

INTERNATIONAL NUCLEAR DATA COMMITTEE

INDC(CPR)-054 Distr: G+PG

Thermal-Neutron Capture for A = 26-35

*Z. Chunmei China Nuclear Data Centre China Institute of Atomic Energy P.O. Box 275 (41), Beijing 102413 People's Republic of China

**R.B. Firestone Isotopes Project, MS 50A - 1148 Lawrence Berkeley National Laboratory University of California 1 Cyclotron Road Berkeley, CA 94720 USA

*Research carried out under the IAEA Contract No. 10693/CPR **Research carried out under the IAEA Contract No. 10696/USA **Work supported by the US DOE under contract No DE-AC03-76SF00098

June 2001

IAEA NUCLEAR DATA SECTION, WAGRAMER STRASSE 5, A-1400 VIENNA

Thermal-Neutron Capture Data for A = 26-35

ZHOU CHUNMEI

China Nuclear Data Center China Institute of Atomic Energy P. O. Box 275 (41), Beijing 102413 . People's Republic of China

R.B. FIRESTONE

Isotopes Project, MS 50A - 1148 Lawrence Berkeley National Laboratory University of California, 1 Cyclotron Road Berkeley, CA 94720, USA

- Abstract: The prompt gamma-ray data of thermal- neutron captures for nuclear mass number A=26-35 had been evaluated and published in "ATOMIC DATA AND NUCLEAR DATA TABLES, 26, 511 (1981)". Since that time the many experimental data of the thermal-neutron captures have been measured and published. The update of the evaluated prompt gamma-ray data is very necessary for use in PGAA of high-resolution analytical prompt gamma-ray spectroscopy. Besides, the evaluation is also very needed in the Evaluated Nuclear Structure Data File, ENSDF, because there are no prompt gamma-ray data in ENSDF. The levels, prompt gamma-rays and decay schemes of thermal-neutron captures for nuclides (26Mg, 27Al, 28Si, 29Si, 30Si, 31P, 32S, 33S, 34S, and 35Cl) with nuclear mass number A=26-35 have been evaluated on the basis of all experimental data. The normalization factors, from which absolute prompt gamma-ray intensity can be obtained, and necessary comments are given in the text. The ENSDF format has been adopted in this evaluation. The physical check (intensity balance and energy balance) of evaluated thermal-neutron capture data has been done. The evaluated data have been put into Evaluated Nuclear Structure Data File, ENSDF. This evaluation may be considered as an update of the prompt gamma-ray from thermal-neutron capture data tables as published in "ATOMIC DATA AND NUCLEAR DATA TABLES, 26, 511 (1981)".
- **Cutoff Date**: March 2001; all references entered into the Nuclear Science References File, NSRF, and private communications have been considered.

²⁶Mg(n,γ) E=thermal 92Wa06

Other: 82Hu02.

Target Jπ=0+.

 $92Wa06:\ measured\ E\gamma,\ I\gamma\ with\ a\ Ge(Li)-NaI(Tl)\ in\ Compton-suppressed\ mode\ and\ pair\ spectrometer\ mode;\ deduced\ neutron$

separation energy S(n)=6443.40 keV 5.

Other measured S(n)=6443.39 keV 55 (82Hu02).

Evaluated S(n)=6443.35 keV 4 (95Au04).

Measured thermal-neutron capture cross section, $\sigma(n,\gamma){=}39.0$ mb 8 (92Wa06).

²⁷Mg Levels

E(level) [‡]	$J\pi^{\dagger}$	T _{1/2} †	Comments
0.0	1 / 2 +	9.458 min 12	$\beta^{-1}=100.$
984.92 <i>3</i>	3 / 2 +	0.98 ps 7	
1698.63 5	5 / 2 +	0.98 ps <i>8</i>	
1940.35 8	5 / 2 +	0.76 ps 14	
3476.33 6	1 / 2 +	<7 f s	
3491.47 13	(3/2,5/2)+	<10 fs	
3561.56 3	3 / 2 -	<7 fs	
3787.39 6	3 / 2 +	<17 fs	
4828.14 4	(1/2,3/2)-	<7 f s	
5028.58 15	1 / 2 +	< 30 fs	
5925.93 18		35 fs <i>30</i>	
(6443.35 4)	1 / 2 +		E(level): from evaluated s(n) (95Au04).
			$J\pi$: from s-wave neutron capture.
			Observed deexcitation intensity is 101% of g.s. feeding.

 $^\dagger~$ From adopted levels, except as noted.

 \ddagger From Ey's using least-squares fit to data, except as noted.

 $\gamma(^{27}Mg)$

All data are from 92Wa06, except as noted. Iy normalization: renormalized from assuming Iy(to g.s.)=100.

Εγ	E(level)	Ιγ ^{†#}	Mult.‡	δ‡	Comments
241.6 4	1940.35	0.08 <i>3</i>	(M1)		$\sigma(n, \gamma) = 0.03$ mb 1.
517.3 3	(6443.35)	0.62 8			$\sigma(n, \gamma) = 0.24 \text{ mb } 3.$
713.7@	1698.63	< 0.08			$\sigma(\mathbf{n}, \gamma) < 0.03 \mathrm{mb}$.
955.45 8	1940.35	0.67 8	M1+E2	-0.086	$\sigma(n, \gamma) = 0.26 \text{ mb } 3.$
984.91 <i>3</i>	984.92	15.8 8	M1+E2	+0.22 2	$\sigma(\mathbf{n}, \gamma) = 6.1 \text{ mb } 3.$
1040.7@	4828.14	< 0.08			$\sigma(\mathbf{n}, \gamma) < 0.03 \text{ mb}.$
1266.65 18	4828.14	0.90 8	(M1)		$\sigma(n, \gamma) = 0.35 \text{ mb } 3.$
1336.80 20	4828.14	0.44 6	(E1)		$\sigma(\mathbf{n}, \gamma) = 0.17 \text{ mb } 2.$
1351.86 8	4828.14	0.85 8	(E1)		$\sigma(\mathbf{n}, \gamma) = 0.33 \text{ mb } 3.$
1414.95 18	(6443.35)	0.44 6			$\sigma(\mathbf{n}, \gamma) = 0.17 \text{ mb } 2.$
1467.3 5	5028.58	0.08 3	(E1)		$\sigma(\mathbf{n}, \gamma) = 0.03 \text{ mb } 1.$
(1537.2)	5028.58	$\approx 0 . 02584$			$\sigma(\mathbf{n}, \gamma) \approx 0.01 \text{ mb.}$
1552.8 7	5028.58	0.05 3	M1		$\sigma(\mathbf{n}, \gamma) = 0.02 \text{ mb } 1.$
1615.28 5	(6443.35)	17.1 8			$\sigma(\mathbf{n}, \gamma) = 6.6 \text{ mb } 3.$
1621.2@	3561.56	< 0.08			$\sigma(n,\gamma) < 0.03 \text{ mb.}$
1698.58 5	1698.63	2.87 18	(E2+M3)	$\approx 0 \cdot 0$	$\sigma(\mathbf{n},\gamma) = 1.11 \mathrm{mb} \ 7.$
1792.8§ 3	3491.47	0.08 3			$\sigma(\mathbf{n},\gamma) = 0.03 \text{ mb } 1.$
1846.95 18	3787.39	0.67 8	M1+E2	-0.0 3	$\sigma(\mathbf{n},\gamma)=0.26 \text{ mb } 3.$
1862.93 10	3561.56	1.40 11	(E1)		$\sigma(\mathbf{n},\gamma)=0.54 \text{ mb } 5.$
1939.6 4	1940.35	0.23 6	(E2+M3)	≈0.0	$\sigma(\mathbf{n},\gamma)=0.09 \text{ mb } 2.$
2088.66 11	3787.39	1.06 8			$\sigma(\mathbf{n},\gamma)=0.41 \text{ mb } 3.$
(2490.7)	3476.33	0.05 3			$\sigma(\mathbf{n},\gamma)=0.02 \text{ mb } 1.$
2506.57 23	3491.47	0.39 6			$\sigma(\mathbf{n},\gamma)=0.15 \text{ mb } 2.$
2576.50 6	3561.56	3.51 21	(E1)		$\sigma(\mathbf{n},\gamma)=1.36 \text{ mb } \mathcal{B}.$
2655.86 6	(6443.35)	3.72 18			$\sigma(\mathbf{n}, \gamma) = 1.44 \text{ mb } 7.$
2881.67 4	(6443.35)	66.2 21			$\sigma(\mathbf{n},\gamma)=25.6 \text{ mb } \mathcal{B}.$
$2887.6^{@}$	4828.14	< 0.08			$\sigma(n,\gamma) < 0.03 \text{ mb.}$
2951.44	(6443.35)	0.26 6			$\sigma(\mathbf{n},\gamma)=0.10 \text{ mb } 2.$
2966.77 22	(6443.35)	2.20 16			$\sigma(n,\gamma)=0.85$ mb θ .
3129.3@	4828.14	< 0 . 08			$\sigma(n,\gamma) < 0.03 \text{ mb.}$

²⁶Mg(n,γ) E=thermal 92Wa06 (continued)

$\gamma(^{27}Mg)$ (continued)

Eγ	E(level)	Iγ ^{†#}	Mult.‡	Comments
3476.19 9	3476.33	3.02 16	M1	$\sigma(\mathbf{n}, \gamma) = 1.17 \text{ mb } \boldsymbol{\beta}.$
3490.9 6	3491.47	0.26 5		$\sigma(\mathbf{n},\boldsymbol{\gamma})=0.10 \text{ mb } \mathcal{Z}.$
3561.31 4	3561.56	60.7 18		$\sigma(\mathbf{n},\gamma)=23.5 \text{ mb } 7.$
3787.05 15	3787.39	1.78 16		$\sigma(\mathbf{n},\gamma)=0.69 \text{ mb } \boldsymbol{\theta}.$
3843.01 8	4828.14	8.1 5	(E1)	$\sigma(\mathbf{n}, \gamma) = 3.14 \text{ mb } 16.$
3985.5 6	5925.93	0.10 3		$\sigma(\mathbf{n},\gamma)=0.04 \text{ mb } 1.$
4043.6 3	5028.58	0.23 6		$\sigma(\mathbf{n},\gamma)=0.09 \text{ mb } \mathcal{2}.$
4827.67 6	4828.14	5.74	(E1)	$\sigma(\mathbf{n},\gamma)=2.20 \text{ mb } 13.$
4940.5§ 3	5925.93	0.10 3		$\sigma(\mathbf{n},\gamma)=0.04 \text{ mb } 1.$
5457.82 15	(6443.35)	2.51 18		$\sigma(\mathbf{n},\gamma)=0.97 \text{ mb } 7.$
5924.94	5925.93	0.36 6		$\sigma(\mathbf{n}, \gamma) = 0.14 \text{ mb } 2.$
6442.50 6	(6443.35)	9.3 5		$\sigma(n,\gamma)=3.59 \text{ mb } 17.$

 † Absolute intensities per 100 neutron captures. For γ -ray cross section in mb, multiply by 0.3906 per 100 neutron captures.

[‡] From adopted gammas.

§ Presence deduced from the known level energies and brnching ratios.

For intensity per 100 neutron captures, multiply by 1.

[@] Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: $I(\gamma+ce)$ per 100 parent decays

 $^{27}_{12}Mg_{15}$

²⁷Al(n,γ) E=thermal 82Sc14

Other: 90Is05, 82sh027, 81Pr04.

Target Jn=1/2+.

82Sc14: measured Ey, Iy with a Ge(Li) detector, a curved crystal spectrometer GAMS, and a pair spectrometer applying

a self- consistent energy calibration. Deduced neutron separation S(n)=7725.18 keV 8.

Other measured S(n)=7725.20 keV 6 (80Is02).

Evaluated S(n)=7725.05 keV 6 (95Au04).

²⁸Al Levels

E(level) [‡]	$J\pi^{\dagger}$	[†]	Comments
0.0	0.	0 0414	<i>v</i> / <i>e</i> = 100
0.0	3+	2.2414 min 12	%p =100.
30.8208 /	2+	2.07 118 5	
972.465 14	0+	55 ps 2	
1013.095 4	3+	105 IS 20	
1620 428 24	1+	220 IS 33	
1020.438 24	1+	85 IS 40 85 fc 40	
	2+	85 IS 40	
2139.003 3	2+	55 IS 14 45 fo 25	
2201.380 18	1+	43 IS 23	
2271.017 0	4 + 2 .	20 IS 10 70 fs 15	
2480.230 11	(1 2 2)	70 18 15	
2592 06 15	(1,2,3+)	270 fc 40	
2656 179 17	J +	$25 f_{c} 14$	
2030.172 17	(1 2)	60 fc 55	
2987.00 5	(1,3)+	100 fs 30	
2247 280 7	3 + 2 -	100 fs 25	
3465 342 5	2 + 4 -	62 fs 8	
3403.342 3	4 - 3 _	02 15 8 70 fs 15	
3670 883 20	3-	130 fs 40	
2700 282 0	(2 2)	195 fc 20	
3875 842 6	(2,3)+ 2_	55 fs 15	
2001 044 15	(1 2 5)	195 fc 20	
3035 658 7	(1,3,3)+ 2+	<10 fs	
4244 52 5	2 + 2 +	40 fs 20	
4461 96 5	(2, 4) +	10 13 20	
4596 601 17	(±, +) +	160 fs 85	
4691 191 3	3-	35 fs 9	
4765.010 5	2 -	35 fs 9	
4903.615 5	2 -	39 fs 6	
5015.525 12	3+		
5134.932 5	3 -	28 fs 7	
5177.03 3	(1+, 2, 3+)		
5377.860 24	(1 + to 4 +)		
5442.414 6	2 -	28 fs 7	
5741.243 9	(1 to 4+)		
5797.636 <i>9</i>	2 -		
5860.868 15	(2,3)+		
6019.706 <i>13</i>	(1+ to 4+)		
6198.932 7	(2+ to 4+)		
6316.862 6	2 +		
6419.94 4	(1,2)+		
6441.481 8	(3+,4)		
6623.20 <i>3</i>	(1+to4+)		
6651.282 22	(0+ to 3+)		
6756.766 22	(2+,3)		
6893.796 11	(2+,3)		
7176.542 21	(1+ to 3+)		
7269.545 24	(2+ to 4+)		
(7725.05 6)	2 + , 3 +		E(level): from evaluated s(n) (95Au04).

E(level); from evaluated s(n) (95Au04). $J\pi;$ from s-wave neutron capture. Observed deexcitation intensity is 101% of g.s. feeding.

[†] From adopted levels, except as noted.

[‡] From 82Sc14 (only the statistical error is given; to obtain the total errors an additional systematic error of 11ppm has to be added), except as noted.

$\gamma(^{28}Al)$

All data are from 82Sc14, except as noted.

 $I\gamma$ normalization: renormalized from assuming $I\gamma(to~g.s.){=}100.$

Eγ	E(level)	$I\gamma^{\dagger}$ §	Mult.‡	δ‡	Comments
30 8282 7	30 8268	27 9 CA	M1 (+F2)	+0 001 6	Iv not measured. Value from intensity balance
(310.2)	2582.06	0.003 1	(M1)	+0.001 0	17. not measured. Value from intensity balance.
400.573 22	1373.045	0.63 7	M1		
455.70 5	(7725.05)	0.29 7			
548.69 4	(7725.05)	0.23 3			
647.94 5	1620.438	0.07 4	M1		
831.464 20	(7725.05)	1.3 2			
(863.24)	2486. 256	0.10 3			
865.84 5	2486.256	0.54 7			
941.72 3	972.483	1.3 1	E2		
945.34 /	2565.80	0.24 /			
908.49 0	(7725.05)	0.42 0	M1+F2	+0 13 5	
1013 605 25	1013.695	973	(M1)	+0.15 5	
1073.99 5	(7725.05)	0.57 7	(
1102.08 4	(7725.05)	0.7 2			
1125.266 14	2139.005	0.38 7			
1173.440 9	4765.010	0.39 9			
1193.500 23	3465 . 342	0.6 1	(E1)		
(1283.54 7)	2656.172	1.1 1			
1283.70 [#] 3	(7725.05)	$1.1^{\#}$ 1			
1305.30 12	(7725.05)	0.19 5			
1342.280 18	1373.045	1.0 1	M1+E2	-0.14 9	
1304.02 14	2987.00	0.38 0	(E2)		
1372.917 18	(7725 05)	0.15 8	(E2)		
$(1437 \ 40)$	3709 282	0 27 6			
(1513.75)	2486.256	0.05 2			
1526.258 12	(7725.05)	1.8 2			
(1570.24)	3709.282	0.19 6			
1589.64 5	1620. 438	1.6 2	M1 + E2	+0.18 9	
1592.235 18	1623 . 006	0.36 5			
(1620.26)	1620.438	0.1			
1622.871 18	1623.006	4.6 5			
1642.41 3	2656.172	0.30 5	(M1)		
1673.411 22	3296.486	0.23 3			
1705.524 1720.0#3	(7725.05)	0.395			
1720.0 5	6316 862	0.08 5			
	6623.20	0.08# 5			
1864.33 <i>3</i>	(7725.05)	0.46 7			
1927.56 3	(7725.05)	1.2 2			
x1963.68 20		0.05 1			
1968.452 19	3591.529	0.10 1	(E1)		
1975.2 # 5	2987.66	$0.025^{\#}8$			
	3347.280	0.025# 8			
	4461.96	0.025# 8			
	0442.414 (7725.05)	U.U25 * 8			
2047 77 4	3670 883	0 07 1			
2108.192 11	2139.005	2.8 1			
2128.70 3	6893.796	0.34 2			
2138.828 9	2139.005	2.2 1			
2170.74 3	2201.586	0.45 3			
2247.39 3	4903.615	0.040 6			
2255.36 5	3875.842	0.55 4	E1		
2271.667 16	2271.817	2.1 1			
2276.7* 11	3901.044	$0.04^{\#} 3$			
	4/05.010 57/1 9/2	U.U4 [#] 3			
x2279.1 7	5/71.243	0.08.3			

$\gamma(^{28}\text{Al})$ (continued)

Εγ	E(level)	$I\gamma^{\dagger}$ §	Mult.‡	Comments
2282.804 15	(7725.05)	4.7 2		
x2299.94 10		0.12 1		
2312.56 5	3935.658	0.035 6		
2347.27 4	(7725.05)	0.16 1		
*2380.34 5		0.21 1		
*2384.3 3	4001 101	0.034 6		
2419.22 3	4691.191	0.14 1	(EI)	
2431.334 18	3403.342	0.39 2	(EI)	
2433.42 3	2480.250	0 18 1	F2	
2502 71 4	3875 842	0 16 1	E2	
2534.92 16	2565.80	0.084 8		
2548.09 5	(7725.05)	0.15 1		
2552.060 10	4691.191	0.094 8	(E1)	
2563.32 3	4765.010	0.10 1		
x2567.8 3		0.70 1		
2577.696 13	3591.529	2.2 1	(E1)	
2581.90 19	2582.06	0.05 1	(E2)	
2590.212 17	(7725.05)	4.2 2		Iγ: 3.9 2 (90Is05).
2625.866 23	4765.010	1.37 7	(E1)	
x2656.34 7		0.16 1		
2690.65 5	5177.03	0.029 6		
2709.62 4	(7725.05)	0.69 4		
^2717.4 4	0010 000	0.021 5		
2723.200 13 x2729 27 5	0310.802	0.021 0		
×2723 61 3		0.27 1		
2733.04 3	5015 525	0.38 2		
2821 454 7	(7725 05)	392		
2862.000 11	3875.842	0.038 6		
2876.44 11	5442.414	0.116 8		
2880.73 7	6756.766	0.027 5		
2887.208 25	3901.044	0.23 1		
x2893.87 17		0.049 6		
2903.24 <i>3</i>	3875 . 842	0.011 5		
2921.795 <i>17</i>	3935.658	0.28 1		
2954.38 18	6419.94	0.23 3		
2960.099 10	(7725.05)	9.6 5		I γ : 9.2 4 (90Is05), 9.0 14 (82Sh27), 9.63 19 (81Pr04).
2973.42 7	4596.601	0.024 3		
2987.41 /	2987.66	0.32 4		
3020 235 15	6316 862	0.00 2		
3020.233 13	7269 545	0.07 2		
3033.904 6	(7725.05)	8.8 4		Ιν: 8.7 4 (90Is05), 7.28 11 (82Sh27), 8.99 18 (81Pr04).
x3053.6 4	(,	0.021 5		-,,,
3068.00 <i>3</i>	4691.191	0.081 3		
x3075.65 9		0.083 6		
3128.48 3	(7725.05)	0.24 1		
x3142.22 6		0.16 1		
x3191.20 <i>12</i>		0.048 3		
x3208.27 7		0.092 6		
3222.73 4	6893.796	0.049 3		
3230.59 8	4244.52	0.027 3		
3234./30 23	3/41.243	0.022 3		
3265 544 17	(1123.03)	0.10 1		
3303.153 9	5442 414	1.14 6	(E1)	
3316.341 12	3347.280	0.025 3	(21)	
3346.975 12	3347.280	0.50 3		
x3375.08 24		0.026 3		
3391.74 5	4765.010	0.57 3	(E1)	
$3\ 4\ 0\ 9\ .\ 2\ 6 5$	6756.766	0.023 3		
3448.06 8	4461.96	0.032 5		

$\gamma(^{28}\text{Al})$ (continued)

Εγ	E(level)	Iㆧ	Mult. [‡]	Comments
3465 063 7	3465 342	704	(E1)	Iv: 7 1 3 (90Is05) 7 25 15 (81Pr04)
×3472.3 <i>3</i>	01001012	0.06 1	(21)	
3480.54 12	(7725.05)	0.12 1		
3560.567 7	3591.529	0.93 5	(E1)	
^x 3569.9 <i>3</i>		0.036 6		
3591.201 6	3591.529	4.7 2	(E1)	Iγ: 4.7 2 (90Is05), 4.86 10 (81Pr04).
3598.46 10	7269.545	0.15 1		
3623.88 7	4596.601	0.086 6	M1	
3635.24 8	6623.20	0.010 3		
3639.88 4	3670.883	0.073 5		
3659.06 3	5860.868	0.064 5		
~30/1.22 8 2679 22 2	2700 282	0.070.5		
x x x 7 0 2 2 7	3709.282	0.31 2		
3708 953 15	3709 282	0 45 2		
3721.60 3	5860.868	0.030 3		
×3725.1 3		0.024 3		
3750.83# 18	4765.010	0.035# 3		
	6316.862	0.035# 3		
3754.62 4	5377.860	0.043 3		
3768.82 9	6756.766	0.013 2		
3789.322 11	(7725.05)	0.87 4		
3803.74 5	5177.03	0.011 3		
3821.67 8	5442.414	0.033 8		
3823.908 24	(7725.05)	0.56 3		
3849.114 7	(7725.05)	3.1 2		
3839.1 3 x2965 7 4	0441.481	0.046 0		
3875 195 10	3875 812	0.027 0		
x3881 8 4	3073.042	0 027 6		
3889.659 12	4903.615	0.23 1		
3900.701 24	3901.044	0.23 1		
3904.653 14	3935.658	0.20 1		
3926.816 19	6198.932	0.023 3		
3935.287 11	3935.658	0.33 2		
x3949.8 4		0.014 2		
4001.49 8	5015.525	0.135 8		
4015.655 10	(7725.05)	0.73 4		
*4023.21 5	0010 000	0.138 8		
4044.716 22	0310.802	0.023 2		
4054.05 4	6198 932	0 030 3		
4069.007 19	5442.414	0.157 8		
4085.17 8	6651.282	0.008 2		
4100.26 15	6756.766	0.016 5		
4119.9 [#] 4	5134.932	0.040# 8		
	5741 . 243	0.040# 8		
x4125.09 22		0.088 9		
4133.406 6	(7725.05)	6.9 <i>3</i>		Iγ: 7.0 3 (90Is05), 7.53 113 (82Sh27), 7.37 15 (81Pr04).
4162.4# 5	5134.932	0.019# 5		
1100 017 10	5177.03	0.019# 5		
4109.34/ 19 X1175 06 99	0441.481	U.122 /		
4173.00 23 X4185 99 10		0.030 3		
4213 43 8	4244 52	0.004 3		
4218.04 7	6419.94	0.027 3		
4237.43# 10	5860.868	0.060# 5		
	6893.796	0.060# 5		
4259.539 6	(7725.05)	6.8 3		Iγ: 7.0 3 (90Is05), 6.16 95 (82Sh27), 7.37 15 (81Pr04).
4270.145	6756.766	0.054 7		
4280.58 15	6419.94	0.17 1		
x4330.75 <i>12</i>		0.052 3		
4377.624 12	(7725.05)	0.43 2		

$\gamma(^{28}\text{Al})$ (continued)

Εγ	E(level)	Iγ [†] §	Mult.‡	Comments
*4384.1 4		0.010 2		
4396.32 4	6019.706	0.058 3		
4424.221 20	5797.636	0.36 2		
4428.418 <i>12</i>	(7725.05)	0.81 4		
-4447.27 19	4461 06	0.019 2		
4401.54 8	4401.90	0.042 3		
4464.32 3	0730.700	0.071 5		
4511.80 4	4596 601	0.084 5		
4575 555 17	6198 932	0 30 2		
×4582 21 11	0100.002	0.041.3		
4596.11 3	4596.601	0.124 7		
4612.98 6	7269.545	0.016 2		
x4617.77 12		0.082 6		
4621.53 3	6893.796	0.19 1		
4660.046 5	4691.191	2.6 1	(E1)	Iγ: 2.6 1 (90Is05).
4690.678 5	4691.191	4.6 2	(E1)	Iγ: 4.8 2 (90Is05), 4.99 10 (81Pr04).
4733.846 7	4765.010	5.5 3	(E1)	
4737.17 18	(7725.05)	0.45 2		
4754.35 6	6893.796	0.38 2		
4764.479 8	4765.010	0.91 5		
x4769.61 15		0.113 9		
4783.485 18	5797.636	0.011 3		
x4812.54 17		0.031 2		
x4868.80 9		0.058 3		
4903.113 6	4903.615	3.1 2	(E1)	Iγ: 3.3 2 (90Is05).
$^{x}4965.84$		0.009 1		
4984.308 17	$5\ 0\ 1\ 5\ .\ 5\ 2\ 5$	0.113 6		
$^{x}4996.64$ 7		0.064 3		
5005.504 24	6019.706	0.048 3		
5014.940 21	5015.525	0.003 1		
x5031.51 17		0.017 1		
5068.60 <i>3</i>	(7725.05)	0.173 9		
5103.702 7	5134.932	0.39 2		
5130.06 11	7269.545	0.107 9		
5134.334 7	5134.932	3.0 1	(E1)	Iγ: 3.2 2 (90Is05), 3.26 6 (81Pr04).
5142.6 4	(7725.05)	0.015 2		
5176.45 5	5177.03	0.070 3		
5184.74 3	6198.932			
*5203.54 21 X5900 20 24		0.017 1		
~5209.30 24		0.022 2		
3213.4 J		0.009 2		
5238 178 10	(7725 05)	0.000 1		
x5269 91 6	(1120.00)	0 057 3		
5277.68 5	6651 282	0.021 <i>1</i>		
5302.632 12	6316.862	0.47 2		
×5315.14 12		0.031 2		
5343.87 6	6316.862	0.017 1	E2	
5377.25 4	5377.860	0.080 5		
5411.077 7	5442.414	2.01	(E1)	
5427.257 13	6441.481	0.087 5		
5441.70 7	5442.414	0.015 2	(E1)	
5446.90 7	6419.94	0.035 2		
5452.84 4	(7725.05)	0.168 9		
x5459.39 18		0.021 2		
5523.13 7	(7725.05)	0.064 3		
x5564.65		0.007 1		
5585.667 23	(7725.05)	1.10 5		
x 5 5 9 4 . 7 4		0.009 1		
5709.852 13	5741 . 243	0.56 3		
x5719.14 16		0.022 2		
x5729.6 4		0.008 1		

$\gamma(^{28}Al)$ (continued)

Εγ	E(level)	Iγ [†] §	Comments
×5748.2 14		0.002 2	
x5760.57 24		0.023 2	
5766.272 17	5797.636	0.38 2	
5796.904 17	5797.636	0.124 7	
5802.89 5	7176.542	0.035 2	
5829.49 4	5860.868	0.013 1	
5860.12 <i>3</i>	5860.868	0.155 8	
5879.42 <i>3</i>	6893.796	0.026 2	
x5882.6 6		0.009 2	
x5923.42 7		0.043 2	
x5969.54 <i>15</i>		0.023 2	
5988.284 23	6019.706	0.023 2	
6018.92 <i>3</i>	6019.706	0.187 9	
6101.54 5	(7725.05)	2.6 1	Iγ: 2.7 1 (90Is05), 2.71 6 (81Pr04).
x6109.6 7		0.010 2	
x6121.3 5		0.011 2	
6162.13 4	7176.542	0.013 2	
6198.141 11	6198.932	0.67 3	Iγ: 0.70 <i>3</i> (90Is05).
x6210.8 3		0.013 1	
6255.10 5	7269.545	0.014 1	
x6289.6 8		0.003 1	
6316.031 12	6316. 862	2.0 1	
x6329.5 8		0.008 2	
6351.454	(7725.05)	0.109 6	
x6390.2 5		0.008 1	
6419.06 12	6419.94	0.006 1	
6440.651 11	6441.481	0.66 3	Iγ: 0.71 3 (90Is05).
x 6 4 4 9 . 5 5		0.007 1	
x6459.69 22		0.016 1	
6591.614	6623.20	0.164 9	
6619.69 4	6651.282	0.24 2	
6622.24 9	6623.20	0.19 2	
x6628.4 5		0.011 2	
6710.692 7	(7725.05)	0.90 5	
6725.16 5	6756.766	0.086 5	
6751.93 <i>8</i>	(7725.05)	0.058 3	
*6800.7 3		0.022 2	
^6823.03 <i>11</i>		0.055 3	
6862.16 3 XCOO4 07 17	6893.796	0.173 9	
*6894.27 I7		0.031 2	
*6936.97 <i>3</i>		0.124 /	
~7135.24 12	7176 549	0.034 3	
1113.30 4 7937 93 10	7260 545	0.133 4	
1231.03 1U	7260 545	0.007 2	
1200.40 J X7249 95 11	1203.343	0.030 2	
x7377 0 2		0.000 3	
×7407 73 11		0 065 5	
7693 407 4	(7725 05)	3 3 2	Ly: 3.6.2 (90Is05) 5.8 (82Sb27)
7724.036 4	(7725.05)	26.8 1	I_{γ} : 29.5 7 (90Is05), 25.1 67 (82Sh27), 32.1 6 (81Pr04).

 $^\dagger\,$ Absolute intensities per 100 neutron captures.

[‡] From adopted gammas.

For intensity per 100 neutron captures, multiply by 1.
 [#] Multiply placed; undivided intensity given.
 ^x γ ray not placed in level scheme.

Level Scheme

Level Scheme (continued)

,3+	కోతి వ్రసిస్థ సినిమ	(7725.05)
	82088888 000 000000 100	
	SALESE SECTION CON SECTION	
to 4+)		7269.545
to 3+)		7176.542
2)		6902 706
<u>, </u>		6756 766
<u></u>		6651 282
$\frac{10}{10} \frac{3+1}{10}$		6623 20
<u>(0 4+)</u>		6441 481
<u>*)</u> /		6419.94
///		6316 862
/		
4+) —		<u> </u>
10 4+)		3377.000
		— 5134.932 ac c
-		28 fs
		4903.615 39 fs
		<u>4765.010</u> 35 fs
		4596.601 160
		100
		<u>4244.52</u> 40 fs
		3670.883 100
<u> </u>		3591529 70 c
·		70 fs
		<u>3347 280</u> 62 fs
		3296.486 100
/		100
+		<u> </u>
		<u>2656.172</u> 35 fs
		2582.06 370
3+)		2565.80
		<u>2486.256</u> 70 fs
		<u>2271.817</u> 20 fs
/		2201.586 45 fs
]		<u>2139.005</u> 55 fs
		1620 429
		<u> </u>
		1373.045
		220
		1013.695 105
		<u>972.483</u> 32 n
		00 p
		30.8268
		2.07

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

2+,3+	 (7725.05)	
(1+ to 3+)	 7176.542	
(2+,3)	6893.796	
1+ to 4+)	6623.20	
1,2)+	 6419.94	
2+ to 4+)	6198.932	
1+ to 4+)	6019.706	
1 to 4+)	5741.243	
1+ to 4+)	<u> </u>	
-	 5134.932	28 fs
-	4903.615	39 fs
-	4691.191	35 fs
2,4)+	4461.96	
+	4244.52	40 fs
	- 2075 049	
	3670.883	55 fs
_	 3465 342	130 fs
+	 - 3296.486	62 fs 100 fs
		100 15
1,3)+	2987.66 2656.172	60 fs
i+	2582.06	370 fs
1,2,3+)		
·+ +	2271.817	70 fs
+	2201.586	20 IS 45 fs
+	2139.005	55 fs
+	1623.006	85 fs
+	/ 1620.438	85 fs
l+	1373.045	220 fs
3+	1013.695	105 fs
+	972.483	33 ps
2+ 3+	<u>30.8268</u> 0.0	2.07 ns
		2.2414 m

²⁸Si(n,γ) E=thermal 92Ra19,90Is02

Others: 90Is02, 90Is05.

Target J*π*=0+.

92Ra19: measured Ey, Iy with a Ge(Li)-NaI(Tl) in Compton-suppressed mode and pair spectrometer mode. Deduced neutron

separation energy S(n)=8473.56 keV 4.

Other measured S(n)=8473.61 keV 4 (90Is02).

Evaluated S(n)=8473.55 keV 3 (95Au04).

 $Measured\ thermal-neutron\ capture\ cross\ section,\ \sigma(n,\gamma)=169\ mb\ 4\ (92Ra19),\ 207\ mb\ 4\ (90Is02,90Is05).$

²⁹Si Levels

E(level) [‡]	$J\pi^{\dagger}$	T _{1/2} †	Comments
0.0	1 / 2 +	stable	
1273.375 22	3 / 2 +	290 fs 10	
2028.04 7	5 / 2 +	306 fs 10	
2425.86 3	3 / 2 +	18.4 ps 11	
3066.98 4	5 / 2 +	32 fs 2	
4840.34 7	1 / 2 +	<3 fs	
4934.389 22	3 / 2 -	0.48 fs 12	
6380.575 24	1 / 2 -	0.36 fs 11	
6712.9 5	3 / 2		
6908.52 6	(1/2+.3/2)		
7058.00 9	1 / 2 +	<15 fs	
7523.19 13	(1/2, 3/2)	<15 fs	
7996.9 3	3 / 2 -		
(8473.55.3)	1/2+		E(level); from evaluated S(n) (95Au04).
(,			π , from s-wave neutron canture
			Observed deexcitation intensity is 100% of g.s. feeding.

[†] From adopted levels, except as noted.

 \ddagger From Ey's using least-squares fit to data, except as noted.

$\gamma(^{29}Si)$

All data are from 92Ra19, except as noted.

I γ normalization: renormalized from assuming I $\gamma(to~g.s.)$ =100. $\sigma(n,\gamma)$ =0.177 5.

Eγ	E(level)	Iγ [†] #	Mult.‡	δ‡	Comments
20774	9495 96	0.018 6	(M1)		$\sigma(n, n) = 0.02 \text{ mb} (0.02 \text{ Po}(10))$
397.74	2423.80	0.018 0	(M1)		$G(\mathbf{n}, \gamma) = 0.03 \text{ mb} I (92\text{Ra19}).$
4/0.0 3	(84/3.55)				$G(n,\gamma) = 0.10 \text{ mb} 2 (92\text{ kar9}).$
(641.25)	3066.98	0.017 9			$\sigma(n,\gamma) = 0.029 \text{ mb } 15.$
754.2 4	2028.04	0.030 12	M1 + E2	-0.03 3	$\sigma(n, \gamma) = 0.05 \text{ mb } 2 (92 \text{ Ral } 9).$
950.33 <i>13</i>	(8473.55)	0.071 12			$\sigma(n,\gamma) = 0.12 \text{ mb } 2 (92 \text{ Ral } 9).$
1038.89 10	3066.98	0.136 18	M1+E2	+0.04 2	$\sigma(n,\gamma) = 0.23 \text{ mb } 3 (92 \text{ Ra19}).$
×1071.0 5		0.047 12			$\sigma(n,\gamma) = 0.08 \text{ mb } 2 (92 \text{ Ra19}).$
1152.46 6	2425.86	0.528 24	M1+E2	+0.009 8	$\sigma(n,\gamma) = 0.89 \text{ mb } 4 (92 \text{ Ra19}).$
1273.33 <i>3</i>	1273.375	16.9 9	M1 + E2	+0.197 9	$\sigma(n,\gamma)=28.5 \text{ mb } 14 (92 \text{ Ra19}).$
1415.54 9	(8473.55)	0.213 24			$\sigma(n,\gamma) = 0.36 \text{ mb } 4 (92 \text{ Ra19}).$
1446.14 4	6380.575	0.79 3	(M1)		$\sigma(n,\gamma) = 1.34 \text{ mb } 5 (92 \text{ Ra19}).$
1540.18 6	6380.575	0.35 3	(E1)		$\sigma(n,\gamma) = 0.59 \text{ mb } 5 (92 \text{Ra19}).$
1564.99 5	(8473.55)	0.52 4			Iγ: 0.52 13 (90Is02).
					$\sigma(n, \gamma) = 0.87 \text{ mb } \theta (92 \text{ Ra19}).$
1760.4 5	(8473.55)	0.042 12			$\sigma(n,\gamma) = 0.07 \text{ mb } 2 (92 \text{ Ra19}).$
1793.51 4	3066.98	0.66 4	M1+E2	+0.26 2	Iγ: 0.55 8 (90Is02).
					$\sigma(n,\gamma) = 1.12 \text{ mb } \theta (92\text{Ra19}).$
1867.29 5	4934.389	0.77 4	(E1)		Iγ: 0.84 8 (90Is02).
					$\sigma(n, \gamma) = 1.30 \text{ mb } \theta$ (92Ra19).
2027.98 <i>9</i>	2028.04	0.44 5	E2(+M3)	≈0.0	I_{γ} : 0.80 5 (90Is02).
					$\sigma(n, \gamma) = 0.74 \text{ mb } 7 (92 \text{ Ra19}).$
2092.89 3	(8473,55)	19.6 8	E1§		Iv: 19.67 20 (90Is02).
	(,				$\sigma(n, \gamma) = 33.0 \text{ mb} 12 (92 \text{ Ra} 19).$
2123 8 6	7058 00	0 024 6	(E1)		$\sigma(n, \gamma) = 0.04 \text{ mb } 1 (92\text{Ra}19)$
2125.5 6	2425 86	3 00 12	(11) M1+F2	-0 32 7	$I_{M'}$ 3 02 5 (001c02)
N100.70 T		5.50 12	111 122	0.02 /	$\sigma(n_{\rm V}) = 5.06 \text{ mb} 20 (02 \text{ Ra} 10)$
2508 24 12	1031 380	0 25 3			$V_{M} = 0.21 - 2 (0.1 \times 0.02)$
2000.24 10	4334.303	0.23 3			π_{1} , 0.21 μ (001302). $\pi(n, n) = 0.42$ mb π (00Do10)
					$O(\Pi, \gamma) = 0.42 \text{ mb} \ \mathcal{I} (92 \text{ Rais}).$

$\gamma(^{29}Si)$ (continued)

Εγ	E(level)	$I\gamma^{\dagger \#}$	Mult.‡	δ‡	Comments
2906 2 5	4934 389	0 042 12			$\sigma(n, v) = 0.07 \text{ mb } 2.(92\text{ Ral } 9)$
3538.98 4	(8473.55)	70.3 22	E1§		I_{γ} : 69.74 70 (90Is02).
	(,				$\sigma(n, \gamma) = 118.5 \text{ mb } 36 (92\text{Ra}19).$
3566.5 5	4840.34	0.036 12			$\sigma(n,\gamma) = 0.06 \text{ mb } 2 (92\text{Ra19}).$
3633.0@	(8473.55)	< 0.071			$\sigma(n,\gamma) < 0.12 \text{ mb} (92\text{Ra19}).$
3660.80 6	4934.389	4.09 18	(E1)		I_{γ} ; 4.05 4 (90Is02).
			× /		$\sigma(n, \gamma) = 6.9 \text{ mb } 3 (92 \text{ Ra} 19).$
3841.4 6	6908.52	0.042 12			$\sigma(n,\gamma) = 0.07 \text{ mb } 2 (92\text{Ra19}).$
3954.44 5	6380.575	2.61 18	(E1)		Iγ: 2.40 <i>3</i> (90Is02).
					$\sigma(n,\gamma) = 4.4 \text{ mb } 3 (92 \text{ Ra} 19).$
4482.1 4	6908.52	0.11 3			Iγ: 0.11 1 (90Is02).
					$\sigma(n,\gamma)=0.18 \text{ mb } 5 (92\text{Ra19}).$
4632.3 7	7058.00	0.024 12			$\sigma(n, \gamma) = 0.04 \text{ mb } 2 (92 \text{ Ra19}).$
4839.6 4	4840.34	0.24 3	M1		Iγ: 0.24 2 (90Is02).
					$\sigma(n, \gamma) = 0.40 \text{ mb } 5 (92 \text{ Ra19}).$
4880.2 5	6908.52	0.18 3			Iγ: 0.15 2 (90Is02).
					$\sigma(n,\gamma)=0.30 \text{ mb } 5 (92\text{Ra19}).$
4933.98 <i>3</i>	4934.389	65.7 21	E1 (+M2)	-0.05 10	Iγ: 62.49 65 (90Is02).
					$\sigma(n,\gamma) = 110.8 \text{ mb } 34 \text{ (92Ra19)}.$
5096.4 7	7523.19	0.042 12			$\sigma(n, \gamma) = 0.07 \text{ mb } 2 (92 \text{ Ra19}).$
5106.74 6	6380.575	3.68 18	(E1)		Iγ: 3.55 4 (90Is02).
					$\sigma(n,\gamma)=6.2 \text{ mb } 3 (92\text{Ra19}).$
5405.4 9	(8473.55)	0.036 12	E2§		Iγ: 0.020 3 (90Is02).
					$\sigma(n,\gamma)=0.06 \text{ mb } 2 (92\text{Ra19}).$
5634.4	6908.52	0.125 18			Iγ: 0.11 1 (90Is02).
					$\sigma(n,\gamma)=0.21 \text{ mb } 3 (92\text{Ra19}).$
5784.7 7	7058.00	0.018 6			$\sigma(n,\gamma)=0.03 \text{ mb } 1 (92\text{Ra19}).$
6046.91 16	(8473.55)	0.33 4			Iγ: 0.30 1 (90Is02).
					$\sigma(\mathbf{n}, \gamma) = 0.55 \text{ mb } \boldsymbol{\theta} \text{ (92Ra19)}.$
6379.80 4	6380.575	11.3 6	E1		Iγ: 11.04 13 (90Is02).
					$\sigma(n,\gamma) = 19.0 \text{ mb } 10 (92 \text{ Ra} 19).$
6444.9 5	(8473.55)	0.119 24	E2§		Iγ: 0.13 1 (90Is02).
					$\sigma(n,\gamma) = 0.20 \text{ mb } 4 (92 \text{ Ra19}).$
6711.4 9	6712.9	0.030 12			Iγ: 0.040 5 (90Is02).
					$\sigma(n,\gamma) = 0.05 \text{ mb } 2 (92 \text{ Ra19}).$
6907.6 7	6908.52	0.059 18			$\sigma(n,\gamma) = 0.10 \text{ mb } 3 (92 \text{Ra19}).$
7056.9 4	7058.00	0.16 3	M1		$I\gamma$: 0.15 1 (90Is02).
					$\sigma(n,\gamma) = 0.27 \text{ mb } 5 (92 \text{ Ra19}).$
7199.20 5	(8473.55)	7.1 3			$I\gamma$: 6.81 7 (90Is02).
					$\sigma(n, \gamma) = 11.9 \text{ mb } 5 (92 \text{ Ra} 19).$
7521.8 9	7523.19	0.012 6			$I\gamma$: 0.020 3 (90Is02).
# 0.0 4 5 T	#000 -				$\sigma(n,\gamma) = 0.02 \text{ mb } I (92\text{ Ra19}).$
7994.9 9	7996.9	0.018 6			1γ : 0.020 4 (901s02).
					$\sigma(n,\gamma) = 0.03 \text{ mb } 1 (92 \text{ Ral } 9).$
8472.2223 5	(8473.55)	2.17 12			Ey: trom 9/K026.
					1γ : 2.12 Z (901s02).
					$\sigma(n,\gamma)=3.66 \text{ mb } 20 \text{ (92Ra19)}.$

† Absolute intensities per 100 neutron captures. For γ-ray cross section in mb (92Ra19), multiply by 1.6892 per 100 neutron captu res.

From adopted gammas, except as noted.
From 92Ra19.

For intensity per 100 neutron captures, multiply by 1.

Por intensity per 100 neutron cuptures, managed and a second secon

 $^{\boldsymbol{x}}$ $\boldsymbol{\gamma}$ ray not placed in level scheme.

Level Scheme

Intensities: $I(\gamma\text{+}ce)$ per 100 parent decays

²⁹Si(n, y) E=thermal 92Ra19,90Is02

Others: 90Is02, 90Is05.

Target $J\pi=1/2+$.

 $92Ra19:\ measured\ E\gamma,\ I\gamma\ with\ a\ Ge(Li)-NaI(Tl)\ in\ Compton-suppressed\ mode\ and\ pair\ spectrometer\ mode.\ Deduced\ neutron and the second second$

separation energy S(n)=10609.24 keV 5.

Other measured S(n) = 10609.21 keV 4 (90Is02).

Evaluated S(n)=10609.18 keV 3 (95Au04).

Measured thermal-neutron capture cross section, $\sigma(n,\gamma)=119$ mb 3 (92Ra19), 120 mb 3 (90Is02,90Is05).

³⁰Si Levels

E(level) [‡]	$J\pi^{\dagger}$	T _{1/2} †	Comments
0.0	0 +	stable	
2235.308 23	2+	248 fs 12	
3498.51 4	2 +	58 fs 5	
3769.47 4	1+	36 fs <i>9</i>	
3787.70 5	0 +	8.3 ps 5	
4810.34 11	2 +	107 fs 14	
4830.84 4	3 +	94 fs 17	
5231.55 7	3 +	55 fs 14	
5280.0			
5372.2 [§] 6	0 +	60 fs 20	
5487.55 6	3 –	49 fs 14	
5614.01 12	2 +	<14 fs	
6641.19 6	2 -	23 fs 8	
6744.06 3	1 –	0.6 fs 2	
6914.78 <i>19</i>	2 +	< 2.4 fs	
7507.86 4	2 -	< 25 fs	
7667.2 4	(1,2)+	<14 fs	
8104.8 3	2 +	< 25 fs	
8154.8 3	(1 - to 4 +)		
8163.18 4	1 –		
8898.07 10	1 –		
8936.5 [#] 3	2 +		

³⁰Si Levels (continued)

E(level) [‡]	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
8953.29 12	(1,2+)		
9103.72 4	(0 to 2) –	< 25 fs	
9308.07 6	(0 to 3+)	< 2.5 f s	
9597.17 <i>9</i>			
9619.76 <i>6</i>	1 –	0.13 fs 5	
9792.34 6	1 –	0.07 fs 2	
10202.08 8	1 –	0.05 fs 3	
10275.8 3	(0+ to 4+)		
(10609.18 3)	0+,1+		E(level): from evaluated S(n) (95Au04).
			$J\pi$: from s-wave neutron capture.

Observed deexcitation intensity is 77% of g.s. feeding.

[†] From adopted levels, except as noted.
 [‡] From Eγ's using least-squares fit to data, except as noted.

γ-rays feeding this level were sought but not observed.
 γ-ray deexciting this level were sought but not observed.

$\gamma(^{30}Si)$

All data are from 92Ra19, except as noted.

 $I\gamma$ normalization: renormalized from assuming $I\gamma(to~g.s.){=}100.$

Eγ	E(level)	Iγ [†] #	Mult.‡	δ‡	Comments
271.0	3769.47	< 0.04			$\sigma(n,\gamma) < 0.05 \text{ mb} (92\text{ Ral9}).$
289.2	3787.70	< 0.04			$\sigma(n,\gamma) < 0.05 \text{ mb} (92Ra19).$
*295.7 <i>4</i>		0.034 9			$\sigma(n,\gamma) = 0.04 \text{ mb } 1 (92 \text{ Ra19}).$
x326.0 4		0.084 17			$\sigma(n,\gamma) = 0.10 \text{ mb } 2 (92 \text{ Ra} 19).$
333.3 <i>3</i>	(10609.18)	0.11 3			$\sigma(n,\gamma) = 0.13 \text{ mb } 3 (92 \text{ Ra} 19).$
^x 355.80 8		0.29 3			$\sigma(n,\gamma) = 0.34 \text{ mb } 3 (92 \text{ Ra19}).$
400.9 4	5231.55	0.050 17	(M1)		$\sigma(n,\gamma) = 0.06 \text{ mb } 2 (92 \text{ Ra19}).$
407.14 7	(10609.18)	0.31 3			$\sigma(n,\gamma)=0.37 \text{ mb } 3 (92 \text{ Ra19}).$
421.0 5	5231.55	0.059 17			$\sigma(n,\gamma)=0.07 \text{ mb } 2 (92 \text{ Ra} 19).$
x646.8 3		0.101 17			$\sigma(n,\gamma)=0.12 \text{ mb } 2 (92 \text{ Ra19}).$
×692.5 5		0.084 17			$\sigma(n,\gamma)=0.10 \text{ mb } 2 (92 \text{ Ra} 19).$
(782.0)	5614.01	0.029 10	M1 + E2	+0.20 11	$\sigma(n,\gamma) = 0.035 \text{ mb} 12.$
(803.6)	5614.01	0.010 5			$\sigma(\mathbf{n},\gamma) = 0.012 \text{ mb } \boldsymbol{\theta}.$
816.87 5	(10609.18)	1.09 5			$\sigma(n, \gamma) = 1.30 \text{ mb } 6 (92 \text{ Ra19}).$
989.45 5	(10609.18)	1.06 5			$\sigma(n,\gamma) = 1.26 \text{ mb } \theta$ (92Ra19).
998.9 <i>3</i>	9103.72	0.25 3			$\sigma(n,\gamma) = 0.30 \text{ mb } 3 (92 \text{ Ra19}).$
1012.05 9	(10609.18)	0.82 5			$\sigma(n,\gamma) = 0.98 \text{ mb } 5 (92 \text{ Ra19}).$
$1022.6^{@}$	4810.34	< 0.03			$\sigma(n,\gamma) < 0.04 \text{ mb} (92\text{ Ra19}).$
1027.1@	6641.19	< 0.03			$\sigma(n,\gamma) < 0.04 \text{ mb} (92\text{ Ra19}).$
1040.9@	4810.34	< 0.03			$\sigma(n,\gamma) < 0.04 \text{ mb} (92\text{Ra19}).$
1061.3@	4830.84	< 0.03			$\sigma(n,\gamma) < 0.04 \text{ mb} (92\text{Ra19}).$
1153.61 13	6641.19	0.45 4	(M1)		$\sigma(n, \gamma) = 0.54 \text{ mb } 4 (92 \text{ Ra19}).$
(1248.0)	8163.18	0.13 6			$\sigma(\mathbf{n},\gamma) = 0.15 \text{ mb } 7.$
1263.18 6	3498.51	5.51 17	M1 + E2	+0.18 4	$\sigma(n, \gamma) = 6.56 \text{ mb } 20 \text{ (92Ra19)}.$
1301.12 5	(10609.18)	1.52 5			$\sigma(n,\gamma) = 1.81 \text{ mb } 6 (92 \text{ Ra19}).$
1311.80 14	4810.34	0.40 4	M1 + E2	-0.17 5	$\sigma(n,\gamma) = 0.48 \text{ mb } 4 (92 \text{ Ra19}).$
1332.48 16	4830.84	0.29 4	M1+E2	+0.75	$\sigma(n,\gamma) = 0.34 \text{ mb } 4 (92 \text{ Ra19}).$
1390.3 5	8898.07	0.059 17			$\sigma(n,\gamma) = 0.07 \text{ mb } 2 (92 \text{ Ra19}).$
$1409.6^{@}$	6641.19	< 0.03			$\sigma(n,\gamma) < 0.04 \text{ mb} (92\text{Ra19}).$
1462.0	5231.55	< 0.03			$\sigma(n, \gamma) < 0.04 \text{ mb} (92 \text{ Ra19}).$
^x 1469.2 4		0.14 3			$\sigma(n, \gamma) = 0.17 \text{ mb } 3 (92 \text{ Ra} 19).$
1505.46 4	(10609.18)	3.79 12			$\sigma(n, \gamma) = 4.51 \text{ mb } 14 \text{ (92Ra19)}.$
1534.12 4	3769.47	5.52 17	M1+E2	-0.09 3	$\sigma(n, \gamma) = 6.57 \text{ mb } 20 \text{ (92Ra19)}.$
1552.36 4	3787.70	3.61 11	E2		$\sigma(n, \gamma) = 4.30 \text{ mb } 13 (92 \text{ Ra19}).$
1602.8 9	5372.2	0.08 3	M1		$\sigma(n, \gamma) = 0.10 \text{ mb } 3 (92 \text{ Ra19}).$
1655.89 12	(10609.18)	0.70 5			$\sigma(n, \gamma) = 0.83 \text{ mb } 5 (92 \text{ Ra19}).$
1672.7 3	(10609.18)	0.27 3			$\sigma(n, \gamma) = 0.32 \text{ mb } 3 (92 \text{ Ra19}).$
1711.3 <i>3</i>	(10609.18)	4.2 9			$\sigma(n, \gamma) = 5.0 \text{ mb } 10 \text{ (92Ra19)}.$
1733.00 10	5231.55	1.11 5	M1 + E2	+0.12 6	$\sigma(n,\gamma)=1.32 \text{ mb } 6 (92 \text{ Ra19}).$

E_f Effect $h^{1/2}$ $Male 1$ e^2 Connects 1840.42 2^2 6641.13 $025 d$ (11) $(1,1)^2 - 0.54 m b d (128.11)$. 1840.42 0^2 $0.54 d$ 0^2 0^2 0^2 1840.43 0^2 0^2 0^2 0^2 0^2 1840.44 0^2 0^2 0^2 0^2 0^2 0^2 0^2 0^2 0^2 0^2 0^2 0^2 0^2 0^2 0^2^2	$\gamma(^{30}Si)$ (continued)						
L_{f} Likes) L_{f}/V Kut D^{2} Community 1330. 6.4 644.1.9 0.43.4 (E1) $(c_{1})^{-0.5}$ and $(c_{2})^{-0.5}$ and $(c_{2})^{-0.$	_		_ +#		a†		
1410.2 22 041.19 0.5 4 (T1) cn, y=0.5 4 mb / (022n16). 1844.0 7 541.01 0.5 2 M=E2 -0.11 5 cn, y=0.25 mb / (022n16). 1833.0 7 544.0 0.18 4 cn, y=0.25 mb / (022n16). cn, y=0.25 mb / (022n16). 1833.0 7 547.5 1.00 5 E1 (432) -0.02 7 cn, y=0.25 mb / (022n16). 2223.3 2 7307.86 1.27 5 cn, y=0.25 mb / (022n16). cn, y=0.25 mb / (022n16). 2235.7 4 8589.07 0.21 4 F cn, y=0.25 mb / (022n16). 2235.7 8589.07 0.21 4 F cn, y=0.25 mb / (022n16). 2235.7 8589.07 0.21 4 F cn, y=0.25 mb / (022n16). 2235.7 8589.07 0.21 4 F cn, y=0.25 mb / (022n16). 2245.3 (10609.18) 0.5 5 F cn, y=0.45 mb / (022n16). 2245.45 7 105.5 7 F cn, y=0.45 mb / (022n16). 2245.94 7 105.2 7 r, y=0.3 mb / (022n16). cn, y=0.4 mb / (022n16). 2245.93 1010.20 18 F 0.5	Εγ	E(level)	Ιγ! #	Mult.+	δ+	Comments	
1330. 6 4 0.641. 19 0.52 5 4 (1) 0(n, y=0.27 m) 4 (028.010). 1383. 6 5 707. 86 0.16 4 0(n, y=0.17 m) 4 (028.010). 1383. 6 5 707. 86 0.16 5 0(n, y=0.17 m) 4 (028.010). 1383. 6 5 707. 86 1.66 5 FL (ALZ) 0.10 2 0(n, y=0.17 m) 4 (028.010). 1383. 6 5 707. 86 1.27 5 0(n, y=0.17 m) 4 (028.010). 0(n, y=0.17 m) 4 (028.010). 2134. 3 6 888.07 0.12 7 FL (ALZ) 0(n, y=0.17 m) 4 (028.010). 2235. 7 4 9233. 53 7 90.07 2 3.25 17 0(n, y=0.17 m) 4 (028.010). 2235. 7 4 90.07 2 3.25 17 0(n, y=0.17 m) 4 (028.010). 0(n, y=0.17 m) 4 (028.010). 2335. 7 4 90.07 2 3.25 17 FL (AUZ) 0(n, y=0.17 m) 4 (028.010). 2344. 5 3 (100001.18) 0.25 3 FL (AUZ) 0(n, y=0.13 m) 5 (028.010). 2345. 7 6 7007. 86 2.18 10 M H E2 -0.52 17 r(n, y=0.15 m) 6 (028.010). 2344. 5 3 (100001.18) 0.55 7 FL (AUZ) 0(n, y=0.15 m) 7 (028.010). 0(n, y=0.15 m) 7 (028.010). 2341. 5 3 04000.180 0.1	1810.42 22	6641.19	0.45 4	(E1)		$\sigma(n,\gamma) = 0.54 \text{ mb } 4 (92 \text{ Ra19}).$	
1444. 40 6 541. 40 0.52 MI-E2 40.11 6(n_1^{-0} -0.50 mb (202a16)), cf(n_1^{-0} -0.52 mb (202a16), cf(n_1^{-0} -0.52 mb (202a16), cf(n_1^{-1} -55 mb (2	1830.64	6641.19	0.23 4	(E1)		$\sigma(n,\gamma)=0.27 \text{ mb } 4 (92 \text{ Ra19}).$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1844.40 16	5614.01	0.52 5	M1 + E2	+0.11 5	$\sigma(n,\gamma)=0.62 \text{ mb } 5 (92\text{Ra19}).$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1893.6 5	7507.86	0.16 4			$\sigma(n, \gamma) = 0.19 \text{ mb } 4 (92 \text{ Ra19}).$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1933.9 5	6744.06	0.18 4	E1 (.) (0)	0 0 0 7	$\sigma(\mathbf{n}, \gamma) = 0.22 \text{ mb } 4 (92 \text{ Ral9}).$	
1515.4 233.23 3 233.23	1989.02 7	5487.55 7507 86	1.06 5	EI(+M2)	-0.02 /	$\sigma(n,\gamma) = 1.20 \text{ mb } b (92\text{ Ral9}).$ $\sigma(n,\gamma) = 1.51 \text{ mb } b (92\text{ Ral9}).$	
2235. 23 2235. 30 45. 6 I / I E2 I_{12} (I_{12} (I_{12} (I_{12}) 2236. 7 4 888.07 0.21 I $(m_{12}) - 4.3$ mb / 0 (2Ea10). 2237. 22 8 7507.36 1.24 $(m_{12}) - 4.3$ mb / 0 (2Ea10). 2337. 57 I 0.103.72 3.52 I / I I_{12} (I_{12} (I_{12}) 2445. 5 I I_{10} (I_{10}) I_{12} (I_{10}) I_{11} (I_{10}) I_{11} (I_{10}) 2545. 5 I I_{10} (I_{1000}). IIS I_{12} (I_{10}) I_{11} (I_{10}) I_{12} (I_{10}) I_{12} (I_{10}) I_{12} (I_{10}) I_{12} (I_{10}) I_{11} (I_{10} (I_{11}) I_{12} (I_{10}) I_{12} (I_{10}) I_{12} (I_{10} (I_{11}) I_{11} (I_{11} (I_{11} (I_{11}) I_{11} (I_{11} (I_{11}) I_{11} (I_{12} (I_{11}) I_{11} (I_{11} (I_{11}) I	2154 3 6	8898 07	0 12 3			$\sigma(n, \gamma) = 0.14$ mb 3 (92Ra19)	
254.7.4 8898.07 0.21 (m.)-0.25 mb / 4 (922410). 257.6.7 8103.72 3.52 (m.)-0.25 mb / 4 (922410). 257.7 10103.72 3.52 (m.)-0.25 mb / 3 (922410). 253.7.87 (10609.18) 0.25 J (m.)-0.25 mb / 3 (922410). 254.1.5 (10609.18) 0.25 J (m.)-0.25 mb / 3 (922410). 254.1.5 (10609.18) 0.25 J (m.)-0.25 mb / 3 (922410). 254.1.5 (10609.18) 0.13 J M1-E2 -0.52 J (m.)-0.25 mb / 3 (922410). 2553.78 4810.34 0.13 J M1-E2 -0.52 J (m.)-0.25 mb / 3 (922410). 2567.8 780.78.60 0.13 J M1-E2 -0.52 J (m.)-0.25 mb / 3 (922410). 2677.8 790.78.78. 0.13 J M1-E2 -0.52 J (m.)-0.25 mb / 3 (922410). 2677.8 7057.86 0.11 J (E1) (m.)-0.25 mb / 3 (922410). (m.)-0.25 mb / 3 (922410). 2571.8 7041.40 1.00 J (m.)-0.25 mb / 3 (922410). (m.)-0.25 mb / 3 (922410). 2571.8 7044.40 1.00 J <	2235.23 3	2235.308	45.6 14	E2		$I_{\gamma}: 62.4 \ 15 \ (90Is02).$	
2263. 7 898.07 0.21 4 cm,p-1.48 m / (928.19), 2359. 7 9103.72 3.52 1 r, 0-1.38 m / (928.19), 2359.74 9103.72 3.52 1 r, 0-1.48 m / (928.19), 244.94 3 (10609.18) 0.23 3 r, 0-1.48 m / (928.19), 2453.53 (10609.18) 0.25 3 r, 0-2 4 m / (1000.18) 253.53 4810.34 0.13 4 M1+22 -0.52 1/1 r, 1-0 4 m / (1028.18), 2537.67 7307.86 2.18 10 M1+22 -0.52 1/1 r, 1-0 4 m / (1028.18), 2537.57 4810.34 0.13 4 M1+22 -0.52 1/1 r, 1-0 4 m / (1028.18), 2537.57 7307.86 0.13 4 (E1) r, 1-2 6 r (10402), 2647.07 7307.86 2.18 10 (E1) r, 2-2 7 (10422), 2547.57 7307.86 2.18 10 (E1) r, 2-2 7 (10422), 2547.57 747.45 0.13 4 (E1) r, 2-2 7 (10422), 2547.57 747.46 0.13 4 (E1) r, 2-2 7 (10422), 2547.57 674.46 1.00 7 r, 2-2 7 (10422), 2547.57 674.46 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>$\sigma(n,\gamma) = 54.3 \text{ mb } 16 (92 \text{ Ra19}).$</td></t<>						$\sigma(n,\gamma) = 54.3 \text{ mb } 16 (92 \text{ Ra19}).$	
2278.27 797.86 1.24 6 on, $\eta = 1.48$ mb 7 (0820). 238.57 7 9103.72 on, $\eta = 1.48$ mb 7 (08120). 238.57 7 10000.180 7.9.3 E1 ³ in, $\eta = 0.19$ mb 57 (09162). 2445.04.3 (10000.180) 0.25 3 on, $\eta = 0.48$ mb 7 (02810). on, $\eta = 0.48$ mb 7 (02810). 2504.3 ³⁰ (10000.180) 0.25 3 on, $\eta = 0.48$ mb 7 (02810). on, $\eta = 0.48$ mb 7 (02810). 2504.3 ³⁰ 4430.44 0.13 4 M1 = E2 -0.52 on, $\eta = 0.38$ mb 7 (02810). 2504.3 ³⁰ 9304.67 0.13 4 on, $\eta = 0.38$ mb 7 (02810). on, $\eta = 0.38$ mb 7 (02810). 2677.67 7307.86 2.18 70 (E1) un, $\eta = 0.38$ mb 7 (02810). 2677.67 7307.86 2.18 70 on, $\eta = 0.38$ mb 7 (02810). 2747.63 0.4041.19 0.41 3 on, $\eta = 0.38$ mb 7 (02810). 2670.87 0.511 3 (E1) on, $\eta = 0.28$ mb 7 (02810). 2930.52 1 0.744 4 on, $\eta = 0.28$ mb 7 (02810). 2941.95 104000.180 2.3.7 K eth. $\eta = 0.28$ mb 7 (02810). 2941.95 104000.180 2.3.7 K	2256.7 4	8898.07	0.21 4			$\sigma(n,\gamma)=0.25 \text{ mb } 4 (92 \text{ Ra19}).$	
2358.57 9103.72 3.82 17 rp. 6.3 2 (40160), r(n,)=0.13 mb 5 (92Ra10), r(n,)=0.30 mb 5 (92Ra10), r(n,)=0.35 mb 1 (92Ra10), r(n,)=0.45 mb 2 (92Ra10)	2276.22 8	7507.86	1.24 6			$\sigma(n,\gamma) = 1.48 \text{ mb } 7 (92 \text{ Ra19}).$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2359.57 4	9103.72	3.52 11			Iγ: 6.3 12 (90Is02).	
244.9 3) (100.09.18) 7.9 3 F13 TP: 10.5 & MU1620; 2454.5 3) (100.09.18) 0.25 3 cfm, 70-4 mb 3 (92Ra19), 2574.8 4180.34 0.13 4 M1+22 -0.52 17 1001002, 2574.8 4810.34 0.13 4 M1+22 -0.52 17 1001002, 2574.8 4810.34 0.13 4 17.19 17.19 1001002, 2607.0 9308.07 0.13 4 cfm, 70-43 mb 70(92Ra19), 2747.67 7307.86 0.11 7 cfm, 70-40 mb 62Ra19), 2747.67 0 11.3 cfm, 70-41 mb 70(92Ra19), 2871.03 6641.19 0.34 5 (E1) cfm, 70-41 mb 70(92Ra19), 2941.05 010000.18) 0.34 5 (E1) cfm, 70-41 mb 70(92Ra19), 2941.05 010000.18) 2.37 K K^2 cfm, 70-31 mb 70(92Ra19), 3101.19 (10000.18) 2.37 K K^2 cfm, 70-31 mb 70(92Ra19), 3133.60 53737.2 0.13 K </td <td></td> <td>(10000 10)</td> <td></td> <td>518</td> <td></td> <td>$\sigma(n, \gamma) = 4.19 \text{ mb } 13 \text{ (92Ra19)}.$</td>		(10000 10)		518		$\sigma(n, \gamma) = 4.19 \text{ mb } 13 \text{ (92Ra19)}.$	
2444.5 3 (10609.18) 0.25 3 cfn, γ -0.3 mb 3 (32Ra19), cfn, γ -0.0 km h (42Ra19), z538.3 2548.3 4810.34 0.13 M1+E2 -0.52 17 cfn, γ -0.0 km h (42Ra19), z538.33 z 2537.8 5 4810.34 0.13 M1+E2 +0.73 z cfn, γ -0.0 km h (42Ra19), zfn, γ -3.3 km h / 0 (42Ra19), zfn, γ -3.2 km h / (42Ra19), zfn, γ -3.2 km h / (42Ra19), zfn, γ -3.2 km h / (42Ra19), zfn, γ -3.3 k	2445.94 3	(10609.18)	7.93	EIS		1γ : 10.5 8 (901802). $\sigma(n x) = 0.4 \text{ mb } 2 (02\text{ Po} 10)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2454 5 3	$(10609 \ 18)$	0 25 3			$\sigma(n, \gamma) = 0.30 \text{ mb } 3 (92\text{Ra}19).$	
	2504.3 [@]	(10609.18)	< 0.03			$\sigma(n,\gamma) < 0.04$ mb (92Ra19).	
	2574.8 5	4810.34	0.13 4	M1+E2	-0.52 11	$\sigma(n,\gamma) = 0.15 \text{ mb } 4 (92 \text{ Ra19}).$	
constraint constraint cn, y-a, 33, sn b/ (202Ra19), 2667, 0 6 93, 08, 07 0, 13 d cn, y-0, 06 on b, 2. 2667, 0 7507, 86 2, 18 /0 (E1) cn, y-0, 16 on b/ (202Ra19), 2674, 6, 5 0 0, 11, 3 dn, y-2, 59 mb / 1 (92Ra19), 2247, 6, 5 0, 641, 19 0, 34, 5 (E1) cn, y-0, 13, 0m 5 (92Ra19), 2941, 6, 5 0, 10009, 18) 0, 18 d cn, y-0, 24 mb 5 (92Ra19), 2941, 6, 5 0, 10009, 18) 0, 18 d cn, y-0, 24 mb 5 (92Ra19), 2941, 6, 5 0, 10009, 18 0, 18 d cn, y-0, 24 mb 5 (92Ra19), 2950, 25, 27 0, 74, 0, 74 E1 cn, y-0, 0, 6m b (92Ra19), 2941, 9 0, 13, 4 E2 cn, y-0, 0, 6m b (92Ra19), 3145, 19 co, 10, 36, 5 cn, y-0, 0, 6m b (92Ra19), 3145, 19 co, 13, 6, 5 cn, y-0, 0, 6m b (92Ra19), 3243, 8 3 888, 0.7 0, 36, 5 cn, y-0, 0, 6m b (92Ra19), 3244, 9 5144, 78 0, 36, 5	2595.39 4	4830.84	2.81 9	M1 + E2	+0.73 9	Iγ: 1.9 6 (90Is02).	
						$\sigma(n,\gamma)=3.35$ mb 10 (92Ra19).	
2667. 0 6 9308.07 0.13 4 $c(n,\gamma)-0.10$ $c(n,\gamma)-0.10$ $c(n,\gamma)-0.13$	(2667)	8154.8	0.050 17			$\sigma(\mathbf{n},\gamma)=0.06 \text{ mb } 2.$	
2676, 87 6 7507, 86 2.18 10 (E1) (r, 2.8 700 (62), r, 2.59 mb 17 (92Ra19), r, 2.747, 6 5 0.11 3 (r, 7) - 2.59 mb 17 (92Ra19), r, 2.747, 6 5 0.11 3 (r, 7) - 0.3 mb 3 (92Ra19), r, 2.81, 63 (92Ra19), r, 2.91, 63 (92Ra19), r, 2.91, 63 (92Ra19), r, 2.91, 70 (10609, 18) 0.18 3 (r, 7) - 0.13 mb 3 (92Ra19), r, 2.92 mb 3 (92R	2667.0 6	9308.07	0.13 4			$\sigma(n, \gamma) = 0.16 \text{ mb } 4 \text{ (92Ra19)}.$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2676.87 6	7507.86	2.18 10	(E1)		1γ : 2.6 7 (901s02). τ (n v) -2.50 mb 11 (02B c 10)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	× 9747 6 5		0 11 3			$\sigma(n, \gamma) = 2.59 \text{ mb} 11 (92 \text{ Ral9}).$ $\sigma(n, \gamma) = 0.13 \text{ mb} 3 (92 \text{ Ral9}).$	
2941.9.5 (10609.18) 0.18.3 $o(n,\gamma)=0.22 \text{ mb } 3(92Ra19).$ 2956.2.5 12 6744.06 1.09.0 $o(n,\gamma)=0.12 \text{ mb } 7(92Ra19).$ 3101.19 3 (10609.18) 23.7.8 E1 ⁵ $I_7, 29.2, 7(901s02).$ 3136.6 7 5372.2 0.13.4 E2 $o(n,\gamma)=0.4 \text{ mb } 5(92Ra19).$ 3142.5 6641.19 <0.06	2871.6 3	6641.19	0.34 5	(E1)		$\sigma(\mathbf{n}, \gamma) = 0.40 \text{ mb} 5 (92 \text{ Ra19}).$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2941.9 5	(10609.18)	0.18 3	. ,		$\sigma(n, \gamma) = 0.22 \text{ mb } 3 (92 \text{ Ra} 19).$	
2996.2.95231.550.120.120.120.140.140.160.120.140.160.150.120.140.15 <td>2956.25 12</td> <td>6744.06</td> <td>1.09 6</td> <td></td> <td></td> <td>$\sigma(n, \gamma) = 1.30 \text{ mb } 7 (92 \text{Ra19}).$</td>	2956.25 12	6744.06	1.09 6			$\sigma(n, \gamma) = 1.30 \text{ mb } 7 (92 \text{Ra19}).$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2996.2 9	5231.55	0.12 3			$\sigma(n,\gamma)=0.14 \text{ mb } 3 (92 \text{ Ra19}).$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3101.19 <i>3</i>	(10609.18)	23.7 8	E1§		Iγ: 29.2 7 (90Is02).	
3136.6 / 5372.2 0.13 4 E2 $(0, r)=0.15 m b^4 (92Ra19).$ 3142.5 ⁶ 6641.19 <0.06	0100 0 7	r 0 7 0 0	0 10 (50		$\sigma(n,\gamma) = 28.2 \text{ mb } 9 (92\text{Ra}19).$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3136.6 7	5372.2	0.13 4	E2		$\sigma(\mathbf{n}, \gamma) = 0.15 \text{ mb} 4 (92\text{ Ral9}).$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3142.5~	6914 78	< 0.05			$\sigma(n, \gamma) < 0.07 \text{ mb} (92\text{ Ral9}).$	
$\begin{array}{c} 3283.8 \ 3 \\ 8298.07 \\ 3224.9 \ 9 \\ 8104.8 \\ 0.050 \ 17 \\ 3294.9 \ 9 \\ 8104.8 \\ 0.050 \ 17 \\ 3378.68 \ 25 \\ 5614.01 \\ 0.388 \ 5 \\ M1 + E2 \\ -0.29 \ 4 \\ (n, \gamma) = 0.48 \ mb \ 5 \ (92Ra19), \\ (n, \gamma) = 0.45 \ mb \ 5 \ (92Ra19), \\ (n, \gamma) = 0.45 \ mb \ 5 \ (92Ra19), \\ (n, \gamma) = 0.45 \ mb \ 5 \ (92Ra19), \\ (n, \gamma) = 0.45 \ mb \ 5 \ (92Ra19), \\ (n, \gamma) = 0.45 \ mb \ 5 \ (92Ra19), \\ (n, \gamma) = 0.45 \ mb \ 5 \ (92Ra19), \\ (n, \gamma) = 0.45 \ mb \ 5 \ (92Ra19), \\ (n, \gamma) = 0.45 \ mb \ 5 \ (92Ra19), \\ (n, \gamma) = 0.45 \ mb \ 5 \ (92Ra19), \\ (n, \gamma) = 0.45 \ mb \ 20 \ (92Ra19), \\ (n, \gamma) = 0.45 \ mb \ 20 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 4 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ mb \ 17 \ (92Ra19), \\ (n, \gamma) = 0.16 \ (n, \gamma) = 0.16 \ (n, \gamma) = 0.16 \ (n, \gamma$	3252.00 9	5487.55	1.10 5	E1 (+M2)	-0.04 5	I_{γ} : 1.3 5 (90Is02).	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						$\sigma(n, \gamma) = 1.31 \text{ mb } 6 (92 \text{ Ra19}).$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3283.8 <i>3</i>	8898.07	0.36 5			$\sigma(n, \gamma) = 0.43 \text{ mb } 5 (92 \text{ Ra19}).$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3294.9 9	8104.8	0.050 17			$\sigma(n,\gamma)=0.06 \text{ mb } 2 (92 \text{ Ra19}).$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3378.68 25	5614.01	0.38 5	M1 + E2	-0.294	$\sigma(n,\gamma) = 0.45 \text{ mb } 5 (92 \text{Ra} 19).$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3415.7 7	6914.78	0.134	50		$\sigma(n, \gamma) = 0.16 \text{ mb } 4 (92 \text{ Ral9}).$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3498.33 2	3498.31	5.42 17	E2		1γ : 7.6 3 (901802). $\sigma(n_{2})=6.45$ mb 20 (92B 219)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3693.8 [@]	9308.07	< 0.08			$\sigma(n, \gamma) < 0.10$ mb (92Ra19).	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3694.2 3	(10609.18)	1.10 6			$\sigma(n,\gamma) = 1.31 \text{ mb } 7 (92 \text{ Ra19}).$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3738.20 18	7507.86	1.71 9	(E1)		Iγ: 2.1 2 (90Is02).	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						$\sigma(n,\gamma)=2.04 \text{ mb } 10 (92\text{Ra19}).$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3769.22 5	3769.47	4.70 15	M1		Iγ: 5.9 <i>3</i> (90Is02).	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0707 0)	0707 70	0 0101 17	FA		$\sigma(n,\gamma) = 5.59 \text{ mb } 17 (92 \text{ Ra19}).$	
$\begin{array}{c} 3864.8855 \\ 3867.789 \\ 4009.0921 \\ 4009.0921 \\ 7507.86 \\ 4087.65 \\ 8898.07 \\ 4168.4^{@} \\ 7667.2 \\ 4375.18 \\ 15 \\ 8163.18 \\ 1.225 \\ 4393.43 \\ 23 \\ 8163.18 \\ 0.715 \\ 4405.56 \\ 8 \\ 6641.19 \\ 2.91 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	(3/8/.6)	3/8/./0	0.0101 17	EU E1§		In: 25 6 5 (00Ic02)	
$\begin{array}{c} 3967.78 \ 9 \\ 10609.18 \\ 3.95 \ 13 \\ 175 \ 5.2 \ 3(901502). \\ \sigma(n,\gamma)=4.70 \ mb \ 15(92Ra19). \\ 179 \ 0.8 \ 3(901S02). \\ \sigma(n,\gamma)=1.11 \ mb \ 5(92Ra19). \\ \sigma(n,\gamma)=1.11 \ mb \ 5(92Ra19). \\ \sigma(n,\gamma)=0.40 \ mb \ 4(92Ra19). \\ 168.4^{\textcircled{m}} \\ 7667.2 \\ 4375.18 \ 15 \\ 8163.18 \\ 1.22 \ 5 \\ 4393.43 \ 23 \\ 8163.18 \\ 0.71 \ 5 \\ 4405.56 \ 8 \\ 6641.19 \\ 2.91 \ 10 \\ \hline \end{array}$	3004.03 3	(10003.18)	25.0 10	L10		$\sigma(\mathbf{n}, \gamma) = 35.5 \text{ mb} 11 (92\text{Ra}19).$	
$\begin{array}{c} \begin{array}{c} & \sigma(n,\gamma)=4.70 \ mb \ 15 \ (92Ra19). \\ & I\gamma: \ 0.8 \ 3 \ (90Is02). \\ & \sigma(n,\gamma)=1.11 \ mb \ 5 \ (92Ra19). \\ & \sigma(n,\gamma)=1.11 \ mb \ 5 \ (92Ra19). \\ & \sigma(n,\gamma)=0.40 \ mb \ 4 \ (92Ra19). \\ & 1088.4^{\textcircled{m}} & 7667.2 \\ & 4375.18 \ 15 \\ & 8163.18 \\ & 1.22 \ 5 \\ & 3163.18 \\ & 0.71 \ 5 \\ & 4405.56 \ 8 \\ & 6641.19 \\ & 2.91 \ 10 \end{array} \qquad \begin{array}{c} \sigma(n,\gamma)=0.40 \ mb \ 4 \ (92Ra19). \\ & \sigma(n,\gamma)=0.40 \ mb \ 4 \ (92Ra19). \\ & \sigma(n,\gamma)=0.40 \ mb \ 4 \ (92Ra19). \\ & \sigma(n,\gamma)=0.40 \ mb \ 4 \ (92Ra19). \\ & \sigma(n,\gamma)=0.45 \ mb \ 6 \ (92Ra19). \\ & \sigma(n,\gamma)=0.84 \ mb \ 5 \ (92Ra19). \\ & I\gamma: \ 4.4 \ 3 \ (90Is02). \\ & \sigma(n,\gamma)=3.46 \ mb \ 11 \ (92Ra19). \end{array}$	3967.78 9	(10609.18)	3.95 13			Iγ: 5.2 <i>3</i> (90Is02).	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						$\sigma(n,\gamma) = 4.70 \text{ mb } 15 (92 \text{ Ra19}).$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4009.09 21	7507.86	0.93 5	(E1)		Iγ: 0.8 3 (90Is02).	
4087.65 8898.07 0.34 $\sigma(n,\gamma)=0.40$ mb 4 (92Ra19). $4168.4^{@}$ 7667.2 <0.05 $\sigma(n,\gamma)=0.40$ mb 4 (92Ra19). 4375.18 15 8163.18 1.22 $\sigma(n,\gamma)=0.40$ mb 6 (92Ra19). 4393.43 23 8163.18 0.71 $\sigma(n,\gamma)=0.84$ mb 5 (92Ra19). 4405.56 6641.19 2.91 10 $I\gamma: 4.4$ (90Is02). $\sigma(n,\gamma)=3.46$ mb 11 (92Ra19). $\sigma(n,\gamma)=3.46$ mb 11 (92Ra19).						$\sigma(n,\gamma)=1.11 \text{ mb } 5 (92 \text{ Ra19}).$	
4 10 8 . 4~ 7 66 7 . 2 < 0 . 0 5 $\sigma(n, \gamma) < 0.06$ mb (92Ra19). 4 3 7 5 . 18 1 5 8 16 3 . 18 1 . 2 2 . 5 $\sigma(n, \gamma) = 1.45$ mb 6 (92Ra19). 4 3 9 3 . 43 2 3 8 16 3 . 18 0 . 7 1 . 5 $\sigma(n, \gamma) = 0.84$ mb 5 (92Ra19). 4 4 0 5 . 5 6 8 6 6 4 1 . 19 2 . 9 1 . 10 I γ : 4.4 3 (90Is02). $\sigma(n, \gamma) = 3.46$ mb 11 (92Ra19). $\sigma(n, \gamma) = 3.46$ mb 11 (92Ra19).	4087.6 5	8898.07	0.34 4			$\sigma(n,\gamma) = 0.40 \text{ mb } 4 (92 \text{ Ra19}).$	
43/3.18 1.22 5 $\sigma(n,\gamma)=1.45$ mb 6 (92Ra19). 4393.43 23 8163.18 0.71 5 $\sigma(n,\gamma)=0.84$ mb 5 (92Ra19). 4405.56 8 6641.19 2.91 10 I γ : 4.4 3 (90Is02). $\sigma(n,\gamma)=3.46$ mb 11 (92Ra19). $\sigma(n,\gamma)=3.46$ mb 11 (92Ra19).	4168.4 ^w	7667.2	< 0.05			$\sigma(n,\gamma) < 0.06 \text{ mb} (92\text{Ra19}).$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43/5.18 15	8163.18	1.22 5			$\sigma(n, \gamma) = 1.45 \text{ mb } \theta$ (92Ka19). $\sigma(n, \gamma) = 0.84 \text{ mb } 5$ (92Ra19)	
$\sigma(n,\gamma)=3.46 \text{ mb } 11 \text{ (92Ra19)}.$	4393.43 23 4405 56 8	6641 10	0.71 J 2 Q1 10			$0(n, \gamma) = 0.04 \text{ mb} 3 (92\pi a_{13}).$ Iv: 4 4 3 (901s02)	
			2.01 10			$\sigma(n,\gamma)=3.46 \text{ mb } 11 (92\text{Ra19}).$	

$\gamma(^{30}Si)$ (continued)

Εγ	E(level)	Iγ [†] #	Mult. [‡]	δ‡	Comments
4508.64 17	6744.06	0.66 5	(E1)		Iγ: 1.7 3 (90Is02).
					$\sigma(n, \gamma) = 0.79 \text{ mb } 5 (92 \text{ Ra} 19).$
(4656)	8154.8	0.059 17			$\sigma(\mathbf{n}, \gamma) = 0.07 \text{ mb } 2.$
4664.36 12	8163.18	1.13 5			1γ : 0.8 2 (901s02).
4679 2 3	6914 78	0 43 4	M1+F2	-0 63 14	$\sigma(n, \gamma) = 1.35 \text{ mb } 5 (92 \text{ Ral9}).$ $\sigma(n, \gamma) = 0.51 \text{ mb } 4 (92 \text{ Ral9}).$
4766 7 7	9597 17	0 10 3		0.00 14	$\sigma(n, \gamma) = 0.12 \text{ mb} - 3 (92Ra19)$
4786.5 8	9597.17	0.08 3			$\sigma(\mathbf{n}, \gamma) = 0.10 \text{ mb} \ 3 \ (92 \text{ Ra19}).$
4810.0 3	4810.34	0.45 4	E2		Iγ: 1.2 4 (90Is02).
					$\sigma(n,\gamma) = 0.54 \text{ mb } 4 (92 \text{ Ra19}).$
4994.9 7	(10609.18)	0.27 5			$\sigma(n,\gamma)=0.32 \text{ mb } 5 (92 \text{ Ra19}).$
5128.18 17	8898.07	1.64 7			Iγ: 1.9 1 (90Is02).
					$\sigma(n,\gamma) = 1.95 \text{ mb } 8 (92 \text{ Ra19}).$
5272.09 7	7507.86	15.8 5	(E1)		Iγ: 19.8 3 (90Is02).
****					$\sigma(n, \gamma) = 18.8 \text{ mb } 6 (92 \text{ Ra } 19).$
5398.8 4	8898.07	0.40 5			$\sigma(\mathbf{n}, \gamma) = 0.48 \text{ mb } 6 (92\text{ Ral9}).$
5538 05 21	9308 07	0.17 4			$O(n, \gamma) = 0.20 \text{ mD } 4 (92 \text{ Kars}).$
5556.05 24	5500.07	0.00 5			$\sigma(n x) = 0.95 \text{ mb } 6.(92\text{ Ral9})$
5868.8 7	8104.8	0.18 4			$\sigma(\mathbf{n}, \gamma) = 0.21 \text{ mb } 4 (92 \text{ Ra19}).$
5920.2 7	8154.8	0.13 4			$\sigma(n,\gamma) = 0.16 \text{ mb } 4 (92 \text{ Ra19}).$
5927.24 15	8163.18	1.34 7			Iγ: 1.4 1 (90Is02).
					$\sigma(n,\gamma) = 1.60 \text{ mb } 8 (92 \text{ Ra19}).$
6004.4 9	9792.34	0.07 3			$\sigma(n,\gamma)=0.08 \text{ mb } 3 (92\text{Ra19}).$
6098.0 <i>3</i>	9597.17	0.53 5			$\sigma(n,\gamma) = 0.63 \text{ mb } 6 (92 \text{ Ra19}).$
(6431.7)	10202.08	0.14 4	(E1)		$\sigma(\mathbf{n},\boldsymbol{\gamma}) = 0.17 \text{ mb } 4.$
6487.0 7	10275.8	0.10 3	8		$\sigma(n, \gamma) = 0.12 \text{ mb } 3 \text{ (92Ra19)}.$
6640.7 <i>9</i>	6641.19	0.14 5	M2 8		$\sigma(\mathbf{n}, \gamma) = 0.17 \text{ mb } 5 (92 \text{ Ral9}).$
6662.00 25	8898.07	1.04 5			1γ : 1.2 <i>I</i> (901802).
6717 3 8	8053 20	0 24 5			$\sigma(n, \gamma) = 1.24$ mb $\sigma(92Ra19)$. $\sigma(n, \gamma) = 0.29$ mb $5(92Ra19)$
6743.22 4	6744.06	30.7 10	E1		$V_{1} = 0.25 \text{ mb} 5 (0.2413).$
					$\sigma(n,\gamma)=36.6 \text{ mb } 11 (92\text{Ra19}).$
6820.7 4	(10609.18)	1.08 8			Iγ: 0.9 1 (90Is02).
					$\sigma(n, \gamma) = 1.28 \text{ mb } 9 (92 \text{ Ra19}).$
6838.83 15	(10609.18)	3.68 14			Iγ: 4.2 2 (90Is02).
					$\sigma(n,\gamma)=4.38$ mb 16 (92Ra19).
6913.7 5	6914.78	0.34 5	E2		$\sigma(n,\gamma)=0.40 \text{ mb } 6 (92 \text{ Ra19}).$
7071.8 7	9308.07	0.15 4			$\sigma(n,\gamma) = 0.18 \text{ mb } 4 \text{ (92Ra19)}.$
/109.82 /	(10609.18)	5.02 16			1γ : 5.7 Z (90180Z).
7507 4 8	7507 86	0 14 4			$\sigma(n, \gamma) = 3.98 \text{ mb} 18 (92\text{ Ral9}).$
(7666)	7667 2	0 0 2 0 7			$\sigma(n, \gamma) = 0.024 \text{ mb } 8$
x7944.5 9	100112	0.059 17			$\sigma(n,\gamma) = 0.07 \text{ mb } 2 (92\text{Ra19}).$
7965.8 9	10202.08	0.059 17			$\sigma(n, \gamma) = 0.07 \text{ mb } 2 (92 \text{ Ra19}).$
8162.01 11	8163.18	2.93 10			Iγ: 3.4 2 (90Is02).
					$\sigma(n,\gamma)=3.49$ mb 12 (92Ra19).
8372.7 3	(10609.18)	0.66 5			Iγ: 0.9 1 (90Is02).
					$\sigma(n,\gamma) = 0.79 \text{ mb } 6 (92 \text{ Ra19}).$
8896.7 <i>3</i>	8898.07	0.50 5			I γ : 0.7 1 (90Is02).
					$\sigma(\mathbf{n}, \gamma) = 0.60 \text{ mb } \boldsymbol{6} \text{ (92Ra19)}.$
8951.9 5	8953.29	0.27 4			$1\gamma: 0.4 \ 1 \ (901s02).$
0.010 00 07	0.010 70	1 0.9 5	F1		$\sigma(\mathbf{n}, \gamma) = 0.32 \text{ mb } 4 (92\text{ Ra19}).$
3010.20 23	9019.70	1.02 3	EI		$\sigma(n v) = 1$ (301802). $\sigma(n v) = 1$ 22 mb 6 (92Ra19)
9790 5 3	9792 34	0 93 5	E1		V_{1} , V_{1} = 1.22 mb 0 (32.0.13). V_{2} = 1 (901.02)
2,00.0	0.00.01	0.00 0			$\sigma(n, \gamma) = 1.11 \text{ mb } \delta$ (92Ra19).
10200.6 6	10202.08	0.24 3	E1		Iγ: 0.3 1 (90Is02).
					$\sigma(n,\gamma) = 0.28 \text{ mb } 3 (92 \text{ Ra } 19).$
10607.1644 5	(10609.18)	6.73 21	M1 §		Eγ: from 97Ro26.
					Iγ: 7.7 2 (90Is02).
					$\sigma(n,\gamma)=8.01 \text{ mb } 25 (92\text{Ra19}).$

Footnotes continued on next page

$\gamma(^{30}Si)$ (continued)

- [†] Absolute intensities per 100 neutron captures. For γ-ray cross section in mb (92Ra19), multiply by 1.1905 per 100 neutron captures.
- [‡] From adopted gammas, except as noted.
- § From 92Ra19.
- [#] For intensity per 100 neutron captures, multiply by 1.
- Placement of transition in the level scheme is uncertain.
- $^{\boldsymbol{x}}$ $\boldsymbol{\gamma}$ ray not placed in level scheme.

Level Scheme

Intensities: $I(\gamma+ce)$ per 100 parent decays

Level Scheme (continued)

Intensities: $I(\gamma\text{+}ce)$ per 100 parent decays

Level Scheme (continued)

Intensities: $I(\gamma\text{+}ce)$ per 100 parent decays

0+,1+	(10609.18)
	<u>9619.76</u> 0.000.07
1	
2+	8104.8 <
2	7507.86 <
2	6641.19 2.
2+	
2+	
1+	3769.47 3498.51 3498.51 3498.51
2+	2235.308 2/
)+	V V V 0.0 st
	³⁰ ₁₄ Si ₁₆

³⁰Si(n,γ) E=thermal 92Ra19,90Is02

Others: 90Is02, 90Is05.

Target Jπ=0+.

92Ra19: measured Ey, Iy with a Ge(Li)-NaI(Tl) in Compton-suppressed mode and pair spectrometer mode. Deduced neutron

separation energy S(n)=6587.40 keV 5.

Other measured S(n)=6587.32 keV 20 (90Is02).

Evaluated S(n)=6587.40 keV 5 (95Au04).

Measured thermal-neutron capture cross section, $\sigma(n,\gamma)=107$ mb 3 (92Ra19), 107 mb 2 (90Is02,90Is05).

³¹Si Levels

E(level) [‡]	$J\pi^{\dagger}$	T_1/2 [†]	Comments
0.0	3 / 2 +	157.3 min <i>3</i>	
752.23 3	1 / 2 +	530 fs 100	
1694.92 4	5 / 2 +	570 fs 110	
2316.94 10	3 / 2 +	38 ps <i>18</i>	

³¹Si Levels (continued)

E(level) [‡]	$_{J\pi^{\dagger}}$	T _{1/2} [†]	Comments
2788.03 6	5 / 2 + , (3 / 2) +	< 30 fs	
3532.92 <i>3</i>	3 / 2 -	< 10 fs	
4382.37 4	3 / 2 -		
5281.36 4	1 / 2 +		
5873.15 7	(1/2,3/2)-		
5957.92 19			
(6587.40 5)	1 / 2 +		E(level): from evaluated S(n) (95Au04).
			$J\pi$: from s-wave neutron capture.
			Observed deexcitation inrensity is 101% of g.s. feeding.

 $^\dagger~$ From adopted levels, except as noted.

 \ddagger From Ey's using least-squares fit to data, except as noted.

 $\gamma(^{31}Si)$

All data are from 92Ra19, except as noted. Ιγ normalization: renormalized from assuming Ιγ(to g.s.)=100.

Εγ	E(level)	$I\gamma^{\dagger \#}$	Mult.‡	δ‡	Comments
622.19 20	2316.94	0.12 3	(M1)		$\sigma(n,\gamma)=0.13$ mb 3 (92Ra19).
629.43 19	(6587.40)	0.20 3			$\sigma(n, \gamma) = 0.21 \text{ mb } 3 (92 \text{ Ra19}).$
714.22 6	(6587.40)	0.87 6			$\sigma(n, \gamma) = 0.93 \text{ mb } \theta$ (92Ra19).
745.1 9	3532.92	0.028 10			$\sigma(n, \gamma) = 0.03 \text{ mb } 1 (92 \text{ Ra19}).$
752.22 3	752.23	88 <i>3</i>	(M1)		$\sigma(n,\gamma) = 94.4 \text{ mb } 30 (92 \text{ Ra19}).$
849.45 15	4382.37	0.41 5			$\sigma(n,\gamma) = 0.44$ mb 5 (92Ra19).
898.6 7	5281.36	0.065 19			$\sigma(n,\gamma) = 0.07 \text{ mb } 2 (92 \text{ Ra} 19).$
943.2 7	1694.92	0.037 10			$\sigma(n,\gamma)=0.04 \text{ mb } 1 \text{ (92Ra19)}.$
$1216.0^{@}$	3532.92	< 0.047			$\sigma(n,\gamma) < 0.05 \text{ mb} (92\text{Ra19}).$
1305.99 4	(6587.40)	17.0 6	M1 §		$\sigma(n,\gamma)=18.2 \text{ mb } 6 (92\text{Ra}19).$
1564.2 4	2316.94	0.15 4			$\sigma(n,\gamma)=0.16 \text{ mb } 4 (92\text{Ra}19).$
1594.30 6	4382.37	0.96 6			$\sigma(n,\gamma) = 1.03 \text{ mb } 6 (92 \text{ Ra} 19).$
1694.875	1694.92	3.70 19	M1 + E2	+4.4 7	$\sigma(n,\gamma)=3.96 \text{ mb } 20 (92 \text{ Ra19}).$
1748.38 6	5281.36	1.28 7			$\sigma(n,\gamma)=1.37 \text{ mb } 7 (92\text{Ra}19).$
1837.925	3532.92	2.05 12			$\sigma(n,\gamma)=2.19 \text{ mb } 12 (92 \text{ Ra} 19).$
(2036.2)	2788.03	0.056 19			$\sigma(n,\gamma)=0.06$ mb 2.
2065.6 6	4382.37	0.11 3			$\sigma(n,\gamma)=0.12 \text{ mb } 3 (92\text{Ra19}).$
2204.95 3	(6587.40)	12.7 5	E1§		Iγ: 13.0 <i>19</i> (90Is02).
					$\sigma(n,\gamma) = 13.6 \text{ mb } 5 (92 \text{ Ra} 19).$
2316.80 14	2316.94	0.67 6			$\sigma(n,\gamma) = 0.72 \text{ mb } \theta \text{ (92Ra19)}.$
$2493.2^{@}$	5281.36	< 0.075			$\sigma(n,\gamma) < 0.08 \text{ mb} (92\text{Ra19}).$
2687.35 8	4382.37	1.54 10			$\sigma(n,\gamma)=1.65$ mb 10 (92Ra19).
2780.56 <i>3</i>	3532.92	67.0 <i>23</i>	(E1)		Iγ: 69.6 14 (90Is02).
					$\sigma(n,\gamma) = 71.7 \text{ mb } 24 \text{ (92Ra19)}.$
2787.90 12	2788.03	1.08 9			$\sigma(n,\gamma)=1.16 \text{ mb } 9 (92\text{Ra}19).$
2964.26 18	5281.36	0.67 7			$\sigma(n,\gamma)=0.72 \text{ mb } 7 (92\text{Ra}19).$
3054.33 <i>3</i>	(6587.40)	68.1 22	E18		Iγ: 71.3 12 (90Is02).
					$\sigma(n,\gamma) = 72.8 \text{ mb } 23 \text{ (92Ra19)}.$
3532.74 8	3532.92	1.66 10	(E1)		$\sigma(n,\gamma) = 1.78 \text{ mb } 10 \text{ (92Ra19)}.$
$3586.2^{@}$	5281.36	< 0.093			$\sigma(n,\gamma) < 0.10 \text{ mb} (92\text{Ra19}).$
3629.90 4	4382.37	7.6 3			Iγ: 7.5 7 (90Is02).
					$\sigma(n,\gamma) = 8.1 \text{ mb } 3 (92 \text{ Ra} 19).$
3640.2 9	5957.92	0.037 19			$\sigma(n,\gamma) = 0.04 \text{ mb } 2 (92 \text{ Ra} 19).$
3798.2 8	(6587.40)	0.13 4			$\sigma(n,\gamma)=0.14 \text{ mb } 4 (92\text{Ra}19).$
4270.1 ^w	(6587.40)	< 0.065			$\sigma(n,\gamma) < 0.07 \text{ mb} (92 \text{ Ra19}).$
4382.04 14	4382.37	1.73 13			$\sigma(n,\gamma) = 1.85 \text{ mb } 14 (92 \text{ Ra} 19).$
4528.77 4	5281.36	14.7 5	M1		1γ : 14.3 5 (901s02).
1000 10	(0.8.0.8				$\sigma(n,\gamma) = 15.7 \text{ mb } 5 (92\text{Ra19}).$
4892.1	(6587.40)	< 0.093			$\sigma(n,\gamma) < 0.10 \text{ mb} (92\text{ Ra19}).$
5280.9 6	5281.36	0.22 4			$\sigma(n,\gamma) = 0.24 \text{ mb } 4 (92\text{ Ral9}).$
5834.2 6	(6587.40)	0.23 4			$\sigma(n,\gamma) = 0.25 \text{ mb } 4 (92\text{ Ral9}).$
5872.37 18	5873.15	0.81 9			$1\gamma: 0.9 \ 3 \ (901s02).$
					$\sigma(n,\gamma) = 0.87 \text{ mb } 9 (92\text{Ral9}).$

$\gamma(^{31}Si)$ (continued)

Εγ	E(level)	Iγ [†] #	Comments	
5956.9 <i>8</i>	5957.92	0.11 3	$\sigma(n,\gamma)=0.12$ mb 3 (92Ra19).	
6586.6457 5	(6587.40)	1.47 13	Iγ: 1.5 2 (90Is02). $\sigma(n, \gamma)=1.57$ mb 14 (92Ra19).	

[†] Absolute intensities per 100 neutron captures. For γ-ray cross section in mb (92Ra19), multiply by 1.0707 per 100 neutron captures.

[‡] From adopted gammas, except as noted.

§ From 92Ra19.

[#] For intensity per 100 neutron captures, multiply by 1.

[@] Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: I(γ+ce) per 100 parent decays

 $^{31}_{14}{
m Si}_{17}$

³¹P(n,γ) E=thermal 89Mi16,89Ze02,85Ke11

Target $J\pi = 1/2 +$.

89Mi16: measured Eq. Iq with a HpGe detector and a pair spectrometer. Deduced neutron separation energy S(n)=7935.74 keV 16.

89Ze02: measured Ey, Iy with a Ge(Li) and a HpGe dectector. Deduced neutron separation energy S(n)=7936.65 keV 8.

Other measured S(n)=7935.70 keV 4 (85Ke11).

Evaluated S(n)=7935.65 keV 4 (95Au04).

Measured thermal-neutron capture cross section, $\sigma(n,\gamma)=173$ mb β (89Ze02).

³²P Levels

E(level) [‡]	$_{J\pi^{\dagger}}$	$T_{1/2}^{\dagger}$	Comments
0 0	1+	14 262 d 14	%R100
78 060 18	1 + 2 +	278 ns 12	λφ -100.
512 702 20	2 + 0 -	1 92 ng 6	
1140 284 20	1	175 fc 6	
1222 020 25	1+		
1322.030 23	2+	324 IS 12	
1733.01 4	3+	400 18 33	
2177.20 J	3+	43 18 0	
2217.73 0	2+	150 IS 25	
2229.73 3	1 + (1 + 1 + 2 +)	25 IS 14	
2313.43"8	$(1 + t_0 3 +)$		
2579.12# 14	(0 to 2)	7 (
2657.64 5	Z +	< / f S	
2740.46.5	1+	50 fs 30	
3073.90?8# 13	(1 + to 3 +)		
3263.998 23	2 -	90 fs 20	
3444.374	(1,2+)	25 fs 10	
3791.40# 12	1+	50 fs 30	
4009.00 5	2 -		
4035.57 <i>3</i>	1 -		
4549.22# 13	1+		
4661.53 4	2 -		
4710.58 17	1+		
4877.45 4	1 –		
5072.53 8	0 +		
5307.58? \$# 11	(1,2)+		
5325.99? ^{§#} 14			
5349.654	2 -		
5509.41 5	1 -		
5696.22? [@] 6			
5701.49 7	(1,2)-		
5778.73 <i>3</i>	1 –		
6062.145	1 –		
6196.365	1 -		
6332 . $54^{\#}$ 19	(0,1)+		
6510.36 ^{§#} 24			
6557.99? ^{§#} 12	(0+ to 3+)		
6581.89 6	(0+ to 3+)		
6783.69# 15	(0+ to 3+)		
(7935.65 4)	0+,1+		E(level): from evaluated S(n) (95Au04).
			$J\pi$: from s-wave neutron capture.

Observed deexcitation intensity is 93% of g.s. feeding.

† From adopted levels, except as noted.

 ‡ From Ey's using least-squares fit to data, except as noted.

§ Not seen in 85Ke11.

Not seen in 89Ze02.

[@] Seen in 89Ze02 and 85Ke11.

$\gamma(^{32}P)$

All data are from 89Mi16, except as noted. Errors include systematic errors of 25% for 0.4< E γ ≤2 MeV; 15% for 2<E γ ≤3 MeV; 5% for E γ >3 MeV.

 $I\gamma$ normalization: renormalized from assuming $I(\gamma\text{+ce})(\text{to g.s.})\text{=}100.$

$E\gamma^{\dagger}$	E(level)	Iγ§	Mult. [‡]	δ‡	Comments
78.099 <i>25</i>	78.060	36.69 25	(M1)		Iy: from intensity balance. α =0.00938.
(432.15 11)	1755.01	0.061 3	M1+E2	-0.12 10	
(434.63 4)	512.703	0.061 3			Not observed.
(512.69 3)	512.703	50 CA	M1		Obscured by the 511-keV annihilation line. I γ : from intensity balance. 37.9 <i>8</i> (89Ze02).
558.51 8	$2\ 3\ 1\ 3$. $4\ 5$	0.62 15			
636.670 <i>28</i>	1149.384	21.2 53	M1		Iγ: 7.40 2 (89Ze02).
^/24.25 <i>28</i>	4000 00	0.119 30			
743.04 5	4009.00	0.80 20			
771 51 12	4035 57	0.37 3			
×837.0 5		0.088 22			
895.10 13	2217.75	0.28 7	M1 (+E2)	0.0 3	
902.65 18	2657.64	0.189 47	(M1)		
907.07 25	$2\ 2\ 2\ 9$. 73	0.135 34	(M1)		
1034.316 41	3263.998	1.43 36	(E1)		
(1068.38 12)	2217.75	0.10 3			
1071.270 33	1149.384	16.9 42	M1+E2	+0.14 7	
1149.331 42 1159.19# 18	1149.384	2.56			1γ: 1.67 2 (892e02).
1152.12" 10	(7935 65)	$0.24^{\#} 0$			
×1198.98 <i>9</i>	(7555.05)	0.24 0 0.51 13			
1208.92 29	6557.99?	0.154 39			
x1211.39 33		0.135 34			
1214.56 9	3444.37	0.51 13			Iγ: 0.30 <i>3</i> (89Ze02).
1217.65 39	4661.53	0.100 25			
x1222.31 25		0.148 37			
1229.44 19	5778.73	0.197 49			
1244.764 39	1322.830	2.46			1γ : 1.72 2 (89Ze02).
1256.24# 19	2579.12	0.197 # 49 0.107# 40			
×1265 73 11	0381.89	0.197 # 49 0 70 17			
x1269.79 16		0.39 10			
x1272.97 16		0.26 6			
1314.35 19	5349.65	0.21 5			
1318.94 [#] 21	3073.90?	0.192 # 48			
	6196.36	0.192# 48			
1322.850 38	1322 . 830	3.8 9			Iγ: 3.83 4 (89Ze02).
1340.64 20	5349.65	0.37 9			Iγ: 0.55 2 (89Ze02).
1353.83 6	(7935.65)	0.84 21			1γ: 0.56 5 (89Ζε02).
1377.83" 12	4035.57	0.37# 9			
×1401 76 21	(7555.05)	0.37 5			
1425.33 24	(7935.65)	0.172 43			
1429.89# 37	2579.12	0.125# 31			
	4009.00	0.125# 31			
1432.66 34	4877.45	0.137 34			
1473.72 10	5509.41	0.44 11			
1509.017 44	3263.998	2.3 6	(E1)		Iγ: 1.80 3 (89Ze02).
1587.36 19	4661.53	0.328			
1613.74" 12	3791.40	0.35" 9			
1676 992 45	40//.40	0.35"9 2.97	M1+F2	-0798	Lv: 2 38 1 (89Ze02)
1739.40 5	(7935.65)	1.48 37		00	I_{γ} : 1.07 9 (89Ze02), 1.37 7 (85Ke11).
(1754.94 11)	1755.01	0.064 16	E2(+M3)	0.0 3	······································
1800.42 [@] 25	6510.36	0.160 40			
1805.70 35	4035.57	0.73 18			
1808.49 33	$4\ 5\ 4\ 9\ .\ 2\ 2$	0.34 9			
1873.534 49	(7935.65)	2.2 5			Iγ: 1.91 6 (89Ze02), 1.9 1 (85Ke11).
1921.68 29	4661.53	0.143 36			

³¹P(n,γ) E=thermal 89Mi16,89Ze02,85Ke11 (continued)

$\gamma(^{32}P)$ (continued)

$E\gamma^\dagger$	E(level)	Ιγ§	Mult. [‡]	δ‡	Comments
1941 160 49	3263 998	308	F1 (+M2)	-0.1.8	I_{V} 2 60 7 (897e02) 2 6 1 (85Ke11)
2099.67 12	2177.28	0.324 49	M1 + E2	+0.14.3	I_{γ} : 2.36 2 (85Ke11).
2114.483 41	3263.998	8.1 12	E1 (+M2)	+0.01 3	I_{γ} : 7.68 7 (89Ze02), 7.5 4 (85Ke11).
2136.62 24	4877.45	0.259 39			
(2139.65 12)	2217.75	0.14 3			
2151.621 41	2229.73	6.7 10			Iγ: 6.3 11 (89Ze02), 7.3 4 (85Ke11).
2156.954 41	(7935.65)	8.5 13			Iγ: 8.37 8 (89Ze02), 8.6 4 (85Ke11).
(2177.1 3)	2177.28	0.032 3	E2 (+M3)	-0.09 11	
2217.52 9	$2\ 2\ 1\ 7\ .\ 7\ 5$	0.53 8	M1 + E2	-0.5 2	Iγ: 0.10 5 (89Ze02).
2227.80 9	2740.46	1.61 24	M1		
2229.86 30	2229.73	0.41 6			
2234.12 7	(7935.65)	0.84 13			Iγ: 0.44 8 (89Ze02).
x2266.71 21		0.217 33			
2276.34 27	5349.65	0.227 34			
2348.16 17	4661.53	0.281 42			
2426.30 5	(7935.65)	1.90 29			I_{γ} : 1.79 7 (89Ze02), 1.83 9 (85Ke11).
2431.87 15	4661.53	0.33 5			1γ: 0.49 <i>10</i> (89Ze02), 0.30 <i>2</i> (85Ke11).
*2445.50 22	****	0.228 34			
2514.68 6	5778.73	1.19 18			
2579.20 35	2657.64	0.68 10			1γ : 0.45 <i>14</i> (89Ze02), 0.45 <i>2</i> (85Ke11).
2380.00848	(7935.05)	6.3 <i>IU</i> 0.144# 22			1γ : 5.73 10 (89Ze02), 6.0 3 (85Ke11).
2609.23" 21	5349.05 (7025.65)	0.144" 22 0.144# 22			1γ : 0.19 7 (85Ke11).
2657 55 6	(7933.03)	0.144 22	M1 E9	0 17 2	I_{M} 1 55 18 (807.02) 1 70 0 (85 K o 11)
2685 99 48	4009 00		WII + E Z	+0.17 5	1_{1}° , 1.55 18 (852602), 1.75 5 (85Ke11). 1_{2}° , 0.18 3 (897e02), 0.19 1 (85Ke11)
×2702 4 5	4000.00	0 096 14			1. 0.10 0 (002002), 0.10 1 (00Re11).
2712.76 25	4035.57	0.297 45			Ιν: 0.31 <i>2</i> (85Ke11).
2740.38 11	2740.46	0.52 8			I_{γ} : 0.55 6 (89Ze02), 0.63 6 (85Ke11),
2842.85 28	5072.53	0.170 25	M1		Iγ: 0.18 6 (89Ze02).
2863.15 11	(7935.65)	2.05 31			Iγ: 2.39 6 (89Ze02), 2.4 1 (85Ke11).
2886.09 6	4035.57	4.1 6			Iγ: 4.7 8 (89Ze02), 4.3 2 (85Ke11).
(2931.50 5)	3444.37	0.35 6			
x2933.65 17		0.33 5			
×2953.72 8		0.96 14			
3058.174 47	(7935.65)	6.97 35			Iγ: 6.51 11 (89Ze02), 7.2 4 (85Ke11).
3119.86 20	5349.65	0.390 19			Iγ: 0.29 5 (89Ze02).
3185.76 6	3263.998	1.99 10	(E1)		Iγ: 1.99 6 (89Ze02), 2.1 1 (85Ke11).
3196.9 7	5509.41	0.081 4			
3224.92 19	(7935.65)	0.342 17			Iγ: 0.30 6 (89Ze02), 0.32 2 (85Ke11).
*3240.6 5		0.113 6	E1 1/0	0.10.0	
3263.41 20	3263.998	0.406 20	E1+M2	-0.10 3	1γ : 0.32 7 (89Ze02), 0.26 1 (85Ke11).
^3207.53 14	(7025 65)	U.048 32			$I_{22} = 5 = 5 + 12 (90.7 \circ 0.9) = 5 + 2 (95.1 \circ 1.1)$
3274.033 43 2228 94 20	(7933.03)	5.14 20 0.220 12			1^{γ} : 5.51 15 (652e02), 5.4 5 (65Ke11).
3366 21 10	3444 37	0.230 12			1_{1}^{\prime} , 0.13 1 (65Ke11).
3387 4# 6	4710 58	$0.003 \ 54$ $0.121^{\#} \ 6$			17. 0.00 10 (052e02), 0.15 4 (05Ke11).
0001.4 0	(7935 65)	0.121 + 6			
3444.27 10	3444.37	0.726 36			Iγ: 0.77 7 (89Ze02), 0.77 4 (85Ke11),
3482.89# 36	5701.49	0.160# 8			I _{γ} : 0.10 4 (89Ze02), 0.18 1 (85Ke11).
	6062.14	0.160# 8			
x3504.01 47		0.150 7			
3511.58 28	4661.53	0.248 12			Iγ: 0.38 5 (89Ze02), 0.45 2 (85Ke11).
3518.75 4	5696.22?				Iγ: 0.46 2 (85Ke11).
3522.708 44	4035.57	13.3 7			Iγ: 14.57 26 (89Ze02), 14.4 7 (85Ke11).
3548.74 10	5778.73	0.860 43			Iγ: 0.69 11 (89Ze02), 0.92 5 (85Ke11).
3554.38 14	4877.45	0.527 26			Iγ: 0.34 17 (89Ze02), 0.52 3 (85Ke11).
3560.5# 5	4710.58	0.145# 7			Iγ: 0.12 1 (85Ke11).
	5778.73	0.145# 7			
3713.86 44	3791.40	0.174 9	M1 + E2	+0.6 5	
x3774.6 5		0.109 5			
3899.946 47	(7935.65)	17.8 9			Iγ: 17.34 14 (89Ze02), 19.2 10 (85Ke11).
3922.90 10	5072.53	1.86 9	M1		Iγ: 1.69 5 (89Ze02), 1.75 9 (85Ke11).
3926.48 10	(7935.65)	2.24 11			Iγ: 2.59 8 (89Ze02), 2.5 1 (85Ke11).

$\gamma(^{32}P)$ (continued)

$E\gamma^{\dagger}$	E(level)	Iγ§	Mult. [‡]	δ‡	Comments
3930.19 <i>19</i>	4009.00	0.658 33			Iν: 0.69 4 (89Ze02), 0.70 4 (85Ke11),
3945.9 9	5701.49	0.067 3			
3956.97 11	4035.57	0.633 32			Iγ: 0.20 10 (89Ze02), 0.56 3 (85Ke11).
4003.3# 8	5325.99?	0.069# 3			
	6581.89	0.069# 3			
4008.66 9	4009.00	0.742 37			Iγ: 1.07 7 (89Ze02), 0.81 4 (85Ke11).
4026.6 10	5349.65	$0.049_{\mu}2$			Iγ: 0.06 1 (85Ke11).
$4035.6^{\#}$ 11	4035.57	0.045# 2			
1010 0 0	4549.22	0.045# 2	M1		
4043.2 8	6783.69	0.064 3			
4071.92 19	6783 60	0.279 14 0.237 12			
4142 75 26	(7935 65)	0 208 10			
4199.92 6	5349.65	3.12 16	E1 (+M2)	+0.04 7	Iv: 3.53 9 (89Ze02), 3.4 2 (85Ke11),
4246.4 18	6557.99?	0.036 2	,		
x4278.3 7		0.069 3			
4359.83 9	5509.41	1.19 6			Iγ: 1.84 10 (89Ze02), 1.09 6 (85Ke11).
4364.45 6	4877.45	4.44 22	E1		Iγ: 4.36 12 (89Ze02), 4.7 2 (85Ke11).
x4410.37 15		0.387 19			
4456.26 27	5778.73	0.196 10			Iγ: 0.10 4 (89Ze02), 0.21 1 (85Ke11).
x4466.2 9		0.054 3			
4491.07 6	(7935.65)	2.01 10			1γ : 2.56 <i>10</i> (89Ze02), 2.2 <i>1</i> (85Ke11).
4001.0 / ×4570 8 0	5701.49	0.066 3			1γ: 0.05 <i>1</i> (85Ke11).
4579.8 9	5778 73	0.030 3			Ιν: 0.67.9 (89Ze02) 0.50.3 (85Ke11)
4632.0 9	4710.58	0.139 7			$I_{1}^{(2)}$: 0.15 1 (85Ke11).
x4644.1 5		0.101 5			-,,-
4661.11 6	4661.53	3.52 18			Iγ: 4.52 15 (89Ze02), 3.7 2 (85Ke11).
4671.39 5	(7935.65)	11.8 6			Iγ: 13.42 31 (89Ze02), 12.8 6 (85Ke11).
4738.80 38	6062.14	0.213 11			Iγ: 0.10 5 (89Ze02), 0.19 1 (85Ke11).
x4766.10 22		0.246 12			
4792.9 11	5307.58?	0.048 2			
4799.56 30	4877.45	0.186 9			1γ: 0.21 1 (85Ke11), 0.21 1 (85Ke11).
4811.2 10	5325.99?	0.064 3			
4800.5 9	(7933.03)	0.078 4			$I_{V'}$ 1 03 20 (897e02) 0 70 4 (85Ke11)
4912.30 11	6062.14	0.686 34			I_{γ} : 0.74 10 (89Ze02), 0.77 4 (85Ke11).
×5067.9 <i>17</i>		0.045 2			-,,-
5071.4 13	5072.53	0.052 3	M1		Iγ: 0.09 1 (85Ke11).
x5114.3 9		0.051 3			
x5122.3 5		0.086 4			
5180.9 8	6332.54	0.042 2			
5182.91 [@] 13	5696.22?				Iγ: 0.10 4 (89Ze02), 0.21 1 (85Ke11).
5194.92 7	(7935.65)	1.29 6			Iγ: 1.86 6 (89Ze02), 1.37 7 (85Ke11).
5228.0 8	5307.58?	0.044 2			$I_{\rm eff} = 2.94 + 1.4 (90.7 \pm 0.0) + 2.9 + 2.9 (95.1 \pm 0.1)$
5205.47 7	(7935 65)	5.07 15 1 12 6			1γ : 5.54 14 (652e02), 5.2 2 (65Ke11). 1γ : 1 61 6 (897e02) 1 25 6 (85Ke11)
5306 7 9	5307 58?	0 044 2			1). 1.01 0 (052c02), 1.23 0 (05Ke11).
5326.8 9	5325.99?	0.040 2			
x5340.5 16		0.026 1			
5349.03 20	5349.65	0.237 12			Iγ: 0.12 4 (89Ze02), 0.19 1 (85Ke11).
5355.2 9	(7935.65)	0.067 3			
5359.8 10	6510.36	0.061 1			
x5366.9 13		0.038 2			
*5379.2 5		0.081 4			
$5431.35^{\#}24$	5509.41	$0.162^{\#} 8$			$I_{M} = 0.10 + (85K_{0}11)$
×5437 0 11	0301.09	0.102" 8 0.026 1			17. U. 10 1 (OJKE11).
x5452.4 5		0.065.3			
×5474.85 29		0.118 6			
5508.2 6	5509.41	0.058 3			Iγ: 0.04 1 (85Ke11).
5549.27 30	6062.14	0.142 7			Iγ: 0.14 1 (85Ke11).
5622.17# 37	5701.49	0.095# 5			Iγ: 0.13 1 (85Ke11).

$\gamma(^{32}P)$ (continued)

$_{\rm E\gamma^{\dagger}}$	E(level)	Iγ§	Comments
5000 17# 07	(7095 65)	0 005# 7	
5622.17" 37	(7935.65)	0.095" 5	
5682 20 12	6106 26	0.047 2	$I_{\rm HI} = 0.96 + 6.(907 - 0.9) = 0.40 + 2.(95 V - 1.1)$
5700 21 14	5778 72	0.387 13	17.0.000(052002), 0.402(05Ke11).
5705 40 7	(7025 65)	2 57 12	1_{1}^{\prime} , 0.54 0 (052e02), 0.07 5 (05Ke11).
5717 55 12	(7935.05)	2.37 13	17.2.5115(652602), 2.71(65K611).
x5745 5 7	(7555.05)	0.063 3	1/2, 0.22, 0, 0.052, 0.00, 0
x5751 69 <i>17</i>		0 107 5	
5758 05 5	(7935 65)	0 085 4	Tv: 0.014 3 (85Ke11)
5778 13 8	5778 73	0 959 48	V_{1} : 0.014 5 (00 Ke11).
5983 4 6	6062 14	0 064 3	I_{1} : I_{1} : I_{2} : I_{3} : I
×6050 5 7	0000111	0 052 3	
6061 40 12	6062 14	0 422 21	Iv: 0.30 6 (897e02) 0.44 2 (85Ke11)
x6091.60 46	0000111	0.148 7	
6117.63 32	6196.36	0.144 7	Iv: 0.10 3 (89Ze02), 0.14 1 (85Ke11).
6179.4 7	(7935.65)	0.055 3	I_{γ} : 0.05 I (85Ke11).
6195.87 13	6196.36	0.362 18	Iγ: 0.37 10 (89Ze02), 0.37 2 (85Ke11).
6252.8 10	6332.54	0.036 2	
x6275.1 6		0.083 4	
x6281.45 39		0.152 8	
x6287.5 5		0.112 6	
x6294.25 26		0.183 9	
6332.01 19	6332.54	0.223 11	
x6397.5 24		0.039 2	
x6419.57 40		0.175 9	
6478.2 19	6557.99?	0.018 1	
x6496.7 22		0.027 1	
6503.17 27	6581.89	0.303 15	Iγ: 0.16 3 (89Ze02), 0.28 1 (85Ke11).
6508.7 <i>30</i>	6510.36	0.020 1	
x6517.4 7		0.056 3	
6556.2 9	6557.99?	0.041 2	
6581.02 21	6581.89	0.202 10	Iγ: 0.22 4 (89Ze02), 0.21 1 (85Ke11).
6612.02 40	(7935.65)	0.081 4	Iγ: 0.08 1 (85Ke11).
x6671.0 12		0.042 2	
x6676.9 14		0.036 2	
^x 6759.3 <i>8</i>		0.050 2	
6785.48 7	(7935.65)	14.7 7	Iγ: 15.56 22 (89Ze02), 15.5 8 (895ke11).
x6823.9 7		0.062 3	
^x 6836.4 8		0.052 3	
x6860.73 39		0.100 5	
x7018.4 8		0.051 3	
x7058.09 47		0.083 4	
x7160.5 6		0.068 3	
*7179.25 <i>24</i>		0.186 9	
*7244.72 <i>44</i>		0.090 5	
*7302.1 18		0.040 2	
*7336.48 24	(#0.0 #	0.184 9	
7422.05 8	(7935.65)	4.89 24	1γ: 5.56 22 (89Ze02), 4.9 3 (85Ke11).
~/769.7 6	(2005 05)	0.048 2	
/856.65 <i>9</i>	(7935.65)	0.875 44	17: 1.05 / (892e02), 0.91 5 (85Ke11).
~/914.98 <i>48</i>	(7095 05)	0.034 2	
1934.68 11	(7935.65)	0.369 21	1γ: U.35 5 (89ZeUZ), U.4U Z (85Ke11).

[†] The given errors include systematic errors of 20ppm for 0< $E\gamma \le 2$ MeV; 15ppm for 2< $E\gamma \le 3$ MeV; 10ppm for $E\gamma > 3$ MeV.

[‡] From adopted gammas, except as noted.
 § For intensity per 100 neutron captures, multiply by 0.944.

Multiply placed; undivided intensity given.

Placement of transition in the level scheme is uncertain.

 $^{\boldsymbol{x}}$ $\boldsymbol{\gamma}$ ray not placed in level scheme.

Level Scheme

Level Scheme (continued)

Intensities: Ι(γ+ce) per 100 parent decays & Multiply placed; undivided intensity given

0+,1+ (7935.65)

Level Scheme (continued)

Intensities: Ι(γ+ce) per 100 parent decays & Multiply placed; undivided intensity given

0+,1+ (7935.65)

Level Scheme (continued)

Intensities: Ι(γ+ce) per 100 parent decays & Multiply placed; undivided intensity given

0+,1+ (7935.65)

(0+ to 3+)	6783.69
	 6510.36
(0,1)+	6332.54
1-	6062.14
	*
	5696.22
1-	5509.41
(1 2)+	 5307 58
0+	5072.53
1–	4877.45
1+	4710.58
1+	 4549.22

Target Jn=0+.

85Ra15: measured Eγ, Iγ with a Ge(Li)-NaI(Tl) in Compton-suppressed mode and pair spectrometer mode. Deduced neutron separation energy S(n)=8641.912 keV 23.

85Ke08: measured E γ , I γ with a Ge(Li)-NaI(Tl). Deduced neutron separation energy S(n)=8641.60 keV 3.

Other measured S(n)=8641.912 keV 53 (83Ra04), 8641.60 keV 7 (80Is02).

Evaluated S(n)=8641.58 keV 3 (95Au04).

Measured thermal-neutron capture cross section, $\sigma(n,\gamma){=}518$ mb 14 (85Ra15).

³³S Levels

E(level) [‡]	$J\pi^{\dagger}$	T _{1/2} †	Comments
0.0	3 / 2 +	stable	
840.995 12	1 / 2 +	1.17 ps 3	
1967.17 4	5 / 2 +	104 fs 14	
2313.439 14	3 / 2 +	107 ps <i>17</i>	
2867.708 23	5 / 2 +	19 fs 8	
2935.18 20	7 / 2 -	28 fs 2	
2968.6 1	7 / 2 +	62 ps 11	
3220.746 14	3 / 2 -	28 fs 8	
3832.1 9	5 / 2 +	31 fs 6	
3934.93 6	3 / 2 +	24 fs 5	
4055.51 18	1 / 2 +	12 fs 8	
4144.49 6	5 / 2	24 fs 5	
4210.92 3	3 / 2 -	32 fs 5	
4423.81 13	(1/2+,3/2)	19 fs 9	
4918.079 19	1 / 2 -	90 fs 25	
5286.1 3	(1/2,3/2,5/2+)		
5480.1 3	1 / 2 +		
5613.11 5	1 / 2 +		
5711.051 18	1 / 2 -		
5888.58 <i>3</i>	3 / 2 -		
6425.09 <i>3</i>	(1/2,3/2)-		
6676.974	(1/2+ to 5/2+)		
7187.96 3	3 / 2 -		
7416.13 3	(1/2,3/2)-		
7488.47 16	(1/2,3/2,5/2+)		
7506.56 3	(1/2,3/2,5/2+)		
7616.004	(1 / 2 + , 3 / 2 , 5 / 2 +)		
8368.33 4	(1/2,3/2,5/2+)		
(8641.58 3)	1 / 2 +		E(level): from evaluated S(n) (95Au04).
			$J\pi$: from s-wave neutron capture.

Observed deexcitation intensity is 101% of g.s. feeding.

[†] From adopted levels, except as noted.

 \ddagger From Ey's using least-squares fit to data, except as noted.

$\gamma(^{33}S)$

All data are from 85Ra15, except as noted.

 $I\gamma$ normalization: renormalized from assming $I(\gamma+ce)(to~g.s.){=}100.$

Εγ	E(level)	Ιγ#&	Mult.@	δ@	I(γ+ce)&	Comments	
97.90 4	5711.051	0.0181 20	E1		0.0138	$\sigma(n,\gamma)=0.092 \text{ mb } 10 \text{ (85Ra15)}.$	
273.559 24	(8641.58)	0.067 8				$\sigma(n,\gamma) = 0.34 \text{ mb } 4 (85 \text{Ra} 15).$	
346.19 14	2313. 439	0.028 6				$\sigma(n,\gamma)=0.141 \text{ mb } 27 (85 \text{Ra} 15).$	
353.034 19	3220.746	0.28 3				$\sigma(n,\gamma) = 1.41 \text{ mb } 14 \text{ (85Ra15)}.$	
707.07 16	4918.079	0.022 4				$\sigma(n,\gamma) = 0.11 \text{ mb } 2 (85 \text{Ra} 15).$	
840.974 14	840.995	68.0 70	M1 + E2	0.151 4		$\sigma(n,\gamma)=345 \text{ mb } 32 \ (85\text{Ra}15).$	
x856.44 17		0.037 6				$\sigma(n,\gamma)=0.19 \text{ mb } 3 (85 \text{Ra} 15).$	
862.55 19	4918.079	0.022 4				$\sigma(n,\gamma)=0.11 \text{ mb } 2 (85\text{Ra}15).$	
907.315 20	3220.746	0.28 3				$\sigma(n,\gamma) = 1.42 \text{ mb } 13 \text{ (85Ra15)}.$	
923.48 24	4144.49	0.023 6				$\sigma(n,\gamma)=0.117 \text{ mb } 26 \text{ (85Ra15)}.$	
967.91 32	2935.18	0.020 5	E1 (+M2)	-0.02 <i>2</i>		$\sigma(n,\gamma)=0.104 \text{ mb } 21 \text{ (85Ra15)}.$	
970.0 6	5888.58	0.012 6				$\sigma(n,\gamma) = 0.06 \text{ mb } 3 (85 \text{Ra} 15).$	
983.20 7	4918.079	0.055 8				$\sigma(n,\gamma) = 0.28 \text{ mb } 4 (85 \text{Ra} 15).$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3220.746 4918.079 840.995 4918.079 3220.746 4144.49 2935.18 5888.58 4918.079	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 + E2 E1 (+M2)	0.151 <i>4</i> -0.02 <i>2</i>		$\begin{split} &\sigma(n,\gamma) = 1.41 \mbox{ mb } 14 \mbox{ (85Ra15).} \\ &\sigma(n,\gamma) = 0.11 \mbox{ mb } 2 \mbox{ (85Ra15).} \\ &\sigma(n,\gamma) = 345 \mbox{ mb } 32 \mbox{ (85Ra15).} \\ &\sigma(n,\gamma) = 0.19 \mbox{ mb } 3 \mbox{ (85Ra15).} \\ &\sigma(n,\gamma) = 0.11 \mbox{ mb } 2 \mbox{ (85Ra15).} \\ &\sigma(n,\gamma) = 0.112 \mbox{ mb } 23 \mbox{ (85Ra15).} \\ &\sigma(n,\gamma) = 0.104 \mbox{ mb } 21 \mbox{ (85Ra15).} \\ &\sigma(n,\gamma) = 0.06 \mbox{ mb } 3 \mbox{ (85Ra15).} \\ &\sigma(n,\gamma) = 0.28 \mbox{ mb } 4 \mbox{ (85Ra15).} \end{split}$	
$S(\Pi, \gamma) = I = I \Pi I \Pi I I O I (A I J, O J K E V O, (U I I I I I U C U)$	$^{32}S(n,\gamma)$	E=thermal	85RA15,85KE08,	(continued)			
---	--------------------	-----------	----------------	-------------			
---	--------------------	-----------	----------------	-------------			

$\gamma(^{33}S)$ (continued)

Εγ	E(level)	Ιγ#&	Mult.@	δ@	Comments
1005 054 01	(0041 50)	0 100 10			
1025.87431	(8641.58)	0.160 16			$\sigma(n,\gamma) = 0.81 \text{ mb } \delta(85\text{ Rals}).$
1007.1 J	3934.93	0.006 + 4			$\sigma(n, \gamma) = 0.03 \text{ mb } \mathcal{Z}$ (85Ra15).
^1092.48 <i>15</i>	1067 17	0.063 10			$\sigma(n,\gamma) = 0.32 \text{ mb } 3 \text{ (85Ra15)}.$
(1126.16)	1967.17	0.0099 20			$\sigma(n,\gamma) = 0.05 \text{ mb1}.$
1135.314 17	(8041.58)	0.49 5			$\sigma(n, \gamma) = 2.48 \text{ mb } 2.3 (85 \text{ Rals}).$
1155.40 ⁵ 10	(8041.38)	0.0393 12			$\sigma(n, \gamma) = 0.20 \text{ mb } b (85\text{Ra}15).$
1000 00 07	4144 40	0.028 8			$\sigma(n, \gamma) = 0.14 \text{ mb } 4 (85\text{ Rals}).$
1209.23 27	4144.49	0.020 5			$\sigma(n, \gamma) = 0.154 \text{ mb} 21 (85 \text{Ra}15).$
1223.744 13	(0041.30)	0.07 0			$\sigma(n, \gamma) = 5.4 \text{ mb} 4 (85\text{Rals}).$
1255.59 4	3220.740	0.189 20			$\sigma(n, \gamma) = 0.90 \text{ mb } IU (85 \text{ kars}).$
1433.900 19	2212 420	1 91 19	M1 E2	0 25 2	$\sigma(n, \gamma) = 2.85 \text{ mb } 20 (85\text{Ra}15).$
1500 15 12	5711 051	0 0 20 8	W11 + L. 2	-0.33 5	$\sigma(n, \gamma) = 0.20 \text{ mb} f(05Ra15).$
$1519 7^{\dagger} 20$	2822 1	0.039.8	M1 E2	0 22 10	$\sigma(n, \gamma) = 0.25 \text{ mb } 4 (85\text{Rars}).$
$1621 4^{\dagger} 20$	2024 02	0.010^{+} 4	W11 + L. 2	-0.23 10	$\sigma(n, \gamma) = 0.03 \text{ mb } 2 (85\text{Rars}).$
1677 068 10	5612 11	0.0039 20			$\sigma(n, \gamma) = 0.02 \text{ mb } f(85\text{Ra}15).$
1077.90- 10	5015.11	0.081^{-12}			$\sigma(n, \gamma) = 0.41 \text{ mb } 6 (85\text{Ra}15).$
1607 206 14	4018 070	0.081-12			$O(11, \gamma) = 0.41$ Ind $O(050, 015)$.
1097.290 14	4518.075	2.1 5			$\pi(n, n) = 12.5 \text{ mb} 12.(95\text{Po}15)$
1744 06 7	5999 59	0 105 22			$\sigma(n, \gamma) = 0.00 \text{ mb} 11 (85\text{Ra}15).$
1897 48 4	4210 92	0.135 22	(F1)		$\sigma(n, y) = 2.11 \text{ mb} 20 (85\text{Ra}15).$
1964 841 31	(8641 58)	1 40 14	(11)		$V_{1} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
1504.041 51	(0041.00)	1.40 14			$\sigma(n x) = 7.1 \text{ mb} \ 7 (85 \text{Re} 15)$
1967 13 6	1967 17	0 81 10	M1+F2	-0 56 3	$V_{1} = 0.69 \ g \ (85 K_{0} 0.8)$
1507.15 0	1507.17	0.01 10	W11 + L L	-0.30 5	$\sigma(n v) = 4.1 \text{ mb} 5.(85\text{Ra}15)$
1967 6† 3	3934 93	0 012 6			$\sigma(n, y) = 0.06 \text{ mb} - 3.(85\text{Ra}15)$
2110 3 4	4423 81	0.012 0			$\sigma(n, y) = 0.12 \text{ mb } 4 (85\text{Ra}15)$
2214 00 8	6425 09	0 47 6			$\sigma(n, \gamma) = 2.40 \text{ mb} 2.9 (85\text{Ra}15)$
2216 729 18	(8641 58)	2 62 24			$V_{1} = 1.9 I (85 Ke08)$
	(0011100)				$\sigma(\mathbf{n}, \mathbf{v}) = 13.3 \text{ mb} 12 (85 \text{Ra} 15).$
2280.54 15	6425.09	0.112 20			$\sigma(\mathbf{n}, \gamma) = 0.57 \text{ mb} 10 (85 \text{ Ra} 15).$
2313.401 23	2313.439	0.77 8	M1+E2	-33 + 73 - 67	I_{γ} : 0.73 9 (85Ke08).
					$\sigma(n,\gamma) = 3.9 \text{ mb } 4 (85 \text{Ra} 15).$
2379.657 11	3220.746	45 5	E1 (+M2)	0.00 2	Iγ: 42.9 7 (85Ke08).
					$\sigma(n, \gamma) = 230 \text{ mb } 21 \text{ (85Ra15)}.$
2456.12 24	4423.81	0.063 10			$\sigma(n,\gamma) = 0.32 \text{ mb } 5 (85 \text{Ra} 15).$
2465.84 14	6676.97	0.075 14			$\sigma(n,\gamma) = 0.38 \text{ mb } 7 (85 \text{Ra} 15).$
2490.221 14	5711.051	2.7 3			Iγ: 2.52 16 (85Ke08).
					$\sigma(n,\gamma) = 13.5 \text{ mb } 13 \text{ (85Ra15)}.$
2532.07 28	6676.97	0.051 8			$\sigma(n,\gamma)=0.26 \text{ mb } 4 (85 \text{Ra} 15).$
2667.72 15	5888.58	0.75 10			Iγ: 0.73 9 (85Ke08).
					$\sigma(n,\gamma)=3.8 \text{ mb } 5 (85 \text{Ral} 5).$
2753.26 6	(8641.58)	5.76			Iγ: 5.7 2 (85Ke08).
					$\sigma(n,\gamma)=28.7 \text{ mb } 28 (85 \text{Ra} 15).$
2867.54 8	2867. 708	0.95 10	M1 + E2	+0.114 9	Iγ: 0.82 9 (85Ke08).
					$\sigma(n,\gamma)=4.8 \text{ mb } 5 (85 \text{Ral}5).$
2930.71 7	(8641.58)	17.1 18			Iγ: 17.0 4 (85Ke08).
					$\sigma(n,\gamma)=87 \text{ mb } 9 (85 \text{Ra} 15).$
2935.0 [†] 6	2935.18	$0.017^{\dagger} 4$	M2 + E3	-0.15 2	$\sigma(n,\gamma)=0.088 \text{ mb } 19 (85 \text{Ra} 15).$
2973.0 9	5286.1	0.14 3			Iγ: 0.11 2 (85Ke08).
					$\sigma(n,\gamma)=0.70 \text{ mb } 15 \text{ (85Ra15)}.$
3020.35 <i>31</i>	5888.58	0.21 5			Iγ: 0.19 3 (85Ke08).
					$\sigma(n,\gamma)=1.05 \text{ mb } 23 \text{ (85Ra15)}.$
3029.1 5	(8641.58)	0.18 4			$\sigma(n,\gamma)=0.93 \text{ mb } 20 \text{ (85Ra15)}.$
3093.7† <i>3</i>	3934.93	0.016 [†] 6			$\sigma(n,\gamma) = 0.08 \text{ mb } 3 \text{ (85Ra15)}.$
3161.60 34	(8641.58)	0.15 3			Iγ: 0.08 1 (85Ke08).
					$\sigma(n,\gamma)=0.74 \text{ mb } 15 (85 \text{Ra} 15).$
3220.59 5	3220.746	24.4 24	E1 (+M2)	0.00 9	Iγ: 24.8 5 (85Ke08).
					$\sigma(n,\gamma) = 124 \text{ mb } 12 \text{ (85Ra15)}.$
3355.35 34	(8641.58)	0.16 4			$\sigma(n,\gamma)=0.81 \text{ mb } 18 (85 \text{Ra} 15).$
3369.78 6	$4\ 2\ 1\ 0\ .\ 9\ 2$	5.3 6	E1 (+M2)	-0.005 18	Iγ: 5.5 2 (85Ke08).
					$\sigma(n,\gamma)=26.7 \text{ mb } 26 \text{ (85Ra15)}.$

³²S(n,γ) E=thermal 85RA15,85KE08, (continued)

$\gamma(^{33}S)$ (continued)

Eγ	E(level)	Ιγ#&	Mult.@	Comments
3397.51 8	5711.051	1.10 12		I_{γ} : 1.06 10 (85Ke08). σ(n γ)=5 6 mb 6 (85Re15)
3455.75 25	6676.97	0.19 4		I_{γ} 0.19 3 (85Ke08). $\sigma(n \gamma) = 0.96 \text{ mb} / \ell (85Ra15)$
3582.74 29	4423 . 81	0.071 18		$I_{\gamma} = 0.07 I (85 \text{Ke} 08).$
3723.68 4	(8641.58)	2.7 3		$I_{\gamma}: 2.72 \ I6 \ (85 Ke08).$
3809.2 5	6676.97	0.065 16		$\Gamma_{\gamma}: 0.061 \ 9 \ (85 \text{Ke} 08).$ $\sigma(n, \gamma) = 0.33 \text{ mb } 8 \ (85 \text{Re} 15).$
3831.9 <i>9</i>	3832.1	0.033 10		$\sigma(n,\gamma)=0.17 \text{ mb } 5 \text{ (85Ra15)}.$
3920.99 22	5888.58	0.136 18		$\sigma(n,\gamma) = 0.69 \text{ mb } 9 (85 \text{Ra15}).$
3934.7 12	3934.93	0.057 14		$\sigma(n,\gamma)=0.29 \text{ mb } 7 (85 \text{Ra} 15).$
4055.2 5	4055.51	0.057 16		Iγ: 0.049 7 (85Ke08). σ(n,γ)=0.29 mb 8 (85Ra15).
4076.2 7	4918.079	0.069 20	E1	$\sigma(n, \gamma) = 0.35$ mb 10 (85Ra15).
4144.36 14	4144.49	0.28 4		Iγ: 0.30 4 (85Ke08). $\sigma(n, \gamma) = 1.41$ mb 18 (85Ra15).
4217.53 21	(8641.58)	0.22 3		Iγ: 0.22 3 (85Ke08). σ(n. y) = 1.14 mb 15 (85Ra15).
4363.14 13	6676.97	0.31 4		$I_{\gamma}: 0.31 \ 5 \ (85 \text{Ke}08).$
4423 5 5	4423 81	0 18 4		$\sigma(n, \gamma) = 0.90 \text{ mb} 20 (85\text{Ra}15)$
4430.75 5	(8641.58)	5.0 5		I_{γ} : 5.0 2 (85Ke08).
				$\sigma(n,\gamma)=25.2 \text{ mb } 23 \text{ (85Ra15)}.$
4444.1 5	5286.1	0.16 6		Iγ: 0.13 2 (85Ke08). $\sigma(n, \gamma) = 0.80$ mb 28 (85Ra15).
4638.8 [‡] 8	5480.1	0.12 [‡] 3		$\sigma(n,\gamma) = 0.63 \text{ mb } 14 \text{ (85Ra15)}.$
4708.7 5	6676.97	0.100 22		$I_{\gamma}: 0.093 \ 14 \ (85 \text{Ke} 08).$
4771.1 4	5613.11	0.14 4		$I_{\gamma}: 0.12 \ 2 \ (85 \text{Ke} 08).$ $g(n \gamma = 0.73 \text{ mb} \ 16 \ (85 \text{Re} 15).$
4869.56 4	5711.051	12.8 12	E1	I_{γ} : 12.7 4 (85Ke08). $\sigma(n)^{2}=65 \text{ mb } 6$ (85Ra15)
4917.7 6	4918.079	0.11 3		$I_{\gamma}: 0.12 \ 2 \ (85 \text{Ke} 08).$ $\sigma(n \ \gamma) = 0.56 \text{ mb} \ 1.3 \ (85 \text{Re} 15)$
5047.14 4	5888.58	3.2 3		$I_{\gamma}: 3.2 \ 2 \ (85 \text{Ke} 08).$ $g(n \ \gamma) = 16 \ 2 \ mb \ 12 \ (85 \text{Re} 15).$
5420.58 4	(8641.58)	596		$I_{\gamma}: 60.0 \ 8 \ (85 \text{Ke} 08).$ $\sigma(n.2) = 302 \ \text{mb} \ 27 \ (85 \text{Ra} 15).$
5479.7 8	5480.1	0.022 8		$\sigma(n, \gamma) = 0.11 \text{ mb } 4 \text{ (85Ra15)}.$
5583.68 8	6425.09	1.48 16		Iγ: 1.6 1 (85Ke08).
				$\sigma(n,\gamma)=7.5 \text{ mb } 8 (85 \text{Ra} 15).$
5648.4 6	7616.00	0.059 16		Iγ: 0.054 8 (85Ke08).
5710 40 07	5711 051	0 10 2		$\sigma(n,\gamma) = 0.30 \text{ mb } \mathcal{B} (85\text{Kal5}).$
J/IU.4U 23	3/11.031	0.18 3		$\sigma(n, \gamma) = 0.91 \text{ mb } 13 \text{ (85Ra15)}.$
5773.8 5	(8641.58)	0.071 14		
5835.61 20	6676.97	0.162 22		$I_{Y} = 0.15 2$ (85Ke08). $g(n_{Y}) = 0.82 \text{ mb} 1/(85\text{Re}15)$
5888.09 <i>8</i>	5888.58	0.75 8		$I_{Y} = 0.80 \ g \ (85 \text{Ke} 08).$
6327.79 23	(8641.58)	0.126 16		$V(n, \eta) = 3.0 \text{ mb } 4 \text{ (65Ke13)}.$ IY: 0.12 2 (85Ke08).
6345.8 9	7187.96	0.017 5		$0(11, \gamma) = 0.04$ HD 5 (55Ka15). Iy: 0.017 3 (85Ke08). $\sigma(x, \gamma) = 0.084$ mb 24 (55Pa15)
6424.72 28	6425.09	0.110 18		$v_{(11,7)} = v_{.004} \text{ mb } 24$ (65 kal5). Iy: 0.13 2 (85 ke08).
6574.93 22	7416.13	0.118 18		$\sigma(n, \gamma) = 0.50$ mD 9 (85Ka15). I γ : 0.12 2 (85Ke08).
6664.82 15	7506.56	0.23 3		$\sigma(\mathbf{n}, \gamma) = 0.60 \text{ mb } 9 (85\text{Ra}15).$ I γ : 0.22 3 (85\text{Ke}08).
				$O(11, \gamma) = 1.13$ IIID 13 (03Ra13).

³²S(n,γ) E=thermal **85RA15,85KE08**, (continued)

$\gamma(^{33}S)$ (continued)

Εγ	E(level)	Ιγ#&	Comments
6676.13 <i>13</i>	6676.97	0.31 4	Iγ: 0.23 3 (85Ke08).
			$\sigma(n,\gamma) = 1.58 \text{ mb } 16 \text{ (85Ra15)}.$
×6958.3 5		0.045 10	$\sigma(n,\gamma) = 0.23$ mb 5 (85Ra15).
7187.19 15	7187.96	0.30 4	Iγ: 0.33 5 (85Ke08).
			$\sigma(n,\gamma) = 1.54$ mb 17 (85Ra15).
7415.31 15	7416.13	0.44 5	Iγ: 0.47 7 (85Ke08).
			$\sigma(n,\gamma)=2.25 \text{ mb } 25 \text{ (85Ra15)}.$
7487.6 9	7488.47	0.035 8	$\sigma(n, \gamma) = 0.18 \text{ mb } 4 (85 \text{ Ral } 5).$
7505.6 4	7506.56	0.162 22	Iγ: 0.12 2 (85Ke08).
			$\sigma(n,\gamma) = 0.82$ mb 11 (85Ra15).
7528.2 9	8368.33	0.020 6	$\sigma(n, \gamma) = 0.10 \text{ mb } 3 \text{ (85Ra15)}.$
x7614.9 6		0.051 10	$\sigma(n,\gamma) = 0.26 \text{ mb } 5 (85 \text{Ra} 15).$
7799.77 12	(8641.58)	2.7 3	IY: 2.89 17 (85Ke08).
			$\sigma(n,\gamma) = 13.7 \text{ mb } 14 \text{ (85Ra15)}.$
8366.8 6	8368.33	0.030 6	$\sigma(n, \gamma) = 0.15 \text{ mb } 3 (85 \text{ Ra} 15).$
8640.45 12	(8641.58)	1.81 18	Iγ: 2.02 14 (85Ke08).
			$\sigma(n,\gamma)=9.2 \text{ mb } 9 (85 \text{Ra} 15).$

 † Not observed but inferred from the known level branching ratios.

 \ddagger Not observed but inferred from the intensity balance requirement and the known branching ratio.

§ After corrections due to a $\gamma\text{-ray}$ of similar energy in the $^{33}S(n,\gamma)^{34}S$ recation.

Absolute intensities per 100 neutron captures. For γ-ray cross section in mb (85Ra15), multiply by 5.076 per 100 neutron

© From adopted gammas, except as noted.

& For intensity per 100 neutron captures, multiply by 1. ^a Multiply placed; undivided intensity given.

 x γ ray not placed in level scheme.

³²S(n,γ) E=thermal 85RA15,85KE08, (continued)

Level Scheme

Intensities: $I(\gamma+ce)$ per 100 parent decays & Multiply placed; undivided intensity given

 $^{3\,3}_{1\,6}{\rm S}_{17}$

³²S(n, γ) E=thermal 85RA15,85KE08, (continued)

Level Scheme (continued)

³³S(n,γ) E=thermal 85Ra15

Target $J\pi=3/2+$.

9208.04 6

(1,2+)

 $85Ra15:\ measured\ E\gamma,\ I\gamma\ with\ a\ Ge(Li)-NaI(Tl)\ in\ Compton-suppressed\ mode\ and\ pair\ spectrometer\ mode.\ Deduced\ neutron\ separation\ energy\ S(n)=11417.217\ keV\ 46.$

Other measured S(n)=11417.12 keV 10 (83Ra04).

Evaluated S(n)=11416.94 keV 5 (95Au04).

Measured thermal-neutron capture cross section, $\sigma(n,\gamma){=}454$ mb 25 (85Ra15).

³⁴S Levels

E(level) [‡]	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
0 0	0.	stable	
0.0	0+ 2+	325 fs Q	
3304 216 13	2 + 2 +	$135 f \in 10$	
3916 410 21	2 + 0 +	1 11 ns 18	
4074 669 14	1+	<20 fs	
4074.005 14	1 + 2 +	70 fs 10	
4624 410 16	2 + 3 -	90 fs 10	
4688 98 4	4+	85 fs 10	
4876 846 24	3.	< 50 fs	
4889.758 22	2+	<30 fs	
5228.178 23	0+		
5322.52 3	2 -	17 fs 7	
5380.99 4	1+	< 50 fs	
5679.932 17	(2,3) -	265 fs 45	
5755.882 21	1-		
5847.53 3	0+		
5998.10 8	2+	<7 fs	
6121.56 10	2+	< 50 fs	
6168.87 3	3 -	<9 fs	
6251.23 19	4 +	270 fs 55	
6251.68 9	(1,3) –	0.42 ps $+49-21$	
6342.53 10	1 -	< 25 fs	
6421.35 8	4 -	< 7 f s	
6428.13 8	2 +		
6478.773 22	(1,2)-		
6685.34 <i>3</i>	(0 to 3) –		
6828.83 18	2 +	< 45 fs	
6847.90 7	(1,2+)		
6954.22 <i>3</i>	2 -		
7110.46 4	3 –	< 7 f s	
7164.47 17	(0+ to 3+)		
7219.29 7	1 –	0.33 fs 10	
7248.05 11	2 +	14 fs 6	
7367.43 10	(1,2)+		
7467.74 10	(0+ to 3+)		
7552.70 8	(1 to 3-)		
7629.912 <i>21</i>	3 -	14 fs 8	
7730.80 15	(0+ to 3+)		
7781.22 6	1 –	0.52 fs 8	
7974.72 16	(1,2+)		
8036.31 14	(1-,2+)		
8138.09 7	1-		
8174.94	(1,2+)		
8185.46 13	1+	0.6 fs 2	
8205.41 8	(1 - to 4 +)		
8294.40 9	(0 + to 3 -)		
8383.41 Ø	1 -	U. 9 IS 3	
8000.784 8615 74 4	(2, 2, 1)	U. 28 IS 0	
0013.74 4 8709 95 19	(2, 3+)		
0102.33 13 8797 RA 0	(1 + 0 +)		
0121.04 0 8805 63 21	(1 - , 2 +)		
8874 N9 R	(1, 4+)		
9026 21 6	(1 - 10 + 3 +)		
9158.72 3	(1, 2+)		

³⁴S Levels (continued)

E(level) [‡]	$J\pi^\dagger$	Comments
9546.09 7	(1, 2+)	
9598.42 8		
9665.75 4		
9801.89 10	(1, 2+)	
9836.70 6	(-,,	
9933 37 <i>12</i>	1-	
10092 21 15	•	
10179 60 6	(1 2 3)	
10212 16 5	(1, 2, 3)	
10212.10 3	2+	
10650 12 10	<i>L</i> +	
10030.13 15	9	
10840.02 15	3-	
11024.95 11	1 -	
(11416.94 5)	1+,2+	E(level): from evaluated S(n) (95Au04).
		$J\pi$: from s-wave neutron capture.
		Observed deexcitation intensity is 85% of g.s. feeding.

[†] From adopted levels, except as noted.
[‡] From Eγ's using least-squares fit to data, except as noted.

 $\gamma(^{34}S)$

All data are from 85Ra15, except as noted. Iγ normalization: renormalized from assuming Iγ(to g.s.)=100.

Εγ	E(level)	Iγ§@	Mult.#	δ#	I(γ+ce)@	Comments
×95.45 18		0.0026 7				$\sigma(n, \gamma) = 0.012$ mb 3 (85Ra15).
x229.71 16		0.0119 22				$\sigma(n,\gamma) = 0.054 \text{ mb} 10 (85\text{Ra}15).$
281.34 24	7110.46	0.0051 18				$\sigma(n,\gamma) = 0.023 \text{ mb } 8 (85 \text{Ra} 15).$
306.63 16	6428.13	0.020 5				$\sigma(n,\gamma) = 0.089 \text{ mb } 20 (85\text{Ra}15).$
334.21 15	9208.04	0.0092 22				$\sigma(n,\gamma) = 0.042 \text{ mb } 10 \text{ (85Ra15)}.$
392.28 11	(11416.94)	0.027 5				$\sigma(n,\gamma) = 0.124 \text{ mb } 20 \text{ (85Ra15)}.$
516.86 12	8702.35	0.070 11				$\sigma(n,\gamma) = 0.32 \text{ mb } 5 (85 \text{Ra} 15).$
571.7 6	6251.68	0.018 7				$\sigma(n,\gamma) = 0.08 \text{ mb } 3 (85 \text{Ra} 15).$
576.80 19	(11416.94)	0.032 5				$\sigma(n,\gamma) = 0.146 \text{ mb } 21 (85 \text{Ra} 15).$
612.16 5	3916.410	0.058 7	E2			$\sigma(n,\gamma) = 0.263 \text{ mb } 28 (85 \text{Ra} 15).$
631.13 6	6478.773	0.062 7				$\sigma(n,\gamma) = 0.283 \text{ mb } 31 (85 \text{Ra} 15).$
672.00 10	9546.09	0.033 5				$\sigma(n,\gamma) = 0.152 \text{ mb } 20 \text{ (85Ra15)}.$
698.18 <i>13</i>	5322.52	0.022 3	(M1)			$\sigma(n,\gamma)=0.101 \text{ mb } 14 \text{ (85Ra15)}.$
722.95 14	6478.773	0.039 5				$\sigma(n,\gamma)=0.175 \text{ mb } 22 \text{ (85Ra15)}.$
725.25 22	9933.37	0.025 5				$\sigma(n,\gamma)=0.115 \text{ mb } 19 (85 \text{Ra} 15).$
x743.50 20		0.022 4				$\sigma(n,\gamma)=0.098 \text{ mb } 15 (85 \text{Ra} 15).$
748.43 14	10840.62	0.028 4				$\sigma(n,\gamma)=0.127 \text{ mb } 17 (85 \text{Ra} 15).$
x752.30 8		0.049 6				$\sigma(n,\gamma) = 0.222 \text{ mb } 26 \text{ (85Ra15)}.$
767.20 21	(11416.94)	0.022 4				$\sigma(n,\gamma) = 0.098 \text{ mb } 16 (85 \text{Ra} 15).$
770.428 20	4074.669	0.61 6				$\sigma(n,\gamma)=2.75 \text{ mb } 25 \text{ (85Ra15)}.$
789.1 6	5679.932	0.086 16	(E1)			$\sigma(n,\gamma)=0.39 \text{ mb } 7 (85 \text{Ra} 15).$
798.92 10	6478.773	0.064 9				$\sigma(n,\gamma)=0.29 \text{ mb } 4 (85 \text{Ra} 15).$
803.103 27	5679.932	0.251 25	(E1)			$\sigma(n,\gamma)=1.14 \text{ mb } 11 \text{ (85Ra15)}.$
846.1 13	6168.87	0.06 4				$\sigma(n,\gamma)=0.28 \text{ mb } 18 (85 \text{Ra} 15).$
925.79 14	8036.31	0.038 5				$\sigma(n,\gamma)=0.171 \text{ mb } 21 \text{ (85Ra15)}.$
929.436 21	6685.34	0.235 22				$\sigma(n,\gamma)=1.07 \text{ mb } 10 \text{ (85Ra15)}.$
941.59 6	7110.46	0.090 11				$\sigma(n,\gamma)=0.41 \text{ mb } 5 (85\text{Ra}15).$
982.68 9	9598.42	0.041 6				$\sigma(n,\gamma)=0.187 \text{ mb } 27 (85 \text{Ra} 15).$
989.08& <i>28</i>	7110.46	0.017& 5				$\sigma(n,\gamma)=0.079 \text{ mb } 23(85\text{Ra}15).$
	7467.74	0.017& 5				$\sigma(n,\gamma)=0.079 \text{ mb } 23 \text{ (85Ra15)}.$
x1029.23 8		0.070 9				$\sigma(n,\gamma) = 0.32 \text{ mb } 4 (85 \text{Ra} 15).$
x1035.82 <i>17</i>		0.024 7				$\sigma(n,\gamma)=0.108 \text{ mb } 31 (85\text{Ral5}).$
1055.491 20	5679.932	1.54 16				$\sigma(n,\gamma)=7.0 \text{ mb } 7 (85 \text{Ra} 15).$
1105.673 21	(11416.94)	0.33 <i>3</i>				$\sigma(n,\gamma)=1.49 \text{ mb } 14 \text{ (85Ra15)}.$
1113.27 9	5228.178	0.090 14	E1			$\sigma(n,\gamma)=0.41 \text{ mb } 6 (85\text{Ra}15).$
1121.33 9	5998.10	0.077 11	(M1)			$\sigma(n,\gamma) = 0.35 \text{ mb } 5 (85 \text{Ra} 15).$

$\gamma(^{34}S)$ (continued)

Εγ	E(level)	Iγ ^{§@}	Mult.#	δ#	I(γ+ce)@	Comments
1152 402 20	5999 179	2 20 20	M1			$\sigma(n, y) = 10.0 \text{ mb} 0.(95\text{Po}(15))$
1156 20 7	5220.170 6479 772	2.20 20	W11			$\sigma(n, \gamma) = 10.0 \text{ mb } 9 (85\text{Rars}).$
1130.39 7 X1104 92 25	0470.773	0.334				$\sigma(n, \gamma) = 1.57 \text{ mb} \ 18 (85\text{Ra}15).$
1176 650 20	2204 216	0.040 13	M1 . E2	0 16 2		$\sigma(n, \gamma) = 0.21 \text{ mb } \sigma(85\text{Ra}15).$
1205 05 4	(11416 04)	0 124 14	WII + E.2	-0.10 2		$\sigma(n, \gamma) = 0.61 \text{ mb } f_{0}(85\text{Ra}15).$
1205.05 4	(11410.94)	0.134 14				$\sigma(n, y) = 0.162 \text{ mb } 22 (85\text{Po}15)$
1210.04 15	$(11416 \ 94)$	$0.030 \ J$				$\sigma(n, y) = 0.102 \text{ mb } 22 (85Ra15).$
1237.01 3	8874 02	0.026 6				$\sigma(n, y) = 0.32 \text{ mb } 0.03 \text{ (85Ra15)}$
1247 92 6	5322 52	0 130 16	(E1)			$\sigma(n, \gamma) = 0.59 \text{ mb } 7 (85\text{Ra}15)$
1266 11 5	5380 99	0 145 16	(21)			$\sigma(n, \gamma) = 0.66 \text{ mb } 7 (85\text{Ra}15)$
1274 30 4	6954 22	0 257 25				$\sigma(n, \gamma) = 1.17 \text{ mb} 11 (85\text{Ra}15)$
×1277.81 18		0.042 6				$\sigma(n,\gamma) = 0.190 \text{ mb } 26 (85\text{Ra}15).$
1320.169 20	4624.410	8.4 9	E1 (+M2)	-0.024		$\sigma(n,\gamma) = 38 \text{ mb } 4 (85 \text{ Ra} 15).$
1325.22 26	(11416.94)	0.073 16	,			$\sigma(n,\gamma) = 0.33 \text{ mb} 7 (85\text{Ra15}).$
1353.46 16	7781.22	0.084 11	(E1)			$\sigma(n,\gamma) = 0.38 \text{ mb } 5 (85 \text{Ra} 15).$
1364.4 4	10092.21	0.070 20				$\sigma(n,\gamma) = 0.32 \text{ mb } 9 (85\text{Ra}15).$
1374.34 20	6251.23	0.081 18	M1+E2	-3.7 +7-26		$\sigma(n,\gamma) = 0.37 \text{ mb } 8 (85 \text{ Ral } 5).$
x1435.00 11		0.066 11				$\sigma(n,\gamma) = 0.30 \text{ mb } 5 (85 \text{Ra} 15).$
x1443.05 10		0.081 11				$\sigma(n,\gamma) = 0.37 \text{ mb } 5 (85 \text{Ra} 15).$
1469.67 24	7467.74	0.051 9				$\sigma(n,\gamma) = 0.23 \text{ mb } 4 (85 \text{ Ral } 5).$
1479.73 15	6168.87	0.058 7	E1 (+M2)	+0.04 5		$\sigma(n,\gamma) = 0.263 \text{ mb } 32 \text{ (85Ra15)}.$
1484.06 19	(11416.94)	0.073 11				$\sigma(n,\gamma) = 0.33 \text{ mb } 5 (85 \text{Ra} 15).$
x1486.7 8		0.040 11				$\sigma(n,\gamma) = 0.18 \text{ mb } 5 (85 \text{Ra} 15).$
1525.39 6	6847.90	0.249 25				$\sigma(n,\gamma)=1.13$ mb 11 (85Ra15).
1544.41& 10	6168.87	0.57& 5	(E1)			$\sigma(n,\gamma)=2.58 \text{ mb } 24 \text{ (85Ra15)}.$
	6421.35	0.57& <i>5</i>	E1 (+M2)	0.00 6		$\sigma(n,\gamma)=2.58 \text{ mb } 24 \text{ (85Ra15)}.$
1562.35	6251.23	0.18 5				$\sigma(n,\gamma) = 0.80 \text{ mb } 20 \text{ (85Ra15)}.$
1564.85	5679.932	0.20 5	(E1)			$\sigma(n,\gamma) = 0.91 \text{ mb } 20 \text{ (85Ra15)}.$
1572 . 57^{\dagger} 5	4876.846	1.23^{\dagger} 14	M1 + E2	-0.094		$\sigma(n,\gamma)=5.6 \text{ mb } \theta \text{ (85Ra15)}.$
1580.50 6	(11416.94)	0.145 16				$\sigma(n,\gamma)=0.66 \text{ mb } 7 (85 \text{Ral5}).$
1585.510 20	4889.758	0.55 5				$\sigma(n,\gamma)=2.52 \text{ mb } 23 \text{ (85Ra15)}.$
1602.06 15	6478.773	0.095 16				$\sigma(n,\gamma)=0.43 \text{ mb } 7 (85 \text{Ra} 15).$
1615.24 10	(11416.94)	0.50 6				$\sigma(n,\gamma)=2.25 \text{ mb } 27 (85 \text{Ra} 15).$
1617.00 12	8727.64	0.43 6				$\sigma(n,\gamma)=1.94 \text{ mb } 25 \text{ (85Ra15)}.$
1627.2 10	6251.68	0.042 16				$\sigma(n,\gamma)=0.19 \text{ mb } 7 (85 \text{Ra} 15).$
1631.641 25	6954.22	0.63 6				$\sigma(n,\gamma)=2.88 \text{ mb } 27 (85 \text{Ra} 15).$
1640.7 10	5755.882	0.037 22				$\sigma(n,\gamma)=0.17 \text{ mb } 10 \text{ (85Ra15)}.$
1732.39 11	6421.35	0.097 14	E1 (+M2)	0.0 2		$\sigma(n,\gamma) = 0.44 \text{ mb } 6 (85 \text{Ral} 5).$
1739.32 9	6428.13	0.106 14				$\sigma(\mathbf{n}, \gamma) = 0.48 \text{ mb } \boldsymbol{\theta} (85\text{Ra15}).$
1751.431 29	(11416.94)	0.32 3				$\sigma(n,\gamma) = 1.44 \text{ mb } 14 \text{ (85Ra15)}.$
1772.82 4	5847.53	0.31 3	M1			$\sigma(n,\gamma) = 1.40 \text{ mb } 14 (85 \text{ Rals}).$
1788.794 20	3916.410	17.4 18				$\sigma(n,\gamma) = 79 \text{ mb } 8 (85 \text{ Rals}).$
1795.28 30	8138.09	$0.042^{\&}$ 11				$\sigma(n,\gamma) = 0.19 \text{ mb } 5 (85\text{ Rals}).$
(1700 07)	9933.37	0.042° 11				$\sigma(n,\gamma) = 0.19 \text{ mb } 5 (85 \text{ Kal5}).$
(1796.97)	6421.35	0.062 /				$\sigma(n,\gamma) = 0.28 \text{ mb} 3.$
1818.96 14	(11416.94)	0.084 I4				$\sigma(n,\gamma) = 0.38 \text{ mb} \ \theta \ (85\text{Ra}15).$
1840.52 12	9208.04	0.123 + 20				$\sigma(n, \gamma) = 0.36 \text{ mb } 9 (85\text{ Kals}).$
1834.28 4	(11416 04)	0.28 5				$\sigma(n, \gamma) = 1.28$ mb 13 (85Ra15). $\sigma(n, \gamma) = 2.04$ mb 22 (85Ra15).
1871.04 8 ×1997 66 4	(11410.94)	0.45 5				$\sigma(n, y) = 1.79$ mb 17 (85Pa15).
1022 02 22	5998 10	0.39 4	(M1)			$\sigma(n, y) = 0.61 \text{ mb} 11 (85\text{Ra}15).$
1925 94 17	10311 54	0.062 18	(111)			$\sigma(n, y) = 0.28 \text{ mb } 8 (85\text{Ra}15)$
1947 060 20	4074 669	6 4 6	M1+F2	$\pm 1 \ 3 \ \pm 9 \ = 32$		$\sigma(n, y) = 0.20 \text{ mb } 26 (85\text{Ra}15)$
1951.77 19	8294 40	0.117 25				$\sigma(n,\gamma) = 0.53 \text{ mb} 11 (85\text{Ra}15)$
1959.67 17	9208.04	0.194 25				$\sigma(n,\gamma) = 0.88 \text{ mb} 11 (85 \text{Ra}15).$
×1980.15 12		0.141 20				$\sigma(n, \gamma) = 0.64 \text{ mb} 9 (85 \text{ Ra} 15).$
×1984.2 4		0.11 3				$\sigma(n,\gamma) = 0.50 \text{ mb} 14 (85 \text{ Ra15}).$
1987.19 <i>3</i>	4114.815	1.43 16	M1+E2	-0.47 10		$\sigma(n,\gamma)=6.5 \text{ mb } 7 (85 \text{Ra} 15).$
1998.3 4	11024.95	0.031 11				$\sigma(n,\gamma) = 0.14 \text{ mb } 5 (85 \text{ Ral 5}).$
×2046.29 5		0.39 4				$\sigma(n,\gamma)=1.78$ mb 18 (85Ra15).
2053.94 14	6168.87	0.130 20				$\sigma(n,\gamma) = 0.59 \text{ mb } 9 (85 \text{Ra} 15).$
2076.89 8	5380.99	0.33 4				$\sigma(n,\gamma)=1.48 \text{ mb } 16 \text{ (85Ra15)}.$
2127.499 20	2127.566	70 7	E2			$\sigma(n,\gamma)=318 \text{ mb } 29 (85\text{Ra}15).$

$\gamma(^{34}S)$ (continued)

Εγ	E(level)	§@	Mult.#	δ#	I(γ+ce)@	Comments
9159 41 99	0022 27	0 0 2 7 1 1				$\sigma(n, y) = 0.17 \text{ mb} f(95\text{ Do15})$
2132.41 23	9933.37	0.037 11 0.025 11				$\sigma(n, \gamma) = 0.17 \text{ mb } 5 (85\text{Ra}15).$
2175.55 21	$(11416 \ 94)$	0.189 20				$\sigma(n, y) = 0.10 \text{ mb } S(85\text{Ra}15).$
2203.100	7552 70	0.176† 22				$\sigma(n, y) = 0.80 \text{ mb} - 5 (65 \text{ Rarb)}$
2230.14 14	7110 46	1 10 11	(F1)			$\sigma(n, y) = 5.0 \text{ mb} \cdot 5 (85\text{Ra}15)$
2258 430 23	(11416 94)	0 81 9	(11)			$\sigma(n, \gamma) = 3.7 \text{ mb } 4 (85\text{Ra}15)$
x2282 17 4	(11410.04)	0 37 4				$\sigma(n, y) = 1.70 \text{ mb} + (60 \text{ km}^{-1})$
2290.26 15	8138.09	0.059 11				$\sigma(n,\gamma) = 0.27 \text{ mb } 5 (85\text{Ra}15).$
2326.2& 10	8805.63	0.010& 10				$\sigma(n,\gamma) = 0.05 \text{ mb } 4 (85\text{Ra}15).$
	9546.09	0.010& 10				$\sigma(n,\gamma) = 0.05 \text{ mb } 4 (85 \text{Ra} 15).$
2328.8 5	7219.29	0.031 9	(E1)			$\sigma(n,\gamma) = 0.14 \text{ mb } 4 (85 \text{ Ra} 15).$
2353.06 21	6428.13	0.051 9				$\sigma(n,\gamma) = 0.23 \text{ mb } 4 (85 \text{Ra} 15).$
2363.97 8	8615.74	0.46 25				$\sigma(n,\gamma)=2.1 \text{ mb } 11 \text{ (85Ra15)}.$
(2371.12)	7248.05	0.0198				$\sigma(n,\gamma)=0.09$ mb.
2375.657 20	5679.932	5.76	(E1)			$\sigma(n,\gamma)=26.0 \text{ mb } 24 \text{ (85Ra15)}.$
2390.82 6	(11416.94)	0.29 3				$\sigma(n,\gamma)=1.33$ mb 14 (85Ra15).
2404.04 6	6478.773	0.235 25				$\sigma(n,\gamma)=1.07 \text{ mb } 11 \text{ (85Ra15)}.$
x 2 4 4 1 . 3 1 4		0.39 4				$\sigma(n,\gamma)=1.75$ mb 17 (85Ra15).
2451.557 20	5755.882	1.14 11				$\sigma(n,\gamma)=5.2 \text{ mb } 5 (85 \text{Ra} 15).$
x2475.15 4		0.38 4				$\sigma(n,\gamma)=1.71 \text{ mb } 17 (85 \text{Ra} 15).$
2490.6 [‡] 13	7367.43	$0.14^{\ddagger} 4$				$\sigma(n,\gamma)=0.62 \text{ mb } 16 \text{ (85Ra15)}.$
2496.726 20	4624.410	3.4 3	E1 (+M2)	+0.024		$\sigma(n,\gamma)=15.4 \text{ mb } 14 \text{ (85Ra15)}.$
2530.25 10	7219.29	0.112 16				$\sigma(n,\gamma)=0.51 \text{ mb } 7 (85 \text{Rals}).$
2543.13 ^{&} 10	5847.53	2.1 & 2	E2			$\sigma(\mathbf{n},\boldsymbol{\gamma})=9.6 \text{ mb } 9 \text{ (85Ra15)}.$
	(11416.94)	2.1& 2				$\sigma(\mathbf{n},\boldsymbol{\gamma})=9.6 \text{ mb } \boldsymbol{\theta} \text{ (85Ra15)}.$
2558.82 13	7248.05	0.27 3				$\sigma(n,\gamma) = 1.24 \text{ mb } 14 \text{ (85Ra15)}.$
2561.36 5	4688.98	0.79 9	E2 (+M3)	0.00 1		$\sigma(n,\gamma)=3.6 \text{ mb } 4 (85 \text{ Ra} 15).$
2611.7 4	(11416.94)	0.26 7				$\sigma(n,\gamma) = 1.2 \text{ mb } 3 \text{ (85Ra15)}.$
(2623.54)	7248.05	0.0242				$\sigma(\mathbf{n}, \gamma) = 0.11 \text{ mb.}$
2689.50 10	(11416.94)	0.48 6				$\sigma(n,\gamma) = 2.16 \text{ mb } 24 \text{ (85 Ra15)}.$
2714.50 19	(11416.94)	0.62 II	MITER	0 11 2		$\sigma(n,\gamma) = 2.8 \text{ mb} 5 (85 \text{ Rals}).$
2749.24 5	4070.040	1.34 10	WII + E.Z	-0.11 5		$\sigma(n, \gamma) = 7.0 \text{ mb} / (85\text{Rals}).$
2762 10 8	4990 759	0.20+ 3				$\sigma(n, \gamma) = 0.95 \text{ mb } 2.5 (85 \text{ Rars}).$
2801 33 5	$(11416 \ 94)$	0.00 / 9 99 <i>99</i>				$\sigma(n, y) = 3.0 \text{ mb } 5 (85\text{Ra}15).$
x2810 3 3	(11410.34)	0 19 3				$\sigma(n, y) = 0.87 \text{ mb} 13 (85\text{Ra}15)$
2817 76 ^{&} 25	6121 56	0 19& 3	M1+E2	-0 09 4		$\sigma(n, \gamma) = 0.84 \text{ mb} 1.3 (85\text{Ra}15)$
2011110 20	9665 75	0 19& 3		0100 1		$\sigma(n, \gamma) = 0.84 \text{ mb} 1.3 (85\text{Ra}15)$
2839.3 4	6954.22	0.224				$\sigma(n,\gamma) = 1.00 \text{ mb} 16 (85\text{Ra}15).$
2843.7 6	10311.54	0.13 3				$\sigma(n,\gamma) = 0.59 \text{ mb} 13 (85 \text{Ra} 15).$
2864.56 4	6168.87	2.40 25	E1+M2	-0.23 7		$\sigma(n,\gamma) = 10.9 \text{ mb } 11 \text{ (85Ra15)}.$
2910.28 5	(11416.94)	2.20 22				$\sigma(n,\gamma) = 10.0 \text{ mb } 10 \text{ (85Ra15)}.$
2919.7 5	10650.13	0.095 25				$\sigma(n,\gamma)=0.43$ mb 11 (85Ra15).
2940.42 31	7629.912	0.23 4	(E1)			$\sigma(n,\gamma)=1.05$ mb 15 (85Ra15).
2945.8 ^{&} 10	8174.9	0.066 ^{&} 20				$\sigma(n,\gamma)=0.30 \text{ mb } 9 (85 \text{Ra} 15).$
	8702.35	0.066 ^{&} 20				$\sigma(n,\gamma) = 0.30 \text{ mb } 9 (85 \text{Ra15}).$
2989.9 7	9836.70	0.040 20				$\sigma(n,\gamma)=0.18 \text{ mb } 9 (85\text{Ral5}).$
2995.8 6	7110.46	0.081 22	(E1)			$\sigma(n,\gamma)=0.37 \text{ mb } 10 \text{ (85Ra15)}.$
3005.39 5	7629.912	2.20 22				$\sigma(n,\gamma)=10.0 \text{ mb } 10 \text{ (85Ra15)}.$
3022.0 10	8702.35	0.035 20				$\sigma(n,\gamma)=0.16 \text{ mb } 9 (85 \text{Ral5}).$
3031.69 8	(11416.94)	1.01 14				$\sigma(\mathbf{n},\gamma)=4.6 \text{ mb } \boldsymbol{\theta} \ (85\text{Ra}15).$
3038.18 <i>32</i>	6342.53	0.28 4				$\sigma(n,\gamma)=1.27 \text{ mb } 17 (85 \text{Ra} 15).$
x3051.83 26		0.14 3				$\sigma(n,\gamma)=0.64 \text{ mb } 12 \text{ (85Ra15)}.$
3089.53 <i>26</i>	7164.47	0.123 25				$\sigma(n, \gamma) = 0.56 \text{ mb } 11 (85 \text{ Ra15}).$
3122.65 15	(11416.94)	0.59 <i>9</i>				$\sigma(n,\gamma)=2.7 \text{ mb } 4 (85 \text{ Ral5}).$
~3149.29 <i>15</i>	6470 770	U.ZU 3				$\sigma(n,\gamma) = 0.89 \text{ mb} 12 (85 \text{ Ral5}).$
31/4.3/ 3 2182 0 [†] 7	04/8.//3	2.31 22 0.020 [†] 10				$\sigma(n, \gamma) = 10.5 \text{ mb } IU (85\text{Kal5}).$
3103.3' /	5399 59	1 62 10	E1+M9	-0 17 6		$\sigma(n, y) = 7.4 \text{ mb } g(85\text{R}_2 15)$
3911 60 0	(11416 94)	0 52 5	15 1 +1412	-0.17 0		$\sigma(n, y) = 2.36 \text{ mb} 2.3 (85P_{2}15)$
3231 89 20	(11416 94)	0.185 25				$\sigma(n, y) = 0.84 \text{ mb} 1/(85\text{Ra}15)$
3241.9 5	(11416.94)	0.079 16				$\sigma(n,\gamma) = 0.36 \text{ mb} 7 (85\text{Ra}15).$
3253.21 6	5380.99	0.84 9				$\sigma(n, \gamma) = 3.8 \text{ mb } 4 \text{ (85Ra15)}.$

(3916.17)3949.27 12

4391.77 29

4462.44 20

4499.7 10

4540.68 15

4588.37 26

4731.37 10

4758.79 27

4799.11 28

4826.0 5

4889.30 8

4903.4 † 5

4938.06 3

4982.44 20

4988.6 4

5036.4 7

5043 3 4

5084.2 5

5202.06 6

5239.8 4

5247.94 4

(5120.07)

5074.79 25

4532.6 7

4568.9 4

4624.2 5

4670.1 6

(4426.27)

8506.78

7730.80

(11416.94)

10179.60

10212.16

(11416.94)

(11416 94)

4624.410

7974.72

8874.02

8874.02

6954.22

11024.95

(11416.94)

10311.54

7110.46

7164.47

9158 72

(11416.94)

9158.72

7248 05

8506.78

7367.43

(11416.94)

4889.758

(11416.94)

8615.74

0.097 20

1.74 18

0.051 16

0.051 16

0.066 14

0.130 22

0.046 11

0.024 14

0.101 18

0.114 18

0.024 11

0.062 1 18

0.59 6

4.9 5

0.29 3

0.139 20

0.055 14

0.092 18

0.031 11

0.143 20

2.60 25

0 0792

0.66 7

0 35 6

0.35 4

0.37 5

(E1)

E3

E2

E1+M2

(E1)

 $\sigma(n,\gamma)=0.44 \text{ mb } 9 (85 \text{Ral5}).$

 $\sigma(n,\gamma)=7.9 \text{ mb } 8 (85\text{Ra}15).$

 $\sigma(n,\gamma)=0.23 \text{ mb } 7 (85 \text{Ra}15).$

 $\sigma(n,\gamma)=0.23 \text{ mb } 7 (85 \text{Ra} 15).$

 $\sigma(n,\gamma)=1.70 \text{ mb } 20 \text{ (85Ra15)}.$

 $\sigma(n,\gamma) = 0.30 \text{ mb } 6 (85 \text{Ra} 15).$

 $\sigma(n,\gamma) = 0.59 \text{ mb } 10 (85 \text{Ra} 15).$

 $\sigma(n,\gamma)=0.21 \text{ mb } 5 (85\text{Ra}15).$

 $\sigma(n,\gamma) = 0.11 \text{ mb } 6 (85 \text{Ra} 15).$

 $\sigma(n,\gamma) = 1.58 \text{ mb } 10 \text{ (85Ra15)}.$

 $\sigma(n,\gamma) = 0.46 \text{ mb } 8 (85 \text{Ra}15).$

 $\sigma(n, \gamma) = 0.52 \text{ mb } 8 (85 \text{Ra} 15).$

 $\sigma(n,\gamma) = 0.11 \text{ mb } 5 (85 \text{Ra}15).$

 $\sigma(n, \gamma) = 0.28 \text{ mb } 8 (85 \text{Ra} 15).$

 $\sigma(n,\gamma)=2.68 \text{ mb } 26 \text{ (85Ra15)}.$

 $\sigma(n,\gamma)=22.2 \text{ mb } 21 \text{ (85Ra15)}.$

 $\sigma(n, \gamma) = 1.31 \text{ mb } 14 \text{ (85Ra15)}.$

 $\sigma(n,\gamma) = 0.63 \text{ mb } 9 (85 \text{Ra} 15).$

 $\sigma(n,\gamma) = 0.25 \text{ mb } 6 (85 \text{Ra}15).$

 $\sigma(n,\gamma) = 1.59 \text{ mb } 26 \text{ (85Ra15)}.$

 $\sigma(n,\gamma)=0.42 \text{ mb } 8 (85 \text{Ra}15).$

 $\sigma(n,\gamma)=0.14 \text{ mb } 5 (85\text{Ra}15).$

 $\sigma(n,\gamma)=3.00 \text{ mb } 29 \text{ (85Ra15)}.$

 $\sigma(n,\gamma) = 0.65 \text{ mb } 9 (85 \text{Ra} 15).$

 $\sigma(n,\gamma) = 11.8 \text{ mb } 11 \text{ (85Ra15)}.$

 $\sigma(n,\gamma)=0.36$ mb.

Eγ	E(level)	Iγ ^{§@}	Mult.#	δ#	I(γ+ce)@	Comments
3278.79 11	(11416.94)	0.70 9				$\sigma(n,\gamma)=3.2 \text{ mb } 4 (85\text{Ra}15).$
3304.031 20	3304. 216	13.9 14	E2			$\sigma(n,\gamma)=63 \text{ mb } \theta \text{ (85Ra15)}.$
3311.6 5	9158.72	0.136 25				$\sigma(n,\gamma)=0.62 \text{ mb } 11 \text{ (85Ra15)}.$
3392.86 24	7467.74	0.35 5				$\sigma(n,\gamma) = 1.57 \text{ mb } 19 \text{ (85Ra15)}.$
3442.24 25	(11416.94)	0.22 4				$\sigma(n,\gamma)=1.02 \text{ mb } 16 \text{ (85Ra15)}.$
3451.5 9	7367.43	0.077 22				$\sigma(n,\gamma) = 0.35 \text{ mb } 10 \text{ (85Ra15)}.$
3476.95 18	9598.42	0.156 22				$\sigma(n,\gamma)=0.71 \text{ mb } 10 \text{ (85Ra15)}.$
3500.3 5	8727.64	0.106 25				$\sigma(n,\gamma)=0.48 \text{ mb } 11 \text{ (85Ra15)}.$
3515.07 11	7629. 912	0.31 4	(E1)			$\sigma(n,\gamma)=1.43 \text{ mb } 16 \text{ (85Ra15)}.$
3552.08 4	5679.932	3.81 4				$\sigma(n,\gamma) = 17.34 \text{ mb } 17 (85 \text{Ra} 15).$
3581.2 4	8205.41	0.081 16				$\sigma(n,\gamma)=0.37 \text{ mb } 7 (85 \text{Ra} 15).$
3628.10 4	5755.882	3.9 4				$\sigma(n,\gamma) = 17.6 \text{ mb } 16 \text{ (85Ra15)}.$
3635.83 <i>8</i>	(11416.94)	1.14 14				$\sigma(n,\gamma) = 5.2 \text{ mb } 6 (85 \text{Ra} 15).$
3644.8 8	9026.31	0.106 22				$\sigma(n,\gamma) = 0.48 \text{ mb } 10 \text{ (85Ra15)}.$
3649.88 12	6954.22	0.68 7				$\sigma(n,\gamma)=3.11 \text{ mb } 31 \text{ (85Ra15)}.$
3664.8 4	10092.21	0.103 22				$\sigma(n,\gamma)=0.47 \text{ mb } 10 \text{ (85Ra15)}.$
3719.68 16	5847.53	0.42 5	E2			$\sigma(n,\gamma)=1.91 \text{ mb } 20 \text{ (85Ra15)}.$
3738.69 17	8615.74	0.26 4				$\sigma(n,\gamma)=1.18 \text{ mb } 17 (85 \text{Ra} 15).$
3787.096 20	(11416.94)	5.8 6				$\sigma(n,\gamma)=26.5 \text{ mb } 25 \text{ (85Ra15)}.$
3812.0 5	8702.35	0.055 14				$\sigma(n,\gamma) = 0.25 \text{ mb } 6 (85 \text{Ra} 15).$
3864.25 11	(11416.94)	0.37 4				$\sigma(n,\gamma)=1.68 \text{ mb } 17985 \text{ ral } 5).$
3870.51 <i>31</i>	5998.10	0.123 18				$\sigma(n,\gamma) = 0.56 \text{ mb } 8 (85 \text{Ra} 15).$
3916.17)	3916.410		E0		0.0066 11	$\sigma(n, \gamma) = 0.030 \text{ mb } 5.$
3949.27 12	(11416.94)	0.34 4				$\sigma(n,\gamma)=1.54 \text{ mb } 17 \text{ (85Ra15)}.$
3990.7 7	8615.74	0.064 16				$\sigma(n,\gamma)=0.29 \text{ mb } 7 (85 \text{Ra} 15).$
3994.8 <i>8</i>	6121.56	0.055 16				$\sigma(n,\gamma) = 0.25 \text{ mb } 7 (85 \text{Ra} 15).$
4040.63 29	6168.87	0.119 18	E1+M2	-0.43 16		$\sigma(n,\gamma) = 0.54 \text{ mb } 8 (85 \text{Ra} 15).$
4049.68 15	(11416.94)	0.26 3				$\sigma(n,\gamma)=1.17mb$ 13 (85Ra15).
4074.418 20	4074.669	6.9 7	M1			$\sigma(n,\gamma)=31.3 \text{ mb } 29 \text{ (85Ra15)}.$
4114.52 4	4114.815	1.89 20	E2			$\sigma(n,\gamma) = 8.6 \text{ mb } 9 (85 \text{Ra} 15).$
4197.69 9	(11416.94)	0.66 9				$\sigma(n,\gamma)=3.0 \text{ mb } 4 \text{ (85Ra15)}.$
4248.28 21	7552.70	0.35 4				$\sigma(n,\gamma)=1.59 \text{ mb } 18 \text{ (85Ra15)}.$
4252.38 22	(11416.94)	0.27 4				$\sigma(n,\gamma)=1.23 \text{ mb } 15 \text{ (85Ra15)}.$
4306.44 6	(11416.94)	1.83 18				$\sigma(n,\gamma)=8.3 \text{ mb } 8 (85\text{Ral5}).$
4325.397 30	7629.912	2.8 3	(E1)			$\sigma(n,\gamma)=12.7 \text{ mb } 12 \text{ (85Ra15)}.$
4350.85 9	6478.773	1.36 16				$\sigma(n, \gamma) = 6.2 \text{ mb } 7 (85 \text{Ra} 15).$

³³S(n,γ) E=thermal 85Ra15 (continued)

$\gamma(^{34}S)$ (continued)

Continued on next page (footnotes at end of table)

+0.27 17

$\gamma(^{34}S)$ (continued)

Εγ	E(level)	Iγ§@	Mult.#	Comments
5268 08 6	10650 12	0 0508 15		$\sigma(n, y) = 0.27$ mb 7 (85Pa15)
5200.54	11024 95	0 059& 15		$\sigma(n, y) = 0.27 \text{ mb } 7 (85\text{Ra}15)$
5294 94 24	(11416 94)	0 092 18		$\sigma(n, \gamma) = 0.27 \text{ mb } \beta$ (85Ra15).
5311.10 15	8615.74	0.176 22		$\sigma(\mathbf{n}, \gamma) = 0.80 \text{ mb} 10 (85\text{Ra}15).$
5380.59 9	5380.99	0.43 5	M1	$\sigma(n, \gamma) = 1.97 \text{ mb } 20 \text{ (85Ra15)}.$
5501.4 5	8805.63	0.101 20		$\sigma(n,\gamma) = 0.46 \text{ mb } 9 (85 \text{ Ra} 15).$
5569.30 5	(11416.94)	1.23 14		$\sigma(n,\gamma) = 5.6 \text{ mb } \theta$ (85Ra15).
5602.78 15	7730.80	0.25 3		$\sigma(n,\gamma) = 1.15$ mb 14 (85Ra15).
5660.78 <i>6</i>	(11416.94)	4.0 4		$\sigma(n, \gamma) = 18.4 \text{ mb } 18 \text{ (85Ra15)}.$
5736.764	(11416.94)	9.5 <i>9</i>		$\sigma(n,\gamma)=43 \text{ mb } 4 (85 \text{ Ral } 5).$
5755.5 5	5755.882	0.112 18	E1	$\sigma(n,\gamma)=0.51 \text{ mb } 8 (85 \text{Ra} 15).$
5847.45	7974.72	0.055 14		$\sigma(n,\gamma)=0.25 \text{ mb } 6 (85 \text{Ra} 15).$
5884.6 6	9801.89	0.059 14		$\sigma(n,\gamma)=0.27 \text{ mb } 6 (85 \text{Ra} 15).$
5997.30 <i>31</i>	5998.10	0.075 14	E2	$\sigma(n,\gamma)=0.34 \text{ mb } 6 (85\text{Ra}15).$
6010.3 <i>3</i>	8138.09	0.110 18		$\sigma(n,\gamma)=0.50 \text{ mb } 8 (85 \text{Ra} 15).$
6035.68 7	(11416.94)	0.97 11		$\sigma(n,\gamma)=4.4 \text{ mb } 5 (85 \text{Ra} 15).$
(6057.31)	8185.46			
6077.27 12	8205.41	0.26 3		$\sigma(n, \gamma) = 1.19 \text{ mb } 13 \text{ (85Ra15)}.$
6094.4 4	(11416.94)	0.046 11		$\sigma(n, \gamma) = 0.21 \text{ mb } 5 (85 \text{ Ral } 5).$
6152.1 5	10840.62	0.040 11		$\sigma(n,\gamma) = 0.18 \text{ mb } 5 (85 \text{ Rals}).$
6166.24 13	8294.40	0.34 4		$\sigma(n,\gamma) = 1.55 \text{ mb } I/(85\text{Ra}15).$
6100.450	(11410.94) 10211 54	1.91 20		$\sigma(n, \gamma) = 0.10 \text{ mb} 5 (85\text{Ra}15).$
6241 0 5	0546 00	0.042 11		$\sigma(n, \gamma) = 0.19 \text{ mb } 5 (85\text{Ra}15).$
6341.58.32	6342 53	0.099 10	F1	$\sigma(n, \gamma) = 0.45 \text{ mb } \gamma$ (65Ka15). $\sigma(n, \gamma) = 0.45 \text{ mb } \beta$ (85Ra15).
6487 48 6	8615 74	0 79 9	LI	$\sigma(n, y) = 3.6 \text{ mb } 4 (85\text{Ra}15)$
6496.62 23	9801.89	0.123 16		$\sigma(n, \gamma) = 0.56 \text{ mb} 7 (85\text{Ra}15).$
6526.84 6	(11416.94)	1.21 14		$\sigma(n, \gamma) = 5.5 \text{ mb } \beta (85\text{Ra}15).$
6539.66 16	(11416.94)	0.22 3		$\sigma(n,\gamma) = 0.99 \text{ mb } 12 \text{ (85Ra15)}.$
6573.6 4	8702.35	0.24 5		$\sigma(n,\gamma) = 1.09 \text{ mb } 19 \text{ (85Ra15)}.$
6600.1 7	8727.64	0.051 11		$\sigma(n,\gamma) = 0.23 \text{ mb } 5 (85 \text{Ra} 15).$
6727.5 9	(11416.94)	0.015 9		$\sigma(n,\gamma)=0.07 \text{ mb } 4 \text{ (85Ra15)}.$
6745.64 16	8874.02	0.60 7		$\sigma(n,\gamma)=2.71 \text{ mb } 30 \text{ (85Ra15)}.$
6792.10 3	(11416.94)	5.3 5		$\sigma(n,\gamma)=24.2 \text{ mb } 23 \text{ (85Ra15)}.$
(6828)	6828.83		E2	
6846.37 <i>32</i>	6847.90	0.123 16		$\sigma(n,\gamma)=0.56 \text{ mb } 7 (85 \text{Ra} 15).$
7218.48 13	7219.29	0.60 7		$\sigma(n,\gamma)=2.71 \text{ mb } 28 \text{ (85Ra15)}.$
7302.2 8	(11416.94)	0.062 11		$\sigma(n,\gamma)=0.28 \text{ mb } 5 (85 \text{Ra} 15).$
7341.67 6	(11416.94)	8.0 7		$\sigma(n,\gamma) = 36.5 \text{ mb } 34 \text{ (85Ra15)}.$
7499.90 5	(11416.94)	13.6 14		$\sigma(\mathbf{n}, \gamma) = 62 \text{ mb } b (85 \text{ Rals}).$
7536.2 7	9665.75	0.097 22		$\sigma(n,\gamma) = 0.44 \text{ mb} I 0 (85 \text{ Rals}).$
7075.0 8	9801.89	0.035 9		$\sigma(n,\gamma)=0.16 \text{ mb } 4 \text{ (85Ra15)}.$
7780 22 10	7781 22	0.097 10	F1	$\sigma(n, \gamma) = 0.44 \text{ mb } 7 (65 \text{ Ral 5}).$
7973.45 25	7974 72	0.092 14		$\sigma(n, \gamma) = 0.42 \text{ mb } \theta$ (85Ra15).
8036.6 7	8036.31	0.040 9		$\sigma(n, \gamma) = 0.18 \text{ mb } 4 \text{ (85Ra15)}.$
8051.1 6	10179.60	0.057 11		$\sigma(n,\gamma) = 0.26 \text{ mb } 5 (85 \text{ Ra} 15).$
8083.49 31	10212.16	0.103 16		$\sigma(n,\gamma) = 0.47 \text{ mb } 7 \text{ (85Ra15)}.$
8111.99 9	(11416.94)	1.34 16		$\sigma(n,\gamma)=6.1 \text{ mb } 7 (85\text{Ra}15).$
8136.98 17	8138.09	0.31 4	E1	$\sigma(n,\gamma)=1.40$ mb 16 (85Ra15).
8173.8 9	8174.9	0.035 7		$\sigma(n, \gamma) = 0.157 \text{ mb } 31 \text{ (85Ra15)}.$
8184.70 24	8185.46	0.141 16		$\sigma(n,\gamma)=0.64 \text{ mb } 7 (85 \text{Ra15}).$
8384.28 9	8385. 41	0.75 8	E1	$\sigma(n,\gamma)=3.43$ mb 33 (85Ra15).
8505.68 10	8506.78	1.03 11	E1	$\sigma(n,\gamma)=4.7 \text{ mb } 5 (85 \text{Ral}5).$
8726.78 24	8727.64	0.097 14		$\sigma(n,\gamma)=0.44$ mb 6 (85Ra15).
8804.4 4	8805.63	0.053 9		$\sigma(n,\gamma) = 0.24 \text{ mb } 4 \text{ (85Ra15)}.$
9024.95 17	9026.31	0.176 20		$\sigma(\mathbf{n}, \gamma) = 0.80 \text{ mb } \mathcal{9} \text{ (85Ra15)}.$
9206.65 26	9208.04	0.077 11		$\sigma(n,\gamma) = 0.35 \text{ mb } 5 (85 \text{ Ral } 5).$
9288.28 16	(11416.94)	0.24 3		$\sigma(n,\gamma) = 1.10 \text{ mb } 12 \text{ (85Ra15)}.$
9544.83 28	9546.09		E1	$\sigma(n,\gamma) = 0.38 \text{ mb } 5 (85\text{Ralb}).$
9932.1 6	9933.37		EI	$\sigma(n,\gamma) = 0.082 \text{ mb } I9 (85 \text{ Kal5}).$
11415.1/ 11	(11410.94)	1.36 16		$o(n, \gamma) = i.1 \text{ mb } i. (83 \text{ Kals}).$

Footnotes continued on next page

$\gamma(^{34}S)$ (continued)

- $^\dagger\,$ After corrections due to a $\gamma\text{-ray}$ of similar energy in $^{34}S(n,\gamma)^{35}S$ reaction.
- [‡] After corrections due to a γ -ray of similar energy in ${}^{32}S(n,\gamma){}^{33}S$ reaction.
- § Absolute intensities per 100 neutron captures. For γ -ray cross section in mb (85Ra15), multiply by 4.54545 per 100 neutron captures. From the difference between the intensities feeding the ground state and emerging from the capturing state, it is noted that =75 mb of intensity (17% of the total capture cross section) is contained in numerous unobserved (and fewer unplaced or misplaced) primary transitions. Whenever either the intensity in or intensuty out exceeds 10 mb, the intensity balance is satisfactory (<20% imbalance) for all levels, except the 4115-keV, 2+ state. This agreement is not contrived but emerges naturally from a skeleton level scheme eschewing the weaker transitions.
- # From adopted gammas, except as noted.
- @ For intensity per 100 neutron captures, multiply by 1.
- & Multiply placed; undivided intensity given.
- $^{\boldsymbol{x}}$ $\boldsymbol{\gamma}$ ray not placed in level scheme.

Level Scheme

Level Scheme (continued)

Level Scheme (continued)

1+,2+		(11416.94)	
1-		11024.95	
3-		10840.62	
		10650.13	
2+		10311.54	
		= 10092.21	
(1,2+)		9801.89	
(1,2+)		9546.09	
,			
(1,2+)		9158.72	
(1-,2+)		8727.64	
(1 to 3+)	<u></u>	8702.35	
(2,3+)		8615.74	
1-		8506.78	0.28 fs
1-		8385.41	0.9 fs
(0+ to 3-)		8294.40	
(1- to 4+)		8205.41	
1+		8185.46	0.6 fs
(1,2+)		8174.9	
1-		8138.09	
(1-,2+)		8036.31	
(1,2+)		7974.72	
$\frac{1}{(0+t_0,2+)}$		7720.80	0.52 fs
$\frac{(0+10-3+)}{3-}$		7629 912	
$\frac{3}{(1 \text{ to } 3_{-})}$		7552 70	14 fs
$(1 to 3^{-})$		7467 74	
(0 + 10 + 0 +)		7367.43	
3-		7110.46	a (
(1.2)-		6478.773	<7 fs
2+		6428.13	
1-		6342.53	< 95 fc
(1,3)-		6251.68	<2018 0.42 ps
2+		5998.10	0.42 ps∠7 fs
0+		5847.53	<7 13
1-		5755.882	
(2,3)-		5679.932	265 fs
2-		5322.52	17 fs
0+		5228.178	
2+		4889.758	<30 fs
3+		4876.846	<50 fs
4+		4688.98	85 fs
3-		4624.410	90 fs
2+		4114.815	70 fs
1+		2016 410	<20 fs
2		2204 216	1.11 ps
<u>м</u> т		1004.210	135 fs
0		0107 500	
۷+		2127.566	325 fs
0+	<u> </u>	0.0	stable
	³⁴ S10		
	10 18		

Level Scheme (continued)

Level Scheme (continued)

Intensities: Ι(γ+ce) per 100 parent decays & Multiply placed; undivided intensity given

(11416.94) 1+,2+ 11024.95 1. 3-10840.62 10650.13 2+ 10311.54 10092.21 9801.89 (1, 2+)(1,2+) 9546.09 (1,2+) 9208.04 (1,2+)9026.31 (1,2+)8805.63 _ (2,3+)8615.74 1 -8385.41 0.9 fs (1,2+) 8174.9 (1, 2+)7974.72 (0+ to 3+) 7730.80 (1 to 3-) 7552.70 (1,2)+7367.43 (0+ to 3+) 7164.47 2-6954.22 -670. 8 (0 to 3)-6685.34 0.022 2 06.51 6 200 5.0 1v 9 m 6342.53 <25 fs e 2+ 5998.10 <7 fs æ \$ \$0.0 000 V00 5847.53 0+ 5755.882 1 – 202 20 (2,3)-44 5679.932 8 265 fs 530 むむ 1+ 5380.99 <50 fs 2-5322.52 17 fs 64 ÷ 30 0+ 5228.178 4889.758 2 +<30 fs 3+ 4876.846<50 fs 4+ 4688.98 85 fs Ľ 3-4624.410 ł6.5 90 fs 21.14 2+ 4114.815 70 fs 3 1+ 4074.669 <20 fs 25 3916.410 0+ 1.11 ps <u>3304.216</u> 135 fs 2+ 2127.566 2+ 325 fs 0+ 0.0 stable $^{34}_{16}S_{18}$

³⁴S(n,γ) E=thermal 85Ra15,85Ke08

Target Jn=0+.

 $85Ra15:\ measured\ E\gamma,\ I\gamma\ with\ a\ Ge(Li)-NaI(Tl)\ in\ Compton-suppressed\ mode\ and\ pair\ spectrometer\ mode.\ Deduced\ neutron\ separation\ energy\ S(n)=6986.089\ keV\ 14.$

85Ke08: measured E γ , I γ with a Ge(Li)-NaI(Tl). Deduced neutron separation energy S(n)=6985.84 keV 5.

Other measured S(n)=6986.089 keV 44 (83Ra04).

Evaluated S(n)=6985.84 keV 4 (95Au04).

Measured thermal-neutron capture cross section, $\sigma(n,\gamma){=}518$ mb 14 (85Ra15).

³⁵S Levels

E(level) [‡]	$J\pi^{\dagger}$	T _{1/2} †	Comments
0.0	3 / 2 +	87.51 d <i>12</i>	%β [−] =100.
1572.373 6	1 / 2 +	2.3 ps <i>3</i>	
1991.28 5	7 / 2 +	1.02 ns 5	
2347.781 7	3 / 2 -	0.89 ps 12	
2716.991 20	5 / 2 +	70 fs 25	
2938.64 5	3 / 2 +		
3558.074 24	(3/2-,5/2)		
3801.955 14	3 / 2 -	25 fs 18	
4105.6 7	(1/2,3/2,5/2)+		
4189.256 15	1 / 2 -	< 55 fs	
4477.60 7	(1/2, 32, 5/2) +		
4903.355 13	1 / 2 -		
4963.073 15	3 / 2 -		
5752.5 8	(1/2 to 7/2)+		
6018.8 6	(1/2 to 5/2+)		
6078.471 20	(1/2,3/2)-		
6293.92 6	(1/2 to 5/2+)		
6354.88 23	(1/2 to 5/2+)		
6419.9 11			
6629.42 9	(1/2 to 5/2+)		
6761.0 12			
(6985.84 4)	1 / 2 +		E(level): from evaluated S(n) (95Au04).
			$J\pi$: from s-wave neutron capture.
			Observed deexcitation intensity is 45.7% of g.s. feeding.

[†] From adopted levels, except as noted.

[‡] From Ey's using least-squares fit to data, except as noted.

 $\gamma(^{35}S)$

All data are from 85Ra15, except as noted. I γ normalization: renormalized from assuming I γ (to g.s.)=100.

Εγ	E(level)	Iγ§@	Mult.#	δ#	Comments	
356.66& 9	2347.781	0.037& 4			$\sigma(n,\gamma)=0.110$ mb 12 (85Ra15).	
	(6985.84)	0.037& 4			$\sigma(n,\gamma)=0.110 \text{ mb } 12 \text{ (85Ra15)}.$	
368.5 4	2716.991	0.020 7			$\sigma(n,\gamma) = 0.06 \text{ mb } 2 (85 \text{Ra} 15).$	
619.23 19	3558.074	0.041 8			$\sigma(n, \gamma) = 0.122 \text{ mb } 22 \text{ (85Ra15)}.$	
631.32& 24	4189.256	0.060& 9			$\sigma(n, \gamma) = 0.175 \text{ mb } 25 \text{ (85Ra15)}.$	
	(6985.84)	0.060& 9			$\sigma(n,\gamma)=0.175 \text{ mb } 25 \text{ (85Ra15)}.$	
x663.41 7		0.090 11			$\sigma(n,\gamma) = 0.266 \text{ mb } 30 \text{ (85Ra15)}.$	
692.16 5	(6985.84)	0.132 17			$\sigma(n, \gamma) = 0.39 \text{ mb } 5 (85 \text{Ra} 15).$	
775.398 6	2347.781	15.6 17	(E1)		$\sigma(n, \gamma) = 46 \text{ mb } 5 (85 \text{Ra} 15).$	
^x 803.81 9		0.092 14			$\sigma(n, \gamma) = 0.27 \text{ mb } 4 (85 \text{Ra} 15).$	
863.28 28	3801.955	0.034 11	(E1)		$\sigma(n,\gamma) = 0.10 \text{ mb } 3 (85 \text{Ra} 15).$	
907.607 [†] 14	(6985.84)	0.61 [†] 11			$\sigma(n,\gamma) = 1.79 \text{ mb } 30 \text{ (85Ra15)}.$	
1084.79 15	3801.955	0.054 11	(E1)		$\sigma(n,\gamma) = 0.16 \text{ mb } 3 (85 \text{Ra} 15).$	
1101.92 31	4903.355	0.033 8			$\sigma(n,\gamma) = 0.096 \text{ mb } 23 \text{ (85Ra15)}.$	
1144.591 20	2716.991	0.55 6			$\sigma(n,\gamma) = 1.63 \text{ mb } 16 \text{ (85Ra15)}.$	
1161.05 20	4963.073	0.055 9			$\sigma(n,\gamma) = 0.161 \text{ mb } 24 \text{ (85Ra15)}.$	
(1166.9)	4105.6	0.0068			$\sigma(\mathbf{n}, \gamma) = 0.02 \text{ mb.}$	
1210.28 4	3558.074	0.25 3			$\sigma(n,\gamma) = 0.74 \text{ mb } 8 (85 \text{Ra} 15).$	
1250.61 5	4189.256	0.214 24	(E1)		$\sigma(n,\gamma) = 0.63 \text{ mb} \ 7 \ (85 \text{Ra} 15).$	
×1381.67 24		0.024 9			$\sigma(n,\gamma) = 0.070 \text{ mb } 24 \text{ (85Ra15)}.$	

Εγ	E(level)	Iγ§@	Mult.#	δ#	Comments
1404.967 24	4963.073	0.60 6			$\sigma(\mathbf{n}, \mathbf{v}) = 1.76 \text{ mb } 17 (85 \text{ Ral 5}).$
1454.09^{\dagger} 4	3801.955	0.45^{\dagger} 11			$\sigma(n,\gamma) = 1.33 \text{ mb } 32 (85\text{Ra}15).$
1566.7 3	3558.074	0.47 9			$\sigma(\mathbf{n}, \mathbf{y}) = 1.38 \text{ mb} 25 (85 \text{Ra} 15).$
1572.333 7	1572.373	35 4			$\sigma(n, \gamma) = 103 \text{ mb} 10 (85\text{Ra}15).$
1760.55 11	4477.60	0.146 21			$\sigma(n, \gamma) = 0.43 \text{ mb } 6 (85\text{Ra}15).$
1841 426 15	4189 256	2 14 21			$\sigma(n, y) = 6.3 \text{ mb } 6 (85\text{Ra}15)$
1964 8 [†] 2	4903 355	0.37^{\dagger} 11			$\sigma(n, \gamma) = 1.1 \text{ mb } 3 (85\text{Ra}15)$
1991 27 5	1991 28	0 54 6	M2 + E3	-0 19 8	$\sigma(n, \gamma) = 1.59 \text{ mb} 16 (85 \text{Ra} 15)$
2022.954 9	(6985.84)	11.4 11	112 120	0110 0	I_{γ} : 11 <i>1</i> (85Ke08).
2082.681 12	(6985.84)	15.6 17			I_{γ} : 17 2 (85Ke08). r_{γ} : $\eta \rightarrow -46$ mb 5 (85Ra15)
(2120 75)	4477 60	0 146			$\sigma(n, y) = 0.43$ mb
2220 510 16	2801 055	0.140	(E1)		$\sigma(n, y) = 0.43$ mb. $\sigma(n, y) = 0.43$ mb. (25Po15)
2223.310 10	2247 791	2.8 5	$(\mathbf{L}1)$ E1($\mathbf{M}2$)	-0.0	$O(n, \gamma) = 0.4 \text{ mb } \sigma (05\text{kars}).$
2347.701 11	2347.781	30 3	E1 (+1VI2)	~0.0	$r_{(n-4)} = \frac{140}{140}$ mb $\frac{12}{(95D_0 + 5)}$
2508 20 8	(6095 94)	0 28 /			$\sigma(n, y) = 1.43 \text{ mb} 1.3 (65\text{Ra}15).$
2555 402 14	(0983.84)	2 1 2			$\sigma(n, y) = 0.1 \text{ mb } f_2(85\text{Rarb}).$
2000.402 14	4903.333	1 00 1 11			$\sigma(n, \gamma) = 3.1 \text{ mb } S(85\text{Rars}).$
2013.272	4903.073	1.00 + 11	F 1		$\sigma(n, \gamma) = 3.2 \text{ mb } 3 (85\text{Rars}).$
2010.0 5	4169.200	0.24 7	EI		$O(\Pi, \gamma) = 0.7 \text{ mb } 2 (85 \text{ Kars}).$
2710.99 10	2710.991	0.30 5			$O(\Pi, \gamma) = 0.89 \text{ IIID } 13 (83 \text{ Kars}).$
2790.73 4	(0985.84)	5 .4 <i>5</i>			1γ : 4.3 4 (85Ke08).
0005 1 4	4477 00	0 14 4			$\sigma(n,\gamma) = 15.9 \text{ mD } 15 (85 \text{ kars}).$
2903.1 4	44/7.00	0.14 4			$\sigma(n,\gamma) = 0.41 \text{ mD } II (85 \text{ Rals}).$
2938.38 11	2938.04	0.89 10			$G(\mathbf{n}, \gamma) = 2.62 \text{ mD } 27 \text{ (85Ra15)}.$
2972.0 4	4903.073	0.18 0			$\sigma(n,\gamma) = 0.34 \text{ mb } 17 (83 \text{ kars}).$
3139.9 5	6078.471	0.078 24			$\sigma(n,\gamma) = 0.23 \text{ mb} / (85\text{kars}).$
3183.94 4	(0985.84)	0.20			1γ : 5.7 0 (85Ke08).
2220 80 4	4002 255	7 4 0	F 1		$O(\Pi, \gamma) = 16.2 \text{ IIID } 17 (63 \text{ Kars}).$
3330.80 4	4903.335	1.4 8	EI		1γ : 7.7 8 (85Ke08).
2200 55 5	1062 072	5 5 5			$U(n, \gamma) = 21.0 \text{ mD} 21 (05 \text{ Kars}).$
3390.33 3	4903.073	J.J J			$\pi(n, n) = 16.2$ mb 15 (85Pe 15)
2559 1 5	2558 074	0 0 9 5 1 7			$\sigma(n, y) = 0.25 \text{ mb } 5 (85\text{Re}15)$
3801 74 3	3801 955	3 1 3	(F1)		$V_{\rm M} = 2.22 (85 {\rm KeO})$
5001.74 5	5601.555	5.1 5	(11)		$\sigma(n_{1}) = 0.1 \text{ mb } \theta(85\text{Re}15)$
4105 3 8	4105 6	0 047 17			$\sigma(n, y) = 0.14 \text{ mb } 5 (85\text{Ra}15)$
4105.5 8	4105.0	0.047 17	(E1)		$O(n, \gamma) = 0.14 \text{ mb } J(85 \text{Kals}).$
4100.50 4	4105.250	2.1 5	(11)		$\sigma(n_{1}) = 0 \text{ mb } g(85\text{Res}^{-1})$
4268 65 14	(6985 84)	0 34 4			$\sigma(n, \gamma) = 1.00 \text{ mb} t/2 (85Ra15).$
4637 91 4	(6985 84)	5 5 5			$V_{\rm V}$ 59 5 (85Ke08)
4057.51 4	(0303.04)	5.5 5			$\sigma(n_{x}) = 16.3 \text{ mb} 15 (85\text{Res15})$
1902 96 1	4903 355	371			$V_{1} = 10.5 \text{ mb} 13 (05 \text{ kars}).$
4502.50 4	4000.000	5.7 4			$\sigma(n, n) = 11.0 \text{ mb} 11.(95\text{Po} 15)$
1962 63 5	4963 073	203			$V_{1} = 20.3 (85K_{0}08)$
4902.03 5	4903.073	2.93			$\pi(n, n) = 9.6 \text{ mb } g(95\text{Po}(15))$
5752 0 8	5759 5	0 018 5			$\sigma(n, y) = 0.052 \text{ mb } 5(85\text{Rars}).$
6018 2 6	6018 8	0.018 5			$\sigma(n, \gamma) = 0.052 \text{ mb } 13 (85Ra15).$
6077 87 11	6078 171	0.36 /			$\sigma(n, y) = 1.06 \text{ mb } 1.1 (85\text{Ra}15)$
6202 2 1	6203 02	0.004			$\sigma(n, y) = 0.10 \text{ mb } A(85\text{Re}15)$
6355 0 8	6251 99	0.004 14			$\sigma(n, y) = 0.13 \text{ mb } 20 (85P_{2}15)$
	6410 0	0.040 /			$\sigma(n, y) = 0.048 \text{ mb} 15 (85 \text{ Po } 15)$
0419.3 11 6699 5 e	0419.9	0.010 2			$\sigma(n, \gamma) = 0.090 \text{ mb } 16 (95\text{Pa}15).$
6760 2 12	6761 0	0.030 0			$\sigma(n, y) = 0.056 \text{ mb } 22 (85Da15).$
6095 7 10	(6095 94)	0.019 0			$\sigma(n, y) = 0.106 \text{ mb } 22 (85 \text{ Po } 15)$
0303.7 10	(0903.84)	0.030 <i>8</i>			$0(11, \gamma) = 0.100 \text{ mD } 23 (03 \text{ rats}).$

 † After corrections due to a $\gamma\text{-ray}$ of similar energy in the $^{32}S(n,\gamma)^{33}S$ recation.

[‡] Peak observed at 2615.49 keV 4 with intensity 3.94 4 was reanalyzed as a doublet.

§ Absolute intensities per 100 neutron captures. For γ-ray cross section in mb (85Ra15), multiply by 2.9412 per 100 neutron

captures.

[#] From adopted gammas, except as noted.
[@] For intensity per 100 neutron captures, multiply by 1.

& Multiply placed; undivided intensity given.

 $^{\mathbf{x}}$ γ ray not placed in level scheme.

Level Scheme

Intensities: $I(\gamma+ce)$ per 100 parent decays & Multiply placed; undivided intensity given

 $^{34}S(n,\gamma)$ E=thermal 85Ra15,85Ke08 (continued)

³⁵Cl(n,γ) E=thermal 82Kr12,81Ke02,96Co16

Target $J\pi=3/2+$.

 $82 Kr 12:\ measured\ E\gamma,\ I\gamma\ with\ curved\ crystal\ spectrometers\ GAMS1\ and\ GAMS2/3\ and\ Ge(Li)-NaI(Tl)\ in\ Compton-suppressed$

mode and pair spectrometer mode. Deduced neutron separation energy S(n)=8579.68 keV 9. 81Ke02: measured E γ , I γ with a Ge(Li)–NaI(Tl) pair spectrometer. Deduced neutron separation energy

S(n)=8579.83 keV 2.

96Co16: measured Ey, Iy with HpGe detector.

Evaluated S(n)=8579.70 keV 7 (95Au04).

³⁶Cl Levels

E(level) [‡]	$J\pi^{\dagger}$	T _{1/2} †	Comments
0 0	2+	3.01×10^5 v 2	$\%\beta^{-}-98$ 10 10: $\%\epsilon_{+}\%\beta^{+}-1$ 90 10
788 441 3	2 + 3 +	13 8 ns 12	λφ -36.10 10, λετ-λφ -1.30 10.
1164 886 3	1+	6 4 ns 6	
1601 113 4	1+	650 fs 40	
1951.197 3	2 -	1.8 ns 2	
1959.406 4	2 +	40 fs 11	
2468.278 3	3 –	1.04 ps 12	
2492.319 5	2+	40 fs 11	
2518.416 6	5 –	1.61 ns 8	
2676.429 13	1+	<7 fs	
2810.596 5	4 -	2.8 ps 6	
2863.951 6	3+	<10 fs	
2896.341 5	3 –	600 fs 100	
2994.687 7	(1,2)-	60 fs 12	
3100.720 4	4 -	150 fs 40	
3332.312 6	2 -	73 fs 14	
3470.03 <i>3</i>	(1,2)+	< 25 fs	
3599.550 <i>5</i>	3 –	40 fs 15	
3634.977 14	1 –	20 fs 11	
3660.366 24	(1,2,3)		
3941.27 4	(1+ to 3+)		
3962.929 17	2 -	< 20 fs	
4031.95 3	(0,1,2)-		
4061.470 19	(1,2)-		
4138.976 16	(2, 3) -		
4205.64 4	(1, 2) +		
4299.70 4	(1 2 2)		
4313.04 8	(1, 2, 3) =		
4410.02 3	(1+ to 3+) 2_		
4525 187 19	2 - 1 +		
4551.43 7	(1, 2) +		
4598.49 3	3 –		
4754.36 4	(1,2)-		
4757.996 18	3 –		
4829.52 4	(1+ to 4+)		
4997.22 3	(2,3) –		
5018.10 3	(1 - to 4 +)		
5079.134	(1,2,3) –		
5150.644 22	(1,2,3)-		
5204.56 <i>3</i>	2 -		
5246.644	(1+ to 3+)		
5263.01 4	(1,2)-		
5329.15 6	(0 t o 3+)		
5463.498 20	(1,2)-		
5473.70 5	(0 + to 3 +)		
5517.692 15	(2, 2)		
5578 APD 20	(2 - , 3)		
JJ/0.48U ∠U 560/ 97 2	(1,2)- 2+		
5703 051 25	(0 + to 4)		
5734 045 14	$(2 \ 3) -$		
5778.55 4	$(2, 0)^{-}$		
5956.686 24	(1, 2) +		
6042.405 21	2 -		

E(level) [‡]	īπţ	Comments
L(level)	J // '	Comments
6089.86 4	(0-to3)	
6184.95 5	(1,2)+	
6253.58 4	(1,2)-	
6268.160 17	(2-,3)	
6339.89 4	(1,2,3)-	
6344.34 4	(0 + to 4 +)	
6354.92 5	2+	
6379.488 20	(1, 2) +	
6423.398 18	(2,3) -	
6487.71 4	(1, 2, 3) -	
6538.28 3	(0 - t 0 3 +)	
6544.974 17	(1, 2) +	
6604.37 3	(1 - to 3)	
6642.653 22	1 -	
6773.20 5	(0 t 0 4) +	
6836 51 4	$(0 - t_0 - 3)$	
6952 61 4	(1 2 3)	
7082 70 4	$(0, t_0, 3)_+$	
7550 17 5	$(0 + t_0 - 4 +)$	
1333.17 3	(0+ 10 4+)	

³⁶Cl Levels (continued)

E(level): 8579.70 keV 7 from evaluated S(n) (95Au04). Jπ: from s-wave neutron capture. Observed deexcitation intensity is 99.7% of g.s. feeding.

 $^\dagger~$ From adopted levels, except as noted.

1+,2+

(8579.70 7)

 \ddagger From Ey's using least-squares fit to data, except as noted.

γ(³⁶Cl)

All data are from 82Kr12, except as noted. Ιγ normalization: normalized from assuming Ιγ(to g.s.)=100.

Eγ	E(level)	Iγ [†] #	Mult.§	δ§	Comments
85.743 7	2896.341	0.0076 15	(M1)		
x89.838 16		0.0030 11			
^x 90.028 <i>19</i>		0.0020 10			
^x 108.740 32		0.0040 12			
x111.546 17		0.0050 13			
x115.424 28		0.0030 11			
x133.558 7		0.0070 23			
×137.195 30		0.0030 21			
×151.159 28		0.0030 21			
204.373 8	3100.720	0.0119 25	(M1)		
x212.726 10		0.0090 24			
225.526 36	4525.187	0.0054 17			
	6268.160	0.0037 15			
236.710 40	3100.720	0.0059 20	(E1)		
x241.334 76		0.0040 21			
x272.760 42		0.0070 32			
^x 279.435 <i>42</i>		0.0090 33			
292.178 4	2810.596	0.263 40	M1 (+E2)	+0.03 3	
302.751 74	3634.977	0.0068 36	(M1)		
x308.722 24		0.0370 82			
337.617 5	3332. 312	0.0586 90	(M1)		
x340.27 15		0.0050 31			
342.311 4	2810.596	0.0175 29	(M1)		
x343.038 78		0.0080 42			
358.288 5	1959.406	0.220 36	(M1)		
369.281 29	3470.03	0.062 15			
371.562 21	4031.95	0.0044 11			
376.425 25	1164. 886	0.041 11	(E2)		
x422.060 <i>30</i>		0.0040 12			
×427.534 13		0.0130 28			

γ (³⁶ Cl) (continued)						
Εγ	E(level)	Ιγ ^{†#}	Mult.§	δ§	Comments	
427.855 48	5578.480	0.0319 53				
428.239 73	2896.341	0.0127 22				
435.969 10	3332 . 312	0.164 25	(M1)			
436.222 2	1601.113	1.05 16	(M1)			
×441.00 <i>12</i>		0.027 13				
x447 848 12		0.033 10 0.0070 23				
455.67 11	5473.70	0.0140 67				
×455.968 16		0.0070 23				
459.57 11	4598.49	0.0296 96				
×462.253 72		0.017 20				
463.699 18	4525.187	0.0064 52				
466.06 15	5463.498	$0.0130 \ 37$ $0.0163 \ 47$				
466.625 99	5018.10	0.033 16				
468.359 3	3332. 312	0.089 13	(E1)			
468.765 30	$4\ 4\ 1\ 0\ .\ 0\ 2$	0.0099 28				
478.69 <i>14</i>	4138.976	0.088 50				
485.808 35	6538 28	0.0100 43 0.0095 28				
502.309 24	2994.687	0.0178 45	(E1)			
503.985 <i>63</i>	4138.976	0.0157 31				
508.866 2	2468 . 278	0.350 53	(E1)			
517.077 1	2468.278	24.3 [‡] 14	M1+E2	+0.03 1	Iγ: 23.4 35 (82Kr12).	
532.906 4	2492.319	0.110 18	(M1)			
539.60 18	4138.976	0.0369 59				
576.417 60	6354.92	0.0042 11				
582.324 42	3100.720	0.0102 31	(M1)			
x590.495 68		0.0040 12				
x 595.84 15		0.0040 12				
~602.839 43 616 152 31	6089 86	0.0040 12				
619.040 <i>62</i>	4757.996	0.0059 18				
x622.940 48		0.0060 13				
x628.941 31		0.0090 42				
630.556 <i>31</i>	3962.929	0.0106 22	(M1)	0.07.0		
632.438 2 640 330 33	3100.720	0.319 48 0.0156 29	MI + EZ (M1)	+0.07 2		
656.000 84	3332.312	0.0068 16	(E1)			
×659.653 15		0.0130 28				
x661.707 11		0.0210 51				
x663.429 77		0.0050 13				
665.636 <i>28</i>	3660.366	0.073 16 0.0141 22				
703.204 7	3599.550	0.114 18	(M1)			
x712.107 94		0.0050 13	(
717.025 25	$2\ 6\ 7\ 6$. $4\ 2\ 9$	0.0170 37	(M1)			
×723.105 <i>33</i>		0.0160 38				
*727.999 27	4061 470	0.0220 52				
735 578 20	3599 550	0.0064 18	(E1)			
760.365 51	5778.55	0.0238 58	/			
780.66 68	6253.58	0.012 15				
786.305 <i>2</i>	1951.197	$10.52^{\ddagger} 35$	(E1)		Iγ: 11.2 <i>17</i> (82Kr12).	
788.432 3	788.441	$16.32 \ddagger 36$	M1 + E2	+1.1 2	1γ: 16.9 25 (82Kr12), 15.0 (81Ke02).	
012.008 22 x832 080 22	1001.113	0.068 <i>11</i> 0.100 <i>24</i>	(E2)			
841.901 23	6544.974	0.0384 84				
^x 848.449 55		0.0300 75				
859.420 12	2810.596	0.106 18	E2 (+M3)	-0.014		
864.021 8	3332.312	0.122 20	(M1)			
^865.395 73		0.0200 <i>50</i>				

1788.059 60

1806.421 69

1828.501 18

4598.49

(8579.70)

5463.498

0.374 41

0.159 18

0.368 37

			γ(³⁶ Cl) (continu	ied)
Eγ	E(level)	$I\gamma^{\dagger \#}$	Mult.§	δ§	Comments
970 191 69	6604 27	0 0156 20			
×884 87 12	0004.37	0.0130 30			
×886 795 60		0.0170 65			
904 508 25	2863 951	0 0469 76			
×912.881 16	2000.001	0.096 22			
936.921 5	2896.341	0.589 88	(E1)		
945.131 14	2896.341	0.139 24	(==)		
x946.297 85		0.0240 79			
958.559 28	3634.977	0.057 11	(E1)		
968.173 53	3962.929	0.0317 68	(M1)		
975.74 12	5734.045	0.0172 39			
979.615 50	5734.045	0.0337 68			
^x 989.634 56		0.041 13			
998.801 94	4598.49	0.0334 60			
1020.497 51	(8579.70)	0.073 11			
1034.261 23	4997.22	0.323 50			
x1035.125 25		0.123 27			
x1035.892 <i>92</i>		0.059 14			
1043.473 24	2994.687	0.099 16			
1066.723 63	3962.929	0.088 16	(M1)		
x1068.72 13		0.039 12			
1076.723 47	5018.10	0.0317 65			
1086.662 36	6604.37	0.069 12			
1089.43 17	5150.644	0.0331 98			
×1095.72 29		0.0170 65			
×1127.81 20		0.038111			
1131.247 5	3599.550	1.911 + 56	(M1)		Iγ: 1.91 29 (82Kr12).
1162.785 16	1951.197	2.2934	(E1)		
1164.874 4	1164.886	27.20+ 72	M1+E2	-0.32 6	I γ : 27.7 42 (82Kr12).
1170.922 19	1959.406	0.510 76			
1201.98 12	5517.692	0.116 18			
1230.846 52	5263.01	0.101 16			
1258.028 59	6836.51	0.060 12			
1264.60 13	3941.27	0.067 15			
1203.42 11	0344.34	0.083 15	M1 . E9	0 10 7	
1327.410 10	2492.319	1.27 19	MI + EZ	-0.10 /	
1372.833 20	6270 499	0.384 39	(EI)		
1301.90 21	4757 006	0.0413 80 0.071 12			
1425.45 11	4757.990	0.071 12 0.171 27			
1510 75 15	3470 03	0 150 25	(M1)		
1515 626 80	5150 644	0.077 15	(111)		
1517 056 80	6042 405	0 077 15			
1524 99 20	6604 37	0 080 15			
1526.26 47	6544.974	0.133 26			
1528.61 15	5734.045	0.121 20			
1601.082 7	1601.113	$3.484^{\ddagger}89$			Iv: 3.48 35 (82Kr12), 3.82 45 (81Ke02).
×1605.99 15		0.061 12			
1623.32 20	4299.70	0.105 13	M1		
1626.985 43	(8579.70)	0.298 31			
1640.116 17	3599.550	0.427 43	(E1)		
1648.305 15	3599.550	0.524 53			
1657.254 29	4757.996	0.236 24			
1679.761 29	2468.278	0.201 21			
1683.808 32	3634.977	0.225 23			
1709.83 34	3660.366	0.209 22			
1729.935 50	2518.416	0.344 40	M2 + E3	-0.11 1	
1731.155 50	3332 . 312	0.219 30	(E1)		
1743.148 43	(8579.70)	0.249 26			
x1786.18 10		0.217 35			

³⁵Cl(n,γ) E=thermal 82Kr12,81Ke02,96Co16 (continued)

$\gamma(\frac{^{36}Cl)}{(continued)}$

Εγ	E(level)	$I\gamma^{\dagger \#}$	Mult.§	δ§	Comments
1959 090 20	6269 160	0 280 20			
1936 961 20	(8579 70)	0.289 29			
1951 145 8	1951 197	19 39 57	E1 (+M2)	-0 10 10	Iv: 20 2 20 (82Kr12) 20 39 76 (81Ke02)
1959.358 14	1959.406	12.56 28	,		I_{γ} : 12.9 <i>13</i> (82Kr12), 13.41 <i>58</i> (81Ke02).
1975.61 29	(8579.70)	0.694 70			
×1996.330 53		0.242 36			
2003.446 36	3962.929	0.203 21			
2011.760 63	3962.929	0.116 13	(E1)		
2022.098 16	2810.596	0.518 52	E1+M2	-0.14 3	
2034.634 16	(8579.70)	0.748 75			
2041.15 13	(8579.70)	0.593 <i>63</i>			
2075.547 28	2863.951	0.369 40			
2091.891 40	(8579.70)	0.206 21			
2110.247 75	4061.470	0.202 21			
2133.22 18	4997.22	0.0591 92			
2156.213 18	(8579.70)	0.679 68			
2179.529 25	4138.976	0.266 27			
2200.118 19	(8579.70)	0.391 39			
2224.084 33	(8579.70)	0.103 18			
2229.300 50	5563 583	0.348 40			
2235 363 48	(8579 70)	0 190 20			
2239 713 38	(8579, 70)	0 242 25			
2246.213 46	4205.64	0.194 20			
2254.258 70	5150.644	0.237 25			
2265.79 11	4757.996	0.0624 88			
2282.861 47	6344.34	0.140 15			
2289.887 60	4757.996	0.483 53			
2311.406 19	(8579.70)	1.09 11			Iγ: 0.99 9 (81Ke02).
2326.025 38	(8579.70)	0.234 24			
2342.27 20	6642.653	0.0417 85			
2355.89 14	4315.64	0.117 16			
2364.65 16	4315.64	0.0585 81			
2382.71 11	5246.64	0.149 18			
2394.636 52	(8579.70)	0.156 17			
2407.284 33	6042.405	0.195 20			
-2418.553 <i>30</i>	6080 86	0.331 79			
2429.338 90	2468 278	0.100 20			
2469 879 46	3634 977	0 731 76	(E1)		
2489.850 69	(8579.70)	0.455 52	()		
(2492.233)	2492.319	0.14 4			
x2494.831 80		0.207 31			
(2518.327)	2518.416	0.019 2	E3 (+M4)	≈ 0 . 0	
2524.67 11	6487.71	0.110 13			
2527.944 50	$5\ 2\ 0\ 4$. $5\ 6$	0.246 26			
2537.255 [@] 50	4496.70	0.437@46			
	(8579.70)	0.437@46			
2549.81 15	5018.10	0.291 49			
2567.462 87	6773.20	0.172 19			
2569.88 21	5246.64	0.070 12			
2622.880 24	(8579.70)				
2039.05/ 88 2647 60 25	4 3 9 8 . 4 9	U.155 18			
2653 10 10	4000.49 5517 609	0.2/8 29			
2662 91 12	6604 37	0.072 11 0 111 14			
2676.300 20	2676.429	$1.572^{\ddagger}.38$			Ιγ: 1.91 <i>19</i> (82Kr12), 2.06 <i>11</i> (81Ke02).
2682.398 87	5150.644	0.158 18			· · · · · · · · · · · · · · · · · · ·
2698.62 12	4299.70	0.0567 74	M1		
2711.618 98	6773.20	0.0865 99			
x2727.887 66		0.135 15			
2740.62 32	5604.27	0.127 49			
2753.01 13	5563.583	0.111 14			

$\gamma(\frac{^{36}Cl)}{(continued)}$

Εγ	E(level)	$I\gamma^{\dagger \#}$	Mult.§	Comments
2797.986 95	3962 929	0.294 33	(E1)	
	6268.160	0.294 33	(21)	
2800.846 71	(8579.70)	0.827 86		
2811.011 35	3599.550	0.482 49	(E1)	
2845.498 12	(8579.70)	1.27 13		Iγ: 1.22 7 (81Ke02).
2863.815 16	2863.951	5.77 ‡ 11		Iγ: 6.55 66 (82Kr12), 6.63 21 (81Ke02).
2867.16 30	4031.95	0.615 87		
x2871.407 96		0.311 48		
2876.640 55	(8579.70)	0.563 61		
2896.232 16	2896.341	0.553 56	(E1)	
2941.331 88	6042.405	0.129 14		
2953.23 10	6423.398	0.0635 82		
2955.12 10	5473.70	0.071788		
2975.235 31	(8579.70)	1.046+ 25		I_{γ} : 1.21 12 (82Kr12).
2994.707 6	2994.687	0.91 11	(E1)	1γ : 0.90 6 (81Ke02).
3001.067 21	(8579.70)	0.697 36		1γ : 0.71 5 (81Ke02).
3013.383 19	(03/9./U) 5517 609	1.131 28		17. 1.13 / (OIREUZ).
3023.24 31	4205 64	0.0334 33		
3061 865 22	(8579 70)	$3,521$ $\frac{1}{2},66$		I_{M} : 3.88.20 (82Kr12) 4.01 14 (81Ke02)
3067 84 20	6538 28	0 176 17		1. 5.55 % (balling), 4.51 14 (billeos).
3086.28 29	5578.480	0.088 13		
3105.76 16	(8579,70)	0.169 16		
3116.216 43	(8579.70)	0.994 55		Iγ: 1.05 6 (81Ke02).
(3134.66)	4299.70	0.03 2	M1	
3135.33 15	5604.27	0.1158 99		
3151.79 24	3941.27	0.0583 73		
x3203.79 <i>27</i>		0.0750 97		
3210.59 20	5703.051	0.0584 77		
3244.36 16	4410.02	0.0988 88		
3250.357 77	(8579.70)	0.255 15		
x3255.70 44		0.0370 72		
3271.48 17	6604.37	0.1005 98		
3291.88 25	6952.61	0.094 14		
3295.85 28	5246.64	0.092 14		
2216 262 47	(8570 70)	0.0435 49 0.257 14		
3333 09 10	(8579.70)	0.827 44		Lv: 0.84.5 (81Ke02)
3349.747 94	4138.976	0.238 16		1. 0.04 0 (OIRCOL).
3374.895 46	(8579.70)	0.600 33		Iγ: 0.64 <i>4</i> (81Ke02).
3385.53 42	4551.43	0.0421 82		
3428.863 29	(8579.70)	0.895 46		Iγ: 0.90 5 (81Ke02).
x3435.89 <i>12</i>		0.134 12		
3457.44 20	6268.160	0.0512 86		
3458.40 20	6354 . 92	0.0328 84		
3470.06 14	3470.03	0.1003 79		
3489.73 87	6354.92	0.0118 58		
3500.378 57	(8579.70)	0.330 18		
3504.166 86	6836.51	0.199 13		
3312.21 12 3526 85 12	5403.498 6423 209	0.0712 59		
3520.85 12	5517 609	0.0748 39		
3561.258 79	(8579 70)	0.693 42		
3566.611 73	5517.692	0.310 18		Iγ: 0.24 2 (81Ke02).
3581.90 16	(8579.70)	0.133 14		1
3589.234 50	4754.36	0.605 34		Iγ: 0.48 <i>3</i> (81Ke02).
3599.251 65	3599.550	0.539 31	(E1)	Iγ: 0.51 <i>3</i> (81Ke02).
3604.112 82	5563.583	0.401 25		Iγ: 0.39 3 (81Ke02).
3612.62 18	5563.583	0.109 11		
3621.67 19	4410.02	0.117 11		
3627.27 18	5578.480	0.127 12		
3634.480 <i>73</i>	3634.977	0.334 21	(E1)	Iγ: 0.31 2 (81Ke02).
3645.58 <i>34</i>	5246.64	0.0404 67		

$\gamma(^{36}Cl)$ (continued)

Eγ	E(level)	$I\gamma^{\dagger \#}$	Mult.§	Comments
0000 00 10	2000 200	0 000 00		
3000.23 10	3000.300	0.209 22		
3728 20 20	5320 15	0.182 11		
3736 541 56	4525 187	0 197 11		
3743 77 11	5703 051	0.0958 68		
3749 905 44	(8579 70)	0 309 17		Ly: 0.34.3 (81Ke02)
(3751 74)	5703 051	0 08 2		1. 0.01 0 (011100#).
3809.63 28	4598.49	0.0508 78		
3821.581 42	(8579.70)	1.095 58		Iγ: 1.08 5 (81Ke02).
3825.53 36	(8579.70)	0.842 46		Iγ: 0.84 4 (81Ke02).
x3860.18 11		0.1070 88		
3916.37 17	5517.692	0.0685 57		
3962.60 15	3962.929	0.367 36	(E1)	Iγ: 0.41 3 (81Ke02).
3977.24 28	5578.480	0.126 17		
3981.064 46	(8579.70)	1.028 55		Iγ: 1.04 5 (8ke02).
3997.14 29	5956.686	0.0687 86		
4028.054 93	(8579.70)	0.193 13		
4041.08 18	4829.52	0.0845 82		
4054.226 41	(8579.70)	0.626 33		Iγ: 0.65 3 (81Ke02).
4061.048 83	4061.470	0.242 15		
4082.664 42	(8579.70)	0.785 41		
4086.62 50	7082.70	0.063 11		
4091.50 55	6042.405			
4097.90 40	5263.01	0.0285 51		
4111.70 12	6080 86	0.1003 //		$I_{\rm M} = 0.22 \cdot 2 \cdot (21 V_{\odot} 0.2)$
4138.430 70	6089.80	0.372 22		1γ : 0.32 2 (81Ke02).
4146.0 11	5220 15	0.0110 50		
4104.17 23	(8579 70)	0.0576 74		
4103.20 33	6642 653	0.037074 0.0205.64		
x4192.30 28	0012.000	0.0270 42		
4205.14 13	4205.64	0.1232 78		
4264.01 36	(8579.70)	0.0307 45		
4294.58 51	6253.58	0.0424 94		
4298.384 67	5463.498	0.389 22		Iγ: 0.42 3 (81Ke02).
4308.28 41	5473.70	0.0427 72		
4355.00 10	5956.686	0.1459 94		
4413.59 25	5578.480	0.175 33		
4416.11 48	5204.56	0.122 29		
4420.60 50	6379.488	0.0363 71		
4440.399 23	(8579.70)	1.047‡ <i>23</i>		Iγ: 1.085 55 (82Kr12), 1.11 4 (81Ke02).
4458.20 11	5246.64	0.1058 73		
^4473.33 <i>30</i>		0.0270 42		
4518.12 10	(8579.70)	0.155 10		$L_{\rm W} = 0.47, 0.01 \text{ (0.1 K-0.0)}$
4524.866 45	4525.187	U.459 24		1γ : U.47 3 (81KeUZ).
4347.473 69	(85/9./U) 4551 49	U.433 20		17: U.47 3 (81KeU2).
4001.41 22 X1558 09 99	4001.40			
4586 609 66	6538 28	0.0130 31		
x4591 85 35	0330.20	0.0480.65		
4597 50 26	4598 49	0 0483 52		
4616,436 35	(8579.70)	0.682 35		Iγ: 0.71 3 (81Ke02).
4637.59 71	(8579.70)	0.0139 47		1
4652.90 29	6253.58	0.0297 40		
x4683.51 16		0.0580 58		
4728.966 31	5517.692	0.702 36		Iγ: 0.73 <i>3</i> (81Ke02).
x4747.14 30		0.0360 44		
4753.31 16	$6\ 3\ 5\ 4\ .\ 9\ 2$	0.1235 90		
4757.48 14	4757.996	0.1365 95		
4791.44 31	5956.686	0.0280 39		
4815.297 77	5604 . 27	0.1542 92		
4829.064 64	4829.52	0.194 11		Iγ: 0.21 2 (81Ke02).
4884.85 12	6836.51	0.0928 64		

$\gamma(^{36}Cl)$ (continued)

Eγ	E(level)	Ιγ ^{†#}	Comments
4944.335 50	(8579.70)	1.107 75	1γ : 1.19 4 (81Ke02).
4945.195 50	5734.045	0.635 60	
*4950.85 19	(0.5.5.0.5.0.)	0.159 16	
4979.713 25	(8579.70)	3.616+ 96	1γ: 3.60 <i>18</i> (82Kr12), 3.95 <i>10</i> (81Ke02).
4989.96 12	5778.55	0.309 19	
5000.55 34	6952.61	0.0459 73	
5017.726 54	5018.10	0.465 25	1γ : 0.52 3 (81Ke02).
5078.818 65	5079.13	0.1520 86	1γ : 0.16 <i>I</i> (81Ke02).
5088.05 22	0233.38	0.0377 40	$L_{\rm H} = 0.0011(0.111 + 0.0)$
5109.25 13	(8579.70)	0.0866 05	1γ : 0.09 <i>I</i> (81Ke02).
5122.82 30	7082.70	0.0346 43	
~5142.12 10	5150 044	0.0720 70	$L_{\rm H} = 0.000 (0.1 M \cdot 0.0)$
5150.195 07	5150.644	0.202 II	1γ : 0.23 2 (81Ke02).
5204.230 00	5204.30	0.203 12	1γ. 0.22 2 (δ1Ke02).
5240.189 50	3240.04 (8570.70)	0.27 10	$L_{\rm H} = 0.50.2 (0.1 M_{\odot} 0.2)$
5240.909 JU	(8379.70)	0.27 10	1γ. 0.39 5 (81Ke02).
5272 25 25	6529 29	0.0983 70	
5472 24 20	5472 70	0.0454 J1 0.0857 74	
5517 202 26	5517 692	1.689^{\pm} 12	$I_{V} = 1.707.87(82Kr12) = 1.75.5(81Ke02)$
5584 617 38	(8579 70)	1.085+ 42	1_{1}^{\prime} , 1.707 67 (62K112), 1.75 5 (61Ke02).
5603 867 52	5604 27	0.358 10	I_{1}^{\prime} , 0.36 2 (81Ke02).
5634 38 24	6423 398	0.0570 57	17. 0.30 £ (01Re0£).
5702 63 14	5703 051	0.0310 37	$I_{V} = 0.39 + 2.(81 K_{\odot} 0.2)$
5715 187 26	(8579, 70)	$5 31^{\ddagger} 15$	I_{γ} : 5.60 28 (82Kr12) 5.68 12 (81Ke02)
5733 48 16	5734 045	0 510 37	I_{γ} : 0.46 2 (81Ke02)
5777.45 34	5778.55	0.123 17	I_{γ} : 0.15 / (81Ke02).
5902.700 27	(8579.70)	$1.104^{\ddagger} 31$	I_{γ} : 11.132 57 (82Kr12), 1.18 4 (81Ke02).
5956.294 93	5956.686	0.191 11	I_{γ} : 0.20 1 (81Ke02).
x6051.16 26		0.0420 45	
6086.744 43	(8579.70)	0.844 44	Iγ: 0.94 <i>3</i> (81Ke02).
6110.848 38	(8579.70)	20.58 [‡] 65	Iγ: 20.2 10 (82Kr12), 20.96 33 (81Ke02).
6184.33 13	6184.95	0.0818 59	Iγ: 0.10 1 (81Ke02).
6252.99 18	6253.58	0.0748 62	
6267.810 46	6268.160	0.441 23	Iγ: 0.43 2 (81Ke02).
6339.72 29	6339.89	0.0726 86	
6343.88 <i>36</i>	6344.34	0.0597 82	
6378.945 71	6379.488	0.199 11	Iγ: 0.21 1 (81Ke02).
6422.845 56	6423.398	0.278 15	Iγ: 0.29 2 (81Ke02).
6487.040 82	6487.71	0.1373 80	Iγ: 0.13 1 (81Ke02).
6544.112 81	6544.974	0.1535 87	Iγ: 0.14 1 (81Ke02).
6619.638 44	(8579.70)	7.83 [‡] 16	Iγ: 7.80 39 (82Kr12), 8.31 16 (81Ke02).
6627.751 <i>59</i>	(8579.70)	4.69 ‡ 11	Iγ: 4.83 24 (82Kr12), 4.74 10 (81Ke02).
6641.9846	6642 . 653	0.186 32	
6951.807 74	6952.61	0.1578 88	Iγ: 0.15 1 (81Ke02).
6977.847 47	(8579.70)	2.290 [‡] <i>64</i>	Iγ: 2.32 12 (82Kr12), 2.40 6 (81Ke02).
x7377.38 41		0.0310 43	
7413.953 65	(8579.70)	10.52 [‡] 24	Iγ: 10.36 <i>52</i> (82Kr12), 10.69 <i>19</i> (81Ke02).
7558.21 43	7559.17	0.0230 35	
7790.325 64	(8579.70)	8.31 ‡ 19	Iγ: 8.48 42 (82Kr12), 8.69 16 (81Ke02).
8578.59 11	(8579.70)	2.739 ‡ <i>57</i>	Iγ: 2.78 14 (82Kr12), 2.84 7 (81Ke02).

[†] Absolute intensities per 100 neutron captures.

[‡] From 96Co16.

From socoro.
From adopted gammas.
For intensity per 100 neutron captures, multiply by 1.
@ Multiply placed; undivided intensity given.

 x γ ray not placed in level scheme.

 $^{36}_{17}\text{Cl}_{19}$

Level Scheme (continued)

 $^{36}_{17}\text{Cl}_{19}$

Level Scheme (continued)

1+,2+	(8579.70)
$(0+t_0, 4+)$	7559.17

(1.2.3)				<u>.</u>		. ~																							- 6952.61	
(0, t = 4)			_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	200	0.4	SAV.	220	*@^^	20	\$~\$	-		_		_														- 0772.00	
(0 to 4)+			0.0.	2.0.0	~~~	0-0	00.0	.v.o.	588	92	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 ∿_∞	-		: <u>-</u>														6773.20	
$\frac{2+}{(0++-4+)}$	٦	=_;;	0,0	200	500	- 20 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	883	28.8	<u></u>	<u>) </u>	000	9.9	20		ల బి బి	_												6354.92	
(0+t0.4+)	-√=	- Å ?	35	8N.V	8.4	$\hat{\rho}$	1997 S	3000	3000	°_~??	500	0,00	~~~	, <u>o</u> - 0	28	18		 -			.		1						6344.34	
(1,2,3)-	<u></u>	Ħ			ް	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	842 A	AV.C.	2.3	20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5=5	70		ŷ,Ŝ	\$~~~	300	\hat{c}^{λ}	~~ ⁴	3 <u>8</u> _	<u>-</u>	k.						
(2-,3)	-/				P		FΤ		ŦŦ-		V6.	9,9,7	25-	50	30	<u> </u>	00	0,00	2.0%	0.4	90 90 90		3.5	13°^	Ś	A. 60	<u></u>		6268.160	
(1,2)-	-///	++			Ħ		1				Ŧτ		т ⁻ ,5	84.4	5.2-	- ¥0	30.5	500	3.0	300	~?	-0.	00.	0.0	20.0	100			6253.58	
(1,2)+	-///												İΤ	Т	Ţ.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	8.8°.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N.S.N	20- 20-	૾ૢ૾ૺ૾	ૺઌૢ૿ૡૺ	100	Nº vo	ర్మిస్త్ర –			6184.95	
<u>(0- to 3)</u>	-///		¥												+-	T	-, v		5, 49, F	იე იე ი	- <u>6</u>	9		3	ઝેજે	\ <u>`</u>			6089.86	
2-	-////																						× *	ი <u>ე</u> იე	v ∿ ⊽	Ŷ			6042.405	
(1,2)+	-/////=	++			-				† \$		*		+			++	H						T	H				=\\\\'	5956.686	
<u>(1+ to 4+)</u>	J/////												$\left \right $			++		++										_\\\\	5778.55	
(2,3)-	J////=																Ħ												5734.045	
(0+ to 4+)	J////			V												± 1				:								_///	5703.051	
2+	J [_]															ΤŬ												- ////	5604.27	
(1,2)-	J////=																											_///	5578.480	
(0+ to 3+)	J _																			:								_////	5473.70	
(1,2,3)-	J////=						, –					₩	<u>v</u> ‡	+	\mp	-	Ħ		-		=				-			=////	5150.644	
(1,2,3)-] =						<u> </u>																						5079.13	
(1- to 4+)	_////																	¥.		:								_///	5018.10	
3-]////=			V																								=///	4757.996	
(1,2)-] =	+	-				-		_				-			-			-				_		-			=\\\	4754.36	
1+]																			:								//	4525.187	
(1+ to 3+)	J	\parallel					_				4					_	\square							\square				/	4410.02	
(1,2)+] [:								_//	4205.64	
(1,2)-]][[:									4061.470	
(1,2,3)]																Π			:								_/	3660.366	
1-]/	++			++	-			_			¥	_	++	++	_	\square			:	++	+		++	_				3634.977	20 fs
(1,2)+	//	+	<u>_</u>		++		-						-		+	-	++		-	: 	++		+		-				3470.03	~25 fs
4 -					Ħ	\$											Ħ			:		- 1		Ħ)	3100.720	25 15 150 fe
3-	_///	_														_				:					_			<u> </u>	2896.341	100 IS
3+	_//																			: 14	$\sim \square$				\wedge				2863.951	<10 fs
4-																				- 1	Ŧ				\sim				2810.596	<1015 2 8 pc
2+	-//																			:									2492.319	2.8 ps
3-	7/																			:									2468.278	40 IS
2+									<u> </u>			<u>۸</u>			V.					κŁ_									1959.406	1.04 ps
2-	-/								0											0									1951,197	40 15
1.	_																												1601 112	1.8 ps
1+		<u>v</u>					-	<u> </u>					-	¥		-	++							¥					1601.113	650 fs
1+					++			<u>v</u>					+	¥	_	-	++		-		++		<u> </u>						1164.886	6.4 ps
3+																						,							788 441	
					++											. T	† *				 *									13.8 ps
							- 1																							
							- 1																							
2+				/	V V		v		1	/			V		v		V.		V		V								0.0	$3.01 \times 10^5 v$
		_			_			_				3	6 C	1	_		_				_	_	_	_						J
												1	7 U	19																

Level Scheme (continued)

+																	(8579.70)	
0 4+)																	7	559.17	
3)+																	7	082.70	
o 3)																	6	836.51	
																	6	642.653	
3)-																	6	487.71	
3)-																	6	339.89	
+		0-20	240	× :	· · -												6	184.95	
	0		00070 00070	0,0,0,0,0 0,0,0,0,0 0,0,0,0,0,0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ວ. ອີງອີ-	 	~ ~		-						5	956.686	
)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	00 3 20 V	1 200	8–0. 0. 0.	5 88 8 8	500	21.000 N.000	88. V	ŝ	N. N. N. R.	\$^\$	2-0-	_	<u> </u>	5	563.583	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	34,000	3000	100 S S	2.5.4°.8	<u>~~</u> ~??	20.0.0	\$°.2	0.0.0	8.2.0	00	0.0.0	V.0.0	5.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	à 32	/_5	517.692	
( <u> </u>		<b>FFFF</b>	<del>π</del> .		<u></u>	S.N. 8	6.55	6.6	1.55 S		20		°~-~~	000	000	<u></u>	5	473.70	
·/		$\left  \right $					8.3.4.	3.4.	55.00	3.2.5	3.5	2000	<u> </u>	(V & ) (1	and a contraction of the contrac	<u>à</u>	5	463.498	
3+)							Ħ		ĦĦ	+++	`د <u>' ۽</u>	·v·v· <u>~~</u>	000	200	28			329.15	
											+		F		~~~```~`````````````````````````````	<u></u>	<u></u>	263.01	
////															*	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		246.64	
<u> </u>		$\left  \right $									+						-	150 644	
)////=														±\$			<u>=∭5</u>	079 13	
<u>4+)</u>																	$=$ $    \frac{5}{5}$	018.10	
///			<u>++</u> -;-															997.22	
0 4+) ///												V V					4	829.52	
· ////////////////////////////////////											+			<u></u>	¥.		4	551.43	
)////																	\\\\\4	315.64	
·///					<u>_</u>							<u> </u>					4	061.470	
)///																		031.95	
///	¥_									+++			$\square$					962.929	<20 fs
<u>3+)</u>																	<u>    3</u>	941.27	
/																	<u> </u>	634.977	20 fs
												¥						332.312	73 fs
//	¥										+						$-\frac{12}{2}$	896.341	600 fs
//																		863.951	<10 fs
//			<u> </u>		-	===		-		╞╞	ť		₽₹		-			810.596	2.8 ps
																		519 416	<7 fs
//																	1/2	492 319	1.61 1
/	_ <u>_</u>		ı															468.278	40 fs
//	0																\\ <u>1</u>	959.406	1.04 p
/									,								$\sqrt{1}$	951.197	40 15
		<u>    *</u>				-		-	L		+						$\overline{1}$	601.113	1.0 ps
																	_		050 13
				<u> </u>	·		/			++	+		$\parallel$		-+		1	164.886	6.4 ps
																¥	7	88.441	13.8 r
																			- · - · F
		v						r		_							0	.0	3.01~
											-								J.01×1

### Level Scheme (continued)





## Level Scheme (continued)

1+,2+												(8579.70)	
(0+ to 4+)												7559.17	
0 to 3)+												7082.70	
0- to 3)												6836.51	
												6642.653	
1,2,3)-												6487.71	
1,2,3) - =												= 6339.89 = 6184.95	
1,2)+ =												= 5956.686	
0+ to 4+) =												= 5703.051	
$(+ t_0 3_+) \equiv$												5473.70	
) to 3+)												5329.15	
.,2,3)- <b>=</b>												<b>=</b> 5150.644	
2,3)- <u> </u>												4997.22	
,2)-												4754.36	
_	<u> </u>		<u> </u>									4598.49	
+ to 3+)		 										<b>■</b> 4410.02	
,2)+ =		2000 000 000 000 000 000 000 000 000 00	000000	100- <u>1</u> 0 -		·						4205.64	
+ to 3+)		00 E E O E	きんてんのんち		???&&?? <u>~</u>	) =						3941.27	
(,2,3)		5. 5 6 6 5 5 G	5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90.0.0.0.0 <u>.</u> 0.0.0.0.0		o,=					= 3660.366	
/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$\$\$\$\$\$\$\$\$	8.8.9.9.7.8.9 <u>-</u>	6.00- 3.3.00 0.00- 3.3.00	どどさき み	0.0.0	0.0.0	-0, 0-		<u> 20, 8</u>		3634.977	20 fs
.,2)+				22.20 2.20 2.20 2.20 2.20 2.00 2.00 2.0	580 <u>-</u> 46	EE D	00-00-00 00-00-00 00-00-00	0000	 9.9.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3470.03	40  fs
		¥_		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8- HOH	02.00	8 77	204-00-	0.00	3332.312	<23 13 73 fs
					8,8,5,6	888	N. 2842	****	201	2 2 2 A		3100.720	150 fs
	¥_	¥				∿~∽- ⊤⊤⊤	9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૺ	19.9.9	-88-44	×	2994.687	60 fs
			<u></u> ∕ <b>₹</b>	₩.		111	₩.		≈°∾∿_ □	\$^ 6^ 8		2863.951	600 fs
/	¥	¥		<u> </u>			+++			T.v?v~		2810.596	< 10 18 2 8 ns
+			<b>∔</b> <u>∔</u> †⁄≂				╪╪┿═		$\sim$		,	2676.429	~7 fs
///												2518.416	1.61 ns
+/												2492.319	40 fs
/				↓  ↓			₩1	/	~	V i I		2468.278	1.04 ps
+/										÷		1959.406	40 fs
												1601 112	1.8 ps
т				¥								1001.115	650 fs
+												1164.886	6.4 ps
													··· r-
+	<u> </u>		¥					<u>                                     </u>		¥		788.441	13.8 ps
+	ļ,	, .	, ,	/						v		0.0	2 01-10
				-		-							3.01×10°

## Level Scheme (continued)

1+,2+		(8579.70)	
<u>(0+ to 4+)</u>		7559.17	
_(0 to 3)+		7082.70	
(0- to 3)		6836.51	
1-		6642.653	
(1,2,3)-		6487.71	
(1,2,3)-		6339.89	
_(1,2)+		<u>= 6184.95</u>	
(1,2)+		⁼ 5956.686	
(0+ to 4+)		<u>= 5703.051</u>	
_(0+ to 3+)		≡ _{5473.70}	
(0 to 3+)		5329.15	
(1,2,3)-		$\equiv 5150.644$	
		4997.22	
(1,2)-		_ 4754.36	
2-		<b>≡</b> 4496.70	
0+		4299.70	
(2,3)-		- 4138.976	
(1+ to 3+)		<u> </u>	
3-		= 3599.550	
		40 IS	
<u></u>		<u> </u>	
_(1,2)-		2994.687 60 fs	
4-		= 2810.596	
2		- 2492 319 2.8 µS	
3-		$= \sqrt{2468.278}$ 40 fs	
	28 28 28 28 28 28 28 28 28 28 28 28 28 2	1.04 ps	
2+		1959 406	
2-		$\sqrt{1951.197}$ 40 fs	
		<u> </u>	
_1+		1601.113 650 fs	
		000 15	
1+	¥_        ¥   ¥	<u>1164.886</u> 6.4 ps	
3+		<u>788.441</u> 13.8 ps	
2+		0.0 3.01×10	) ⁵ v
	³⁶ / ₁₇ Cl ₁₉		5

### References of Thermal-Neutron Capture Data for A=26-35

80Is02 M.A.Islam, et al., Can.J.Phys., 58, 168 (1980) T.J.Kennett, et al., Can.J.Phys., 59, 93 (1981) 81Ke02 W.V.Prestwich, Nucl.Sci.Eng., 78, 182 (1981) 81Pr04 P. Hungerford, et al., Nucl. Instr. Methods, 192, 609 (1982) 82Hu02 B. Krusche, et al., Nucl. Phys., A386, 245 (1982) 82Kr12 H.H.Schmidt, et al., Phys.Rev., C25, 2888 (1982) 82Sc14 82Sh27Shi Zongren, et al., Chin. J. Phys., 4, 88 (1982) 83Ra04 S. Raman, et al., Phys. Rev., C27, 1188 (1983) 85Ke08 T. J. Kennett, et al., Z. Phys. A322, 121 (1985) 85Ke11 T.J.Kennett, et al., Phys.Rev., C32, 2148 (1985) S. Raman, et al., Phys. Rev., C32, 18 (1985) 85Ra15 S. Michaelsen, et al., Nucl. Phys., A501, 437 (1989) 89Mi16 X. Zeng, et al., Chin. J. Phys., 11, No. 2, 43 (1989) 89Ze02 90Is02 N.A.Islam, et al., Phys.Rev., C41, 1272 (1990) N.A.Islam, et al., Nucl.Instr.Methods Phys.Res., A287, 460 (1990) 90Is05 S. Raman, et al., Phys. Rev., C46, 972 (1992) 92Ra19 92Wa06 T. A. Walkiewicz, et al., Phys. Rev., C45, 1597 (1992) G. Audi, et al., Nucl. Phys., A595, 409 (1995) 95Au04 C. Coceva, et al., Nucl. Intr. Methods Phys. Res. A378, 511 (1996) 96Co16 R. B. Firestone, et al., Table of Isotopes (8-th edition) (1996) 96FiZY 97Ro26 S. Roffger, et al., IEEE Trans. Instr. & Meas., 46, 560 (1997) 97Ve03 L. Venturin, et al., Appl. Radiat. Isot. 48, 493 (1997)