ mb } 3 \text{ (86Pr05)}.$
2077.23 ^{†&} 20	(6761.11)	0.57 7			$E\gamma$, $I\gamma$: from intensity balance given by evaluator.
2437.84 25	2788.83	1.0 2	(M2 + E3)	+0.12 3	I _{γ:} 1.0 <i>2</i> (86Pr05).
2793.94 5	2794.14	25.0 3	. ,		Iγ: 25.0 3 (86Pr05).
2895.32 10	5689.77	8.0 8			Iγ: 7.0 2 (86Pr05).
3098.3 [†] 3	(6761.11)	0.24 [§] 6			E_{γ} : 3097.25 10 (86Pr05).
					Iγ: 0.23 6 (86Pr05).
3311.92 25	3663.67	0.17 5	(E1+M2)	+0.05 7	Iγ: 0.17 5 (86Pr05).
3967.13 [†] 20	(6761.11)	0.41 [§] 6	. ,		Eγ: 3966.51 25 (86Pr05).
					Iγ: 0.39 6 (86Pr05).
3971.72 [†] 25	(6761.11)	1.18 1			Ey: 3971.98 15 (86Pr05).
					Iv: 1.08 8 (86Pr05).
4333.19 25	4684.5	0.324			$I_{\gamma}: 0.32 \ 4 \ (86 Pr 05).$
4374.13 6	4725.36	60 7			Iγ: 52.9 6 (86Pr05).
4683.62 25	4684.5	0.25 3			Iγ: 0.25 3 (86Pr05).
4725.10 25	4725.36	0.14 2			Iγ: 0.14 2 (86Pr05).
5641.00 25	5992.56	0.24 2			Iγ: 0.24 2 (86Pr05).
5688.97 6	5689.77	6.1 2			Iv: 5.95 8 (86Pr05).
5991.71 13	5992.56	0.44.3			$I_{Y}: 0.44 \ 3 (86 Pr 05).$
6409.87 [†] 20	(6761.11)	0.583			E_{V} : 6409.39 12 (86Pr05).
	(),),),),),),),),),),),),,),,),,),,,),,	0.0 0			Ly: 0.5 3 (86Pr05).
6760.53 [†] 20	(6761, 11)	6.1 § /			E_{V} : 6760.06 <i>6</i> (86Pr05).
	(Iγ: 5.84 7 (86Pr05).

[†] From level-energy differences.

[‡] Intensities per 100 neutron captures. Primary γ intensities from 86Pr05 are reevaluated(see 90En08). Second γ intensities are reevaluated and from γ intensities balance at each level.

 $\$ From values evaluated by 90En08.

²⁰Ne(n,γ) E=thermal 86Pr05 (continued)

$\gamma(^{21}Ne)$ (continued)

From 96FiZY.

[@] For intensity per 100 neutron captures, multiply by 1.

& Placement of transition in the level scheme is uncertain.

Level Scheme

²¹Ne(n, y) E=thermal 86Pr05

Other: 71Be34.

Target $J\pi = 3/2 + .$

86Pr05: measured E γ , I γ for energy rang 1.8 to 10 MeV with a high- resolution pair spectrometer; deduced neutron separation energy S(n)=10364.4 keV 3 with improved precision.

Other measured S(n)=10362.0 keV 33 (71Be34).

Evaluated S(n)=10363.95 keV 22 (95Au04).

²²Ne Levels

E(level) [†]	$J\pi^{\dagger}$	T _{1/2} †	Comments
0.0	0		
0.0	0+	stable	
1274.542 7	2 +	3.63 ps 5	
3351			
5515			
5917			
6344			
10363.95 22	1+,2+		E(level): from evaluated s(n) (95Au04).
			$J\pi$: from s-wave neutron capture.

[†] From 96FiZY, except as noted.

 $\gamma(^{22}Ne)$

$E\gamma^{\dagger}$	E(level)	Ιγ‡#	Mult.§	Comments
1274.53 2	1274.542	0.8 2	E2	Eγ: 1274.58 (86Pr05).
^x 4884.85 <i>83</i>		1.3 5		
x5420.64 75		1.8 5		
x5920.5 17		1.0 5		
9087.79 25	10363.95	0.8 2		Eγ: 9087.79 25 (86Pr05).

Footnotes continued on next page

²¹Ne(n,γ) E=thermal 86Pr05 (continued)

$\gamma(^{22}\mathrm{Ne})$ (continued)

[†] From level-energy differences.

- ‡ Relative intensities.
- § From 96FiZY.

 $^{\#}\,$ For intensity per 100 neutron captures, multiply by 1.

 $^{x}\ \gamma$ ray not placed in level scheme.

Level Scheme

Intensities: relative Iy

²²Ne(n,γ) E=thermal 86Pr05

Target Jπ=0+.

1980.54 17

2203.58 6

(5200.62)

3220.66

Others: 70Se14, 71Be34.

86Pr05: measured E γ , I γ for energy rang 1.8 to 10 MeV with a high- resolution pair spectrometer; results differ significantly with those reported previously. Deduced neutron separation energy S(n)=5200.65 keV 12 with improved precision.

Other measured S(n)=5199.1 keV 7 (71Be34), 5200.2 keV 20 (70Se14).

75# 4

14§ 3

Evaluated S(n)=5200.62 keV 12 (95Au04).

Measured 1980.54-keV γ -ray production cross section, $\sigma(n,\gamma)=25$ mb 4 (86Pr05).

²³Ne Levels

E(level) [†]	Jπ‡	[†]		Comments
0.0 1017.0 2 3220.66 16 3836.4 3 (5200.62 12) † From Ey's, e ‡ From 96FiZ' § T	5/2+ 1/2+ 3/2- 1/2- 1/2+ except as not Y, except as	37.24 s 12 178 ps 10 <70 fs <70 fs ted.	Jπ: from s−1	-wave neutron capture.
	iteu 5(ii) (00			<u>γ(²³Ne)</u>
$E\gamma^{\dagger}$	E(level)	Ιγ‡&	Mult.@	Comments
1016.94 <i>13</i> 1364.8 <i>3</i>	1017.0 (5200.62)	$38.8 ext{ } 40 ext{ } 22^{\#} ext{ } 3 ext{ }$		

Continued on next page (footnotes at end of table)

Eγ: 1979.89 β (86Pr05). σ(n, γ)=25 mb 4 (86Pr05).

 $I\gamma(2203.58\gamma):I\gamma(3220.42\gamma)=100\ 3:24\ 3\ (96FiZY).$

²²Ne(n,γ) E=thermal 86Pr05 (continued)

$\gamma(^{23}Ne)$ (continued)

$\mathrm{E}\gamma^\dagger$	E(level)	Iγ [‡] &	Mult.@	Comments
2819.22 16	3836.4	22 3	E1	
3220.42 16	3220.66	61§ 3		See notes of 2203.58-7.
4183.90 17	(5200.62)	2.8 # 14		Eγ: 4183.20 25 (86Pr05).
5200.0a 1	(5200.62)	0.2 1		Εγ,Ιγ: intensity balance given by evaluator.

 $^\dagger~$ From level-energy differences, except as noted.

^{\ddagger} Intensities per 100 neutron captures. Primary γ intensities from 86Pr05 are reevaluated (see 98En04). Second γ intensities are from γ intensities balance at each level.

§ Relative intensities are from 96FiZY and renormalized to $\gamma\text{-intensities balance}.$

[#] From 98En04.

@ From 96FiZY.

 $\&\,$ For intensity per 100 neutron captures, multiply by 1.

^a Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Ι(γ+ce) per 100 parent decays

²³Na(n,γ) E=thermal 83Hu11,83Ti02,87Zh12

Target $J\pi=3/2+$.

83Hu11: measured E γ and I γ with curved crystal and Ge(Li) spectrometer ; deduced neutron separation energy S(n)=6959.73 keV 14.

83TiO2: measured Eγ and Iγ with Ge(Li)-NaI(Tl) and Ge(Li) pair spectro meter; deduced neutron separation energy S(n)=6959.42 keV 8.

87Zh12: measured E γ and I γ with Ge(Li)-NaI(Tl) spectrometer; deduced neutron separation energy S(n)=6959.51 keV 21. Evaluated neutron separation energy S(n)=6959.44 keV 5 (95Au04).

²⁴Na Levels

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2} ‡	Comments
0 0	4 .	14 0500 h 12	% B100
U.U 472 207 0	4+	14.9590 n IZ	$\%\beta = 100.$
563 200 12	2+	26 ns 6	/011-55.55, /op =0.05.
1341 43 2	2+	60 fs 20	
1344 65 2	3(+)	26 fs 6	
1346 63 2	1+	4 4 ns 3	
1846 01 3	2+	180 fs 25	
1885.51 5	3+	26 fs 5	
1961?# 1			
1977?# 1			
2513.51 5	3+	10 fs 3	
2562.3?§ 5	4+, (2+)	<17 fs	
2903.94 5	3+	35 fs 6	
2977.83 4	2+, (3+)	<17 fs	
3371.84 4	2 -	13 fs 3	
3413.25 5	1+	<14 fs	
3589.26 10	1+	<6 fs	
3628.25 11	3 +	<14 fs	
3655.97 <i>9</i>	2+,(1+)	<14 fs	
3681.79 8	0 +	<14 fs	
3745.09 7	3 –	<17 fs	
3866?# 1			
3935.7? [§] 4	(0+ to 4+)	<14 fs	
3943.3?§ <i>3</i>	(2+ to 6+)	<14 fs	
3977.32 7	(1-,2+)	<14 fs	
4048.49 16	0 -	70 fs 30	
4144.9?§ 11	4 – , (5 –)	< 20 fs	
4185.6? [§] 7	2 +	<14 fs	
4196.3 2	(1,2)-	<10 fs	
4207.19 4	2 +	23 fs 6	
4441.54 11	2 -	< 35 fs	
4562.06 6	1 –	< 10 fs	
4621.5 2		<10 fs	Seen also in (d,pγ).
4692.2?# 4	_	<25 fs	
4750.94 10	2 -		
4891.35?8 16	(1.0)		
4939.40?5 11	(1,3)-		
5031.0273 9	(1 0 0)	.0.0 (-	
5044.90 11 5050 72 6	(1, 2, 3) - 2_	< 50 IS	
5117 412# 16	2 – 1	< 30 18	
5192 44 16	3_	c7 fs	
5250 2	3-	< 50 fs	
5339 06 8	2 -	<14 fs	
$5397 19?^{\#} 11$	$(1 \ 3) =$		
5478.96 9	1-	< 50 fs	
5809.66?# 12			
5862.9?# 2			
5918.46?#			
5953.16? [§] 10			
5965.6? [§] 14	0 +	<7 fs	
6072.83 13	1 +		
6222.4?# 3			
6247.62 <i>12</i>		< 10 fs	

²⁴Na Levels (continued)

E(level) [†]	Jπ‡	Comments
(6959.44 5)	1+,2+	E(level): from evaluated S(n) (95Au04). Jπ: from s-wave neutron capture.

[†] From 90En08, except as noted.
[‡] From 96FiZY.
[§] Seen only in 83Ti02.
[#] Seen only in 83Hu11.

$\gamma(^{24}Na)$

$E\gamma^{\dagger}$	E(level)	Iγ [‡] #&	Mult.@	δ@	Comments
90 9921 14	563 200	43 9 31			Lv: 41 8 63 (83Hu11) 48 5 (83Ti02) 41 5 (877b12)
472 2023 8	472 207	90 3	M3		I_{V} : 93 9 74 (83Hu11) 90 4 (83Ti02) 81 5 (87Zh12)
499 383 5	1846 01	2 4 3	1110		I_{1} : 0.0 74 (0011011), 00 4 (001102), 01 5 (072112). I_{2} : 2 4 7 (83Hu11) 1 5 3 (83Ti(2)) 2 8 3 (877h12)
501 30 3	1846 01	0 58 8			I_{γ} : 0.66 6 (83Hu11) 0.50 5 (83Ti02)
504 57a 4	1846 01	0.000			$I_{\rm V}: 0.27 \ 3 \ (83 {\rm Hu} 11)$
559 448 8	2513 51				I_{1} : 0.27 5 (30Hu11): I_{2} : 0.127 18 (83Hu11)
563 186 8	563 200	2 00 59			$I_{\rm V}$: 1,7,3 (83Hu11), 2,75,13 (83Ti02), 1,41,10 (877b12)
614 26 ^a 5	19612	2.00 00			I_{1} : 0.134 16 (83Hu11)
711 968 10	(6959 44)	072			I_{1} : 0.104 10 (0011011). I_{2} : 0.90 8 (83Hu11) 0.57 9 (83Ti02) 0.83 12 (877h12)
737 55a 13	(6959.44)	0.7 2			$V_{1}^{(1)} = 0.019 - 6 (83Hu + 11)$
773 08 3	(0355.44)				$V_{1}^{(1)} = 0.073 - 3 (83Hu11)$
778 99 23	1341 43	0 99 9			I_{1}^{\prime} : 0.075 5 (0511011). I_{2}^{\prime} : 1.09 10 (83Hu11) 0.87 4 (83Ti02) 1.00 20 (877h12)
781 402 15	1344 65	3 0 4			I_{1} : 1.00 10 (0011011), 0.01 4 (001102), 1.00 20 (012112). I_{2} : 3 4 3 (83Hu11) 2 51 9 (83Ti02) 3 09 22 (877b12)
793 848 6	4207 19	0.0 4			I_{1} : 0.4.5 (0011011), 2.01.5 (001102), 0.00.22 (012112).
810 18 3	5250				$V_{1} = 0.018 \ g (83Hu11)$
820 27a 21	6072 83				$V_{1}^{(1)} = 0.032 \ \theta \ (83Hu11)$
925 21 2	4207 10	265			1_{1}^{\prime} , 0.052 5 (0511011).
855.51 J 959 298 7	4207.19	2.0 5			1_{7} , 2.06 15 (6511011), 5.76 15 (651102), 1.55 16 (672112).
052.52 7	5059 72				1_{1}° , 0.088 15 (83Hu11).
857 08 1	3371 84				$V_{1} = 0.086(83Hu11)$
857.0- 4	5019 462				1_{7} , 0.00 0 (0.011111).
000.1- 0	5050 79				1_{1}^{2} , 0.15 / (0511011).
803.374 20	1041 49	10 0 00			1^{γ} : 0.055 25 (65Hu11).
809.203 12	1341.43	19.3 20			1° : 21.9 19 (65Hu11), 17.5 / (65H02), 18.6 8 (67ZH12).
874.390 7	1340.03	13.0 14			1° : 15.4 14 (65Hu11), 12.0 5 (651102), 15.5 5 (67Zh12).
880.750 11	(6959.44)	0.80 0			1γ : 0.75 9 (83Hu11), 0.84 7 (831102), 0.868 (87Zn12).
906.20 20	4362.06				1γ : 0.068 17 (83Hull).
1005.9294 22	4750.94				1° : 0.46 5 (65Hu11).
1000.243 5	(0939.44)				$1\gamma: 0.410 \ 19 \ (831102).$
1028.304 11	4441.34				$1\gamma: 0.058 II (05Hull).$
1035.34 4	4092.21				1γ : 0.012 0 (83Hu11).
1041.247 20	(6959.44)				1γ : 0.29 3 (83Hu11).
1092.21 3	2977.83				1γ : 0.29 3 (83Hu11).
1095.09 7	4750.94				1γ : 0.124 16 (83Hu11).
1097.2 3	(6959.44)				1γ : 0.038 10 (83Hull).
1130.00 2	(0939.44)				1^{γ} : 0.92 9 (85Hull).
1208.34 3	4021.3				1^{γ} : 0.058 17 (85Hull).
1217.0934 24	2302.31				$1\gamma: 0.204 (831102).$
1218.24 5	4196.3	0 00 2			1γ : 0.020 <i>11</i> (83Hu11).
1229.40 4	4207.19	0.28 3			1γ : 0.28 3 (83Hu11), 0.6 4 (831102), 0.24 4 (87Zn12).
1247.511 22	5809.667	1 00 2			1γ : 0.224 23 (83Hu11). I. 1. 00, 10 (82Hu11), 1. 00, C (82T+00), 1.01, 7 (877L10)
1282.815 9	1846.01	1.00 3			1γ : 1.00 <i>10</i> (83Hu11), 1.00 <i>b</i> (831102), 1.01 <i>7</i> (87ZH12).
1314.37 13	1005 51	1 1 9 7			1γ : 0.005 <i>IU</i> (83Hull).
1227 97 1	1005.01	1.13 /			I_1 . 1.15 12 (0511011), 1.22 / (051102), 1.12 0 (0/21112). I_{012} 0.65 7 (02 I_{101} 11) 0.55 4 (02 T_1 102)
1211 61 4	4730.94 1944 er	U. UU J	$\mathbf{D}(\cdot,\mathbf{O})$	0 00 1	1_{1}^{\prime} , 0.03 / (0311011), 0.33 4 (031102). 1_{2}^{\prime} , 4 1 7 (021111), 4 19 22 (021102), 2 06 20 (077112)
1979 97 17	1944.00	4.1 2	D(+Q) M1 · E9	0.00 4	1_{1} , 4.1 / (0011011), 4.12 20 (001102), 0.90 00 (0721112). 1_{2} , 0.65 7 (001011), 1.57 5 (007100), 1.25 15 (077110)
13/3.3/ 1/	1840.01	1.20 40	M11+E2	+0.18 /	1γ: 0.03 / (03πull), 1.37 3 (831102), 1.33 13 (872π12). In 0.024 10 (8211011)
1400.4~ 4	3U44.9U	0 26 2			1γ: U.U34 15 (03HUII). In 0.24 4 (02Hu11) 0.26 2 (02T:00) 0.20 10 (077h10)
1400.4/ 14	(0939.44) 2271 94	U.30 J			ιγ: υ. 34 4 (ο 3 π μ 1 1), υ. 30 3 (δ 3 1 1 υ 2), υ. 29 10 (δ / 2 π 1 2). Ιν: Ο 22 2 (82 μ μ 1 1)
1400.23-0	10612				I_1 . 0.20 5 (0011011).
1100.1 0	10011				II. U.UNI U (UUIIII).

$\gamma(^{24}Na)$ (continued)

$\mathbf{E}\gamma^{\dagger}$	E(level)	Iγ ^{‡#&}	Comments
1504.90 ^a 14	1977?		Iγ: 0.45 5 (83Hu11).
1559.42 6	2903.94	0.30 2	Iγ: 0.31 3 (83Hu11), 0.302 22 (83Ti02), 0.26 4 (87Zh12).
1562.491 24	2903.94	0.51 2	I γ : 0.51 5 (83Hu11), 0.51 3 (83Ti02), 0.31 5 (87Zh12).
	(6959.44)		$I\gamma$: 0.51 5 (83Hu11).
1567.1ª 4	3413.25		Iγ: 0.145 17 (83Hu11).
1570.17ª <i>17</i>	5250		1γ : 0.014 2 (83Hu11).
1584.18ª <i>18</i>	4562.06	0 50 5	1γ : 0.047 <i>T3</i> (83Hull).
1620.49 5	(6959.44)	0.50 5	1γ : 0.55 b (83Hu11), 0.65 b (831102), 0.63 b (87Zh12).
1633 6 2	2077 83	1 1 1	$V_{1}^{(1)}$, 0.15 5 (6511011). $V_{2}^{(1)}$, 0.06 20 (83Hu11), 1.2 3 (83Ti(02), 3.2 5 (877h12))
1636 33 4	2977 83	5 1 2	I_{V} : 5 0 15 (83Hu11) 5 1 3 (83Ti02) 5 2 4 (87Th12)
1693 83a 14	4207 19	0.1 2	I_{γ}° 0 121 16 (83Hu11)
1711.90 ^{§a} 20	(6959, 44)		$I_{\rm V}$: 0.26 5 (83Ti02).
1714.2 ^a 3	4692.2?		I_{γ} : 0.023 13 (83Hu11).
1741.48 ^a 24	5397.19?		Iy: 0.114 23 (83Hu11).
1743.28 ^a 16	3589.26		Iγ: 0.068 7 (83Hu11).
1767.27a 14	(6959.44)		Iγ: 0.053 15 (83Hu11).
1770.23a <i>16</i>	3655.97		Iγ: 0.067 10 (83Hu11).
1773.14 ^a 6	4750.94		Iγ: 0.21 3 (83Hu11).
1831.92 ^a 16	5809.66?		Iγ: 0.179 18 (83Hu11).
1842.26 ^a 10	(6959.44)		Iγ: 0.45 10 (83Hu11).
1846.9 ^a 3	4750.94		Iγ: 0.10 3 (83Hu11).
1859.8 ^a 4	3745.09		Iγ: 0.044 18 (83Ti02).
1875.6 ^a 4	6072.83		Iγ: 0.028 9 (83Hu11).
1885.40 5	1885.51	0.70 6	Iγ: 0.64 4 (83Hu11), 0.90 7 (83Ti02), 0.67 7 (87Zh12).
1899.10 ^a 10	3745.09		$I\gamma$: 0.7 3 (83Hu11).
1899.80 10	(6959.44)	1.2.5	1γ : 0.7 3 (83Hu11), 1.79 13 (83T102), 1.59 12 (87Zh12).
1914.648 4	(6959.44)	1.21 5	1γ : 1.14 5 (83Hu11), 1.26 9 (83T102), 1.02 9 (87Zh12).
1928.20 7	4441.34		1γ : 0.91 4 (83Hu11).
1928.3034	(6959.44)	102	1° ; 1.03 8 (831102). Let 1.60 8 (9311); 1) 2.95 17 (927:09) 2.02 10 (977b19)
1950.14 4 2009 698a 17	2010.01 5953 162	1.9 5	I_{Y}^{*} 0.179 20 (83T(102))
2016 4§a 4	5953 16?		$I_{V} = 0.078 + 25 (837102)$
2019.60 ^a 14	3866?		V_{1} : 0.49 8 (83Hu11).
2020.07§a 6	(6959.44)		I_{γ} : 0.72 6 (83Ti02).
2025.20 7	3371.84	6.7 <i>2</i>	Iγ: 6.7 3 (83Hu11), 6.5 5 (83Ti02), 7.1 4 (87Zh12).
2027.30 ^{§a} 11	3371.84		Iγ: 0.73 9 (83Ti02).
2030.17 8	3371.84	4.4 1	Iγ: 4.34 20 (83Hu11), 4.5 3 (83Ti02), 1.4 3 (87Zh12).
2062.5 ^{§a} 4	6247.62		Iγ: 0.072 23 (83Ti02).
2066.37 8	3413 . 25	0.31 8	Iγ: 0.231 18 (83Hu11), 0.39 3 (83Ti02), 0.50 9 (87Zh12).
2071.76 9	3413 . 2 5	1.20 5	Iγ: 1.15 5 (83Hu11), 1.24 10 (83Ti02), 1.20 15 (87Zh12).
2106.5a 5	4621.5		Iγ: 0.22 7 (83Hu11).
	5478.96		Iγ: 0.022 7 (83Hu11).
2118.0 ^a 4	5862.9?		Iγ: 0.020 7 (83Hu11).
2131.35 ^a 4	3977.32		$I\gamma$: 0.046 5 (83Hu11).
2208.46 3	(6959.44)	5.73	1γ : 5.22 24 (83Hu11), 5.7 5 (83T102), 5.43 28 (87Zh12).
2220.004 /	5809.66?		1γ : 0.178 <i>10</i> (83Hull).
2237.3334 13	4730.94	0 12 2	1°_{1} : 0.215 23 (051102). 1°_{2} : 0.104 2 (021111) 0.160 22 (027:02)
2242.74 10	3589.20	0.13 3	I_{1}^{\prime} , 0.104 δ (6311011), 0.105 23 (631102). I_{2}^{\prime} , 0.100 I_{4} (82Hu11), 0.116 20 (83T102)
2266 48 6	(6959 44)	0.11 1	$I_{V} = 0.049 - 9.(83Hu11)$
$2270.3^{a}6$	6247.62		$I_{\gamma}: 0.031 \ 7 \ (83Hu11).$
2271.3 ^{§a} 3	5953.16?		$I_{\gamma}: 0.067 \ 12 \ (83Ti02).$
2286.62 8	3628.25	0.15 1	Iγ: 0.157 10 (83Hu11), 0.12 20 (83Ti02).
2301.4 [§] 6	4185.6?		Iγ: 0.048 19 (83Ti02).
2310.2 4	3655.97	0.05 2	Iγ: 0.034 7 (83Hu11), 0.067 19 (83Ti02).
	4196.3		Iγ: 0.034 7 (83Hu11).
2314.4 ^a 3	3655.97		Iγ: 0.053 7 (83Hu11).
2337.90 10	(6959.44)	0.17 1	Iγ: 0.166 10 (83Hu11), 0.215 25 (83Ti02).
2349.1 ^{§a} 8	4196.3		Iγ: 0.034 17 (83Ti02).
2361.03 6	4207.19	1.68 7	Iγ: 1.64 7 (83Hu11), 1.74 15 (83Ti02).
2378.0§a <i>8</i>	4939.40?		Iγ: 0.028 14 (83Ti02).
2397.39 7	(6959.44)	1.36 6	Iγ: 1.34 6 (83Hu11), 1.26 9 (83Ti02), 1.64 17 (87Zh12).

$\gamma(^{24}Na)$ (continued)

Eγ [†]	E(level)	<u>Ιγ‡#&</u>	Comments
2400.60 10	3745.09	0.23 6	1γ : 0.17 8 (83Hu11), 0.29 3 (83T102).
2403.80 10	3745.09	0.37 11	1γ : 0.37 <i>11</i> (83Hu11), 0.4 3 (83T102).
2414.53 4	2977.83	5.0 <i>2</i>	1γ : 4.8 4 (83Hu11), 5.0 3 (831102), 5.11 25 (87Zh12).
2303.30 4	2977.83	3.4 2 15 9 19	17: 5.25 I2 (05Hu11), 5.6 5 (051102), 5.45 22 (07L112).
2517.00 0 2522 998 11	(0939.44)	15.5 12	17: 14.1.5 (05Hu11), 15.5.74 (051102), 14.5.8 (07ZII12).
2516 518 21	5018 462		$V_{1} = 0.018 + 1.000 + 0.00000 + 0.00000 + 0.0000000 + 0.00000 + 0.00000 + 0.0000 + 0.0000 + 0.0000$
2556 178 0	4441 54		I_{1}^{\prime} , 0.040 <i>I</i> (0.01011).
2587 7a 8	4562 06		$I_{V} = 0.25 4 (83Hu11)$
2588.85§a 20	3935.7?		I_{Y} : 0.251 23 (83Ti02).
2591.55 20	6247.62	0.40 3	I_{γ} : 0.44 4 (83Hu11), 0.38 3 (83Ti02).
2595.56 8	4441.54	1.03 2	I_{γ} : 1.02 5 (83Hu11), 1.04 10 (83Ti02).
2630.59 5	3977.32	0.55 2	Iγ: 0.557 22 (83Hu11), 0.54 5 (83Ti02).
2657.5 ^a 3	6247.62		Iγ: 0.047 5 (83Hu11).
2661.9 ^a 3	4621.5		Iγ: 0.044 <i>6</i> (83Hu11).
2701.2 ^a 3	4048.49		Iγ: 0.033 4 (83Hu11).
2715.94 5	4562.06	0.56 4	Iγ: 0.59 4 (83Hu11), 0.52 3 (83Ti02).
2752.28 8	(6959.44)	10.2 24	Iγ: 13.1 23 (83Hu11), 7.9 9 (83Ti02), 9.9 10 (87Zh12).
2762.59 8	(6959.44)	0.7 2	Iγ: 1.03 23 (83Hu11), 0.52 3 (83Ti02), 1.13 5 (87Zh12).
2790.10a <i>15</i>	4750.94		Iγ: 0.104 8 (83Hu11).
2808.54 5	3371 . 84	3.3 1	Iγ: 3.26 12 (83Hu11), 3.4 3 (83Ti02), 3.62 28 (87Zh12).
2850.25 8	$3\ 4\ 1\ 3$. 2 5	0.27 3	Iγ: 0.25 3 (83Hu11), 0.302 21 (83Ti02), 0.32 8 (87Zh12).
2860.39 5	4207.19	3.6 1	Iγ: 3.45 17 (83Hu11), 3.7 4 (83Ti02), 3.64 29 (87Zh12).
2865.59 [§] 3	4750.94	2.9 2	Iγ: 2.9 3 (83Ti02), 2.84 25 (87Zh12).
2865.61 6	4207.19	2.8 1	Iγ: 2.7 10 (83Hu11), 2.9 3 (83Ti02), 2.84 25 (87Zh12).
2875.7a 4	6247.62		Iγ: 0.031 15 (83Hu01).
2904.74 6	4750.94	1.20 4	Iγ: 1.23 14 (83Hu11), 1.16 12 (83Ti02), 1.08 11 (87Zh12).
2911.01 16	(6959.44)	0.07 1	Iγ: 0.059 5 (83Hu11), 0.076 11 (83Ti02).
2941.03 7	3413.25	0.66 2	1γ : 0.68 4 (83Hu11), 0.65 3 (83Ti02), 0.42 7 (87Zh12).
2977.38 ³ ª 18	2977.83	0.0.1	1γ : 0.096 <i>10</i> (831102).
2982.23 /	(6959.44)	2.8 1	1γ : 2.76 <i>IU</i> (83Hu11), 2.66 <i>II</i> (831102), 2.70 <i>23</i> (87Zh12).
2002 2 5	2655 07	2.84 4	$1\gamma: 2.82 \ 10 \ (65 Hull), \ 2.80 \ 12 \ (651102), \ 2.85 \ 21 \ (67 Lll2).$
3092.3 3	(6959 44)	0.38 14	I_{1}^{\prime} , 0.25 f_{1}^{\prime} (83Hu11), 0.52 f_{1}^{\prime} (85H02).
3096 65 9	(0355.44)	381	I_{1}^{v} : 3, 88, 14 (83Hu11), 3, 70, 15 (83Ti02), 4, 7, 4 (877h12)
3099.92 <i>9</i>	4441.54	2.9 2	I_{γ} : 3.10 16 (83Hu11), 2.72 12 (83Ti02), 2.26 20 (87Zh12).
3117.11 16	3589.26	0.95 6	I_{γ} : 1.01 4 (83Hu11), 0.88 4 (83Ti02), 0.95 10 (87Zh12),
3168.5 ^{§a} 3	6072.83		$I_{\gamma}: 0.041 \ 9 \ (83 \text{Ti} 02).$
3174.06 13	5059.72	0.053 2	Iγ: 0.054 4 (83Hu11), 0.051 7 (83Ti02).
3182.40 20	3745.09	0.25 3	Iγ: 0.25 3 (83Hu11), 0.09 19 (83Ti02).
3184.2§a 11	3655.97		Iγ: 0.05 $β$ (83Ti02).
3199.04 ^a 10	5044.90		Iγ: 0.189 9 (83Hu11).
3209.70 21	3681.79	0.72 2	Iγ: 0.74 4 (83Hu11), 0.71 3 (83Ti02), 0.78 9 (87Zh12).
3214.38 [§] 6	(6959.44)	1.08 4	Iγ: 1.06 7 (83Hu11), 1.02 4 (83Ti02), 1.11 12 (87Zh12).
3231.62 ^a 14	5192.44		Iγ: 0.039 3 (83Hu11).
3242.2 ^a 9	6222.4?		Iγ: 0.005 2 (83Hu11).
3270.73 ^a 24	5117.41?		Iγ: 0.093 6 (83Hu11).
3277.668 6	(6959.44)	0.77 2	Iγ: 0.73 3 (83Hu11), 0.75 3 (83Ti02), 0.73 9 (87Zh12).
3295.6a 8	5809.66?		Iγ: 0.005 2 (83Hu11).
3303.478 8	(6959.44)	0.23 1	1γ : 0.219 9 (83Hu11), 0.225 11 (83Ti02), 0.13 3 (87Zh12).
3331.198 8	(6959.44)	0.24 1	1γ : 0.227 10 (83Hu11), 0.233 11 (83T102), 0.35 6 (87Zh12).
3343.503 8	6247.62	0.18 /	1γ : 0.185 12 (83Hu11), 0.217 11 (83T102), 0.17 4 (87Zh12).
3370.195 0	(6959.44)	2.8 1	$17: 2.8 \ 3 \ (83Hu11), 2.03 \ 9 \ (83Hu2), 2.77 \ 19 \ (87Ln12).$
34U9.1 4 3414 9 2	4130.94	0 86 1	тү. 0.450 // (ОЗПЦТТ). Туч 0.85 2(82Hu11) 0.87 2 (82T:02) 0.76 <i>0</i> (977b12)
3492 948 12	5339 06	0.00 1	1_7 . 0.03 5(0511011), 0.07 5 (051102), 0.70 6 (0721112). Iv: 0.086 5 (83Hu11)
3505 00 10	3977 39	1 30 2	V_1 : 0.000 5 (0.000000) V_2 : 1 31 6 (83Hu11) 1 30 4 (83Ti02) 1 44 14 (877b12)
3546.20 10	(6959 44)	0.93 3	$I_{\rm Y}$: 0.87 4 (83Hu11), 0.91 3 (83Ti02), 0.95 10 (87Zh12).
3577.1 12	4048.49	0.06.3	I_{γ} : 0.030 9 (83Hu11), 0.087 10 (83Ti02),
3587.67 10	(6959.44)	12.1 4	I _γ : 11.4 δ (83Hu11), 11.8 4 (83Ti02), 12.3 9 (87Zh12).
3628.45 11	3628.25	0.14 1	Iγ: 0.153 <i>8</i> (83Hu11), 0.120 <i>8</i> (83Ti02).
3632.70 13	4196.3	0.087 3	Iγ: 0.086 5 (83Hu11), 0.089 7 (83Ti02), 0.15 4 (87Zh12).
	5478.96		Iγ: 0.086 5 (83Hu11).

$\gamma(^{24}Na)$ (continued)

$E\gamma^{\dagger}$	E(level)	<u>Ιγ^{‡#}&</u>	Comments
3643.79 11	4207.19	1.32 2	Iγ: 1.32 7 (83Hu11), 1.33 4 (83Ti02), 1.32 13 (87Zh12).
3698.22 11	5044.90	0.17 1	Iγ: 0.182 10 (83Hu11), 0.165 8 (83Ti02), 0.15 4 (87Zh12).
3703.43 11	5044.90	0.40 1	Iγ: 0.413 20 (83Hu11), 0.394 14 (83Ti02), 0.39 6 (87Zh12).
3712.79a 14	5059.72		1γ : 0.049 3 (83Hul1).
3723.8234 8	4196.3		1γ : 0.277 11 (831102).
3/34.38 12	4207.19	0 11 7	1γ : 0.071 4 (83Hu11).
3744.32 13 2770 798 16	5117 412	0.11 /	1° : 0.034 2 (03Hu11), 0.19 10 (031102).
3776 7a A	5117.41?		I_{γ} : 0.037 3 (83Hu11).
3878.29 11	4441.54	4.13 5	IV: $4.09 \ 20$ (83Hu11), $4.17 \ 12$ (83Ti02), $4.23 \ 27$ (87Zh12),
3943.15§a 17	3943.3?		Iγ: 0.098 <i>8</i> (83Ti02).
3969.02 11	4441.54	0.49 8	Iγ: 0.401 20 (83Hu11), 0.57 3 (83Ti02), 0.39 6 (87Zh12).
3981.54 11	(6959.44)	13.5 4	Iγ: 12.8 6 (83Hu11), 13.1 4 (83Ti02), 13.7 9 (87Zh12).
3997.71 11	5339.06	0.34 2	Iγ: 0.364 18 (83Hu11), 0.324 11 (83Ti02), 0.38 5 (87Zh12).
4055.49 ^a 20	5397.19?		Iγ: 0.57 11 (83Hu11).
4055.69 [§] 8	(6959.44)	0.4 2	Iγ: 0.23 11(83Hu11), 0.631 19 (83Ti02), 0.61 7 (87Zh12).
4057.8 [§] 4	4621.5	0.072§ 20	
4089.51 12	4562.06	0.38 1	Iγ: 0.382 19 (83Hu11), 0.382 13 (83Ti02), 0.35 6 (87Zh12).
4107.7§ 3	5953.16?		Iγ: 0.029 4 (83Ti02).
4137.498a <i>12</i>	5478.96		Iγ: 0.133 <i>6</i> (83Ti02).
4144.98a 5	4144.9?		Iγ: 0.013 <i>10</i> (83Ti02).
4187.49 11	4750.94	1.44 3	1γ : 1.41 7 (83Hu11), 1.46 4 (83Ti02), 1.46 22 (87Zh12).
4226.38 14	6072.83	0.35 2	1γ : 0.347 2 (83Hu11), 0.033 3 (83T102).
4245.69" 23	6222.4?		1γ : 0.014 2 (83Hu11).
4278.734 23	4730.94		$I_{\gamma}^{*} = 0.015 I (05Hull).$
4280.5-0 4361 578 17	6247.62		I_{γ} : 0.004 <i>I</i> (83Hu11).
4370 428a 11	4939 40?		$I_{\gamma} = 0.020 I (0011011)$
4376.02^{a} 13	6222.4?		I_{γ} : 0.098 5 (83Hu11).
4445.75 3	(6959.44)	0.46 1	Iv: 0.432 22 (83Hu11), 0.443 12 (83Ti02), 0.44 6 (87Zh12).
4462.42 ^a 4	5809.66?		Iγ: 0.128 7 (83Hu11).
4467.42§a 15	5031.02?		Iγ: 0.287 <i>9</i> (83Ti02).
4481.41 3	5044.90	0.18 1	Iγ: 0.173 9 (83Hu11), 0.186 6 (83Ti02), 0.21 4 (87Zh12).
4496.00 3	5059.72	0.38 1	Iγ: 0.371 22 (83Hu11), 0.386 12 (83Ti02), 0.41 6 (87Zh12).
4521.23a <i>22</i>	5862.9?		Iγ: 0.015 2 (83Hu11).
4553.0 12	5117.41?		Iγ: 0.039 7 (83Hu11).
4586.94 4	5059.72	0.138 2	Iγ: 0.137 7 (83Hu11), 0.139 5 (83Ti02), 0.13 3 (87Zh12).
4628.52 12	5192.44	0.045 2	Iγ: 0.045 2 (83Hu11), 0.044 3 (83Ti02).
4693.34 8	4692.2?	0 11 0	1γ : 0.014 2 (83Hul1).
4723.70 7	6072.83	0.11 3	1γ : 0.102 0 (83Hu11), 0.099 0 (831102), 0.12 3 (87Zn12).
4731.1930 9	5220 06	0 16 1	1° 0.323 9 (031102). 1° 0.160 9 (02111) 0.159 5 (021102) 0.20 4 (077b12)
4775.24 0	5339.00	0.10 1	I_{γ} : 0.160 8 (0511011), 0.158 8 (051102), 0.20 4 (072112).
4872.9 ^a 7	6222.4?		I_{γ} : 0.006 / (83Hu11).
4891.35§a 8	4891.35?		Iγ: 0.292 8 (83Ti02).
4904.9 4	6247.62	0.072 1	Iγ: 0.072 1 (83Hu11), 0.139 7 (83Ti02).
4909.7 12	6247.62	0.05 1	Iγ: 0.050 7 (83Hu11), 0.112 6 (83Ti02).
4914.8 8	5478.96	0.056 3	Iγ: 0.056 3 (83Ti02), 0.057 6 (83Hu11).
4981.79a <i>13</i>	(6959.44)		Iγ: 0.058 3 (83Hu11).
5006.33 8	5478.96	0.044 2	Iγ: 0.044 2 (83Hu11), 0.043 3 (83Ti02).
5073.50 7	(6959.44)	0.44 1	Iγ: 0.395 20 (83Hu11), 0.431 11 (83Ti02), 0.44 6 (87Zh12).
5113.04 7	(6959.44)	0.52 1	Iγ: 0.473 24 (83Hu11), 0.512 12 (83Ti02), 0.55 7 (87Zh12).
5191.99 ^a <i>19</i>	5192.44		Iγ: 0.008 1 (83Hu11).
5245.51 ^a 21	5809.66?		Iγ: 0.009 1 (83Hu11).
5226 692 17	5250		1γ : 0.024 3 (831102).
5306 62 °	5307 102		тү, 0.014 7 (озпитт). Тм. 0.002 7 (82Hu11)
5445 648 19	5918 462		Γ_1 , 0.002 Γ_1 (0.01111). Ty: 0.146 7 (83Hu11)
5493.5§a 7	5965 6?		I_{1} , 0.12 3 (83Ti02).
5507.8 [§] a 8	6072.83		$I_{\gamma}: 0.002 \ I \ (83Hu11).$
5599.97 24	6072.83	0.18 1	Iγ: 0.087 4 (83Hu11), 0.183 9 (83Ti02).
5612.69 [§] 10	(6959.44)	0.52 8	Iγ: 0.50 20 (83Hu11), 0.49 9 (83Ti02), 0.35 6 (87Zh12).
5614.31 [§] 16	(6959.44)	0.7 3	Iγ: 1.0 5 (83Hu11), 0.49 4 (83Ti02), 0.53 9 (87Zh12).

$\gamma(^{24}Na)$ (continued)

$\mathbf{E}\gamma^{\dagger}$	E(level)	Iγ ^{‡#&}	Comments	
5617.82 [§] 6	(6959.44)	3.9 7	Iγ: 3.0 10 (83Hu11), 4.55 10 (83Ti02), 3.81 28 (87Zh12).	
5661.2a 12	6222.4?		Iγ: 0.006 <i>1</i> (83Hu11).	
5683.1ª <i>3</i>	6247.62		Iγ: 0.013 2 (83Hu11).	
5774.87 12	6247.62	0.23 2	Iγ: 0.224 11 (83Hu11), 0.253 7(83Ti02).	
6246.5 ^a 12	6247.62		Iγ: 0.003 1 (83Hu11).	
6395.63 7	(6959.44)	19.4 12	Iγ: 17.2 9 (83Hu11), 19.9 4 (83Ti02), 19.9 13 (87Zh12).	
6486.51 8	(6959.44)	0.41 3	Iγ: 0.354 18 (83Hu11), 0.428 11 (83Ti02), 0.44 8 (87Zh12).	
6958.6 ^a 4	(6959.44)		Iγ: 0.003 1 (83Hu11).	

[†] From 83Hu11, except as noted.

 ‡ From average of 83Hu11, 83Ti02 and 87Zh12, except as noted.

§ From 83Ti02.

Absolute intensity per 100 neutron captures.
 @ From 96FiZY.

[&] For intensity per 100 neutron captures, multiply by 1.
 ^a Placement of transition in the level scheme is uncertain.

Level Scheme

Level Scheme (continued)

Intensities: $I(\gamma+ce)$ per 100 parent decays

32

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

1, 9,	(6050.44)
1 T , & T	 (0333.44)

 $^{25}_{12}Mg_{13}$

²⁴Mg(n,γ) E=thermal 92Wa06,91MiZQ

Others: 80Is02, 82Hu02, 90Ko43.

Target Jπ=0+.

92Wa06: measured E γ , I γ with a Ge(Li)-NaI(Tl) in Compton-suppressed mode and pair spectrometer mode; deduced neutron separation energy S(n)=7330.65 keV 5.

91MiZQ: measured E γ , I γ with HpGe and pair spectrometers. Precise γ - ray energies deduced. Deduced neutron

separation energy S(n)=7330.61 keV 14. Other measured S(n)=7330.83 keV 14 (82Hu02), 7330.5 keV 5 (80Is02).

Evaluated S(n)=7330.67 keV 4 (95Au04).

Measured thermal-neutron capture cross section $\sigma(n,\gamma)=54.1$ mb 13 (92Wa06).

²⁵Mg Levels

E(level)‡	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
0.0	5 / 2 +	stable	
585.081 22	1 / 2 +	3.38 ns 5	
974.857 23	3 / 2 +	11.3 ps 3	
1964.68 14	5 / 2 +	0.7 ps <i>3</i>	
2563.45 5	1 / 2 +	10 ps <i>3</i>	
2801.63 14	3 / 2 +	28 fs 7	
3413.45 3	3 / 2 -	11 fs 4	
4276.51 4	1 / 2 -	<7 f s	
4358.1 8	3 / 2 +	<7 f s	
5116.66 24	1 / 2 -	<7 f s	
(7330.67 4)	1 / 2 +		E(level): from evaluated s(n) (95Au04).
			$J\pi$: from s-wave neutron capture.

 † $\,$ From 96FiZY, except as noted.

 \ddagger From Ey's using least-squares fit to data, except as noted.

```
\gamma(^{25}Mg)
```

All data are from 92Wa06, except as noted.

Εγ	E(level)	Iγ [†] &	Mult.‡	δ‡	Comments
389 808§ 29	974 857	13 9 7	M1+E2	+0 13 3	Ev: 389 69 5 (92Wa06)
000.000 20	0,1,00,1	1010 /		10110 0	I_{V} : 18 9 48 (91MiZO)
					$\sigma(\mathbf{n} \mathbf{v}) = 7.5 \text{ mb } 4$
585 1058 28	585 081	73 8 22	F2(+M3)	≈0 0	F_{3} : 585.06.3 (92Wa06)
000.100 20	0001001	1010 22		0.0	I_{V} : 86 22 (91MiZQ)
					$\sigma(n x) = 39.8 \text{ mb } 12$
611 8 ^a	3413 45	< 0 06			$\sigma(\mathbf{n}, \gamma) < 0.03 \text{ mb}$
836.95 10	2801.63	0.39 6	M1 (+E2)	-0.03 3	$\sigma(n, \gamma) = 0.21$ mb 3.
849.9.3	3413.45	0.13 4	,		$\sigma(n, \gamma) = 0.07 \text{ mb } 2.$
863.09 5	4276.51	0.96 9			$\sigma(n, \gamma) = 0.52$ mb 5.
974.822 [§] 32	974.857	15.4 7	M1+E2	+0.32 2	E_{V} : 974.84 5 (92Wa06).
					Iv: 17.9 45 (91MiZQ).
					$\sigma(n, \gamma) = 8.3 \text{ mb } 4.$
989.7 4	1964.68	0.09	M1+E2	-0.25 2	$\sigma(n,\gamma) = 0.05 \text{ mb } 1.$
1379.7 <i>3</i>	1964.68	0.19 4	E2 (+M3)	≈0.0	$\sigma(n, \gamma) = 0.10 \text{ mb } 2.$
1448.7 ^a	3413.45	< 0.06			$\sigma(\mathbf{n},\gamma) < 0.03 \text{ mb.}$
1474.8 ^a	4276.51	< 0.06			$\sigma(\mathbf{n},\gamma) < 0.03 \text{ mb.}$
1588.65 9	2563.45	0.68 7			$\sigma(\mathbf{n},\gamma)=0.37 \text{ mb } 4.$
1702.6 7	5116.66	0.07 2			$\sigma(n,\gamma) = 0.04 \text{ mb } 1.$
1713.05 [@] 16	4276.51	3.3 6	E1		Eγ: 1713.10 9 (91MiZQ).
					Iγ: 3.0 7 (91MiZQ).
					$\sigma(\mathbf{n},\gamma)=1.8 \text{ mb } 3.$
1964.7#4	1964.68	0.11 4	M1 + E2	-0.60 10	$\sigma(\mathbf{n},\gamma)=0.06 \text{ mb } 2.$
1978.25 5	2563.45	2.63 20	M1		Eγ: 1978.30 6 (91MiZQ).
					Iγ: 3.3 8 (91MiZQ).
					$\sigma(n,\gamma) = 1.42$ mb 11.
2213.8 5	(7330.67)	0.74 9			$\sigma(\mathbf{n}, \gamma) = 0.40 \text{ mb } 5.$
2216.5 6	2801.63	0.46 7			$\sigma(\mathbf{n}, \gamma) = 0.25 \text{ mb } 4.$
2438.48 4	3413.45	11.7 7	E1 (+M2)	≈0.0	Eγ: 2438.51 5 (91MiZQ).
					Iγ: 13.8 21 (91MiZQ).
					$\sigma(\mathbf{n}, \gamma) = 6.3 \text{ mb } 4.$

			γ(⁽²⁵ Mg) (conti	nued)	
Eγ	E(level)	$I\gamma^{\dagger}$ &	Mult. [‡]	δ‡	Comm	ients
2553.7 8	5116.66	0.06 2	E1		$\sigma(n,\gamma) = 0.03 \text{ mb } 1.$	
2563.6 5	2563.45	0.13 4			$\sigma(n,\gamma)=0.07 \text{ mb } 2.$	
2801.0 3	2801.63	0.31 4	M1 + E2	-0.64 8	$\sigma(n,\gamma) = 0.17 \text{ mb } 2.$	
2828.21 4	3413.45	56.4 19	E1 (+M2)	≈0.0	Eγ: 2828.17 5 (91MiZQ).	
					Iγ: 56 8 (91MiZQ).	
					$\sigma(n,\gamma) = 30.5 \text{ mb } 10.$	
2972.4 8	(7330.67)	0.17 4			$\sigma(n,\gamma) = 0.09 \text{ mb } 2.$	
3053.99 4	(7330.67)	19.2 9			Eγ: 3053.91 4 (91MiZQ).	
					Iγ: 19.8 10 (91MiZQ).	
					$\sigma(\mathbf{n}, \gamma) = 10.4 \text{ mb } 5.$	
3301.42 5	4276.51	14.2 7			Eγ: 3301.43 5 (91MiZQ).	
					Iγ: 15.4 8 (91MiZQ).	
					$\sigma(\mathbf{n}, \gamma) = 7.7 \text{ mb } 4.$	
3413.15 5	3413.45	9.4 6	E1 (+M2)	≈0.0	Eγ: 3413.16 5 (91MiZQ).	
					Iγ: 9.8 5 (91MiZQ).	
					$\sigma(\mathbf{n}, \gamma) = 5.1 \text{ mb } 3.$	
x3659.6 7		0.185 37			$\sigma(n,\gamma)=0.10$ mb 2.	
3691.07 16	4276.51	1.67 15	E1		$\sigma(n,\gamma)=0.90$ mb 8.	
3916.86 4	(7330.67)	75.9 24			Eγ: 3916.84 5 (91MiZQ).	
					Iγ: 74.3 37 (91MiZQ).	
					$\sigma(n,\gamma) = 41.0 \text{ mb } 13.$	
4141.4 3	5116.66	0.39 6			$\sigma(n,\gamma)=0.21$ mb 3.	
4528.47 20	(7330.67)	0.85 7			$\sigma(n,\gamma)=0.46$ mb 4.	
4766.86 23	(7330.67)	0.76 7			$\sigma(n,\gamma)=0.41$ mb 4.	
6355.02 10	(7330.67)	2.42 17			Eγ: 6354.79 10 (91MiZQ).	
					Iγ: 2.4 1 (91MiZQ).	
					$\sigma(n,\gamma)=1.31$ mb 9.	
6744.88 28	(7330.67)	0.33 7			Eγ: 6744.04 43 (91MiZQ).	
					Iγ: 0.40 5 (91MiZQ).	
					$\sigma(n,\gamma)=0.18$ mb 4.	
7330.6 9	(7330.67)	0.033 7			$\sigma(n,\gamma)=0.018$ mb 4.	

 † Absolute intensities per 100 neutron captures. For γ -ray cross section in mb, multiply by 0.5405 per 100 neutron captures.

[‡] From 96FiZY.

§ From 91MiZQ.

 $^{\#}\,$ May be interferenced from Gd(n, $\gamma).$

 ${\ensuremath{^{\circ}}}$ May be interferenced from single-escape peak of 2223-keV $\gamma\text{-ray}$ in $^2H.$

& For intensity per 100 neutron captures, multiply by 1.

^a Placement of transition in the level scheme is uncertain.

 $^{\boldsymbol{x}}$ $\boldsymbol{\gamma}$ ray not placed in level scheme.

Level Scheme

Intensities: $I(\gamma+ce)$ per 100 parent decays

 $^{25}_{12}Mg_{13}$

²⁵Mg(n, γ) E=thermal 92Wa06

Other: 80Is02, 82Hu02.

Target J\pi=5/2+.

92Wa06: measured E γ , I γ with a Ge(Li)-NaI(Tl) in Compton-suppressed mode and pair spectrometer mode; deduced neutron separation energy S(n)=11093.18 keV 5.

Other measured S(n)=11093.10 keV 9 (90Pr02), 11091.91 keV 44 (82Hu02), 11092.9 keV 5 (80Is02).

Evaluated S(n)=11093.07 keV 4 (95Au04).

Measured thermal-neutron capture cross section $\sigma(n,\gamma)=200$ mb 3 (92Wa06).

²⁶Mg Levels

E(level) [‡]	$_{J\pi^{\dagger}}$	[†]	Comments
0 0	0.	a tabla	
U.U 1909 79 4	0+	stable	
1000.72 4	2+	470 18 12	
2938.30 4	2+	141 18 0 6 14 pc 14	
3388.34 9 2041 59 4	0+	6.44 ps 14	
3941.32 4 4919 94 C	3+	0.65 ps 12	
4310.04 0	4+	272 18 10	
4332.34 3	2+	20 IS 3	
4330.03 4	3+	103 IS 20	
4035.11 5	2 + 4 ·	28 IS 0 20 fa 6	
4901.27 9	4+	29 IS 0	
4972.20 12	0+	440 15 00	
5476 07 7	2 + 4 +		
	4+	21 18 0	
5715 56 10	1	< 8 1 S	
6125 45 4	4+	10 IS 55	
6634 28 15	$(0+ t_0 (1+))$	14 18 0	
6745 73 16	(0+ 10 4+) 2+	<7 13 16 fs 8	
6876 40 4	2 - 2 _	10 13 <i>0</i> 85 fs 35	
7061 92 11	3 1 -	<7 fs	
7099 63 10	2+	<14 fs	
7261 36 4	(2, 3) -	<7 fs	
7282 71 5	4 -	24 fs 8	
7348.83 5	3 -		
7371.18 22	(1, 2) +		
7541.70 5	(2,3) -	<7 fs	
7697.3 6	(1, 2+)		
7725.71 16	(2, 3, 4, 5) +		
8052.9 6	2 +		
8184.93 10			
8227.54 16	(1, 2+)	1.0 fs 2	
8250.70 10	1 –		
8458.85 13			
8503.71 9			
8532.23 9			
8705.69 9	(2+,3+,4+)		
8863.8 5	2 +		
8903.46 6			
8959.45			
9044.7 <i>3</i>			
9238.7 5	1 +	340 as 40	
9325.48 6			
9427.71 7			
9573.99 6			
9617.0 9			
9856.49 6	2 +		
10102.39 15			
10126.64 11	4 +		
10220.1 3			
10350.33 13			
10362.39 7			
10891 0 2			
10001.8 J 10718 71 0			
10715.71 3			
10/10.01 10			

²⁶Mg Levels (continued)

E(level) [‡]	$J\pi^{\dagger}$	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2+,3+	E(level): from evaluated s(n) (95Au04). Jπ: from s-wave neutron capture.

[†] From 96FiZY, except as noted.
[‡] From Eγ's using least-squares fit to data, except as noted.

 $\gamma(^{26}Mg)$

All data are from 92Wa06, except as noted.

Eγ	E(level)	Iγ†&	Mult.‡	δ‡	Comments
287.5 4	(11093.07)	0.035 10			$\sigma(n, \gamma) = 0.07 \text{ mb } 2.$
347.20 12	(11093.07)	0.062 10			$\sigma(n, \gamma) = 0.124 \text{ mb} 19.$
374.43 8	(11093.07)	0.115 15			$\sigma(n, \gamma) = 0.23 \text{ mb } 3.$
391.0a	4332.54	< 0.015			$\sigma(\mathbf{n}, \gamma) < 0.03 \text{ mb}.$
409.4 ^{#b} 5	4350.05	0.025b 5			$\sigma(n, \gamma) = 0.05 \text{ mb } 1.$
	6125.45	0.025b 5			$\sigma(\mathbf{n}, \gamma) = 0.05 \text{ mb } 1.$
411.3 3	(11093.07)	0.035 5			$\sigma(\mathbf{n}, \gamma) = 0.07 \text{ mb } 1.$
493.23 6	(11093.07)	0.370 45			$\sigma(\mathbf{n}, \gamma) = 0.74 \text{ mb } 9.$
502.5 4	4835.11	0.10 2			$\sigma(\mathbf{n}, \gamma) = 0.20 \text{ mb } 4.$
730.74 6	(11093.07)	0.795 30			$\sigma(\mathbf{n}, \gamma) = 1.59 \text{ mb } \boldsymbol{\theta}.$
742.79 12	(11093.07)	0.11 2			$\sigma(n, \gamma) = 0.22 \text{ mb } 4.$
744.0 ^a	4332.54	< 0.025			$\sigma(\mathbf{n},\gamma) < 0.05 \text{ mb.}$
x767.86 22		0.090 15			$\sigma(\mathbf{n},\gamma) = 0.18 \text{ mb } 3.$
814.3	5715.56	< 0.015	M1 (+E2)	+0.1 3	$\sigma(\mathbf{n},\gamma) < 0.03 \text{ mb.}$
833.68 9	6125.45	0.24 3			$\sigma(\mathbf{n},\gamma)=0.48$ mb $\boldsymbol{\theta}$.
873.0 <i>3</i>	(11093.07)	0.04 1			$\sigma(\mathbf{n},\gamma)=0.08 \text{ mb } 2.$
966.47 10	(11093.07)	0.195 20			$\sigma(\mathbf{n},\alpha) = 0.39 \text{ mb } 4.$
990.76 <i>16</i>	(11093.07)	0.150 15			$\sigma(\mathbf{n},\gamma) = 0.30 \text{ mb } 3.$
1003.254	3941.52	8.2 3	M1 + E2	-0.054	$\sigma(\mathbf{n},\gamma)=16.4 \text{ mb } \theta.$
1129.61 4	2938.30	46.0 15	M1 + E2	-0.12 2	$\sigma(\mathbf{n},\gamma)=92 \text{ mb } 3.$
1157.23 6	5476.07	0.68 5	M1 + E2	+0.09 7	$\sigma(n, \gamma) = 1.36 \text{ mb } 10.$
1224.0 3	6125.45	0.090 15			$\sigma(\mathbf{n},\gamma) = 0.18 \text{ mb } 3.$
1236.645	(11093.07)	0.580 25			$\sigma(\mathbf{n}, \gamma) = 1.16 \text{ mb } 5.$
1290.40 7	6125.45	0.355 30			$\sigma(\mathbf{n}, \gamma) = 0.71 \text{ mb } \boldsymbol{\theta}.$
1350.20 16	5291.71	0.080 15			$\sigma(\mathbf{n}, \gamma) = 0.16 \text{ mb } 3.$
1358.4 9	5691.09	0.0175 60			$\sigma(n,\gamma) = 0.035 \text{ mb } 12.$
1365.54 20	5715.56	0.315 40	M1 + E2	-0.17 3	$\sigma(\mathbf{n},\gamma)=0.63 \text{ mb } \mathcal{B}.$
1394.28 7	4332.54	1.005 50			$\sigma(\mathbf{n}, \gamma) = 2.01 \text{ mb } 10.$
1411.72 4	4350.05	6.70 25	M1 + E2	-0.31 6	$\sigma(\mathbf{n},\boldsymbol{\gamma}) = 13.4 \text{ mb } 5.$
x1468.9 3		0.055 15			$\sigma(\mathbf{n}, \gamma) = 0.11 \text{ mb } 3.$
1519.125	(11093.07)	1.31 5			$\sigma(n,\gamma) = 2.62 \text{ mb } 10.$
1534.49 15	5476.07	0.155 20	M1 + E2	-0.27 4	$\sigma(\mathbf{n},\boldsymbol{\gamma}) = 0.31 \text{ mb } 4.$
1554.8 4	8903.46	0.065 10			$\sigma(\mathbf{n},\gamma)=0.13 \text{ mb } 2.$
1567.06 11	7282.71	0.23 2			$\sigma(\mathbf{n},\gamma)=0.46 \text{ mb } 4.$
1620.8 3	8903.46	0.175 20			$\sigma(\mathbf{n},\boldsymbol{\gamma}) = 0.35 \text{ mb } 4.$
1642.09 25	8903.46	0.185 25			$\sigma(\mathbf{n},\boldsymbol{\gamma}) = 0.37 \text{ mb } 5.$
1665.39 6	(11093.07)	0.610 35			$\sigma(\mathbf{n},\boldsymbol{\gamma})=1.22 \text{ mb } 7.$
1767.61 4	(11093.07)	1.57 7			$\sigma(\mathbf{n}, \gamma) = 3.14 \text{ mb } 14.$
$1774.0^{6}9$	5715.56	0.395 60	M1+E2	-0.124	$\sigma(\mathbf{n},\gamma)=0.79 \text{ mb } 12.$
1775.31 5	6125.45	6.80 <i>25</i>			$\sigma(\mathbf{n},\gamma)=13.6 \text{ mb } 5.$
1779.74 8	3588.54	0.65 3	E2		$\sigma(\mathbf{n},\boldsymbol{\gamma})=1.30 \text{ mb } \boldsymbol{\theta}.$
1792.87 12	6125.45	0.44 4			$\sigma(\mathbf{n},\boldsymbol{\gamma}) = \mathbf{0.88 \ mb} \ \boldsymbol{\mathcal{S}}.$
1808.68 4	1808.72	93 <i>3</i>	E2		$\sigma(\mathbf{n}, \gamma) = 1.86 \text{ mb } 6.$
1854.5 5	(11093.07)	0.120 25			$\sigma(\mathbf{n},\gamma) = 0.24 \text{ mb } 5.$
1873.1 5	7348.83	0.05 1		0.04.0	$\sigma(\mathbf{n}, \gamma) = 0.10 \text{ mb } \mathcal{Z}.$
1896.72 5	4835.11	4.80 25	M1 (+E2)	-0.04 6	$\sigma(\mathbf{n}, \gamma) = \mathbf{y} \cdot \mathbf{b} \text{mb} 5.$
2033.88 12	49/2.26	U.295 35	EZ		$\sigma(\mathbf{n},\gamma) = 0.59 \text{ mD}$ /.
2041.44 16	68/6.40	U.235 30			$\sigma(\mathbf{n}, \gamma) = 0, 4 / \mathbf{m} \mathbf{D} \ \boldsymbol{\delta},$
2048.2 J	(11093.07)	0.105 15			$0(\Pi, \gamma) = 0.21 \text{ mD } 3.$
2004.2 0		0.030 13			$0(11, \gamma) = 0.10 \text{ mb} 3.$

$\gamma(^{26}Mg)$ (continued)

Εγ	E(level)	Ιγ [†] &	Mult.‡	δ‡	Comments
2132 71 1	39/1 52	4 70 25	M1 (+F2)	+0.01.2	$\sigma(n, x) = 0.4$ mb 5
2133 78 9	(11093 07)	0 160 25	WI (+L2)	+0.01 2	$\sigma(n, \gamma) = 0.32 \text{ mb } 5.$
2183.83 6	6125.45	0.935 45			$\sigma(n, \gamma) = 1.87 \text{ mb } \theta$
2189.59 5	(11093.07)	3.08 10			$\sigma(n, \gamma) = 6.16 \text{ mb } 20.$
2264.25 21	7099.63	0.185 25			$\sigma(n,\gamma) = 0.37 \text{ mb } 5.$
2290.8 4	9573.99	0.115 20			$\sigma(\mathbf{n},\gamma)=0.23 \text{ mb } 4.$
2353.27 5	5291.71	2.36 13			$\sigma(n,\gamma) = 4.72 \text{ mb } 25.$
2381.28 15	7282.71	0.255 25			$\sigma(\mathbf{n},\boldsymbol{\gamma}) = 0.51 \ \mathbf{mb} \ 5.$
2387.33 <i>8</i>	(11093.07)	0.570 35			$\sigma(\mathbf{n},\boldsymbol{\gamma})=1.14 \text{ mb } 7.$
x2410.8 3		0.070 15			$\sigma(\mathbf{n},\gamma)=0.14 \text{ mb } 3.$
2426.09 6	7261.36	2.670 85			$\sigma(n,\gamma) = 5.34 \text{ mb } 17.$
2510.01 5	4318.84	3.00 15			$\sigma(\mathbf{n},\boldsymbol{\gamma})=6.0 \ \mathbf{mb} \ 3.$
2513.52 8	7348.83	1.47 12			$\sigma(n,\gamma) = 2.93 \text{ mb } 23.$
2523.69 6	4332.54	5.20 25	MITER	0 10 4	$\sigma(n, \gamma) = 10.4 \text{ mb} S.$
2341.18 0	4350.05	7.20 45	M1+E2	-0.10 4	$\sigma(n, \gamma) = 14.4 \text{ mb } 9.$
2545.7 4	6876 40	0.303 40 0.220 25			$\sigma(n, \gamma) = 0.01 \text{ mb } \delta$. $\sigma(n, \gamma) = 0.44 \text{ mb } 5$
2560 77 8	(11093 07)	0 80 4			$\sigma(n, \gamma) = 1.60 \text{ mb } 8$
2589.30 8	(11093.07)	0.495 30			$\sigma(n, \gamma) = 0.99 \text{ mb } 6.$
2634.17 13	(11093.07)	0.41 3			$\sigma(\mathbf{n},\gamma)=0.82$ mb $\boldsymbol{\theta}$.
2697.7 3	9573.99	0.20 2			$\sigma(\mathbf{n},\gamma)=0.40 \text{ mb } 4.$
2752.56 25	5691.09	0.12 2			$\sigma(\mathbf{n},\gamma)=0.24 \text{ mb } 4.$
2776.82 20	5715.56	0.255 30			$\sigma(\mathbf{n},\gamma)=0.51 \text{ mb } \boldsymbol{\theta}.$
2842.20 12	(11093.07)	1.175 65			$\sigma(n,\gamma)=2.35 \text{ mb } 13.$
2865.27 21	(11093.07)	0.85 6			$\sigma(n, \gamma) = 1.70 \text{ mb } 12.$
2908.02 11	(11093.07)	1.400 75			$\sigma(n,\gamma) = 2.80 \text{ mb } 15.$
2911.12 19	7261.36	0.860 75			$\sigma(n,\gamma) = 1.72 \text{ mb } 15.$
2928.56 17	7261.36	1.005 /5			$\sigma(n,\gamma) = 2.01 \text{ mb } 10$
2932.3 4	6876 40	0.433 50			$\sigma(n, \gamma) = 0.42$ mb 9
2938 15 5	2938 30	4 95 25	E2		$\sigma(n, \gamma) = 9.9 \text{ mb } 5$
2942.3a	7261.36	<0.10	L 2		$\sigma(n, \gamma) < 0.20 \text{ mb}.$
2963.61 9	7282.71	1.54 11	E1+M2	+0.54	$\sigma(n,\gamma)=3.08 \text{ mb } 22.$
3016.18 23	7348.83	0.42 4			$\sigma(\mathbf{n},\gamma)=0.84 \text{ mb } 8.$
3021.3 9	7371.18	0.050 15			$\sigma(\mathbf{n},\boldsymbol{\gamma})=0.10 \text{ mb } 3.$
3026.3 6	4835.11	0.23 3			$\sigma(\mathbf{n},\gamma)=0.46 \text{ mb } \boldsymbol{\theta}.$
3029.6 8	7348.83	0.110 15			$\sigma(\mathbf{n},\boldsymbol{\gamma}) = 0.22 \text{ mb } 3.$
3039.5 8	(11093.07)	0.135 20			$\sigma(\mathbf{n},\boldsymbol{\gamma})=0.27 \text{ mb } 4.$
3092.31 11	4901.27	1.36 10	E2 (+M3)	-0.02 14	$\sigma(n,\gamma) = 2.72 \text{ mb } 20.$
3138.4 0	6125 45	0.085 20			$\sigma(n, \gamma) = 0.17 \text{ mb } 4.$
3107.14 20	7541 70	0.39 4			$\sigma(n, \gamma) = 0.78 \text{ mm} \sigma.$
3208 98 8	7541.70	2 07 10			$\sigma(n, \gamma) = 4.13 \text{ mb } 1.9$
3261.8 4	10362.39	0.19 2			$\sigma(n, \gamma) = 0.38 \text{ mb} 4.$
3319.66 5	7261.36	5.05 20			$\sigma(n,\gamma) = 10.1 \text{ mb } 4.$
3341.01 7	7282.71	2.5 2	E1(+M2)	+0.03 7	$\sigma(\mathbf{n},\gamma)=5.0 \text{ mb } 4.$
3367.45 22	(11093.07)	0.435 30			$\sigma(\mathbf{n},\gamma)=0.87 \text{ mb } \boldsymbol{\theta}.$
3395.3 7	(11093.07)	0.120 15			$\sigma(\mathbf{n},\boldsymbol{\gamma})=0.24 \text{ mb } 3.$
3406.87 22	7725.71	0.510 45			$\sigma(\mathbf{n},\gamma)=1.02 \text{ mb } 9.$
3428.7 4	7371.18	0.270 35			$\sigma(\mathbf{n},\gamma)=0.54 \text{ mb } 7.$
3448.8 7	9573.99	0.17 2			$\sigma(\mathbf{n},\boldsymbol{\gamma})=0.34 \ \mathbf{mb} \ 4.$
3472.9 3	7061.92	0.460 35	E1		$\sigma(\mathbf{n},\gamma)=0.92 \text{ mb } 7.$
3482.4 6	5291.71	0.155 20			$\sigma(n, \gamma) = 0.31 \text{ mb } 4.$
3300.0 9 3551 10 1	10399.92	0.03 <i>1</i> 5.6.2			$\sigma(n, \gamma) = 0.00 \text{ mb } 2.$ $\sigma(n, \gamma) = 11.2 \text{ mb } 4.$
3599.86 14	7541 70	0.79.5			$\sigma(n, \gamma) = 1.58 \text{ mb } 10.$
3611.5 4	8903.46	0.245 25			$\sigma(n, \gamma) = 0.49$ mb 5.
3667.1 9	5476.07	0.09 2			$\sigma(n, \gamma) = 0.18 \text{ mb } 4.$
3672.6 ^a	7261.36	< 0.10			$\sigma(n,\gamma) < 0.20$ mb.
3695.63 25	$6\ 6\ 3\ 4\ .\ 2\ 8$	0.465 40			$\sigma(n,\gamma)=0.93$ mb 8.
3721.4 3	(11093.07)	0.385 30			$\sigma(n,\gamma)=0.77 \text{ mb } \theta.$
3744.01 4	(11093.07)	7.15 25			$\sigma(\mathbf{n}, \gamma) = 14.3 \text{ mb } 5.$
3760.0 ^a	7348.83	< 0.10			$\sigma(n,\gamma) < 0.20$ mb.

$\gamma(^{26}Mg)$ (continued)

Eγ	E(level)	$I\gamma^{\dagger}\&$	Mult. [‡]	Comments
3783 8 0	7725 71	0 10 2		$\sigma(n, n) = 0.20$ mb 4
3807 8 9	6745 73	0 165 30		$\sigma(n, \gamma) = 0.23 \text{ mb } 6$
3810.13 5	(11093.07)	5.05 20		$\sigma(n, \gamma) = 10.1 \text{ mb } 4.$
3831.48 4	(11093.07)	21.8 7		$\sigma(n,\gamma) = 43.6 \text{ mb } 14.$
x3847.0 6		0.22 5		$\sigma(n,\gamma) = 0.44$ mb 10.
3882.0 <i>3</i>	5691.09	0.300 35		$\sigma(\mathbf{n},\gamma)=0.60 \text{ mb } 7.$
3937.80 11	6876.40	1.32 6		$\sigma(\mathbf{n}, \gamma) = 2.64 \text{ mb } 12.$
3993.24 13	(11093.07)	0.880 45		$\sigma(\mathbf{n},\gamma)=1.76$ mb 9.
4001.8 3	8903.46	0.25 2		$\sigma(\mathbf{n},\gamma)=0.50 \text{ mb } 4.$
4030.88 12	(11093.07)	0.910 45		$\sigma(\mathbf{n},\boldsymbol{\gamma})=1.82 \text{ mb } 9.$
4122.9 6	7061.92	0.130 25		$\sigma(\mathbf{n},\gamma)=0.26 \text{ mb } 5.$
4139.7 5	8458.85	0.14 2		$\sigma(\mathbf{n},\gamma) = 0.28 \text{ mb } 4.$
4160.96 20	7099.63	0.455 40		$\sigma(\mathbf{n},\gamma) = 0.91 \text{ mb } 8.$
4181.9 /	8332.23	0.115 20		$\sigma(n, \gamma) = 0.23 \text{ mD } 4.$
4210.38 4	6125 45	7.30 23		$\sigma(n, y) = 0.66 \text{ mb } 3.$
4322.68 8	7261.36	1.615 85		$\sigma(n, \gamma) = 3.23 \text{ mb } 17.$
4332.2 3	4332.54	0.395 40	E2	$\sigma(\mathbf{n}, \gamma) = 0.79 \text{ mb } 8.$
4346.98 18	(11093.07)	0.335 25		$\sigma(n,\gamma) = 0.67 \text{ mb } 5.$
4355.3 6	8705.69	0.13 2		$\sigma(\mathbf{n},\gamma)=0.26 \text{ mb } 4.$
4410.15 5	7348.83	3.5 2		$\sigma(\mathbf{n},\boldsymbol{\gamma})=7.0 \text{ mb } 4.$
4424.2 8	9325.48	0.110 15		$\sigma(\mathbf{n},\gamma)=0.22$ mb 3.
4458.43 17	(11093.07)	0.47 3		$\sigma(n,\gamma)=0.94$ mb θ .
4489.4 9	9325.48	0.110 15		$\sigma(\mathbf{n},\boldsymbol{\gamma}) = 0.22 \text{ mb } 3.$
4544.5a	8863.8	< 0.015		$\sigma(\mathbf{n},\gamma) < 0.03 \text{ mb.}$
4553.02 13	8903.46	0.835 65		$\sigma(\mathbf{n},\gamma) = 1.67 \text{ mb } 13.$
4584.2ª	8903.46	<0.03		$\sigma(\mathbf{n}, \gamma) < 0.06 \text{ mb.}$
4002.93 /	7341.70	1.87 8	E9	$\sigma(n, \gamma) = 3.74 \text{ mb } 10.$ $\sigma(n, \gamma) = 1.26 \text{ mb } 11$
4834.01 18	10362 39	0.030 33	Es	$\sigma(n, \gamma) = 0.29 \text{ mb } A$
x4891.9 4	10005.00	0.10 2		$\sigma(n, \gamma) = 0.20 \text{ mb } 4.$
4936.3 3	6745.73	0.33 3		$\sigma(\mathbf{n}, \gamma) = 0.66$ mb $\boldsymbol{\theta}$.
4961.42 22	8903.46	0.785 60		$\sigma(n, \gamma) = 1.57$ mb 12.
4967.19 4	(11093.07)	8.5 <i>3</i>		$\sigma(\mathbf{n},\gamma)=17.0 \text{ mb } \boldsymbol{\theta}.$
4975.3 9	9325. 48	0.13 2		$\sigma(n,\gamma)=0.26$ mb 4.
4992.4 8	9325.48	0.195 25		$\sigma(n,\gamma)=0.39$ mb 5.
5020.7 8	9856.49	0.100 15		$\sigma(\mathbf{n},\boldsymbol{\gamma}) = 0.20 \text{ mb } 3.$
5067.13 4	6876.40	5.05 20		$\sigma(\mathbf{n},\gamma)=10.1 \text{ mb } 4.$
5077.4 9	9427.71	0.065 20		$\sigma(n,\gamma) = 0.13 \text{ mb } 4.$
5223.37 12	9573.99	0.82 /		$\sigma(n,\gamma) = 1.64 \text{ mb } 14.$
5245.9 5 5252 0 3	7061 92	0.280 35 0.275 30		$\sigma(n, \gamma) = 0.55 \text{ mb } \beta$
5290 3 5	7099 63	0 145 20		$\sigma(n, \gamma) = 0.33 \text{ mb } 0.33$
5291.1 5	5291.71	0.0640 15	E2	$\sigma(n, \gamma) = 0.128 \text{ mb} 3.$
5311.66 16	8250.70	0.885 55		$\sigma(n,\gamma) = 1.77$ mb 11.
5376.1 8	(11093.07)	0.065 15		$\sigma(\mathbf{n}, \gamma) = 0.13 \text{ mb } 3.$
5383.8 7	9325. 48	0.065 15		$\sigma(\mathbf{n},\gamma)=0.13 \text{ mb } 3.$
5401.3 4	(11093.07)	0.225 20		$\sigma(\mathbf{n},\boldsymbol{\gamma}) = 0.45 \text{ mb } 4.$
5452.034	7261.36	10.65 35		$\sigma(\mathbf{n},\gamma)=21.3 \text{ mb } 7.$
5523.6 7	9856.49	0.16 2		$\sigma(\mathbf{n},\gamma)=0.32 \text{ mb } 4.$
5539.53 15	7348.83	1.11 7		$\sigma(n,\gamma) = 2.22$ mb 14.
5562.9 9	7371.18	0.060 15		$\sigma(n,\gamma) = 0.12 \text{ mb } 3.$
5616 9 2	8332.23	0.175 20		$\sigma(n, \gamma) = 0.35 \text{ mD } 4.$
5632.3 6	9573 99	0.120 15		$\sigma(n, y) = 0.24$ mb 3.
5691.1 9	5691.09	0.025 10	D	$\sigma(n, \gamma) = 0.05 \text{ mb} 2.$
5732.37 15	7541.70	0.860 65		$\sigma(n,\gamma) = 1.72$ mb 13.
5766.6 3	8705.69	0.325 30		$\sigma(\mathbf{n},\boldsymbol{\gamma}) = 0.65 \ \mathbf{mb} \ 6.$
5800.69 <i>9</i>	(11093.07)	1.575 60		$\sigma(n,\gamma)=3.15 \text{ mb } 12.$
5915.8 9	9856.49	0.050 15		$\sigma(\mathbf{n},\gamma)=0.10 \text{ mb } 3.$
5924.8 9	8863.8	0.055 10		$\sigma(\mathbf{n}, \gamma) = 0.11 \text{ mb } 2.$
5964.31 20	8903.46	0.295 25		$\sigma(\mathbf{n}, \gamma) = 0.59 \text{ mb } 5.$
×5975.3 7		0.04 1		$\sigma(\mathbf{n},\boldsymbol{\gamma})=0.08 \text{ mb } 2.$

$\gamma(^{26}Mg)$ (continued)

Eγ	E(level)	$I\gamma^{\dagger}\&$	Mult. [‡]	Comments
6011 2 5	10362 39	0 15 2		$\sigma(n, x) = 0.30 \text{ mb } 4$
6104 3 9	9044 7	0.165 15		$\sigma(n, y) = 0.13 \text{ mb } 3$
6120 1 4	(11093 07)	0 25 2		$\sigma(n, y) = 0.50 \text{ mb } 4$
6191 11 25	(11003.07) (11093.07)	0 265 20		$\sigma(n, y) = 0.53 \text{ mb } 4$
6242 9 7	8052 0	0 125 15		$\sigma(n, y) = 0.25 \text{ mb } 3$
6240 7 0	10599 92	0.125 10		$\sigma(n, y) = 0.09 \text{ mb } 2$
6257 1 3	(11093 07)	0 340 25		$\sigma(n, y) = 0.68 \text{ mb } 5$
6267 0 6	10500.07)	0 14 2		$\sigma(n, y) = 0.28 \text{ mb } 4$
6375 38 16	8184 93	1 02 8		$\sigma(n, \gamma) = 2.04 \text{ mb } 1.6$
6386 34 23	9325 48	0 41 3		$\sigma(n, y) = 0.82$ mb θ
6417 9 3	8227 54	0 335 40		$\sigma(n, y) = 0.67 \text{ mb } 8$
6441 1 8	8250 70	0 0345 70		$\sigma(n, y) = 0.069 \text{ mb } 0.000 \text{ mb } 0.000 \text{ mb } 0.0000 \text{ mb } 0.0000000000000000000000000000000000$
6488 6 4	0427 71	0 285 25		$\sigma(n, y) = 0.57 \text{ mb} 5$
6649 1 7	8458 85	0.285 25		$\sigma(n, y) = 0.15 \text{ mb } 3$
6657 3 5	10599 92	0.19.2		$\sigma(n, y) = 0.24$ mb 4
6694 0 7	8503 71	0.12 2		$\sigma(n, y) = 0.22 \text{ mb } 3$
6722 1 7	8532 23	0 080 15		$\sigma(n, \gamma) = 0.16 \text{ mb} 3$
6749 91 7	(11093 07)	2 105 80		$\sigma(n, y) = 4.21$ mb 16
6759 73 11	(11003.07) (11093.07)	1 145 75		$\sigma(n, y) = 2.29 \text{ mb} 15$
6773 1 3	(11003.07) (11093.07)	0 345 25		$\sigma(n, y) = 0.69 \text{ mb} 5$
7054 0 6	8863 8	0.08 1		$\sigma(n, y) = 0.16 \text{ mb } 2$
7060 6 7	7061 92	0.0485.95		$\sigma(n, y) = 0.007 \text{ mb } 10$
7098 9 5	7001.02	0 050 15		$\sigma(n, y) = 0.10 \text{ mb} + 3$
7150 61 7	(11093 07)	1 145 70		$\sigma(n, y) = 2.20 \text{ mb } 3.$
7162 4 9	10102 39	0 04 1		$\sigma(n, \gamma) = 0.08 \text{ mb} 2$
7187 4 8	10126 64	0 06 1		$\sigma(n, y) = 0.12 \text{ mb } 2$
7260 3a	7261 36	< 0 015		$\sigma(n, y) = 0.12 \text{ mb}$
7347 7a	7348 83	< 0.015	F3	$\sigma(n, y) < 0.03$ mb
7369 8 7	7371 18	0 090 15	20	$\sigma(n, y) = 0.18 \text{ mb} \cdot 3$
7617 8 7	9427 71	0 095 15		$\sigma(n, \gamma) = 0.19 \text{ mb} 3$
7660 4 9	10599 92	0 055 10		$\sigma(n, y) = 0.11 \text{ mb } 2$
7695 6 8	7697 3	0 05 1		$\sigma(n, \gamma) = 0.10 \text{ mb } 2$
7807 0 9	9617 0	0 05 1		$\sigma(n, \gamma) = 0.10 \text{ mb } 2$
8153.54 5	(11093.07)	14.9.5		$\sigma(n, \gamma) = 29.8 \text{ mb} 10.$
8225.6 4	8227.54	0.215 20		$\sigma(n, \gamma) = 0.43 \text{ mb} 4.$
8316.4 8	10126.64	0.115 15		$\sigma(n, \gamma) = 0.23 \text{ mb} 3.$
8409.7 9	10220.1	0.055 10		$\sigma(n, \gamma) = 0.11 \text{ mb} 2.$
8502.2 3	8503.71	0.325 25		$\sigma(n, \gamma) = 0.65 \text{ mb} 5.$
8539.2 9	10350.33	0.05 1		$\sigma(n, \gamma) = 0.10 \text{ mb} 2.$
8552.2 3	10362.39	0.305 30		$\sigma(\mathbf{n}, \gamma) = 0.61 \text{ mb } 6.$
8957.7 5	8959.4	0.160 15		$\sigma(n,\gamma) = 0.32 \text{ mb } 3.$
8996.5 9	10805.8	0.020 5		$\sigma(\mathbf{n}, \gamma) = 0.04 \text{ mb } 1.$
9237.1 8	9238.7	0.07 1		$\sigma(n, \gamma) = 0.14 \text{ mb } 2.$
9282.68 6	(11093.07)	2.275 80		$\sigma(n,\gamma) = 4.55$ mb 16.
9854.5 7	9856.49	0.070 15		$\sigma(\mathbf{n},\gamma)=0.14 \text{ mb } 3.$
10100.5 4	10102.39	0.115 15		$\sigma(n, \gamma) = 0.23 \text{ mb } 3.$
11090.7 7	(11093.07)	0.14 2		$\sigma(n,\gamma) = 0.28 \text{ mb } 4.$

 † Absolute intensities per 100 neutron captures. For γ -ray cross section in mb, multiply by 2.0 per 100 neutron captures.

[‡] From 96FiZY.

§ Inferred from intensity balance requirements for the 8959.4-keV level.

 $^{\#}$ γ ray placed twice on the level scheme.

Presence deduced from the known level energies and branching ratios.

 $\&\,$ For intensity per 100 neutron captures, multiply by 1.

a Placement of transition in the level scheme is uncertain.

^b Multiply placed; undivided intensity given.

 $^{\mathbf{x}}$ γ ray not placed in level scheme.

Level Scheme

Intensities: $I(\gamma\text{+}ce)$ per 100 parent decays

& Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: Ι(γ+ce) per 100 parent decays & Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: Ι(γ+ce) per 100 parent decays & Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: Ι(γ+ce) per 100 parent decays & Multiply placed; undivided intensity given

References of Thermal Neutron Capture Data for A=1-25

70Sel4 E.Selin, et al., Physica Scripta 2, 169 (1970) 71Be34 D.Bellman, et al., Atomkernenergie 17, 145 (1971) 74JuZw E.T.Jurney, et al., Reports of the U.S.Nuclear Data Committee, USNDC-11, 152 (1974) 77McO5 A.B.McDonald et al., Nucl. Phys. A281, 325 (1977) 78Lozt M.A.Lone, Proc. of Neutron Capture Gaama spectr., NO48 (1978) 78Lozw M.A.Lone, Proc. of Neutron Capture Gamma Spectr., p678 (1978) 79Lozt M.A.Lone, NEANDC(CAN)-51/L, p3 (1979) 80A131 V.P.Alfimenkov, et al., Yad. Fiz. 32, 1491 (1980) 80Gr02 R.C. Greenwood, et al., Phys. Rev., C21, 498 (1980) 80Gr12 R.C. greenwood, et al., Nucl. Instr. Methods 175, 515 (1980) 80Is02 M.A.Islam, et al., Can.J.Phys. 58, 168 (1980) 82Hu02 P. Hungerford, et al., Nucl. Instr. Methods 192, 609 (1982) 82Ju01 E.T.Jurney, et al., Phys. Rev. C25, 2810 (1982) 82Mu12 S.F. Mughabghab, et al., Phys. Rev. C26, 2698 (1982) 82Va13 V.Van der Leun, et al., Nucl. Phys. A380, 261 (1982) 83Hull P.Hungerford, et al., Z.PHys. A313, 325 (1983) 83Hu12 P.Hungerford, et al., Z.Phys. A313, 339 (1983) 83Kell T.J.Kennett, et al., Nucl.Instr.Methods 215, 159 (1983) 83Ti02 T.A.A. Tielens, et al., Nucl. Phys. A403, 13 (1983) 85Ko47 P.J.J.Kok, et al., Nucl.Instr.Methods B12, 325 (1985) 86Ke15 T. J. Kennett, et al., Nucl. Instr. Methods A247, 420 (1986) 86Pr05 W.V.Prestwich, et al., Z.Phys. A325 321 (1986) 87Aj02 F.Ajzenberg-selove, Nucl. Phys. A475, 1 (1987) 87Ke09 T. J. Kennett, et al., Can. J. Phys. 65, 1111 (1987) 87Zh12 Zhang Ming, et al., Chin. J. Nucl. Phys. 9, 307 (1987) 90En08 P.M.Endt, Nucl.Phys. A521, 1 (1990) 90Is05 M.A.Islam, et al., Nucl.Instr.Methods A287, 460 (1990) 90Pr02 W.V. Prestwich, et al., Can. J. Phys. 68, 1352 (1990) 91Aj01 F. Ajzenberg-Selove, Nucl. Phys. A523, 1 (1991) 91Ki04 S.W.Kikstra, et al., Nucl. Phys. A529, 39 (1991) 91Ly01 J.E.Lynn, et al., Phys.Rev. C44, 764 (1991) 91MiZQ S.Michaelsen, et al., Proc. of Neutron Capture Gamma Spectr., p 393 (1991) 92Wa06 T.A.Walkiewicz, et al., Phys. Rev. C45, 1597 (1992) 94Ki27 T.Kishikawa, et al., Nucl.Instr.Methods A353, 285 (1994) 94Ra17 S.Raman, et al., Phys.Rev. C50, 682 (1994) 95Au04 G.Audi, et al., Nucl. Phys. A595, 409 (1995) 95Di08 F. Difilippo, et al., Phys. Scr. T59, 144 (1995) 96FiZY R.B.Firestone, et al., Table of Isotopes (8-th edition) Vol.1 (1996) 96Ra04 S. Raman, et al., Phys. Rev. C53, 616 (1996) 97Ju02 E.T.Jurney, et al., Phys.Rev. C56, 118 (1997) 98En04 P.M.Endt, Nucl. Phys. A633, 1 (1998)

Nuclear Data Section	e-mail: services@iaeand.iaea.org
International Atomic Energy Agency	fax: (43-1) 26007
P.O. Box 100	cable: INATOM VIENNA
A-1400 Vienna	telex: 1-12645
Austria	telephone: (43-1) 2600-21710
Online: TELNET or FTP:	iaeand.iaea.org
username:	IAEANDS for interactive Nuclear Data Information System
usernames:	ANONYMOUS for FTP file transfer;
	FENDL2 for FTP file transfer of FENDL-2.0;
	RIPL for FTP file transfer of RIPL;
	NDSONL for FTP access to files sent to NDIS "open" area.
Web: http://www	-nds.iaea.org