International Atomic Energy Agency
$\operatorname{INDC}(F R)-2 / L$
418

EVALUATED DATA LIBRARIES

A COMPARATIVE STUDY OF THE PROPOSED
USSR FORMAT AND THE UKAEA FORMAT

Pierre Ribon
Centre d'Etudes Nucléaires, Saclay

Translated from the French by the IAEA

June 1971

IAEA NUCLEAR DATA SECTION, KÄRNTNER RING 11.A-1010 VIENNA

gUALUATED-DATA LIBRARIES
A comparative study of the proposed USSR format and the UKAEA format
Pierre RIBON
Centre detudes Nucléaires, Saclay

Reactor physicists need "evaluated" nuclear data, i, e. data forming a coherent body of information which an expert - the evaluator - recommends as the best possible estimation in the light of the experimental results and the available theories.

At the same time, using electronic computers, these reactor physicists are performing calculations of increasing precision and they want the information needed for these calculations to be presented in strictiy coded forms.

To meet these requirements various formats for evaluated data libraries. have been developed during the last eight years and some are still being developed.

We shall study two of these formats:

- The format proposed by K. Parker in 1963-1965 [1], which we shall refer to as the UKABA format;
- The format proposed by V.E. Kolessov and M. N. Nikolaev [2]. which we shall call the USSR format.

That we are familiar with this latter format is due largely to the English translation preparea by A. Lorenz of the IAEA in Vienna, to whom we wish to express our thanks. The present study is based on this translation. The USSR format resembles the UKABA format.

The exchange of evaluated data is rendered difficult by the existence of these different formats: completely automitic translation of an evaluation from one format to another is not poasible. A large number of formats meane that more tranglations have to be made, whsch in turn means a loss of time and no advantage for anybody.

For this reason, and at the suggestion of the IABA, we have prepared this report in which we study the differencea betmen the two formats, trying in particulax to bring out the differences which would be an obstacle In autometic transletion.

We shall start by reviewing the differences in the information content.

I. PHYSICAL CONTEHT OF THE USSE LIBEARY

This library provides for the same information as that which the UKAEA library contains (ar can contain), except for the bubgroups.

This method describing ceoss-sections in the resonance region was proposed in 1964 by Abagyan et al. [3]. It is at present employed by various reactor-physics groups, especially in the USSA $/ 3]$ and France $[4,5]$.

In practice, this method can be used to describe the structure of the crossmection (E) in an interval ($\mathrm{E}_{1} \mathrm{E}_{\mathrm{s}}$) by N values of the pair $\left(a_{n}, \sigma_{n}\right)$ such that $\sum_{n} a_{n}$. The cross section calculations, particularly for self-shielding are made with these N data pairs and the smaller the number N the greater the speed of calculation.

This method is very useful for unresolved resonances.
We believe that it would be advantageous to include the corresponding information in the UKAEA format.
II. PRINCIPAL DIFEXRENCES BETWEEX TBE TWO FORMATS

1. Qeneral Classification Number (see Mable 1)

Table 1
Generai Classification Number (GCN)

GCN - Format URSS	GCN - Format UKAEA
01 - neutron crosssection	01 - neutron cross section
02 - ang. dist. of secondary particles	02 - ang. dist. of neutrons
:03-en. dist. of secondary particles	03-en, dist. of neutrons
04 - energy $§$ ang.dist. in thermal neutron scattering	04 - miscellaneous quantities for neutrons
05 - special quantities for neutrons	05 06 - resonance data for neutron
	```07 - thermal neutron scattering law data```
P :	08
\%	

The differences appear to be mainly formal: the 04 (UKAEA) becomes 05 (USSR) whilat 07 (UKAFA becomes 04 (USSR).

He would suggest that the USSR format adopt the English code numbers 01-04 and 07, plus the code numbers above 13 for distributions of secondary particles other than neutrons.
2. Partieular Classification Number (The differences observed are indicated in Table 2)

The differences seem to be of no practical importance, since they relate to data not at present included in evaluated-data libraries, except perhaps for the reactions $1028,1029,1030,1101,1107$ (UKAEA format).

The USSR format is compatible with the UKAEA format but the inverse is not the case. There seems to be no difference for $P C N=101$.
3. Cross-aections (type 1000 data)

The heading cards are shown in Table 3.

## Table 2

Particular Classification Number (PCN)

PCN	URSS	PCN	UKAEA
27 to 100	non allocated	27	absorption cross. section $=$ $\sigma \mathrm{f}+\sigma_{\mathrm{t}}$
		28	$\mathrm{n}, \mathrm{n}^{\prime} \mathrm{p}$
		29	$n, n^{\prime} 2 \alpha$
		30	$n, 2 n 2 \alpha$
		31-100	non allocated
101	total absorption (without emission of incident particle)	101	disapearance cross-section (without emission of neutron
109-150	non allocated	$\begin{aligned} & 109 \\ & 110 \end{aligned}$	$\left\lvert\, \begin{aligned} & n, p \alpha \\ & \text { distribution = non elastic- } \\ & \text { total (n, } \left.n^{\prime}\right) \\ & \text { available } \end{aligned}\right.$
		201 to 208$301-450$	
201-999	non allocated		allocated to some data whic: can be deduced from others ones, eventually taking in ac count the transfer matrices. energy release rate parameter ( $\bar{\sigma} \bar{E}$ )
		$\begin{gathered} 209 \text { to } 300 \\ \text { and } \\ 451 \text { to } 999 \end{gathered}$	$\}$ non allocated

TABLE III

## Comparison of the heading cards for cross sections

(General Classification Number $=1$ )


In the URSS format, the interpolation mode is defined in the 4th card, which depends on the value of "FTN", the "form type number "

The USSR presentation is more logical than the UKABA presentation especially as regards the inclusion of several temperatures. It is characterized by a new item of information, namely that defining the data type.

The USSR format provides for five cases for each ( $E_{i}, E_{B}$ ) interval. according to the FWN (form type number). The FiN value is the first data element in the fourth card.


This ropresentation contains the same information as the preceding one.
The 2nd case is the only one which is compatible in form with the present UKAEA format. The lst case is not really incompatible: a constant cross-section can always be represented by interpolation between two energies having the same cross-section values*.

The 3 rd and 4 th cases represent the novel contribution of this format and they cannot be inciuded directly in the present UKAEA rormat.

The 5 th case is a transposition of the 4th case; we do not regard it as of fundamental impoitance.
4. : Angular distribution (type 2000 data)

The presentation of the heading cards is shown in Table 4.

[^0]TABLE IV
Comparison of the heading cards for angular distribution
(General Classification number $=2$ )


It is understood that the sum of the partial reactions should be equal to the total cross-section in each subgroup.

The number of subgroups varies from one energy band to another, and the most suitable number is clearly the minimum compatible with satisfactory accuracy of the calculations. Whis problem has not been considered by fast-reactor physicists in France because the subgroup parameters they employ are not obtained from the distribution laws mentioned above but from selfshielding factors calculated in advance.

The USSA format provides for giving the angular distributions in the form of a probability distribution $f(\cos \theta)$ or of Legendre polynomial coefficients wi, whilst the UKAEA format provides, in addition, for giving differential cross-sections; this does not mean there is any incompatibility (for the translation UKABA $\rightarrow$ USSR it is only necessary to rencrmalize).

However, the presentation of the data is quite different in the USSR format, which distinguishes six cases: for each of these six cases the FWN value $1 X X$ corresponds to a distribution defined by $f(\cos 0)$ whilst FTN $=2 X X$ relates to a distribution defined by the Legendre polynomial coefficients ${ }^{*} \boldsymbol{\ell}$. In each case the reference system is indicated (laboratory or centre of mass).

The six cases are as follows:

- lst case. $\quad F T N=101$ or 201. Isotropic argular distribution.
- 2nd case. $\mathrm{FTN}=102$ or 202. A single angular distribution in the interval $\left(E_{i}, E_{s}\right)$.
- 3ra case. $\quad F T N=111$ or 211. Angular distributions for $N$ values of $E$ between $E_{i}$ and $E_{S^{*}}$
- $\quad$ 4th case. $\quad F N=112$ or 212. Addition of several angular distributions in the interval ( $\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{g}}$ ) with a weight $a_{i}$ for each distribution.
- 5th case. $\quad$ FMN $=121$ or 221. Addition of several angular distributions for $N$ values of $E$ between $E_{i}$ and $E_{s}$ with a weight $a_{i}$ for each distribution; the number of values of $f(\cos \theta)$ or of $w_{n}$ is given for each energy and each weight.
- 6th case. $\quad$ FWN = 122 or 222. Addition of several angular distributions for $M$ weights $a_{i}$ with an energy $E$ for each distribution; the number of values of f(cos. $)$ or $w$ is given for each weight ard each anergy.

This system is rather different in form from the UKAEA systen without offering the possibility of additional information: cases $1-5$ are all included in the UKAEA format. Only case 5 is not ineluded, but it is merely a transposition of case 5 and the information it contains can always be presented in the form of case 5 ard, hence, in the UKAEA format.

It is pointed out (page 32, or page 19 of the English translation) that the system can be used (for the same RTN) to combine distributions given in different systems, or given sometimes by $f(\cos \theta)$ and sometimes by $W_{l}$. We do not see, however, how this can be done in the present system; moreover, the value of this possibility seems rather academic, and the fact that it is not provided for in the UKAFA format can hardly be regarded as a disadvantage.

In short, we consider that the UKAEA format provides for all the information that can be contained in the USSR format.
5. Energy distribution of secondary particles (type 3000 data)

Table 5 compares the types of law permitted by the two formats.

Table 5
Energy Distribution Laws
Correspondence as between the USSR and UKAFA laws

URSS law number	Corresponding UKAEA law number
1	1
2	2
3	no correspondance
4	7
5	4
6	5
7	6
no correspondance, but can be	no correspondance, but
included in law 5.	very similar to law 8 (see text:
no correspondance	3

Laws 8 (USSR) and 8 (UKAEA) are very similar: in the former case the datum is a probability and in the second case it is a cross-section.

Table 6 compares the headings: these differ somewhat in presentation, the USSR format being again more logical than the UKAEA format.

## TABLE VI

Comparison of heading cards for secondary particles (or neutrons) energy distribution

Format U						
1st card   2nd card	reaction type number   lower energy   limit $-E_{i}$	number of energy intervals   upper energy   limit - $\mathrm{E}_{\mathrm{s}}$	system   number of cards	number of distribution	available $\qquad$   probability: of this distribution	
Format URSS -		number of energy intervals			-	
2nd card	lower encrgy $E_{i}$	upper energy $E_{s}$	number of cards	number of secon daxy particle groups	$\qquad$ available	
3nd card	flag identifying a group	number of "form type number "	number of cards for this group		- available	$\rightarrow$

```
The cases provided for are defined by the Form Type Number.
FTN = 101. Law 1, identical with UKAEA Law l.
FWN = 102. Law 2, identical with UKAEA law 2.
FTN = 103. Law 3.
FTN = 104. Law 4, identical with UKAEA law 7.
FTN = 105)
 107) (Law 7, identical with UKAEA law 6.
FWN = 150. Combination of laws type 1, 2, 3, 4, 5,6 and 7.
FTN = 208. Law 8(similar to UKAEA law 8).
FWN = 251. Combination of laws type 1-8 for given E.
 (Energy of incident neutron)
FWN = 252. Combination of laws type 1-8 for several values
 of E.
```

Most of the laws correspond directly to the English format; the combinations (cases $F T N=150,251,252$ ) can also be expressed in the English format by repeating the 2nd card of Table 6 each time.

We think that here, too, the USSR format could come closer to the UKAEA format without any loss of information.

## 6. Angular distribution of thermal neutron energy

Since we are not experts on these data we have not studied the problem. 7. Special data $(\eta, \bar{v}, \tilde{\alpha})$

The presentation of the data is the same as for the cross-sections; a. presentation using the subgroup method is pointless and no such presentation exists. The USSR and UKAEA formats are perfectly compatible.
III. DIFFGRENCE IN CARD PUNCHING

According to the Kolessov/Nikolaev document the USSR card is as shown below:

or:


One USSR card thus corresponds to two UKARA cards in the second case.
The UKABA card is shown below:


The amount of information appears to be the same in all three cases: a conversion from one type of presentation to the other would require a special programme, written in machine language, but this should not constitute a major difficulty.

Other problems would arise in the not unlikely case of an exchange of evaluations recorded on magnetic tapes: in particular, there would be the risk of physical incompatibility of the magnetic tapes (USSR tapes have 16 tracks).

Some competent authority (such as the IAFA) could help in this connection.
IV. CONCLUSION

The USSR format probably conforms to local requirements, which we are not familiar with: one of the effects of this is in the mode of card punching. However, this does not seem to be a major obstacle as far as conversion from one format to the other is concerned.

This format also is more logical: profiting from experience gained in regard to other formats, it is coherent and modern, whilst the UKAEA format has been developed progressively and, at every stage, has had to incorporate changes dictated by experience.

With the exception of the cross-sections (type 1000 data), however, it contains no information which the UKAEA format cannot contain. Whilst not familiar with local requirements in the USSR, we should like to express the hope that the USSR format could be patterned as closely as possible on the UKAEA format in order - with some sacrifice in logic - to avoid or to simplify as far as possible the problems of translation in either direction.

We think the type 1000 data (cross-sections) could usefully include data resulting from the subgroup method, but it would apparently be necessary to specify the data for inclusion; in the view of the French reactor physicists, as expounded in the attached Annex, the values of $a_{t}(i)$ and $a_{i}$ should be given for each subgroup $i$, as well as $\bar{\sigma}_{x}(i)$ for each partial cross-section $x$. We intend to consider this problem further in collaboration with other users of UKAEA tape. In the Annex we attempt to explain the subgroup method.

In conclusion, it should be borne in mind that these libraries are used. by programmes which permit, as input, presentations that are much more. restricted than that given for the description of the format.


RFHFERENCES

1. PARKER, K. AWRE $-0-70 / 63$ (1963).

PARKER, K. Private communication, June 1965.
2. NIKOLAEV, M.N., Private commanication, June 1970. KOLESSOV, V.E. and NIKOLAEV, K.N., Heport of Obininsk Centre, 1970.
3. ABAGYAN, L.P. et al., 3rd Int. Conf. on the Peaceful Uses of Atom. En., Geneva 1964, Communication A/357.
4. KHAIRALLAE, A., Private communication.
5. HOFFNANN, A., JEANPIERRE, F., Private communication.

## Annex

## Note on the A. Khairallah subgroup method

The subgroup method is at present used in fast reactor physics in France to deal with self-shielding of narrow resonances of heavy elements, either in a homogeneous environment or in a heterogeneous cell.

For this type of treatment integrals of the following type have to be calculated over a given energy interval:

$$
I=\int_{\sigma_{x}}(E) \phi(E) d E
$$

For example we may have

$$
\phi(E)-\frac{1}{\sigma(E)+\sigma_{p}}
$$

where $\sigma_{x}(\mathbb{E})$ is the cross-section for the reaction $x$
$\sigma(E)$ is the total cross-section
$\sigma_{p} \quad$ is the dilution cross section.
The flux can generally be written in the form $\varphi\left({ }_{\sigma(E)}\right)$, so that:

$$
I=\int \sigma_{x}(E) \varphi(\sigma(E)) d E
$$

This integral can be written in the form of a Lesbesgue integral

$$
I=\int \bar{\sigma}_{x(\sigma)} \varphi_{(\sigma)}{ }^{P}(\sigma) d \sigma
$$

where $P_{(\sigma)}$ is the distribution law for $\sigma$ over the energy interval in question
$\bar{\sigma}_{x(\sigma)}$ is the mean value of $\sigma_{x}(E)$ for $\sigma(E)=\sigma$.
Defining an energy integration range $U$ such that:

$$
\sigma-\frac{d \sigma}{2}<\sigma(E)<\sigma+\frac{d \sigma}{2}
$$

we get:

$$
\begin{aligned}
& P_{(\sigma)}^{d \sigma}=\int_{U^{d E}} d(E) d E \\
& \bar{\sigma}_{x(\sigma)}=\frac{u^{\sigma}(E)}{\int u^{d E}}
\end{aligned}
$$

In the subgroup method $P_{(\sigma)}$ is represented by a discrete series of values of $\sigma_{k}$ with a weight $a_{k}$ for each value. The values of $\bar{\sigma}_{x_{k}}$ for each partial reaction $x$ must also be defined.

If the cross-sections are described by subgroups, it therefore seems desirable to have the following information on the tape, for each isotope and each temperature:

$$
a_{k}, a_{k}, \bar{\sigma}_{x_{k}} \text { (for all the reactions) for each subgroup. }
$$

$100415$


[^0]:    */ There is one difficulty: the UKAFA format requires continuity and does not permit representation of the cross-sections by groups, whereas the USSR format apparently does.

