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Abstract 

A computer code based on the semimicroscopical combined method of 
deformed nuclei level density calculation is described. It includes 
the use of combinatorial and statistical approaches for low and high 
energies correspondingly, both calculations are fulfilled in the 
frames of superfluid model. The employed models, the proceeding of the 
code, the required input data and the output are discussed. 

I-Introduction 

Actually for level densities calculation bouth fenomenological and 

semi-microscopical models are being used. The most of phenomenological 

models have foundation in Fermi-gas model which has been proposed by 

Bethe [1]. The phenomenological approach has been developed in several 

works (see for example [2-4]) taking into consideration the shell, 

pairing and collective effects. To take into account these effects, a 

great amount of experimental information about level densities in a 

broad energy interval is needed. Therefore, the applications of phe

nomenological formulae for the deformed states in fission or for 

nuclei far from nuclear stability line are under questions. 

The disadvantages of phenomenological models led to the development 

of semi-microscopical models for level density calculation. The 

quantum-statistical model for nuclear level density calculations has 

been investigated by many authors [5-9] taking into account shell and 

pairing effects in the framework of the nuclei superfluid model (BSC 

model). But the quantum statistical superfluid approach does not give 
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the appropriate description of level density at low energy where, 

the discrete structure of spectrum has to be considered. At low exci

tation energy the combinatorial method in the frame of quasiparticle-

phonon model [10] is more preferable. But for practical calculations 

this model can not be used because it needs a large computer time. In 

works [11,12] a combined model of the deformed nuclei level density 

calculations is proposed. It includes the use of combinatorial and 

statistical approaches for the low and high energy respectively. Both 

consideration are fulfilled in the framework of superfluid model, 

using realistic single-particle spectrum and phenomenological rotation 

enhancement of deformed nuclei level densities. In this work we pro

pose a computer code for the deformed nuclei level density 

calculations in the frames of combined model [11,12]. This computer 

code is useful for nuclear reaction cross section calculations and 

fission characteristic calculations. 

II.Calculationmodel 

The energy range in which the level densities are being considered 

is divided in two intervals: one is from zero to some value of 

nucleus excitation energy U and the second is the interval from U to 
d d 

the final value U . In the first interval, level density is calculated 

in the frame of combinatorial method and in the second energy interval 

calculations are made in the frame of quantum-statistical method. In 

both cases the same parameters (single-particle spectra and pairing 

strength constants) are used. 

II.1 Combinatorialmodel 

We use superfluid BSC model taking into account blocking 

single-particle levels occupied by quasiparticles. The fact 

that single-particle states must occupy the numbers n-0,1,2 is 

proposed. For deformed nucleus each single-particle level is described 

by energy e .projection of single-particle angular momentum to the 

nuclear symmetry axis î  and parity ir . In the case of violation 

of reflection symmetry of the nucleus shape the single-particle 
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states have not definite parity. The following consideration is also 

applied for spherical nuclei , then the single-particle states are 

characterized by quantum numbers j n ir. 

BSC equations for single-component system of N particles with the 

fixed number of quasiparticles in the definite single-particle 

states are the following: 

N - Ns- V = 2 V'vf (2) 
l 

v « £V. <3> 
C«. - A. 

E
n,= ( . ( v M , + 4 î ) 

(4) 

v? - -Î- I 1 " - T | =- I (5) 

(6) 

Here c- is the single-particle energy, v is the number of 

quasiparticles, X is the chemical potential for a given set of 

quasiparticles, A is the correlation function, G is the pairing 

constant, N is the number of particles below the level, from which 

the summation in the equations (1-3) is fulfilled, v definite states 

must be excluded from the sum if the corresponding sign has upper 

index. E„ is the energy of nucleus with v quasiparticles in definite 

states. The total value of momentum projection to the nuclear symmetry 

axis Q is the algebraic sua of the quantum number Qi of blocked 

states. The excitation energy of nucleus with v quasiparticles is 

UQ EQ Eo 

where E is the ground state BSC energy, which is calculated with 

the help of the same equations (1-6) with conditions v-0 for even N, 

and v=l for odd N. The parity of this state is defined 
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" . 

V TT ». < 8> 

The equations (1-6) are solved separately for protons and neutrons 

for some values of guasiparticles v and v . Then all the 

combinations with the following excitation energies and quantum 

numbers are accounted 

< » 

k » £î2 ± Qu (10) 

On each quasiparticle state rotational bands are built with the 

moment of inertia Fj_ corresponding to the given deformation 

UIITT " D™ + \ (r<1+1> " *") + Br(I+Va) (-D
W/a \tl/2 (12) 

where A and B are the rotational constants. Constant A can be 
r r r 

approximately calculated 

\--TT; <13> 
The spin cutoff parameters <r\ and a\ • K* corresponding to the 

distribution of the total angular momenta I and the projection K on. 

the symmetry axis can be estimated from calculated quasiparticle 

spectra 

*5 - 4 - \ K <15> 

Here n is the state number in the excitation energy interval AU. 
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II.2 Quantum-statistical superfluid model 

The energy and spin statistical distribution of the deformed 

nuclei can be written in the form 

i i 

K--I 1—1 J-

I 

where —i- » —|- - -=-, \r is the total state density in the 
_2 — 2 ^2 Cuj 
• f f • -*-

intrinsic coordinate frame system of deformed nuclei. For the ground 
and transition states of actinide nuclei we have — - « 1 therefore 

2<T2 

ef f 

we get the following expression 

pW.„ = (2I+1) ^ ü i _ expl"- - i l í i ü . 1 (17) 
«T87T CT| L 2(Tj_ J 

In these formulae the contribution of the rotational states is taken 

into account. The rotation enhancement of the level density for the 

axial symmetric deformed nuclei can be estimate in the following way 

[5-7] 

Pt((") :ot \.~ -"TOT ' ~ T - y ( 2 I + D exp f- JEl í í i l 1 * - i - (18) 
rot W(U) j ^ ^ ^ ^ I 2flr| J . « T O <T, 

1 = 0 

In the frame of quantum-statistical superfluid model the intrinsic 

level density of the ferai system is expressed in the form 

-3/2 ,»~1/a c 

W(u>- (2TT) (det S ) es<u) (19) 

Here S(u> is entropy, det S " is the determinant of a matrix, it is 

built with the second derivations even 0<*1/T, a * M*/T and a «jin/T, 

where u» and u* are chemical neutron and proton potentials, T is 

temperature. The entropy of a superfluid fermion particle system is 
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defined by relation 

-VI. /3E 
) [ ln (l+exp(-PETl) + 1+exp

X(fiEzi) (20) 

T-M.x 

where x, c are the single-particle energies in a average nuclear 

potential for neutrons x=N and protons z-z, ET1 are the quasiparticle 

energies (6). Correlation functions A together with 0, fin and v* at 

an excitation energy below the energy of transition from superfluid to 

normal states Ucr are determined by an equation system 

U + Ec 

NT 

- n - f - ^ - M I -4} •"' 
T. t 

.§-. r ^ t h f e („, 
where Eo is the ground state BCS energy, G are the pairing constants. 

The energy of transition from superfluid to normal state is 

calculated with the help of the relation (21) at A =0 and T=Tcr which 

is defined by equations (15) and (16) at A =0 and E »(e - u_). At 

temperatures higher than the critical temperature Tcr the entropy is 

also calculated from system (20-22) at E » lc
ri~ ^TI* 

Spin cutoff parameters <r\*¥* and <rj_ are calculated in the 

following way 

<r2 » !i2 g T (24) 

'J- - - Í - (25) 
hz 

Here g is a single-particle level density near the Fermi energy, Q2 

is the value of average square single-particle momentum projection on 

the symmetry axis of the deformed nucleus. The g value is calculated 
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by averaging over energy interval of a distance between nuclear shells 

7=41 A -2/3 

i v^ f K"x )21 (26) 

Fermi energy is defined by solving equation 

f(o g(C) dc 

-
—CO 

where f(C) is the correction polynomial 

f(C) i- V"* C H (u) 

(e - *) C -

7 = hw = 41 A -2/3 

jtii: /2 
2B(m/2)! 

0 

m even 

m odd 

(27) 

(28) 

The Q is obtained by averaging over the single-particle energy 

interval Ac » (3+4)T near the Fermi level. The energetic dependence of 

the moment of inertia F ± is approximated in the following way 

v cr ' 
U < Ü 

rig 1 d 
U S Ü 

(29) 

cr 

where Fo is the moment of inertia in ground state, U is a maximum 
cr 

value of the transition energy from superfluid to normal states for 

neutron or protons system, F is the rigid body moment of inertia 

of the nucleus. 
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III. ANALYSIS OF THE RESULTS OBTAINED WITH CODE PENCQMt 

The necessary base to study the state densities of heavy nu

clei , in the region corresponding to high deformations in fission 

path and which characterizes the extreme points in this process , is 

the calculation of a single particle spectrum. By using a given model 

of the nuclei, it will be able to describe variations in nuclear 

shape, when we have in mind a process where all the internal degrees 

of freedom the system are involved, as in the case of atomic nuclear 

fission.In our calculations parameterization of the nuclear shape pro

posed by V.V Pashkevich and performed in DIANA program [13],is used. 

Parameterization uses as a base figure the Cassini ovals and operates 

with a Saxon-Woods type deformed potential, the more suitable procedu

re for the treatment of the average field of deformed nuclei in acti-

nide region .Potential parameters are selected according with an opti

mum coincidence with the single-particle excitation spectrum. Single 

particle spectrum can nonetheless be chosen with another axially-

symmetric shape parameterization if it is necessary for work, and, 

this is not, of course, an obstacle for the operations of DENCOM pro

gram. 

Combined combinatorial-statistical approach describes the main 

features of level densities in a wide energy range.This is shown in 

figure 1 for nuclei of different parity. For the low energy region 

energy and spin distributions are non-statistical. This is shown in 

figures 1,2. In fig.3 energy dependence of spin cutoff parameter is 

presented. The analysis of figures 1-3,shows that ptotal becomes 

smooth quickly enough.That is not the case for spin distribution, in 

which shell effects can be seen up to high energies. In fig.l is 

illustrated the agreement with experimental data for low energies. The 

exact account of the superconductivity and shell effects in combined 

approach guarantees the quality of level density description in. a vide 

energy range. 

The analysis of fig.2 convincingly shows the limits from which 

the quasiparticle excitation spectrum must receive a statistical 

treatment. This analysis is just the one that allows to fix ECOS 
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value,which at the sane time fixes the limit between combinatorial 

and statistical calculations.lt would be interesting to point out that 

for energies below ECOS ( for each nucleus ,in general 2 MeV < ECOS <3 

MeV ) distribution behavior for I and K is not statistical. 

However,with the increase of excitation energy the distribution as a 

function of I is more rapidly near the statistical behavior than the 

distribution as a function of K, if we are referring to p t o t* 1(u); in 

this case the behavior is typical of statistical dependencies for 

energies higher than 2.5 MeV . 

Calculations can be improved if the parameter set of the average 

field, as well as the constants of pairing interaction, and the para

meters defining rotation bands are separately selected for each 

nucleus. When working with a given region of interest,of course,mean 

values of these parameters can be selected, which approximately 

correspond with the real values and noticeable simplify the calcula

tion volume.. To take into account the collective effects is necessary 

because it leads to a state redistribution according to the energy . 

The absence of low energy collective states can be substituted by in

cluding more recent nuclear models such as the Phonon Quasiparticle 

Model and the Interacting Boson Model. Statistical- quantum calcula

tion can be improved by including Kvib [14]. 

In fig. 4, a comparative analysis is shown for the case of 

U 2 3 4^,^ in which the way to improve the description of <r is evident, 

by including this combined procedure, which even allows to evaluate 

the unsuccessful moments in a systematic of <r . 

The calculation carried out using the Combined Method allows to 

improve the understanding of transition states' role in energetic 

dependence irregularities of fission cross section. As it is shown in 

fig. 4 example , experimental irregularity present in the energy range 

from 0.5 to 1.5 MeV could be reproduced.This is very significant to 

explain irregularities present at these same energies in correlated 

magnitudes: average kinetic energy and angular distribution of fission 

fragment. In the frame of the phenomenological method is not possible 

to reproduce these irregularities due to the fact that nuclear 

structure is not explicitly considered. 
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H I ORGANIZATION OF THE COMPUTER CODE 

.LL. General Structures Si £tl£ Code 

The computer code permits the calculation for the deformed 

nucleus with axial-symmetry of the next magnitudes : 

a. Quasiparticle spectrum of the nucleus and its rotational bands. 

b. Nuclear level densities using the superfluid model 

c. Spin cutoff parameters and its energetic dependence. 

The code's vorX is divided in two fundamental sections.The 

first one, done by subroutine. COMBIL calculates the quasiparticle 

discrete spectrum and its rotational bands up to a maximum energy 

(ECOS),introduced as an input data.The second one, carried out by 

subroutine DELSTA calculates the nuclear level densities from the same 

energy ECOS to UMAX (maximum considered excitation energy).UMAX is an 

input data. 

Calculation are performed for fixed values of the nuclear 

deformation parameters, which are included implicitly in the single 

particle spectrum given as an input data. 

Subroutines COMBIL and DELSTA call a set of subroutines that 

allow the performance of the calculations.In Fig.lthe general 

structure of the code and the name of all subroutines are used shown. 

The code is a set of 25 subroutines.lt needs 90 Kbytes of 

operating memory using the Microsoft FORTRAN v 5.1 Compiler. 

13 

http://subroutines.lt


DENCOM 

COMB IL 

ROT 

HISTOG 

LEVDEN 

COMDEN 

SUFQUP 

SPEQL1-4 

SPODER 

ALINE2 TEMCRI 

ENTSUP 

SUPEXP 

ENTIP 

IPEXP 

DELSTA 

FRAQUA 

DENS 

TERMOD 

— INTERL 

AVOMP2 

INEMOM 

F i g . l General Structure of the code. 

14 



2_^ Input jâàM 

Single particle spectrum for neutron and proton system 

read from file3='NEUTRON.SPE' and file4«'PROTON.SPE' respectively. 

READ FROM £ U £ 3.4.9 

1.- card 1 

AA(1),AC,HA(2),ZC [ A4, F5.0, A4, F4.0 ] 

AA(1)- identifiers. 

AC - mass number of the base nucleus. 

ZC - atomic number of the base nucleus. 

2.- card,? 

AA(3), EPSI, AA(4), ALPHA3, AA(5), ALPHA4, AA(6), NUM 

[ A8, F5.2, 2(A9, F5.2), A6, 14 

AA(I) 1=3,6 Î identifiers. 

EPSI - quadrupole deformation parameter. 

ALPHA3 - octupole deformation parameter. 

ALPHA4 - hexadecapole deformation parameter. 

NUM - number of single-particle levels to be read. 

3.- card 3_ 

(ENE(I), IQNE(I), 1=1,NUM) [ 5(F8.3, 15) ] 

ENE(I) - neutron single-particle spectrum array. 

IQNE(I) - K in symmetric rotational model, (array). 

file4 has the same cards for protons. 

The rest of the data and options are read from 

file9« 'DENCOM.INP'. 

1.- çard„.l 

AA(7) [A3] 

AA(7) - Chemical symbol of the nucleus. 

2.- card 2 

(NA,NZ) [214] 

NA - Nucleus mass number. 

NZ - Charge number. 
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3.- çarfl_3 

(NUQN,NUQZ) [212] 

NUQN - Neutron guasiparticle number. 

NUQP - Proton quasiparticle number. 

4.- ça.rfl.4 

ECOS [F4.2] 

ECOS - Matching energy. 

5.- card 5 

(KTEST,KRHO) [212] 

KTEST - Key to print â„ , a_ and g" , g" . 
H Z H Z 

KRHO — Key to compute partial level density. 

0 - Compute partial level density by eg.17. 

1 - Compute partial level density by eg.16. 

6.- card 6 

This card is read only if KTEST=1. 

(BN,STAR) (2F5.2) 

BN - Neutron binding energy. 

STAR - Spin of the target nucleus. HA~*X. 

7.- card 7 

KLQP [12] 

KLQP - Key to options calculus. 

0 - Only compute guasiparticle spectrum. 

1 - Only compute statistical level density. 

2 - Both. 

3- Output data 

The results are given in files 5,6,7,21,22. 

FILE5»'SPEQP.DAT' the total guasiparticle spectrum. 

FILE6-'SPEQPR0T.DAT' the total rotational spectrum and histogram of 

.dn/du , K* ,a\ 
The histogram is stored in this file if KLQP-O. 

FILE7»'STATIST.DAT'intrinsic state density and spin cutoff parameters. 
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FILE8-'LEVELD.DAT' partial level density : p(u,i) 

total level density, : p101*1^) 

rotational enhancement : Krot(u) 

The histogram is stored in this file if KLQP»2. 

FILE21«'NEUT.FIN' Correlation function and g for neutron. 

FILE22-'PROT.FIN' Correlation function and g for proton. 

4A Short description si ShS. subroutines. 

SUBROUTINE COMDEN 

This subprogram conforms the guasiparticle excitation 

spectrum of the nucleus by a combinatorial method in the energy 

interval [ UMAXI,UMAX]. 

The most important variables and arrays are: 

ND: half of the interval for the sum by BCS 

SPZE (SPNE): It stores energy of guasiparticle spectrum for 

proton and neutron system. 

SPZO(SPNO) : It stores quantum number of guasiparticle 

spectrum for proton and neutron system. 

SPE(SPO) : arrays to store the energy and quantum number 

of quasiparticle spectrum of the nucleus. 

SVBRQVTINE SUFOUP. 

It constitutes the main routine of every calculâtions.The 

energy of quasiparticle spectrum is calculated in it according to 

the BCS model,with a fixed number of quasiparticles (up to 4) in 

prefixed states.The blocking effect is considered. 

The most important variables and arrays are the following: 

N : Number of particles 

NL,NU : numbers of the lowest and highest levels for the 

energy interval in which pairing is considered . 

NUQ : number of quasiparticles 

Li,L2,L3,L4 t number of levels,beginning from the ground,in 
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single-particle spectrum, in which the guasiparticles 

are located 

EPS: result accuracy 

F: chemical potential 

EBCS:Energy value by BCS 

/ENERGC/ : array in which level spectrum is stored . 

If every L and NUQ=0 ,then this is the basic state of the 

nucleón even system. 

States with two or four quasiparticles can be taken into 

account for nucléons even system. States with one or three 

guasiparticles can be taken into account for nucléons odd system. 

Equation system is solved by the method of "steepest 

descent". 

SUBROUTINE SPODER. 

This subprogram conforms quasiparfcicle excitations spectra 

corresponding to a given even or odd system of nucléons (neutrons or 

protons).It organizes the spectrum in an ascending order of excitation 

energy.It accepts no more than two types of excitations (2 and 4,or 1 

and 3). 

The most important variables and arrays are : 

UMAX: maximum value of the spectrum energy stored in SPE. 

SPE: energy of the quasiparticle spectrum of the given 

nucleón system 

SPO: quantum numbers K and n stored as : 

2»(0.5-PI)»(CJ+l) 

PI=( 0 +, 1- ) 

SP1,SP2: arrays where spectra obtained for a given 

quasiparticle system in the subroutines SPEQL(i) are stored. 

NM: number of particles in the one-component system. 

SUBROUTINE, SPEQI,m 

This subprogram conforms spectrum with quasiparticle 

excitations of a given type ( with 1,2,3 and 4 quasiparticles) 

according to the BCS model «considering the blocking effect for a 

deformed potential and for a given system (proton or neutron). 

The most important variables and arrays are the following: 
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NMAX: It is used to define the spectrum interval in 

which the quasiparticles are located (11,12) 

Il=NN/2-NMAX. 

I2-NN/2+NMAX. 

SP:array in which calculation results are kept 

(quasiparticle spectrum) 

NSP: SP array dimension 

SUBROUTINE LEVPEN, 

This subprogram carries out the calculation of energy and 

spin statistical distribution of the deformed nuclei:p(U,I) according 

to the formula (16) or (17) if key KRHO is 1 or 0. Furthermore ,the 

total level density of the nucleus, and the coefficient of rotational 

enhancement are calculated (Krot). 

The most important arrays are : 

ALEVDEN: It stores distribution p(U,I) 

TOTALD: Total ptotttl(U) density are stored 

AROT: Krot values are stored 

SUBROUTINE ROT 

This subroutine performs the rotational band on the quasiparticle 

spectrum obtained by COMDEN and writes it in file 6 ( «'SPEQROT.DAT'). 

The most important arrays are : 

QPS : stores quasiparticle spectrum (energy) 

OMQPS : stores quantum number K and parity of quasiparticle spectrum. 

QPROTSï stores the total rotational spectrum (energy). 

QNIKPI: stores the quantum number (I,K,PI) of the total rotational 

spectrum. 

The order of the total rotational spectrum is carried out by 

ALINE2. 

SUBROUTINE HISTOg 

This subroutine performs the histogram calculation of the total 

discrete spectrum obtained by COMBIL. 

The energy histogram (HIRO) is obtained, from K2 (HIK02) and <r\ 

(HISIP2). 
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SUBROUTINE èLUSEl 
This subroutine organizes the tables of the different values of 

the function in an increasing order of energy. 

SUBROUTINE DELSTA 

Fixes two sets for performed calculations of values of nuclear 

temperatures; (initial and final temperature and variation step) 

afterwards, subroutine FRAQUA is called. 

SUBROUTINE ZB&OJ2A. 

Organizes the calculations of the continuous part of the spectrum 

and stores the final results in an array (FRAD). It obtains the 

parameters of the parallel and perpendicular spin cutoff <?\ , a\ in 

the frame of the quantum-statistical model. 

The most important arrays are: 

DEST ; stores the intrinsic level density. 

SIGPE2 :stores the perpendicular spin cutoff. 

SIGPA2 : stores the parallel spin cutoff. 

The following subroutines are called SUFQUP, DEN, TERMOD. 

SVPRQVTIN^ INTERL 

Performs the interpolation of the function using Lagrange 

polynomial. The function and its argument are stored in the array PLUR 

of NP dimension 

EX : argument values for which the functions are calculated . 

DENS: function values to interpolate. 

PLUR: table of arguments and functions xl, fl, x2, f2. 

NP : dimension of PLUR. 

SUBROUTINE INEMON 

Computes the perpendicular inertial momentum of the nucleus for a 

given excitation energy according to (29). 

SVBRoyriNfi AV0HP3 

Computes the average square single-particle momentum 
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projection on the symmetry axis of the deformed nucleus. 

CTAV : energy interval near the Fermi level for which the average 

of £i2 is estimated. 

A0MN2 : variables where the values of the ñ2, ñ2 are stored. 
N Z 

(AOM22) 

SUBROUTINE PENS 

This subroutine computes the level densities for different 

values of a scaling factor 7 at different energies.Average is 

estimated taking into consideration energy intervals of a distance 

between nuclear shells, for neutron and proton system (26). 

The single-particles spectra are transmitted by the COMMON ENERG. 

The results are transferred by the COMMON DENSIC. 

The g is calculated taking into account (26-28) where the 
—2/3 

optimum choice for P=6 is 7=41 A 
The Ca coefficients are expressed by the Gardner scheme. 

SUBROUTINE TERMOD 

Calculates the thermodynamic functions and their dependence on 

energy and temperature . Calculated values as a function of 

temperature are placed into the array TERM in the following sequence: 

K+l. E- energy. 

K+2. S- entropy. 

K+3. GAP- correlation function. 

K+4. DET- determinant of matrix of second dérivâtes for one type of 

particle. 

K+5. Second derivate on alpha. 

In the first five elements of the array there are: 

1- Eo- total energy of the ground state. 

2- GAP. 

3- SP- ground state entropy. 

4- TEC- critical temperature. 

5- UCR- critical energy. 
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Subroutine TERMOD uses external subroutine TEMCRI for calculating 

of the critical temperature. When temperature T<Tcrit,it is called 

ENTSUP and SUPEXP by the superfluid model ( BCS ). When T*Tcrit,it is 

called ENTIP and IPEXP in the frame of independent particle model. 

SVPR.QVTira Z£M£BI 
This subroutine computes the critical temperature (TECR), the 

critical energy (UCR) and the accurate calculation of the chemical 

potential (HIMPOT). 

Computer calculations are made resolving the system (21-23) by 

taking in account â«0 y T=Tcrit. To resolve the system the method of 

"stepest descent" is used. 

SUBROUTINE ENTSUP 

This subroutine computes, by the superfluity model, the energy 

(E), the entropy (S), the correlation function (GAP) and the chemical 

potential (HIMPOT). For this purpose, the system (21-23) is solved 

using the method of "stepest descent". 

SUBROUTINE SVPEXP 

This subroutine is used to compute the matrix of entropy's second 

dérivâtes for the superfluid system, (det S" of (19)). Exit pairs 

are: 

DET= 
' a2 ' 
^-r ln(Z) 

I sp2 

2 

- ^ l n ( Z ) - tl^4 ap y " a\ 

DAT=-^- ̂ —-ln(Z) 
f*2 d\Z 

The calculations are carried out for a given temperature of the 

Fermi system. 

The single-particles energies, which in this subroutine are 

closely related with the partition function Z, are given in the COMMON 

/ENERGC/. 
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SUBROUTINE E3SSÎE 
This subroutine has the same purpose as that of the ENTSUP, but 

for the non interacting particle system. 

When temperature T > Tcrtt, the system (21-23) is changed in 

NIP-2V Ï 
¿j-1 + exp(/3(Ei-A)) 

Y " Et 
¿j-1 + exp(/3(Et-A)) 

nl n f l + exp(-0(Ei-A))"L Pillai \ 
L J 1 + exp(/3(Ei-X))J 

EIP-2 

SIP=2 

This system is solved employing the Newton method. 

The total energy(E), the entropy (S) and the chemical potential 

(HIMP) of the system are calculated in this subroutine. 

SUBROUTINE IPEXP 

This subroutine has the same purpose as that of the SUPEXP, but 

for the non interacting particle system. 

IV. CONCLUSIONS. 

For deformed nuclei and especially for extreme points of fission 

path, the fenomenological methods in level density calculations have 

many disadvantages.In these cases, the semi-microscopical approach is 

more adequate.The semi-microscopical Combined Method includes the use 

of combinatorial and statistical methods for low and high energy 

correspond ingly 

The code DENCOM is apt to calculate level densities for axial-

symmetric deformed nuclei,using the Combined Method. When applying the 

results of the code,the adequacy of the models used must be assured. 

The results obtained using DENCOM code allow to consider in the 

analysis of the state densities ,the particular properties of state 

spectrum, in a wide energy and deformation range. 
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Work on the DENCOM code is in progress to improve the accuracy 

and to consider new effects in a more realistic way. In the next 

version of code configuration with higher numbers of guasiparticles 

and vibrational enhancement will be included among others features. 
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