International Atomic Energy Agency
INDC(CSR)-012/GI INT(87)-2

INTERNATIONAL NUCLEAR DATA COMMITTEE

DATA ACQUISITION AND REDUCTION SYSTEM (DARS)
AT BRATISLAVA - STATUS REPORT NO. 1
M. Morháx, I. Ribansky, I. Turzo
Slovak Academy of Sciences
Electrophysical Research Centre
Institute of Physics, Department of Nuclear Physics
84228 Bratislava, Czechoslovakia

DATA ACQUISITION AND REDUCTION SYSTEM (DARS)
at bratislava - Status report no. 1
M. Morhac, I. Ribansky, I. Turzo Slovak Academy of Sciences
Electrophysical Research Centre
Institute of Physics, Department of Nuclear Physics
84228 Bratislava, Czechoslovakia

Tablo of abbreviations

```
ACB - Auxiliary crate bus
~icC - Auxiliary crate controller
ADC - Analog-to-digital converter
Liv - Black-whjte
DCC - Dedicated crate controller
DuN - Direct menory access
Di|I - Direct memory increment
HisTM - Histogranmjng menory
ICC - Intel:gent crate controller
LISTM - List mode menory
Ni' - Nicroprocessor
riux - Nultiplexer/Router
OUT - Output parallel register
WAl: - Ranciom access memory
RGB - Red-green-blue
PaTt - Pattern module
TVD - TV driver
TkIGG - Fast logic trigger
```

I. General description

DARS is designed for the moasurement of both single and coincidence spectra in nuclear spectroscopy. Single spectra are recorded in DMI mode while the coincidence ones in LIST mode. The measured data are stored on magnetic tape attached to the host computer. The present configuration allows to measure up to six single spectra and their mitual time relations (coincịdences).

DARS is built in CAMiG and occupies two crates. In order to make DARS faster each crate performs its specific function autonomously as they are controlled by their own processors. These two crates are connected by one parallel channel to transfer data measured in LIST mode.
I. 1 Hardware configuration

The block scheme of DaRS is shown in Fig. I.1.-1. The following functions are performed by the two crates:

Crate 1: - display of single and two parametric spectra including the display of slices of many parametric spectra

- preprocessing of LIST data to create required slices
- data manipulation
- data storage on mac. tape of the host computer
- data acquisition (DMI mode)

Crate 2: - data acquisition (LIST mode) and their transfer to Crate 1

I.1.1 Operational description

Detectors' analog signals are processed by the corresponding ADC's. Their words are transferred (on line) via fux to .HISTH in DMI mode (single spectra). In the case of valid coincidence event PATT activates Crate 2 for data acquisjition. Piti and ADC's data are transferred via $D \mathrm{At}$ modulos to tho part of ICC operating momory eorving os a LIGT modo buffor (4 K). Onco the buffer is full the data are transferred to LISTM in Crate 1 via OUT registor. At the same time the transfer of LISTH data to the host computer (TPA-70) is activated and data are
stored on the magnetic tape. Then the LISTM data are processed by ACC to create coincidence spectra and their sliccs for cisplay. These data are stored in the frec portion of HISTli. Any part of HISTM can be transferred to the TPA-70.
I.1.2 Description of modules used

ACC - Auxiliary Crate Controller, model 216C, CES (Creative Electronics Systems). Switzerland
ACC is based on TEXAS TMS $99110 \mu \mathrm{P}$ running at 6 MHz . It contains 16 K (16 bit) two-port memory (EPROM/RAM combinations possible). RS232C interface and programable timer. ACC decodes 23 NAF instructions.

HISTM - Histogramming memory, model 2161, CES
HISTM is specifically designed for ACC model 2160. Its capacity is 64 K (24 bit) and can be devided to 8 regions 8 K (24 bit) each. Three modes are avaliable: histogramming (DMI). multiscaling and list. In DARS part of the HISTM is used for storage of (required) coincidence spectra and slices.

MUX - Multiplexer/Router. model 1001, CES
MUX generates highest significant bits of adresses and routes data from a given ADC to a required region of HISTH. ITV 574 - RGB TV Interface/Driver, Dubna, Soviet Union

TVD module consists of two parts. The first part contains all circuits neaded for the work with RGB display. However its memory is sufficient for BW display only. The second part represent the memory extension needed for RGB display. The resolution is 256×256 pixels. TVD decodes 20 NAF instructions.

DDC - Dedicated Crate Controller. Institute of Physics. Bratislava, CSSR

ODC is a modified TPA-70 CAMAC Crate controller (model CAM 1.03. Hungarian Academy of Sciences. Hungary) fulfilling the function of the minimal crate controller according to the EUK 6500 standard. Thus DCC facilitates connections of crate 1 with TPA-7U while the control of Crate 1 is under ACC.

Diin - Direct Memory Access module, model Citi 1.15-j1, Hungarian acaderiy of Sciences, Hungary
Din module serves for fast data transfer from specificd nodulos of the crate to the operating menory of ICC. It con-
taine 16 word of momory to store the data transfor program. The transfer is controlled by Lari signals. One Dili module can inandle maximum 4 modules and cooperates exclusivoly with ICC, majel Cati 1.15. Tho data transfer with Din is 10 timos fasm ter compared with the use of Wif instructions.

ICC - Intcligent Crate Controller, model Cari 1.15, hunjérian mcadery of Sciences. Huncary
ICC is based on Intel $8080 \mu \mathrm{P}$. It contains 60 Kb Kili/4 Kb Pioul nemory and is connected with double floppy disc driver. ILC can control either one crate or - using Branch Extonder Driver - a CAliac branch (EUR 4G00).
$\therefore D C$ - In DiARS one can use different types of convertors depending on details of the experiment. They have to have two additional features: Each mDC (i) must represent a CAiblic module and (ii) must be equiped with the output connector for MUX.

PATT - Pattern modulo. Institute of Physics. Bratislava CSSR

PATT is a multipurpose module which. starts the data accuisition in Crate 2, generates tho word containing information about which $\dot{\operatorname{HDC}}$ is takinc part in the valid coincidence evont (from TrigGG) and contains timers facilitating proper function of DNi modules.
I. 2 Software

Similarly as the DAlSS hardware also its software consists of three programming units. Each unit controls one of the thrce processors involved (TPA-70. aCC. ICC) in orcier toperform - with the attached hardware - the required functions of DaRG. At the same time, however. each programming unit contains programs facilitating the necessary cooperations between processors once it is required.

In the following the corresponding programming units for ACC (display, manipulation and preprocessing of measured data). TPA-70 (data storage, two-way transfer of data and prograns between TPA-70 and Crate 1) and ICC (data acquisition in LIST mode) will be described.

Display, mianipulation and preprocessing of measured deta is performed by ACC which is controlled by DiVIS (OAta VISuilisation program). Initially, DiVIS is stored on TPA-70 disk in the DiVIS.DAT file.
II. 1 Initialization of DAVIS

Here, the step by step procedure is given to transfer DAVIS from TPȦ-70 to riCC and its initialization:

1) Switch OCC (Crate 1) to "ON LINE"
2) On TPA-70 torminal:
a) call Data Transfer Program DTP (see part III.) by . DTP CR (carriage return)
b) identify the program to be transfered by DAVIS DAT CR
c) identify the direction of the transfer by W CR (write to ACC)
After the transfer is completed DAVIS is autostarted and the basic configuration for oneparametric display is seen on the screen.
II. 2 DAVIS' commands

DAVIS is an interactive program which - after initialization - is in COMMAND mode (it waits commands from the user). From the point of view of the required functions the DAVIS' commands can be devided in two groups:
a) display commands
b) data manipulation commands

The user can entor the display comands (via ACC terminal) without the need to wait for OiVIS response. However this response can last up to several seconds for twoparamotric spectra. On the other hand the data manipulation commands can be entercd only individually i.e. DiVIS accepts the next command only after the preceeding one has been executed.

From the point of view of their structure the DAVIS' commands can be divided in other two groups:
i) parametric
ii) nonparametric

The format of the parametric commancis je:
HC, PAK1, PNR2....PARE CR
where $M C$ is the memonic code (two alphabctic characters) for tho required function and PARi arc numerical paraneters which charactorize this specific function. Some commands of this type are fully charactorized by the mnemonjes and, therefore, no parameters aro required after entering mnemonics. The required function is performed after pressing $C R$.

The format of the nonparanctric commands is:
C ARROWI AKROW2 ARROW CR
wherc C (one alphabetic characte-) indentifies the requirod function and ARROWi its "direction". After pressing arrow (their number is not limitted) the recuired function is immediatcly executed. Function C is cancelled by pressing CR.

For editing commands (parameters) the user can use DEL key. Once an invalid command/parameter is enterd DiVIS responds by printing messaje COMHWD ERROR or PARANETER ERKOR.
II. 3 Organization of the memory space in HISTH

In the present configuration of DARS the HISTM is divided to 6 region (each with $\varepsilon \mathrm{K} / 24 \mathrm{bit}$). One of these region is assigned to each AOC attached to the system. As the ADCs' conversion gain are usually less than 8 K it is advantageous to utilize the unused memory space for e.g. the storage of data created by data manipulation or preprocessing. Therefore DiVIS allows to divide each memory region to $1,2.4$ or 8 groups. Then the specific segment of the HISTM is defined by the number of ADC ${ }^{\text {region and the number of group in that region. After ini- }}$ tialization DHVIS assumes one group for each ADC region.

II. 4 Oneparametric spectra

DiVIG consists of two independent parts:
i) display and manipulation with oneparametric spectra
ii) display, manipulation and construction (from LIST modo data) of twoparametric spectra

After initialization DAVIS is in (i) mode. The modo (ij) is called by $D D$ command (sect.II.5.2.1) and (i) mode is called by $D M, O D, D A$ commands (sect. II.4.2.2). The parameters of the current mode remain unchanged when switching to other modo.

The maximum display capabilities of DAVIS are shown in fig. II.4.-1. Referring to this figure DiVIS allows to display three spectra: Main spectrum - line 1, Overlap spectrum - line 2 and Above spectrum - line 3. Using the window (lines 6 to 9) the user can choose region of interest of displayed spectra (Main, Overlap or both). The expanded window can be displayed in the upper right part of the screen defined by lines 12 and 13 (the spectra 4 and 5 in the expanded view correspond to spectra 1 and 2 in the window). By moving the marker (line 10) one can read the number of counts in a channel and its energy. The marker moves along the spectrum which is identified by the pointer (the sign<at GRM,GRO,GRA parameters - see bellow). This spectrum is called the actual spectrum.

The parameters on the left part of the screen and those bellow and above the displayed spectra contain further informations about those spectra. They have the following meaning:

YSC: Y SCale-it can be either linear or square root.
Format: LINR or SQRT
GRI: GRoup of Main spectrum - the number of ADC region and the number of corresponding group which is displayed as the main spectrum
CRO: GRoup of Overlap spectrum - the number of ADC region and the number of corresponding group which is displayed as the overlap spectrum
GRA: Gioup of Above spectrum - the number of ADC region and the number of corresponding group which is displayed as the above spectrum
kem: Format of the preceeding three parameters is: a-g; a,ge〈1,8〉

DSC: Display Start Channel - the channel number displayed at $x_{1}(=86)$, fig. II.4.-1
OEC: Display End Channel - the channel number displayed at $x_{7}=255$, fig. II.4.-1
Rem: The parameters DSC and DEC are common for all- even not displayod - spectra
DGE: Display Start Energy - the energy corresponding to the channel DSC

DEE: Display End Energy - the energy corresponding to the channel DEC
RSC: Region Start Channel - the channel number corresponding to the left side of the window and displayed at x_{4} (fig. II.4-1)

REC: Region End Channel the channel numbor corresponding to the right side of the window and displayed at x_{5} (fig. II.4.-1)

RSE: Region Start Energy - the energy corresponding to the channel RSC
REE: Region End Energy - the energy corresponding to the channel REC
RTC: Region Total Counts - the sum of channel contents displayed within the window for the actual spectrum

$$
R T C=\sum_{i=R S C}^{R E C} Y(i) ; Y(i)=\text { channel content }
$$

RNC: Region Net Count - RTC corrected for the "linear backgrourd"

$$
R N C=R T C-(Y(R S C)-Y(R E C)) \cdot(R E C-R S C+1) / 2
$$

HCN: flarker ChaNnel - position of the marker displayed at x_{2} (fig.II.4.-1)
MEN: Viarker Eivergy - the energy corresponding to the channol PiCiN
MCT: Marker Counts - the content of liCN channel
HCN: Highest ChaNinel - the maximum channel content of the spectrum
IICE: Highest Channel Energy - the energy corresponding to HCN channel
HCT: Highest Channcl counts - the content of HCN channel
Rem: The parameters DSE, DEE, RSE, REE, RTC, RNC, ITCN,HEN, HCT, HCH, HCE and IICT are valid for the actual spectrum marked by the pointer ($<$) - see fig.II.4.-1
 Format of the parameters DSE, DEE,RSE,REE, $A E$ in and HCE \therefore s F. O
Format of the parameters RTC,RNC, PiCT and HiCT is IE

Parameters displayed above/bellow spectra (iig.II.4.-i):
mifs : Main spectrum Count Full Scale - the channel content of the main spectrum at full scale corresponding to the position at γ_{3} (fig.II.4.-1)
ocfs : Overlap spectrum Count Full Scale - the same as mof but for the overlap spectrum
acfs : Above spectrum Count Full Scale - the same as mefs but for the above spectrum
mblc : Main spectrum Base Line Counts - the minimum channel content of the main spectrum displayed at y_{1} (fig. II.4.-1)
oblc : Overlap spectrum Base Line Counts - the same as mblc but for the overlap spectrum
ablc : Above spectrum Base Line Counts - the minimum channel content of the above spectrum displayed at γ_{2} (fig. II.4.-1)
mrcfs: Main spectrum Region Count Full Scale - the channel content of the main spectrum at full scale in the winciow corresponding to the position at y_{5} (fig.II.4.-1)
orcfs: Overlap spoctrum Rogion Count Full Scale - the same as mrcfs but for the overlap spectrum
mriblc: Main spectrum Rogion Base Line Counts - the minimum channel content of the main spectrum in the window displayed at γ_{4} (fig.II.4.-1)
orblc: Overlap spectrun Region Base Line Counts - the same as mrble but for the overlap spectrum

The relation between parameters of oncparametric spertra and the data stored in HISTH is shown in the uppor pari of fig.IJ. 4.-2.

The organization of the screen for display of parameicrs, spectra and the expanded window is shown in the lower part of that figure.

In the expanded window only the relevant parts of the miin and the overlap spectra are displayed. The parameters RSC and inEC arc, however, the same for all displayod spectra.

DAVIS allows to display "live" spectra i.e. their channel. content is continuously updated during the acquisition. Corresponding parameters (RTC,RNC, $H C T, H C N$ and HCT) are also updated.
II.4.2.1 Command for HISTM division

Number of Groups per ADC area
Format: NG, adict, Groups CR
Parameters: - adc* is the number of ADC region in HISTH (1 to 8)

- \#groups is the number of groups per ADS region adc (allowed values are 1,2,4,8)

II.4.2.2 Display commands

a) Display Main spectrum

Format: DM, adc\#, grl\# CR
Parameters: - adc \ddagger is the number of ADC region in HISTI:

- gr* is the group number in adc\#. (grit \leqslant \#groups for a given ADC region)
Responso: - display the specified memory space as the main spectrum
- update all relovant parameters and the expanded window
b) Display Overlap spectrum

Parameters: have the same meaning as in Dit command
Response: - display the specified momory space in HISTM as the overlap spcctrum
- update all relevant parancters and the expandod window
c) Display Above spectrum

Format: DA, adc\#, grit CR
Parameters: have the samo meaning as in Dil comflanc:
Response: - display the specified mernory space in. HISTFias the nurye s,ycterun

- update all relevant parameters
- generate lines no. 11 and 13 (fig.II.4.-i)
d) Display Window

Format: DW CR
Response: - generate lines no. 12 and 13 (fig.II.4.-i)

- display the exparicied window
e) Erasc Main spectrum

Format: EM CR
Response: - erase the main spectrum and its portion in the expanded window
f) Erase Overlap spectrum

Format: EO CR
Response: - erase the overlap spectrum and its portion in the expanded window
g) Erase Above spectrum

Format: EA CR
Response: - erase the above spectrum

- erase lines no. 11 and 13 if the expanded window is not displayed
h) Erase Window

Format: EW CFi
Response: - erase the expanded window

- erase the line no. 13 if the above spectrum is not displayed

II.4.2.3 DiJatation of axes commands

This group of commands allows to change limits of dioplayed spectra both in the horizontal (number of channels) and ithe vertical (number of counts) directions and the linearity of the vertical (Y) axis. These ?imits are confined between 0 and 2^{24} in the vertical diroction and O and $E L$ (Right Limit $=$ mininun cimension of displayed groups) in the forizontal direction.

Position of the marker (and the window) on the screen is not influenced by commands changing the horizontal limits. However the paraneters RSC,REC and ifin do change and generato changes of otirer related parameters.

To simplify description of comands in this section the following convention is introduced:

The actual spectrun is characterizod by the parameter "a" and

```
a = 3 represents the main spectrum
a = 2 represents the overlap spectrum
a = 1 represents the above spectrum
    The following parameters arereassigned accordingly:
mcfs = cfs(3), molc = blc(3), mrcfs = rcfs(3), mrblc = rolc(3)
ocis = cfs(2), oblc = blc(2), orcfs = rcfs(2), orblc = rblc(2)
acfs = cfs(1), ablc = blc(1)
```

a) Shift DSC and DEC to the right

Format: $S \rightarrow$
Response: - DSC = DSC + 1; DEC = DEC + 1

- update displayed spectra and relevant parameters
b) Shift DSS and DEC to the left

Format: $S \leftarrow$
Response: - DSC = DSC-1; DEC = DEC-1

- update displayed spoctra and relevant paraneters
c) Zoom right

Format: $\mathrm{Z} \rightarrow$
Response: - DEC = DSC + (DEC - DSC). 2

- updato displayed spoctra and relevant parancters
d) Zoom Ieft

Format: $\mathrm{Z} \leftarrow$
Response: - DiCC $=$ DSC $+(D E C-D S C) / 2$

- update displayed spectra and relcvant purameters
e) Zoom up

Format: $\mathrm{Z} \uparrow$
Response: - cfs(a) $=(\operatorname{cfs}(a)-b l c(a)) .2+b l c(a)$

- update the actual spectrum and relevant parameters
f) Zoom down

Format: $\mathrm{Z} \downarrow$
Response: - cff(a) $=(c f s(a)-b l c(a)) / 2+b l c(a)$

- updatc the actual spectrum and relevant parameters
g) Fine zoom right

Format: F \rightarrow
Response: - DEC = DEC + 1

- update displayed spectra and relevant parameters
h) Finc zoom left

Format: $F \leftarrow$
Response: - DEC = DEC - 1

- update displayed spectra and relevant parameters
i) Fine zoon up

Format: $\mathrm{F} \uparrow$
Response: - cfs(a) $=\operatorname{cfs}(a)+1$

- update the actual spectrum anci rolevant parameters
j) Fine zoom down

Format: F \downarrow
Response: - cfis(a) = cfis(a) - 1

- update the actual spectrum and relevant parameters
k) Tune at biggest

Format: $T \uparrow$
Respons: $-\operatorname{cfs}(a)=\max \{Y(i)\}, i \in\langle D S C, D E C\rangle$

- update the actual spectrum and relevant parameters

1) Tune at smallest

Format: $T \downarrow$
Response: - blc $(a)=\min \{Y(i)\} ; i \in\langle D S C, D E C\rangle$

- update the actual spectrum and relevant parameters
m) Cut at biggest

Format: C个
Response: $-\operatorname{cfs}(a)=\max \{Y(i)\} ; i \in\langle$ RSC, REC \rangle

- update the actual spectrum and relevant parameters
n) Cut at smailest

Format: $C \downarrow$
Response: - blc(a) $=\min \{Y(i)\} ; i \in\langle R S C, R E C\rangle$

- update the actual spectrum and relevant parameters
o) Bascline shift up

Format: B个
Response: - blc(a) = blc(a) + 1

- update the actual spectrum and relevant parameters
p) Baseline sinift down

Format: E \downarrow
Response: - blc(a) = blc(a) - 1

- update the actual spectrum and relevant parameters
q) Home right

Format: $H \rightarrow$
Response: - DEC = RL

- update displayed spectra and relcvant parameters
r) Home left

Format: $\mathrm{H} \leftarrow$
Response: - DSC $=0$

- Update displayed spectra and relevant parameters
s) Home up

Format: HT
Response: - $\operatorname{cfs}(a)=2^{24}-1$

- update the actual spoctrum and relevant parameters
t) Home down

Format: $H \downarrow$
Response: - blc(a) $=0$

- update the actual spectrum and relevant parameters
u) Set linear Y scale

Format: $\mathrm{Y} \uparrow$
Response: - set Y scale to linear

- update displayed spectra and relevant parameters
v) Set square root Y scale

Format: $Y \downarrow$

Response: - set Y scale to square root

- update displayed spectra and relevant parameters
a) Hove marker to the right

Format: $\mathrm{H} \rightarrow$
Response: - $\mathrm{HCN}=\mathrm{MCN}+1$

- update relovant parameters
b) Hiove marker to the left

Format: $\mathrm{M} \leftarrow$
Response: - MCN = MCN - 1

- update relevant parameters
II.4.2.5 Window commands
a) Upper line of window up

Format: U个
Response: - rcis(a) $=$ rcfs(a) +1

- shift the line no. E up (fig.II.4.-1)
- update the actual spectrum in the expanded window and relevant parameters
b) Upper line of window down

Format: $U \downarrow$
Response: - rcfo(a) $=\operatorname{rcfs}(a)-1$

- shift the line no. 6 down
- update the actual spectrum in the expanded window and relevant parameters
c) Ground line of window up

Format: G \uparrow
Responsc: - rbic(a) = rbjc(a) + 1

- shift the line no. G up
- update the actual spectrum in the expancied window and relevant parameters
d) Ground line of window down

Format: $\subset \downarrow$
Response: - rblc(a) = rblc(a) - 1

- shift the line no. 6 down
- update the actual spectrum in the expanded window and relevant parameters
e) Right line of window to the right

Format: $R \rightarrow$
Response: - REC = REC + 1

- shift the line no. 7 to the right
- update spectra in the expanded window and relevant parameters
f) Right line of window to the left

Format: $R<$
Response: - REC = REC - 1

- shift the line no. 7 to the left
- update spectra in the expandied window and relevant parameters
g) Left line of window to the right

Format: $L \rightarrow$
Response: - RSC $=$ RSC +1

- shift the line no. 9 to the right
- update spectra in the expanded window and relevant parameters
h) Left line of window to the left

Format: L \leftarrow
Response: - RSC - RSC - 1

- shift the line no. 5 to the left
- update spectra in the expanded window and rolovant parameters
i) Window up

Format: $\boldsymbol{W} \uparrow$
Response: - $\operatorname{rcfs}(a)=\operatorname{rcfs}(a)+1 ; \operatorname{rblc}(a)=r b l c(a)+1$

- shift lines no. 6 and 6 (fig. TI.4.-1)up
- update spectra in the expanded window and relevant parameters
j) Window down

Format: $W \downarrow$
Response: - rcfs(a)=rcfs(a)-1; rblc(a)=rblc(a)-1

- shift lines no. 6 and 8 down
- update spectra in the expanded window and relevant parameters
k) Window to the right

Format: $W \rightarrow$
Response: - RSC=RSC+1; REC=REC+1

- shift lines no. 7 and 9 to the right
- update spectra in the expanded window and relevant paremoters

1) Window to the left

Format: W<
Response: - RSC=RSC-1; REC=REC-1

- shift linos no. 7 and 9 to the loft
- update spectra in the expanded window and relevant parameters
II.4.2.6 Commands for change of actual spectrum

The actual spectrum is marked by the pointer (the symbol<) at the parameters GRM,GRO,GRA (fig.II.4.-1)
a) Shift pointer of actuol spectrum up

Format: $\mathrm{S} \uparrow$
Response: - shifit pointer to the line above

- put the marker on the now actual spectrum
- update relevant paranctors
b) Shift pointer of actual spectrum down

Format: S \downarrow
Response: - shift the pointer to the line below

- put the marker on the new actual specirua
- update relevant parameters
Ii.4.3 Data manipulation commands

This group of conmancis allows to manipulate with all-not only displayed-data. The parameters DSC and DEC are the same for all groups defined in HISTH.
a) liowe spectrum

Parameters: - adelis, number of the ADC rogion in HISTHi serving as the source of data to be manipulated with

- grits, number of the isource) group of the specified adchs
- ads\#d, number of the (destination) ADC region in HIST: to which the result of the manipulation will be transferod
- gryd, number of the (destination) (jroup of the specifjed adclad

Rem.: The parameters grłs, gr\#d have to be less than \#groups defined for corresponding äDC regions s and d resp.
Response: transfer spoctrum from the group s to the group d within the limits from DSC to DEC
b) $\dot{A} D \mathrm{~d}$ two spectra

Format:AD,adc\#s,gr\#s,acic\#d.grinci CR
Parameters: have the same moaning as in $H O$ command
Response: add two spectra in groups s and d and
store tho result in the group d :
$Y_{d}(i)=Y_{s}(i)+Y_{d}(i) ; i \epsilon<D S C, D E C>$
c) SUbstract two spectra

Format: SU, adchs.grhs,adchd.grhd CR
Parameters: have the same meaning as in 110 comanci
Response: substract the spectrum in the group s fron that in the group d and store the result in the group d:
$\left.Y_{d}(i)=Y_{d}(i)-Y_{s}(i) ; i \epsilon<D S C, D E C\right\rangle$
d) fitiltiply two spectra

Parameters: have the same meaning as in 110 command
Response: multiply the spectrum in the group d by the spectrum in the group s and store the result in the group d:
$\gamma_{d}(i)=Y_{d}(i) . Y_{s}(i) ; i \in\langle D S C, D E C\rangle$
e) DIvide two spectra

Format: DI,adcAs.griss,odchd.grad $C R$
Parameters: have the same meaning as in liO command
Response: divide the spectrum in the group d by the spoctrum in the group s and store the resul.ts in the group d: $Y_{d}(i)=Y_{d}(i) / Y_{s}(j) ; i \in\langle D S C, D E C\rangle$
if $Y_{s}(i)=0$ than $Y_{d}(i)=2^{24}-1$
f) compute FRaction spectrum

Paraneters: - fpn, decimal number $(>0$ or <0) multiplying the data in the group s

- other parameters have the same meaning as in MO commanci

Response: substract the spectrum in the group sultiplied by fpn from the spectrum in the group
d and store the result in the group d:
$\gamma_{d}(i)=Y_{d}(i)-f p n . \gamma_{s}(i) ; i \in\langle D S C, D E C\rangle$
Rem.: the spectrum in the group s remains unchanged
g) NOrmalize spectrum

Format: NO, fpnm,fpnk, adi\#,gr\# CR
Parameters: - fpan, fipak are decimal numbors (multiplier and constant, both<0 or >0)

- adcili, number of ADC region in HISTii
- grll, number of the group of the spocificd $\therefore D C$ rogion
Kesponse: normalize the specified spectrum as: $Y(i)=f$ pnin. $Y(i)+f$ pnk; $i \in\langle D S C, D E C\rangle$
h) Silooth spoctrum

Format: SM,ints,adct,gr\# CR
Parameters: - ints defines the degree of smoothing; ints 3 or 5

- other parameters have the same meaning as in NO command
Response: perform 3 or 5 point smoothing of the specified spectrum in the interval <DSC. DEC > and store the result in the original group
i) SQuare root of spectrun

Format: SQ.adc\#.gr\# CR
Parameters: have the same meaning as in NO command
Response: compute the square root of each channel of the specified group and store the result in that group:
$Y(i)=\sqrt{Y(i)} ; i \epsilon\langle D S C, D E C\rangle$
j) CLear spectrum

Format: CLsadc\#.gr\# CR
Parameters: have the same meaning as in No command
Response: $Y(i)=0 ; i \in\langle D S C, D E C\rangle$
k) InteGrate spectrum

Forinat: IGsadc\#,gr\# CR
Parameters: have the same meaning as in NO command
Response: integrate the specified spectrum and store the result in the original group:

$$
Y(i)=\sum_{k=D S C}^{1} r(k): i \epsilon\langle D S C, D E C\rangle
$$

J) Difforentiate spectrum

Format: DF, adchegrt CR
Parameters: havo the samo weaning as in wo command Responso: rewrite the specified group as

$$
Y(i)=Y(i)-Y(i-1) ; i \in \cdot\langle D S C, D E C\rangle
$$

m) Energy calibration

This comiand consists of two parts and refers to the actual spectrum:

1) number of points for Energy Calibration

Format: EC, upoints CR
Parameters: \# points (integer, $\geqslant 3$) defines the number of points to be used for the energy calj.bration
Response: define the number of input points for the second part of the command
2) input of valucs Channel-Enorgy pairs

Format: CE, channel, encroy $C R$
Parameters: channel, energy - integer, decimal numbers assigning the energy to the specific channel.
Response: - input \# points data pairs channcl,energy

- fit the data by the second order polynomial
Energy=ri.channel. ${ }^{2}+$ ©. channel $+C$ using the least square method
- update energy dopendent paraneters
- print the massage CALIERATIOiN REMDí on the aCC terminal
Rem.: DiVIS allows to caliorate all displayed spectra independently. Default values of calibration constarits are $\therefore=0, B=1, C=0$.
n) SearCh for peaks in spectra

Format: SC,m,r,b,adch.gr\# CR
Parameters: - m, integer $\in\langle 1,3\rangle$, defines the weighting fullction w

- r. decimal number used in tho function C defining the existence of a peak:

$$
c(k)=\sum_{i=-1 / 2}^{1 / 2} w(i)[y(k+i)-\{i(k)+r \cdot \sqrt{i(k)}\}]
$$

where $l=3 \mathrm{~m}$ and $\dot{A}(k)$ is given as
$A(k)=\frac{1}{1} \sum_{i=k-1 / 2}^{k+1 / 2} r(i)$
The criterion for the cxistence of a reok are at loast thrce succeerijing positive values of $C(k)$. Tho position of a peak is calculatod as

where p is an estimate of the peak position obtained from the behaviour of $C(k)$

- b, decimal number used to calculate the net peak area (see fig.II.4.-4)
- other parameters have the sane moaning as in NO command
Response: - search for peaks in a given spectrum between channel DSC and DEC
- calculate parameters of the identified peaks (position, energy, total and net area) and print the results on the ACC terminal
o) Herd Copy

Forlizat: HC CR
Response: - copies the picture from TV screen to graphie line printer.
kem.: Can be used also for twoparametric spectra.

II.5. Twoparametric spectra

II.5.1 Display configuration

DiVIS displays the specific memory region of HISTM definod by parameters shown in fig. II.5.-1 (they are described bollow). The basic display configuration of twoparametric spectra is shown in fig II.5.-2. The spectrum is displayed with the holp of a grid which - approximately - follows its shape. Density of
the grid is specified by the parameter DTP (density of points) dofining the number of nodes i.l the grid in both (X and Y) directions. DTP is the same for both directions. The larger is DTP the better is the spectrum shape reproduced.

Using the window tire user can define region of interest. Tine movable marker provides further information about tho spectrum in a similar way as in the case of oneparametric spectra. An example is shown in fig. II.5.-3. DiVIS allows to display various slices.

The user can look on the displayed spectrum at various angels α, β (see fig. II.5.-1). If $\alpha+\beta=90^{\circ}$ the spectrun is displayed with the help of "equipotentials" (the look from above, in the diroction $-Z$) - see fig. II.5.-4.

Along the Z direction the data are divided into count regions. Their number is defined by DTC parameter. Only those points of count regions are displayed which are inside the displayed counts in region defined by the parameter WCR - see fjg. II.5.-4 for details.

Description of displayed parameters (fig. II.5.-2):
Cij - Count Full Scale
: C - Base Line Counts
Fijx - Display Start channel for X axis
DXX - Display End channel for X axis
O": - Display Start channel for Y axis
DEY - Display End channel for Y axis
S5x - Region Start channel for X axis; the first channel in the winciow in X direction
EER - Region End channel for X axis; the last channel in the window in X direction
Noy - Region Start channel for Y axis
KEY - Region End channel for Y axis
i.TC - Region Total Counts. RTC is evoluated as follows:

First, DuVIS sums up the contents of channels $Z(X, Y)$ defined by X, Y coordinates

$$
s=\sum Z(X, Y)
$$

where

$$
X=\frac{D E X-D S X}{D T P} i+D S K ; Y=\frac{D E Y-D S Y}{D T P} j+D S Y
$$

for $i, j \in\langle O, D T P)$. In the same time $\ddot{x} \in\langle R S X, R E X\rangle$ and $Y \in\langle R S Y, R E Y\rangle$. Then RTC is ovaluated as

$$
\text { RTC }=a \cdot b \cdot s
$$

where

$$
a=\frac{D E X-D S X}{D T P} ; \quad b=\frac{D E Y-D S Y}{D T P}
$$

The situation is depicted in fig. II.5.-5. RTC is evaluated excatly only if $D T P=D E X-D S K=D E Y-D S Y$.

FiNC - Region Net Counts. The sum of channel contents of tho region defined by the window corrected for the linear background:
RNC=RTC-(REX-RSK $)($ REY-RSY $)\{Z(R S X, R S Y)+Z(R S X, R E Y)+$ $+Z($ REX, NSY $)+Z(R E X, R E Y)\} / 4$
HCX - liarker Channel X axis coordinato
NCY - Harker Chomnel Y axis coordinate
MCT - Marker Counts. Content of the channel defined by 1 ACK and HC courdinates
Rem.: liarkor is displayed only if the window is displayed.
$H C X$ - Highest Channel X. X coordinato of a channel with tho highest channel content
HCY - Highest Channcl Y. Y coordinate of a channel with the highest channel contont.
Roll.: Paramotors llCX, fliC' are searchod for only at nodes of tho grid, i.o. for $x=\frac{D E X-D S K}{D T P}$ i. DSX; $Y=\frac{D E Y-D S Y}{D T P} j+D S Y$
where i,je <0, OTP)
:HCT - Highest Counts. Cinannel content $2(: C X, H C Y)$ Rem.: Parameters RTC,RNC, HCT,HCX, HCY, HCT are updated only if DiV command was entered
DTP - Density of Points. The number of nodos in the grid for display.
OTC - Density of Count regions. The number of regions between BLG and CFS - fig. II.5.-4.

WR - Width of displayed Counts in Region - seefig. II.5.-4. Rem.: Parameters DTC, WCR are defined only for display with the help of cquipotcntials.
A - Angles, Gurrent values of anglec of rotation α, β, T. $\alpha, \beta \in\left\langle 0^{\circ}, 90^{\circ}\right\rangle, \mathrm{T} \epsilon\left\langle 0^{\circ}, 350^{\circ}\right\rangle$ i step 10° - fig. II.5.-1. Format: $\dot{A}_{\boldsymbol{L}} \times x_{\boldsymbol{L}} \times \times_{\boldsymbol{\omega}} \times \times \times$.
II.5.2 Graphics

DAVIS allows to display twoparametric spectra which are either constructed during aquisition from the LIST - mode data or are transfered to HISTM from TPA-70.

In the following description of commands it is implicitely understcoci that after execution of a collmand the spectra and tine relevant parameters are updated whenever nocessary.
II.3.2.1 Display commands
a) Display Double parameter spectrum

Format: DD.adcif,gr\#.dx, dy CR
Parameters: - adc\#, the number of ADC rogion in iIIOTii

- gr\#, the number of the grour in the specified ADC. region (griftyroups for a given ADC region)
- dx, dimension (number of channels) of the displayed region along X axis
- dy, dimongion of tho displayod rogion along Y axis.
Rem.: Farmeturs adoHegh ciefine the starting monory Jocation in HIETH (the first chanmel in the group grif) at which the twoparametric spectrum starts. J.t ius assuned that all higicer location (up to 04 i) in HISTR are avaliable for the twoparametric spectruin. The product dx.dy must not exceed this avaliable area.
Response: initialize DiVIS' routino for a twoparamotric display
b) Display Window

Format : Diw CR
Response: - display window and marker (see figs. II.5.-3 and II.5.-6) HCT, HCX, HEY, HCT
c) Erase Vinnciow

Format: EW CR
Response: erase window and marker
d) Display slice for given X

Format: $D \times C R$
Response: display slice $X=\operatorname{iiCX}$ (see fig. II.5.-7 for DTP=1)
c) Display suice given γ

Format: DY CR
 for DTF=0)

Fen.: To display only the required siice tine user sinoija cefine DTP=1 (see bellow) • ioving the marker tine slice is updated correspondingly.
f) Erase silice for given X

Format: EX CR
ỉesponse: erasc the slicu define by $D \lambda^{\circ}$ command
g) Lrose slice for given Y

Format : EY CF
Riosponse: erase the slice dofined by Dr command
h) Span region

Format: SP CR
Response: display only the region dofined by the winciow (see fig. II.5.-9)
II.5.2.2 Commands for dilatation of axes

The motions - to the right, to the left, up and down -

- used in this section coincide with the movement of the figure on the screen only for $T=0^{\circ}$ (i.e. if no rotation around Z axis was introduced).
a) Shift spectrum to the right

Format: $S \rightarrow$
Response: $D S X=D S X+1 ; D E X=D E X+1$
b) Shift spectrum to the left

Format: $S \leftarrow$
Response: $D S X=D S X-1, D E X=D E X-1$
c) Shift spectrum up

Format: $\mathrm{S} \uparrow$
Response: $D S Y=D S Y+1$; $D E Y=D E Y+1$
d) Shift spectrum down

Format: $\mathrm{s} \downarrow$
Response: $D S Y=D S Y-1 ; D E Y=D E Y-1$
e) Zoom right

Format: $Z \rightarrow$
Response: DEX=DSX + (DEX-DSX). 2
f) Zoom left

Format: $z \leftarrow$
Response: $D E X=D S X+(D E X-D S X) / 2$
g) Zoom up

Format: $\mathrm{Z} \uparrow$
Response: $D E Y=D S Y+(D E Y \sim D S Y) .2$
h) Zoom down

Format: $Z \downarrow$
Response: $D E Y=D S Y+(D E Y-D S Y) / 2$

1) Fino zooming right

Format: $F \rightarrow$
Response: DEX=DEX +1
j) Fine zooming left

Format: F \leftarrow
Response: $D E X=D E X+1$
k) Fine zooming up

Format: F \uparrow
Response: $D E Y=D E Y+1$
l) Fine zooming down

Format: F \downarrow
Response: DEY-DEY-1
m) Tune up

Format: $T \uparrow$
Response: CFS=max $\{Z(i, j)\} \quad$ for $i \in\langle D S X, D E X\rangle$. $j \in\langle D S Y, D E Y\rangle$
n) Tune down

Format: $T \downarrow$
Response: $B L C=m i n\{Z(i, j)\}$ for $i \in\langle D S X, D E X\rangle$. $j \in\langle D S Y, D E Y\rangle$
o) Cut up

Format: c \uparrow
Response: CFS=max $\{Z(k, 1)\}$ for $k \in\langle i S X, R E X\rangle$. $l \in\langle R S Y, R E Y\rangle$
p) Cut down

Format: $C \downarrow$
Response: $B L C=m i n ~\{Z(k, 1)\}$ for $k \in\langle K S X, R E X\rangle$. $l \in\langle\cup S Y$, REF \rangle
q) Baseline up

Format: B \uparrow
Response: BLC=BLC+1
r) Baseline down

Format: B \downarrow
Response: BLCeBLC-1
s) expand count full scale up

Format: $\mathrm{X} \uparrow$
Response: CFS=GLC+(CFS-BLC). 2
t) expand count full scale down

Format: $x \downarrow$
Response: CFS=BLC+(CFS-BLC)/2
u) change count full scale by One up

Format: $0 \uparrow$
Response: C CFSaCFS+1
v) change count full scale by One down
Format: $0 \downarrow$
Response: CFS=CFS-1
w) Home right

Format: $H \rightarrow$
Response: $D E X=\mathrm{dx}$
x) Home left

Format: $\mathrm{H} \leftarrow$
Response: $D S X=\varnothing$
y) Home up

Format: H个
Response: DEY=dy
2) Home down

Format: H \downarrow
Response: DSY $=\varnothing$
II.5.2.3 Marker commands

Rem.: Marker commands are operational even if the window is not displayed and, therefore, the marker. All parameters connected with the marker are updated as usual.
a) Marker to the right

Format: $M \rightarrow$
Response: MCX=MCX+1
b) Marker to the left

Format: $M \leftarrow$
Response: MCX=MCX-1
c) Marker up

Format: $\mathrm{M} \uparrow$
Response: $\mathrm{MCY}=\mathrm{MCY}+1$
d) Marker down

Format: M \downarrow
Response: MCY=MCY-1
II.5.2.4 Window commands

Rem.: Window commands are operational even if the window is not displayed. All parameters connected with the window are updated as usual.
a) Window to the right

Format: $W \rightarrow$
Response: RSX=RSX+1; REX=REX+1
b) Window to the left

Format: $W \leftarrow$
Response: RSX=RSX-1; REX=REX-1
c) Window up

Format: $W \uparrow$
Response: RSY=RSY+1; REY=REY+1
d) Window down

Format: $W \downarrow$
Response: RSY=RSY-1; REY=REY-1
e) Right line of window to the right

Format: $R \rightarrow$
Response: REX=REX+1
f) Right line of window to the left

Format: $R \leftarrow$
Response: REX=REX-1
g) Left line of window to the right

Format: $L \longrightarrow$
Response: RSX=RSX+1
h) Left line window to the left

Format: L \longleftarrow
Response: RSX=RSX-1
i) Upper line of window up

Format: U \uparrow
Response: REY=REY+1
j) Upper line of window down

Format: $u \downarrow$
Response: REY=REY-1
k) Ground line of window up

Format: $G \uparrow$
Response: RSY=RSY +1

1) Ground line of window down

Format: G \downarrow
Response: RSYeRSY-1
II.5.2.5 Commands for rotations

This groups of commands serve to change the user's angle of view (angles $\alpha, \beta \in\left\langle 0^{\circ}, 90^{\circ}\right\rangle$) at twoparametric spectrum and to rotate it around Z axis (angle $T \in\left\langle 0^{\circ}, 350^{\circ}\right\rangle$). All engles can be changed in 10 degrees steps.

The sense of errows which are used in these commands is derived from the apparent movement of the point A (fig. II.5-1):
$\rightarrow(\leftarrow)$: the picture on the screen rotates as if the point A would move to the right (to the left)
$\uparrow(\downarrow)$: the picture rotates as if the point A would move up (down)
a) increase α, decrease β Angles

Format: $A \rightarrow$
Response: - if $\beta=0^{\circ}$ the command is ineffective
$-\alpha=\alpha+10^{\circ} ; \beta=\beta-10^{\circ}$
(compare figs. II.5.-2 and II.5.-10)
b) decrease α, increase β Angles

Format: A \leftarrow
Response: - if $\alpha=0^{\circ}$ the command is ineffective
$-\alpha=\alpha-10^{\circ} ; \beta=\beta+10^{\circ}$
c) decrease α, decrease β Anglos

Format: $A \uparrow$
Response: $\alpha=\max \left\{\alpha-10^{\circ}, 0^{\circ}\right\} ; \beta=\max \left\{\beta-10^{\circ}, 0^{\circ}\right\}$ (compare figs. II.5.-2 and II.5.-11)
d) increase α, increase β Angles

Format: A \downarrow
Response: - if $\alpha+\beta=90^{\circ}$ the command is ineffective

- if $\alpha+\beta=80^{\circ}$ then $\alpha=\alpha+10^{\circ}$; $\beta=\beta$
$-\alpha=\alpha+10^{\circ} ; \beta=\beta+10^{\circ}$
e) turn View counter-clockwise

Format: $V \rightarrow$
Response: - $T=T+10^{\circ}$

- the picture rotates around Z axis passing through the point (DEX-DSX)/2, (DEY-DSY)/2 counter-clock-wise (fig. II.5.-12)
f) turn View clockwise

Format: $V \leftarrow$
Response: - T=T-10 ${ }^{\circ}$

- the picture rotates around Z axis passing through the point (DEX-DSX)/2, (DEY-DSY)/2 clockwise
II.5.2.6 Commands for density of display
a) multiply number, of Nodes in grid by 2

Format: $N \uparrow$
Response: DTP=DTP. 2
b) divide number of Nodes in grid by 2

Format: $N \downarrow$
Response: $\operatorname{DTP}=[\mathrm{DTP} / 2]$; [...] represents the integer part
c) increment number of Nodes in grid

Format: $N \rightarrow$
Response: DTP=DTP+1
d) decrement number of $N_{o} d e s$ in grid

Format: $N \leftarrow$
Response: DTP=DTP-1
Rem.: Using N commands the parameter DTP vary betveen 1 and $\min \{d x, d y\}$. Examples for $D T P=1$ and $D T P=64$ are given in figs. II.5.-7 and II.5.-13 resp.
e) multiply density of count regions (OTC) by 2

Format: $\mathrm{P} \uparrow$
Response: DTC=DTC. 2
f) divide DTC by 2

Format: $P \downarrow$
Response: $D T C=[D T C / 2]$: [...] represents the integer part
g) multiply width of displayed counts region (WCR) by 2 Format: $P \rightarrow$

Response: WCR=WCR. 2
h) divide WCR by 2

Format: $P \leftarrow$
Response: WCR= [WCR/2]; [...] represents the intoger part
i) increment DTC

Format: $Q \uparrow$
Response: DTC=DTC+1
j) decrement DTC

Format: $Q \downarrow$
Response: DTC=DTC-1
k) increment VCR

Format: $Q \rightarrow$
Response: WCR=WCR+1

1) decrement $V / C R$

Format: $Q<$
Response: $W C R=W C R-1$
Rem.: The effect of commands P and Q is visible only if $\alpha+\beta=90^{\circ}$ i.e. for display with the help of "equipotentials".

Equipotential display of pyramide for different values of DTP and WCR are shown in figs. II.5.-14 and II.5.-15 III. TPA-70/Crate 1 communication

The following two programs (OTP and $H \| W W$) were designed for twoway transfer of data between TPA-70 and ACC 2160 (DTP) and HISTM (HMRW). These programs are not a part of DARS data acquisition software and in this sense the user can use them only "offaline".

III.1. Data Transfer Program DTP

DTP serves for communication between ACC 2160 and TPA-70. Tho purpose is the two-way transfer of data/programs stored in ACC memory or on a disk file in TPA-70.

In the following the step by step procedure for initialization and use of DTP is described:

1) Switch DCC to "on line"
2) Using TPA-70 terminal call DTP typing .DTP CR
3) Specify file name (FILNAME) and extension (EXT) from (to) which data/program will be transfered typing FILNAMEXT CR

Rem.: It is implicitly assumed that the specified file is on TPA-70 DK1 disk (exchangable) and in USRLIB
4) Specify the direction of transfer typing
$R \quad C R$ (read data/program fron ACC to TPA-70) or W CR (write data/program from TPA-70 to ACC)
5) Once the transfer is completed switch DCC to "of linc" or call DTP again
III. 2 Histogramming Memory Read/Write program fMRW

HMRW serves for communication between TPA-70 and HISTM. The purpose is the two-way transfer of the block of data stored
in HISTM or on a disk file in TPA－70．The length of a block equals to the number of channels of a group in a specific ADC region in HISTM as defined by the appropriate command of DAVIS．

In the following the step by step procedure for use of HMRW is describod：

1）Using TPA－70 terminal call HURW typing －HMRW CR
2）After loading HMRW prints the message：
IS DCC ON LINE（Y）？
The user should switch DCC of Crate 1 to＂on lino＂and type
$Y \quad C R$
3）Then HMRW asks for the specific ADC region in HISTH（ adch） and prints：
$\operatorname{ADC}(1,2,3,4, \ldots, 8) ?$
The user should define this region typing adc\＃CR（adc\＃E〈1，8＞）
4）Then HMRW wants to specify the number of the group（gr\＃） of that region and prints
GROUP（1－8）？
The user should specify that group typing
gri月 CR
（gr\＃$\underset{\text {（ }}{ }$（ groups per given adc甘）
5）HMRW then prints the message
READ FROM HIM OR WRITE TO HM（R，W）？
The user should specify direction of the transfer typing R（or W ）CR
6）HUlRW then prints
FILE NAME（DK1：FILNAM．EXT）？
The user should specify the file namo（FILNAM），its ex－ tension（EXT）and the library name（LIBNHIV）on DK1 disk of TPA－70（exchangable disk）from（to）which tho data will be transferred typing
DK1：FILNAM．EXT［LIBiVAM］CR
7）After completing the required transfer HMRW prints the message

CONTINUE WITH ANOTHER TRANSFER OR END（C，E）P
The user might continue the transfer typing
C．CR

```
and HMRW starts communication from point 3) or
E CR
Now HMRW reacts by printing
IS DCC OFF LINE (Y)?
Tho user should switch DCC to "of line" and type
Y Ci:
and the transfer is finished
Warning: Should DCC be "on line" when the user types
Y CR (in the step 8)
the ACC memory and HISTM will be cleared!
```


Fig. I. 1.-1

SPECTRA IN HISTOGRAMING MEMORY

SCREEN

Fig. II. 4.-2

Fig. II.4.-3

Fig. II.4.-4

SPECTRUM SPACE

Fig: II. 5. -1

Fig. II.5.-2

Fig. II.5.-3

Fig. II. 5.-4

Fig. II. 5.-5

FES	.
	: - - - . - - - . - . - - - . - - - - -
ME\% M	$\begin{array}{ccccc}\vdots & \vdots & \vdots & \vdots & \\ \vdots & \vdots & \vdots & & \\ \vdots\end{array}$
ITF 32	E....-... --.. --.. .-. --.......
$\begin{array}{lll} \text { WTE } & & 8 \\ A & 0 & 00 \\ \hline \end{array}$!. -

Fig. II.5.-6

Fig. II.5.-7

Fig. II.5.-8

Fig. II.5.-9

Fig. II.5.-10

Fig. II.5.-11

Fig. II.5.-12

Fig. II.5.-13

EE $\quad 14$	
We\%	
FOX 37	
E5\% 6	
Qer mil	
M\&\% 37	
Met IS	
486	
Het 3n	
DTF 64	

Fig. II.5.-14

Fig. II.5.-15

