SPECIALISTS MEETING ON
"RESONANCE PARABETERS OF FERTILE RUUCLEf AND 239 Pu" SACLAY, 20-22 May 8974

Proceedinga odited by P. RIEON

ERRATUR

```
Pagr 13 - S 11, livre 7 - Read.
    "Average fission width of the }J=1\mathrm{ (one) state...".
```

Page 139, Table -
For the resonance at $1660 \mathrm{ev}, \Delta \mathrm{P}_{Y .}$ siat) $=4$.
Page 174 co 181
The order of iables of $\mathbf{2 ~}^{\mathbf{2 8}} \mathbf{u}$ resonance parameters has to
be inverted.

SPECIALISTS MEETING ON
 "RESONANCE PARAMETERS OF FERTILE NUCLEI AND 239 Pu" SACLAY, 20.22 May 1974

Procastings aditad by P. RIBON

This meeting was held at Saclay from Monday 20 oth
 i oage 5 .

The aim has to briag iogether experimenters, evaluators and users of resonance parameters in order to compare cheir points of view, and to ery to clear up the status of the needs and of the accuracy of the available data.

To this end several papers have been presented at this maeting - four of them being reviews whose aim was to recommend sets of evaluated data. The texts of these contributions and revies are published in this report (see "Table of contents", next jage).

These contributions and reviews have been used as basis for the discussions during the various plenary or parallel sessions. The sumary of these discussions during the last two days have been drawn up by their chaizmen and submitted to all participants : then they represent the general vies of this meeting. They are given in pages 6 to 18 (Conclusions and resommendations).

The organisers thank all the participants to this nocting and, rostly, the zoviewers and the chalrmen of the various sessions.

TABLE OF COATENTS

Pages
List of participants 5
Conclusions and recommandations
A - Sessions on resonance parameters of fertile nuclei 6
B - Sub-group session on 239 Pu 13
C - Sub-group session on "Thermal range" 15
D - Summary of recommenciations 16
LIST OF CONTRIBUTIUNS AND REVIENS
J.Y. BARRE, A. KHAIRALLAH 19
Importance of resonance parameters of fertile nuclei and of 239 Pu for fast power reactors.
D.GRENECFE 43Evaluetion of the ${ }^{232} \mathbf{T h}$ capture resonance.integral
H. DEREIEN,P.RTBON 6.3
On the shape analysis of varicus ${ }^{232}{ }_{\mathrm{Th}}$ and 28_{t}transmission data.
A. DERRIEN 73Evaluation of ${ }^{232}$ Th resonance parameters.
E.M. OTTEWITTE 113
"Comments on $232_{\text {rinh }}$ absorption resonance integral, $\left\langle\Gamma_{V}\right\rangle$, and neutron width statistics.
G. CARRARO, A. BRUSEGAN121
L. REMISSEN, F.FOORIMANG, G.ROHR, H.WEIGMANN, 131 J.E. TEEOBALD, G. FANPRAET.
Neutron cross gection measurements on236 iJ belos 2 Kev.
H. CEULEMANS 145
Resonance scattering cross-section of ${ }^{238}$ u below 220 ev.
E.DOORTNANS, L.HEWISSEN, G. ROHR. H.WEIGMANN, 149 G. VanPRAET .lieutron scattexing cross section measurements.on 238 in the resolved energy range.
$\therefore .90 \times O 2$ 159
Evaluation of $U 238$ resonance parameters
A. G. SOWTREY 183Sone comments on the evaluation of unresolvedとesonance parameters of U-238.
H. NEIGMANN et al
ninvesitgation of resonance neutron capture in $0238^{\prime \prime}$
private communication, not included in these proceedings.
R.R.SRENCER; F. FAPPELER 191
Prolininaxy reoults of a shape measurerents of the 238 U capture cross section ire the neutron oncrgy range $20 \times 600 \mathrm{KeV}$.
G. $D=\sin$ SSURE 203
Recent reasurements on 238 u at OlNL:
4. WGTGMANN, G. ROHK, F. PDJRTMANS 219A avalutuin of 240 . u regonance parameter data.
H. DERAIEN 243
Plutonium 239 resonance garameters.
E. MENAPACE, M.MOTTA 263The mutilevel Breit-Wigner formalism withdoppler broadening applied to the Pu 239resonances.
G. LE COQ. P. REUSS
The -mperature coefficients in the thermal reactors.291
C. WAGEMANS, A.J. DERUYTTER 297
The low-energy neutron induced fission cross section of 239 Pu and the temperature dependence of the westcott g_{f} factor.

List of participants to tine specialist meeting on

 Resonance parameters of fertile nuelei and 239 Pu Eaclay, 20-22 May 1974

CORCLUSIONS AND RECCMMENDATIONS

A - SESSIONS ON RESONANCE PAFAMETERS OF FERTILE NJCLEI

1. Interpretation of measurements with respect to ac. curacy limitations

It was generaliy agreed among experimente: at this meeting that with a few exceptions resonance parameters for the resolved regions in 232 Th and $23 \mathrm{I}_{\mathrm{U}}$ are determined with approximate precisions of ± 58 for「n and ± 108 for Γ. It was cleas from the data presented, however, that the dispersion in values from various experimenters is still frequentov greater than this.

1.1. Transmission experiments

Transmission measurements present little experimental difficulties. The analysis of the data is straightforward, at least in principle, and is done by area or shape analysis. It was pointed out that shape analysis is to be preferred, even if Doppler and resolution broadening mask the true shape of the resonance, because the conditions for good area analysis are rafely fulfilled.

In order to avoid systematic errors in the determination of in from transmission results a range of sample thicknesses should is measured such that for each resonance the condition $n \sigma_{0} \leqslant 1$ is fulfilled by at least one sample. If this condition is not ft.filled, large systematic errors are to be expected. If these precautions are taken it should be possiole to determine Γ_{n} to better than 5%.

1.2. Scattering_experiments

From a contribution on scattering measurements in the resolved resonance energy range performed on 238 U given by Poortmans and the ensuing discussion ca" me the following conclustons.

An atcizacy of ahout 28 on the scattering area can be obtained if samples with $n \sigma_{0} \leqslant 0.1$ are cised. Normalizirg the data with the σ_{5} of Pb int:-oduces systenatic errors estimated at $\pm 1 \frac{1}{*}$. For the lirger resonances (Γ n $\geqslant \Gamma y$) the backgrisund subtraction introduces another 18: Multiple interaction and self screening corrections are difficuit to calculate and it is also difficult to estimate the error they iam tropuce. From the results which have been published up to now, 5 o seems to be a lower $2 i n i t$ on the accuracy that can be at.tained at the present time.

1.3. Capture_experiments

An accurate knowledge of the energy dependence of the incident neutron flux and the relative efficiency of the capture detector, together with surrec. tions for finite sample thickness and multiple interaction of the scattered neutrons, are the minimum requirements for the calculation of the capture crosssection from the observed data.

In the energy region below 100 keV detectors using the ${ }^{10} \mathrm{~B},(\mathrm{n}, \alpha)$ andfor ($n, \alpha y$) reactions are possibly the best means of measuring the neutron flux.

All typer of y-ray detector must approach an efficiency for detecting a neutron capture event that is independant of the y-ray cascade and have an efficiency for detecting the scattered neutron that is very low compared with the capture detecing efficiency, i.e. ($E_{n} / \varepsilon_{Y} \leqslant 10^{-4}$).

The general remarks concerning multiple interactions which were made in relation to scattering experiments apply also here, including the recomendation to use samples with $n \sigma_{0} \leqslant 0.1$. In view of present uncertainties, capture areas have (mostly hidden) errors of 5-108. At higher enargies (a few kev) the capture cross-section should be measurable absolutely to between ± 5 and $\pm 10 \%$: the shape is probably obtainable to within ± 2 苗.

According R.SPENDER, for large scintillation tanks, the uncertainty in shape of the capture γ ray pulse height response below threshold (2-3 Mev energ7) limits the overall precisien to about ± 108.

a) Al ieast sone of the individual discrepancies observed are due to ron-ideal sample thicknesses aged in the cross section mear urements.
(8) Some errors have occurred due to inconsistent treatment of backgrounds or off-resonant contributions in the analyses of cross section data:

ү) The accuracy of derived resonance parameter should be better than $\pm 5 \%$.

ס) 'Complete' experiments, that is scattering. masurements as well as of cepture and total measurements, would be desirable.

2. Distributions

2.1. Spacing_distribution

There seein to exist several methods to determine <D>, the average spacing between resonance levels and the (standard) deviation and ezror on this ralue. Vexy often it is not even clear which one is given. The wigner distribution gives for the observed \bar{D} a fractional standard deviation of $0.52 / \sqrt{4}$ where N is the number of spacinys counted. This expression is most frequently used. This formula, however, does nut take into account the long-range ordering effects described in a series of papers by Dyson and Nehta (1) and appiied to a specific case by Liou et al (2). If the levels belong to an orthogonal ensemble which implies that they form a complete set of s-wave levels with no levels missed and without p-wave contamination, the fractional standard deviation of \bar{D} is $\approx 1 / \mathrm{N}$, due to long-range ordering effects which esist for such ensembles. However. the Working group had the feeiing that such a standard deviation is probably an underestsmate due to systematic errors. In practice the value of N is given by the following formula

$$
N=N_{O b 5}+N_{S}-N_{p}
$$

Where $\mathrm{N}_{\text {obs }}$ is the number of observed s-wave levels in the energy interval considered, N_{3} is the zumber of s-wave levels missed and N_{p} is the number of p-wave levels accidently included ${ }^{5}$ the values of N_{m} and N_{p} can be derived from the Porter-Thomas distribution of reduced neutron widths. The Working Group felt that the error in $<D>$ should tinclude the contributions from the errors in N_{s} and N_{p} as well as the error in N associated with the spacing distribution. This suggestion requires further consideration bat it should be remmbered that for reactor calculations $\langle D$ 〉 is required in the unresolved energy range where there must be additional uncertainty because one ia extrapolating data from the resolved region.

2.2. Neutron_width_distribution

The importance of the neutron width distribuition for levei counting was already mentioned in the dism cussion on everage level spacings. This implies that
(1) F.J. Dyson, J. Math. PhyE. 3 (1962), 140, ibid. 157, 1bid. 166 , ibid. 1199 and M.L. Mehta and F.J. Dyson ioid. 4 (1963) 701, ibil. 713.
(2) H.I. Linu et al., Phys, Rev. 5C (1972) 974.
the assurgtions undcrlying the Porter-Thomas distriSution aro velid for a aingle population of neutron wicho, mich io senerally acrepted. Discrapancies arc usually an indication of unknown experimental criors but if not they need careful attention and Bore mominental confirmation. The existence of such deviations in 232 Th is emphasized by E.OLTEWITTE.

The subject of the various methods of comparing a Poxter-Thomas distribution with experimental data was not included in the discussion although it would be worthwhile to come to an agreement on standard practice for this important distribution.

2.3. Cosrelations_between_In_and_ry

Such a corrclation was found for 238 U ; nevertheless no definitive conclusion was reached as to its origin : is it a nuclear effect ii.e. : a correlation between r_{n}^{0} and $\Gamma \gamma$) or an experimental effect?

The importance of this possible nuclear correlation foi the calculation of the cross sections in the tens of kev range was amphasizeã, and it has beon suggested as a possible explanation for a part of the unexplained discrepancies.

2.4. Dependance_os_the_radiative_width.with_the parity

Presumptive evidence of a dependence of $\Gamma \gamma$ or the orbital momention of the incoining neutrons has been put forward in the cisc of 232Th and 238U. It has been suggested that this may also solve some of the unexplained discrepancies between average resonance parameters and integral data.

3. Statue of the reeormenied valuea

Agreement bosween different measurements of neutron widths is poar. s.t would help in evalnation if measemers would quote, of send ta the data centres, either the axeas monsured, or the covarlance between the derived I_{n} and $I \gamma$ as well as their variances.

A fow yalues and recomentations regarding the parameters of the individual nuclei were agreed upon. For 232rh the current refomended value of the average radiation width fiom the resonance fata is $21.45 \pm$ 0.25 mev . The rescnence integral calculated from the prawaters recommended by Derrien and Ribon is $83 . \% \pm 2.7 \mathrm{meV}$ compered with the measured value of $85.8 \pm 2.5 \mathrm{meV}$.

For the individual resonance pazameters of 232 Th, it is secommended that the critical cincussions given by Derrien and Ribori at this meeting be consulted.

The situation in 2 J 8 v is not so ciear. A more detailed sumary of discussions about this nuclet te given in 84 . The present situation including a comprehonsive discussion of possible solurees of error has been given in the paper at this meeting by Hoxon. The large discrepancy between variotis experimenters for the shape of the capture cross ection of $23 B_{U}$ in the kev neutron energy region still remains but ghould be at least pariially resolved by data presented.

For the fertile nucler; 840 Pu the paper by Weigmann et al at this me ing gives a detailed and thorough sumary.

4. Summary of the Present Situation regarding U238 (n.y) for Neutron Energles below about 25 kev

We wish to bring to the attention of nuclear physicits the present situetion concerning differential and integral data for 4238 (n, γ) for neutron energies below about 25 kev . This cross section is of great importance to reactor physicists; and in particular the temperature dependence of the shielded crosss etion is the main contributor to the Doppler effect i.s a fast reactor.

There are three sources of information for the data :
(1) The parameters of the resolved resonances (measured so far up to 5 kev) allow the estimation of mean widths and spacings, at least for the s wave resonances. Note that a very large proportion ($\sim B 0 \%$) of the U23B Dopplex effect of a fast reactor un= der normal operating conditions arises from these resolved resonances.
(i1) Measurements of the infinitely dilute aver rage cross seation $\bar{\sigma}_{\omega}(E)$
(1i1) Integral measurement: in reactors; leading (via data adjustment programmes) to estimates of the shielded nverage cross seem tion ${ }^{\circ} \operatorname{sh}^{(E)}$

The derivation of average resonance parameters from (1) ia very difficult ; this is clear from the widely iiscrepant values obtained by different workers (see paper by Sowerby). Hence, by itself (i)
cannot give roliable cross sections in the unresolved rogion, but it is possible to obtain mean paraneters that are consistent either with (1) and (ii), or with (i) anc (iii). Reactor integral measureinents imply a copturc crose-section about 12\%, or two standara deviditionc, bolow brodd resointion measurements between 1 and 10 sev .

However, it is nat possible at present to obtain data that are consistent both with average unshielded cross sections and with reactor integral measurements. This is so for the following reason.

If we write :

$$
\begin{equation*}
\bar{v}_{s h}(E)=f \bar{\sigma}_{\infty} \tag{E}
\end{equation*}
$$

where fis the shelining factor, then f is only weak?y dependent on the resonance parameters, $\bar{a}=$ has been shown by Barre at this meeting, and by unpublished work in the UK. Corsequently, since reactor measurements imply a reduction in g_{sb} of about 12% it is aiso necessary to reduce σ_{0}. by abift the same amount : making the usual assumptions about mean parameters and distributions we cannot find a set of resonance para" meters that will decrease $\bar{\sigma}_{\text {sh }}$ without also decreasing σ_{∞} 。

Summarising, there is a discrepancy of about 2 standard deviations hetween measurements of the average unshielded cross section for 0238 (n, y) and between reactor integral measurements that lead to values for the shielded cross section. Possible explanations of the discrepancy could include :
(a) systematic exrors in either the measurements of C_{∞} or in reactor measurements or in their interproctazion.
(b) systematic faulta in the adjustment procedure : Eor example other cross sections used in the interpretation may be erroneuns ;
(c) some now physical effect in the U238 resonance parameters (for example, a correlation between Γ_{0} and Γ_{γ}; or dififerent Γ_{γ} 's for s and p-whye resonances).

The best experimental value for $\overline{\mathrm{F}} \mathrm{\gamma}$ is 24.14 meV (M Maxon) : but reactor measurements would be better

fitted by a smaller value.

Very different vaiues of strengith functions have been obtained by different workers (see the paper by M G Sowerby). The mean resonance spacing, $\overline{\mathrm{D}}$, also differs in different analyses : Rahn obtained (20.8 \pm 0.3) eV from his own measurements, but these same data have been used by H Weigmann, and independently by M Janes, to give values of about $(22.5+2) \mathrm{eV}$. The larger figure is in better agreement wïh reactor measurements. There is conflisting evidence abrut whether $[\gamma$ is the same for -wave and p-wave resonances.

The adjusted data may appear adequate for most reactor calculations, but in our opinion the discrepancy should not' be overlooked, for two reasons. First, it is undesirable to cover-up a discrepancy, which implies that we de not fully understand the physics of the problem. Secondly, it may be dangerous to use the data in situations very different From those considerea in the adjustment studies, for example in extreme accident conditions.

Recommendations for further measurements on ${ }^{238} \mathrm{U}$
The following types of meeasurements are recommended :
(1) High resolution thin sample measurements, either to give resonance parameters or to be ustl directly in reactor calculations.
(ii) Low resulution thick sample measurements, preferably at several temperatures, to compare with reactor integral measurements.
(iii) Kigh resolution thick sample measurements to indicate which resonances are not s-wave.
(iv) Whenever possible, total, capture are scattering measurements should be carried out tand the resonance parameters obtained from area analysis used to calculate cross section curves for comparison with the obtained data.

B - SUB-GROUP SESSION ON 239 PU

The main subjects discussed were as follows :
I - M. JAMES and M. SOMERBY reviewed the raquirements of the reactor physicist for Pu-39 cross sections. Those are mostly for the fission cross section above I KeV for which a 38 accurecy is desired, and for the capture cross section for which the accuracy requizement is approximately 3 to 5% in α. .

At the present time the cross section uncertainties for Pu-239 based on differences between integral data and predictions from differential data axe small compared to those of other materials (particularly U-238) hence there is no preasing need for improvemen: in the PL 239 data, althougn eny significant improvement in accuracy reduces the margin of acceptable adjustments and hence will help.
s!owever, more precise measurements for ${ }^{239} \mathrm{pu}$ would add to the constraints imposed on the less well-known cross-sections in the least squarcs adjustinent computations. Present requests are for an accuracy of ± 38 ir the fission cross section above 1 kev , and $+3-+5 \%$ for $\alpha=\sigma_{c} / \sigma_{F}$.

Sclf indication and transmission measurement as a function of temperature would be of considerakly less interest for Pu-239 than for $0-238$.

II - P. RIBON inquired about the treatment or intermediate structure in the generation of "statistical cross section" in the $\mathbb{U} . \mathrm{K}$. - M, James described how statybtical resonance parameters are generated by the code GENEX which uses the Vogt multilevel formelisn, and adjuats the gtrength function and the Everage fission width of the $J=I$ state so as to reproduce the evaluated average total and fiscion cross sections for each energy group.

Generation of resonance parameters from statistical diatributiong for reactor calculations should take account of the observed intermediate strucfure in the cross aections. The 'ladders' of these pseudo-rcconances should include the effect of longrancj ordering if poosible : this applies also to ladders for other nuclides auch as $238 \mathrm{U}, 235 \mathrm{U}$.

III - A discussion followed on whether the structure of the cross aection ip the unrasolveci resonance region could be caasured with sufficient details to eiiminate the need for mock-ups by the generation

Abstract

of statistical parameters. It appears that the resolution is available in principle and, if good measurements of the fluctuations of the cross sections were made, these could be used directly by the reactor designers. But this apprnach needs to be discussed mere extensively.

IV - F. CORVI proposed a new technique to measure a by detecting a low energy gamma ray transition simultaneously with some characteristic fismion gama ray line. The method, although very intecesting, has many inherent assumptions, so that it would probably not be an improvement over the more classical methods used in measuring a.

V - P.RIBON was curious to know why, for instance, the SACLAY evaluation of the Pu-239 resonance parameters was not adopted for the ENDE/B Version IV evaluation. A discussion followed on a comparison of the cross sections obtained with the resonance parameters published by P.RIBON and those obtained with the preliminay parameters of ENDE/B - $I^{* *}$. One of the conclusion of this discussion was that it would be desirable that evaluators discuss their evaluation with respect to previous evaluations and state clearly the shortcomings of previous evaluations so that evaluators know in which respect their work needs to be inlproved.

VI - It is now feasible in principle to measure ${ }^{239} 9_{\mathrm{pu}}$ cross-sections with sufficient resolution to show all the resonance structure up to perhaps 25 keV . If this could be done consistently for all cross sections for at least for the total, capture and fission cross sectiong) the results could be Doppler broadened and used directly in reactor calculations without analysis into resonance parameters. This would also avoid the need for generation of pseudo-resonances.

VII - The two latest evaluations for ${ }^{239} \mathrm{pu}$, Dy Riion and LeCog, asd for ENDF/BIV, differ in a number of respects. It was not thought possible to recommend one rather than the other : indeed, it is probably desirable to have the two alternatives for comparisot.

C- SUB-GROUP ESSION ON "THERMAL RANGE"

I - p. Reucs presented an evaluation of the uncertaintios on the thermal temperature coefficient due to the uncertainties on the slopes of $a \sqrt{E}$ in the therwal range and commented specially two points :

- the unsertainedes, particularly the ones due to the capture cross sections of fissile nuclides, are not negligible and can have some implications for reactor design.
- theze are some significant discrepancies between measurements of the temperature coefficient and the calculation with the UR iibrary.

The precision of calculated temperature coefficients is not well-known, due principally to uncertainties in the low energy fission cross sections of 235 U and 239 Fu . Discrepancy between the calculated and measured terperature coeffiejent of themal reactors, is not inconsistent with the uncertainties in the low energy cross sections, particularly in their shapes. min observed temperature coefficient could be used wo calculate the slope of the cross sections With energy.

II -. The recent CBMN measurements of the fission cross secticn of 239 pu , presented by C. WAGEMANS, have been carried out on the \quad R2 reactor and the CENM Linac. Two points were made :

- The problem of obtaining the $2200 \mathrm{~m} / \mathrm{s}$ cross section : an error of 0.1% has been added to account for the differences in the value obtained by several different fitting procedures; the proposed value is $741.9 \pm 3.4 \mathrm{~b}$.
- Calculation of the Westcott's g-factor between 0 and $1000^{\circ} \mathrm{C}$ from the data were carried out and the value obtained at room temperature (I. 0522 ± 0.00351 is in perfect agreement with AIEA recommancica value.

III - Experimonts are being considered that will measure n and o_{f} for ${ }^{235} \mathrm{U}$ and ${ }^{239} \mathrm{P}_{\mathrm{p}}$ with great precision below $\mathrm{l}^{2} \mathrm{cV}(\pm 0.57$ for n$)$.

D - SUMMARY OF RECOMMENDATIONS.

I - Where possible, shape fitting routines with a chisquare least error determination are preferred over area analyses since the former should result in a more consistent treatment of backgrounds or offresonant contributions paitscularly when mulitiple sample thicknesses are used.

II - Data froin several sample thicknesses are desired both to obtain near optimal thicknesses for as many resonances as possible and also to help in the proper determination of such difficult correctiris as multiple scattering effects, etc.

III - High resolution thin sample measuremests should be made on ${ }^{238} \mathbf{U}$, either to glve resonance parameters or to be used directly in reactor calculations.

IV - Low resolution thick sample measurements, preferably at several temperatures, should be made on 238 U , to compare directiy with reactor integral measurements.

V - High resolution thick sample measurements sinould be made on 238_{U} to give an indication of resonances that are not possible due to s-wave neutrons.

VI - Whenever possible, total, capcure and ssattering eross sections should be meagured and resonance parameters obtained from area analyses should be used to calculate cross section curves for comparison With the observed data.

VII - The feasibility should be Invegtigated of measu-
ring the cross sections of 239 pu up to about 25
kev with sufficiently high resolution to show
all the fine structure. These cross sections could
then te used directiy, without analygis into
resonance parameters, in reactor calculations.

VIII - Experimenters should in all casen state clearly any parameters used to fit background and/or offresonant cross sections in their analyses. When exferimental valuen of parameters are interdepen dent, covariances such as cov ($\Gamma_{n}, \Gamma \gamma$) should be given.

Experimexters making area veasurements are asked to send to the Data Centres For Each Eample either the actual area measured, or the covariances between the derived neutron and sapture widths. This whll help evaluators to obtain a better weighting for each experiment and a moie consistent get of parameters.

IX - Further experinental study 13 needed of the shape of the fisaion and capture cross sections (or of ?) bolow 1 eV of 239pu (and of 235U).

X - Methods of dexiving the mean spacing of resonances From obsorved resonance parameters, and allowing Eor missed resonances, should be compared.

XI - The large discrepancy between the measured cayrure cross section for ${ }^{236} \mathrm{U}$ below 10 keV and that required to explain reactor integral measurements should be investigated.

XII - 'Ladders' of pseudo-resonances generated in the unresolved resonance region for use in reactor calculations should allow for intermediate structure where that has been observed, and for long-range ordering in resomance energies.

KIII - There should be a specialist meeting on resonance formalisms for use in reactor calculations.

APPENDIX

A - Expressions used for Porter-Thomas distribution

a) $P_{1}(x) d x=(2 \pi x)^{-1 / 2} \exp (-x / 2) \mathrm{dx}$
with $\left.x=\Gamma_{n}^{a} /<\Gamma_{n}^{a}\right\rangle$

This is the standard expression.
b) if $\left\langle\Gamma_{n}^{\circ}\right\rangle$ is usen explicitly as a parameter :
$P_{2}(y, u) d y=(2 \pi u y)^{-1 / 2} \exp \{-y / 2 u\rangle d y$
with $y=r_{n}^{0}$ and $u=\left\langle r_{n}^{0}\right\rangle$
c) the integral distribution

$$
P_{i}(x \geqslant z)=\int_{z}^{\infty} p_{1}(x) d x=f_{z}^{\infty}(2 \pi x)^{-1 / 2} \exp (-z / 2) d x
$$

This form has the disadvantage of not showing clearly the interesting region of small widths.
d) $P_{4}(w) d w=(2 / \pi)^{1 / 2} \exp \left(-w^{2} / 2\right) d w$
with $\left.w=x^{1 / 2}=\left(\Gamma_{n}^{0} /<\Gamma_{n}^{0}\right\rangle\right) .1 / 2$

This form of the distribution has nany advantages over the othec formulas because of the regular behaviour near the origin, its closer conmection to the nuelear matrix quantities and the more restricted range of vaIues of interest for w as evidenced by the shape of the distribution.

SPECIALIST MEETIMG ON RESONÁNCE PARAMETERS of fertile nuclet and 239 ple isotope.
 IMPORTANCE OF resonance parameters of fertile NHC:EI. AND OF 239 Pa ISOTOPE FOR FSST POWER

 REACTORS.J. Y. BARRE - A. KifílRALLAH

INTRODUCTION

The Amportance of resonance parameters of fertile nuclei and of 239 pu isotope for fast power reators will be restricted. in this presentation, to mixed - oxide - uranium - plutoniun fuelled , sodium-cooled and uranium - oxide - sodium reflected fast reactors. The power range lies between 200 and 2000 MWe.

Anong the topics of this spocialist meeting, the isotopes to be consiciered arepprimerly 239 Pu , then 238 U and 240 pu .

Resonance parameters are mainly used in fast power reactor calculations through the well-known concept of self shielding factors. After a short description of the determination and the use of these self-shielding factors, their sensitivities to resonance parameters are characterized from some specific exampins : those sentitivities are small.

Then, the main design parameters sensitive to the amplitude of self-shielding factors are zonsidered : critical enrichment, global breering gain. The relative impnrtance of isotope, reaction rate and energy range ars mentionned.

In a third part, the Doppler effect, sensitive to the temperature variation of self-sinielding factors, is considered in the same way.

Finally, it is concluded that the present knowladge of resonance parameters for $238 \mathrm{U}, 239 \mathrm{Pu}$ and 240 Pu is gufficient for fast power reactors from a denigner point of view.

All this analysig is baser on the Cadarache multigroup cross section set and code CARkAVAI Version III I/ and the CEA fast reactor physics programest In this CEA approach, it must be mentionned that the used cross section adjustment procedure allows to consider well-known the average multigroup cross sections from systematic integral measurements on several typical fast reactor lattices. This is specfo" ${ }^{\circ}$ ir true for 230U . 239 Pu and 240 Pu capture cross sections and 239 Fu fisaion one.

IT - USE OE RESONANCE PARAMETERS IN EAST REACTOR CALCULATIONS

11-1. SELE-SHIELOXNG FACTOR CONCEPT
1- It should be recalled that nultigroup calculations with an ultrafine energy mesh allowing to describe pointby -point cross sections ir the heavy isotope resonance energy region cannot be considered in a standard way. To take into account, in standard multigrcup osculations, the fine stricture of the spectrum inside the energy lImits of a broad group g, the well-known self-shielding factor concept is used.

2- The spectrum fine structure depends on the relative contributions of all the resonances from all the isotopes to the total macroscopic cross section. An average cross section $T_{\text {for }}^{\infty}$, over the group g energy limits, obtainediby weighting the point-by-point cross section $V_{i}(E)$ with an energy-flat spectrum is called infinite diluted " \quad cross section. $A n$ average cross section $\hat{F}_{\boldsymbol{F}}, \dot{<}$ over the group g energy lint obtained by weighting the point-by-point cross section $\sigma_{i}(E)$ with the re" spectrim, ie. taking into account the fine structure inside the group g due to the isotope $i, 1 s$ called fffective cross section. The self-shielding factor $f g_{p} \boldsymbol{I}_{\mathrm{f}} \mathrm{x}$ for one isotope i, one reaction x and one energy group g is defined by the relation :

$$
\begin{equation*}
f_{g, i, x}=\frac{\tilde{\sigma}_{g, i, x}}{\sigma_{g, i, x}^{\infty}} \tag{1}
\end{equation*}
$$

Then, by definition, selfoshielding factors are lower than 1 .

3- The more the isotope i contributes to the fine structure uf the total macroscopic cross section, the more the selfushielding factor is small: these factors f are medium - dependent. To avoid a new calculation of the f factors for each mpdiun, they are tabulated at once for each isotope 1 versus a parameter called dulution Di. Tnat dilution characterizes the relative contribution of the isotopes of the lattice, an compared to the isotope i, to the total macroscopic cross secticn :

Then, for a new medium, by interpolation versus, the dilution in the tabulation of the f factors and from the multigroup infinite dilited cross sections (mediumindependent), the useful effective multigroup cross sections are obtained for all reactions X and isotopes is

$$
\widetilde{\sigma}_{g, i, x}=f_{g, i, x} \quad \dot{\sigma}_{g, i, x}^{\infty}
$$

4- Calculations of tabulated"gelfoshielding factors are performed from resonance parameters with more or less sophisticated nuelear models that will be.discuesed during this meeting. The temperature dependence of selfshielding"factors is normally included in the tabulation, taking into account the resonance Doppler broadening in the nodel.

5- Far ouacple, in the CARNAVAL III systera self-shielding faccora axc tabulated in a 25 group energy mesh from $414 \mathrm{eV} \geqslant$ to 67,4 Kev ($24 \leq \mathrm{G} \leq 10$) for a dilution variation berween 0 and infinity and a $300^{\circ} \mathrm{K}$ to $3000^{\circ} \mathrm{K}$ temperature range . For $239 \mathrm{Pu}, 238 \mathrm{U}$ and 240 Pu , reaction considered are capture, totai, plastic, fission (not for 238 U 3.

The 238 U capture self-shielding factor variation versus energy is shown on fig. 1 for a normal 238 U dilution in a fast reactor (40 barns) and two temperatures 300 and $900^{\circ} \mathrm{K}$.

Figure 2 preserts the 238 U capture self-shielding factor variation versus dilution for the energy group $1.23-2.04 \mathrm{~K} \sigma \mathrm{~V}$ and two temperatures 300 and $900^{\circ} \mathrm{K}$.

II-2 SENSETIVITY UF SELF~SHIELDING FACTORS TO RESONANCE PARARETERS.

Sensitivity studies have been performed on the 238 U sapture cross section for two energy groupa located in the energy range of the largest capture rate :

$$
\begin{array}{ll}
450-750 \mathrm{cv} & g=19 \\
3.3-5,5 \mathrm{Kev} & g=15
\end{array}
$$

Three 238 U dilutions have been studied :
50 (ugual dilution), 100 and 500 barns.
Parametars considered are the averajed 233 capture cross section in tho group calculated from the nuclear model $<\sigma<>$, the calf-shielding factor f_{c}, the variation of the sclf-shiclding factor versus temperature between ather 300 and $900^{\circ} \mathrm{K}$ of 900 and $3000^{\circ} \mathrm{K}$.

The present uncortainties accepted on resonance parameters for 238 t are the following ones :

```
# 10% on [Y
\pm 10 % on in (swaves)
$20 & on [r {pwaves }.
```

The sensitivities of the parameters previously mentionned to the ma:imal possible increase of these resonance parameters are presented respectively in tables I, II, and III.

The main conclusions drawn from these results are : 1- The average capture cross section variations remain large, e.g, up to 5ifor a 10 \& increase in Γ.

2- Self-shielding factor senaitivities to resonance parameters are small for example :

$$
-0,5 \text { for } a+10 \% \text { on } \Gamma \gamma
$$

3- Sensitivities of self-shielding factor variations (Δf) idetween two temperntures are limited to ± 38 for a standard 238 u diluะion.

4- For self-shielding factors the sensitivity dacreases when the dilution or the energy increase.

III - INFLUENCE OF RESONANCE PARAMETERS ON DESIGN PARAMETERS

III.1. SELF-SHIELDING FACTORS VALUES
a) The self-shielding factors f averaged over the whole spectrum of several cores have been calculated for 238 U capture, 239 Pu fission and capture, 240 Pu fission and capture czcss sectiors (Table IV). These lattices cover the whole range of sodium-cooled fast power reactors. The results conceraing metallic fuels studied in some critical experiments are also presented to put in evidence the dilution influcree (fuel density variation).

From these results, it appears clearly that,in the frame of the problems considered in this meeting, only the cclf-ghiselding factor knowledge for 238 U captiot is important for fast power reactors.
b) Coz 239 Eu figsion, the self-shielding effect represnetc betwoen . 4 and 7 of the reaction rate.
Figure $\&$ represents the self-shielding effect on 239 Pufvalue versus the spectrum index r that characterizes jlobally the whole spectrum of a lattice : it ronains small $(1,3 \%)$ and independent of the core. For 240 pu capture cross section, it varies from 1% for PHENIX (14 of Pu 240) up to 2.6 for SUPER-PHENIX ($20^{\circ} \mathrm{Pu} 240$).
c) The variation of the parameters $(1-\overrightarrow{\mathbf{f}})$ for 238 capture versus the spectrum index $r(f i g)$), shows the strong increase of the self-shielding factor when the spectrum softens (low r values) : from 9% of the capture rate for PHENIX inner core, up to 18 for SUPER-PHENIX inner core.
III.2. INFLUENCE ON DESIGN PARAMETERS
a) The two parameters considered are Keff, or critical enrichments, and internal breeding gain (I E G) for the inner core of a 1200 NWe reactor at the equilibrium stage, the Pu fuel sontaining 20 : Pu 240.

Sensitivities of these two paracters to cross section variation have been calculated from the USACHEV generalized perturbation thcory (code pertus) . For I B G, after a 1 it cross section increase, the eriticality is obtained by enrichnent variation (Table V).
b) The contributions of the total self-shielding effects to these two design parameters (Table VI) confirm the only importance of 238 U capture self-ghielding factors. cl Taking into account the whole sources of uncertainties, it is whittod that the roniributions of self-shielding frgeors uncertainctes muxt be:

$$
\frac{\text { GKefE }}{\text { KefE }}= \pm 0.2 \& \text { a IBG }= \pm .015
$$

So, from tire prepious results (Tables V and VI), the following requests on self-shielding factors can be made, looking either to Keff or to IBG parameters ;

Reaction	$\frac{\Delta f t f r o m ~ K e E f ~}{f}$	$\frac{\Delta f:}{f}$ from IBG
236 U Capture	± 1.1	$*$
239 Pu Fission	± 0.4	$*$
239 Pu Capture	± 3.3	$*$
240 Pu Capture	± 10.0	$*$

In all cases, the reguests from Keff is more stringent (7 () . These requests correspond to the following relative uncertainties or the parameters $(1-\bar{f})$:

239 Pu fission	± 40
239 Pu Capture	± 180
240 Pu Capture	± 400

Looking to the small influence of resonance parameters on selfrshielding factors (Tabla I, II, III) , thege reguests can be considered satisfied to day.
d) For the most senmitive cross section, 238 u capture one, the present uncertainties on Γ 个 and Γn (pwaves) ere sufficient. (See § II and Table I and IIT).

Consldering the energy distribution of the 238 v capture rote, it appears also that the present knowledge of In (swaves) parameters is sufficient. Fur the same 1200 Nwe core, the probability of 238 J capture rate below the energy E is represcrited on Eig 6. That probability can be characterized by the following figuros :

$\mathrm{E}<1 \mathrm{Hev}$	8%	of the capture rate
$\mathrm{E}<6 \mathrm{Hev}$	22%	n
$\mathrm{E}<10 \mathrm{Kev}$	36%	n
$\mathrm{E}<67 \mathrm{Kev}$	68%	n

The rais 238 U capture appears in an enargy range (\& Kev- 60 Kev) where the consequence of Fn (swaves) zesonance parameter uncertainties on self-shielaing factors are largely lower than the requested accuracy.
e) Einally, due to the CEA philosophy in fast reactor physics, the cross section adjustment procecure allows a direct determination of effective 238 U capture cross section from systematic integral measurements of the 238 Uraniun capture to 235 Uranium fission ratios. So the variation of the average 238 U capture cross sectien due to uncertalnties on resonance parameters (see § II Table I, II, III) ha; no consequence. The only problem comes from the uncertainty on the transposition from integral experiments to power reactor (dilution variaticn).
It has been shown that this problem is sufficiently well-known.

IV - INflidence of resonance parimeters on doppler effect

IV . 1. CONTRIBUTIONS TO THE DOPPLER

The Doppler effect is entirely due to the temperature change of resonance self-shielding, and almost entirely due to that of fertile $\left({ }^{238} \mathrm{U},{ }^{240} \mathrm{Pu}\right)$ and fissila $\left({ }^{339} \mathrm{Pu}\right)$ isotopes.

For a large fast power reactor (1200 mwe $E \simeq 12$ 20 o ${ }^{240_{P u}}$, the major contributor to the Doppler effect is ${ }^{238} \mathrm{U}$ isotope :

${ }^{23} B_{U}$	858
${ }^{239}{ }_{\text {Pu }}$	$\simeq 108$
$240{ }^{\text {Pu }}$	$\leqslant \quad 5$

The energy distribution of the Doppler effect in such a reactor (Fig. 5) shows that the major part comes from low energies, say below 15 Kev :

${ }^{238_{\mathrm{U}}}$	$\simeq 75 \%$ jelow 3.4 keV
	$\simeq 80 \%$ below 5.5 keV
	$\simeq 90 \%$ below 15 keV
${ }^{230} \mathrm{Pu}$	$\simeq 60 \%$ below 200 eV
	$\simeq 90 \%$ below 1 Kev

Then, the Doppier offect is mainiv due to 238 U resolved resonances.

IV . 2. EEFECT OF ${ }^{23}$ URANIUM RESOLVED RESONANCE PARAMETER UNCERTAINTIES
a) The ${ }^{238} 0$ Dappler effect is proportionnal to the following expression:

$$
\Delta K \sim-\sum \phi^{g} \phi^{*} g\left\langle{o_{c}}_{c}\right\rangle \forall \quad \& f_{c} g
$$

Whon : ϕ^{9} and $\phi^{2 g}$ are the direct and adjoint flux in energy group g.
$\left\langle{ }_{c}\right\rangle{ }^{9}$ is the averaged (unshielded) oroun capture
crose section
Δf^{c} is the change, due to temperature change, of the self-chielding factor.
Uncertaintiec on resolved resonance parameters have a double influence :
.. to modify the averaged cross sections

- to modify the self-shielding factors and their terperature variations.
b) As proviously mentionned for the two design parameters, Keff and IBG (sen § III), the averaged cross section variation has not to he taken into account.

For the self-shielaing variation, it can be clearly seen from tables I_{r} II, III (S II) that :
a) it 10 z uncertainty in Γ leads to a maximum variation of 2 in the Doppler effect.
b) A 10 uncertainty in $\boldsymbol{r}_{n}^{\prime}$ (s waves) resul.ts in a maximum variation of 3 in the Dopple: effect.
c) A 203 uncertainty in Π_{n} (p. waves) leads to a maximum variation of 28 in the Doppler effect. In fact, if this unceriainty is weighted on the Doppler effect energy distribution, this variation ramains lower than 1 .
c) The corbination of these uncertainties gives a masimun variation of 4 to 5 on the Doppler effect due to the knowlecge of $23 \theta_{i}$ resonance parameters.

```
Th1s flgure has to be compared :
first to the design request accuracy : # 20 s
second to the other error sources, mainly the calcula-
tion of the flux spectrum:
\pm 2 0 ~ t o ~ 3 0 ~ * ~
```

.Then, it is conciuded that the present uncertainties on resonance parameters are certainly not the major limitation of the accuracy of the Doppler effect prediction in large fast power reactors.

v - CONCLUSION

. Resonance parameters are used in fast reactor calculations through the well-known concept of self-shielding factora.
.From the calculated contributions of self-shielding effect for fertile isotopes $\int^{238} V_{U},{ }^{240_{p u}}$ and fissile ${ }^{239} \mathrm{pu}$) ones to design parameters of large power reactors, it appears clearly that only ${ }^{238} u$ capture self-shielding factors play a role on critical enrichment (Keff) and internal breeding gain, even for the soften spectrum of the inner core of a 1200 MWe plant.
.For the Doppler effect, only temperature variations of self-shielding factors for ${ }^{230} \mathbf{U}$ cepture cross section in the resolved resonance energy region are important.
-The following uncertalnties on resonance parametors for ${ }^{238}$ Cranium 1sotope are presently cvaluated :

$$
\begin{gathered}
\Gamma \gamma: \pm 10 \% \quad \ln (\mathrm{~s} \text { waves) }: \pm 10 \mathrm{i} \\
\quad \Gamma \mathrm{n} \text { (D waves) }: \pm 20 \mathrm{~g}
\end{gathered}
$$

. From the sensitivity studies performed, it is concluded, at the CEA, that these uncertainties are presently largely sufficient to answer all the design requests on large fast breeder plants, many other sources of error still plaving a leading part.

LIST OF TABLES

```
TABEL I - Effect of a 108 increase in ry
    " II - Effect of a 108 increase in \Gamman ( Swaves ?
    " III- Effect of a 208 increase in \Gamman ( Pwaves)
    O IV - Average self-shielding factors.
    " V - Sensitivities of keff and internal breeding
        gain ( IBG) to a 1% cross section increase -
        1200 mWe inner core.
```

 n VI - Contributions of the total self-shielding effects
 on kef: and irternal breeding gain
 LIST OF FIGURES
 Fig 1 - 238 U capture - Self-shielding factor versus energy Dilution - 40 barns

Fig 2 - 238 u capture - Self-shielding factor versus dilution
Fig 3 - 238 U capture - Average self-shieiding factor \bar{f} versus spactrum.
Fig - 239 Pu alpha - Eelf-shielding fictor $\overline{\mathrm{f}}$ versus spectrum.
Fig 5 - Energy distribution of Doppler effect in a typical large fast power reactor ($900^{\circ}-300^{\circ} \mathrm{X}$)
Fig 6-238 U capture - Probabilaty P (E) of capture rate below the energy E.

REFERENCES

[1] J.P.chaUDAT and ai.
Improvements of the predicted characteristics for fast power reactor from integral experiments : Cadarache Version III multigroup cross section set. Paper A 34 . Vol III - P. 1207 - International symposium on physics of fast reactors TOKYO - October 16-19 (1973)
<2_7 J.Y.BARRE and al.
Fast reactor physics at CEA : Study of the characteristics of the " clean core " cell neutron balance, control rods, power distributions - Paper A 21 - Vol I . P. 396 - ibidem (1973)
[3] J. BOUChARD and al.
Fast reactor physics at CEA : higher plutonium isotopes and burn up studies paper B 14 - Vol II - p. 767 - ibidem (1973).

TABLE I.
Effect of $a+10 \&$ increase in $\lceil\gamma$.

$\%$	$\frac{\sigma^{\prime}\left\langle\sigma_{c}\right\rangle}{\left\langle\sigma_{c}\right\rangle}$	$\begin{aligned} & \delta \tilde{F}_{c} / \tilde{f}_{c} \\ & \left(300^{\circ} \mathrm{k}\right) \end{aligned}$	$\begin{aligned} & r\left(\Delta \tilde{f}_{c}\right) / \Delta \tilde{f_{c}} \\ & \left(900^{\circ}-300^{\circ} k\right) \end{aligned}$	$\delta\left(\Delta \tilde{f}_{c}\right) / \Delta \tilde{f}_{c}$ $\left(3000-900^{\circ} \mathrm{K}\right)$
group 19 $40-7500$$\left\{\begin{array}{cc}\sigma_{\rho}= & 50 \text { barns } \\ 100 \\ 500\end{array}\right.$	+ 5.	$\begin{aligned} & -0.5 \\ & -0.4 \\ & -0.2 \end{aligned}$	$\begin{aligned} & -0.6 \\ & -0.4 \\ & +0.1 \end{aligned}$	$\begin{aligned} & -0.3 \\ & -0.1 \\ & +0.5 \end{aligned}$
	+ 5.	$\begin{aligned} & -0.4 \\ & -0.3 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +1.8 \\ & +2.2 \\ & +2.6 \end{aligned}$	

TABLE II.

Effect of a +10 increase in in (Swaves)

$\%$	$\frac{\delta\left\langle\sigma_{c}\right\rangle}{\left\langle\sigma_{c}\right\rangle}$	$\begin{gathered} \delta \tilde{f_{c}} / \tilde{f_{c}} \\ \left(300^{\circ} k\right) \end{gathered}$	$d\left(\Delta \tilde{f}_{c}\right) / \Delta \tilde{f}_{c}$ ($900^{\circ}-300^{\circ} \mathrm{K}$)	$\delta\left(\Delta \tilde{f_{c}}\right) / \Delta \tilde{f_{c}}$ $\left(3000-900^{\circ} k\right)$
$\begin{gathered} \text { group 19 } \\ 450-750 c\left\{\begin{array}{c} \sigma_{p}= \\ 100 \\ 500 \end{array}, ~ . ~\right. \end{gathered}$	+4.5	$\begin{aligned} & -3 \\ & -2.5 \\ & -1.2 \end{aligned}$	$\begin{aligned} & -1.8 \\ & -0.3 \\ & +3 . \end{aligned}$	$\begin{aligned} & \pm 0.8 \\ & +2 \\ & +4.5 \end{aligned}$
$\begin{gathered} 3,5-5,5 \\ \text { xev } \end{gathered}\left\{\begin{array}{c} \sigma_{\rho}=50.5 . \\ 100 \\ 500 \end{array}\right.$	+ 1.5	$\begin{aligned} & -0.8 \\ & -0.5 \\ & -0.2 \end{aligned}$	$\begin{aligned} & +3 . \\ & +4 . \\ & +6 . \end{aligned}$	

TABLE III:

Effect of $a+20$ o increase in Pn (pwaves)

	$\%$	$\frac{\delta\left\langle\sigma_{c}\right\rangle}{\left\langle\sigma_{c}\right\rangle}$	$\begin{array}{r} \delta \tilde{f_{c} / f} \hat{f} \\ \left(300^{\circ} k\right) \end{array}$	$\begin{aligned} & \delta\left(\Delta \tilde{f}_{c}\right) / \Delta \tilde{f}_{c} \\ & \left(900^{\circ}-300{ }^{\circ} k\right) \end{aligned}$
group		0	0	0
group 15	$\begin{aligned} \sigma_{P}= & 50 \mathrm{~b} \\ & 100 \\ & 500 \end{aligned}$	+6.	$\begin{aligned} & +0.5 \\ & +0.3 \\ & +0.1 \end{aligned}$	$\begin{aligned} & -2 \\ & -3 \\ & -3 \end{aligned}$

TABLE IV.
Average Self-shielding factors.

	238 U	Pu 239	Pu 239	Pu 239	Pu 240	Pu 240
	Capture	Capture	Figs.	$\alpha=\frac{\sigma_{c}}{\sigma_{f}}$	Capt.	Fiss.
METAL FUEL						
$E=250$. 869	. 963	. 991	. 971	. 984	1
18 i	. 807	. 956	. 987	. 968	. 979	1
128	. 703	. 949	. 982	. 966	. 969	1
OXYDE EUSC						
PHENIX $2 \mathrm{E}=250$.911	. 983	. 996	. 987	. 990	1
PHENIX $1 E=180$. 858	. 980	. 994	. 987	. 985	1
$1200 \mathrm{MNE} 2 \mathrm{E}=190$. 855	. 981	. 994	. 937	.978 :	1
1200 **E $1 \mathrm{E}=158$. 820	. 980	. 993	. 987	. 974	1

TABLE V.

Sensitivities of Keff and IBG to +18 cross sejtion increase - 1200 mwe inner core $G R I=-0.13$

Reaction	$\delta K / K \%$	$\delta I B G$ (abrolutel\|
233 U Capture	-0.23	+.0049
239 pu Capture	+0.55	+.0052
239 Pu Captuce	-0.06	-.0032
.240 Pu Capture	-0.02	-.0087

TABLE VI.

Contributions of the total self-ghieiding effects on Keff and IBG (1200 NWe inner core)

Reaction	$(1-\bar{f}) \%$	$\delta K / K \%$	$\delta \int B G$
238 v Capture	18.0	$+4.1$	$-.088$
239 Pu Fission	0.7	- .'38	-. 0008
239 Pu Capture	2.0	+ . 12	$+.0064$
240 Pu Capture	2.6	$\therefore+.05$	-.0018

EVALUATION OF THE THORIUM 232

CAPTURE RESONARYE INTEGRAL

D. GRENECHE

C. E. A.

EMmODUCTIO: -
Before undertaking any ncutronic study, it is important first of all to estimate the validity of the nuclear constants on which most of calculations are based. Such an analyois is particularly necessary for thorium 232 Wherc fundumental data are much scareer than in the case of uranium 238 for instance, given the comparatively recent interest created by the development of high temperature reactors (if T R).

From the view point of a reactor physicist, the most important quantity to be established for a fertile nucleus is witrout any dcubt the resonance integral on which the conversion ratio depencs in particular. We have abready studied the problem of the resonance absorption calculation (ref [1] 1 and proposed a set of evaluated resonance parameters, on the basis of measurements published by difecrent laboratories. We have also carried out a comparative study in which the values of the resonance integral in infinite cilution, calculated by means of different sets of parameters, were compared with experimental values obtained from integral measurements. For this purpose, a compilation 0^{f} teasurements was prepared in order to dertermine the best" value as reference for comparisons.

The following value was then adofed :

$$
\begin{equation*}
I_{\infty}=\int_{0.5 \mathrm{ev}}^{\infty} \sigma_{c}(E) \frac{\mathrm{dE}}{E}=83.7 \pm 2.5 \mathrm{~b} \tag{1}
\end{equation*}
$$

In this work, no detailed critical study of the measurements avallable was attempted and the results were therefore taken simply as published.

In order to improve the estimation we have repeated this atudy examining each measurements in detail and adding recently published values. Before presenting this now evaluation we should point out that the definicion adopted for the resonance integral is given by the formila 1, which means that the so-calied "1/v" part is included.

1 - COMPILATION -

This is based on the lates". version of the C I N D A reference index (ref [2]) dated October 1973 (Supplement $n^{\circ}{ }^{1}$), which can be considered as an exhaustive list of refercnces on the experiments carried out to date. We were thus able to obtain all the original articles apart from a thesis by oEKKER entitled "The local pile eseillator as a device for measuring temperature dependance in epithermal neutron abcorption" mentioned in the index "Dissertation abstract" (section B, vol 30 p. 3817 - February 1970). Howeyer, it seems that the infinite dilution resonance integral is not studied in this work. It should be noted also that in
tine case of reference Il4 (see table I) we only have the final result which is taken from BNL 325 (ref [3]).

Fourteen measurements aitogether have been coilected and their characteristics are listed in table I (sce end of text). This table also includes 3 other compilations for purposes of comparison (see comments on table I).

2 - GENERAL CHARACTERISTICS OF THE EVALUATION

The measurements are discussed individually in the notes on table I. From a detailed study of each measurement the validity of the result has been judged and corrections applied as necessary. There we shall merely present the choices made in order to justify our recommended values for each measurement.

2-1. Normalisation yalues

Generally speaktng the results were renormalised using the latest values published in the BNL 325 (ref [3] bis) for the cross sections of refererce nuclides. These values are essentially :

- Resonance integral of gold 197 : $I_{\infty}^{a u}=1560 \mathrm{~b}$
- Cross sections at $2200 \mathrm{~m} / \mathrm{s}$ for :
. Gold : ${\underset{o}{\mathrm{CU}}}_{\mathrm{AU}}-98.8 \pm 0.3 \mathrm{~b}$
- Boron : $a_{0}^{B}=759 \pm 2 \mathrm{~b}$
- Thorium : $\sigma_{0}^{\text {Th }}=7,4 \pm 0.08 \mathrm{~b}$.

For the error on the resonance integral of gold, the BNL 325 gives $\pm 40 \mathrm{~b}$, which seems rather pessimistic. A recent evaluation by P. RrBon (ref [7]) confirms the BNL 325 value but with an error reduced to a more realistic figure $\pm 22 \mathrm{~b}$. In this work we have therefore adopted the vaIue $\overline{I_{\infty}} \mathrm{AU}=1560 \pm 22 \mathrm{~b}^{\circ}$

2-2. Error calculation
All activation measurements directly involve the 3 factors $\sigma \underset{0}{\mathrm{AD}}, I{ }_{0}^{\mathrm{AU}}$ and $\sigma_{0}^{\text {Th }}$ fee note 1 on the measurements). Which means that the relative error due to the uncertainty on these 3 values can be expressed by :

$$
\frac{\Delta \sigma_{O}^{A U}}{\sigma_{D}^{A U}}+\frac{\Delta I_{D}^{A U}}{I{ }_{0}^{P U}}+\frac{\Delta \sigma_{O}^{T h}}{\sigma_{0}^{T h}}
$$

In fact it was decided to add the different errors givaratically, which gives an uncertainty of 1.88 or 1.6 b .

For the otner kinds of moasurement (absorption) tio 3 gactors are generally not involved in the sise wry. However it can be shown by calculating the exact erros in each case that the expression of the systematic error due to these 3 normalisation values is similan in relative valuc to thet of activation measurements.

2-3. Cut-off energy

Since the so called "cut-off" energy given by different authors is not always the same (see table i) the results are reajusted to the energy $E_{c}=0.5 \mathrm{eV}$, the generally uccepted nominal value

2-4. "1/V".pare

In case where the " $1 / \mathrm{V}$ " part is not included, a con r° sution $\delta(1 / V)=1.46 \mathrm{~b}$ was added (reference [6]). It takes into account the presence of bound level below neutron binding energy in the compound nucleus of thorium 233. This problem have already been dealt with in ref [1] and we shail not return to it here, except to mention that the thermal cross section of thorium decreases faster than a $1 / \mathrm{V}$ law and consequently the actual contribution of this compoment is smaller than that obtained by applying the formula :

$$
\delta(1 / V)=\int_{0.5}^{\infty}{ }_{o}^{\infty} \sqrt{\frac{\mathrm{E}}{E_{0}}} \frac{\mathrm{dE}}{E}=2 \sigma_{0}^{T h} \sqrt{\frac{E_{0}}{0,5}}=3,33 \mathrm{~b}
$$

In the whole, the published value for the actual contribution is about 3.5 b , as given by STEER (ref. [6], and DERRIEN (ref. [8]) . Since the study of STEEN scens to be the rost accurate study on the subject, we have adopted this value. Furthemore, the value 1.46 b agrees well with those calculated from the parameters generally taken for the firt bound level.

Ench measurement will now be examined briefly.

3 - ANALYSIS OE EACH MEASUREMENT

A fow comments on the methods employed, wiil be found in the netes of table I.

If we refer to the values obtained for the other isotopes studied, espacially uranium 238 ($I_{\infty}=278 \mathrm{~b}$), *oc can consider this as a good measurement \{BNL 325 value is $275 \pm 5 \mathrm{~b})$. Consequentiy the resuli has merely been renormaliz̄əd. However, the experimental error applied is Jarger thar. that apparently adopted by the author since many ey mples taken from values given for other isotopes show t'lat the various sources of uncertainty' were not accounted for systematically.

The experimental uncertainty adopted will thus be the value we can calculate directly from the error on the cadmium ratio measurement. Finally we obtain :

$$
I_{\infty}=88.6 \pm 3 \mathrm{~b} \text { (exper.) }
$$

It should be noted that the "1/V" part is included in the measurement result itself and hence there is no need to modify the measured value

Reference_T2_\{L._RRESTENHUBER_and_al_\}

On original frature of this work is that absorption and activation measurements were carried out in the some sample. In addition, the reactivity variations are measured with high precision (1\%) by a special technique known as D C.M ("Dinger coefficient method").

Both results given by the author include a "I/V" contribution of 3.7 b , which is much too large according to our findings, although the cut off energy here is $\mathrm{Ecd}=0.4 \mathrm{eV}$ and $\int_{0.4 \mathrm{eV}}^{0.5 \mathrm{eV}} \quad \sigma_{c}(E) \frac{\mathrm{dE}}{\mathrm{E}}=0.39 \mathrm{~b}$.

The result have therefore been corrected as fol10ws
a) Renormalisation : 89,91 b (ABS) et $86,22 \mathrm{~b}$ (ACT)
b) " $1 / \mathrm{V}^{\prime}$ Capture : $1,46 \mathrm{~b} \quad 1,46 \mathrm{~b}$

The error calculation was repeated in detail for each measurement and led to an experimental exror of $\pm 5.3 \mathrm{~b}$ for the absorption measurement and $\pm \mathbf{i . 9} \mathrm{b}$ for the activation measurement, wherice the values :

```
absorption \(: I_{\infty}=91.4 \pm 5.3 \mathrm{~h}\) \{erper.\}
activation : \(I_{\infty}=87.7 \pm 1.9 \mathrm{~b}\) (exper.)
```

Refergnce_IJ_(J._GARDY) .

Nany corrections are made to alicw for dirferent effects and as a result the spectrum shown to approach a $1 / E$ form. This suggests that the measurement is carefulla donc. The macertainty due to the norinalisation values scems to be under estimated, but since we separate the two causes of error (experimental and "systematic") this makes no difference. The experimental error taken is that given by the author, ± 2, whence the result after norm' 'sation :

$$
\left.I_{\infty}=83.6+1.7 \mathrm{~b} \text { (exper }\right)
$$

Concerning the " $1 / \mathrm{V}$ " contribution, the same remark applles as for reference Il.

Reference_T4_(h.K_FOELL_and_al_)

The value of the resonance integral in infin.te dilution is obtained by extrapolation of reactivity measurements carrica out as part of a more: general study on sesonance absorption in Th 232-U. 238 mixtures. (W.K. FOELL : Doctoral Thesis - 1964 - Standford university).

Rany theoritical and experimental correction. are applied in order to account for varicus effects (deviation from l/E spoctrum, energy-degrndence of adojoint flux, reactivity effect of fast fissions. experimental corrections on diffusion of absorbers an diluents etc...).

According to the authors, 1 b out of the 3.4 barns total exror is due to uncertainty on the resonance integral of gold. The experimental error will there fore be taken as \pm ?.4 b, giving a renormalised result :

$$
I_{\infty}=80.3+2.4 \mathrm{~b} \text { (exper.) }
$$

It is to be noted that the authors obtain a theoritical vaiue of 82.3 b on the basis of the RNL 325 resonance parameters (ref. [3]).

In this work all effects beable to influence the result are studied in detail, expecially the offect of the joining furstion for the spectrum calculation in the therma* lisation range (treatement by the korowitz and Tretialooff formailsm). It is worth noting that tile result obtained for icotopes guch as indium ($3200+70 \mathrm{~b}$), hafniun ($2080 \pm 50 \mathrm{~b}$), silver ($670 \pm 20 \mathrm{~b})$, cobalt $(50 \overline{0} \pm 5 \mathrm{~b})$ anc cacsium ($45 \overline{5} 0 \pm$ 15 b) generally agree very well with the latest evaluation roportace in the ENL 325 . Nore over, the different sources of crror arc lister in ospecial detail. The various experimental crrors have been adied quadiaticcaiy, the result
renormalised and finally, the " $1 / V^{\prime \prime}$ contribution (1.46 b) added, giving :
$I_{\infty}=88.1+4.3 \mathrm{~b}$ (exper.)

The value calculated by the authors from the resonance parameters is $I_{\infty}=87 \pm 6 \mathrm{~b}$ (without " $1 / V^{\prime \prime}$).

Reference_I6.(M) BROSE)
The article gives relatively little information on the measurement, but we have the normalisation, values adopted by the author (particularly low for the resonance integral of gold : $1461: 8 . b)$ and we can therefore renomalise the result.

The uncertainty given by the author (± 1.8 b) seems greatly underestimated if the error on the normali-: sation values are included. Accounting for the errors quoted on the cadmium ratio value the experimental uncertainty obtained is $\pm 1 \mathrm{~b}$, which seems more realistic than that given by the author (0.668 or 0.6 b).

The value adopted will therefore be :

$$
I_{\infty}=87.7+1 \mathrm{~b} \text { (exper.) }
$$

Note that the value calculated by the auinor from the resonance parameters is 96 b , which seems very high.

Reference_If_(J.B...SANPSON_and_al_)
The reference value for gold are almost the same as ours $\left(I_{\infty}^{A U}=1561 b, \sigma_{0}^{A J J}=98, B b\right)$, but he thorium crosssection at $2200 \mathrm{~m} / \mathrm{s}$ is taken as 7.45 b (instead of 7.4 b here). In the case of vanadium no correction are necessary, while the deviation of the thonium thernal cross section from a " $1 /$ V" luw has been estimated correctir (1.5.b). -

The only corrections here is therefore that applied to the thorium cross section at $2200 \mathrm{~m} / \mathrm{s}$. The experimental error seems to be about 3% which gives the result :

$$
I_{\infty}=83.4+2.4 b \text { (exper.) }
$$

The authors calculate a resonance integral (without "l/V") winich varies from 79.6 b to 91.8 b according to the parameters used.

Reforencelie (I:I_TIREN)

Since the report is devoted mainly to the calculation of seif sinselding, it contains few details on the rc sonance integrial measurement itself. It is possible neve; theless to renomaliser the result knowing that the value adopted dy the author are $: \mathrm{I}_{\infty}^{\mathrm{AU}}=1510 \mathrm{~b}$ (without ${ }^{\mathrm{n}} 1 / \mathrm{V}^{\prime \prime}$) and $\sigma_{0}^{T h}=7.45 \mathrm{~b}$, giving 82.75 b for the resonant part, to which ${ }^{\text {ove }} \mathrm{adj} 1.46 \mathrm{~b}$ for the " $1 / \mathrm{V"}$ contribution.

Lacking detailed information on the different sources of error we take, as experimental error, the total crror reported ($\pm 6 \mathrm{~b}$) minus 2.5 b for the nomalisation error contributiön which gives :

$$
\left.I_{\infty}=84.2+3.5 \mathrm{~b} \text { (exper. }\right)
$$

The value calculated by the author is 82.3 h (without " $1 / \mathrm{V}^{n}$).

RefergncenfldR:B_TATMERSALL)
According to the authors them selves, the spectrum probobly diverges apprectably from a. l/E form, although therc.ray be some corpensation du to the adjoint flux ($\left.\ddagger \times{ }^{+}{ }^{+} \sim 1 / E\right)$. In addition the "self screening" correction seems rather approxinate, which casts cioubt on the extrapolation for infinite dilution.

In view of these different sources of uncertainty it was decided to disregard this measurement, which in fact would weigh veis little considering the margin of error involved ($\pm 10 \mathrm{~b})$.

Reference_IIO_SE.J._JOHNSTOU_and:ala)
OE the 5 results given we concentrated on the last wwo, which correspond to measurements carried out on the thinnest sarple. After renormaiisation of! each measurerent the average valuc was taken. With regard to the range of error, account is taken of the fict that the uncertainty on the resonance integral of gold is smaller thein the author suggests. Erem the know total. error, the experimental uncertainty $\leq s$ cocimated at $\pm 4 \mathrm{~b}$.

The value finally taken is :

$$
I_{c s}=84.5+4 \mathrm{~b} \text { (exper.) }
$$

Reforecce_In!_(V.B_KLTMENTOU_and_al.)
Given the abnormally low value provided by this
measurement, the results obtainer? For other isotopes were compared with the recomanded vaines in the latest BNL 325 (ref. [3]). For uranium 238 the measurement gives $224 \pm 40 \mathrm{~b}$. whereas the value guoted in [3] is $275 \pm 5 \mathrm{~b}$. Similarly for silver, we have :

$$
\text { measurement : } 466 \pm 70 \mathrm{~b} \text { ENL } 325: 747 \pm 20 \mathrm{~b}
$$

and for indium :
measurement : $2220 \pm 300 \mathrm{~b}$ BNL $325: 3200 \pm 50 \mathrm{~b}$
etc...
This general disagreement is probably due very largely to the form of the actual spectrum, for which no correction has been applied. Therefore, this measurement has been disregarded.

Refercnce_Inz_(G:G.-MYASISHCEVA_and_il.)
The measurements were carried out successively in 3 quite different regions of the core where the spectra are probably very far from a $1 / \mathrm{E}$ form. Only by knowing the form of the spectrun could be exp'ained the disparity of the resulta and a conclusion reached. In tho absence of such information, this measurement will be neglected.

Refermee IIF (R.T. MAGTIN)
The two articles dealing with this measuremont give two sightly differert values : 67 b (without "1/V") and 69.8 b including a "l/V" sompoment of 3.2 b . The valuc adopted here is the latter, given in the more recent publication (Erogress in nuclear energf).

The article docs not explicitiy state the value used for the thermal cross section of thorium, but in a calculation of the " $1 / \mathrm{V}$ " contribution the author applies formaIa (2), i.e an expression of the form $\sigma(1 / V)=\alpha \sigma_{0}$. In principle $\alpha=2 \frac{E 0}{0.5}=0.450$, but if we refer to the value calculated for gold, $0.5 \quad(1 / V)=45 \mathrm{~b}$ with $\sigma_{0}=98 \mathrm{~b}$, we find $\alpha=0.459$ whereps aithonr uses $\alpha=0.44$. It eifally secms that the value enpoyed for α is 0.459 , whien gives for thoriun $(\delta(1 / v)=3.2 \mathrm{~b}): \sigma \mathrm{Th}=7 \mathrm{~b}$.

From this value and from those adopted for gold, the result can be renormalised, which gives 73.28 b . Sincc the cadmium cut off is 0.4 eV , the integral fiaction between 0.4 cV and $0.5 \mathrm{eV}, 1.00 .39 \mathrm{~b}$, must be substracteă, thence the final value :

$100=72.9 \pm 5 \mathrm{~b}$ (exper.)

The error given here is that reportcd by the author in the other article (J.N.D.).

As mentioned above the originai article concer－ airy this moasuremant is not avalaible．The only informa－ tion ic Eosscose cones from the BNL 325 （1965 edition），and from a co：cont by dackin in the article just referred to （こど It3）．

It seems that this measurement carried out in the first Chicago graphite pile（reactor CP3），is an＂ab－ colute＂meacurement which is therefore independant of any nownalisation agaliot another isotope．

The probien fs to fix a margir of error for the rosult．The choice is made more difficult by the fact that the Dothod uced cannot be compared to any ther．We there－ fore decidci to take an arbitrary margin of $\pm 5 \mathrm{~b}$ ，the ma－ simum esror found so far．

The value adopted is thus ：

$$
I_{\infty}=34+5 b \text { (exper.) }
$$

4 －EVALUATICY RROCEDURE

In viow of the corrections applied，it may be comblimed that tite expertmental error assigned to the 11 remaining reasurements covers the different sources of expe－ xsmental uncertainty．Each measurement x_{1} car then je wei－ ghted by the inverse square of the experimental error x_{i} using the formula ：

$$
\bar{i}=\frac{\sum_{i=1}^{11} x_{1} /\left(\Delta x_{i}\right)^{2}}{\sum_{i=1}^{1}}
$$

which gives 85.6 L.
To cotimate the total uncertainty on chis result， the two sources of error must now be distinguished．
a：Uncertainty on the normalisation values，whith car be called the systenatic error．The same value is taken for all bhe measurcments，1．e．$d_{1} x=1.6 b$
b）Experimontal uncertainty which can be estimated by
applying the formula :

$$
\left(\delta_{2} \bar{x}\right)^{2}=\frac{\sum_{i=1}^{11}\left(x_{1}-\bar{x}\right)^{2} \times 1 /\left(\Delta x_{1}\right)^{2}}{(11-1) \sum_{i=1}^{11} 1 /\left(\Delta x_{i}\right)^{2}}
$$

ire thus find an error $\delta_{2} \overline{\mathrm{x}}=0.9 \mathrm{~b}$.
Adding these two errors linearly, we obtain a total error of 2.5 b .

Finally our recommanded value for the resonance integral of thorium 232 is :

$$
\int_{0.5} \sigma_{c}(E) \frac{d E}{E}=85.8 b \pm 0.9\{\text { exper. }) \pm 2.6 \text { (norm.) }
$$

TASLEAU I

erigisie			veczes		Caracteristiques			Evaluntiows				
REF	$\left\{\begin{array}{l} 1,80 . \\ (\mathrm{x}) \end{array}\right.$	$\left\{\begin{array}{l} \text { wnet } \\ \text { (3) } \end{array}\right.$	$\underset{I_{0}}{\text { VALELR }}$	ERRELR AL－	$\left\lvert\, \begin{gathered} \text { TYREDE } \\ \text { MESURE } \\ \text { (c) } \end{gathered}\right.$	Nomalis． （d）	（c） ERERGIE coupure （ EcencV ）		$\left\|\begin{array}{c} \operatorname{man}: \\ (\mathrm{TEF}[4] \\ (\mathrm{g}) \end{array}\right\|$			
11	W12	1972	E3．	$\because 3$	ACT	AU：10－155014	¢ 0.5				$88,6 \pm 3$	1
4	c：	50	02.5	＋ 4	ACE	AU：Iom $1509{ }^{*}$ b	0.4				37，7＋1，9	4
				26	${ }^{\text {abs }}$	AU： $10.1509^{\circ} \mathrm{b}$	0.4				$91,4 \pm 5,3$	2
13	1ET	1965	82.5	± 3	ACT	AU：10－155s b	0.5		83，3＋3		83，6さ1，7	1
14	fir	1965	81.24	± 3.4	ABS	Al：Io 1579 b	0.5	79 ± 3	$81,2 \pm 3.4$	81，2＋3，4	80，3＊2，4	2；5
15	fas	11964	91.	± 4	ABS	AU： $10=1540 \mathrm{~b}$	0.5	90 ± 4	85，4＊4		88，1＋4，3	3；5
16	FFX	1964	82.7	± 1.8	ACT	$A U: 10=1461,8 \mathrm{~b}$		87 ± 2	$82,7 \pm 1.8$	82，7＋1，8	87．7さ1	1：5
17	GA	1962	84.	± 5	ACT	AU： $\mathrm{to}=1561 \mathrm{~b}$	0.52	83 ± 5			83，4＋2，4	6
18	WIN	1962	83．＊	± 6	ACT	AU： $\mathrm{Io}=1510^{\circ \prime} \mathrm{l}$	0.18	86 ± 6	84，4さ6		84，2＋3，5	2；7
19	：AR	1960	106：	± 10	ABS	$A U ; 10-1513^{\circ} \mathrm{b}$	0.67	109 ± 10	107 ± 10	106＋10		3；1
110	CR．	1960	85.	± 8.5	ACT	Au： 10.1565 b	00.5	83 ± 8	$84 \quad \pm 8.5$	85，4＊8，5	84，5＋4	1；5
14	ccP	1959	61.8	± 12	${ }^{\text {ABS }}$	Li $\left(0_{0}{ }^{m 71} \pm 1 b\right)$	0.49	62 ± 12		$61,8 \pm 12$		2：5
112	CCP	1957	pluaieu	valours	ACT	AJ： $10.1316^{\circ} \mathrm{b}$	${ }^{2} 0.5$	77 ± 8		96 ± 6		1；9
113	CRL	1955	69.8	± 5	net	AU： $1 \mathrm{c}=1558 \mathrm{~b}$	0.4	70 ± 5	71．4	69,8 et	72，9＋5	10
114	AnL	1944	84.		act			84			84.0 ± 5	

－Valeur ne comprenent pas la copture de 10 partic en＂ $1 / \mathrm{N}$＂．

COMMENTS ON TABLE I

- a) The CINDA code has been adopted for the laboratories
- KJL : INSTITJTI FOR ATONENERGI, KJELLER NORVEGE
- GFK : GESELLSCHAFT ZUR FOADERUNG DER JERNENERGIE, GRAZ AUTRICHE
- EET : WESTINGHOUSE : BETTIS ATOMIC POWER LAB - Pittsburgh U.S.A.
- MTR : PHILIIPS PETROLEUM COMPANY - Nat. React. testing Station (IDAHO-FALLS) U.S.A.
- FAR : Centre d'Etudes Nucleaires de Fontenay aux Roses . ERANCE
- KFK : Kernforschungszentrum - Karlsruhe - ALLEMAGNE
- G.A : General Atomic - SAN dIEGO (CALIFORNIA) U.S.A.
- WIN : AEE - Winfrith - Dorchester ANGLETERRE
- HAR : HARWELL - Atomic Energy Research Establishment ANGLETERRE
- ORL : Oak Ridge National Laboratory (Tennessec) U.S.A.
- CCP : U.R.S.S.
- AHL : Argonne National Lab. LEMONT (illinois) U.S.A.
- b) The year is that of publication
- c) Two distinct types of measurement are generally involved :

ACT : Activation measurements which use the cadmium ratio techńque

ABS : Absorption resonance integral mearsurement using the technique of reactivity variation set up in a pile when an absorbant serple is introduced (see notes after theses cormonts).

- d) AU-Io refers to the resonance integral of gold which is usually taken as the normalioation quantity.
- e) The cut off energy only applies in the cace of activation measurements which involve a casmiun filter. For absorption measurements the energie is
raraly conventional (nominal value).
- E) Evaliation ported in Eil 325 (res (3j)

$$
I_{\infty 0}=83 \pm 3 b
$$

This estimation refers to a vaiue 1535 bor the resonance integral of gold. In the latest version of the EivL 325, the recomanded value is $85 \pm 3 \mathrm{~b}$.

- g) Evaluation made by Drake (ref [4]):

$$
I_{\infty}=B 4 \pm 5 \mathrm{~b}
$$

This estimation refers to a value 1550 bor the reconance integral of gold

- h) Evaluation reported in ref. [5], based on the choicc of the "best" measurement which, according to the author is that of JOinston (ref. IIO):

$$
85.4 \pm 8.5 \mathrm{~b} .
$$

NOTES ON THE MERSUREMEITTS

(Table I)

1 - Measurement using an activation technique, based on the comparative activities of a bare irradiated sample and the same sample irradiated under cadmium. The formala used is then :

$$
I_{0}^{T h}=0_{0}^{T h} \frac{\left.\left(R \begin{array}{c}
R U \\
c d
\end{array}\right] 1\right)^{A U}}{\left.R_{c d}^{T h}-1\right) \sigma_{0}^{A U}}
$$

where Red is the "Cadmium ratio"
2 - Measurement by absorption. The method is based on a static measurement of the reactivity variation generated by the introduction of an absorbant sample. In brief the process used is as follows :

- The constant α, which characterises the spectrum at the measurement point ($G_{\text {ef }}=\sigma_{0} \sigma_{0}+I_{\infty}$) is antermined by means of a gold resenant standard
- Sample containing thorivm are then measured and Inobtained from the results.

The calibration value linking the reactivity variation to the reaction rates is ortained by the use of boron*. To evaluate self shieldirg, several measurements are carried out and the value ir infinite dilution is obtained by mass inncar extrapolation.

3 - Measurement of the same type ar, above (note 2) except that the reactivity measurement are perfomed by the oscillation method.

4 - Activation measurement based on the cadmium ratio technique but with a formulation slightly different from that given in note 1 . The formula used is :

$$
\alpha=\sqrt{\frac{4 T}{\pi T O}} \quad r=\frac{q}{\frac{\sigma_{r}^{A U}}{\sigma_{0}^{A U}}\left(R_{c d}^{\lambda U}-1\right)+\frac{2 q^{R} R_{c d}^{\lambda U}}{\sqrt{E c d}}}
$$

- For reference Ill the standard is lithium.
incre
- r is hescott index (α being the spectrum index)
- $G(T)$ vescott's factor : $g=1.005$ for gold
- $\overbrace{I}^{A U}=\int_{0}^{\infty}\left[\sigma(v)-g \sigma_{0}^{\alpha U} \frac{V o}{V}\right] \Delta \frac{2 d V}{V}\left(\Delta\right.$, joining $\begin{array}{c}\text { Eunction })\end{array}$
. Ecd $=0.55$ eV (must be expressed in $k T$ units).
Pron the measured ratio $R_{C d}^{A U}=2.065$ it is possible to deduce a. The same fornufd, this time applied to thoriur $(g=1)$, leads to :

$$
\frac{\sigma_{r}^{T h}}{\sigma_{0}^{T h}}=\frac{\alpha-0.429 R_{c d}^{T h}}{R \frac{2}{T h}-1}\left(\frac{2}{\sqrt{E C d}}=0.429\right)
$$

The measurerent of $R \underset{c}{T h}(=2.383 \pm 18)$ can then be
 thout "1/v" part) -

5 - Mcasurement carried cut in a U235- $\mathrm{H}_{2} \mathrm{O}$ pila
6 - Neasurement carried out by comparison of the Th - 233, AU 198 and va-52 activities resulting from inadiation of Th 232, AU I97 and Vol 51 in the reflector of the Eeactor TRIGA ($0235-2 r \mathrm{~Hz}$) then inda thermal column ("Yanadium substraction technique"). The conventional cadmiun ratio method is also applied but gives poor results hero.

7 - For this reforence 18 the measurements are cirried out In a thermal column of the reactor NESTOR ($\mathrm{C} 235-\mathrm{H}_{2} \mathrm{O}$) and also in the U235 - graphite reactor 2ENIIH.

0 - Osciliation veasurements are performed at the center of a heavy watc:-moderated reactor (DIMPLE). The irradiations are curried out in two spectra, one of which thernal in order to measure the cross section at $2200 \mathrm{~m} / \mathrm{s}$ and the g factor.

9 - Measurcment carried out in a heavy water reactor.
10 - Measurement performed in a uranium - graphite reactor.

A - REFERENCES FOR THE TEXT -
[1] GRENECHE D : "Physique des reacteurs a haute temperature :

- Evaluation des sections efficaces resonnantes du thorium 232
- Interpretation d'experiences critiques americaines: These - ORSAY - Novembre 1973
[2] CINDA 73 : "An index to the literature on microscople neutron data" - J.A.E.A. - Vienne, 1973
[3] BNL 325 : 2ème edition Vol 3 suppl. $n^{\circ} 2$ (1965)
[3] bis BNL 325 : 3eme edition Vol 1 (Juin 1973)
[4] A.K. LRAKE : "A compilation of resonance integrals Nucleonics - Aodt 1966. Page 108 - General Atomic --
[5] R.C. BARALL (et col) : "iunclear reactions for determining neatron spectrum and dose : A world I1teratire search" - Conference JABA -8-12 Mars 1965. "Personnel dosimetry for radiation accidents" - Page 251
[6] N.M. STEEN : "An evaluation of the radiative neutron capture cross section of thorium 232 for the range 0.0 . ev to $15 \mathrm{MeV} \mathrm{V}^{\prime \prime}$ WAPD - IM - 971 - Decembre 1970 (westinghouse)
[7] P. RIBON : Private communicatjon
[8] H DERRIEN : "Evaluation of 232th resonance parameters" this report
[${ }^{2}$ - REFERENCES FOR THE MEASUREMENTS -

Il	E. STEINHES	-"Resonance activation integrals of same nuclides of interest in neutron analysis" Journal of inorganic and Nuclear chemistry - Fevrier 1972 - Vol 3s - pp26992703.
12	L. BREITENHUB	```Er -"The resonance integral of th 232 in infinite dilution" Atomkernenergie (ATKE) - Vol 15 no 2 p, 83-Fevrier 1970.```
13	J. HRRDY	-"Resonance Integrals of U. 233 fission and th 232 capture". Nucl. Sci. Eng. - Vol 22 pl21 Hay 1965.
14	H.K. FOELI,	-"The infinite dilution Resorance integral of thorium 232" Nucl. Sci. Eng. - Vol 21 g 406 Mars 1965. Voir egaloment, du mème auteur : "An investigation of Resonance Aborption in mixtures of Uranium 238 and thozium 232" Nucl. Sci. Eng. - Vol 26 p 399 (1966)
15	2. VID.iL	-"Mesure des integrales de zesonance d'absorption". Fapport C.E.A-R 2486. Juillet lyí4 On pout egalement se reporter a : - Conf. de Genève 1964 - Vol 2 page 250 (P/102 sEance 3-1) "M6thodes expezimentales de physique des reacteurs a neutrons thermiques". D.Breton et ${ }^{p}$. Lafore (cf p. 252). ou - Cont. Paris 17-21 oct. 1966 (Proceedings "Nuclear dat.a for reactors" Vienne 1967. "Hesure des tections efficaces et des integrales de resonance par la methode d'oscillation" - J.C. Carst et R. Vidal.
16	: M. BROSE	-"The infinite dilute Resonance Integral of thorium". Nucl. Sci. Eng. - Vol 19 p 244 Juin 1964. Voir Egalement : EANDC (E) $23^{\prime \prime} \mathrm{L} "$ - Févier 1962 p. 5 "effective resonance integrals by activation methoas".
I]	$\begin{aligned} & =\text { J.B. SRMPSON } \\ & \text { (et col.) } \end{aligned}$	-"Analysis of activation measurements of th 232 resonance captures in the Peach

Botton (40 - NWE) prototype HTGR) critical assembly" - Rapport GA-3069-14 Septembre 1962.

I8 : L.I. TIREN -"Resonance shielding in thorium-graphite (et col.) mixtures AEEN - R 163 Mars 1962.

I9 : R.B. TATTERSALL -"Plle Oscillator mGasurements of re(et col.) sonance absorption integrals" - J. Nucl. Energ. - Part A Vol 12 p. 32 Mai 1960.

I10 : F.J. JOHNSTON -"The thermal Neutron absorption cross (et col.) section of th 233 and the resonance integrals of th 232 , th233 and Co 59". J. Nucl. Energ. - Part A Vol 11 g. 95.

Ill : V.B. FLIMENTOV -"Some neutron resonance absorption in(et col.) tegrals".
J. Nucl. Energy II, Vo2 9 p. 20 Juin 1959.

I12 : G.G. MYASISHCHEVA -"Measurements cf the effective ther(et col.) mal neutron cross section and the zesonance absorption integral of th $232^{\prime \prime}$.
J. Nucl. Energ II Vol 5 p. 230 जnvier 1957.

I13 : R.L. MACKLIN - "Resonance activation integrals of $\mathbf{U} 236$ and th 232" -
J. Nucl. Energ. - Vol 2 p. 243 Juin 1956. Valeur indiquee : $67 \pm 5 \mathrm{~b}$. Celle que nous donnons ici est tiree de 1'artiele du meme auteur publie dans : "Progrese in nuelear energy" - Vol I p.179 New York 1956.

I14 : L. SEREN -C.p. 2376 [Argonne] (d'apres B.N.L. 325 de 1965).

Qn the shape analysis de varizus ${ }^{232}$ th and ${ }^{239} u$
TRANSMISSICN DATA
T1. CERRTEN AKD P. RIEGA CEN - SACLAY. ILN:

In tha atudy of tha lew energy cress sections of even heavy nuclei such es ${ }^{232}$ Th and ${ }^{230} U$ only tho cleatic (n, n) and capturo (n, γ) reacticns hava ts, je censidored, tha ficilon beaine of very 3 ittla 1 importance for rooctor applications, for cach rononanco these reectiong are oeracterized by teo nautren with Γ_{n} and tho total raciative coptura width $\Gamma_{Y^{\prime}}$ These porameters can bo cbeinned by the enclypis of up te 4 kirats of exporimentel deta : trencmigaien, coif-indscetion, scotterine and ceptura nodsurcmonts.

The voricus technics which cen be utilized for tho enalygis of the oxperimentel dete een be chered between the groups of enthods :
0) the ared enolycis : tho widthi Γ_{n} cred j_{γ} ero dotemined from tho otudy of the experimantad orca of the rercances. Eech oxperirental volue of tho oreo. Λ_{E}, is a function of $\Gamma_{n}, \Gamma_{\gamma}$ and of the thicknoss n of tho anmplo. This function, $A_{E} \in f\left(T_{Y}, \Gamma_{D}, \ldots, 1 s\right.$ asourted to ba known) it is
 functien of Γ_{Y} for ench exporimental deto. All of theso curvon oheule 80 thrgugh the point [$I_{n \lambda}, \Gamma_{\gamma \lambda}$] cerrosponding to tho trucparamatars $\Gamma_{n \lambda}$ and
 all of tre curven ef nat go threugh the came point end the problen is to dotoriate thi bect cenvorging point. Tho function $f\left(\Gamma_{\gamma^{\prime}} \Gamma_{n}, n\right]$ takes into ceccunt exparimertol offacts liko solf scrocning and rultiplo scottaring. Tho recolution fuacien is net neaded, wut it is sasosoary to detomina tho exporimentol vaiue of the tetal ores of tho resonenca, insluding the winge f for nen isolcted resonanea osen difficultios cen ariac. An othor difficulty is the rizht estarction of the rutiolo seaztoring offect in thick eomplos.
b) The shape analysis : the theoretical value is calculated for each date point in the resonances and compared to the experimental value the theoretical curve can be adjusted to the experimental points (fitting prncedurel by a least square mathod which provides the valuse of the resonanco paramsters. It is necessary to take inta account the resolution function and the Oofpler efiect, presentily the merory size ant the gnsed cf computers are greet enough to allow for complicato formuiations of the resonent. cross sections for large number of resonances anc largo number of date points. This method can ba eesily used for tranemission data for which no complicated correction have to be done. For the gartial cross section, auch as capturo croas section, it is necessary to use experimentel data corrected for self-screening and multiple scattering effects on each maasured point if this can be done, simultanecus analysis of trancmiosions and partial croos sections will provide very accurate resonanco parametars.

The problem of the right knowledge of the resolution and of the Doppler affect is important in the shape analysis if one want to detarmine accurate value of the total width. Hewever this problem is not crucial at low energy due to the excallent resolution echieved at the pratonit time in the time of flight experimants and to the fact that the Doppler cocfficient is known with an accuracy better than a faw per cent. Then accurate values of Γ_{Y} cen be obtained for low energy resonances and consequently eccurate value for the everage capture width $\left\langle\Gamma_{\gamma}>\right.$. At higher energy, the rasolution function cen be adjusted to cbtatn the same < $\Gamma_{\gamma}>$ value. Such motiod has bean used by one of us for ${ }^{232} \mathrm{Th}$ [R1 69$]$, he obtatned very goad valuas below 300 oV , abovo, the valued aro mara scattered but coheront in thatr averaga.

All trenciaisaion data obtained up to new at the Saclay 60 Mov linac hove been analysed by least bquare ohape analysis. The coden uned for these enajygis havo been described in deteil elsowhero [R1 E4]. The thcorctica] tranemisoicn at tho neutron energy ε is colculated by a formila of tho folIcrine type :

$$
\operatorname{Tr} \underset{\operatorname{txp}}{\{E)}=A * c 0^{-n \sigma_{A}\{E\}} * R[E]
$$

$\sigma_{i}(E)$ So tho cross socticn broafonod by the Doppler offect (osecntioly a cun $p f \downarrow$ ind p functicn plus o ters teking into account the interFortanco betwear rosencnees in the neution channel) ;

```
9 is o tom for background edjustrant fogual to zaro if thare is no sydecnotic orrar in tho backeriund dotemiriotion 1
```

© if tho nomalizoticn coorficiont fequal to ono if the normalizatfon is correctl B

R [E] iU a gaujoian rocalution funccion

Scucfal cots of oxperimental dute cen bo simulteneously enalysed. Tho loost şuoro adjustront con bo cono on tho rosenance parerotera \mathcal{E}, I_{n} and Γ end, for each cats sat, on tho correctivo paremotors a and c. The X^{2} to wo mirimized hos tho follewing form :

$$
x^{2}-\sum\left[\sum_{0 \times p}-\left(0 \cdot c 0^{-n \sigma_{2}(E) * R[E)}\right)^{2}\right.
$$

Far ingtance. the background edjusteant carrospones to the salution of the foilcuing equaticn:

$$
\frac{a\left(x^{2}\right)}{\partial \Delta}=0=\sum_{E} 2\left[T_{0 x p}-a-c 0^{-n \sigma_{\Delta}[E]} * R[E)\right]
$$

1. $0 .:$

$$
\sum_{E}\left[\operatorname{Tr}_{o x p}-a\right\}=\sum_{E} c e^{-n \sigma_{\Delta}[E]} * R(E)
$$

If tho sin 1s mede en an cncriy intorval lareo anough cerponed to tho rosonencs bidtho. tho gocond ramitnr of this equation ropreeente the theoretical total eren for noch ressannce and is indenondent ef thn resolution function. So. oftor cjfustrant by leagt aquelo of the parareter o, wo alwoyo hovo :

$$
\text { thcoretical arca }=\sum_{E}\left(T_{\text {axp }}-0\right] \text { axpertrental aroa. }
$$

Then, th? leest square shope analye1s mathod givos the right volue of the area, evon if the resclution function is errong aftier opecofolo correction of the beckground.

In the gecand part of this papar, we shell oxanina somo rosulto chevined ty shepe enalysis performed on gome ${ }^{232}$ Th end ${ }^{238} 0$ tramemicaion dete fron Geel and Calumbie.

A - results concerantiga ${ }^{232}$ Th

Table I nows tha reaulta abtained fram the Columbia data in tho 1459 tc 2550 eV energy zengo. A part of thege resulta concerns tho old Coluthbla data (Columbie I) and has beon reportad already by 1 "Heriteau at al at the Knoxville Conference (1971) [LR 71]. Frome this teblo, ono can arca the following conclusions :

1) The Γ_{n} valueg obtained from all the tranemisoien dote (Columbia I, Columbia iI, Saclay] by cur shape cnalysis egree within the crrar ber, whilo the values esteince by Garg ot al by area enelysis on the Colurbla I datd are lower by a facroi about 2 ;
2) the shepa enalysis of Columbia I data bringa out on important systematic orrer in the beckground (27: for the thin oampla, for instonce) : this arror is probebly at the origin of tha digcrepancy chaorved batween Garg velueg and curs :
3) the valuog cbtained by Rahn from Columbia II egroo tith ours within 5 : on the avorage 1 in fact, there is very littlo corroctien to bo dong on tho beckeround (laoe then D.01) In thic enerey ronga for Columbia II cota.

In the enorgy ranga fram 2.5 koV to 2.7 kcV the peremstora reculting from cur shepe anaiysio of Columbia If dato ogroo with Rehn rooults within $4:$ on the averogo, but tha hockgraund coriaction vorics frorr of $x 10^{-3} \operatorname{to~} 3 \times 10^{-2}$. 1. 0.15 groator than in the 1.45 to 1.65 kov enargy range.

Tabic II shows tho results obtoinct tetween 3.2 kBV and
 betwon Fonn reaulea and curs. Tho digagrement on the larga resonences ig genobally groatar inen 15%. The tackeround corraction is equel to 0,03e
 thet a syctenctic ergec in tha beckgreund still exist et high enorgy for tho columia II dato, and 13 at the otigin of the decresing of the Γ_{n} valucs obtainod ty Rohn when tho cnergy Incroases. This mey be the oxplenetion of the lo; volue of ino local strength function obtelned by Repn abave 3 kev. $5-R E S U T S$ ON 238_{L}
 to 1.00 kov onargy range, Tha bagkgrourd correction is negligible on the Eogl trenentogions and vory compl for thaed of Columbia. Our results of the Ged ons Columelo etto shepe anelysis and tho velues fublisted by Rotin ere An ogrectent within 1000 then 4 on the ovorego, whide tho valuos publishet by Carcero [Co 71] deo 15 名 or 20 : hegher. The following remarks "ve to be dene:
if cur anopo enolyois of tho Columbia trenemissions ia nearly in agrement with Raha aras grelyois of tho sere deta 1

2! cur chapa coolyoin of tho Goditunsmission is in disagracment Hith Cerrare rosulet for the sara data
3) Sorrero I_{n} volucs arg prebebly evarestimatad a a simultanceus chapo enolyain cif Coluniea and ebol trancmiosions weuld leed to rosults not for fren Rohn refulta, "hin cnelyais mothod wald eivo porigus amblioration In tha ${ }^{7 E} \mathrm{E}_{U}$ rosonance frecrotor oveluation.
covclusion

Frem thoen atusios wo conclude :

1) the shope enosyoss prcuide all the informotion reoulting from tho oras andycis, curc if the resolution function is errenmas a

2I the shepe analysio allows tho datection of gystematic crrors on the normalization and the background dotermination, and thoir corroctions a
3) the shepe analysis is particclarly usefull whon thore oro no sophisticated correction such as solfesereening and multipla ccattoring b
4) the origin of discrafancias between verious rocont transmisoion data is mostis linked to analysis methods (case of ${ }^{23} \mathrm{~B}_{\mathrm{U}}$ batwoon Gegl and Columbia) ; there is a problem of background deternination for come old reaulen, or at high energy for some recent data.

51 for high euelity ovaluations of regonance pacematore it is recamanded to check the enalysis of exporimental date in solactod anargy ranges i in perticular, the previcus erroneaus Cclumbia data (Celuntia I) wou:c not have teen recommended,
©) from our enelysis we conclude that, for ${ }^{238} \mathrm{~L}$, bolow 2 keV , the Columbia II sot of rosorenca paramators is battor than tho Gealis sot. For ${ }^{232} \mathrm{Th}$ we conclude that, aithough it mby bo a little bit ovorvolucd, the Secley set of neutson wicths has to bo proferrec to Columbiato sot which presents an underastimetien incroasing with energy.

TAELE 1.

Ecerigy		Colesia 1 pulazen values [G3 6:	Share awlyaia og Cotw-bin 1 data [12171]	$\begin{aligned} & \text { Colmsia } 11 \\ & \text { nublisked valueg } \\ & {\left[\begin{array}{ll} \text { na } 72] \end{array}\right.} \end{aligned}$	fibse anolyaia of Coluzbia It data (oresect vork)
ISEO.4 eV	$22.5 \pm 4.5=0$	$9.9 \pm 1+6 \mathrm{~F}$	$23.141 .7=8 \mathrm{~V}$	$21.0 \pm 1.59 \mathrm{ENV}$	$20.5 \pm 1.0 \mathrm{mov}$
1588.7	$762 * 19$	207 \$ 16	325 ± 11	259.8 ± 39.81	330 ± 5.0
1601.8	55 ± 6.5	20 ± 4	49,6*3.6	$48.84 * 6$	46.1 ± 2
$16: 0.3$	549 ± 33	303 ± 20	501.0 ± 16	$510 * 50.1$	520 ± 0
2639.8	40 ± 8	40.5 $=6$	45.7 ± 4	44.1 * 4,86	42.0 ± 2
1660.7	122 ± 13	77.5 ± 8	110 ± 7	114.1 ± 11.62	111 * 3.5
$\sum I_{n}$	1160	676	805s	1028	1078

In the shope andyeio of Colesin I data the edjugted bacheround parcoerere a were equal to :

$$
0.015 ; 0.11 \text { and } 0.27 \text { (3 oteplds) }
$$

In the shope analyois of Colubia Il daea the adjugted backgreund parametera a sere equal to :

$$
\begin{array}{llllll}
0.009 & \text { for the } & 0.6934 & \text { at/b } & \text { sangte: } \\
0.003 & 1 & " & 0.0311 & " & " \\
0.001 & 1 & " & 0.0052 & " & "
\end{array}
$$

TASLE 11.
${ }^{232}$ ih - Columbia Γ_{n} values between 3200 ev and 3620 ev ,

Energy	Shape analyois of Columita dats (2 thicknesses)	$\begin{aligned} & \text { Colurbia } \\ & \text { published values } \\ & {[\operatorname{Ra} 72]} \end{aligned}$
3229.4 eV	$16 \pm 1 \mathrm{neV}$	$17 \pm 3 \mathrm{meV}$
3242.5	14 ± 1	14 ± 3
3252.7	97 ± 5	84 ± 9
3270.0	22 ± 2	26 ± 4
3295.7	461 ± 10	405 ± 44
3331.8	52 ± 3	42 ± 6
3342.9	147 ± 7	172 ± 19
3383.5	106 ± 6	74 ± 10
3409.5	10 ± 2	5 ± 2
3442.9	19 ± 2	20 ± 3
3471.9	15-2	18 ± 3
3521.8	127*7	107 ± 18
3574.4	14 ± 2	17 ± 3
3594.4	20 ± 2	$21 \stackrel{\text { - }}{4}$
3611.6	139 ± 7	120 ± 15
$\Sigma \Gamma_{n}$	1259	1142

In the shope enalyais of Columia data the adjucted background parametera a sere equat to:

$$
\begin{array}{llll}
0.037 & \text { for } 0.0934 & \text { at } / b & \text { annpla } \\
0.065 & \text { for } 0.0311 & a t / b & \text { cample, }
\end{array}
$$

ii. DERRIEN
C.E.N. - SACLAY

1NTRODLCTJO:

In the last few years important work has been undertaken on 232 Th resonance parameters. The results achleved both for the individual values and the average values are frequently in disagreement. The main purpose of this work is to examine the most significant resules and to propoce a set of resonance paraneters which seems pore crealble. it is obvious that the selection of a stt Of paramoters has effecto in many areas, particularly in calculating cross sections it. the themal area and high cnergy average cross sections i it is also necessary to check whether the capture integral calculated as fron the differential data chosen is in agreement with that evaluated as from integral determinations. Consequently the pattern of this paper rill be as follows :

I - Evaluation of resonance parameters and of their average values.

II - Cross sections in the thermal range and negative resonances.
IiI - Calculation of the capture cross section by a statistical model and cctparison with the measured values.

IV - Evaluation of the capture integral from differential data and comparison with the integral measurenents.

I - EVALUATION OF RESONANCE PARAMETERS AND OF THEIR MEAN VALUES.

I - 1. Experimental data
For the choice of resonance parameters we selected seven sets of experimental data obtained, in chronological order, from the laboratories of San Diego [Ela 65], Harwell [As 66], Saclay [R1 69], Brookhaven [Bh 67], Argonne [Bo 6B], Los Alanios [Fo 71] and Colunisia [Ra 72]. In the case of the Columbia data, we disregarded old piblications. Different types of measurements and different methods of analysis were employed ; so that the problem of selecting the parameters mis be properly determined, we shall review them for each laboratory.

1) San_Diego -

The capture cross section only was measured. Three sample thicknesses were used (0.0038; 0.0012 and 0.0004 at/barn) ; the capture Y rays were detected by a liguid scintillator. For each resonance the experimental results were analysed by area method based on the convergence of a set of curves in the (Γ ' $n, ~ \Gamma \gamma$) plane, the capture resonance area being considered as a function of parameters Γ_{n} and $\Gamma \gamma$ and of the thickness n of the sample. The values of Γ_{n} and $\Gamma \gamma$ were determined for 11 resonances between 21.8 ev and 221.9 eV .
2) Harwell -

A varied set of techniques and sample thichnesses was employed :
a) transmission measurement using $15 \mathrm{~m}, 120 \mathrm{~m}$ and ..92m flight paths with sample thicknesses varying from $0.00024 \mathrm{at} / \mathrm{b}$. to $0.113 \mathrm{at} / \mathrm{b}$;
b) capture cross eection measurement by means of a Moxon-Rac detector with a 32.5 m flight path and three sample thicknesses (0.00071 ; 0.0014 and 0.0029 at/b.) ;
c) scattering cross section measurement using a lithium glass detector with a sample thickness of 0.00014 at/barn.

The resonance parametors were establithed up to an encrgy of 866 eV by tirce diffirent methods :
a) analysis of the transmission data uging Lymn [Ly 60] area analysis code (intersection of curves giving the relationship between $\sigma_{0} k^{2} a^{2}$ and $\left.\Gamma / k a\right)$ and $\pi t t a-$ Harvey [At 61] arca method. The Γ_{n} and $\Gamma \gamma$ values were
obteinced for resonances up to 170 eV , and Γ_{n} for the other resonances. A set of curves of Γ_{n} versus $T Y$ were also ootobltchod for certain reconances and different sample theimosceo ;
b) simultanoous analysis of capture and scattering crous sections, by studying the convergence of several
 were obtadned for most of the reconances ;
c) study of the convergence of all the curves in the (Tnr ['y) plane obistned for each resonance as from all the moasurenents and all the semgle thickneeses ; a thixd set of Γ_{n} and r_{Y} values was thus obtained.

A comparative table of the parameters obtained from the three metrods wos given.
3) SzgIay -

The set of parancters was mainly ectablishod as from the transmisaion measurement of a 0.120 athbarn thick sangle, made with a locn Eilght path with a very gnod recolution. The reconince parameters were detumined dy least equare shape analysis method [R1 66]. With this method, r_{n} can be determined in every ease, and l'y by differ rence between \bar{T} and Γ_{n} if the Doppler effect and the width of the exporimental recolution function are not too important (up to about 300 eV in this measurement). The neutron vidth values are given up to 3 kev .
4) 日egahaygn -

The neacurcments concern only the 21.7 ; $23.4 ; 59.4$ and 6t. 1 dV resonances. These transmission measurements uscd a 29.7 m flight path with the BNL fast chopper. Five armple thichnesseg were used 0.00015 ; 0.00076 ; 0.0030 ; 0.0092 and 0.028 at/barn). The Atta-Harvey methed was uncd to chtasin the resonance parameters, i.e. $\Gamma_{i 1}$ and the total width Γ; Γ was obtained from the Γ - Γ_{n} difference.

5) Axgomne -

Thoce alco were transmiasion measurements, made with t.o ANs Gat Chopper, in the purpose of obtaining the paranctors of the first 9 our regonances. The preliminary roculta oniy hava been published, in a progress report, whenout any indlcation as to the analysis methods used. The "n fnd I'Y parameters of the resonances were given.
6) sex gAlaras -

The sapture cross section was measured on the Physies-B underground explobion, at a 250 m flight path, with a codifict Moxon-rac detector ; the neutron flux was measured by tho Grif $(n, 0)$ reaction. Two sample thicknesces ware
used : $0.001 \mathrm{at} / \mathrm{barn}$ and $0.05 \mathrm{at} / \mathrm{barn}$. For the largo resonances, the $[\gamma$ values were obtained from the capture areas by using Garg [Ga 64] Γ_{n} values up to 1 kev and Ribon's [R1.69] from 1 kev to 2 keV . The theorotical arca was calculated taking into account the contribution A_{1} to the capture after a Eirst scattering in the sample: A_{1} was always very small with respect to the main contribution no. The theoreticai area was adjusted to the experimental area by a trial and error method by assuming Γ_{n} to be well known : Γ was thus obtalned for 66 levels up to 2 keV . For the small resonances, the same method vas used ; but「Y $=20$ meV was arbitrarily applied, the capture ared then being but little sensitive to the choice of IY : thus $g I_{n}$ was obtained for 124 levels up to 2 kev . The average capture cross section was almo measured up to 60 kev .
7) Columbia -

Three kinds of measurement were made using the synchrocyclotron :
a) transmission measurements at 40 m and 200 m flight paths with sample thicknesses varying from $\dot{0} .10$ at/baxn to 0.0011 at/barn :
b) self indication measurement at a 40 m flight path with sample thicknessed varying from 0.03 at/barn to $0.0011 \mathrm{at} / \mathrm{barn}$;
c) capture measurement with a Moxon-Rac detector at a 33m flight path with 0.0052 at/barn and 2.00112 at/barn thick samples.

The results were analysed by the same kind of mothod as those of San-Diego and Harwell, tamely, for each resonance, by studying the convezgence of curves in the ($_{\mathrm{n}}$, ry) plane, obtained from different experimental areas. A shape analysis was also made for some resonances of the thick sample transmiosion. The resonance parameters (Γ_{n} and irl were given up to $\mathbf{4 . 5} \mathrm{kev}$.

I - 2. Examination of the resulte obtained for the four " s " resonances below 100 eV .

These four resonances are of particular inportance in calculating the capture integral to which they contribute for about 70 . Hence the greatest care is needed in determining their parameters. Table I-1 sumarisos the results obtained as from seven sete of experimenta the characteristics of which have just boen recallcd. The dispersion of the experimental values is quite important especially concerning the resonance at $23.4 \mathrm{c} \%$. However, for the three first resonances, the neutron width 13 gmall againat the radiation width; the capture area being pro-
portional to $\Gamma_{n} \Gamma \gamma /\left(\Gamma_{n}+\Gamma Y\right)$, it is then important to deternine I_{n} with the bese accuracy, for this ratio is hasdily sensittve to the error on $\overline{\Gamma Y}$; for instance, a variation of 202 on $I \gamma$ induces a variation of about $2 z$ in the capture area of the firstrasonance, 38 in the sncond and 40 in the chird.

The dispersion in the values obtained for fr can bo casely understood, since, in addition to the errors of axperirontal origin due to the fact that the exact determination of the experimental capture area requires much adjustment (efficiency of the detectors, flux measurement, scif abtorption corrections and multiple scattering correcticns, cec...), the area methods used in the analysis are Ercquently not vory accurate ; the set of curves obtained in the ($\mathrm{T}_{\mathrm{n}} \mathrm{I}_{\mathrm{r}}$) plane is far from converging to a sincle foint: the lacis of convergence may be due to a formalion cofoct and to systematic errors in the expericertal data. The dispersion of some Γ_{n} valuss are more diesicult to accept, for they should be detemined with good accuracy fron the transmission neasuremonts alone which are absolutc measurcments frec of the systematic errory encountered in capture ana scattering peasurements. Provabise tice mothoi of analyels art at the origit of the depergionn cbecrved. It woulc be deetrabie to apply the sanc chape amajysis method to all the trammission experirental data. Dailing such a comparison, we must make co rith ehe critical cxamation of the values in table I-1.

1) Rgonancentargicg

In accordance bith tho principle itself of the shape analyois by least ecivare rothod, the energies proposed by Saclay are froc of the error introduced by the estimation of the "eentre" position of the resonance. They agrec with the other encrgien to within ola, excepte with tho farwall vilues where the difference is of for the four roconancos. Aloo, up to 3 l:cv, the cnergice quosed by columia rowain in perfect agrectent with thove of Saclay. It thexcera secms rearonable to keep the saclay valuos with a poosthle syotomatic crror of olv, in other wards tho follciing valuer :

$$
\begin{aligned}
& 24.783 \pm 0.022 \mathrm{cV} \\
& 23.439 \pm 0.024 \mathrm{cV} \\
& 59.554 \pm 0.060 \mathrm{cV} \\
& 69.223 \pm 0.070 \mathrm{cV}
\end{aligned}
$$

a) Choicc of Pnoar Ey yalung

The values proposed by San-Diego are only baced on the analyois of a capture crose section. The authors agrec

TABLE I-1.

on the fact that the area method used gives only Γ_{n} with precision it $\Gamma_{r} \lll \Gamma_{Y}$, and only $\Gamma \gamma$ if $\Gamma_{n}>\Gamma \gamma$. Therefore tike ir values of the first three resonances will be eliminated, as well as the Γ_{n} value of the fourth resonance.

Harwell's values are collerent on the whole, except for r_{n} of the third resonance shere the dispersion of the valucs obtained by different methods is very great :
3.76 meV (transmission at 120 m and 15 m ; ;
4.60 meV (transmission at 120 m) ;
3.05 meV (capture and scattering) :
3.34 meV (total results) ;
as this dispersion $1 s$ not explained, the Γ_{n} value for this resonance will be eliminated.

The values of Saciay should be kept as a whole ; they were obtained by a shave analysis using the least square nethod : the adaptation of the theoretical curve to the experimental transmissions is excellent. The $\mathrm{r} Y$ values obtained from the ($\Gamma-\Gamma_{n}$) differences are fairly accurate, for the Doppler width and the widith of the resolution function are rather small at these energies.

The F_{r} values proposed by Brookhaven are systematically greater than the other values for the three first resomances. The authors puinted out that, fir determining Γ_{n} of these resonances, the wolght of ten was assigned to the transmission measurements of the thinner sample (0.000154 at/barn) and the veight of one to the other thicincsses. Now, for such a small thickness (i.e. 0.000154 at/barn) ard in view of a bad resolution, the minimum of transmigaion at the peak of the resonances is greater than 0.95 . The mothod is thereforc surprising and justifies the climinaition of the l_{n} obtained. As for the fourth resonanec (6.9 .22 cV) the parameters are very consistent with the other results ; incidentilly, the autiors have puiliched the recultc of the analysis by the Atta-Harvey loast squaro method, for six experimental areas ; in this cacc, fhe adaptation of the theoretical areas to the crporianental areas ic cscellent.

The values of hrgonno wore published in a progress report and were considered as preliminary by the authors. There is no cystmatio aisagrecment with the other results, c:cept for the thicd risonance for which $\mathrm{I} \%$ is excessively great and winfer we shall clyinate.

The Los-Nlamos results do not include the resonances at 21.6 and 23.4 cV ; for the third and fourth resonance, the autiorc used Garg's Γ_{n} values (which io not differ much Erom ticenow values of Columbal ; so we shall only
keep the $\Gamma \gamma$ values which they propose for these two resonances.

The values of Columbia are to be kept as a whole, although the Γ_{n} value proposed for the secend resonance is rather low ; as a fact, it contributes ts the significant dispersion observed in the neutron widhs of this resonance.

3) Recommended yalues

The recommended values are given in table I-2, They are obtained by averaging the selected values weighted by the reciprocal of the square of the absolute error. In the last colunn of this table, the $\Gamma_{n} \mathrm{~F} Y /\left(\Gamma_{\mathrm{n}}+\right.$「Y) ratios, calculated as from the recommended values, are indicated. These ratios are very close to those which may be calculated from the San-Diego and Los-Alamos parameters, in other words they give a good representation of the measured capture areas (San-Diego and Los-Alano: being the only laboratories to propose resonance parameters from capture measurements only).

The errors in the recormended values are not established from a strirt criterion ; they attempt to reconcile the greatest number of experimental values. In particular, the error on Γ_{n} of the second resonance (around 10\%) reflects the great dispersion on the measured values. This is the main black point of this evaluation and it would be necessary to reconsider the analysis for this resonance.

RABLEI-2

Energy (cV)	r_{n}		r_{γ}		$\begin{gathered} \frac{\Gamma_{n} \Gamma_{\gamma}}{\Gamma_{n}+\Gamma_{\gamma}} \\ (\pi, \mathrm{V}) \end{gathered}$
	$\begin{aligned} & \text { Value } \\ & \text { (cev) } \end{aligned}$	Origine	Value (meV)	Origine	
$21,383 \pm 0,022$	$2,02 \pm 0,06$	SD, HiR s.ic, arg COL	$24,5 \pm 2,0$	HiR, SAC ARG, COL	$\begin{aligned} & 1,87 \pm 0,06 \\ & (\mathrm{SD} \rightarrow 1,91) \end{aligned}$
23.439 ± 0.024	$3,80 \pm 0,40$	$\begin{aligned} & \text { SD, IMR, } \\ & \text { SROC } \\ & \text { ARC, } \\ & \hline \end{aligned}$	26,6 ± 1.5	HAR, SAC ARG, COL.	$\begin{aligned} & 3.39 \pm 0,35 \\ & (S D \rightarrow 3,38) \end{aligned}$
59,53\% ± 0.060	3,90	SD, SAC ARG, COL.	23.7 ± 1.0	HAR, SAC LAL, COL	$\begin{aligned} & 3,35 \pm 0,14 \\ & (1 A \rightarrow 3,40) \\ & (S D \rightarrow 3,38) \end{aligned}$
69.223 ± 0.070	$43,2 \pm 1,0$	$\begin{aligned} & \text { 12ar, SAC } \\ & \text { DRO, ARG } \\ & \text { CO:. } \end{aligned}$	21,9 $\pm 0,7$	$\begin{aligned} & \text { MAR, SAC } \\ & \text { DRO, ARG, } \\ & \text { LAL, COL. } \end{aligned}$	$\begin{aligned} & 14,53 \pm 0,70 \\ & (14 \rightarrow 14,45) \end{aligned}$

$$
\begin{aligned}
& \text { SD }=\text { sian DIEGD } \\
& \text { (Ha 65) } \\
& \text { ERAR : URENELT } \\
& \text { (NG 66) } \\
& \text { SAC }=\operatorname{sich} \pi x \\
& \text { (} 21 \text { 69) } \\
& \text { hng }=\text { dacoine } \\
& \text {, } 50 \text { 68) } \\
& \text { GOL }=\text { COLUMBIA (Ra 72) } \\
& \text { LNL }=\mathrm{IOS}-\mathrm{ML} \text { NOS (FO 71) }
\end{aligned}
$$

I - 3. Comparative study of the resonance parameters from 0 to 3 kev.

In order to do this comparative study we selected four sets of rescilts, those of Columbia, Saclay, Harwell and Los-Alamos. Lt will enable us to select a set of resonance parametors which can be used to calculate the cros: sections in the resolved energu rarge, and a sot of average parameters which can be used at higher energies. A method for testing the different experimental results consists in comparing the average parameters and their change with energy, for the purpose of finding the systenatic deviations ; this comparison can be done on the reduced neutron widths, leading to the S_{0} and S_{1} strength functions, and on the radiation capture widths.
 function

Table 1 - 3 shows the comparison between the S_{0} strength functions obtained in 0.5 keV or 1 keV energy intervals. There are no Los-Alamos values in this table, the authors having used Garg"s neutron widths or Ribon's For the "s" resonances. There is excellent agreement between Columbia and Saclay in the 0 to 0.5 kov enetgy range ; that corresponds to a good agre nent when comparing the individual resonance parameters. At ; 'Ther energy there is a disagreenent which in creaser ith the energy : 3.5 f from 1 keV to 2 keV and 7 f wetween 2 keV and 3 keV .

TABLE I -3

λ disagrecment of this kind, although .arger, had olrosidy been roported between the old values of Columbia and thono of Saclay. In ozder to find the origin of this disascochont, thape analyose using the least square rethod was undortaken by 1 Heriteau et col. on the Columbia trancmiogions [in 71] ; this analysis showed that the dibagrecnent vanishea on condition that the bacleground in the reasurements of Columbla was revaluatca. We used the amo shape analysis on the new Columbia trancmisalons, in two energy ranges $(2.48 \mathrm{kev}$ to 2.76 kev and 3.2 kov to 3.7 keV ; the detafled results of this work are given in another report [De 74]. It seems to be atili secessary to revalue the background; then, in the 2.43 kev and 2.76 kev energy range the difference betrseen the Pr values nubliched by Columbia and those we obtain by the chape anolycic is around 48 in the average. If this deviation 13 scken 4 nto account the difference with the Nibon valves ts only 30 . Between 3.2 kev and 3.7 kev, the doviation can be ashigh as 12% for the great rosonances.

The So strength function obtained at Harwell between 0 asd 0.5 keV 1s connistently less than that of Columbla and saclay by 3.58 or 78 according the results considered (a Mlysio of the trancaicalons only or analysis of all the exporimontal datal.
2) Radgngicnacaptuecwidthn

Table I - A shew the average values of IY which eam bo ctstactedfeon four serics of measurcmonts (arithnotical avexagol.

$$
\text { ThDLE I - } 4
$$

Laboracomy	$\begin{aligned} & \text { Enesy } \\ & \text { isend } \end{aligned}$	$\left\langle\Gamma_{\gamma}\right\rangle$	$\begin{aligned} & \text { Variance } \\ & \left.(\mathrm{cc})^{2}\right)^{2} \end{aligned}$	Bubher of volusg
coctiay	$0 \cdots 3$	21,7.5 $\pm 0,54$	10	16 (axtectionmes)
chacsin	$0-2 \sec$	$21,25 \div 0.20$	7	07
Tatwat	$0-006$	21,53 $\pm 0,77$	5	23
Les n ¢amar	0 - 0	21.29 ± 3.00	17	65

The vanameon giver for tha tablo are cqual to

 (0) Monions :
a) Eot; Saclay values are used in the calculotion of the average value : the 14 values gelceted by Ribon are comprised in the energy interval up to 300 cy . The other values are very seattered and not very accurate (variance equal to 47 for 34 values between 0 and 1 kev); this is a characteristic of the shape analysis which cannot give a precise value of F_{Y} unless the Δ / Γ ratio of the Doppler width to the resonance width is relatively small :
b) Cuncerning the Los-Alamos results, Forman calculatoi the Γ_{γ} widths by using Garg"s neution widths between 0 and 1 keV , and those of Ribon between 1 keV and 2 kov. we fevised the Fr values by also using the Fin values of Ribon between 0 and 1 kev. The variance then decreases from 23 to 18 in this energy rance : this is due to the fast that some large valuea of Probtained Exom Garg's in are claser to the average when Ribon's En - usct Eesonances at 192.6, 569.8, 590.2 and 943.4 evi :
c) toble I - 5 shuws the indivisual values of fr which scrued to cotablish the arithoetical average values of tabie I - 4. The aritheetical average of all these vaives cquals 21.33 rav . If the average in evaluated by weightine caen indivicual value by the reciprocal of the oguize of the abselute erzor, a value coual to $121.25 \pm$ Q. 131 cev is foynd. IE the errors are remajuoted to find a roascnable x^{2} for cach resonance, the vilue of (21.66 ± 0.20 - EV 5 E Ecuril ; thia illustrated the aispersion introdueci by various overaging proceduros upon tho estimatien of the rean value:
ad tablo I - G chous none coreclation coefficionts ohtalned sfom inalusend values of Prand requecd ncutron widtic. Up to 920 oV. a Eatrly strong corredation ta noticce fotwon the diekocont cxperimontal sorica of Γ, aril thic gnems to Indicato that the fluctuationo noticed
 havi, fotions 0 and 2 kot, the cozsclation cooffleicnt
 Eadetur bash ; thibu 20 Gue so the fact tiat tho Los-slamos

Eng1E $\mathrm{I}-5 .-$ Table of fy values.

E (c) ${ }^{\text {c }}$			Ssc \{ Ai 69]	$\begin{aligned} & \text { LMB } \\ & \text { LAO 66] } \end{aligned}$	$\begin{aligned} & \hline \operatorname{coL} \\ & (\mathrm{R} 0 \end{aligned}$
57.5	22,7	22.0	22	23,2	25
60,2	21,9	21,5	20,5	21.2	25
113.0	21.0	17,4	20,4	20,1	20
120.0	21,0	17.3	20,7	20,7	22
127,2			16.4	21.4	18
154, ${ }^{3}$					
173,4	22,3	21,9	19,3	22,2	26
192.7	30.3	22,5	16,0	19.6	17
193.4			17.9	18.9	10
221,3	21.8	22,1	22,0	20,3	22
231.7	22,2	21.7	25,4	21.1	24
36, 5	17.3	10.6	29,0	17.8	19
253, 5	10,0	17.6	24,9	21.0	20
305.5	PE. 3	17,2	22,0	24.2	20
323.8	24,0	21.2	23.7	22.0	26
7680 0	23.6	10.7	21,0	20,5	12
20.3 .2	21,0	27.7	23, 0		21
203.2	26.2	24.4	27.0		22
162.0	19,0	14.8	31.0		10
4595					
208.5	89.3	10.0	82.0	20.5	22
43_{0}	17.2	17.2	19,0	1983	30
	17.7		23, 0		20
Hin. 0	33.7	23.3	250	90,3	17
573. 2	79.6	20.5	33.0		10
20.40	03.7	We\%	24.0		a

TABLE I－5．－Table of Fy valuen．（continucd）

E（cV）	$\begin{gathered} \operatorname{LASL} \text { tFo } \\ \text { fren } \\ \operatorname{coss}{ }^{*} r_{n} \end{gathered}$		$\begin{aligned} & \operatorname{SNC} \\ & \text { [al 69) } \end{aligned}$	HAR ［43 66】	
655．3	14，6	12，4	10，0		10
675.2	18．4	18.4	21，0		18
687.4	18．1	18，9	20，0		23
701．2	28，0				17
712.9	13，1	13，6	8.0		19
741．1	19，0	23.7	24，0	21，6	23
770.7	24，2	25，0			26
504， 2	19，5	19，6	29，0	20，5	20
242， 0	20.0	21.0	29.0	23.2	19
［25， 3	26，0	35.0	41.0		23
380.1	2×4	22，2	4.0		21
843.2	29.8	25，0	20，0		23
003.3	20.6	10， 6	22，0		21
600.5	10.4	17.7	32，0		25
1010．6	！	20.2	34，5		20
0087．4		I	25．13		
140，0	！	31.3	69.2		17
$01 \% 0.8$		23.0	1.0		18
205． 5	！	\％			22
02730	\％	10.1	25．		33
［24］．	\％				20
Tatay		22，0	36.4		$\sqrt{5}$
呺为？	i	$\stackrel{ }{\square}$			20
		2， 4,1	23，		25
＊－3： \％5		75.4	；7，7		2；
13si．0	\％	125	0.2		26

TADLE Z - S. - Table of Fr values. (end)

$\bar{F}(0)$		$\begin{gathered} \text { [ascuro } 71 \\ \text { fros } \\ \text { cibcnta } \end{gathered}$	$\begin{aligned} & \hline \mathrm{SAC} \\ & \text { [Ri 69] } \end{aligned}$	$\begin{gathered} \text { HAR } \\ \text { [As } 66 \text {) } \end{gathered}$	$\begin{gathered} \mathrm{coL} \\ {[\mathrm{Ra}} \\ \hline \end{gathered}$
3370,0		21.5			24
33070		19,7	23,5		19
1426,6		21.2	-2		21
1435.5		26,0			$1 E$
1510,7		19,0			24
1524.3		25.5	40.0		20
1531, 8		26.4			20
1303.5		23.1	15,0		24
0602. 6		7.1	19, 1		24
16359		10.2	17.0		19
Henso 0		10.0	20,0		25
1657.4		24.4	45,0		25
1076.9		[0.\%			
Bram					17
		02.7			23
13Cay	,	54.0	55,4		27
R6.......it		ก0. 0	23.0		21
\%Ts.U		20.5	42.4		30
\cdots		W0.2	$\therefore 8.0$		10
[0.3.6]	-	\% 5 , \%	53, 0		23
1 Ca		4, 0_{0}			2 c
	-	-			2
$10 \% \%$		80.6	$22_{4} 3$		\%
Hent		18.3			23

TABLE I-6

Correlation coefficients

3) Parafoters_recotzended for the_resonancer.

a) Meutron widths

The agreement betwoen Saclay and Columbia is very geod under 500 eV ; the Harwell values are 3 or 78 less on average than those of Saclay and Columbia (see table I - 3 and section I.3.1.1. At higher energy, the disagreesent between Columbia and saclay increases; the Colurbia values are probably too small ; from 3 to 4 keV , particulariy, the local value of s_{0} according to Columbia rould apecer to be 332 under the average vaite below 3 keV , and this is rather unlifely according to the statiotical dictribution laws. Nlso, the shape analysis of the Columia data qives values of gin (and therefore of S_{0}) which are appreeiably greattr (sec bection 1.3.1. and [Dc 74,). Tic conclude from this tiat the present columbia Foculto are not corpletoly corrected for the srave defecta Which haid fulsod those of 1961, and that a tendency to under cotimation of the largo $g V_{n}^{0}$, du $=$ to an under ostimathon of the background, porsigts abovo whout 1 keV. For these roncons, we rece:-mend the set of Saclay neutron whithe up to 3 kcV .

An a conscquence of this choice it is alod necoseary to rece-Gend the Saclay strength function valuo, 1.e. :

$$
s_{0}=(0.09 \pm 0.11) 10^{-4}
$$

b) Radtativo captura widtha.

The echerence to good jetweon the radiation eapture

Watho, particularly concorning the iwan values. The Colwidia results appear to be the most accurate ; thoir aicporgion is less than for the other results. The incoiricage of the capture area, $g \Gamma_{n}\left[y /\left(r_{n}+\Gamma \gamma\right)\right.$, given by a capturc experiment, is inproved in principle by the other omperiments (tranamission, self-indication) provided that thore is no systeratic error ; we concluded that this was not the case with the Colurbla transnission. This is why ia adopted the LASL capture areas which only come from a dircect meacurcmont of the capture and are free of other influences ; we deduced tron them the individual values of $\mathrm{r} \boldsymbol{\gamma}$.

It inould be obecrved that the influence of criperiments other than the capture on Γ y is geall when $g \Gamma_{n}$ is groat : it is ificely that an error on $g \Gamma_{n}$ then has ifitte cffect on "Y, ihich cail explain tle absence of disagreement between the Pr values of Columbia and the other results.

Our choice (Γ_{3} of Saclay and capture area of LosAlaros) is probably not the only possible one, but it has the advantaye of cominins echerence, quality and oimplielty.

Thoec ia no difficulty to chooso a Ean value of ry ; wh propsec the followirg value which in a compromise becticen the difforcnt ways of antinating the arorage of the indiviaug valvec in table $1-5$ (sec I - 3.2.c).
$\langle\mathrm{rv}\rangle=(21.45 * 0.25) \mathrm{moV}$

The tosenlamas methorg hove publqonot a comparadive
 anct tous os

 arej of cari2 wo.juancest.

TABLE I-7 $g^{\Gamma_{n}}$ values (from Fo 71).

${ }^{6}$ (VA1Ep)	$\begin{aligned} & \mathrm{er}_{a}^{4} \\ & \mathrm{ten}) \end{aligned}$	alt (${ }^{(1)}$	$\begin{aligned} & \text { cis } \\ & \text { fant } \end{aligned}$		(Faltu)	$\operatorname{Hn}_{(0\rangle)}^{+}$	4g (2)	$\begin{gathered} \langle 5\rangle \\ \{=4\rangle \end{gathered}$	$\begin{gathered} 4)^{\circ} \\ (1) \end{gathered}$	v_{0} (latel)	$t r_{0}^{+}$	$\begin{gathered} \text { ar } \\ \text { (1) } \end{gathered}$	$\operatorname{tax}_{(3)}^{(3)}$	$\begin{aligned} & \text { 4er } \\ & \text { (it? } \end{aligned}$
0,15			0.00018	13	313.3	0.15	33	6.31	\%	1043.7	1.1	19	1.0	20
23.14			0.00022	15	315.4	0.40	14	8.94	13	10312.1	1.1	18	1.18	12
16. $\%$	9.cart	21	0.00103	10	960.1	0.78	33	1.15	11	124.5	-		1,10	50
18.2	0.00037	34	0.00041	10	530.1	0.11	15			1116,	F		1.00	13
44.0	0.0009	35	0.00051	4	573.7	0.60	27	0.73	8	H15.2	3.75	13	1.33	1)
6. 0	0.00174	25	0.00119	39	577.	1.4	33	2, \%	10	1113.1	0.17	19	0.23	\%
49.t	0.00046	43	0.0001	74	518.7	0.015	18			414.14	0.41	44	0.46	11
31.1	0.0011	10	1		83.0.	0.169	4	9.10	80	1166.2	0.10	7		
93.6	-		9.0031	11	617.3	3.32	3	4.2	14	1153.3	0.4	:)	0.38	30
46.4	F		0.0005	7	615.1	0.011	75	-		1112.t	0.2	\%		
5 7.1	0.814	58	0.001	40	\$17.	0.035	13			1101.7	1.)	13	8.16	31
4%.	0.004	28	0.005	50	631.9	0.975	t			E210.1	1		0.8	-1
101.5	0.0035	$1{ }^{1}$	0.004	40	644,3	0.70	18	8.0	13	1234.8	0.55	10	0.6	10
118.6	P\%		0.064	*	633.5	0.17	61			1224.1			0.47	10
113-8	PR		0.001	4	[13.	12		6.2	13	1131.2	0.70	80	0.70	P0
128.2	71		0.013	10	104.1	0.11	40	0.27	W	130L, ${ }^{\text {a }}$	1.02	33	1.80	27
843.)	0.10\%	11	0.091	10	71\%.	$0 . \mathrm{Drg}$	38			1245.4			0.28	38
14.13	0.097	11	0.011	14	113,	0.12	48	0.28	78	1287.4	\%		6. 1	*
134.1	0.208	22	0.308	*	148.8	0.516	17			1301.3	0.15	30		
167.0	Ph		0.014	65	\$15.0	0.041	14	0.24	50	1314.3	1.31	13	3.2	50
176.7	0.015	11	9,621	30	748.07	0.67	76	0.92	50	1346.2	1.18	11	1,08	5
176.4	0.11	54	9.018	18	770.	0.104	78			235p-2	1.19	13	1.a	13
71.1 .3	$\%$		6.028	25	77.6	P1 0		0.88	13	\$311.	1.33	30	1,00	20
210.9	0.016	72	0.015	15	714.0	0.077	0			13th. 4	2.7\%	13	3.3	33
132.0	0.017	12			117.1	0.674	6			140.4.2	0.4	30	C. 3	11
134,2	0.080	34			797.3	0.0.8)	19	Fi8		1415.t	0.34	30	0.6	33
262.6	0.046	56	0.049	*)	61.35	0.113	41	0.18	10	1441.0	1.65	15	1.3	31
238.3	Ft		d. 61	*	814.9	0.074	86	4.18	38	2649.4	0.20	17		
712.6	0.019	2*			120.4	1.03	13	3.15	14	1450.4	1.22	13	1.4	30
214.6	0.035	15			Ori.	0.15	\cdots	D. 2	\#	1466.t	0.15	11		
290.6	0.014	41	0.01	75	436.0	1.55	35	t.31	17	1615.7	2.14	13	3.3	11
120.6	12		0.047	15 '	44t.3	1, 45	15	1.14	17	2403. 1	0.25	48		
301.6	12		0.124	25	46,7	0.12	34	0.18	80	1501.4	0.31	50	0.1	40
1u9.6	0.076	4	9.053	3)	017,	0.15	39			150F.L	4.55	40	1.0	33
121.5	0.10	Et	0.04	33	-14.6	0. 30	\$1	D.34	72	293)-1	4.07	40	4.6	37
315.1	P		0.015	94	Tilt	0.012t	4			1611.3	1.05	*	0.45	70
38.8	0.017	45			203.7	1.71	3	1.11	18	1813.2	0.71	15	0.1	44
342.2	F		0.80	30	\$1.3	0, 57	30	0.41	30	1695.4	0.59	10		
380.1	0.14	11	0.115	34	576.4	0.51	14	9, ${ }^{4}$	3	186	1.06	J)	4.6	79
191.7	-		0.116	38	974.6	0.13	40	9.17	4	1577.6	1.50	35	2.3	40
403.0	0.104	40			154.6	7		9, 18	73	17040	3.0	33	8.8	38
412.0	0.12	25	0.74	48	\$1.1	7.21	36	6, 62	13	2784.1	2.21	\$0	1.29	18
418.0	0.43	27	0.14	16	71.3	0.28	18	0.17	15	L121.4	1.41	35	1.25	6
428.6	0.081	81			1000.	0.41	6	0.31	15	1759.0	8.1	\$5	4.60	38
456.2	1.07	11	1.35	13	1000.\%	0.21	66	0.21	40	1193.1			0.1.	45
485.	0.07	4	8.08	4	1820,	0.51	14	8.31	73	278.9	\$.32	23	E. 4	\$8
464.6	0.10	4			1015. 10.5	4.7t	315	0.2	78	1F3.3			0.40	10
410.5	0.94		0.19	78	1043,5	4.915	15	0.2\%	40	103s.7	9.7	40	1.4	60
476.3	0.14	34	0.10	9	104.5	0.15	30			147.4	3.5	40	4.3	25
500.0	-1		6.03	13	i0s3.6	0.34	22			1817.6	0.12	$\$ 9$	1.8	49
110.3	3.13	84	5.32	18	1039.3	0.4	*			1840.0	F		0.32	T

"Values of $g \Gamma^{\dagger}{ }^{\dagger}$ are from this work and gr (5) are from nibon's listing. Resonance energies are from this work, if a gr velue is reported, and estimated to be $\pm 0.15 \%$. The letter P in a colinn signiries evidence for a resonane?, and $P R$ indicates that a previousiy reported invel could not be obecerved because of interference from a neightoring resonance:
small resonances. On the basis of the fact that the probabillty of observing Γ_{n} values exceeding ten times the average value is virtually nil, all the authors [$R 4.69$, Ra 72 and Fo 71] have assigned the orbital moment $1=0$ to the resonances for which $\Gamma_{n} E 3 / 2>10^{-7}$.

There is ro reason to question these assigments. Obviously this method does not apply to those resonances at the boundary uf the classification (small "s" resonances or large " p " resonances). By using a least square shape analysis with or without potential interference terms, Ribon was able to assign the orbital momentum (0 or 1) to 25 of these resonances. But in general, the assigments are based on statistical arguments. This is the case of Rahn et al [Ra 72] who made a complete rlassiiication of the resonances. This classification does not always agree with Ribon's. Let us examine it in the 1000 to 1 bud eV energy interval for instance.

In this energy range, according to the PorterThomas law and considering Rahn's average paraneters, there should be about 4 " s " resonances and 28 " p " resonances with neutron widths such that : $0.3<g \Gamma_{n}<3 \mathrm{meV}$. Owing to the repulsion of levels, little or no "s" resonances will be lost (one single population) ; but, many " p " resonances may be lost (2 resonance populations and they can be hidden by largo ${ }^{\circ} 3^{\text {" }}$ resonances). According to Rahn's results, between 1000 eV and 1500 eV , there are 8 "s" resonances and 16 " P " resonances for which $g \Gamma_{7}$ is comprised between 0.3 rov and 3 meV , 1.0 . an excess of "s" resonances. If Ribon's results are accepted (which places the $1093.0 \mathrm{eV}, 1204.4 \mathrm{eV}$ and 1335 eV resonances in the group of "p" resonances) the corresponding populations are brought down to 5 "s" resonances and 19 "p" resonances, i.e. in better agreement with the statistical predictions. Finally, it seems reasonaile to take Rahn's results as basis, except when there is contradiction with Ribon, for assigning the orbital momentum by a shape anaIygis is preferable to that based on statistical arguments ; this alco enables the excess of small "s" resonances existing in Rahn's results to be offset.

The S_{1} strenght function suggested by Ribon [$\left.\mathrm{Ri}_{1} 69\right]$ is equal to (1.4 ± 0.5) 10^{-4}; it was verified by studying a aimulated total cross section generated by a MonteCarlo method. This value is in agreement with 17×10^{-4} as given by Forman et al [FO 71]. Rahn et al [Ra 72] studied the influence of the possible confusion between Ns_{s} " and " p " resonances to establish a lower value 0.6×10^{-4} and an upper value 1.4×10^{-4} of S_{1}; they proposed an order of nagnitude for S_{1} equal to 0.9×10^{-4} (at the limit of the erroz bar given by Rioon).

Another source of information on the S_{1} strenght function is the measurement of the total cross section
between 1 KeV and 1 MeV due to C.A. Uttley et col. [Ut 54]. By setting 0.80×10^{-4} as the value of the S_{0} strenght function, they obtained the fcllowing value .

$$
\varepsilon_{1}=(1.64 \pm 0.24) 10^{-4}
$$

This latter value is obtained by a completely different method from those which use the resonance parameters and is consistent with the Saclay and Los Alamos values.

We therefore propose an arithmetical mean of these three velues, whilst retaining a significant error of 30% to allow for the conclusions of Columbia ; chis then gives :

$$
s_{1}=(1.58 \pm 0.50) \times 10^{-4}
$$

4. Conclusi, 3

The list of resonance parameters emerging from the critical examination we have just made is given in Appendix 1. Except for the first four "s" resonances, it was established in the following manner :
a) the energies and the neutron widths are those proposed by Saclay [Ri 69] supplemented by the Los-Alamos values [Fo 71] for some small resonances not appearing in the Saclay list ;
b) the radiation capture wiaths were determined from the Saciay neutron widths and the capture areas measured at Los-Alamos ; the mean value 21.4 meV is assigned to the resonances for which I_{r} could not be determined :
c) the assigment of the orbital moment complies with that made at Columbia [Ra 72] except when there is contradiction with the results of saclay $\left[\begin{array}{ll}\mathrm{Ri} & 69\end{array}\right]$.

The average parameters proposed are :

$$
\begin{aligned}
\langle D\rangle_{s} & =15.9 \pm 0.7 \mathrm{eV} \\
\langle D\rangle_{p} & =5.7 \mathrm{eV} \\
S_{0} & =(0.89 \pm 0.11) 10^{-4} \\
S_{1} & =(1.58 \pm 0.50) 10^{-4} \\
\langle I \gamma\rangle & =21.45 \pm 0.25 \mathrm{meV}
\end{aligned}
$$

II - CROSS SECTIONS IN THE THERMAL AREP.

Except for a few cases, there have been no new experimental resules since 1962 ; most of them are found in the BNL $\mathrm{N}^{\circ} 325$, and issue, supplement $\mathrm{N}^{\circ} 2$, to which we would refer the reader.

II - 1. Capture cross section

'The four most accurate measurements are shown in the table II - 1 .

Table II - 1

Authors	Rēférances	Méthod	Résults (barns)
CROCKER	Cr 55	Activation	7.32 ± 0.12
SMALL	Sma 5	Pile oscillation	3.53 ± 0.13
myASISCHEVA et al	My 57	Activation	7.32 ± 0.10
HUBERT ot al	Hu 57	Transmission From 10^{-3} to $2.210^{-3} \mathrm{eV}$.	7.60 ± 0.16

The weighted mean of these four values is :
(7.40 ± 0.065) barns. Like BNL 325 [Bn 73] we shall adopt :
$\sigma_{n, Y(2200)}=(7.40 \pm 0.08)$ barns
The contribution of the positive energy resonances calculated from the parameters recormended in I is 0.43 barns. Thercfore the contribution of negative resonances must be 6.97 barns. Several authors have proposed parameters for a negative resonance. We quote only the three series of values given in Table II - 2.

TABLE II - 2

Rëfërence	E (eV)	i_{n} (meV)	$\begin{gathered} \Gamma_{Y} \\ (\mathrm{meV}) \end{gathered}$	contribution at $2200 \mathrm{~m} / \mathrm{s}$.
TIREN et JENKINS				
(Ti 62)	-4.3	0.704	40	6.21
COOPER et al				
(Co 61)	-3.5	D. 636	30	6.34
LUNDGREN (Lu 68)	-5.1*0.5	1.8 ± 0.4	24	6.79

Probably one single negative resonance contributes signifizantly in the therinal area ; we propose the following parameters for this negative resonance :

$$
E=-5.0 \mathrm{eV} ; \Gamma_{\pi}^{\circ}=1.974 \mathrm{meV} ; \quad \Gamma_{\gamma}=n 1.6 \mathrm{eV}
$$

enabling a contribution of 6.97 barns to be obtained for the capture at $2200 \mathrm{~m} / \mathrm{s}$.

The capture crass section in the thermal "ange can then be described by :

$$
\begin{aligned}
& \sigma_{n, \gamma} \sqrt{E}=a+b E=1.189-(0.45 \pm 0.10) E ; \\
& \text { for Westcott's } q \text { factor, this gives : }
\end{aligned}
$$

$$
g=\frac{1+\frac{3}{2} \frac{b}{a} E_{t h}}{1+\frac{b}{a} E_{t h}} \neq 1+\frac{b}{2 a} E_{t h}=0.9952 \pm: 1.0010
$$

II - 2. Scattering eross Bection and total cross section

The value of $a_{p} \Rightarrow 11.70$ bains $\left(R^{\prime}=9.65 \mathrm{fm}\right) \mathrm{ob}$
tained by Ribon [Ri 69$]$ from the analysis of experimental. transmissions correctly normalized below 3 kev agree wich several other experimencal results, particularly with those of Uttiey [ut 64] who proposes $\sigma_{p}=12.06 \pm 0.36$ barns as from the analysis of average high energy total cross sections
(1 kev to 1 MeV). The value $\sigma_{p}=(10.41 \pm 0.60)$ barms ($R^{\prime}=9 . i \pm 0.3$) proposed by Rahn [Ra 72] from the analysis of resonances; is distinctly lower, is is that of 10.15 barns recomended by Leonard for ENDF - B3. Therefore there is a choice to be made between a high value close to that of Ribon, and a low value close to Rahn's. Table II - 3 shows that the high value $1 s$ consistent with the total cross sections generally accepted for ${ }^{232}$ Th at low energy ; the deviations between the measured cross section and the calculated cross sections are then relatively small ; they could be due to the fact that the description of the total cross section by allowing for one negative resonance only is probably insufficient. As for the low velue, it is consistent with the total cross sections, apyarenily accurate, measured by Pattenden [Pa 65] and Which constitute one of the bases of Leonard's evaluation.

For the moment we recommend the value :
$\sigma_{p}=(11.70 \pm 0.30)$ barns which agrees with a significant number of experimental data.

TABLE II - 3

Energy (feV)	σ_{R}^{-}	$\sigma_{R}{ }^{+}$	$\sigma_{R}{ }^{T}$	$\sigma_{T}(1)$	$\sigma_{T}(2)$	$\sigma_{T}(1)-\sigma_{R}^{T}$	$\sigma_{T}(2)-\sigma_{R}^{T}$
0.1	5.55	-0.58	4.97	16.1 ± 0.2		11.13	
6.0	1.08	-0.88	0.20	11.9 ± 0.2	10.7 ± 0.04	11.70	10.58
12.0	0.67	-1.15	-0.48	11.5 ± 0.2	10.26 ± 0.04	11.98	10.74

the cross sections are expressed in barns ;

III - CAPTURE CROSS SECTION BETWEEN 1 keV AND 500 keV

III - I. Experfmental deta

We only considered the following recent results (less than 10 years old):

1) the oldest results we are taking into consideration are those of Macklin and Gibbons [Na 63], apparently known only by private communications (see Fo 71 , for instance) ;
2) the resuits of Moxon [Mo 63] come from one of the first experiments done with the "Moxon-Rae" detector; the cross sections obtained are 30% lower than the other values and we shall not retain them :
3) the results of Forman et al were sbtained by time-offlight method on a nuclear explosion. The authors only published their values up to 30 kev [Fo 71] ; as we have seen these results seem to be very good ir the region of resolved resonances, and there is every reason to belifeve that this is aiso the case in the 10 kev region and above;
4) the results of Nagle et al were obtained by activation with neutrons of 100 keV to 3 MeV [Na 71] ; on figure III-] we have only shown the results below 500 keV . The normalizeition was done relatively to the fission of 235 given in ENL 325 (1965 issue) ; the values should be lowered by around 28 (but we did jot do sol. The authors state that for gold they obtain good agreement with other experimental or recommended data ;
5) the results of Stavissky, Chelnokov et al, was obtained with a slowing-down spectrometer and published in inal form, in 1973 [Ch 73]. These values are shown in figureili1 ; the error indicated by the authors is probably a systematic one. The behaviour of this capture rross section as a function of energy is very different from the other data and cannot be explained by any theoretical calculation : so we did not take it into account.

III - 2. Description of the experinental data by statistical model

The capture cross section, calculated by means of the FISINGA code [Le 70], is ghowr. In figure III - 1 . The dotted line curve corresponds to the cross section calculated from average parametexs resulting from the study of the resonances (see $I-4$) and supplemented by the values $s_{2}=1.10^{-4}$ and $s_{3}=2.10^{-4}$ for the strenght functions of

the orbital moments $I=2$ and $L=3$; the mean radiative capture width was taken as being equal to 21.45 eV for all the " $1^{"}$ values considered. The results obtained are lower than ald the experimental cross sections
between 5 keV and 50 keV . In order to obtain agreement between the experimental and theoretical values, the average parameters had to be adjusted. The solid line curve corresponds to the fullowing parameters for the strength functions :

$$
\begin{aligned}
& s_{u}=0.93 \times 10^{-4} \\
& s_{1}=1.80 \times 10^{-4} \\
& s_{2}=0.65 \times 10^{-4} \\
& s_{3}=2.7 \times 10^{-4}
\end{aligned}
$$

and, at the binding erergy, for average ?evel spacings and radiative capture sidths:

$$
\begin{aligned}
& \bar{D}\left(J=1 / 2^{+}\right)=16.5 \mathrm{eV} \\
& \overline{\Gamma Y}\left(\mathrm{~J}^{+}\right)=21.6 \mathrm{meV} \\
& \overline{\Gamma Y}\left(\mathrm{~J}^{-}\right)=25.8 \mathrm{meV}
\end{aligned}
$$

Comments on the choice of these rarameters.

1) The contribution of the neutrons with orbital momentum $I=0$ to the capture is small above 10 keV . Sc the corresponding pasameters were only slightly mojified ; we adjusted them by a quantity equal to half the error bar given in I.. 4. This adjustment enables better agreement to be obtained with the experimental data below 10 keV .
2) The "p" capture (capture of neutron of srbital momentum $1=1$) represents $2 / 3$ of the capture setween 20 kev and 50 kev. However 210% increase on S_{1} produce only a 38 increase on the total capture cross section. Herice, it seemed to us that the best way of obtaining agreement between the calculated cross section and the experimental one was to increase the average capture width of the "p" neutrons, by introducing $\Gamma \gamma$ values depending on the parity of the compound nucleus; thie can be justified by the two following arguments :
a) the fundamental of ${ }^{233} \mathrm{Th}$ is $1 / 2^{+}$spin and parity; it is possible, as for ${ }^{239}$ pu, that most of the levels below 0.5 MeV are also of positive parity. The disect El transitions to low-lying states'from negative parity
resonances would therefore be more probable, according to the selection rules, tiereby producing :

$$
\overline{\Gamma Y}\left(\mathrm{~J}^{-}\right)>\bar{\Gamma} \bar{Y}\left(\mathrm{~J}^{+}\right) ;
$$

b) the only "p" level for which the experimental vaiues of r^{\prime} has been determined, is that at 8.3 eV ; results [Pa 65] [R1 69] give a value close to 30 mev for ry, with, however, lurge error bars ; indeed, these two arguments are not quite conclusive but they do make a depencience of $\overline{\Gamma \quad \gamma}$ with parity plausible.

We have also shown on figure III-1 the results of two recent evaluations :

- that of Davletskin et al [1la 71] which, on average, agrees with ours but gives a less marked structare towards $50-100 \mathrm{keV}$;
- that of the Britisi DFN 930 (1973) band which is from 20 to 30% above ours.

III - 3. Conclustion

It is therefore quite possible to describe the capture cross section of 232 Th up to 500 kev by a set of average parameters in very good agreement with that deduced from the study of resolved resonances. However the S_{2} and S_{3} values, adjusted to improve the agreement, must not be taken too seriously.

Before ending this section, we shall observe that the non elastic cross sections were also calculated by means of the FISINGA Code. They appear to be about 15 \% too small, which is rather satisfying since there were no ajjustments on experimental non elastic cross sections. Tie values appearing in the evaluated data (ENDF-B format) were arbitrarily increased by 15\%.

IV - RESCNANCE INTEGRAL ACCORDING TO THE DIFFERENTIAL DATA.

The various contributions to the RI_{c} resonance integral, calculated from the differentiai data, are given in table IV - 1. We shall run through the me ihods used to obtain ther.

IV - 1. Coritribution of positive resolved resonances
We have indicated the individual contriblition of the
main resonances below 200 eV and the total contritestion of the other resonances between 0.2 keV and 1 keV , and also between 1 keV and 3 kev . The effect of a 5% varlation on parameters Γ_{n} and $I \gamma$ of each resonance was also evaluated.

IV - 2. Contribution of unidertified resonances in the resolved area.

These resonances have small $\Gamma_{n} v a$ ues but their contribution to the capture integial is relatively significant. We simply estimated it in the following manner :

- between 1 keV and 3 keV , we took it as being equal to the difference hotween the result of the calculation by statistic model and the values of the mean cross secticas calculated from resonances parameters ;
- we assumed that, below 600 eV , the djfference between these two methods of calrulation corresponded to fluctuations in the sampling, that is to say that the unidentified resonances were few (this is probably true for the "s" resonances below 500 eV [R1 69]);
- between 600 eV and ; keV, we used a correction equal to half the difference between the statistic model and the calculation from resonance parameters.

IV - 3. Contribution of negative resonances
This contribution may be calculated by means of the following integral :

$$
\mathrm{RI}_{\mathrm{c}}^{-m} \int_{\mathrm{E}_{\mathrm{c}}}^{10^{6}} \frac{\sigma_{\mathrm{n}, \gamma}^{-}(\mathrm{E})}{\mathrm{E}} \mathrm{dE}
$$

$\sigma_{n, Y}^{-}$is the part of $\sigma_{n, Y}$ due to the negative resonances; E_{c} is the cut-off energy.

On the assumption that $R I_{c}^{-}$can be described by a single negative resonance, with $\sigma_{n, Y}(2200)=6.97$ barns and the parameters indicated in II - I for the negative resonance, we obtain :

$$
\mathrm{Rr}_{\mathrm{c}}^{-}=1.41 \text { be nns }
$$

The sum of the partial contributions of table IU - 1 gives :

$$
\mathrm{RI}_{\mathrm{c}}=83.7 \pm 2.7 \text { barns }
$$

The Eiror was calculated by adding quadra^ically the errors in each of che contributions to RI_{c}. The error due to the only resonance at 23.4 eV is 2.5 barns. Withour it, the error in $R I_{c}$ would be around 1.1 barn. It therefore appears that learning more about $\mathrm{RI}_{\mathbf{c}}$ as from differential daca first presupposes a better knowledge of the parameters of the resonance at 23.4 eV .

A detailed review of the measured values was made by Greneche [Gr 74]. We would refer the reader to it. He recommends the following value :

$$
\mathrm{RI}_{c}=85.8 \pm 2.5 \text { barns }
$$

This value agrees with that which we obtain from differential data. A mean value of these two results can then be recommended :

$$
\mathrm{RI}_{c}=84.8 \pm 1.8 \text { barns }
$$

```
Tableav - IV - I.
```

Capture resnnance integral of ${ }^{332} \mathbf{T h}$

Energy	Qéson prana		Infi	aite dilut			dilution	
	Γ	Γ	aI	eftect of	S2 variation		ffeci of	I varistion
(ev)	(nc V)	(sev)	barns	on r_{n}	on r_{7}	barns	an Γ_{n}	on Γ_{*}
E. 32			0.017					
13.09			0.005					
21.75	2.02	24.5	16.31	-4.62	- 0.42	3.05	+ 2.2 z	- 2.67
23.41	3.88	26.6	25.55	+4.4	+0.72	3.69	+2.8 2	- 2.8 z
59.48	3.90	23.7	3.91	+ 4.32	+0.12	0.92	+2.0	- 2.6 \%
69.19	43.8	21.9	12.62	+ 1.7 E	+ 3.4 I	1.19	-0.2 2	+ 5.2 z
113.0	13.6	17.4	2.47			0.45	+12	+3.92
12.08	23	17.3	2.79			0,46	- 0.42	-4. 52
129.2	3.46	16.8	0.7			0.23	+ 2.12	+ 2.8 z
154.4	0.21	18.8	0.03			0.03	- 3.92	- 0.82
170.4	60.9	21.9	2.30			0.29	-0.8 2	+ 5.82
192.7	18.1	22.5	1.12			0.19	+ U.5 5	+4.4 I
199.4	10.4	17.9	0.69			0.17	+1.0	- 3.82
others resolved resunances below ; kev 8.17			18.35	+ 2.3 \%	+ 2.8 .			
Resonances between 1 and 3 keV			1.63	+1.9 2	+ 3.27			
Unecsolved resoranees between D. \mathcal{E} and 1 keV betveen 1 and 3 hev			$\begin{aligned} & 0.17 \\ & 0.44 \end{aligned}$					
Capture crosin section between 3 kcV and 1 HeV			3.06					
Contribution of negative resonanece			1.41					
TOTAL :			83,67					

CONCLUSION

In this work, we have proposed a set of resonance paxameters from a critical examination of the main expefimental data avaflable at present.

This set of parameters was not obtained by taking the mean values of all the experimental data ; a selection was made and a justifiration of this choice has been given. It is mostiy based on the Saclay transmission measurements and the Los-Alamos capture cross section measurement. From this has resulted, a set of average parameters whish is very consistent with that which is likely to represent the experimental capture cross sections up to 500 keV . Obviously other sets of parameters can be proposed ; but we consider that any other set; prepared as from other bases, would approximate closely to that we are proposing, particularly when it is a question of calculating average cross sections.

A complete evaluation of ${ }^{232}$ Th $i s$ given in the ENDFB format under number MAT 445. Our contribution concerns the data under 1 MeV ; partizularly the resonance parameters and capture cross sections. The data above 1 MeV are taken from ENDF-B MAT 1296.

The author is grateful to Dr P. Ribon for his interest in this work and his heló for all theoretical calculation. He is also indebted to D. Gientelse for his help in the determination of the resonance parameters below 100 eV .

Resonances parameters of ${ }^{232} \mathbf{T h}$

	$\begin{gathered} \text { Energy } \\ \text { (ev) } \end{gathered}$	$\begin{gathered} 8 \Gamma_{n} \\ (\text { meV }) \end{gathered}$	$\begin{gathered} E \\ \left(Z_{0}\right) \end{gathered}$	$\begin{gathered} \Gamma_{y} \\ (\mathrm{eV}) \end{gathered}$	$\begin{gathered} c \\ \{-7\rangle \end{gathered}$	L	A	2
1	8.3146	0.0003	130	29.0	30	1	232	90
2	13.111	0.0042	160			1	232	90
3	21.783	2.0200	30	24.5	8	0	232	90
4	23.439	- 800	30	26.6	6	0	232	90
5	36.926	0.0010	300			1	232	90
6	36.165	0.0006	400			1	232	90
7	40.925	0.0006	400			1	232	90
8	47.001	0.0014	300			1	232	90
9	49.850	0.0006	750			1	232	90
20	54.130	0.0011	500			1	232	90
11	58.780	0.0090	120			1	232	90
12	59.514	3.9000	25	23.7	4	0	232	90
13	64.580	0.0005	900			1	232	90
14.	69.224	43.8000	25	21.9	4	0	232	90
15	90.098	0.005	400			1	232	90
16	98. 106	0.005	500			(1)	232	90
17	103.646	0.0060	400			(1)	232	90
16	111.987	0.0043	900			(1)	232	90
19	113.032	13.6000	30	17.4	20	0	232	90
20	117.752	0.0020	900			1	232	90
21	120.670	23.0000	30	17.3	30	0	232	90
22	128.210	0.0730	180			117	232	90
23	129.190	3.4606	100	46.8	15	0	232	90
24	145.871	0.0910	100			1	232	90
25	148.074	0.0120	300			(1)	232	90
26	154.382	0.2050	80	1 H. $^{\text {B }}$	76	0	232	90
27	167.033	0.0100	650			111	232	90
28	1\%0.400	00.9000	30	<l. 9	10	0	232	90
29	178.931	0.0230	300			1	232	90
30	192.756	18.1000	40	22. 5	21	0	232.	90
31	196.315	0.0636	120			0	232	90
32	199.444	10.4000	50	17.9	16	0	232	90
33	202.0t5	0.0280	250			1	232	90
34	211.091	0.0160	350			1	232	90
35	219.54%	0.0510	200			121	232	90
36	221.336	30.7000	30	22.0	15	0	232	90
37	232.020	0.0130				411	232	90
38	234.220	0.0200				(1)	232	90
39	242.520	0.0490	200			41]	232	90
40	251.730	32.8000	40	21.7	15	0	232	90
41	258. 287	0.0100	900			12)	232	90
42	263.305	23.3000	40	18.6	19	0	232	90
43	272.619	C.0190				121	232	90
44	276.619	0.0350				(1)	232	90
45	245.797	31.2600	50	17.6	12	0	232	90
46	290.406	0.0700	250			111	232	90
47	299.578	0.0420	250			111	232	90
46	302. 565	0.1280	200			111	232	90
49	305. 501	20.8000	50	17.2	15	0	232	90
50	309.370	0.0530	350			111	232	90
51	321.800	0.0600	350			111	232	90

Resonances parameterd of ${ }^{232}$ Th

	$\begin{gathered} \text { Energy } \\ \text { (cy) } \end{gathered}$	$\begin{gathered} \varepsilon \Gamma_{n} \\ (\pi c V) \end{gathered}$	$\begin{aligned} & E \\ & \left(\pi_{0}\right) \end{aligned}$	$\begin{gathered} r_{y} \\ (e v) \end{gathered}$	E (x)	L	A	Z
52	328.956	75.2980	60	21.2	10	0	232	90
53	335.052	0.0350	900			(1)	232	90
5	338.049	0.0505	400			(1)	232	90
55	345.532	40.0000	75	19.7	15	0	232	90
561	351.800	0.0770				(1)	232	90
57	361.202	c. 1000	300			(1)	232	90
54	365.143	25.4000	100	22.7	20	0	232	90
59	369.322	26.0000	110	22.4	30	0	232	90
69	380.467	0.1150	300			(1)	232	90
61	391.697	0.1760	300			(0)	232	90
62	400.92 b	11.9000	100	14.9	50	0	232	90
63	403.000	0.1040				(1)	232	90
64	411.751	0.2900	200			1	232	90
65	429.853	0.3400	160			(0)	232	90
66	427.100	0.0190				(1)	232	90
67	454.218	1.2300	130			0	232	90
88	458.884	0.0500	400			(1)	232	90
69	462.541	65.5490	80	19.0	16	0	232	90
72	466.400	0.1000	4:0			111	232	90
71	476.617	0.0400	750			(1)	232	90
72	476.297	0.2000	300			101	232	90
73	488.775	60.1000	80	17.2	24	0	232	90
74	500.005	0.0500	850			111	232	90
75	510.359	5.3200	100			0	232	90
76	528.496	15.7000	100	17.9	24	0	232	90
77	533.327	0.3100	200			(1)	232	90
78	535.508	0.3400	200			111	232	90
79	540. 208	1.1800	150			1	232	90
80	550.300	0.4100				(1)	232	90
81	569.785	28. 7000	90	26.3	30	0	232	90
82	573. 555	0.7500	200			101	232	50
83	578.093	2.9700	180			0	232	90
34	594.000	0.0850				(1)	232	90
85	594.022	0.1200	500			11)	232	90
86	598.279	10.0990	140	26.6	40	0	232	90
87	617.838	4.0999	180			0	232	90
88	625.100	0.0530	750			(1)	232	90
89	028.000	0.0550				(1)	232	90
90	6.34. 200	0.0730				111	232	90
91	644.100	0.0900	750			(1)	232	90
9%	656.602	49.1000	80	16.3	18	0	232	90
93	660.700	0.2000	450			111	232	90
94	665.303	25.1000	90	12.4	18	0	232	90
95	675.198	210.0002	40	18.4	14	0	232	90
96	687.446	54.8000	100	18.9	27	0	232	90
97	695.800	0.1700	680			:11	232	90
94	648.929	0.2500	750			(1)	232	90
94	TO1.190	10.8990	160			0	232	90
205	704.536	0.1700	750			(1)	232	90
101	712.922	29.6000	90	23.6	30	0	232	90
102	720.200	0.0930				(1)	232	90

Resonances parameters of ${ }^{232} \mathrm{Th}$

	Energy (ev)	$\begin{gathered} 8 \Gamma_{\mathrm{n}} \\ (\mathrm{mev}) \end{gathered}$	$\begin{gathered} \hline \varepsilon \\ \left(z_{0}\right) \end{gathered}$	$\begin{gathered} \Gamma_{y} \\ (e \mathrm{~V}) \end{gathered}$	c (2)	L	A	2
109	724. 10	0.1500	750			11)	232	90
104	741.09	193.0001	45	23.7	10	0	232	90
105	749.30	0.3400				(1)	232	90
106	758.54	0.2400	500			:1)	232	90
107	764.79	0.8200	200			(0)	232	90
108	771.50	0.1040				112	232	90
109	776.38	0.0500	750			(1)	232	90
120	778.72	10.9970	250	25.0	19	0	232	90
111	784.60	0.0770				(1)	232	90
112	788.40	0.0780				(1)	232	90
113	793.00	0.0830	890			(1)	232	90
114	804. 24	180.000	60	29.6	22	0	232	90
115	808.48	0.1400	420			(1)	232	90
115	816.85	0.1800	500			(1)	232	90
117	821.00	1.1500	180			101	232	90
A18	823.88	0.2800	300			111	232	90
119	836.87	1. 5900	120			101	232	90
120	842.35	27.2000	90	21.0	20	0	232	90
121	846.90	0.1400	550			(1)	232	90
122	850.78	1.1400	170			601	232	90
123	866.33	12.8600	120	35.4	28	0	232	90
124	869.41	0.7800	200			(1)	232	90
125	878. 30	0.1900				(1)	232	90
126	684.63	0.3600	220			(1)	232	90
127	896. 14	37.9000	60	22.2	13	0	232	90
128	899.60	0.06201				(1)	232	90
129	906.49	2.2200	180			1	232	90
130	914. 50	0.2600	750			123	232	90
131	319.02	0.4800	300			(1)	232	90
132	926.67	0.4400	250			10)	232	40
133	934.28	0.2700	400			(1)	232	90
134	943.22	44.9000	60	25.8	13	0	232	90
135	955.98	0.1800	750			(1)	232	90
136	962.72	0.6200	150			0	232	90
137	974.29	0.2700	750			111	232	90
138	982.92	35.4000	100	14.6	17	0	232	90
139	990.53	89.8000	80	17.7	15	0	232	90
140	995.49	0.5800	750			(1)	232	90
141	1001.17	0. 2800	400			(1)	232	90
142	1010.57	12b.5001	80	20.2	15	0	232	90
143	1021.52	0.3800	750			(1)	232	90
144	1029.40	0.3500	750			(1)	232	90
145	1039.16	8.5500	160			0	232	90
146	1043.92	0.7000	300			(1)	232	90
147	1049.50	0.2000				(1)	232	90
148	1054.80	0.3400				(1)	232	90
149	1060. 50	0.2400				(1)	232	90
150	106 $2-43$	6.0300	200	25.0	99	0	232	90
151	1073.70	0.2000	5 ± 0			11)	232	90
152	1077. 23	8.6900	180			0	232	90
153	1093.00	1.7600	220			1	232	90

[acocanaceo parameters of ${ }^{232} \mathbf{T h}$

	$\begin{aligned} & \text { Encrey } \\ & \text { (ov) } \end{aligned}$	$\begin{gathered} g \Gamma_{n} \\ (\square c V) \end{gathered}$	$\begin{gathered} E \\ (3,) \end{gathered}$	$\begin{gathered} \mathrm{r} \\ (\mathrm{~F}) \end{gathered}$	$\begin{gathered} 6 \\ (X) \end{gathered}$	L	A	z
254	1104.97	21.0000	120	31.3	30	0	232	90
-55	1884. 59	1.3000	400			10	C32	90
156	1120.22	1.0000	750			(1)	232	90
857	1120.80	3.3500	170			0	232	90
458	1:2 5 - 22	- - 5 56	340			11)	2.32	90
159	1132.5\%	0.4000	350			111	232	90
160	1138.90	16.0000	140	23.0	30	0	232	90
161	1150.46	17.3000	130			0	232	9 C
16 L	1167.20	0.1000				[11	232	90
163	1173.83	0.3500	300			(1)	232	90
264	1184.90	0.1000				111	232	90
165	1194.53	7.5000	150			0	232	90
166	1204.64	2. 1600	230			1	232	90
247	1214.14	0.3000	900			(1)	232	90
168	1217.34	0.6000	700			(1)	232	90
169	$1224+15$	0.4200	500			(1)	232	90
170	1227.98	38.80cc	100	16.1	25	0	232	90
171	1233.20	0.7000	700			11)	232	90
172	1243.09	16.7000	140			0	232	90
173	1248.91	123.6000	7 C	22.8	17	0	232	90
184	1260.81	0.6000	350			(1)	232	90
175	1261.70	0.8000	350			11)	232	90
176	1266.36	0.2800	750			111	232	90
177	1267.40	24.7000	240			0	232	90
278	1287.57	0. 1000	900			111	232	90
179	1292. 66	102.6000	80	24.1	20	0	232	90
180	1301.5t	50.3000	100	15.6	24	0	232	90
181	1307.80	0.3500				111	232	90
182	4334.95	3.2000	200			1	232	90
163	1346.03	1.0500	300			111	232	90
184	1345.40	0.7000	400			(1)	232	90
145	1354.78	83.7990	100	18.5	20	0	232	90
136	1359.66	9.0000	250			0	232	90
387	1372.35	1.0000	300			(0)	232	90
148	1378.05	51.6000	100	21.5	25	0	232	90
189	1384, 60	0.3000	600			111	232	90
190	1387.45	2.2000	250			(0)	232	90
191	1397.86	140.6001	70	19.7	20	0	232	90
192	1408.70	0.4000	50C			C11	232	90
153	1417.91	0.6000	350			(1)	232	90
194	1426.63	122.0000	90	21.2	18	0	232	90
195	1433.90	34.8000	170	26.8	19	0	232	90
190	1441.42	1. 5000	300			411	232	90
197	1449.60	D. 2800				111	232	90
198	1661.02	L. 4000	300			691	232	90
199	1465.40	0.1500				11)	232	90
200	1469.30	0.3000	609			111	232	90
201	1478.33	< 3000	250			10\%	232	90
202	2484.	0. 1500				111	232	90
2031	1502. ${ }^{1 / 4}$	0.8000	400			111	232	90
204	1504. 40	1.000015	500			101	232	90

Resonances parameters of ${ }^{232} \mathrm{Th}$

	$\begin{gathered} \text { Energy } \\ \text { (ev) } \end{gathered}$	$\begin{gathered} s \Gamma_{n} \\ (\operatorname{meV}) \end{gathered}$	$\begin{gathered} \varepsilon \\ \left(z_{0}\right) \end{gathered}$	$\begin{aligned} & \Gamma_{r} \\ & \text { (ev) } \end{aligned}$	$\begin{gathered} \varepsilon \\ (\bar{z}) \end{gathered}$	L	A	2
205	1509.60	3.6000	200			(1)	232	90
206	1515.34	1.6000	740			111	232	90
207	1518.71	196.0002	100	19.8	15	0	232	90
204	15.24. 31	206.000 1	80	25.2	16	0	232	90
209	1555.60	6.4000	320			0	232	90
210	1581.06	22.5000	210	20.\%	32	0	232	90
211	1589.53	362.0003	60	23.1	15	0	232	90
212	1602.60	54.9000	120	27.1	22	0	232	90
213	1611.18	0.9500	700			(1)	232	90
214	1623.48	0.6000	605			111	232	90
225	1630.90	549.0004	60	19.2	18	0	232	90
216	164C. 80	39.9000	210	19.8	20	0	232	90
217	1661.43	132.0001	100	24.4	16	0	232	90
218	1668. 70	0.5000				(1)	232	90
219	1677.95	24.3000	200	18.4	39	0	232	90
220	1689.81	1.1000	700			11)	232	90
221	2697.01	2.5000	400			(0)	232	90
222	1705.34	3.5000	28J			101	232	90
223	1719.80	39.5000	140			0	232	90
224	1725.42	1.2000	300			(1)	232	90
225	1730.13	1.8000	400			(i)	232	90
226	1740.15	6.7999	200			(0)	232	90
227	1746.79	33.1000	140	19.7	18	0	232	90
228	1753.65	0. 7000	900			(1)	232	90
229	1762.77	116.6000	70	24.6	18	0	232	90
230	1767.30	1.4000	600			(1)	232	90
232	1785.32	2.4000	350			(1)	232	90
232	1793. 25	0.4860	700			(1)	232	95
233	1803. 50	100.0000	110	18.0	17	0	232	90
234	1812.07	44.1000	200	28.0	22	0	232	90
235	1824.23	¢2.9990	100	20.2	22	0	232	90
236	1834.47	1.4000	600			(1)	232	90
237	1847. 76	4.2000	250			10)	232	90
238	1854.76	31.4000	180	24.3	33	0	232	90
239	1861.98	34.1000	180	24.6	27	0	232	90
240	1888.90	1. 1000	400			(1)	232	90
242	1896.60	6.0000	740			(1)	232	90
242	190C. 36	214,0000	100			0	232	90
24.3	1928.30	7.0000	150			101	232	90
244	1932.10	10.5000	150			:0)	232	90
245	1940.02	D. 3200	900			11)	232	90
245	1951.06	90.7990	110	18.9	20	0	232	90
247	197149	222.0001	90	19.0	22	0	232	90
248	1981.84	1.3000	999			(1)	232	90
249	1988. 25	47.4000	200	24.6	99	0	232	90
250	2005. 24	26.9000	280	24.1	99	0	232	90
251	2015.85	1.0000	750			811	232	90
252	2020.40	1.0000	750			(1)	232	90
253	2026.21	1.3000	750			(1)	232	90
254	2035.06	1.0000	750			111	232	90
255	2052.41	16.0000	250			0	232	90

Resonances parameters of ${ }^{232} \mathrm{Th}$

1	$\begin{gathered} \text { Encrey } \\ \text { (ev) } \end{gathered}$	$\begin{gathered} E \Gamma_{n} \\ (m e V) \end{gathered}$	$\begin{gathered} E \\ \left(z_{0}\right) \end{gathered}$	$\begin{gathered} \Gamma_{Y} \\ (\mathrm{eV}) \end{gathered}$	$\begin{gathered} c \\ (z) \end{gathered}$	L	A	2
256	2053.70	0.5000	600			111	232	90
257	2062.14	57.0000	200	24.0	99	0	232	90
255	2073.56	\$. 5000	700			(0)	232	90
253	2078.99	10.0000	400			0	232	90
200	2096.99	1. 2000	600			101	232	90
261	2117.62	79.4990	150			0	252	90
262	2139.52	2.0000	700			623	232	90
263	2147.52	94.6990	140			0	232	90
264	2157.73	10.0000	500			427	232	90
265	2161.83	122.0000	130			(0)	232	90
266	2170.73	2.8000	500			(1)	232	90
267	2177.94	63.7990	130			0	232	90
268	2197.35	56.0000	150			0	232	90
269	2208. 15	2.2000	406			(1)	232	90
270	221.6.26	28.2000	200			0	232	90
271	2221.60	95.8990	130			0	232	90
272	2234.07	2.5000	4C0			(0)	232	90
273	2243.17	0.7900	995			111	232	90
274	2247.67	0.6000	800			111	232	90
275	2262.18	0.6000	700			$1: 1$	232	90
276	2271.06	28.3000	140			0	232	90
277	2276.25	91.3990	220			0	232	90
278	2286.45	276.0002	90			0	232	90
279	2306.81	3.2000	400			111	232	90
280	2313.01	1. 6000	400			111	222	90
281	2322.34	4.0000	350			101	234	90
282	2329.92	2.2000	509			115	232	90
283	2335.72	124.0000	130			0	232	90
284	-344.33	6.5999	300			60)	232	90
285	2352.50	15.0000	200			(0)	232	90
288	2353.70	14.0000	200			(0)	232	90
287	2361.74	0.6000	800			(1)	232	90
288	2369.44	1. 1000	750			(1)	232	90
289	2374.97	119.0000	130			0	232	90
290	2382.65	4.5000	400			601	232	90
291	2391.45	4.0000	350			101	232	30
292	2406.66	0.5000	750			(1)	232	90
293	2413.07	0.6000	700			(1)	232	90
294	2418. 83	97.0989	120			0	232	90
295	2423.97	2.3000	150 350			111	232	90
296	2427.58	3.0000	350			111	232	90
297	2435.16	$2 .: 700$	350			111	232	90
296	2440.64	10.8000	220			101	232	90
299	2452.00	4.0000	700			(1)	232	90
300	2452.50	1.0000	750			113	232	90
301	2455.77	165.0001	120			0	2 ± 2	90
302	2402.69	4.0000	700			(1)	232	90
303	2474.30	0.9000	750			(0)	232 232	90
304	2480.91	0.8000	750			(2)	232 232	90
305	2491.61	8.4000	300			(0)	232	90
306	2501. 12	0.6000	700			(11	232	90

Hesonances parametera of ${ }^{232}$ Th

	Energy (ev)	$\begin{gathered} B \Gamma_{\mathbf{D}} \\ (\mathrm{meV}) \end{gathered}$	$\begin{gathered} \varepsilon \\ \left(x_{0}\right) \end{gathered}$	$\begin{aligned} & \Gamma_{y} \\ & (e v) \end{aligned}$	$\left[\begin{array}{c} E \\ (\bar{x}) \end{array}\right]$	1	A	7
307	2508.99	357.0002	190			0	232	90
308	2526.93	52.3000	180			0	232	90
309	2535.94	2.2000	650			(1)	232	90
320	2543.84	0.4000	700			(1)	232	90
311	2548. 15	0.4000	700			(1)	232	90
312	2557.15	4.9999	500			101	232	90
313	2563. 29	326.0002	120			0	232	90
314	2569.39	71.9990	220			0	232	90
315	2582.77	1.2000	700			(1)	232	90
316	2589.77	2.0000	700			411	233	90
317	2595.38	0.8000	700			(1)	232	90
318	2603. 18	2.4000	350			611	232	90
319	2612. 72	97.5990	120			0	232	90
320	262'.44	10.2000	280			(0)	232	90
321	2635.30	176.0001	100			0	232	90
322	2653.10	2.5000	700			40)	232	90
323	2663.62	209.0002	100			0	232	90
324	2677.53	11.9000	300			(0)	232	90
325	2688.64	207.0001	100			0	232	90
326	2723.18	101.9900	130			0	232	90
327	2722.76	12.0000	250			(0)	232	90
328	2733.83	410.0003	100			0	232	90
329	2748.55	14.2000	300			101	232	90
330	2763.28	1.8000	500			113	232	90
331	2773.49	72.6990	160			0	232	90
332	2782. 70	2.5000	400			111	232	90
333	2793. 09	161.0001	110			0	232	90
334	2802.41	4.9999	400			(1)	232	90
335	2810.32	D. 2300	900			(1)	232	90
336	2815.62	27.0000	250			0	232	90
337	28.24. 33	1.4000	400			(1)	232	90
338	2833.03	54.0000	190			0	232	90
339	2839.50	1. 2000	500			10:	232	90
340	2844.44	0.7500	700			(1)	232	90
341	2852.51	216.0001	95			0	232	90
342	2861.05	6.9999	600			111	232	90
343	2870.56	1.9000	400			(1)	232	90
344	2894.07	5.3000	300			101	232	90
345	2895.37	4.0000	300			(0)	232	90
346	2907.38	2.0000	500			(1)	232	90
347	2914.49	4.9999	400			(0)	232	90
349	2922.89	1.4000	700			(1)	232	90
349	2932.15	1.8600	600			(1)	232	90
350	2939. 80	1.6000	750			(1)	232	90
351	2948. 13	104.0000	140			0	232	90
352	2956.64	49.2000	180			0	232	90
353	2966.45	14.2000	280			(0)	232	90
354	2979.15	9.8000	300			(0)	232	90
355	2948. 58	34.4000	200			0	232	90
356	2995.84	2.3000	750			(1)	232	50
357	3006.85	2.0000	400			(0)	232	90

REFERENCES

As 66
$\therefore=61$
8h 67

Bn 58

Bn 73
S.F. MJGHABGHAB et D.I. GARBER, BNL 325 3rd edition, Vol. I (1973)

Bo 68
Ch 73

Co 61

Cr 55

Da 71

De 74

F○ 71

Ga 64

Gr 74
Ha 65

Hu 57
Ka 68

Le 70

玉h 71
J.P. L'HERITEAJ ana P. RIBON, CONF 710301 Vol. 1 P. 438 (Knorville 71)

Lu 68 LUNDGREN, Nukleonik 11, 61 (1968)
Jy 60 J.E. LYNN, Nu. Inst. and Meth. 9 (1960) 315

Ma 63 R.C. MACKLIN and JoM. GIBBONS, WASh 1044 (2963) and private communication

Mo 63 M. MOXON, private communication to CCDN (1963), see also thesis, NP 17644 (1968)

MY 57 G.G. MYASISHCHEVA et al, Atomnaya Energiya 2, 22 (1957)

Na 71 R.J. NAGLE et al, CONF 710301 Vol. 1, p. 259 (Knoxville 1971)

Pa 65 N. PATTENDEN et al, AERE - PR/NP8 11 (may 1968)
Ra 72 F. RAHN et al, Phys. Rev. C. Vol. 6, $\mathrm{n}^{\circ} 5$ (Nov. 1972)

Ri 66 P. RIBON et al, CN 23/71 (Conf. Paris 66)
Ri 69 P. RIBON, Note CEA - N - 1149
Sm 55 V.G. SMALL, J. Nuc. En. 1,319 (1955)
Ti 62 L.I. TIREN and J.M. JENKINS, AEEW - R 163, p. 15 (1962)

Ut 64 C.A, UTTLEY et al, Conf. Paris, Vol. 2, p. 700, (Paris 1964).

Comments on $\mathrm{Th}-232$ Absorption Resonance Integral, < Y_{Y}, and Neutron Width Statistics

Eric H. Ottewitte
EIDG. INSTITUT FUER REAKTORFORSCHUNG

Th-232 Resonance Integral and <r.iv
A. coarse review was made of the Th-232 absorbtion resonance integral. Table 1 shows the results. Renormalized measured values range from 82 to 90 barns with typical error estimat is of 3 barns. The higher values have been achieved in more recent years. Evaluation and review values center on 84 - 85 barns. Thus the probable range to the absorption resonance integral is estimated to be $84<R I<90$ b.

Table 2 gives some key Th-232 radiation widths from chree American evaluations and from the work of Derifen presented at this meeting. The relative importance of each resonance is indicated in the last colwan by its resonance integral contribution. The average for the most important resonances as well as for all the resonances considered in the reference is given in the bottoni of the table. The range of average radiation widths, $\left\langle\Gamma_{\gamma}\right\rangle$ is seen to be about 21-26 milli ev.

Table 3 makes some comparisons be , een $\left\langle\Gamma_{\gamma}\right\rangle$ and resonance integrals, on this basis one would expect

$$
\left.25:<\Gamma_{\gamma}\right\rangle<29
$$

In compaıison, Derrien has recommended a value $\left\langle\hat{r}_{\gamma}\right\rangle=21^{+}$, based on the resonances in the range $59.5 \leq E_{0} \leq 285.7$. These are shown in Table 2 under the column labelled Derrien, Table V.

However, it has been pointed out in the meeting discussion that the set $\left\{\Gamma_{Y}\right\}$ deduced depend on the set of $\left\{\Gamma_{n}\right\}$ assumed. Both Γ_{n} and Γ_{γ} determine the resonance integral. Thus the signisicance of the akove disagrement is diminished somewhat.

Two independens: workers have recently suggested that Th-232 neutron widths may not have a Porter-Thomas distribution (PT). To pursue this idea the Th-232 s-t:ave widths in ENL-325-3 were plotted as shown in figure 1. (The borton portion of the figure is an enlargement of the first bin in the upper portion. In each portion one can observe the change in width distribution as one includes resonances from higher neutren energies. Thus one observes a non-PT beiow 250 eV shififing towards a PT by ~ 1 keV. However, a non-PT renains within the first $\mathrm{f}_{\mathrm{n}}^{0}\left\langle\boldsymbol{T}_{n}^{0}\right.$, tin as shown in Figure 2.

A similar evaluation for U-23i neutron widths from the same source, BNL-325-3 shows none of these patterns (Figure 2). Possible answers to the Th-232 behaviour coy?d be ℓ-wave misassignments, particularly at lower energies and/or missed ievels. A test for missing resonances should be made.

```
Table 1. Th-232 Resonance Integral
```

Measured Values			
Year	Source	Vaiue	Standard
1972	Steinnes	88 3	
1970	Gfk	00 ± 4	($1560, \mathrm{Au}$)
1965	BET	82.5士 3.0	(1555.Au)
1965	MTR	81,2士 3.4	(1.579, λu)
1964	KfK	88 ± 2	(1560,Au)

Evaluation and Review Values

1974	BNL-325-3	85 ± 3	$(1560, \mathrm{Au})$
1967	Sehgal	84	$(1560, \mathrm{Au})$
1966	Hellstrand	84	$(1560, \mathrm{Au})$
21966	Drake	84	

Probable Range $84<$ RI < 90

$E_{0}(\mathrm{cV})$				Derrien			```Resulting Contr. HI {ENDF/B-3)```
	$\begin{aligned} & \text { WRPD } \\ & \text { TM-378 } \\ & (1970) \\ & \hline \end{aligned}$	$\begin{gathered} \text { ENDF/B } \\ -3 \end{gathered}$	$\begin{gathered} \text { BNL }-325 \\ -3 \end{gathered}$	Table III	$\begin{gathered} \text { Table } \\ V \end{gathered}$		
21.8	26.3	25.9	23.0	24.5			16.2
23.4			25.0	26.6			24.6
59.5			23.2	23.7	22.0		4.0
69.1			21.9	21.9	20.5		13.9
113.0			20.2		20.4		2.7
120.4			21.0		20.7		3.2
170.3			22.4		19.3		2.6
192.6			18.0		16.8	21.7	3.1
13.3			18.5		17.9		8
22 1.2			20.7		22.0		1.2
251.5			21.5		25.4		. 9
263.0			18.6		28.0		. 7
285.7			20.8		24.9		.7
$\begin{aligned} & \text { Avg.21.8 } \\ & 23.4,69.1 \end{aligned}$	26.3	25.9	23.3	24.3			
Avg. A11 Resonances	26.3	25.9	21.2		26.6		

Table 3. TH-232 Resonance Inteqral and "ry"
Values Calculated from Resonance Parameters or froup Constants

Fig. 1
Distribution of Th-232 Reduced Aeutron
Widths Reportec in BNL 325, Third Edition

NEUTRON WIDTHS FOR. ${ }^{236}$ U FROM HIGH RESOLUTION
 TRANSMISSION MEASUREMENTS AT A 100 M
 FLIGHTPATH

G. Carraro, A. Brusegan

CBNM, Euratom, Geel, Belgium

1. EXPERIMENTAL PROGEDURE

A serics of neutron tranomiasion measurements has been periormed on ${ }^{236} U$ aiming at a determination of the resonance parameters and their \quad ataitistical properties. (For references sec (1), (2), (3), (4), (5)). The analysin range covered neutron energies from 40 eV to 4. 1 keV . The experiments were carried out at $\approx 100 \mathrm{~m}$ fightpath of the 80 MeV electron linear accelerator of CBNM using a ${ }^{10}$ BslabNaI detec*or and $2{ }^{236}$ U-oxyde samples on loan from the USAEC (for isotopil componition see table 1). Table 2 displays the details of 6 experimental runs, 3 of which were arranged in such a way that the effect of the ${ }^{235} \mathrm{U}$ and ${ }^{238} \mathrm{U}$ impurities in the sample on the transmission was automatically compensated. For this, samples were put into the "open beam" position of the sample changer: they contained the same specific quantities of the impurities as in the ${ }^{236} \mathrm{U}$-oamples. Sample chancer operation, data acquisition and stoage were controlled by an 1BM 1800 computer. The background wan determined with the "blask resonance" method.

2. DATA AMALYSIS AND RESULTS

Reuonance parametera have been evaluated by means of a modified vercion (6) of the Afti-Ifarvey arca analyais program (7) uging up to 1.7 liev the I_{Y} vailes ard betweca 1.7 keV and 4.1 keV the $\bar{\Gamma}_{Y}$ value given by Mewissen (2). The resulls are listed in table 3 togetiner with thoae pubisolied by Carlson (1). The levels at 63.1 eV
and 243. 0 eV quoted by Carlson were not observed in this experiment. Though the Γ_{n} values agree in the overlapping energy range of both experiments within the error limits for all resonances except two (43.92 eV and 192.89 eV resonances), the values of the present work are on the average slightiy higher than those of Carlson.

In the energy range up to 1.6 keV the observed level density is almost constant. Considering also the resonances given by Carlson at $5.45 \mathrm{eV}, 29.7 \mathrm{eV}, 34.0 \mathrm{eV}$ and 63.1 eV , we obtain for the mean level spacing the value $\overline{\mathrm{D}}=(16.2 \pm 0,3) \mathrm{eV}$.

Assuming that the undetected small resonances do not infuence noticcably the sum of all Γ_{n}^{0} up to 4.1 keV , the strength function turns out to be

$$
S_{0}=\frac{\sum_{i=1}^{n} \Gamma_{n}^{0}}{E_{n}-E_{1}}=(1.00 \pm 0.10) \cdot 10^{-4}
$$

which includes Carlson's Γ_{n}^{O} values below 63.1 eV . From the \widetilde{D} value determined in the energy range $5 \mathrm{eV}<\mathrm{E}_{\mathrm{n}}<1.6 \mathrm{keV}$ and che S_{0} value which is supposed to be valid for the total energy range $5 \mathrm{eV}<\mathrm{E}_{\mathrm{n}}<4.1 \mathrm{keV}$ we deduce

$$
\overline{5_{0}^{0}}=(1.61 \pm 0.16 \mathrm{meV})
$$

It is assumed that p-wave resonamces do not play a role in these considerations.

Correcting for misecd levels by the method of T. Fuketa and J. A. Harvey (8) over the entire range up to 4.1 keV we obtain $\overline{\mathrm{D}}=16.2 \mathrm{cV} \quad \bar{\Gamma}_{\mathrm{n}}^{6}=1.66 \mathrm{meV} \quad$ and $\quad S_{0}=1.03 .10^{-4}$.

1) Carloon A. D. et al. , Nucl. Phys. A 141, 577-594 (1970).
2) L. Mewissen et al., private communication and
"Crosa section measurements on ${ }^{236} \mathrm{U}$ below 2 keV".
Tripartite Symposium on Nuclear Physics with Thermal and Resonance Energy Neutrons" May 22-25, 1973, Petten(Netherlands).
3) Harvey J. A., Hughea D. J., Phys. Rev. 109, 471 (1958).
4) Mc. Callim G. J. , J. Nucl. En. 6, 181 (1958).
5) Compilation of EANDC Requests of Neutron Data Measurements. Report EANDC 85"U", April 1970.
6) Kolar W., IBM 360 and IBM 1800 versions of the shape and area analysis programs of S. E. Atta and J. A. Harvey EUR. 4760.e.
7) Atta S. E., Harvey J. A. Numerical analysis of neutron resonances, ORNL-3205 (1961).
B) Fuketa T., Harvey J. A. , Nuclear Instruments and Methoda 33, 107-113 (1965).

Table 1: Samples Composition

Isotopic composition of the two ${ }^{236} \mathrm{U}$ samples:$89 \% \text { of }{ }^{236} U ; \quad 9.2 \% \text { of }{ }^{235} U ; \quad 1.3 \% \text { of }{ }^{238} U ; \quad 0.1 \% \text { of }{ }^{234} U$		
$1^{\text {st }}$ sample ${ }^{236} \mathrm{U}$		-2 ${ }^{\text {nd }}$ sample ${ }^{236} \mathrm{U}$
Total weight of $\mathrm{U}_{3} \mathrm{O}_{8}(\mathrm{gr})$:	41.19	57. 88
Thickness (at/b):	8. $98 \cdot 10^{-3}$	$1.34 \cdot 10^{-3}$
Diameter (mm) :	33.6	103.0
Sample ${ }^{235} \mathrm{u}$		Sample ${ }^{238} \mathrm{U}$
Total weight of $\mathrm{U}_{3} \mathrm{O}_{8}(\mathrm{gr})$:	2.413	0.385
Thickness (at/b) :	1. $36 \cdot 10^{-4}$	2.15.10 ${ }^{-5}$
Diameter (mm):	70.0	70.0

Table 2: Main characteriotice of differen runs

Table $3:{ }^{236} \mathrm{U}$ refonance parametexa：neutron widths

$\mathrm{E}_{\mathrm{o}}(\mathrm{eV})$	Present warle		Camana（t）
	$\Pi \Gamma_{n}(\mathrm{meV})$	$\mathrm{B} \Gamma_{n}^{0}$（mar）	$T_{n}($ mony $)$
5.45			$2.16 \pm .08$
29.7			． $585 \pm .03$
34.0			$2.35 \pm .13$
$43.92 \pm .03$	17.5 ± 4.0	2.64	$11.8 \pm .6$
63.1			$.034 \pm .005$
$71.47 \pm .06$	24．± 6 ．	2.84	19.0 ± 1.0
$86.51 \pm .07$	36．± 9.	3.87	26.0 ± 2.0
$102.25 \pm .14$	． $75 \pm .20$	． 07	． $8 \pm .08$
$120.95 \pm .06$	57．$\ddagger 11$.	5.2	51.8 ± 4.0
$124.88 \pm .08$	17．± 2 ．	1． 52	15.9 ± 1.9
$134.57 \pm .11$	$1.4 \pm .4$	． 12	$1.08 \pm .09$
137．76士．11	． $84 \pm .30$	． 07	．48土． 1
$164.72 \pm .14$	$2.1 \pm .7$	． 16	$2.09 \pm .15$
192．89士．13	9.4 ± 1.6	． 68	13.2 ± 1.3
194．35士．10	58．± 6 ．	4.16	52.0 ± 13.0
212， $75 \pm .11$	98．± 15.	6． 7	98.2 ± 10.0
$229.63 \pm .13$	$2.2 \pm .5$	15	$2.34 \pm .14$
243.0			． $3 \pm .15$
$272.93 \pm .12$	38．± 5 ．	2． 30	55.0 ± 15.0
$288.68 \pm .13$	14.3 ± 1.1	． 84	13.5 ± 2.0
$303.15 \pm .14$	81．± 6 ．	4.65	83.5 ± 15.0
$320.50 \pm .20$	5． 5 ± 1.1	． 31	$5.8 \pm .6$
$334.96 \pm .22$	6.4 ± 1.1	． 35	$6.3 \pm .4$
$357.05 \pm .30$	． $70 \pm .25$	． 04	． $64 \pm .1$
$366.95 \pm .30$	． $40 \pm .30$	． 021	． $4 \pm .3$
$371.18 \pm .18$	15.8 ± 2.2	． 82	13.8 ± 1.0
$379.8 i \pm .19$	15．± 24.	5.9	130.0 ± 30.0
$415.39 \pm .21$	17.7 ± 2.0	． 87	17.8 ± 2.0
$430.95 \pm .22$	65．± 8 ．	3.13	
$440.63 \pm .23$	68．± 9 ．	3.24	
465．50 $\pm .25$	15.4 ± 2.0	． 71	
478．39 $\pm .26$	40．± 3 ．	1.83	
$500.41 \pm .40$	$2.8 \pm .9$	． 13	
$507.06 \pm .28$	20．± 3 ．	． 89	
$536.37 \pm .31$	33．± 3 ．	1.43	
$542.82 \pm .44$	12.6 ± 2.4	． 54	
$563.76 \pm .33$	81．± 7	3.41	
$576.23 \pm .34$	156．± 25.	6.6	
$607.10 \pm .43$	13．± 2	． 53	
$617.80 \pm .38$	53．± 7 ．	2.13	
$637.77 \pm .39$	74．± 8.	2． 93	
$647.60 \pm .57$	7．± 3 ．	． 28	
$655.63 \pm .41$	101．± 10.	3.95	
$673.63 \pm .43$	59．± 7 ，	2.27	
$691.32 \pm .44$	38．± 4.	1.45	

Table 3 ：（continued）

$E_{0}(\mathrm{eV})$	Present work	
	$\left.\mathrm{gr} \mathrm{r}^{(m e V}\right)$	$\mathrm{g} \Gamma_{\mathrm{n}}^{0}(\mathrm{meV})$
$706.02 \pm .45$	32．± 4.	1.20
$720.58 \pm .47$	105．± 10.	3.91
746．25 士． 49	24．± 3 ．	． 88
770，65 士． 52	192．± 19.	6.92
789．43 $\pm .53$	87．\＃11．	3.10
$806.56 \pm .55$	42．± 6.	1.48
$820.28 \pm .81$	8.4 ± 3.6	． 29
$827.43 \pm .57$	259．± 50 。	9.0
$849.04 \pm .85$	4．± 2 ．	． 14
$864.90 \pm .87$	18．± 6 ．	． 61
888．84 $\pm .51$	10．± 3.	． 34
$900.35 \pm .65$	9．± 3 ．	． 30
930． $74 \pm .54$	11．± 3 ．	． 36
$948.42 \pm .43$	170．± 15.	5． 52
955． $20 \pm .56$	40．± 5 ．	1.29
969．2B士．44	359．± 47 ．	11.5
994．70 $\pm .46$	153．± 12 ．	4.85
$998.13 \pm .60$	11．\ddagger ．	.35
1013．10士．61	11．± 4.	． 35
1024．19士．48	298．± 37.	9.3
1032．10 $\pm .63$	43．± 5 ．	1.34
1064．62 土． 50	43．± 5 ．	1，32
1075．71 $\ddagger .67$	$6 . \pm 3$ ．	． 18
1084．22 $\ddagger .80$	2．± 1 ．	． 06
1098．00 $\pm .80$	3．± 2 ．	． 09
$1104.75 \pm .53$	124．± 11.	3.73
$1132.10 \pm .72$	11．± 5.	． 33
$1136.68 \pm .55$	116．± 9.	3.44
$1157.12 \pm .57$	$60 . \pm 6$ ．	1.76
1166．94	11．\ddagger	． 32
$1184.00 \pm .60$	72．± 9 ．	2． 07
1218．64士．80	8.5 ± 4.0	． 24
$1254.25 \pm .81$	7.5 ± 1.5	． 21
$1268.83 \pm .83$	6.0 ± 1.5	．1\％
1281．72 $\ddagger .85$	3．0さ 1.5	． 08
$1291.66 \pm .66$	168．± 16.	4.68
$1315.90 \pm .90$	4.0 ± 1.5	． 11
1324.40 玉． 90	15．± 4	． 41
1339．53 士． 70	75．± 10	2．05
1349．23	69．± 10 ．	1． 88
1363．62 士． 72	230． 21.	6.23
1367.1 ± 1.2	4．± 2.	． 11
$1395.65 \pm .98$	21．± 7 ．	． 56
1405.0 \＃1．0	50．± 9.	1.33
1413．44士．75	275．± 22.	7.32
$1426.64 \pm .76$	26．± 7 ．	． 69
1440.4 ± 1.0	4．± 2.	.11
1458．3 ± 1.0	14．± 4 ．	． 37

Table 3 : (continued)

$\underset{0}{\mathrm{E}}(\mathrm{eV})$	Present work	
	$\mathrm{gr} \Gamma_{\mathrm{n}}(\mathrm{meV})$	$g \Gamma_{n}^{o}(m e V)$
$1470.02 \pm .80$	212. ± 19.	5. 53
1477.1 ± 1.1	31. ± 6.	. 81
$1506.30 \pm .83$	145. ± 16.	3. 74
1535.0 ± 1.1	11. 步3.	. 28
$1548.03 \pm .86$	207. ± 22.	5. 26
1553.8 ± 1.2	10. ± 4.	. 25
1584.1 \#1. 2	4. ± 2.	: 10
$1592.47 \pm .90$	110. ± 12.	2. 76
1609.1 ± 1.2	19. ± 5.	.47
1614.3 ± 1.2	8. ± 3.	20
$1659.96 \pm .95$	98. ± 11.	2.41
1690.9 ± 1.1	59. ± 10.	1.44
1698.6 ± 1.7	15. ± 4.	. 36
1723.2 ± 1.2	25. ± 6.	. 60
1738.5 ± 1.4	12. ± 5.	. 29
1779.0 ± 1.1	50. ± 10	1.19
1789.0 ± 1.4	13, ± 5.	31
1794.6 ± 1.1	82. ± 15.	1. 94
1813.1 ± 1.4	22. ± 7.	. 52
1831.1 ± 1.3	70. ± 17.	1.64
1853.6 ± 1.1	192. ± 25.	4.46
1856.9 ¹. 1	310. ± 50.	7.2
1882.6 ± 1.3	40. ± 13.	. 92
1895.2 ± 1.2	80. ± 16.	1.84
1954.5 ± 1.4	84. ± 11.	1. 90
2010 ± 1.5	82. ± 20.	1.83
$2017+ \pm 1.5$	41. ± 16.	. 91
2034.9 ± 1.3	26. ± 11.	. 58
2047.5 ± 1.1	89. ± 16.	1.97
2063.2 ± 1.3	12. ± 8.	. 26
2084.7 $\ddagger 1.1$	37. ± 15.	. 81
2106.0 ± 1.0	510. ± 50.	11.1
2131.1 ± 1.2	98. ± 16.	2.12
2142.0 ± 1.2	72. ± 14.	1. 56
2165.7 +1.4	24. ± 8.	52
2219.8 ± 1.1	275. \ddagger 26.	5. 84
$22.36 .6 \pm 1.1$	250. ± 30.	5.29
2249.7 ± 1.1	109. $\ddagger 16$.	2. 30
2269.0 ± 1.3	B2. ± 14.	1. 72
2308.1 ± 1.1	112. ± 16,	2. 33
2324.3 ± 1.3	63. ± 10.	1.31
2328.3 ¢1.3	¢8. ± 10.	1.41
2349.8 ± 1.3	92. ± 16.	1.90
2380.7 ± 1.4	41. ± 18.	. 84
. 389.2 ± 1.6	23. ± 13.	. 47
2407.0 ± 1.2	140. ± 25.	2. 85
2459.6 İ 1.4	35. ± 12.	. 71
2459.9 ± 1.4	65. ± 17.	1.31

Table 3 (continued)

$E_{0}(\mathrm{eV})$	Present wori	
	$g \Gamma_{n}(\mathrm{meV})$	$g \Gamma_{n}^{0}($ meV $)$
2480.0 ± 1.5	23. ± 13.	. 46
2489.8 ± 1.2	165. ± 30.	3.31
2499. 5 ± 1.5	15. ± 8.	. 30
2564.1 ± 1.5	59. ± 16.	1.17
2581.2 ± 1.3	135. ± 25.	2. 66
2632. 2 ± 1.6	27. ± 15.	53
2643.9 $\pm 1.9 \pm$		
2660.3 ± 1.6	100. ± 23.	1.94
2672.9 ± 1.6	132. ± 25.	2.55
2772.7 ± 1.5	330. ± 52.	6.3
2807.7 ± 1.7	53. ± 15.	1.00
2822.7 ± 1.8	70. ± 20	1.32
2854.3 ± 1.8	23. ± 15.	. 43
2870.0 ± 1.5	160. ± 32.	2.99
2880. 3 ± 1.7	155. ± 30.	2.89
3917.9 ± 1.8	100. ± 25.	1.85
2958.9 ± 2.0	30. ± 12.	. 55
3015.3 ± 1.6	$660 . \pm 84$.	12.0
3079.3 ± 2.0	104. ± 27.	1.87
3101.1 ± 2.4	40. ± 12	. 72
3131.7 ± 2.0	126. ± 30.	2.25
3164.2 ± 2.1	95. $\ddagger 25$.	1.69
3188.4 ± 2.1	100. ± 27.	1.77
3219.6 ± 2.1	93. ± 25.	1.64
3245.4 ± 2.1	65. ± 20.	1.14
3282.8 ± 2.2	125. ± 28.	2. 8
3307. $\pm \pm 2.6$	26. ± 10.	. 45
3365.5 ± 2.1	110. ± 25.	1.90
3434.5 ± 2.3	60. ± 20.	1.02
3468.4 ± 2.4	116. ± 26.	1.97
3528.9 ± 2.6	62. ± 20.	1.04
3560.4 ± 2.5	100. ± 30.	1.68
3594.1 ± 2.1	$510 . \pm 60$.	B. 5
3601.1 ± 2.5	115. ± 25.	1.92
3628.9 ± 2.5	90. ± 20.	.49
3644.0 ± 2.7	50. ± 15.	. 83
3683.0 ± 2.6	300. ± 70.	9
3715.2 ± 2.6	310. $\ddagger 75$.	. 1
$\begin{aligned} & 3737.5 \mp 2.6 \\ & 3743.9 \mp 3.1^{t} \end{aligned}$	290. ± 70.	4.7
3758.7 ± 2.7	250. ± 60.	4.08:
3790.5 ± 2.7	320. ± 75.	5. 2
3804.9 ± 2.7	105. ± 30.	1.70
3825.6 ± 3.1	75. ± 30.	1.21
3871.6 ± 2.8	210. ± 60.	3.38
3966.8 ± 2.9	170. ± 50.	2.70 !

Table 3 : (continued)

	Present work	
$E_{0}(\mathrm{eV})$	$B \Gamma_{\mathrm{n}}(\mathrm{meV})$	$8 \Gamma_{\mathrm{n}}^{0}(\mathrm{meV})$
3984.6 ± 2.9	$950 . \pm 120$.	15.1
3994.3 ± 2.9	$130 . \pm 50$.	2.06
4031.1 ± 3.5	$50 . \pm \frac{20 .}{2}$	
4059.9 ± 3.4	$90 . \pm 35$.	1.79
4106.2 ± 3.0	$190 . \pm 40$.	2.97

$$
{ }^{t} \text { Levels which ere uncert ain }
$$

Calculated statistical properties:
$\overline{\mathrm{D}}=(16.2 \pm .3) \mathrm{eV}$ (in the range $0 \div 1660 \mathrm{sV}$)
$S_{0}=(1.00 \pm, 10) \cdot 10^{-4}$ (in the range $0 \div 4.1 \mathrm{keV}$)
$\bar{\Gamma}_{\mathrm{n}}^{0}=(1.61 \pm .16) \mathrm{meV}$ (resulting from $\overline{\mathrm{D}}$ and S_{o})

HEITHOQ CNOSS-SECTIOR MEASUREMENTS O ${ }^{230} \mathrm{U}$ BELOH 2 keV

\author{

1. Mevicsec, F. Poorthand
 S.C.R.JC.E.N. MOL
 C. Rohr, H. Weigmana, J.E. Theobald
 C.B.N.M. Euratom, Geel
 G. Vanfraet
 R.U.C. Antwerp
}
2. Intraduction

Until now, only little information has been publishad on the resonance parameters of ${ }^{3}{ }^{3} U$. Harvey at al ${ }^{1)}$ detemined the neutron widths for 9 resonances from transmisaion measuraments belcw 400 eV . Carlson at al ${ }^{2}$) analysed capture and selfindication expariments up to 475 eV and the meutron widths have alse been published by Harlan' for 14 resonences up to 376 eV .

1) Carraro and Brusegan did high resolution transmigsion experiments on a 100 ineter filght path up to 6 koV , using 57.0 g Ug g enriched to 89.4 i. Preliminary resulis have already bean commanaied at the Budapest Conference ${ }^{6}$]. The analyais of their experiments is now completed and the results will be publighed goon.

A ilst of the neutron widths for 185 levels up to 4.1 keV will distributed at this mesting.
2) Wo did capture and scattering erosg-section measurements baios 2 koV and olso transmission exporimanto using the small sample (1011 mon facility on a 30 meter filight path with 5.4 grems $\mathrm{U}_{3} \mathrm{O}$. , onriched to 93.7 \& ${ }^{236} \mathrm{U}$.

This report will deacribe tho socond series of experiments and discuss the results, abtalnad from tha analysis of tho scattaring. captura and transmision experimentg from the 30 motor flight path.

2. Erperimental details

Tho oxparimontal detsils ara listed in Teble 1.
Tha samples woro prepared by oattiling in alcehol and canning under vacuum between two aluninium plztas of a thicknoge of $0.5 \mathrm{~mm}^{3}$. The uronium oxide was on loen from thu USinEC. In the partial cross-section measuremants, only the thick wample zun wos analysed. The mensuremants with the thin gample [99.7 $7^{236} \mathrm{U}$) were used to idmentify the ${ }^{234} \mathbf{U}$ readnances.
> ${ }^{3}$ He high pressure gaseous scintillators (LND type god were used as neutron detectors in the scattering and transmission experfments. The capture crosssect!on measurements were performed with a Moxon Rese-type detector. ithe raw data from scattering are shown on Fig. 1 and from sapture on Fig. 2.

3. Analysis of the data

An area analysis of the transmission data was tong, using a modified version of the Atra-Harvey program ${ }^{6}$].

The scattering cross-section was measurad relative to ft for which $\sigma_{n}=11.28$ ± 0.6 barns ${ }^{7}$). The data were corrected for salf-screening and for absorption of the scattered neutrons. For this correction. it was assumed that any secand irteraction was an absorptin. This approximation was not valid for some strong resonances belaw 500 eV so that for these cases, the resonerce parameters Γ_{n} and Γ_{Y} Nere zec. $\because a$. 'rom the capture anc transmission results anly.

The capt, foryerimghts were performed at a 60 m flight poth gtotion. The shape of the ne..... \because. . wne mosured with a ${ }^{10}$ B slab viewed by a NaI crystal 1 the

 geutron flux was dore f_{y} guserving capture in blark resonances of A_{G} at 5.2. 16.3. 51.4 and 70.9 eV .

The resonance analysis was done with a capture area onalysis program due to fröhner and Hastad ${ }^{0}$).

4. Resulrs and discussion

The resonance parameters Γ_{n} and Γ_{Y} wera obtained by cominine tho results from the area anlysis of the threo expertments. The neutron width Γ_{n} could be determined for 97 levals up to 1.8 kav and the capture width for 57 among tham. The results are jisted in Tabla 2. The orror on Γ_{Y} which is listed in Table 2 is anly the statiotical error. The effitional systematic arior of about 5% mainly due ta the normelization and to the uncertainty in the sample thicknose is added to the error on the mean capture width.

Fig. 3 sheas a ploit of the number of olseervar levalo versus onergy. This fagure showg thot not many levels arg missod balow 1500 ov. The man levol opacirg, calculased bolow 1200 ov is :

$$
\left.\bar{D}=\{16.1 \pm 0.5\} 0 V \quad \text { \{fractionas uncortainly }=\frac{2}{n}\right\}
$$

If we correct for tho number of missed lovels, using the methad of fukota and

$\because \because$ - shans the sun of the reduced neutron wicths as a function of energy together ..its the strongth function :

$$
S_{5}-\overline{\Gamma_{n}} / \overrightarrow{0}=\{1.05 \pm 0.14\} 10^{-4}
$$

Fractizaai uncertainty $=1.4 / \sqrt{n}$
$n=n u t e r$ of Iovels $=95$.
iro risst important result from those axporiments is the mean capture width ;

$$
\bar{\Gamma}_{\gamma}=[23.0 \pm 0.5[\text { stot. }) \pm 1.0 \text { (syst.)] mev. }
$$

'nis valua wes cbtoincd as a welghted avarage for 57 capture widths, obtalned㷙 1.7 kcV .

From the comporison with the results of Carlson ${ }^{2}$) we see that :
15; two snall levels at $24 j$ eV and 35 of are detacted by Carlson but not in any of our oxpertronts.
2^{E}; For about ED : of the lovels, tha Γ_{n} values of Carlson agree with the present results within the error lifrit but there is a desagreement pfapout 50% in the nistron widths for two serone roconencos at $272 . \mathrm{e} \mathrm{eV}$ and 379.6 eV .
se) Tho mean cepture width cotained ay Carlson $\overline{\Gamma_{\gamma}}=(23.9 \pm 1.0) \mathrm{moV}$ is in good egreciant with our results. Carlson does not give o systematic error and this mean Yolug war obtoirted for 12 resonances.

E, comparing ous rosults with those of Carrato and Brusagan tol the follawing concluaicna can bo orwa :
(e) Dud to tho bottor rosolutions of thoir oxperiments three more levels are cotactri by Corrara in the anergy region bolow 1000 eV .

 in the onorgy region bolow 1.3 kov tholr noutron with are systematically larger. In fact if eno calculatos tho otrongth function from their neutron widths below 1.0 kev , cno $\mathrm{flnd}: 5_{0}=(1.40: 0.15) 10^{-4}$ what is approximazely 12 \% higher than cur scoult. Tho reasen ficr this oifferonce is not yet explained.

Figure captions

Fig. 1. Scattering neutron yield below 1500 eV
Fig. 2. Capture yield curve below 900 aV
Fig. 3. Plot of the observed numbar of levels versus energy
Fig. 4. Plot of $\Sigma \Gamma_{n}{ }^{0}$ vergus enargy. The slope gives the S-wave gitength function.

Easerceses

1. J. Forsey, D. Haghes. Fhys. Rev. ©CЭ.371 (1959)
2. A. Coriuen, S. Friesenhahn, W. Lopez and M. Fricke, Huclaur Physics 141 A . 577 (19970)
3. ano. Harlan, Pepcrt in - 1317, 10 i1969]
4. G. Carcaro, A Brusegan, Nuelear Structure Conf., Bucapest. 1972, 200
E. V. Verdingh, tuct. [nser. 102. 431 (1972)
E. W. Kolar, EUR. ropart 47ed c (1972)
5. L.A. Rayourn and E.O. Wollan, tiacl. Fhys. 61. 351 (1965)
B. F.H. Frohner, E. Haddad, CA5137 (1969)
6. T. Fuketa, J.A. Harvey, Hucl. Instr. and Mothods. 33, 107 (19:55)
7. G. Carraro, A. Brusegan, to be pablished.

Table 1. Experimental Detaila

	transmission	capture	scattering
Linac paramotors busst width burst frequency Flight path longth t1me-of-flight resolution background filters samples thickneso total quantity isutopic composition	$\begin{gathered} 22 \mathrm{~ms} \\ 400 \mathrm{~Hz} \\ 31.22 \pm 0.02 \text { meters } \\ 1.5-5.1 \mathrm{ng} / \mathrm{m} \end{gathered}$ Na, Mo. Co, Mo, A $\begin{aligned} & 7.6 \times 10^{-9} \text { at } / \mathrm{b} \\ & 5.4 \mathrm{~g} \mathrm{U37}_{\mathrm{u}} \\ & 99.7: 296 \mathrm{U} \\ & 0.2:{ }^{235 \mathrm{U}} \\ & 0.1:{ }^{238} \mathrm{U} \end{aligned}$		

Table 2. Resonance parameters of ${ }^{236} \mathrm{U}$

$E_{\text {g }}$ (ov)	$I_{n}($ tav $)$	Δr_{h} (mov)	$\Gamma_{r}^{*}(m a v)$	Fy (rav)	$\begin{aligned} & \Delta \Gamma_{Y} \text { (mev) } \\ & \text { (stat.) } \end{aligned}$
5.45 ${ }^{\text {2 }}$	2.16	0.03	D. 925	24.5	1.0
29.7 ${ }^{\text {3 }}$	0.585	0.03	0.107	-	-
34.12	2.4	0.12	0.441		
43.30	45	0.7	2.26	19.2	1
64.29	0.037	0.905	0.005		
71.47	48.5	2.0	2.19	22	1
06.54	20.0	1.5	3.01	20	1
102.3	0.88	0.04	0.03		
420.9	50	2	4.55	20	1
124.3	17	0.5	\$.52	19	2
434.4	1.2	0.04	0.10		
139.0	0.57	0.03	0.05		
164.6	2.1	0.08	0.16		
192.06	9.0	0.3	0.65		
194.3	44	1.3	3.16	20	1
212.7	85	4	5.83	22.8	1
229.6	2	0.12	0.13		
272...	34	9.5	1. BB	23.5	1
288.0	11.5	1	0.68	25	8
193.:	31	3	4.42	22	1
320.5	5.4	0.3	0.30		
334.9	0.2	0.4	0.34		
357					
371.2	13.5	1.5	0.30	24	4
379.8	31	\checkmark	4.67	22	1
415.4	15.7	0.0	0.77	22	4
433. 9	ca	2.5	2.89	22	1
443.6	C2	2.5	2.95	24	1
405.5	13.9	0.7	D.E4	18	6
478.4	37	2.0	1.69	21	1
533.3	2.4	0.4	0.11		
53.1	;	$!$	0.84	22	3

Table 2 . Continued

Eald	Γ_{n}	$\Delta \Gamma_{n}$	$5{ }^{\circ}$	r^{\prime}	$\begin{aligned} & \Delta \Gamma_{Y} \\ & \text { (stot. } \end{aligned}$
536.5	30	3	1.30	22	2
542.9	40.3	0.05	0.44	30	8
563.8	80	4	3.37	22	1
576.2	142	10	5.92	26	1.3
E07.0	13.3	0.7	0.54	20	0
617.8	52	5	2,09	24	1.2
637.9	78	0	3.09	24	1.2
647.1	6	1	0.24		
655.6	96	8	3.75	23	1.5
673.7	54.5	5	2.10	24	2
691.3	32	1	1.22	27	3
706.1	28.7	1	1.08	21	2
720.7	97	3	3.61	21	1
746.5	20.4	1	D. 75	18	2
770.9	181	15	6.52	22	1
789.6	65	6	3.03	23	1.5
806.5	38.6	1.6	1.35	24	2
820.0	9	1	0.31		
82?.4	237	20	0.24	28	1.5
848.7	2	1	0.07		
085.1	17	1	0.58	19	2
289.3	7.5	1	0.25		
¢cJ. :	4.4	1	0.15		
933.4	5	2	0.20		
948.6	122	6	5.26	24	1.5
955. 2	35	5	1.13		
S63.4	300	20	2.64	23	2
998					
934.7	150	15	4.76	22	1.3
1013	16	1.5	0.50		
1024	237	15	7.41	20.5	2.2
1032	29.5	6	0.92	20	B
9085	35	2	1.07	29	6

Table 2. Continued

$E_{0}[0 \times 1]$	Γ_{n}	Δr_{n}	$\mathrm{r}_{\mathrm{n}}{ }^{\circ}$	${ }_{5}$	Lry (stat)
4075	13	3	0.415		
4994					
1098					
1104	122	15	3.67	25	2
1132	19.5	2	0.34		
1136	120	12	3.56	21.5	2
1957	63	6	1.85	26	2
4186					
1184	57	6	1.56	25	2
1299	5	1.5	0.14		
1254	7	2	0.20		
1263	5	4	0.14		
1282					
1291	162	16	4.51	30.5	4
1316					
1324	20	4	0.55		
1339	67	7	1.03	24	2.5
1349	51	\leqslant	1.39	32	5
1364	212	25	5.74	29	5
1935	12	4	0.37		
1455	35	10	0.93		
1414	3 co	EO	7.98	21	4
1426	20	6	0.74		
1480					
-458	15	3	0.39		
1470	280	30	5.74	27	4
1437	2 S	5	0.68		
1535	403	15	2.71	26	4
[534	13	3	0.33		
1949	180	20	4.58	22	4
1592	91	10	2.28	26	4
1510	13	3	0.32		
9614	B	2	0.20		
1654	85	10	2.09	28	44
1050	4.	10	1.17	26	4

Table 2. Contiaued

$E_{0}(\mathrm{QV})$	Γ_{n}	$\Delta \Gamma_{n}$	$\Gamma_{13}{ }^{0}$
1699	15	3	0.36
1723	24	5	0.58
1738	14	3	0.34
1779	45	10	1.07
1788	13	5	0.31
1794	60	15	1.42
1813	26	10	0.61

HESOAANCE SCATTERING CROSS-SECTION OF ${ }^{238} \mathbf{U}$ BELOW $220 \mathrm{eV}^{*}$

H. CEULEMANS

S. C. K. /C.E. N. , 2400 MCL, Belgium

ABSTRACT
Results of a pilot-scale scattering experiment on ${ }^{238} \mathbf{U}$ are presented. It is shown that with thin samples reliable values for Γ_{n} can be obtained. In favourable cases it should be possible to combine information from scattering and transmission experiments to obtain an independant determination of r_{γ}.

INTRODIJCTION

For the ancurate determination of the parameters of a given neutron resonance, total cross-gection measurements alone are often inadequate. An example of this is ${ }^{238} \mathrm{U}$ which has been studied repeatedly (1-5) but shows errors on the neution and gamma widths $\Gamma_{i n}$ and Γ_{γ}, which are still about 15%. To improve the situction, partial cross-Eection measurements are needed, preferably both capture and scatterlag as the senaitivity of these methods for Γ_{n} or Γ_{γ} depends very, murh on the ratios Γ_{n} / Γ_{t} and $\Gamma_{\gamma} / \Gamma_{t}$. The weaknesses of the capture measurementa are their normalization to a suitable reference cross-section, and the variation of detector response with γ-ray energy. These difficulties do not exist with ecattering experiments because Pb is available as a good standard material and detector response is uniform. Secondary interactions however can be very disturbing in both cases, and corrections for thicker samples are difficult to calculate. The purpose of this measurement is to inventigate to what extent the accuracy on the partial widths of ${ }^{238} \mathrm{U}$ can be improved.

EXPERIMENTS

The experiments Were periormed at the eleatron Linac of the Central Bureau for Nuclear Measurements (CBNM), Euratom, Geel on a 30 m Might path. The samples used in these measurements conslsted of metal discs of natural U alloyed to Al. The U content was about 20% by weight, the diameter 120 mm and the thicknesses were $1.303 \times 10^{-5} \mathrm{at} / \mathrm{barn}$, 5.510×10^{-5} at/barn and $1.920 \times 10^{-4^{2}}$ at/barn expressed in atoms of ${ }^{236} \mathrm{U}$.

Worle performed as a joint Euratom-C.E.N./S. C. K. programma under. terms of contract number 002-66-12.

The samples were prepared and assayed by the sample preparaticn division of CBNM. The scattering from these samples was jetected by $9{ }^{3} \mathrm{He}$ proportional counters of 15 cm active length, 2.5 cm diameter and filled to a pressure oi 10 atm . The sampie was placed in an evacuated aluminium tube at right angles to the neutron beam. The detectors were mounted with their axis parallel to the incoming neutron beam and could detect neutrons scattered beitween 55^{*} et 135°. The background was very low and about 10^{-3} times the counting rate obtained if all inc!dent neutrons were casttering by the sample. A 2 mm thick pure Po sample was used as a refe. rence scatterer. The transmission of the samples was measured in identical resolution conditions as the scattering by observing the signal from a 14 mm thick Pb scatterer with the U-samples in transmission geometry. The data were taken with timing channel widths of 160 ns but the resolution was mainly determined by the response time and tise geometry of the scattering detectors. The resolution fisnction wea asgamed to be Gaussian with an experimentally determined width of $W(E)=k_{1} E+k_{2} E 3 / 2$ with $k_{1}=4.76 \times 10^{-3}$ and $k_{2}=6.0 \times 10^{-4}$ and E given in eV.

RESULTS
The experimental data were analysed using a shape-fitting programme. Only E_{o} and Γ_{n} were allowed to vary however and Γ_{γ} was used as a parameter such that for each value of Γ_{y}, the corresponding best fitting value of Γ_{n} was obtained. The scattering yield was calculated under the assumption that after a first scattering event in the direction of the detectors, an eventual becond interaction ware equal to a momoval or a ionz of the acattered neutron. In calculating the probability for a second interaction, the energy shift of the neutron was taken into account. The assumption of complete removal at a second interaction may seem somewhat drastic, but for samples with $n \sigma_{0} \leq 0.5$ the correcions are mederate end the final infuonce of this assumption must be small. This can be judged. from the results obtained with different sample thicknesses. Even for a predominantly scattering resonance such as the one at 190 eV , the Γ_{n} values obtained from the thinnest sample ($n \sigma_{0} \approx 0.1$) and the thickest ($n \sigma_{0} \approx 2$) are different by only 10%. In table 1 the values of Γ_{n} for five resonances as obtained from the thinnest ammple are given for three different asoumed values of $\mathrm{r}_{\boldsymbol{\gamma}}$. In viow of the difficulty to normalize the data to the Pb cross-section in an absolute way, they were normalzed to $\Gamma_{\mathrm{n}}=31 \mathrm{meV}, \Gamma_{\gamma}=24 \mathrm{meV}$ for the 36 eV resonance.
This normalization is chosen because it is a strong low-lying resonance for which most authors agree on the parameters chosen for this normalization. Although, in principle, a combination of the reaults from this scattering experiment with the accurate value of Γ_{n} or the product $\Gamma_{n} \Gamma_{t}$ obtained from a transmission experinient would give a value for Γ_{y}, we have no sufficiently accurate data to make the choice. In the most favourable cases $\left(\Gamma_{n} \approx \Gamma_{\gamma}\right)$ a 10 quariation in Γ_{γ} introduces a chift of about 5 of in Γ_{n}. With careful transmission experimenta, this level of accuracy could be attained.

CONCLUSIONS
The present results show that with thin samples and atraightforwerd
correction procedurec, accurate values can be obtainpd for Γ_{n} from scattering experiments. Together with capture and transmisaion experiments, an overdetermined get of parameters could be constructed to an accuracy of about is ${ }^{\circ}$. Thus, the distribution of the widths would become more meaningful and the exiatonce of fluctuations more firmly established (or disproved).

ACKNOWLEDGEMENTS

The author wishes to thank Mr L. MEWISSEN for collecting the data ond for voluable help during varlous stages of the calculations. Thanks are also due to Mr E. MIES and the electronics group for interfacing the on-line data acquisition system. The essistance in computer programming of Mrs G. DE CORTE is appreciated vory much. The data gathering was greatly facilitated by the efficient help from the Linac operating group and the data handung group at CBNM.

TABLE 1

Eo (eV)	Present Iesults $\Gamma_{n}(\mathrm{meV})$			Ref. 1
	$\Gamma_{\gamma}=22 \mathrm{meV}$	$\Gamma_{\gamma}=24 \mathrm{meV}$	$\Gamma_{\gamma}=26 \mathrm{meV}$	
	9.1 ± 0.5	9.5 ± 0.5	9.9 ± 0.5	8.7 ± 0.3
36.7	30.0	31.0	31.9	31.15 ± 1.0
66.2	21.6 ± 1.0	22.3 ± 1.0	22.9 ± 1.0	25.2 ± 1.0
102.7	60.0 ± 3.0	61.1 ± 3.0	62.3 ± 3.0	66.0 ± 2.0
189.6	140.0 ± 7	150.2 ± 7	151.8 ± 7	150 ± 3

taken as normalization value.

REEERENCFS

[1] J. B. Garg, J. Rainwater, J. S. Petergen and W. W. Havens Jr. एiys. Rev. 134 (1904) B985
[2] M. Asghar, C. M. Chaffey and M. C. Moyon Nue1. Phys. 85 (1966) 305
[3) N, W. Glann, A. D. Schelberg, L, D. Tatro and J. H. Warren Neatron Crose Sections and Technology (Proc. Conf. Washington, D. C. 1036) N. B.S. Special Publ. 299, Vol, 1 (1968) 573
[4] G. Carraro and W. Kolar
Second International Conference on Nuclear Data for Reactors iProc. Conf. Helsinki 1970) Published by International Atomic Energy Agency STI/PUB/259 Val, 1 (1970) d@3
[5] G. Rohr, H. Weigmann and J. Winter
Second International Conference on Nuclear Data for Reactors (Proc. Conf. Helsinki 1970) Published by International Atomic Energy Agency STI/PUB/259 Vol. 1 (1970) 413

IEUTROR SCATTERING CROSS-SECTIOH MEASUREPENTS ON 23IU IN THE RESOLVED EMERGY RANGE

F. Poortmans, L. Mewissen
S.C.K./C.E.N. MOL
J. Rohr, H. Weigmann
C.B.K.H. Euratom Geel
G. Vanpraet
R.U.C. Antwerp

Abstract

Seattu.ing arovo-vaction meavurementa have been performed on ${ }^{236} \mathrm{~V}$ below 1 kel. A part of the data has been analyocd and tho reaulto awe compared with previous negouremento.

1. INTRODUCTIOS

A now serlos of partial and total ercess-action moosurements on ${ }^{338} \mathrm{u}$ are baing performad or ara in proparation at tho $\ddagger 1 n 3 \mathrm{c}$ of E . B.in.M. Geel. Scattering crosscoction measuramontswith viry than samplos havo boen dene below 1 koV. The anolyaio of those dita has sojn partly finishad. Further meosuraments at highar cnorgy and with thickot somplos have been startod. The capture cross-section mosuraments with the $\mathrm{C}_{6} \mathrm{~F}_{6}$ cotector aro in preparation and transmission measuromente with eselod samples will be otartod soon.

This rapart dascrions the scattoring cross-30ct:on measurements below 1 keV and comparag the rodulting Γ_{n} valtur from a proliminary anslysis with thosa fam provious exportmanta 1-7].

The publishod reaulta for tho roeenaneg paramotorg fin and Ty ware in genaral obtained by a combination of capcura, transmisuian and self-indication expariments. Cnly tho Harwall resulte ${ }^{2]}$ woro from capturs and scattaring experiments.

In the enderay sanae below 1 kov. the ressnances and in genaral well isolatad, a caod timpofetlight resolution is aasily cotained and the flux normalization for the partial eross-section moesuraments is less difficult than at higher energies. If apite of thase favoursole exparimantal canditions, the alscrapancics betwean
the existing resuite ore still very important. This is illustrated on figs. $1-4$, which shaw some typical results for I_{n} and I_{y} from difforent groupg at Harwalidi)
 The morealization prosedure of the scattering dete is more oasy than of tho topture data, ith 5 gatetering cross-section can be measurad relativo to po which is a good stondard. In tho case of captura measuraments. the procedure is in ganeral the following : tha shape of the neutron flux is measured using for oxaple the ${ }^{\circ} \mathrm{L} f(n, a)$ or ${ }^{10} \mathrm{~g}(\eta, a)$ reaction and the absolute cslibration of the product of diatector efficiency times neutton flux is done with the "black resonsnce" Lechniqug. This orocedure can give ripg to systematic arrors. For the resonancas whare $\Gamma_{n} \leqslant I_{Y} Y$ the parameters Γ_{n} ang Γ_{Y} can also be detormined by combining the restits from scattering and transmigsion experiments. Thoso ara good examplos to creck eventual systematic errors on tha capturo axporimonts,

2. EXPERIMENTAL DETATLS

The exparimants wera performed on a 30 meter filght path. Tha most importont factor in tha time-of-filght resgiution was the fight path umcertainty, dua to the size of the samplo so that 0 (F WH) / E was approximstaly 2×10^{-3}.

The datector system consisted of six ${ }^{3} \mathrm{Ho}$ high-pressure gaseoug scintillatorg (LND typo eod), placad at an angle ef 140°.

Two vory thin samples have toon used (1.31 $\pm 0.01710^{-5}$ otomos $238 \mathrm{~L} / \mathrm{t}$ and $5.53 \pm$
 ing thinnost sampla contalngd 23 ty woight of uranium and tho thickest ono 17 i. The scattoring yidid curvos are shawn on figs 5 and 6.

Tho scattoring crossmboction was measured relativo vo po for which on a 11.28 $\pm 0.05 \mathrm{D}^{\mathrm{BJ}}$. Tho Pb samplo has a thicknosg of $\mathbf{6 . 5 8 1} \pm 0.00710^{-3}$ atomes 0 .

3. UNCERTAINTIES IN THE HEASUREMEHES

3.1. Syatenatic errors

Tho major syotamatic errer of fuout 2.5 : is associatod with tho normalization and Is due to the uncartainty of the Pb crosa-ogetion (0.5 \%) thn error on the corrcceinn for anif screaning and mutipla ocattering in tha Pb ocsttoring experimatis $(<1$ if) tho inszability of scettering detactor and manitor during the experimenta
 The thicknoss of the thinnest uranium sampla is kriwn to 1.3 \% and the other ong to 0.2 *
$\because=$:ビf: Satiot. Tho worreeticnis on tho roconenco arga for self gorcening and for ab-
 ij $;$. For most rog: tos. enong corractiens were less then 2 i.

3.2. Statistical errors

The atatistical orror was loga then 9 for otrong rosonanzos and gould be about $15:$ for weak regananzos, To obtain tho ores undor the resonant gcattering poak.

 gould te deasand from the sount ylold outsidn the rasenances. Fhe background contritutzon was mearurcs scparately with tho black resonance tochriquo using Mn.

4. RESULTS AND DISCLSSICN

 : Lstict prouloujly.
 t:

 :c:ucan
 Pho resunanco porametarg Th and $i \gamma$ can be docisad ty conbinang the roalto from an aras anslyaty of portiol end totol crose-cacticn messuramento. So. In part,

 \because Unluos cbtalnad at Columbis stiosld be tos large.

TABLE I

ED	518.5 oV	535.5 oV	580 oV	595 eV
croocht rasults	42.543.5	41\#3.5	40.5 23.5	81.545
Gerg as a!: ${ }^{3}$	43.2 ± 2.3	37-2.3	27 ± 0.7	82 ± 5
Asgrar ot al ${ }^{2}$	39 ± 2.2	* 9 ± 2.5	37.542.6	71 ± 3.6
Fohr ct 3i4]	45 ± 1.5	43ヵ1.4	42.5 ± 1.6	8S ± 2.5
Corraro ot al ${ }^{\text {s }}$	55 ± 4	45 ± 2	44 ± 3	B4 ± 5
Mosctaki ot al.	$42 * 6$	S5 ± 15	36 ± 6	93 ± 10
Fans of al ${ }^{71}$	40 - 5	45 ± 5	$41 \leq 4$	$B 5 \pm 5$

MEEこRFこここS
：）\because ．Grg，J．Habmater，J．Petersen and W．W．Havens Jr．． Frys．iove 134，（：906），E Ee5

2：M．Asghar，C．M．Chaffey and N．C．Moxom， tineloar Physics．85．（1956）． 305
s！：ira．Glaso，A．Schelberg，L．Tatra，J．Warren，
 wesmengtan．Vc：i，（1538）． 573

6）G．Rohe，fi，Heigmann and J．Hinter， Hrac．Conf．Rucleer Data fua Reactorg Halsinki，Vsl 1 ！：370）， 413

5）G．Cartaro and in．Kolar， Proc．Canf．Noutran Crass－Sactions and Tectinology Kraxville，Val 2 ：19／11， 701

6）Hh．Maletaki，L． G ．Pikel＇ret，I．Y．Salamatin，E．I，Sharapov， Atorroya Enorgia．32．（1972）． 49

7）E．Rahn，H．S．Camarda，G．Hecken，W．W．Havens Jr．，H．I．Liou，J．Rainwater， 4．Slagruite and S．Fynchank， Prys．Fov．C6．\｛1972i．1854

B）L．A．Raybura and E．O．Wollan， Musloar Phyiges 61（：365）3a1．

FIGURE CAPTIONS

Figs $1-4$ Results from an area analysis of our scattering data frelationship be tween In_{n} and $\mathrm{I}_{\mathrm{y}} \mathrm{J}$. Also shown ore the resulta obtained at Log Alemos and Columola 1,3) (COL, LA). Harwell 2] (HAR). Geal 4) (GE), Dubna 6) (DUB) and COluroia ${ }^{7]}$ (COL).

Fig 5 Scattering yield curve with the semple of 1.3110^{-5} etames/b.
Fig 6 Scattering yield curve with the sample of 5.5310^{-5} atomes/b.

Fig. 5

Fig. 6

H. C. Moxion

Abstract

Tha intorcat in thig eubject ariced from the fact that individual resonance paracetara ara required in calculationo of the self screening, multiple scattering ant dopplef offocte for fast reactorg At preatnt some evaluations of the U-238 recoranco paracoserc arc baced tainly on the values given by one get of seasurements, ruther than cay velehted cean valuos given ty all tho available data.

A list of available data it given in Table 1 , iogether uith details of the nemauremento and commenta on the data. If no errors are quoted, then for the resoraneo energy it io acoued to bo equivalent to three tiooo the quoted resolution at that emergy, and for the noutron and radiation width to bo $\pm 50 \%$ of the quoted viluc.

In tifis evoluation tho weighted acan values for all parametore havo becn calculated uain; all the publiched data and are given in Thble 2 . Where only one Esacurecent of the reconanco marameter existe. this is guatad.

Checks tero enrried aut to cee if data ires any ono reference vere the cause of the high paluea of $X 2$ tzett vare observed. Table 3 givea valuec of chi-spuared per degree of fracdom for the pararetero with and without the data from the given reforence. Thin table jndicates that leaving out the data fromany one reference vill not aignificantly change the overall value of chimsquared. Thus there appars to te at preaont no technical rcason for leaving out any of tho data and the weighted mean walues aro probably the best oned that ran be obtained at present.
(a) Reconner Energies

Keighted ecan talues of the recomance onorgies were obtained from the publiched dita ard gnve the cum of χ for all tho resonances equal to 1369.5 for 6013 degrues of fredod. Systematic difforonces verg noticed between different reacurcentis and an the Columbin data of Rahn of al (13) covered almot the largest entergy range 6 oy to 4.6 kol it wa chooen an a standard. A least equares fit was then carricid out on tho other ceto of data to deteraine a flight path leggth and zero tiro correction. The values obtained are given in Table 4 and are mostly withir the calculated orrors. A value of 408.5 for X^{2} was then obtained frem the recalcunated ocorgied. The low values of x^{2} and large errora on some of the adjuated flight path leagtho and zero tices are probably due to an overestimate of tho errora whero cone have boen quated. Tnio rejuction in χ^{2} suggents that the cycteatic differences tetween the oote of data hava bsen removed and the weighted ecaa values eiven by theod gets of dita are taken to be the recomaended vaiues.
(h) Noutron widthe

The hich value of X^{2} of 2422.1 for 679 degreen of freedom, obtained from a cencaricon or the deutron widtho, indicatos that either there are tome aystegatic diffcrences in tho eote of data or that come of the uneortaintien have been uncorcitimated.

A dopenderice of X^{2} on the peutron width (which does not appear to be energy dopencont) io chown in Figure 1. A pecaibic explanation of the jow valuce of X^{2} for ceall reconancya could be that erroza tend to be rounded upy e.g. $\Gamma_{\mathrm{n}}=$ $0.30 * 0.16 \mathrm{mcV}$ would be reported as $\mathrm{r}_{\mathrm{n}}=0.3+0.2,2$ reduction in the veigiting of uleozt a factor of two. It is almo posobble that the otatistical orrors being fructionally larger for the amaller reconances tends to hide *y aystemitic errors that finy to procont.
\therefore cench far cyatezatic difforences mas carried out in the energy range up to

1 kel, as in this region there may be as many as nine reported values for tho neutron width of a resonance. This was carried out using the Eractional difforence FN in Γ_{n}, between the data from a given reference and the woighted mean valuo calculated from all the other available data. Colum 1 of Tablo 5 gives a weighted mean value of this fracion and columns 2 and 3 give a least square fit of the fraction to the form $F N=a+b \times E_{r}$, where a and b aro doterwined from the data and E_{T} is the resonance energy. Columen 4 is the correlation coefficisnt for this fit to the data.

Some of the sets of data, e.5. Asghar et al ${ }^{(3)}$, show only a congtant difference from the average values, wherean the data of carg ot al (1) give a negative correlation with neutron energy and that of Carraro ot al (14) a positive one with neutron energy. Explanation of these differences could lie in the follewing:-
(i) the type or typen of measurement
(ii) the gethod of analysis
(iii) doppler and resolution effects

Host of the values of r_{a} are obtained from transaiamion measurenente or transmisaion conbined with other types of measurements, in which the tranomiesion iata make the largest contribution in detor=ining the value of Γ_{a}. There is very little that can explain these discrepancies in trancmiasion expericents. Poor monitoring in transeission experiments will only affect the malue of the potentinl scattering and not the resonance area as this acthod of analyois is insensitiva to the absolute values of the transgicsion. The determination of the taciground could be a cource of orror but there is very little documentation on this subjoct and the errors associated with it.

In references 3 and 11 no transmigsion data are used to obtain the rosonance parameters [ref. 3 is some 10% lower and 11 sone 8% higher than the average values]. Asghar et al (3) use scattering and capture data to obtain the rebonance parametera. In chis case Γ_{a} is determined maninly by the capture data vien $\Gamma_{n} \ll \Gamma_{Y}$ and by the scattering data when $r_{n} \gg \Gamma_{Y}$. An examination of their rosulto would indicate that there is better agreezent with the average values of Γ_{p} when it is smaller than Γ_{Y} and this would possibly indicate an error in the normalization of the scattering data. Rosen et al ${ }^{\prime} 17$ use self indication techniquos to obtain their resultis. The analysis of this type of data is difficult and sevoral problers are present that are not in the transaission peazuremente uaing a flat dotector. The two most important are the effoct of aultiple seattering in the detector foil and the sensitivity of the Y-ray detector to scattered neutrons; neither of these are discussed in any detail in the paper.

All but one meacurement (ref. 8) use some form of aren analyoin to obtain the rocomance parametera. Problemo ariaing from the analysio or uncortainties in the analycis are not discussed in any of the papers. Such problems can a:-isc from correction from finite cut off to tho remonance arean, long taile on th. recolution fusction, self screening corrections, and interfercnce offecti. In col: indication meacuramento additional problomo ao given abovo add to the difficulty of amalyaid of the data.

Only two papers ${ }^{(8,11)}$ mention the offective temperature of tho eample used in the aralycia of the data. This could affect the analysis and should bo given in the paper.

Possibly one or all theae effecte contribute to the diecriopancies in tho abserved values of the neutron width. As transaiasion easaremente are the aiopleat to perform and interpret, it should be passible to compare the menmured

- moracsion: with in curve calcuiated from the final mrageters, tut none of the oxprieonts usine arcu aralyais techniques even hint tiat tuch a process has been arasac out.

As nt peoncrit thore apperara to te no real explamation for these systematic differonese and to take thin into account, it is suggested that the quoted errors in rable 2 on the coutron widtin should be at least doubled.

(c) Madiation hidth

In the eisco of the radiation width, unly 5 references $(3,11,12,13,16$) Five values of ry for a largo number of reconances. The overall value of $\%$. ${ }^{2}$ of 1才2. 1 for 13 dearced of fregden indacates that the allonated errors are reasorabie nam Ehat sieve appearg to te no significant oyatceatic differences between sne reporsed ralues.

Tre high valuec of r^{2} in hable 6 for the weighted average valucs of Pr for ach reicrence suci,ect that there is a natural spread of ~ 2 zeiv bue to te sure fuc. Fore accurate values of ty i-e required. Table 6 alco gives tine results of a least equares fit of the valces of Γ_{Y} to functions of Γ_{n} for all arts of publiched dotc. The datn erom Colurein(15) and Geel (16), i.c. two of the acti of dita covering a larce oneriy rarge, show a pocitive correlation for all three functionc that were tried. The correlation between Γ_{n} and Γ_{Y} has no physical cicairicance, but will be observed if there is a correlation between either IY and $\Gamma_{n}{ }^{\circ}$, or Γ_{γ} and the scatterine area. If thic corrciation beiween the radiation tidth and the reduced neutron width is genuine, it could have gignifieans effecte on ractor calculatione, especinlly it the kel region when self sereenine correctiors are barge fus cets of corrolation tests wore carried out on the weighted nean values of ty. the firct ured only the quoted ecan errors and did not show any corselation between tho functions of Γ_{n} and Γ_{Y}. Dre to the fin-te numbet of tranjitions in neuteon capture, Iluctuations in the values of Γ_{Y} are to be expected; this in confireed by the high value of $Z 2$ of 19 ? for 76 degrees of freeden, obeained for tho yeigheed mean valun of Tr. Th taice this inte account, a cecond correlation tect wac carried out ucing ao veighto for ry the inverse quadratic sum of the quoted erroro t $10{ }^{\circ}$ of the value of Γ, ehic gave a poaitive correlation botween tho functions of Γ_{n} and Γ_{Y} (cee Figuro 5). Measurements of the Y-ray apectra emitted on neutron eapture in U-258 reported by John et al (17) and Thomas (i8) nhow n variation in thayo frou resonance to resonance. John et al(17) canciudo that there ic a chift dommard in the centre of gravity of the giema ray spectra as the neutron onergy incracacog. Thio cffect way be crhanced by the detection of Y-rayo fros resonntio cesteterd neutrone eaptured in the detector and curroundint equicment, as they only correct for background using the between rasomnae Y-ray cpecerd. Therefore cingee in the observed radiation width coulc Lo acsociated with this chanfe in the $\gamma=r a y$ spectra or could be due to changea in tice efficicncy of detectimg neutron capture evente ac the γ-ray opectan change.

Gherefone nt yrocent there appeser to be very little evidence in theary or experiment to oxpect a physically real correlation botween the radiation width and the redueed neutron width. Tho above etatistical tecto imply that the capture equipment could be core sensitive to the acatered neutrono than expected, or vorpections for aultiple ceatterine had begn undaroctimated. In aither cace the leac:urod radiation widtha for rcaonancos with largo neutron widtho would be increaced.

(d) itcomendation

fieighted mean values of all available data given in Table 2 youkd appear to be tho lest daca that can be obtained at present. Aa indieated in Table J_{i}. leavit: ; out data frop any one reference will rot cignifjcantly change the averall valued of tho parametort. These values five an infinito dilution resonance interal of $2 \gamma^{2} 4.96=2.08$ of unt a radiation width of 24.14 nel when no radiation
width is given. The quoted errors on the resomance onergios would appear to be realistic but the errors quated in Table 2 on the neutron width ahouid be increased by a factor of two to take inta account the eysteratic discrepancios between different sets of data. The use of the weighted average radiation wideh for resomances in which no meabured valuz is given, chould be carried out with caution and checks carried out to soe the effect of a natural geread of $\sim \pm \hat{2} \mathrm{meV}$ in the radiation widths.

If a large fraction of the radiation width is correlated with the reduced neutron width then nssumption about the energy, spin and orbital angular comentum independence of Γ_{Y} aust be vieved with bome suspicion and atteopts should bo made to measure some of the radiation widthe of resonances with crall valuen of $\Gamma_{n}{ }^{\circ}$ to either prove or disprove tho presence of a correlation.

Nuclear Physics Division,
Building 418,
A.E.R.E., Harwell.

10th Naj, 1974.

References

(1) J. B. Uarg, J. Rainater, J. S. Petercen and W. W. Havenc, Jnr. Fhyo. Rev. 134 (1964) B985.
(2) F. W. K. Firk, J. E. Lymn and M. C. Moxon, Nuc. Fhys. 47 (1963) 614.
(3) H. Aeghar, C. M. Chaffey and M. C. Moxon, Nuc. Phyo. 85 (1966) ?. 5.
(4) J. S. Levin and D. J. Hurhes, Phys. Rov. 101 (1956) 1328.
(5) J. A. Harvey, D. J. Hughee, R. S. Carter, V. E. Pilcher, Fhyo. Rev. 99 (1955) 10.
(6) R. G. Fluharty, F. B. Simpson and O. D. Sinpson, Phya. Rev. 103 (1956) 1778.
(7) L. M. Bollinger, R. E. Cote, D. A. Dahbberg and G. E. Thoman, Phyo. Rov. 105 (1957) 661.
(ठ) H. E. Jacikeon and J. E. Lyan, Fhyc. Rev. 927 (1962) 461.
(9) L. N. Hollinger and G. E. Thomes, Fnyc. Rov. 171 (196B) 1293.
(10) Yu. V. Ryabov, So Don Sik, N. Chikov and N. Janova, Dubna preprint P3m4992 (1970).
(11) J. L. Rosen, J. S. Desjardin, J. Rainaiter and W. W. Haveng, Jnr., phyg. Rev. 148 (1960) 687.
(12) H. Kalecki, L. B. Pikolner and I. M. Salatatin, Dubna proprint Pj-5609 (1971).
(1;) F. Kahn, H. S. Camardn, G. Hacken, W. W. Havors, Jnr., H. I. Liou,
J. Rainwater, M. Slagowitz, S. Wynchank, Columbin preprint (1972).
(14) G. Carfaro and W. Kolar, Hroc. Conf. on Neutron Crous-soctiono and lechnology, Kroxville (1971) page 701.
(15) J. E. Lynn and H. J. Pattenden, Hroc. Gencva Conf. (1955) Vol. 4, Papor P423, page 210.
(11) G. Rohr, H. Weigmann and J. Winter, Froc. IAㄹA Helsinki Conferenco (1970) Vol. I, Paper CN-26/18, page 473.
(17) I. John, V. J. Orphan and C. G. Hoot, (1970) GA-10186.
(18) b. W. Thoma (1974) trivate comunication.

Fibe 1 Available data on roconarce parameters of U-238.
2 Recocmended resonance pairancters for \mathbb{I}-238.
3 Tece ciange in P_{0}^{2} per degree of freedom with and without the dith from a giton refercnce.

4 Correction to the slight moth length and zero tice wing reference 15 as a standard.

5 Fraction variation of fror a given reference relative to the weighted mean of all other avaijacie data in the newtron enorgy range up to 1 red.

6 Weichited mean radiation wïdth and resulte of least squaros fits of ry to functions of r_{n}.

Figure 1 Chi-spurad per degree of freedod vertus the neutron vidth.
$2 \Gamma_{Y}$ versus r_{n}^{0} frou the Coluabia data of Rahn et al ${ }^{(13)}$.
3 dverage ralues of r_{Y} vercus $\Gamma_{n}{ }^{0}$.

Tablatis

$\frac{n o f_{0}}{\frac{18 n}{}}$	$\frac{\text { Mincra, yoar ani }}{\text { geratary }}$	Emocrithtino	Sype of	Dotoctor	Sasplos	Typo ofAnalyose
8	H. E. Jaciason ant J. B. L.ynn, Areorie (1962)	6.5-6.9 - \%	Thioxiceiol usimg a linst chospor		```2 cotal roils and 2 cxido sacplos moro studied```	shapo. Hensamonnts woro performod to look at solld stato ofroces on the urandua 6.70V ruopmancos and soro carriod out at tomporaturos $4 \%, 77^{\circ} \mathrm{K}, 239^{\circ} \mathrm{K}$.
9	L. \mathbf{M}_{*} Bolisingor ant G. E. Thoms, Argomo (1969)	$0-200 \mathrm{cos}$	Cukijuliciont	Boron-loadat liquid scintillator	Sovoral thici: anciplos o: pu:o U-238 cooled to liquia nitrozon temperaturo	Shnpo ungd to identify pmavo thon area analysis to givo $g \Gamma_{n^{*}}$
10	Yu. V. Hyatovet al, Duble (1970)	6-7 -	Tribizilisslo: using the pulogd reactor.	$\begin{aligned} & \text { Beran losiod } \\ & \text { liquid } \\ & \text { Bcintilintor } \end{aligned}$	$\mathrm{u}-23 \mathrm{e}$ impuritios in semplos of U-235	Area amaysin. Cinterf rence offocto are amald)
19	J. Lin Rosen ot al, Columbla (1959)	90 or m 1.3 kal	Solr inilcation		Soveral t'otls ror the letoctor and trensalision samplos	Arce amalysis. Aosuxeo interferonce efrecte negligible on thin samples.
12	H. Lalaoki ot al, Dubra (1971)	66 ef - 600 eV	using tho pulsou reactor		Aovaral bacploa	Aroa analysia.
13	R. Rahn ot el, colutible (1972)	$6 \mathrm{oV}-4.6 \mathrm{keV}$	THAUSKISSIOA CAPIUSE Sols indication	Nal-b-10 1toxan-Rao Plastife scintillator	Sovaral samplas ysed on oach Dunguremone	Minly area Used as anslycir and dome standard shape analysio on for the thick axeple resonanco trancmiogion data. onargy
14	C. Carraro and ii. Kolar, Gool (1ソ10)	$60 \mathrm{ev}-5.7 \mathrm{koV}$	'RANHELISSIO: uging Gool eloceron limac	NaI-b-10	13 aoplo	atra-Harvoy arga anatysia. (includea regonancepotential intorferenco)

$\frac{310 E_{2}}{40_{0}}$		－		nutector		$\frac{\text { iywo of }}{\text { Aralybis }}$	Cozente
15	J．E． Fi．J．Eat anton， 	$0.2 .00 \%$	dLatemtio vainh tho 15 tiot elvetro：11nak		（t）to 5 sacplus and usul	iroa analysig． ncralecting interforence ef	$\operatorname{cet} \sigma$
16	$\begin{aligned} & \text { G. Hesa ut al. } \\ & \text { Cosi (1g7 }) \end{aligned}$	$50-10008$	60゙「ULS	$\therefore 0 \times 050$	23250107	nrea annlyais．	Usod in conjunction with valuos or 「 from reforence 14.

Section i and ii of colunns 5, 6, 7 and 8 rofer to x^{2} per defree o: froodsm without and with the data froz the etven roforonce rospoctivaly.

PABLE: 4

Rof. No.	Plight path length (m)	Corracted flight path length (b)	Correctod soro tise ($\mu \mathrm{sac}$)
1	200.0	199.9 ± 0.27	-0.120 ± 0.467
2	55.0	55.03 $\pm 0.5 \pm$	0.383 ± 1.435
3	32.54	32.59.0.09	0.253 ± 0.380
4	20.0	19.92 ± 0.31	0.026 ± 4.534
5	20.0	20.06 ± 0.96	0.995 ± 6.759
6	30.0	29.39 ± 1.99	-6.148 ± 18.00
7	58.70	58.71 ± 5.81	-0.276 ± 68.31
8	58.90	-	0.000 ± 7.190
9	60.00	59.87*0.38	-0.642+3.724
10	30.00	-	-1.891 ± 4.932
11	35.00	34.99 ± 0.05	$0.19 \pm \pm 0.163$
12	30.00	$30.0 \div \pm 0.016$	0.10340 .048
13	200.0	standard	
14	100.0	100.00 ± 0.018	0.087 ± 0.029
15	20.00	19.98 ± 0.75	0.150 ± 9.695
16	60.00	60.01 ± 0.073	0.059 ± 0.235

TABEAS 5

Rop. No.	E,			Corralation coofticient
1	-0.0462 ± 0.0101	0.0267 ± 0.0371	-3,000167.0.000071	-0.311
2	$0.0244_{+}+0.0136$	-0.0093+0.00.29	J.000186*0.000163	0.178
3	-0,1070 ± 0.0114	-0.1030 0.0445	-3.000017*0.000109	0.021
4	-0.0216 ± 0.0490	0.0313 ± 0.0508	- 0.003603 .0 .002320	-0.708
5	0.0053 ± 0.0260	-0.0620 0.0555	J.001383*0.000652	0.452
6	0.1598 ± 0.0872	-0.0634.0.2255	2.002135 ± 0.001726	0.451
7	$0.0515 \pm 0.026 ?$	0.0934 ± 0.0268	-3.000751 ± 0.000352	-0.546
ε	$0.0285_{+} 0.014$;	-	-	-
9	0.0294 ± 0.0610	-0.0276*0.1055	3.00076310.001249	0.212
10	$-0.015{ }^{+} \pm 0.0212$	-	-	-
11	0.0814 ± 0.0162	-0.0243 ± 0.0286	3.000453 ± 0.000076	0.632
12	0.0184 ± 0.0161	-0.0140 +0.0344	3.000108 ± 0.000100	0.181
13	0.0476 ± 0.0129	$0.0293 \pm \mathrm{c} .0237$	J.00004 3 ± 0.000044	0.117
14	0.1182 ± 0.0106	0.0348 ± 0.0219	3.000173+0.00004,0	0.511
15	-0.0746 ± 0.0225	-0.0563 ± 0.0318	-3.000326 ± 0.000462	-0.301
16	$0.0833+0.0072$	0.1063 ± 0.0234	-3.000068+0.000055	-0.24

MBLE 6

$\begin{aligned} & \mathrm{Rer}^{*} \\ & \mathrm{Ro} \end{aligned}$	No. of valuos	ioioightod Mean$r_{x} \quad x^{2}$		$\Gamma_{b}=a \cdot r_{b}$				$\Gamma_{b}=a+b \Gamma_{n}^{0}$				$\Gamma_{b}=a+b \Gamma_{n}^{2} /\left(k_{R} x\left(\Gamma_{n^{*}} \Gamma_{\gamma}\right)\right)$			
2	6	26.31 ± 1.25	22.01	23.65 ± 6.65	$\begin{array}{r}0.009 \\ \hline 0.200\end{array}$	20.9	0.216	13.15 ± 7.16	$\begin{array}{r}3.40 \\ \pm \\ \hline 1.76\end{array}$	11.1	0.694	$\begin{array}{r} 15.64 \\ \pm 5.76 \end{array}$	$\begin{array}{r} 35.56 \\ \pm 19.81 \end{array}$	11.54	0.668
3	27	$\begin{array}{r} 23.61 \\ \pm \quad 0.47 \end{array}$	38.56	24.16 $+\quad 1.00$	$\begin{array}{r} \mathbf{0} .0122 \\ +0.0180 \end{array}$	37.9	-0.134	23.20 ± 1.00	0.121 ± 0.241	38.2	0.100	23.05 ± 0.85	$\begin{array}{r} 3.03 \\ \pm 3.30 \end{array}$	37.30	0.181
4	3	$\begin{array}{r} 24.74 \\ \pm 1.89 \end{array}$	1.49	23.06 ± 0.66	0.61 ± 0.16	0.08	0.973	21.53 ± 0.59	4.25 +0.64	0.03	0.987	$\begin{array}{r} 23.30 \\ \pm 0.75 \end{array}$	$\begin{array}{r} 59.58 \\ +17.34 \end{array}$	0.11	0.950
5	4	$\begin{array}{r} 27.60 \\ \pm 9.27 \end{array}$	0.23	27.88 ± 4.94	$\begin{aligned} & \mathbf{0 . 0 1 2} \\ & \pm 0.163 \end{aligned}$	0.23	-0.05	$\begin{array}{r}28.54 \\ \pm 7.12 \\ \hline\end{array}$	-0.27 +1.87	0.23	-0.103	$\begin{array}{r} 29.0_{4} \\ \pm 5.70 \end{array}$	$\begin{array}{r} 6.01 \\ \pm 20.10 \end{array}$	0.22	-0.207
7	4	23.67 ± 1.76	1.53	23.99 $\pm \quad 2.39$	-0.038 $+0.22 ?$	1.50	-0.12	$\begin{array}{r}24.73 \\ +2.06 \\ \hline\end{array}$	-0.61 $\pm+4.4$	1.39	-0.293	$\begin{array}{r} 24.30 \\ \pm 2.31 \end{array}$	$\begin{array}{r} -5.51 \\ \pm 15.69 \end{array}$	1.44	-0.24
11	32	$\begin{array}{r} 24.69 \\ -\quad 0.67 \end{array}$	17.81	$\begin{array}{r} 23.56 \\ =0.67 \end{array}$	0.009 +0.008	16.96	0.215	$\begin{array}{r}23.58 \\ \pm 0.84 \\ \hline\end{array}$	0.18 +0.23	17.45	0.139	24.07 ± 0.72	$\begin{array}{r} 0.16 \\ \pm 4.54 \end{array}$	17.81	0.04
12	23	$\begin{array}{r} 23.64 \\ \pm 0.49 \end{array}$	7.47	24.50 $=0.14$	-0.015 ± 0.006	5.65	-0.691	24.06 ± 0.45	-0.12 ± 0.10	7.00	-0.251	$\begin{array}{r} 23.74 \\ \pm 0.37 \end{array}$	$\begin{aligned} & -0.66 \\ & \pm \quad 3.53 \end{aligned}$	7.41	-0.093
13	71	$\begin{array}{r} 22.31 \\ \pm \quad 0.31 \end{array}$	84.16	$\begin{array}{r} 21.26 \\ \pm \quad 0.46 \end{array}$	0.014 ± 0.004	72.72	0.365	20.93 +0.48	- 0.502	69.12	. 0.649	21.71 +0.41	5.12 ± 2.38	76.65	0.296
15	6	24.45 ± 1.05	17.35	26.86 $\pm \quad 1.96$	-0.211 ± 0.106	5.68	-0.704	27.07 ± 2.31	-1.503 +1.24	12.47	-0.527	26.21 $+\quad 2.38$	$\begin{array}{r} -15.57 \\ \pm 13.88 \end{array}$	12.66	-0.543
16	28	$\begin{array}{r} 24.21 \\ \hdashline \quad 0.26 \end{array}$	62.58	23.52 ± 0.56	0.013 $=0.005$	53.42	0.380	23.58 ± 0.68	0.198 +0.179	59.72	0.212	24.13 ± 0.57	$\begin{array}{r} 0.67 \\ =3.42 \end{array}$	62.49	0.c."
Toinghted vaiues															
		$\begin{array}{r} 24.14 \\ .0 .35 \end{array}$	196.9	$\begin{array}{r} 24.11 \\ \pm 0.33 \end{array}$	$\begin{array}{r} 0.0001_{4} \\ \mathbf{0} 0.0020 \end{array}$	195.8	0.053	24.07 ± 0.37	0.025 -0.104	1196.7	c. 628	24.07 ± 0.31	0.57 -1.74	196.5	0.038
		orror	$\mathfrak{b a}^{5}$	croased $\begin{array}{r} 22.63 \\ +0.44 \end{array}$	$\left.\left\lvert\, \begin{array}{r} 1 \sigma_{i} \\ 0.08 \\ 0.0091 \\ \pm 0.0040 \end{array}\right.\right\}$	the vap	$\begin{gathered} \text { at } \\ =, 258 \end{gathered}$	22.28 ± 0.45	0.365 ± 0.417	43.5	0.339	22.73 $\times 0.36$	$\begin{array}{r} 5.554 \\ \pm 2.187 \end{array}$	45.3	0.283

o is tho corrolation orofticient far tho fi*

Fig.t.

FIG. 2.

FIG. 3.

COLUMN TUMBER 1		2	
			+ OR-
$3.6722 \mathrm{~F}+03$	$1.27 \mathrm{E}+00$	2.9681E-01	$3.35 E-02$
3.1159E*03	$1.28 E+50$	$0.4769 \mathrm{E}-02$	1.30E-02
3.7331 E 03	$1.28 \mathrm{E}+00$	1.8238E-51	$3.33 \mathrm{E}-02$
3.7638E 033	$1.35 E+90$	$4.1445 E-02$	5.49E-03
$3.7813 \mathrm{E}+03$	1.36E + OC	3.1660E-01	$4.30 \mathrm{E}-02$
3.7998E*03	3.20E*DO	3.0821E-03	3.08E-03
3.8306E*03	$1.36 E+50$	6.4435E-03	2.38E-03
3.8567E ${ }^{\text {c }} 3$	$1.37 E+00$	4.3421E-01	3.91E-02
3.8720E +53	$1.37 E 00$	1.873日E-01	$4.39 E-02$
3.8951E*03	3.3CE+00	$4.9928 \mathrm{E}-03$	3.12E-03
3.9018E*03	$1.37 E+00$	2.5796E-01	5.14E-02
- 3.9134E*03	1.50E +00	9.0082E-02	1.50E-02
- 3.9390E-03	1.50E +00	1.2992E-01	2.01E-02
- 3.9539E+03	$1.50 \mathrm{E}+00$	$1.0815 E-01$	1.51E-02
- $4.0404 E+53$	1.50E +00	6.4835E-02	1.02E-02
-4.0630E+03	1.50E+00	2.9959E-02	8.29E-03
$4.0894 E \times 03$	$1.60 E+30$	7.2262E-02	$1.47 \mathrm{E}-02$
- $4.1240 \mathrm{E}+03$	$1.60 \mathrm{E}+20$	3.2109E-02	7.71E-03
- $4.1678 E+03$	$1.60 E+20$	1.6010E-01	3.49E-02
* 4.1782E*03	1.70E +00	3.8137E-02	9,05E-03
- $4.2094 \mathrm{E}+53$	1.70E + 20	4.0226E*02	9.08E-03
* 4.2577E+03	1.70E+D0	1.6965E-02	7.18E-03
-4.2990E+53	$1.70 \mathrm{E}+00$	1.3179E-01	1.77E-02
* 4.3060Et03	1.70E +00	1.145s5-01	1.71E-0.?
- $4.3239 E+33$	$1.70 E+00$	6.1811E-02	9.86E-03
- $4.3332 E+33$	$1.80 E+00$	3.2914E-03	1.97E-03
-4.4350E+03	1. $\mathrm{BOE}+00$	1.0522E-01	2.53E-02
- 4.4872E+03	1.80E+00	2.6795E-03	2.01E-03
- $4.5103 E+03$	1.80E $\rightarrow 00$	5.0503E-01	7.99E-0 2
-4.5420E+53	1.80E + OO	7.4808E-02	1.21E-02
-4.5672E+03	$1.80 E+00$	3.3791E-02	8.11E-03
-4.5927E+03	1.90E +00	1.8298E-02	6. 10E-03

4	5	6	7
0.29	3	1．79	3
0.50	2	0.12	2
0.12	3	0.54	3
0.08	3	16.25	3
0.07	3	1．31	3
0.39	3	14．75	3
0.04	3	0.72	3
0． 38	3	2．51	3
9.45	3	11.96	3
0.55	3	B．47	3
0.11	3	1．21	3
0．11	3	9.96	3
0.65	3	43.09	3
0.25	3	1． 45	3
0.11	3	9．39	3
C． 12	3	8.92	3
0.38	3	13．80	3
0.81	3	13．70	3
0.41	3	13.60	3
0.23	3	15.44	3
0.15	2	0.0 A	2
0.43	3	25．87	3
0.79	3	16.93	3
0.04	3	0.08	3
0.21	3	0.06	3
0.02	2	0.97	2
0.42	3	1．90	3
9． 54	3	9.10	3
0.73	3	37.19	3
0.94	2	1． 35	2
0.25	2	16.55	2
0.43	2	0.72	2

3．0277E63 $0.42 \mathrm{E}-01$
$3.04225+33$
3.0504503

 $3.1325 E+93$ $3.1470 \mathrm{E}+03$ 3．1697E＋03 3．1778E 43 3.1878 E －3 $3.20465+33$
－3．21705＋03 3．2こら1E＊03 $3.2482 E+93$
－3．2720E＋03 3．2781E＋53 $3.2954 F+03$ $3.3106 \mathrm{~L}+03$ 3． $3203 \mathrm{E}+03$ 3．3327E＋03 $3.3545 E+33$
＋ $3.37095+0.3$ 3．3B8TE 403 3．4078E＊ 3 3．4179E－03 $3.4352 E+03$ 3.4566 E － 3
－3．4699E＊03 $3.4041 E+53$ 3．4931E－03
－3．5119E＋03 $3.5263 E+03$ $3.5602 E+03$ $3.5724 E+03$ 3．5931E403
－3．6000E +53
－ $3.6110 E+03$ $3.6223 E+03$ 3． $6286 E+03$
－ $3.6470 E+03$ 3．6722E＋03
$0 * 42 \mathrm{E}-0 \mathrm{~L}$
94 4 E－ 21 $4.395-01$ $2.35 E+90$ $6 m 705-01$ tif4E 41 7－OTE－91 7．0BE－S1 7－0SE－3L 7．03E－51 T－10E－01 $1.106+00$ $T=0 E-0 L$ 7．11E－91 1．1． $1 \mathrm{E}+00$ 7．11E－51 9．04E－01 T－12E－01 T．37E－01 7．7おE－71 7．75E－01 2．65E＋00 7．77E＝01 6．09E－01 $1+10 E+00$ 8． $11 E-91$ 8．41E－01 $2.80 E+00$ B．41E－31 B．41E－ 51 Z．日5E＋00 1． $18 \mathrm{E}+00$ 8．44E－01 0．44E－01 8．45E＝01 2．95E＋00 2． 555400 1．19E＋00 $1.275+00$ 3．00E 400 $1.27 E+00$

	\rightarrow cra－
78E－01	9.62
4819E－03	7．80E＝04
7167E－02	2．99E－03
$4.4406 \mathrm{E}-03$	J．bTE－D3
1，9948E－0t	1．21E02
7． 886 CEE －03	日．93E－04
9．4319E－02	5．91E－03
9．0022E－03	$1.02 E-03$
． 5386 －02	$5.94 \mathrm{E-03}$
$9.1601 \mathrm{E}-22$	6．44E－03
0976E－32	5．80E－03
7．9406E－03	3．5PE－03
2．5378E－02	4．00E－C？
1．7124E－02	2．136－03
$4.0041 \mathrm{E}-03$	1．72E－03
1．3056E－01	1．48E－02
$5.6132 \mathrm{E}-03$	1．39E－03
1．1901E－01	7．92¢－03
1．036「E－01	A．16E～03
7．472］E－02	5．59E－03
1．0570E－01	7．29f－03
2．5030E－D3	1．16E－03
$1.2320 \mathrm{E}-02$	1．87E－03
$2.0352 \mathrm{E}-0 \mathrm{~J}$	1．22E－02
3．5081E－03	2．01E－03
3．1166E－01	1－91E－02
Sa $6434 \mathrm{E}-\mathrm{Ol}$	3．03E－02
1－1781E－03	$1.10 \mathrm{E}-03$
1．0255E－01	7．55E－03
9．8618E－03	$1.72 \mathrm{E}-03$
2．9631E－03	1．19E－03
5．4633E－03	2．66E－0 3
$1.9846 E-D 1$	$2.53 \mathrm{E}-02$
3.5968 Eml	2．0CE－02
2．5626E－C2	3．41E－03
3．0000E－03	3．00F－03
3．0045E－D3	1．20E－03
$5.0443 \mathrm{E}-03$	2．45E－03
2．9092E－01	3．09E－02
3．0195E－03	3．02E－03
．3927E－D	2.57 E

－2，3676E＊03
－ $2.3041 E+33$ 2.3913 E \＄03 －2．3969E +53
－2．4014E，03 2.4105 E .33 2．43598＊03 2.44565403 2．4549E403 2．4885E＊03 2．5207E＊03 2．5473E 403 $2.5585 E * 03$ 2．5001E：0 $2.598 \mathrm{BE}+0$
－ $2.6036 \mathrm{E}+03$
2．6191E＊93 2．6316E\＄03 2．6712E＋03 $2.6954 E+03$ $2.7163 \mathrm{E}+33$ 2．7286E＋03 $2.7497 E+03$ 2．761sE＊03 2．7667E43 2．7980E＊03 2， 0 OSSE +03 2．8284E＋03
－Z， $844 \mathrm{E}+03$ 2．8．543E 403 2．88：9E＊03 2． 896, E +03 $2.9071:+03$ 2．9225E－03 2．9329E＊J $2.9559 E+07$ $2.9663 E+03$
－2．9737E＋j3 $2.9837 E 403$ $3.0025 E \div 03$ $3.0150 \mathrm{E}+03$
－02－
D．DOE－コ1
6．00E－ 1 $4.38 E-01$ $1.20 E+90$ 1－20E：00 C．73E～01 $4474 E=51$ $4.39 \mathrm{~F}-01$ $4.74 E-01$ 4.40 Em 52 5．045－01 5．04E－01 ᄃ． 04 E－01 －06E－01 5．06E－02 1．00E\＄00
$\therefore 15-71$ 1．$-45-01$ 5．70E－01 c．32E－01 5．12E－51 8．17E－01 5．73E－01 5．73E－51 5．73E－01 7．43E－01 8．24E－71 5．74E－01 $2.10 \varepsilon+50$ 5．755－П1 5．75E－21 4－28E－01 7． $50 E-01$ 5．47E－01 6．00E－01 6．40E－02 6．40E－31
2.20 E 20

6． 5 IE－OI
6．41E－01
9．14E－01
5. SCOCE-03 4.ODE-03
$\begin{array}{ll}2.0000 E-03 & 7.00 E-04 \\ 2.7759 E-02 & 2.67 E-03\end{array}$
$\begin{array}{ll}2.0000 E-03 & 7.00 E-04 \\ 2.7759 E-02 & 1.67 E-03\end{array}$
3.7000E-03 5.00E-04
$\begin{array}{ll}\text { 3. 7COOE-03 } & 5.00 E-04 \\ 4.0000 E-03 & 2.00 E-03 \\ 4.0057 E-03 & 5.35 E-04\end{array}$
$4.0057 E-03$ 5. $35 E-04$
9. $12 \mathrm{E}-03$
$1.2243 \mathrm{E}-01$ 9.12E-03
$\begin{array}{ll}1.5610 E-01 & 1.10 E-02 \\ 0.6734 E-03 & 1.57 E-03\end{array}$
7.0761E-02 4.46F-03
1.3528E-02 1.58E-03
5.124BE-01 3. $55 E$ EO2
2.2978E-01 L.18E-02
3.2106E-01 1.63E-02
7. $3480 \mathrm{E}-01 \quad 3.39 \mathrm{E}-02$
$2.5515 \mathrm{E}-03$ 2.5SE-03
$\begin{array}{ll}\text { 2.0.05r5E-02 } & 3.545-03\end{array}$
1.5390E-03 1.2'JE-04
2.6564E-01 1.37E-02
2.4365E-D2 2.52E-0.3
$1.2785 \mathrm{E}-01$ 9.94E-03
2.2934E-03 1.ก3E-D 3
$4.03 う 7 E-02 \quad 3.44 E-03$
1.800R ? 1.85E-03
1.03~ $\quad \mathrm{F}-03$
2.11u..-03 toint-04
$5.2710 \mathrm{E}-03 \quad 1.65 \mathrm{E}-03$
$1.2962 E-02 \quad 2.04 E-03$
2.6570E-03 2.67E-03
9.1499E-02 B.82E-03
5.4506E-01 2.51E-02
$1.5055 \mathrm{~F}-02 \quad 4.02 \mathrm{E}-03$
1.6212E-03 8.29E-04
5.7971E-03 R.14E-04
$2.5290 \mathrm{E}-02 \quad 2.91 \mathrm{E}-03$
$1.8708 \mathrm{E}-02$ 3.11E-0 3
$4-4061 E-03 \quad$ L. 22E-03
2.1257E-03 2.77-03
5.547CE-0? 1.4, 03
E. $\mathrm{BaL}_{\text {L }}-03$
1.ロットー03
+ OR -
$0.37 \quad 3 \quad 14.24 \quad 3$
3
$0.40 \quad 3 \quad 0.16 \quad 3$
$0.12 \quad 3 \quad 12.82$
$\begin{array}{llll}0.05 & 3 & 30.35 & 3\end{array}$
$0.62 \quad 3 \quad 40.03$
$0.28 \quad 3 \quad 27.27$
$0.07 \quad 3 \quad 6.023$
$\begin{array}{llll}0.34 & 3 & 37.74 & 3 \\ 0.04 & 3 & 0.31 & 3\end{array}$
$0.06 \quad 3 \quad 0.31$
$6.08 \quad 3 \quad 18.42$
$0.42 \quad 3 \quad 0.72 \quad 3$
0.06 2 $\quad 0.52$
$0.48 \quad 3 \quad 3.28$
$\begin{array}{rrr}0.06 & 3 & 4.29\end{array}$
3
$1.63 \mathrm{E}=02$
- 2 JE-04
37E-02
$\mathrm{F}-03$
$\mathrm{E}-04$
2.67E-03
2

C0CE－03	$\begin{gathered} \text { } \begin{array}{c} \text { DR- } \\ 4 . O D E-03 \end{array} \end{gathered}$
2．0000E－03	7．00E－04
2．7759E－02	$1.67 E-03$
3．7000E－03	$5.00 \mathrm{E}-04$
$4 . \mathrm{COCOE}-03$	2．00E－03
$4.6057 E-03$	5．35E－04
1．2243E－01	9．12E－03
1．5810E－01	1．10E－02
$0.6734 \mathrm{E}=03$	1．57E－03
7．0761E－02	$4.46 \mathrm{~F}-03$
1．3528E－O2	1．58E－03
$5.1248 \mathrm{E}=01$	3．65E～02
2．2978E－01	L． $18 \mathrm{E}-02$
3．2106E－01	$1.63 \mathrm{E}=02$
7．3480E－01	3．39E－02
2．5515E－03	2．5SE－03
$5.00550-02$	3．5t， $5-03$
1．5390E－03	7．2＇JE－34
2．6564E－01	1．37E－02
2．4365E－02	2．52E－0．3
1．2785E－01	9．94E－03
2．2934E－03	1－ヘ3E－03
$4.0337 E-02$	3．44E－03
1.800 S	$1.85 E-03$
$1.03^{\text {n }}$	F－03
2．11u．－03	toc it－04
5．2710E－03	1．65E－03
1．2962E－02	2．04E－03
2．6570E－03	2．67E－03
9．1499E－02	8．82E－03
5．4506E－01	2．51E－02
1．5055F－02	$4.02 \mathrm{E}-03$
1．6212E－03	8．29E－04
5．7971E－03	ה． 14 E－04
2．529CE－02	$2.91 \mathrm{~F} \rightarrow 0$
1．8708E－02	3．115－03
4．4061E－03	1．22E－03
2．1267E－03	2．7－03
S．547CE－0？	La4， 03
1．2165E－01	8． $\mathrm{Bat}_{\text {－}}$－03
2．4047E－03	$1.0)^{\text {r－03 }}$

	1	$0 \cdot 0$	E	89＊1	E	$20^{*} 0$	cc－300．5	20－30004＊2	E0－305＊	20－79099＊9	1C－31E＊${ }^{\text {－}}$	ccoszsst＊2
	1	$0 \cdot 0$	E	＊L＇E	E	$21 * 1$	c0－300＊5	$20-30008^{\circ} 2$	E0－305 ${ }^{\circ} \mathrm{\theta}$	20－35249＊5	$10-3 \angle 6$	E0＋3625E＇て
									c0－300\％1	20－30005＊5	$10-300^{-9}$	c0＊39ら」を＊2
			E	CL＇2	ε	$86 * 0$			c0－36 ${ }^{\circ} \mathrm{I}$	E0－3ヶグち6＊	10－3LE＊	E0．3ヶ4Eを＇2
									－0－300＊2	50－3000951	$40=300^{\circ} 9$	
									－0－300\％	c0－30001 2	10－300＊	
			ε	$\rightarrow \square^{*}$	ξ	43＊0			E6－32t－2	20－32206＊	16－376＊	$50+206 \cos ^{2}$
									$20-300 \cdot 5$	C0－300UE S	$0 C+30 c^{-1}$	EC+3E982*2
									$40-309 * 6$	40－3056566	004305＊1	
			て	$56^{* 1}$	2	E200			$40-3+¢^{* *}$	c0－3400て＊	10－325	
	1	$0 \cdot 0$	ε	Ob＇¢	E	$45^{\circ} 0$	¢0－300＊S	20－30008＊	E0－324＊9	10－34tで＊	16－39E ${ }^{\circ}$	C0434102＊
	1	$0 \cdot 0$	E	E6＊${ }^{\circ}$	ε	1000	¢C－700＊S	20－30000＊2	E0－30C＊6	10－32さタ1＊T	1c－38t－4	$5 c+3 \cos z^{\circ} z$
			E	15＊01	ε	$50 \% 3$			E0－389＊5	20－3ET加	10－3 0 － 4	$[C+3 \text { ess2 } 2$
									C0－324＊	EO－3E0て4＂1	00＊354＊I	CC＋30147＊
			2	$00^{\circ} 0$	2	$10^{\circ} 0$			40－38 ${ }^{\circ} \mathrm{C}$	c $0=3842 L^{\circ}$	70－345＊5	CCtz SEz＊
			\boldsymbol{J}	IE 0	2	$10^{\circ} 0$			20－398＊	c0＝36196 ${ }^{\circ}$	10－355 5	cctucbzて＊
	t	$0 \% 0$	E	$10^{\circ} 0$	E	$90^{\circ} 0$	¢0－300＊S	$20-300^{\circ} 2$	E0－320＊	10－35EETVI	10－390＇s	とctき¢0コでを
									E0－3ヶE ${ }^{\text {c }}$		06＊304＝1	Ec＋3S［6t＊
	I	$0 * 0$	E	4\％＂61	E	72＊0	$\Sigma 0=300^{\circ} \mathrm{L}$	20－30006＊	20－365＊2	10－714E0－4	10－390＊4	Ect3t90t ${ }^{\circ}$
1			2	OE＊ 0	2	25＊5			$40-329 * 9$	E0－31659\％1	16－314＊	EC＋3942t＊
\cdots	I	$0 \% 0$	E	98－91	E	10°	20－300＊ 0	20－3000 ${ }^{\circ} \mathrm{E}$	20－3L2＊	$10-37562{ }^{2}$	18－7504	
$\stackrel{\sim}{\sim}$	1	$0^{\circ} 0$	E	$02^{\circ} 01$	§	1E＊	50－300＊ 5	20－3000 ${ }^{-1}$	$50-380{ }^{\circ} \mathrm{H}$	20－36901＊5	16－369 C	EC＊38\％4E＊
\cdots			2	92＊	Z	00%			¢0－j61＊	โJ－30765 ${ }^{\circ}$	80－304\％	ECP 38E2 ${ }^{\text {c }}$
I			E	92＊61	E	10＊0			E0－305＊T	2C－20525＊		$E C * 3 * 560^{\circ}$
	1	$0 \cdot 0$	E	$6 E^{*} 2$	ε	E0＊0	とC－300＊\％	20－30002＊2	$\varepsilon 0-350^{\circ} 1$	20－39年をじ	$1 \mathrm{Ca} 0^{\circ} 9^{*} \mathrm{E}$	$\varepsilon 0^{4} 31980^{\circ} 2$
									$75-360 \% 1$	＋0－2550＊E	リt－3゙0＊9	$E C+36010^{\circ} 2$
	I	$0 \cdot 0$	ε	$54 * 0$	f	$18 * 0$	$[C-300 \cdot 5$	$2 \mathrm{CO}=30 \mathrm{CO} 0^{\circ} \mathrm{T}$	E0－310＊	20－30950－5	$1 \mathrm{c}-319^{*} \mathrm{E}$	EC． $36 \mathrm{Ez} 0^{\circ}$
	I	$0^{\circ} 0$	E	90．0	E	$40 * 3$	［0－303＊	20－30000＊2	20－3ヶ¢＊	10－36さE0＊	16－349\％	
			E	－＊＊	E	Et＇0			20－3GL－z	tG－100をt＊？	10－36E＊	EC－3244＊
	1	$0 * 0$	E	$82 * y 1$	ε	$92^{\circ} 0$	20－303＊1	20－30000＇E	20－3uでを	$10-3>2 E 699$	16－359＊E	cc4 44896 ＊
			2	05＊ 0	χ	12.0			70－35t＊	EO－IEDEL＊E		
	1	$0 \cdot 0$	E	$56^{\circ} 6$	ε	$10^{\circ} 0$	E0－300＊S	20－30006 ${ }^{\circ}$	60－314＇1	20－32くら4＊2	10－30 ${ }^{\circ} \mathrm{E}$	
									$\rightarrow 0-30 t^{\circ} \mathrm{E}$	70－35556＊	10－320＊	
	1	$0^{\circ} 0$	E	4591	E	$42^{*} 0$	cic－300＊＇s	20－30006＊	E0－39E\％	20－3510ヶ＊E	IC－3te＊E	CC4 \＃fectit
									E0－391＊	E0－30600＊E	16－ご0＊「	ECs ${ }^{\text {cgog＊t }}$
	1	$0 \% 0$	$\stackrel{\text { S }}{ }$	－2＊2	ε	5T＊0	EC－300．9	こC－30005＊1	E0－302＊	20－27980＊	10－32E E	ᄃC＊ $759 \% 8^{*}$
	I	$0^{*} 0$	E	$47^{\circ} 0$	ε	$90^{\circ} 0$	CO＝30 ${ }^{\text {c }}$	20－30004＊T	C¢－309＊	$20=20459.1$	$10-3 * 0^{-2}$	$5 c+36206-1$
			E	$5 I^{*} 1$	ε	89＊9			70－3c5＊		$10+30^{* 2}$	EC+3FGxd+i
			7	91＊1	\geqslant	$62^{\circ} 0$			$2 u-3 E t=c$	10－39605 G	10－3゙2＊を	
	1	$0^{\circ} 0$	7	$4 i * 1 i$	4	$02^{\circ} 0$	E0－30r－4	$20-3000 L^{\circ} 2$	c0－35c－9	T0-36ごケ!	T 5 － 30° 2	$\text { EC455 } 27$
				$4 \pi 0$	2	$20 \cdot 2$			$40-36 G^{2} \mathrm{E}$	$60-306 \cos ^{*}$		$55^{-1}+5+2=7$
							-808		－${ }^{\text {？}}$－		＋1：94	
	6	13	L	9	5	4		Σ		$\stackrel{\square}{6}$		1

1．1760¢533	2.
1.	
$1.2105 E 423$	
1.2100563	$4.00 E-01$
1．2390E 23	5.005^{-01}
1．3446E43	
－1．2570E403	4．00E－01
1．2647E） 3	3．23E－51
1．2727E－33	3．23E－31
1.28385673	$7.79 E$
1.29825463	2．39E－01
1．3046E 23	7．97E＊90
1.3165843	E．39E－51
1.33245423	$4.15 E=31$
1．3402E +23	B， 2 CE\＄90
1．3633E＊23	5．78E－71
1．3729E 13	3.
1．3820E633	3.0
1．3431E＊93	2．5才E－01
1．4051E＋33	2．41E－31
．4103E +53	79
． $4161 E+53$	2.
1．4193E653	2．53E－0
1．4274E＊03	3.04
i． $443 \Delta E+93$	3.04
1．4733E＊53	3.0
$1.5041 E+03$	9．76f．00
1．5223E＋53	3
1，5321E＋53	3.508
1．5461E＋J3	3.10
1．54795453	2．31E－51
1．5649E＋53	2．69E－31
$1.5975 \mathrm{~F}+33$	93 E
1．6222E＋93	2.
1．6377E43	2．95E－5
$1.6459 \mathrm{ta3}$	2．85E－01
1．6620E 433	2.97
1．6882E＋33	2.9
1．7CJ2E－53	9.50
1．7091E＊33	3．56E－0
1．7222E＊33	2.9

2	
	－ar－
6．3089E－02	2．87E－03
9．6742E－02	3．75E－03
7．6：35E－03	5．42E－04
3．93675－04	2．20E－04
4．0322E－04	$2.10 \mathrm{E}-04$
2．4282E－01	1．09E－3
1．97905－04	$1.48 E-04$
2．6973E－02	$1.05 \mathrm{~F}-03$
2．80675－02	1．19E－03
5．00GOE－03	3．00E－03
3．7995E－03	7．47E－04
2．0000E－02	1．00E－02
$3.90 \mathrm{pof-03}$	4．04E－04
1．2102E－03	1．37E－04
$5.0000 \mathrm{E}-03$	5．00E－${ }^{\text {¢ }}$ ，
1．12E日E－03	3．6日E－04
$6.3714 E-04$	3．10E－04
6．2152E－04	3－01E－04
1．3180E－01	$9.98 \mathrm{E}-03$
7－2167E－62	$4.01 \mathrm{E}-03$
$4.23 \mathrm{C} 7 \mathrm{E}-04$	2－31E－04
1．3763E－03	3．28E－04
9．3004E－03	9，48E－04
2．9832E－02	2．03E－03
1．8221E－02	1．79E－03
1．0622E－01	$4.81 \mathrm{E}-03$
2．0000E－02	1．00E－02
2．3749E－01	B．98E－03
7．0461E－04	3．50E－04
1．4869E－03	6．39E－04
1．3002E－03	$4.29 E-04$
2．2725E－03	3．77E－04
3．3573E－08	1．46E－02
9．3592F－02	7．57E－03
4．9989E－02	3．2CE－03
9．2016E－04	$4.37 E-04$
1．8924E－01	1．15E－02
9．0700E－02	5．65E－23
Q． 2 4．79E－04	日．25E－04
7．1365E－02	3．88E－03
1．4490E－02	$1.085-03$

3		4	5	6	7	8	9
	＋CR－						
$2.2300 \mathrm{E}-02$	1．06E－33	0.75	5	9.04	4	0.00	2
2．0400E－02	．79E－03	0.35	5	603	4	2.45	2
		0.12	4	4.68	4		
2．4000t－02	2．cOE－03	0.52	4	1.82	4	0.0	1
$\begin{aligned} & 2.1000 E-02 \\ & 2.4000 E-02 \end{aligned}$	2．00E－03	0.18	4	4.23	4	0.0	1
	2．COE－93	0.01	4	0.20	4	0.0	
		2.00	4	2.69	4		
		0.16	4	1.07	4		
		31.50	3	0.14	3		
$\begin{aligned} & 2.8000 E-02 \\ & 2.5000 E-02 \end{aligned}$	$\begin{aligned} & 3.00 E-03 \\ & 2.00 E-33 \end{aligned}$	1．83	2	0.60	2		
		2.03	2	0.49	2		
		2.03	2	0.49	2		
		1.03	4	10.93	4	0.1	1
		0.83	4	0.86	4	0.2	
		3.56	2	0.41	2		
		0.48	3	0.82	3		
	$\begin{aligned} & 3.00 E-03 \\ & 3.00 E-03 \\ & 3.00 E-53 \end{aligned}$	0.94	4	1.23	4		
$\begin{aligned} & 2.6000 E-02 \\ & 2.2000 E-02 \\ & 2.8000 E-02 \end{aligned}$		0.30	4	2.18	4	0.0	111
		0.15	4	2．68	4	C． 0	
		0.11	4	22．38	4	0.0	
3．0000E－02	7．00E－03	0.10	4	7.08	4	0.0	1
		0.87	2	3.20	2		
		3.28	4	8.94	4		
		0.77	4	11.74	4		
		0.80	4	16．80	4		
2．0000E－02	4．00E－03	C．O日	3	1.36	3	0.0	1
1．9000E－02	3．00E－03	0.37	4	9.08	4	0.0	1
1．9CCOE－02	3．00E－03	0.68	3	7.85	3	0.0	1
		1.43	2	0.03	2		
2．4000E－02	4．00E－03	0.41	4	10.90	4	0.0	1
1．9000E－02	3．00E 03	0.64	4	7． 38	4	0.0	1
2．0000E－02	5．00E－03	0.52	4	30．94	4	0.0	1
		0.18	4	C． 64	4		

$26 t-22$
2．00\％ 01
9． $376=-32$
3．cat－3t
，10\％$=01$
CF＝5！
． 145 －
1.28
． 365 －91
3．7TE＝31
1．8354．
1．675－31
1.565
－ 406 cos
，50［－31
1.465031
2， $62 \mathrm{E}=$
．SSE
2．83［－61
$1.73 \mathrm{E}-21$
1．79r－5！
．45te01
3．18E－3！
1．52E01
1．54E－01
$1.535-31$
1．78E－31
3． 78 E－01
1．82E－01
1．02E－01
1．日3E－3：
$4.0 c$
1．00\％－62
$1.93 \mathrm{E}-21$
2．055－31
2．4cE－31
9．01E－51
2．2sE－31
2．29E－0
C，26E－3

－55
5.06435 mos
7． 21255
0.0532 cma
6．96026－c5
5．9536－－23
0.32015005
4．0223 $5-02$
7． $2152 \mathrm{c}-03$
2．6432E074
3．797c5－04
$5 \cdot 0171203$
3． $3903 \mathrm{sc}-0.3$
5.11150045
25540－05
4.5731 EmS
1．9746！ $\mathrm{m}_{5} 56$
4．223be－ct
$5.14655-35$
7．29555－64
3．1131E－23
3．17855－02
3．10354－68
2．9497E－02
$6.9482 \mathrm{E}-04$
6．1385E－03
1．2116e－01
2.69615004
C．i201E－04
3．8114E－02
2．12505－02
2．5359E－04
1．2020E－03
6．3835 $=-04$
1．4007E－03
4.0306 －0．04
6．13005－04
． 3035 －03
1．43915－03
5.93845×0

3		4	3	6	7	0	9
	－ OR －	3.70	4	2.10	6		
$2 \cdot 2612 E=02$	$0.90 t-06$	2.45	9	57.35	9	3.13	5
		1.82	7	5.73	7		
2．4910E－02	3．795－03	0.84	θ	17.20	日	1.27	4
$2.1646 \mathrm{E}-02$	$1.05 E-03$	0.83	9	56.72	9	6.43	5
2．1541E－52	1．39E－33	0.89	B	28.91	B	2.59	4
		0.42	2	5.92	2		
		1.23	6	6.07	6		
1．8594E－02	5．44E－03	1.10	7	23.14	7	0.00	2
$3.5030 ¢-22$	2．50r－37	10．42	7	21.24	7	0.0	1
		3． 82	8	12.04	6		
2．4339E－02	0．43E－04	0.69	A	23．52	A	1．65；	5
2．4305E－02	B．51E－34	0.88	B	14.44	θ	2.85	5
		0.74	6	9.63	6		
$\begin{aligned} & 2.3600 E-02 \\ & 2.2690 E-02 \end{aligned}$	9．34E－34	0.57	8	122．12	8	4.82	5
	1．5AE－34	2.04	8	14．97	\％	2.52	5
		4.58	3	1.25	3		
$2.30 .04 E-02$	1．00E－03	0.39	－	11．39	0	7．24	5
		17.38	3	4.39	3		
		0.71	1	39．49	7		
$2.5372 \mathrm{E}-32$	9．10E－06	0.85	θ	19．59	8	4． 58	5
		4.35	5	4.71	5		
2．3545E－02	9．52E－04	0.23	8	28.28	8	1.62	5
$2.4364 E-92$	$1.38 \mathrm{E}-03$	0， 05	B	3.53	8	5.96	5
		1.60	6	6.61	6		
		0.43	4	2.32	4		
		4.46	6	30.74	6		
		1.69	2	1.93	2		
		1.86	3	7.42	3		
1． $70008-02$	2．COE－ 23	1.30	7	12.22	7	0.0	1
		0.49	6	27.18	6		
1．5000f－92	1．30t－02	0.79	7	23.69	7	0.0	1

 1.9533541 $200959=24$ 3.6605501 $4.5576^{5} 31$
－4．74455 31
－ $5-733$ 55 51 4．35375：37 6.6321541 6.071 内F 51 8．35575 21 8.4318531
－9．597554 1－9552 4 1．16935＋32
＋1．2160E＋32 1．2432E 4 5 $1.4503 E+52$ 1－5240E 42 1．5890F ${ }^{187}$ 1665：9E 63 $1.7310 E+22$ 1．8962E 192
＋2．0230E 52 2.0 草42z＋02
－2．1500E＋52 2．3724E402 2．42076．52
－2．5390E402
－2．5540E +22
－2．5710E＊O？ 2．6377E＊ 2 2．7356E 02
－2．7580E +52
－2．8230E452 2．9091E 02
－2．9500E＊02

 2－745－53 2505－22
 ＊－7コーブッ 54 5～ 5 $5+55-22$
$5+245-32$ 6asgF＝～2 2． 3－625－31 7．735－32 $5.595-32$
 7．845－32 5.215 m 2

 $4.7 ว โ \square 22$ 1． 5 OE－ 31 1．ABE 1 5．67E－32 1．57E－91 1．6RE－31 7．7af－02 1－1．7E－32
 2．59E－01 6．48E－72 2．70E－0 6． $77 \in-52$ 7．59E－02 1． $\mathrm{BOE}-51$ 1．90［－01 $1.90 \mathrm{E}-01$ 7． $746-06$ $7.57 E-02$
．ODE－61 $-10 E-01$ 9．46E－52 2．20E－J1
 $2 \bullet A F-2 n$

 F62376＝96 $\quad 4+13 F=96$

 0．423．6－ず $3.845=00$
 $7.35-2=\mathrm{C}_{6} \quad+3 \mathrm{GE}=04$ 3． $\mathrm{ZCO4E}=22 \quad 3.9 \mathrm{AE}=74$
 2．3072＂－05 1．901－06 0．4767E－04 $2.00 \mathrm{E}=0 \mathrm{~S}$ 3．7046T $=05$ ． 78 （06 1．01805＝05 1．26E＝0 3．1904E－03 2．19E－04 $3.24495-05 \quad 3.765-04$ $1.5435 E-01$－ $50 E=03$ 3．9427E－05 1．60E－05 $4.9696 E-02$ 5．42E－64 3．9692E－05 1．63E－05 2．6653E－02 5．25E＝04 $145417 \mathrm{C}=04$ 1．02E＝05 9．AO8BE－05 3．OOF－05 $6.0457 E=05$ 2． $27 E=05$ 1．9851E－05 1．22F－05 $2.1516 E-04 \quad 1.53 E=05$ 2．4992E－02 5．40E－04 7．9715E＝05 3．56E－05 6．1478E－05 2．63E－05 $1.4979 E-02 \quad 5.09 E \sim 04$ 3．0023E－05 1．69E－35

4．22	\square	7.32	9	40211
0.70	5	Q $0 \cdot 45$	5	
0.54	3	n． 41	\because	
1．3？	0	120\％	13	$11+5$
10.57	0	18．09	9	$\mathrm{n}_{4} 5$
C． 34	$?$	1． 3 ，	2	

$\begin{aligned} & \text { E. } 3 \text { sisof-02 } \\ & 3.1670 c-02 \end{aligned}$	$\begin{aligned} & 7.024-04 \\ & 6.934001 \end{aligned}$	0.13	$\underline{ }$	0.01	2	
		0.63	11	1． 19	11	12．09
		$\mathrm{C}=5$	9	5.513	9	0.0
		0.47	2	7.09	2	
		19．49	7	1.04	7	
2．5703E－02	9．4 3E－04	6.05	12	75.84	12	6． 5.3
$2.3244 E \rightarrow 02$	$0.05 \mathrm{E}-74$	3.92	12	100.67	12	12．42

$1.7992 \mathrm{c}-524-65 \mathrm{E}=5$
$2.3828 E-02 \quad 9.00 E-0$
$2.2330 E-02 \quad 5.22 E-06$

2．3117E－02 7．58F－04
15．57
0.333

7． 3
7.35

$2.3286 E-02$	$6.12 E-04$	7.35	6	6.57	6		0.51

1.128
7.29
$0.88 \quad 5$

CJItwy 3 asplatsoy wioth yad EV

COUUUY

RESOYANEES NAREED NITII A HAVE IURY DIE PUBIISHED MEASUEAENT

Ne cormests on the ovaluation of the unessolved resonance paraneters of U-238
5. G. Sowerty

1. Prelimimary Commenta

Eraluations of uncesolved resonance parametere ara required so that zood caigalaticne can te Elde of self afobldine factors, the doppler temperature coeftecient of reactivity end other reactor paraveters wich ciepend on resonance itructure. Tha aic of these evaluations is to enable a set of resonances to be senerated which tuve a gibilar cistribution of properties as the resonances aciully precent. The gencration of these resonances is done ucing various

 frohicn but there are probably no great inconizizencics. However, because of poat:ble difierencec one should take care in drawine detailed conclusions from comparicones of uncecolved paraceters.
hny evaluation of unrecolved recorance parameters curt have as its Boundation the average waices and distributions of the reconance garaneters ozeerved in the recoived enerey ranec. 'The forma of the variune dictributions arc of course baced on reapnance parameter data from tany different nuclei. The evalutiona are alco eade to be conjactent with rescuremento of the average

 they forpoduso an ovalinted caphupe crosc-section. It is well-krawn that for
 tha neage there is alco unzertainty in their average values.

 fursb:en of tha water.

shown that there is a small amount of sub-threshold fission, which has the characteristic interaediate structure, and this will have to be included in the future.

The distribution functions for widths and spacings have been diecussed extensively in the literature (see for example Lynn [2]) and there is a general concensus that
(1) the level spacing distribution is in good agreement with the Wigner form
(2) the reduced neutron width distribution is a 2 distribution with the number of degrees of freedom () being 1 or 2 depending on whether or not the spin state can be formed for both channel spins $\mathbb{I}+\frac{1}{2}$ and I - $\frac{1}{2}$. (For $=1$ the distribution is of course the PorterThomas distribution).
(3) The total capture widths have a narrow distribution about their mean value (similar to a $A 2$ distribution with V very large) and it is usually assured that the capture width is a constant.

Table 1 lists the main techniques that have bean used to obtain the average resomance parameters used in evaluntions of the unresolved region. A number of assuaptions that have usually been made in the analysis of the results are listcd below
(a) The average level spacing D_{J} is related to the opin J as follows

$$
D_{J}=\frac{D_{0}}{2 J+1} \exp \left(\frac{J[J+1]}{2 \sigma^{2}}\right)
$$

where D_{0} is a constant and 0 is approximately 6.
(b) For a given 1 wave the strength function is assursed to be independent of J.
(c) The value of the radiation width Γ_{Y} is qsamed to be jndependent of J and 1 .

Table 2 gives the average resonance parareters obtained from some typical experiments and analyses. The most atriking difierence is in tho p-wave strength function where the analysis of transmission data gives values thout 60% higher than the other techniques. Howevar, it can also be seen that none of the paraneters, except the effective potential scattering radius, are consistent within $\pm 10 \%$ and this makes it necessary in evaluations for fast reactor purposes to select paramcters which will reproduce the meaaured average capturc crosssection.

Table 3 gives the average unresolved resonance paranteters used in variouo evaluations. There is considerable variation in the values chocen and on the whole they are all consistent with the typical "experimental" values given in Table 2. The calculated average capture cross-sections, which are also given in 2 energy ranges, show a large spread and one would expest significant aiscrepancies in the calculated total cross-sections. There are some good total cross-section data available in this anergy region and it would appear to be sensible to recommend evaluators to take note of these. Parhapa it is also neceseary to repeat these crossusection measurements as it is doairable to have as many checks on the $U-238$ mesonance data as reasonably possible.

It is perhaps now worth considering wint other checks are possible. Firct, trarever, one should note that for reactor calculations one would like checks on the resonance parameter data at various cample temperatures so that the reactor physicists can get improved confidence in calculations of the doppler temperature coefficient of reactivity. In principle they would like to do calculations at temperatures up to $5000^{\circ} \mathrm{K}$, out at the present time there are only data below $\sim 1000^{\circ}$. Two types of measurement have been done which are checks on average resonance parameter data and the changes of thick sample self screening calculations as a function of temperature. The first of these is the measureant of average transmission of neutrons by thick samples and the second is the measurement of the average eelf indication ratio. Measurements of the first type have been done by Jankov et al [13] and of bott. types by Byoun et al [14].

Table 4 gives the reaults obtained by Vankov et al from their data. In considering the results it should be remembered that many of the parameters obtained are effectively the result of analysing the thin and thick sample average tranbiassions at rods temperature. Table 5 gives the test values of Eypun et al for the zwave parameters along with the assumed s-wave data. The data in both tables arc not in particularly good agreement with the evaluated dita given carlier except perhaps for the second set of results of Vankov et a where $\langle\boldsymbol{T}\rangle$ and the average e-wave level spacing are kept constant.

At tne present time calculations are being made at Harwell on these two types of measurements as a preliminary to performing similar experiments. The changes in thicis sample transmission with sanple temperature appear to be minly duo to the increased doppler broadening filling in the minima in the total cross-cection caused by the resonance-potential interference produced by s-wave neutrong. The bigecet effects are produced by the resonances with large r_{n} and the readts are alightly sensitive to the value of r_{Y}. The calculations of the self indication ratio are not complete but in the region below 10 keV the chargea as a function of temperature also appear to be sensitive to the s-wave rather than the p-wave parameters. For instance for a given sec of s and p-wave Γ_{n} values, changing Γ_{γ} for the p-wave resonances by a factor 2 produces negligible changea in the average self indication ratio and its temperature dependence. However, a similar change for the s-mate resonances produces significant changes in both the self indication ratio cad its teaperature dependence. Around 1 keV the changes are mainly associated with the large F_{n} resomances but the gituation appeara more complex at higher energies and calculations are continuing. However, from this discussion it can be seen that these types of experiments should help to improve calculations of the doppler temperature coefficient of reactivity as a large part of the observed changes as a function of cample temperature arise from the large e-wave resonances which are heavily self-screened in a reactor.

3. Conclusions

In conclusion a number of points can ie trade
(3) The aversge resonanco parameters in U-238 are not well known and inproved data are reąuired.
(2) Incufficient checks have been made to date to sue that evaluations fit all the data that ary available.
(3) In the future evalustors ehould check that the resolved and unresolved data on U-238 are consistent with
(a) ave;age capture crose-section data
(b) average total crossesection data
(c) average tranemission data for thick samples (including variation with sample temperature).
(d) average seis indication ratio data and their variation wion tranemission sample temperature.

References

[1] Block R. C., Hackenbury R. Wo, Slovacek R. E., Bean E. B. and Gramer D. So, Phys. Rev. Lett. 31 (1973) 247.
[2] Lynin J. E., The Theory of Neutron Resonance Reactiond, Clarendon Prese, Oxfori (1968).
[3] Rahn F_{*}, Gatarda H. S., Hacken G., Havons W* W. Jnre, iiou H. In, fiainwater J., Slagowitz M. and Wyachants S., Phys. Rev. C 6 (1972) 1354.
[4] Rohr G., Weigmann H. and Winter J., Nuclear Data for Reactors 1, 413.
[5] Corraro G. and Kolar W., CoNF 710301, p. 70 (1971).
[6] Uttley C. A., Newstead C. M. and Diment K. M., Nuclear Data for Reactors 1, 165, IAEA Vienna (1967).
[7] Lyan J. E., Proc. Phys. Soc. 82 (1963) 903.
[8] Moxon M. C., M. Sc. Thesis (1968).
[9] Pitterle T. A. and Durston C., Private Communication (1971).
[10] James M. F., Private Comunication (1974). See also EANDC 90 L.
[11] Schaidt J. J., KFX 120 (1966).
[12] Abagyan L. P., Abramov A. I., Nikolaev M. No, Stavisskii Yu. Yav and Tolstikov V. At, INDC(CCP) $11 / \mathrm{N}$ (1971).
[13] Vankcv A. A., Grigoriev Yu. V., Nikolaev M. N., Fillipov V. V., Boehmer B., Collatz S. and Pickelner L. B., INDC(CCP)-16/L, Fage 49 (1971) also Nuclear Data for Reactors 1, 55\%, IAEA Vienns (1970).
[14] Byoun T. Y., Block B. C. and Semler T., CONF 720901, p. 1115 (1972) ard Private Communication (1974).

Tatin: 1

Motbeds of obtaining data on uncsolved resonance paranaters

	Mathod	Assumptions	Data obtained
	Aralyaio of resoived resorance date	The average values of parameters in the recolved region are the care as the unrasolved regtor, when known energy dependence allowed for	a-wave atrength function (S_{p}) a-wave level apacing and hence D_{0} 〈Tr> for a-mavea seatterind radius R^{\prime} for swaves
	Anelysia of average total crose-secticn data		S_{0} and p and d-wave atrength functions (S_{1} and S_{2}) Dimenslonleas quantitica for Δ and pewaves (R_{0} and $R_{1}{ }^{12}$) thich allows for the offect of dictant lovels The value of R_{0}^{∞} effectivaly gives \boldsymbol{R}^{\prime}
	Analyois of thick sample average transmiceion data	Valued of $t_{0},\left\langle T_{Y}\right\rangle$ So and diatribution of owave noutron widthe are nogumed	S_{1} and R^{\prime}
D	Aralysis of average captime crose meanuremonto	Values of s_{0} and S_{2} aro araumed plus distribution of neutron vidthe	$\begin{aligned} & \frac{\left.T_{y}\right\rangle}{D_{0}} \text { for t-waves } \\ & \frac{\left.T_{Y}\right\rangle}{D_{0}} \text { for p-waves } \\ & s_{1} \\ & \text { The values } \frac{T_{Y},}{D_{0}} \text { for s-waves } \\ & \text { and } S_{1} \text { are strongly corrolated } \end{aligned}$

Mable 2
Uata abtained from typical experiments and analybes

Experiment	Type	smanse level spacing (ev)	s_{0}	eprective potential scaztering radius (fra)	S_{1}	$\left\langle\mathrm{T}_{\gamma}{ }^{\text {m meV }}\right.$	Comment
Fall, et al ${ }^{\text {(3) }}$	A	20.8	$\begin{aligned} & 1.08 \pm \\ & 0.10 \\ & \times 10^{-4} \end{aligned}$	9.6 ± 0.3	$\begin{aligned} & \sim 1.4 \\ & \times 10^{-4} \end{aligned}$	$\begin{gathered} 22.9 \\ +0.5 \text { (stat) } \\ +0.9 \text { (syct) } \end{gathered}$	Amalyeic to divide levels into s and p populations
Rohr et al ${ }^{(4)}$	i					$\begin{array}{r} 24.64 \\ \pm 0.85 \end{array}$	
$\begin{aligned} & \text { Carraro and } \\ & \text { Kolar }{ }^{\text {and }} \end{aligned}$	A	17.8』0.9	$\begin{aligned} & 1.13 \pm \\ & 0.13 \end{aligned}$				Assumes all resonances $<2 \mathrm{keV}$ produced by s-kauc neutrons
Uritay et a ${ }^{(6)}$	B		Arsamed to be $1.0_{1} x$	Assumed to be 9.185	$\begin{array}{r} 2.47+0.16 \\ \times 0.28 \\ \times 10-4 \end{array}$		
Lymi ${ }^{(7)}$	c	nasumed to be 78.0	Aasumee to bs 1.0 10^{-4}	9.185 ± 0.14	$\begin{aligned} & 2.540{ }^{4} \\ & \times 10^{-1} 4^{2} \end{aligned}$	Assumed to be $2 ?$	
Hoxon ${ }^{\text {(8) }}$	D		1.040.3		1.59 ± 0.45		If smave lovel spacing $=20.8 \mathrm{eV}$ $\left\langle\mathrm{T}_{\mathrm{Y}}\right\rangle=23.7 \mathrm{meV}$

2mble 3
Comparicon of Evalutions of unregolved rosonanco parmotors

Evaluation Quatity	ENDF/G III ${ }^{(9)}$	James for UK SDR-GENEX (10) wation	Schoidt ${ }^{(11)}$	Atrgyan et al(12)
5 。	1.05×10^{-4} but varied by up te 15 h balow 10 keV	0.93×10^{-4}	0.90×10^{-4}	0.91×10^{-4}
S_{7}	Variable between $1.337 \times$ 10^{-4} and 1.932×10^{4}	1.58×10^{-4}	2.5×10^{-4}	2.0×10^{-4}
s-wave level spacing	Variable decreabing fron 20 to 18.59 eV fros 4 to 45 keV	22.5 eV	20.8 dV	20.4 eV
p-wavo level apacing $\begin{aligned} & J=1 / 2 \\ & J=3 / 2 \end{aligned}$	An 3-wave Variable decreasing from 10.98 to 10.31 NV from 4 to 45 keV	$\begin{aligned} & 22.5 \mathrm{eV} \\ & 11.25 \mathrm{eV} \end{aligned}$	$\begin{aligned} & 20.8 \mathrm{eV} \\ & 11.4 \mathrm{eV} \end{aligned}$	
$\begin{aligned} & \text { s-wave ecattering } \\ & \text { radius }\left(R^{\prime}\right) \end{aligned}$	$9.784 \times 10^{-13} \mathrm{~cm}$	9.1843×10^{-13}	$9.18 \times 10^{-13} \mathrm{~cm}$	
radius used for calcuiatine penetrability	$8.401 \times 10^{-13} \mathrm{~cm}$	8.3662×10^{-13}	$9.18 \times 10^{-13} \mathrm{~cm}$	
[${ }^{2}$	23.5 moV	23.0 meV	24.8 meV	24.3 mov
Corment	Parameters chosen to reproduce average capture croas-bection	Parameters chosen te give shiselded cross-auctions required to fit reactor meagurements:	Parameters choemen from the typea of experiments ldsted in Table 1	Parameters chosen from resolved reoonance data
```Average calculated capture cross-aection* 5-6 keV 10-20 keV```	$\begin{aligned} & 0.972 \\ & 0.645 \end{aligned}$	$\begin{aligned} & 0.88 b \\ & 0.547 \end{aligned}$	$\begin{aligned} & 1.138 \\ & 0.736 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 0.68 \end{aligned}$

[^0]Table 4
Results of Vankov et al (13)

	All paramaters varied	$\rangle\rangle$ and e-wave level spacing kept constant
$\mathrm{S}_{0}$	$0.90 \bigcirc 0.07) \times 10^{-4}$	$0.89( \pm 0.004) \times 10^{-4}$
$S_{1}$	$1.28( \pm 0.33) \times 10^{-4}$	1.87( $\pm 0.03) \times 10^{-4}$
s-wave level spacing	$25.1 \pm 1.4 \mathrm{eV}$	20.8 eV (fixed)
Effective scaltering radius $R^{\prime}$	$9.232 \times 10^{-13} \mathrm{~cm}$	$9.053 \times 10^{-13} \mathrm{~cm}$
$\nabla_{r}{ }_{r}$	$17.2 \pm 4.6 \mathrm{meV}$	24.8 meV (fixed)

## table 5

Best p-wave data from Byoun et al ${ }^{\text {(14) }}$

	Best Fit Parameters		
	A	B	c
$S_{1}\left(x 10^{-4}\right)$	$1.58+0.1$	$1.94{ }_{-0.1}^{+0.2}$	$2.400_{-0.2}^{+0.2}$
Mean p-wave (eV) level spacing (both spin states)	$11.3+2.0$	$11.3+3.0$	$11.3+3.0$
< $\left.{ }_{\mathbf{Y}}\right\rangle$ p-waves (mel )	47.5 $\pm 8.4$	43.8-11.6	37.0 +9.8
Assumed data effective scattering radius $\mathrm{R}^{\prime}$ (fm)	9.3	9.2	9.0
Radius for penetrability (fm)	8.74	8.74	8.4
$S_{0}\left(x .10^{-4}\right)$		1.0	
s-wave level spacing (ev)		20.7	
$\left.\tau_{r}\right\rangle$ g-waves (meV)		23.0	

# PRELIMINARY RESULTS OF A SHAPE MEASUREMENT UF THE ${ }^{238}$ U CAPTURE CROSS SECTION IN THE NEUTRON ENERGY RANGE $20-600 \mathrm{keV}$ 

R.R. Spencer and F. Kuppeler<br>Kernforschungszentrum Karlsruhe Institut fit Angewandte Kernphysils

Presented at thu specialist's meeting on "Reson=त:=: saramaters of fortile nuclei [ ${ }^{232} \mathrm{Th},{ }^{238} \mathrm{U},{ }^{240} \mathrm{P}$ U] and ${ }^{239} \mathrm{Pu}$ " Saclay, Franco, Nay 20-22, 1974

## !NTRODUCTION

The lack of agreament in the value and shape of the neutron capture cross section of 238 [1-3] suggests that further measurements of this important cross section may be of value. Since all three of the above mintioned experiments were carried out using linac produced neutrors it would seem that a megsurement with the pulsed Van de Graaff making use of the ${ }^{7} \mathrm{Li}[\mathrm{p}, \mathrm{n}]{ }^{7}$ Be reaction for neutron production might provide a degree of experimental independence and in that way resolve previous difficulties. For example, the Van de Graff technique has no interfering yammo-flash and, due to the very fast time-of-flight method employed, background considerations are vary different and less complex than in the previous experiments. Alsa since ${ }^{10}{ }_{B}$ was chasen as a neutron flux manitor in all three linac experiments, it was, decided that the oresent measurements would make use of the very well known ${ }^{235} \mathrm{U}$ fission cross section for this purpose.

The present measurement will be carried out in three separate stages. In the first stage, the results of which are reported here, a strape measurement was made with the 800 liter liquid scintillator tank in the neutron energy region from $20-550 \mathrm{keV}$ relative to the ${ }^{235}$ fission cross section. As an indopendeit check a simultaneous measurament of the ${ }^{197} \mathrm{Au}[\mathrm{n}, \mathrm{J}]$ yield was made. The second stag3 will consist of the calibration of a Moxon-Rae detecfor using a pulsed, monoenergetic neutron beam of 17 meV energy at the Karlisruhe, FR 2 Reactor, and copture samples of both gold and ${ }^{238} \mathrm{U}$. Due to possible difficultios with ih.e small amount of ${ }^{235} \mathrm{U}$ with relatively large fission cross section in the ${ }^{23 B}{ }_{U}$ sample, the gold measur ement may be essential. In the final stage several measurements in the keV neutron energy region will be performed at the pulsed Van de Graaff with this colibrated system using the same samples as in stage two.

The ${ }^{235} \mathrm{U}$ fission detector will be used as a neutron monitor for both the last two stages also. This then will provide the "absolute" capture cross section to be used as a reference for the shope measurement.

The shape measurements were carried out using a thick lithium target to produce a "white" noutron spectrum for energies below about 160 keV and thin lithium targets giving "monachromatic" neutrons at higher energies. A 1 mm thick sample of $99.76 \%$ purity ${ }^{238} \mathrm{U}$, a 1 mm thick gold sample and a carbon samplu for backgraund determination were aycled into the detector ut intervals datermined by the proton beam integrator. Flight paths for all samples were 203.3 cm . A ${ }^{235} U_{\text {, gas scintillation, }}$ fission chamber operated with a flowing mixture of $\mathrm{B} 5 \% \mathrm{Ar}+15 \% \mathrm{~N}_{2}$ wos placed in the collimated neutron seam before the scintillator tank. This chamber was carefully adiussed so that its two ${ }^{235} U$ foils covered the entire beam. The ${ }^{235} U$ was electrosprayed onto thin VYNS backings [4]. Thus both fission fragments were observed in coincidence to discriminate complately against the natural $\boldsymbol{\omega}$-activity of the foils. Flight paths for the two fission foils were 92.15 and 98.75 cm . For the low energy [continuous energy] run the accelerator was pulsed at a 500 kHz repetition rate, whereas for the monochromatic neutron runs a 2.5 MHz rate was used. Capture events were stored in 256 channel [time] by 12 channel [pulse height] arrays and fission events for each sample were stored into 512 time channels. The scintillator tonk is optically divided into quarters $s 0$ thot it was possible to carry out a "Voter" coincidence whereby a routing pulse wes generated if sitmultaneous pulses occurred in any two of the quarters. Both "Voler" and'Non-voter" events were stored separately. This system differs from that used in referenca [3] where halves were run in eoincidence.

The results of these measirements are presented in Figures 1-3 where they are compared to other reported values. In Figure 1 the present results for the ${ }^{238} U$ copture cross section shapar as computed fram the gold reference sampla yield is shown as points with error bars representing counting str istics twhich vary from $\pm 2.7$, , ot love energies to $\pm 0.7 \%$ at high energies].

Figure 1 gives the rosult of the continuous energy rum onily. The gold cross sections of Kortce [5] were used in tive colculations along with the "Veter" yields for both ${ }^{238} \mathrm{U}$ and gold. The spectrum fractions required [data counts divided by total ocpture svents] for
both ${ }^{238} \mathrm{U}$ and gold were derived from an extrupalation of the "Voter "puise height spectra to zero gamina-ray energy below our thi zshold of 2 MeV . Since this exitopolation could conceivably be in error, thus resulting in a systematic error in she calcuidend cross section of perhops $\pm 10 \%$ these resulis should be considered as a shope measurement only.

Using the ${ }^{235} \mathrm{j}$ fission cross section as evaluated by Sowerby, at al., [6] a totully independent result for the ${ }^{238} U$ coptine shope was derived from the ${ }^{238} U$ coppiure yiold and ${ }^{235} \mathrm{U}$ fission chamber counts. These values are shown os horizontal lines in Figure 1 and include corrections for the energy dependences of the spectrum fraction, air scattering batween fission chomber and sampla, and self shielding plus multiple cattering. In order to achieve reasorable statistics in the fission chanber counts, channels were added together corresponding to 10 keV neutron energy intervals up to 100 keV ond 20 keV intervals at higher energies. The resulting relative cross sections were normalized to the average value [ 210.8 mb ] obtained fer the present gold reference 1 result in the region from 90 to 100 keV energy.

The shope calculated in this way is seen to be ir, excellent agreement with the shape obtained with the gold reference. Also shown are the decimal interval averaged results of the experiments of refarences [1-3]. These values were taken from Table VI of reference [3]. It may be seen that the present cross section shopes for ${ }^{238} \mathrm{U}$ copture are in excellent accord with the shape of the reference [3] results [to approx, $1 \%$, show some deviations from that of reference [1] ond agree well with reference [2] ot high energias but show a lorge deviation [12-15 \%] at lower energies.

It should be noted that the total estimated efror for the data of reference [3] are given by the length of the data bar and is somewhat represertative [although not exectly sol of the total errors estimated for the data of references $[1,2]$.

In Fig. 1 a significant fine structure in the ${ }^{238}$ U capture cross section es computed from the gold reference dato wos observed, particularly in the region below 50 keV . Figure 2 is an enliarged plot of mis region shawing the present results and a replot af the


#### Abstract

hiigh resolution results of de Saussaure, , al al, [3]. The latter were averaged over the same energy intervals as the present results. It may be seen that the present results and those of reference [ 2 ? ore in excollent agreement with regard to the fine structure in addition to the overall shope agreement shown previously.


Finally, in Figure 3 is shown a plot of the present results from $E=20$ to 550 kev of the ${ }^{238} \mathrm{U}$ cepture cross section shope isferenced to the ${ }^{235} \mathrm{U}$ fission cross section evaluation of Sowerby et al. [6] ond normalized to the value 210.8 mb at 95 keV . The large gap in the $\mathbf{1 5 0 - 3 0 0 ~ k e V}$ region was caused by the loss of three thin target runs due to electronic difficulties and these runs will be repeated in the near future. For comparison the ovaluated ${ }^{238} \mathrm{U}$ copture cross sectien of ref. [ $\epsilon_{1}$ ] is also shown. The present results mormolized to 210.8 mb of $90-100 \mathrm{keV}$ lie $6-10 \%$ higher than the evaluation in the eegion belew 150 keV .

## CONCLUSIONS

The present measurements show a very good internal onn istency between the gold, ererenced and ${ }^{235} U \widetilde{U}_{f}$ referenced capture cro, section of ${ }^{2} 38$. This is $\boldsymbol{f}$ utmost importance because the gald referenced measurement torally eliminates ony air scattering correction and alss makes negligable any shape dependence on the multipie scattering and self-shielding correction [the lutter correction is viriually the same for the gold ond uronium samples].

The present results represent the first good shape confirmation in recent time-of-flight measuremenis of the ${ }^{238} \mathrm{U}$ copture cross section in the neutron energy region below 100 koV . This agreement strongly suggests that this shope is now quite well determined and that future measuraments should be primarily directed to obtaining an absolute cross section at one or more energies in the keV range. It should be pointed
out that such absolute measurements should be sarried out under conditions of known neutron flux shape, preferably with relatively gord energy resaiution since measurements with wery poor resolution can give significont errors even for a ${ }^{1} / \mathrm{v}$ cross section. The st. ucture obstrved neor 30 keV could enhame this effect.

In conciusion it should be stated clearly that the numerical results of the present experiments which will be of significance are not the crous section values used here to illustrate the fluctuations in shape, rather the sross section satios 238 S capture to ${ }^{235} \mathrm{U}$ fission; ${ }^{238} \mathrm{U}$ cophure to ${ }^{197}$ Au copthre, and ${ }^{197}$ Au copture 10235

U fission. These ratios are currently being derived and will be reparted at a later date in tubular form.

## ACKNOWLEDGEMENT

The authors would like to express their appreciation to A. Ernst, S. Tiose, and D. Roller of the Van de Graaff staff for their difigant operation of the aecelerators ond doto handling facilitios. We also thenk Dr, H. Beer who carried out the computations of self-protection and multiple scattering corrections for the samples used here.

Note Addeci in Proof

It was orought to the abthors＇ateention by Dr．Moxon at this mepting that thore amista a zecent absolute measurement of the capture cross saction by Ryves，at al．，Journ．of tuclear Enorgy，2才 〈1973〉 519．For the neutron energy range $157 \pm 20 \mathrm{keV}$ these authers give $G_{\text {capr．}} f^{238} \mathrm{vj}$ a 162 mb with a scandard deviation of $2.4 \%$ ．Bveraging of our gold referenced daca over this same neutron energy interval yields a value $\sigma_{\text {CAPT }}\left(^{236} \mathrm{U}\right)=159 \pm 0.5$ mb where the erroz accounts for countin3 otatiselcs only．Although this energy region may contain some efeect due to inelastically scattered neutrons being recaptured in the samples（both ${ }^{23 B_{\mathrm{V}}}$ and gold），this effect is not expected to be large． Therefore，the excellent agreqent of the presenc lata with the Ryves resuit would appoar to show that our analysis of the Voter spectrum fractions was valia．

## REFERENCES

# 1.J M.C. MOXON, "The Neutron Copture Cross Sections of ${ }^{238} \mathrm{U}$ in the Energy Region 0.5 to 100 keV ", AERE-R-6074, U.K, Atomic Energy Authority, Harwell [1969]. 

2.] S.J. FRIESENHAHN, et al., "The Nevtron Copture Cross Sectiens of Molybdenun:; Tontalum and 238y", GA 10194, General Atomic [1970].
3.] G. de SAUSSURE, et al., Nuclear Science and Enginoering, 51 [19f3] 385 and ORNL-TM-4059, Oak Ridgo National Laboratory [19731.
4.] J. VERDINGH and K.F. LAUER, Nucl, Inatr. Meth. 21 [18631 161.
5.] D. KOMPE, Nucl. Phys. A $133[19691513$.
6.] M.G. SOWERBY, B.H. PATRICK and D.S. MATHER, AERE-R 7273 U.K. Atamic Energy Authority, Herwall [IC73].

## FIGURE CAPTIONS

Fig. 1:
Present results of the shupe measurement of the ${ }^{238} U$ $[n, \gamma]$ crosi section referenced to $\sigma[n, \gamma]$ for ${ }^{197} \mathrm{Au}$ and to $\sigma_{\text {fission }}$ for ${ }^{235} U$ compared with three other recent time-uf-flightt measurements. Error bars on the 197 Au referenced result demonstrate counting statistics only.

Fig. 2: Comparison of the detailed structure of the present $\left.{ }^{23} 3_{[n, r}\right]$ cross section [referenced to $\sigma_{[n, y]}$ for ${ }^{197}$ Aul with the very high resolution data of reference [3] averaged to give the present energy resolution. Errors bars represent counting stotistics only.

Fig. 3:
Comparison of the present result for the ${ }^{238} \cup[n, \gamma]$ cross section $f$ eferenced to $\mathcal{G}_{\text {fission }}$ for ${ }^{235} \mathrm{U}$ and normalized to 210.8 mb at $95 \pm 5 \mathrm{keV}]$ with the evaluation of ref. [6].




# EECEMT MEASURXGNTS ON 238 U AT ORNL <br> G. Ie Saussure <br> Dak Ridge Nactonal Laboratory <br> Oak Ridge, Tenneszee 

In 1972, Perez, silver and I completed a aeries of meamurnents of the capture crose section of $\mathrm{J}-238$ in the range 5 eV to 100 keV , uning a large 1iquid eintillator. These measurements have been discussed in detail in ORNL-TM4059 and in Nuct. Sct. and Eng.
fie bave comparid our data to the two previous sets of data obeained by the timeof-finjot technique, those of Moxon (Hazweil) and Friesenhahn et al. (G.G.A.). The three ants of data thow ayatematic diacrepancles vilich are larger than the known uncertainties of the measuresents.

To attempt to renolve these diecrepaneles, Perez, Kackin, Ralperin and I have started a new apries of meagureente with a detector entirely difiercat from thet used In 1972. We hope that comparison of the regults obtained betreen the two diffcrent ayctcmerill help In identifying the reasona for the discrepancies.

Le heme not fet resuced the data obtained in thi leat revies of meanarements to the point where wican gig with which previoun menaresent they agree, if any.

I ohall briafly describe the experimental techniquea used in the two gerien of ORI measuremente, then $I$ will diecuan bose of our 72 results, in the resolved range.

Fig. 1 (68-10a73R) shows the large 1iquid eciatiliatar detector. It conta as
 An mivilnized myler foil, not show, saparsea the tank in two halves. Coincidence aignala betwen thse two halven and inglet are atored meparately. The $\mathrm{U}-238$
sumple, a diak of about 8-cm diamster, van placed in the center of the tank end decoupled fron the scintillatar by a ${ }^{5}$ Lif Ifner, 2.5 cm thick.

He atored separately the coincidences and singles as well as two pulatheigbt groupg, but we did not observe bigulficant gyetesntic cohnges in the ratio of coincidences to singles or in the 1 B distribution, either wth energy, or from level to level in the renolved range.

Fig. 2 ( $69-1344 \mathrm{R}$ ) 11lustrate that the aigal to background ratio ie about eight times better in the coincidemces than in the singlea and that the ratio of singles to coincidences renains conatant from legel to level, within our accuracy of approximately 5\%.

Fig. 3 (70-11350) illuatraten how the background was determined. The level of the background is obtained in the notchee of a oet of resonance filterg. Inbetween these notches the ohape of the background is obtained from an where the usanium is reploced by lead (with minor corrections for the capture In lead). This background shape is motly detemoned by the lifetime of the scattered neutrons in the tank and ia not a eensitive function of the shickness of 1ead uard,

From the wus with the notch filters ve deternined the net counte per Incident neutron away from the notebes. From a second aet of runs without notch filterf ue then obtain the net count rate over the regions with notehes.

Fig. 4 (70-7209) 11lustrates the incident neutron spectrm with and whout the notch filters. Thia apectrum was measured with a $\mathrm{BF}_{3}$ fonization chamber and with a 1 -gm thick ${ }^{6}{ }^{2} 1$ glase. The wo measuremente agreed within 3\% over decimal intervals up to 100 keV . The structure above 20 keV is caused by the filtering of the beam by a $20-\mathrm{mm}$ aluminum housing sutrounding the OREL moderator. This houaing was later replaced by beryllium and the opectrum became mach onoother. The neutron spectim decreases ac low energieg due to e ${ }^{10}$ overlap filter.

『1g. 5 (71-2354RZ) illustrates the moralization of the data by the oaturated rcsonance techoique. The solid line vas obtained by a Monte Corlo calculation, which is ingensitive to tho exact value of the resonance parameters. It is difficult to see how this normalizsiion could be in error by mare than $2 \%$.

In order to obtain average capture crosa aections, the data must be corrected for multiple seattering and reaonance aelf-shieiding, hbove 4 kev this correction is less than $4 \boldsymbol{i}$ for the two sample thicknesseg uad and we have evaluated it by a method due to Dresner and coded by R. L. Mackiln. Below 4 kev and particularly over the 100 eV wide intervisla, the statiseleal approach breaks down and we heve used the ENDF/B-III resonance parameters (which are in fair agreement with our data) to compute the RSP and MS corrections by a Honte Cario tecbniqus. For the thicin sauples used in the meatrement (.0028 at/b) the correction becomes as large as 300\%; for the thin atmple (. 0004 at $/ b$ ) it is sivagn araller than $40 \%$.

Bafore discuping discrepancfen between mensurements like to debcribe briffiy the detector used in our new aerien of measurements. This detector ras denigned by Hacklia and it illuetrated in Fig. 6 (69-14021).

The rectangular ample, perpendicular to the neutron beam, is placed betwata pair of non-hydrogeneou scintilletor cells (RE-226) viewed by photombipliers. On 1ine pulae-hefght weighting ingures that the capture detection efficioncy iv independent of miciplicity and function only of the cotal ebersy releacisd (binoing energy). The $\mathrm{EF}_{3}$ and proton recoil montora shown in the figure beva now been repleced by a .5-m ${ }^{6}$ Li glasa montor. The normilzation If don by the saturated remonance tachaique. The seattering background is obtained by repleaing the uranium saple by a lead aaple and is norasifzed to the min mus by tha ratio of the montior counte.

Turning now to the discrepancien enong mensurements, $\mathrm{PH}, 7$ (72-12634R) illuatrates three data sets averaged ovar decinal interval in the range . 5 - 100 keV. Our data agree, more or lews within errors, with Moxon's up to 10 keV and uith Friegenhah's above 50 keV. Fron 10 to 50 the three aets of data are inconsistent and orer most of the range .5-100 keV at least one aet of data is incrindstent with the otherg. Hote also that in thn interval 9 to 1 kev our capture is $25 \%$ larger than that of Moxon.

In Fig. 8 (72-12954) we corspare our data averaged over 50 eV interyala (solid line) with date obtained wth Van de Granffie and other monomergete sources. Within the rather large unceztaintien of there earlier datif, and the large fluctantion of the crose section, the various sets of date ere consistent with ours. Erobably a comparison of'the recent time-of-filght data on acale that shows thege fluctuations could help in identifying sources of discrepanciea such as errors in energy acale or in background.

Fig. 9 (72-12306) 111untriste a competson betwen our resulta and a calculation baged on EWF/B-III. The diacrepancies are montly in the area and peak vulues of particular levels, guch as thoge near 1100 eV and apme small level at loner energles. In the range .9 to 1 keV our value of the average cepture ia $27 \mathrm{bev}^{1 / 2}$ higher than that of Moxon. The figure aeems to rule out. that the diecrepancy could be due to an under-estimate of the background.

Fig. 10 (73-3649) and 11 (73-4917) thow comparincns betwecn our data and celculetione baned on the neutron widthe publiahed by Carrare. Again our data indicate more capture than predictad by the resonance parameters; and the dincrepancy If not aysteantic but conceltrated on fow lavels.

In conclusion, we are still puzzled by the diacreapncies between different seaourements. We are attempting to better identify the source of these discrepanciea by gew measurementa uaing different techniques and followed by detall comarisons of the date from the differeat measurementa. We shall alao ahortly do some trabamiasion experimencs and analyze our low enexgy data for resonamee parabeters.





ORNL DWG 69-14021


ORELA Neutron Capture Cross Section Experiment (FP 7, 40m)




Shape of Background-Meosured with o 0.003-in. Pb Sample.



# AN EVALUATION OF ${ }^{240}$ pu RESONANCE PARAMETERS 

H. Weigmann and G. Rohr CBNM, Euratom, Gcel, Belgium
and

F. Pourtmans<br>SCK/CEN, Mol, Belgìum<br>n

ABSTRACT
The status of data on ${ }^{240} \mathrm{Pu}_{\mathrm{u}}$ resonance parameters is reviewed. Some statistical tests are performed on the data and recommendations are given, particularly with respect to the average parameters.

There have been several extensive evaluations of the meutron crossmsections of ${ }^{240} \mathrm{Pu}_{\mathrm{u}}$, including its resonance parameters ${ }^{\mathbf{1}}{ }^{-3}$ ). Since the most recent one ${ }^{3 \text { ) }}$ had appeared, there have been important changes in the experimental data, particularly what concerns the parameters of resolved resonances ${ }^{4,5}$ ) and new data have become available ${ }^{6)}$. In the following we will give a survey of the present status of our knowledge about the resonance parameters and some related properties of crosswsections of ${ }^{240}$ Pu: In section II we will discuss the cross-sections in the thermal region and the parameters of the first strong resonance at 1.056 eV neutron energy; in section III we will compare the available data on the parameters of resolved resonances and discuss, in section IV, their statistical properties; finally, in section $V$, some information on average resonance parameters will be obtained from the cross-sections in the unresolved resonance region.

IL. Cross-sections in the thermal energy range and parameters of
the first resonance at 1.056 eV
Various evaluations have been made for the resonance parameters of the first resonance. These evaluations were based on results of transmission measurements in this resonance, performed with crystal spectrometers or fast choppers in the period 1955-1959. In general, the parameters were adjusted in order to get a thermal cross-section value consistant with the measured results.

In the last evaluation done by LHeriteau and Ribon ${ }^{3)}$; the following parameters are recommended:

$$
E_{0}=1.056 \pm 0.002 \mathrm{eV} \quad \Gamma_{n}=2.30 \pm 0.15 \mathrm{meV} \quad \Gamma_{Y}=32.2 \pm 2 \mathrm{meV}
$$

The value of $\Gamma_{Y}$ has been adjusted to get a thermal capture cross section $\sigma_{c} 2200=281 \pm 5$ barns.

Since 1970, two new measurements have been performed:

1) Ramakrishna and Navalkar ${ }^{7}$ ) did transmission measurements in the first resonance using a crystal spectrometer and obtained the following results:
from a shape analysis:

$$
r_{\gamma}=28.8 \pm 3 \mathrm{meV} \quad r_{n}=2.18 \pm 0.1 \mathrm{meV}
$$

from an area analysis:

$$
\Gamma_{Y}=28.7 \pm 2 \mathrm{meV} \quad \Gamma_{\mathrm{n}}=2.15 \pm 0.10 \mathrm{meV}
$$

These results disagree with the previously published values and are inconsistent with a thermal cross-section value $\sigma_{Y}=281$ barns. It must be noted however that their experiments were performed with a very bac neutron energy resoIution and with a sample containing only $9.24 \%$ of ${ }^{240} \mathrm{Pu}$.
2) Lounsbury et al. ${ }^{8)}$ have obtained a very precise value for the thermal capture cross-sections:

$$
\sigma_{c}=289.5 \pm 1.4 \mathrm{~b} .
$$

i. e. atout $3 \%$ higher than the value to which the parameters of the first resonance bad been adjusted in rei. ${ }^{3)}$. Ont the other hand, we estimate a contribution of hout 2 barns to the the: mal cross-section from the higher energy resonances. Allowing for a similar contribution from bound states as well, we estimate that the 1.056 eV resonance may contribute about 286 barns to the thermal cross-section. Thus we adjust the parameter: of the first resonance to

$$
E_{0}=1.056 \pm 0.002 \mathrm{eV} \quad \Gamma_{n}=2.34 \pm 0.15 \mathrm{meV} \quad \Gamma_{Y}=32.2 \pm 2 \mathrm{meV}
$$

III. Parameters of resolved resonances
a) General

As lar as the parameter: of resolved resonamesa are concerned, the evaluation of L'Heriteau and Ribon ${ }^{3)}$ was based on two sets
of data available in 1970, from measurements at Geel and Har well. The Geel data included a measurement ${ }^{9}$ ) of the total cross section up to $5,7 \mathrm{keV}$ neutron energy and measurements of the 10) and, for a few resonances, elastic scattering cross capture 11 and, for a few resonances, elastic scattering cross
section 11 , up to 820 eV . The Harwell data ${ }^{12 \text { ) include all three }}$ types of measurements too, but go up to only 1 keV neutron energy, also for the total crosesection, and resonance parameters were available only up to 287 eV . In both cases, the capture data were normalized to the capture rate at the 20 eV ressnance. The two data sets showed internal inconsistancies and systematic discrepancies which were extensively discussed in ref. ${ }^{3)}$. More recently, it has been shown ${ }^{4)}$ that essentially all of the difficulties were due to wrong parameters used in ref. 10), 12) for the 20 eV normalization resonance. New, very careful measurements of this resonance performed at Harwell ${ }^{\text {4) }}$ which apply normalization to the capture rate at the 1.056 eV resonance, yielded $\Gamma_{n}=2.65 \mathrm{meV}$ and $\Gamma_{\gamma}=32.2 \mathrm{meV}$ for the 20 eV resonance, i. e. larger than assumed before by $29 \%$ and $58 \%$, respectively. Both, the Harwell and Geel capture data have been re-analysed with the improved normalization due to these parameters, and the renormalized Geel set has been published ${ }^{5)}$. Already before, a new set of resonance parameters from total and capture cross section measurements at RPI had been published ${ }^{6)}$. In this case, the capture data were normalized by compariton of the measured capture area of the 92.5 eV resonance to the area calculated with the aid of the resone ace paramaters as obtained from the simultaneous transmission experiment. This normalization was checked to another one based on the 20 eV resonance and a cross normalization to Au.
The parameters of ${ }^{240} \mathrm{Pu}$ resonancea up to 665 eV neutron energies as given by these threc experiments are listed in fable 1. Oniy the neutron widths from the Geel tranamission data extend auove this snergy (up to 5.7 keV ).
b) Neutron widths

By far the most extengive set of neution widths of ${ }^{240} \mathrm{Pu}$ reso nances is due te the total cross-section data from Geel ${ }^{9}$ ).
In this set, the values obtained for a few strong resonances at very low neutron energies were influenced by the low value assumed for $\Gamma_{Y}$. These resonances have therefore been re-analysed and the results are given in table 2.

Table 2: Results from a re-analyois of the Geel transmission data ${ }^{9}$ )

Resonance energy $(\mathrm{eV})$	Neutron width (meV)
$(20.45)$	$(2.65 \pm 0.07)$
38.32	$17.0 \pm 1.0$
41.62	$155 \pm 1.0$
66.62	$52.0 \pm 2.0$
72.78	$21.0 \pm 3.0$
105.00	$43.0 \pm 2.0$
121.6	$14.5 \pm 1.0$
287.1	132
405.0	108
665.1	

For the 20 eV resonance, we have adopted the Ha-vill-value ${ }^{4)}$. With two exceptions, the above Improved neutron widths are identical to those given in ref. ${ }^{5)}$ as resulting from a combined ana. lysis of the Geel transmission, capture and scattering data; the two exceptions are the very strong resonance at 66.62 eV and. 287.1 eV , where the scattering data are probably less accurate
 menta applied, the neutron widths of ref. " - in the ramge of overlap, i. e. below 500 eV neutron energy, th. 'ery good agreement with the two other sets. We finally recommend the revised Geei set of neutron widths becsule of the following reasons:
Firat of all, the Geel tranamission measurements are by fat the most extensive ones, both with respect to the energy range cove-red as well as with respect to the number of individual runs with
differęnt sample thicknessess, Secondly, in combining this set with the set of recommended $\Gamma_{\gamma}$-values of the next paragraph, one obtains a set $\alpha f$ quantities $I_{n} \Gamma_{\gamma} / \Gamma$; they may be compared to the corresponding quantifies from the three different laboratories: For all of the 6 resonances where $\Gamma_{Y}$ is given by all three iaboratories, the "recommended": $\Gamma_{n} \Gamma_{\gamma}{ }_{\gamma}$ differs from the ave rage over the three individual values by less than $1 \%$. Finally, the differençe between the three sets of neutron widthe are usually very small, with in mast cases the Geel valualying in between the two others. Remarkable differences accur egsentially for refonancc $£$ which are either particularly large or particularly small; but it is in these cases.that męasurements with strongly diffezent sample thicknesses are most important.

The recommended neutrons widths are listed in table 3.
c) Radiative widths

There are three extended sets of radiative widths for ${ }^{240}$ Pu reso nances, from the measurements at $K P I$ 6), and the renormalized sets from Harwell ${ }^{4)}$ and Geel ${ }^{5)}$. They differ systematically, in the sense that the Geel values are on the average, about $8 \%$ larger than those of RPI, with the Harwell data lying in between, although the difference is ingide the combined experimental errora which are mainly due to normalization uncertainties. In all cases, the radiative widths have essentially been obtained from combining the capture cross-section measurement with a' transmission experiment which prectically determines the neutron widthe. Under this circumatance and as long as not always $\Gamma_{n}>\Gamma_{Y}$ an error ir the normalization of the capture medsurament which is an error on the quantitied $\Gamma_{n} \Gamma_{\gamma} / \Gamma$. causes an error on $\Gamma_{\gamma}$ which is the larger, the smaller $\Gamma_{n}$ * Al\$0, a syetematic error in the transmission measurement ( $\Gamma_{n}$-values) has a similar effect.
Thereiore, the correlation coefficients, corr $\left\{\Gamma_{n}, \Gamma_{\gamma}\right\}$ between neutron and radiative widths have been calculated for the three
sets of data, and are given below:

Laboratory	RPI	Harwell	Geel
$\operatorname{corr}\left\{\Gamma_{n} \Gamma_{y}\right\}$	$0.35 \pm 0.23$	$-0.07 \pm 0.25$	$-0.13 \pm 0.26$

Principally, a positive correlation between neutron and radiative widths could also arise from an insufficient treatment of multiple scattering corrections or a sensitivity of the capture $\gamma$-ray detector for scattered neutrons. However, for the case of ${ }^{240} \mathrm{P}_{u}$ we exclude this possibility, because the same methode as used in ref. 6) have successfully been applied by the same authors to much more critical cases (larger ratios $\Gamma_{n} / \Gamma_{Y}$ ) like structural materials. Although they are at the limit of being significant, the above correlation coefficients indicate that for the RPI (Geel) data set the radiative widths are the smaller (larger), the smaller $\Gamma_{n}$ " According to the above diacussion, this may be explained by a too low (too high) normalizetion of the capture cross-section data (however, a mentioned above, it might also be due to systematic erfors in the transmiscion data). In fact, comparing values of $I_{n} F_{V} / F$ from the threc differenflaboratories, it turns out that the Gecl values are, on the average, $3 \%$ higher than those from RPI, with again the Harwell ones lying in between. All of this would explain the syatematic difference in the three sets of radiative widths and indicate that the correct values should lie in between the two extreme ones.

One may further ask the question whether the scatter of individual $\Gamma_{\gamma}$-valuea around their average as observed in the experimental data, is physically real, or jugt an exprestion of the experimental uncertainties. To answer this question, we have calculated the
correlation coefficients $\operatorname{cor} \boldsymbol{r}\left\{\Gamma_{\gamma}(1), \Gamma_{\gamma}(2)\right\}$, where (1) and (2) stand for any two of the three data sets:

$(1)-(2)$	RPI-Geel	Harwell-Geel	RPI-Harwoll
$\operatorname{corr}\left\{\Gamma_{Y}(1)_{i} \Gamma_{\gamma}(2)\right\}$	$0.45 \pm 0.28$	$0.44 \pm 0.31$	$-0.17 \pm 0.29$

At first .aght, the situation seems confusing. However, one has to recognize that the three correlation coefficients are calculated from different subsets of the data corresponding to different energy intervals. The fact that for two out of the three combinations the correlation coefficient is positive, seems to indicate, to our opinion, that most of the scatter may be regarded as physically real.

In table 3 we give a final set of recommended radiative widths, They have been obtained in the following way: First of all, each individual get of radiative widthe has heen repormalized by multiplication with a factor $f=30.6 \mathrm{meV} / \bar{\Gamma}_{\gamma}$, where $\vec{\Gamma}_{\gamma}$ is the average radiative width as given by the respective laboratory (see next section) and the value of 30.6 meV is the average of the thi ee $\bar{\Gamma}_{\gamma}$-values. Then, for resonances where more than one $\Gamma_{Y}$-value is available, the average of these is taken.
d) Fission widths

The fission widths of ${ }^{240} \mathrm{Pu}_{\mathrm{P}}$ resonances are characterized by the well-known intermediate structure. Many intermediate structure peaks have been observed, hut only in the first one at $\sim 780 \mathrm{eV}$ neutron energy the experimental resolution of the data of ref. ${ }^{13)}$ is surficient to unambiguously determine the fission widils of the individual resonances. They rea included as recommended values in table 3. An analysis of this intermediate structure group vith the maximum likelifiood method described in ref. ${ }^{14)}$ yields the parameters

$$
\left.E_{I I}=778 \mathrm{eV} \quad \Gamma^{\dagger}=12.5 \mathrm{eV} \quad \Gamma^{\prime}=0.16 \mathrm{eV} \text { (aseumirg } \Gamma^{\dagger} \partial \Gamma^{\prime}\right\}
$$

in reasonable agreement with more rough estimates made before.

Besides of the resonances witnin the 780 eV intermediate structure peak, individual fission widths are known for the first three resonances. The fission widths recommended in ref. ${ }^{1,3)}$ for the 20.46 eV and 38.32 eV resonances have io be changed, because they are based on measured ratios $\Gamma_{\gamma} / \Gamma_{f}$ and a low insumed value of $\Gamma_{Y}$. The revized values are also ineluded in table 3.
IV. Average Resonance Parameters and Statistical Properties
a) L evel spacing and s-wave strength function

Following ref. ${ }^{9}$, in the discussion of statistical properties of neutron widths we limit ourselves to the neutron energies from thermal to $!.5 \mathrm{keV}$, because in this range the number of missed leveld is still small, The distribution of experimental neutron
 as s-wave.
Application of a missed level analysis using a Fortran program elmilar to that as hos been used by Fuketa and Harvey ${ }^{15)}$, which takes into account the experimental bias $\left(\delta=4.1 \cdot 10^{-9} \mathrm{E}^{1.4}\right)$ for the detection of weak resonances, yjelds the following parameters which we recommend:

$$
D(1=0)=(12.7 \pm 0.3) \mathrm{eV} ; \quad s_{0}=(1.04+0.14) \cdot 10^{-4}
$$

The error on $S_{D}$ is obtained according to the prescriptions of Liou and Rainwater ${ }^{17)}$, whereaa the error on $D(l=0)$ includes an estimate of the uncertainty in determining the number of missed leveis ( $\pm 2$ out of 117 ).
The values given here differ alightly from those of ref. ${ }^{3 \text { ) }}$; for $\mathbf{D}\langle\mathrm{I}=0)$ thim is due to the different method of analysis, whereas the difference in $S_{o}$ is due to the changes in the neutron widths for a few low fnergy resonances a diacuased in section Ill b.
b) Average radiative widthe

For the average raciative widtha, thereare 3 experimental
values. Additionally, astatigtical model estimate is given in
ref. ${ }^{16)}$. These data are compared in table 4.
Table 4: Average radiative widthe for ${ }^{240} \mathrm{Pu}$ resonances

Laboratory	Source	$\bar{F}_{\gamma}$ (mev)	Quoted error   $\%$
RPI 6)	experiment	29.5	5
Harwell ${ }^{4}$ )	experiment	30.2	not given
Geel 5)	experiment	32	8
Geel ${ }^{\text {16 }}$	stat.model	32	25

The (small) difference between the experimental values has been discussed in section III c); from this discussion, we expect the true value to lie approximately half way between the extreme figures and finally recommend the average of the individual recommended radiative widtbs of table 3:

$$
\left\langle\Gamma_{Y}\right\rangle=(30.8 \pm 1) \mathrm{meV}
$$

c) Fis sion widths

The problem of the statistical properties of the fission width of ${ }^{240} \mathrm{Pu}$ is more complex than that of neutron and radiative widths.

First of all, one has the intermediate structure peaks. For the average parametcrs characterizing their properties, only rough estimatea may be given. From ref. ${ }^{6,13 \text { ) }}$ we estimate the average spacing of the intermediate structure groups to be

$$
D_{11}=(650 \pm 100) \mathrm{eV}
$$

For the parameter: $\Gamma^{\dagger}$ and $\Gamma^{\dagger}$ (again we assume $\Gamma^{\dagger} \gg \Gamma^{\dagger}$ ), we have the figures obtained above for the 780 eV group and some further, although less precise, information from the groups at 1405 eV and 1920 eV . Taking into account the bias introduced in determining the expectation value of a PorterThomaf diatrijution from a omall number (3) of individual quantities ${ }^{17 \text { ), we adopt ae averages }}$

$$
\bar{\Gamma}^{\dagger}=30 \mathrm{eV} \quad \text { and } \quad \bar{\Gamma}^{1}=0.16 \mathrm{eV}
$$

For an estimate of the average (over all resonances) of the figsion width, we have to take into account two contributions: 1) the "background" fission width due to tunneling through both peates of the double-humped fission barrier without amplification by any class II state, and 2) the average fission width obtained if the fission strength within the intermediate gtructure groups is thought to be smeared out over all resonances; the latter contribution is a meaningful quantity only at higher energies where the gosition of internediate structures is no longer of practical importance.

1) The "background" fission width may be estimated as

$$
r_{f}(\text { backgr. })=\frac{D_{1}}{2 \pi} p_{, \lambda, i n}^{(2)}
$$

where $P_{m i n}^{(2)}$ is the minimum transmission through the double humped barrier which according to Ignatyak et al. ${ }^{18)}$ is given by

$$
P_{\min }^{(2)}=\frac{1}{4} P_{A} P_{B}
$$

and the transmission factors $P_{A}$ and $P_{B}$ through the first and second barrier may be obtained from the above quantities $r^{\prime}$ and $\Gamma^{\prime}$ according to $\left.\bar{\Gamma} 1=\frac{D_{11}}{2 \pi} P_{A^{\prime}} \bar{\Gamma} \right\rvert\,=\frac{D_{I I}}{2 \pi} P_{B^{\prime}}$; with the above figures we get $\Gamma_{i}$ (backgr.) $=0.23 \mathrm{meV}$ in rough agreement with the cxperimental fistion width of the resonances at 20.46 eV and 30.32 eV . The fact that the fiasion width of the 1, 056 eV resonance is so muci. menaller, may be explained as being due to Porter-Thomas fluctuations.
2) The second of the above contributions to the average fission width would s:mply be given by

$$
\overline{\Gamma_{I}}(\mathrm{i}, \mathrm{s.})=\bar{\Gamma}^{1} \frac{D_{I}}{D_{I I}}=3.1 \mathrm{meV}
$$

Altogether

$$
\vec{F}_{f}=\Gamma_{f}(\text { backgr. })+\vec{\Gamma}_{f}(i, s .)=3,3 \text { meV at low energies, }
$$ where both terms contain $P_{A}$ and thus increase with energy approximately as exp $\left(6 \mathrm{MeV}^{-1}\right.$. E) ( $\Gamma_{f}($ backgr.) also contains $P_{B^{\prime}}$ but as it cantributes only little to $\bar{\Gamma}_{f}$, we neglect its variation with $\left.P_{B}\right)^{\text {. }}$

Thus, at $25 \mathrm{keV} \overline{\Gamma_{f}}=3 . \mathrm{gmeV}$, at $100 \mathrm{keV} \overline{\Gamma_{f}}=6.0 \mathrm{meV}$ i. e. smaller than $r_{Y}$ by a factor of 8.1 and 5.1 , reapectively. Assuming no corrclations between fission and neutron widths, this average fission width would lead to an average fission cross-section which is smaller than the average capture cross section by roughly the aame factors. Actually in the case $I^{*}>I^{\prime}$ there im a third contribution to the average fission cross-aection which is due to the direct population of the clas iI states and which is not cantained in the above estimate. This contribution is however, only of the order ofl $\boldsymbol{I}$. The asqumption of no cortelation which is equivalent to the asaumption that $\Gamma^{\prime} \gg \Gamma^{\prime}$, is not assured (for a more detailed discussion see
 lation between fission and neutron widthe is to be expected which could eadily reduce the average fission cross-section by a factor of 2 againot the above estimate. All of the rest of the above discussion remains valid also in the case $\Gamma^{\prime} \times \Gamma^{\prime}$, with only $\boldsymbol{I}^{\prime}$ and $P_{A}$ interchanged with $\Gamma^{\dagger}$ and $P_{B^{\prime \prime}}$ respectively. Experimentally ${ }^{6)}$, the average fistion crass-section is approximately $20 \%$ of the capture cross-stection in the region from 20 to 30 keV , i. c. even larger, by a factor of 1.6 than the first eatimate. This could mean an additional support for tho assumption $\Gamma \dagger \gg \boldsymbol{I}$ in ${ }^{240} P_{u}$.
V. Data from the unresolved resonance region and p-wave
ctrength function
There have been several approaches to a calculation of the average sroos-sections of ${ }^{240} \mathrm{Pu}$ in the unresolved resonance region from resonance parameters. Prince ${ }^{20}$, Yiftah et al. ${ }^{21)}$ as well as Caner and Yiftah ${ }^{2}$ ) have employed the optical model and HauserFeshbach calculations to determine average cross-sections; here, resonance parameteris which could not be determined from resolved resonance data, a the p-wave sirength function, were obtained from the optical model. On the other hand, Dyos ${ }^{22\}}$ has used the method of Monte-Carlo generation of ladders of resonances to determine the average cross-sections. In all these cases, the calculations aimed in predicting the cross-sections on which no experi* ental information was available. To day, essentially the only experimental data on average crosy-sections in the $k v$ region are those of Hockenbury et al. ${ }^{6)}$. These authors compare their average capture data to the calculations of Yiftah ot al 21) and of Dyos ${ }^{22}$ as well as to an own calculation on the basis of the isolated resonance approximation of the statistical model, As the results of this last calculatic 2 depend on asempmions made about the correction fuctor for width fluctuations (no information is given on this point), we have repeated a Dyos-type analysis in order to determine the $p$-wave strength function from a comparison to the experimental data of Heckenbury et al.
In sit analysis the average capture crosa-section is given by

$$
\begin{aligned}
& \bar{\pi}_{n y}=\frac{1}{4 E} 2 \pi^{2}\left(1+\frac{1}{A}\right)^{2} \Gamma_{i} k_{i}^{2} g_{i} \frac{\Gamma_{n i} \Gamma_{\nu i}}{\Gamma_{i}} \quad \Gamma_{n i}=r_{n i}^{(1)}(J)_{y_{i}}\left(E_{i}\right) \sqrt{E_{i}}
\end{aligned}
$$

where $R=9.1 \cdot 10^{-13} \mathrm{~cm}$ and the $\Gamma_{n i}^{(I)}(\mathrm{J})$ are ampled from Porter Thomas distributions with the average $\vec{\Gamma}_{n}^{(1)}(J)=S_{1} \cdot D(J)$, and the position of resonances are eampled from Wigner distributions

$$
D(J)=\frac{D_{o}}{2 J+1}\left(\frac{U+E}{U}\right)^{5 / 4} \exp \{\sqrt{a}(\sqrt{U+E} \cdot \sqrt{U})\} \exp \left\{\frac{J(J+1)}{2 \sigma^{2}}\right\}
$$

with $\mathrm{U}=4.8 \mathrm{MeV}$ (effective binding energy)

$$
\begin{aligned}
& a=25.10^{-6} \mathrm{MeV}^{-1} \\
& \tau=4
\end{aligned}
$$

and $D_{0}=24.85 \mathrm{eV}$ in accord with the observed spacing of resolved s-wave resonances.

For each energy interval the computation is repeated a sufficient number of times such that the average of results is statistically precise to better than $1 \%, S_{0}$ and $\Gamma_{V}$ are chosen according to the above discussion as $S_{0}=1.04 \cdot 10^{-4}, \Gamma_{Y}=31 \mathrm{meV}$; and the cross-section calculated for the best choice of the p-wave strength function, $S_{1}=2.2 \cdot 10^{-4}$, is compared to the experimental data of Hockenbury et al. in fig. 1 .

Table 5 gives values for the $p$-wave strength function as proposed by several adthors.

Table 5: Data for the p-wave strength function of ${ }^{\mathbf{2 4 0}} \mathbf{P u}$
Authors Caner and Yiftah ${ }^{2)}$ Prince ${ }^{20)}$ Hockenbury Present $\begin{array}{ccccc}\mathrm{S}_{1}\left[10^{-4} \mathrm{~J}\right. & 1.95 & 1.98 & 2.8 & 2.2\end{array}$ Of these, only the last two are based on (the same) experimental data. The difference between them is not only due to the different methods of calculation, but also to the different figures used for the other parameters like, e.g. the level spacing.

We recommend

$$
s_{1}=(2.2 \pm 0.2) \cdot 10^{-4}
$$

both, because most up to date values of $D_{1}, S_{0}$ and $\bar{\Gamma}_{Y}$ have been used, and because in the Moate Carlo sampling method width fluctuations are automatically taken into account in a correct way.
V. Conclusion

Since the latest extensive evaluation by L'Heriteau and Ribon ${ }^{3}{ }^{3}$ the experimental situation in the resolved resonance region has heen improved very much due to the Eew measurement: of RPI ${ }^{6}$ ) and the renormalization of the capture data of Harwell ${ }^{4)}$ and Geel ${ }^{5}$ ).

Howeves, there are still discrepancies: The average capture widths from Gecl and RPI still differ by about $8 \%$ and parameters of individual resonances difier sometimes up to $20 \%$. As discussed before, there are afguments for the assumption that the true parameters lie in between the extreme experimental ones, and we expect the recommended parameters quated in this paper to be accurate within 5 to $10 \%$ ( $3 \%$ for $\left\langle\Gamma_{\gamma}>\right.$ ). However, in order to check on this expectation and to resolve the cases of particulariy large discrepancies, additional measurements are desirable, also in the light of requests for, e.g., the capture crose section in the resonance region which demand accuracies down to $3 \%$. It is unsatisfactory also, that above 500 eV neutron widths are available from only a single measurement.

## References

1) T. A. Pitterle and M. Yamamoto, APDA-218 (1968).
2) M. Caner and S. Yiftah, Proc. Conf, on Nuclear Data for Reactors. Helsinki 1970; IAEA, Vienna 1970.
3) J. P. L'Heriteau and P, Ribon, CEA-N-1273/EANDC(E) 126 AL (1970).
4) M. Moxon, private communication.
5) H. Weigmann and J. P. Theobald, J. Nucl. Energy 26 (1972) 643.
6) R.W.Hockenbury, W.R. Moyer, and F. C. Block, Nuel. Sci. Eing. 49 (1972) 153.
7) D. V.S. Ramakrishnn and M. P. Navalkar, Proc, Conf, on Nuclear Data for Reactors, liclsinki 1970; IAEA, Vienna 1970.
g) M. Lounsbiry, R. W. Durham, and G. C. Hanna, Proe. Conf. on Wuclear Data for Reactors, Helsinki 1970; LAEA, Vienna 1970;
8) K. Kolar and K. H, Buckhoff, J. Nucl, Energy 22 (1968) 299.
9) H. Weigmann and H. Schmid, J. Nucl. Energy 22 (1968) 317.
10) M. G. Cao, E, Migneco, J, P. Theobald, and J. A. Wartena, Proc. Conf. Neutron Croas Sections ani Technology, Wa:hington 1968.
11) M. Aeghar, M. C. Moxon, and N. J. Pattenden, Proc, Conf. on Nuclear Data for Reactors, Paris 1966, LAEA, Vienna 1966.
12) E. Migneco and J. P. Theobald, Nucl. Phys. Al12 (1968) 603.
13) R, Werz, G. Rohr, J. P. Theobald, and H. Weigmann, Proc. Triparite Symp, on Nucl. Fhys, with Thermal and Reconance Energy Neutyons, Petten (N. H.) 1973; RCN -203.
14) T. Fuketa and J. A. Harvey, Nucl. Inatr. Meth. 33(1965)107.
15) H. Weigmann and G. Rohr, Proc. Tripartite Symp: on Nuel. Phys. with Thermal and Resonance Energy Neutrons, Petten (N. H.) 1973; RCN-203.
16) H. I. Liou and J. Rainwater, Phys. Rev. C6(1972) 435.
17) A.V.Ignatynk, N.S.Rabotnov, and G. N. Swirenkin, Phys. Lett. 29B (1969) 209.
18) H. Weigmann, G. Rohr, T. van der Veen, and G. Vanpraet, 2nd Int. Symp. Neutron Capture Gamma-Ray Spectroscopy, Petten (N. H.) 1974; to be published.
19) A, Prince, Proc. Conf. on Nuclear Data for Reactore, Helsinki 1970; IAEA, Vienna 1970.
20) S. Yiftah, J. J. Schmidt, M, Caner, and M. Segev, Prec. Fast Reactor Physics, LAEA, Vienna 1968.
21) M,W.Dyos, Nuc1. Sci. Eng. 34 (1968) 191.

Table 1：Resonance Parameters of ${ }^{240} \mathrm{Pu}$ up to 665 eV ，as measured at Geel，RPI and Harwell．

Laboratory	Geel 5 5）		RPI ${ }^{6}$		Harwell ${ }^{4)}$	
$E_{0}(\operatorname{lev}]^{9)}$	$\Gamma_{n}$	$\Gamma_{Y}$	$\Gamma_{n}$	$\Gamma_{V}$	$\Gamma_{n}$	$\Gamma_{V}$
20，45士0．01	$2.7 \pm 0.3$	－－＊	2． $2 \pm 0.6$	－－－	2．65 +0.09	$32.2 \pm 3.5$
$38,32 \pm 0.02$	$19.2 \pm 0.9$	$30 \pm 2$	17． $0 \pm 0.5$	25． $5 \pm 0.8$	$17.16 \pm 0.50$	$29.4 \pm 2.8$
$41.62 \pm 0.02$	$16.8 \pm 0.9$	$33 \pm 2$	14． $2 \pm 0.5$	32．8 81.0	$17.64 \pm 0.31$	27．36．0．93
$66.62 \pm 0.05$	$55.9 \pm 2.2$	$31 \pm 2$	53． $2 \pm 1.0$	$27.4 \pm 0.6$	$54.48+0.72$	32． $74 \pm 0.89$
$72.78 \pm 0.05$	22．0さ1．0	$32 \pm 2$	21．5＋0． 5	$27.0 \pm 0.6$	$20.7 \pm 1.0$	$29.5 \pm 2.5$
90.7750 .06	$13.5 \pm 0.5$	－－	12．7さ0．3	39． $5 \pm 1.0^{\text {x }}$	$12.8 \pm 0.75$	$27.5 \pm 3.0$
92． $51 \pm 0.06$	3． $0 \pm 0.2$	35	3． $3 \pm 0.1$		2．96＋0．10	－
105． $00 \pm 0.07$	45．5＋2．5	35． $5 \pm 2$	47．5＋1．5	37． $5 \pm 1.0^{x}$	$42.0 \pm 1.5$	34.0 $31.0 \pm 2.5$
$121.6 \pm 0.0$	$14.5 \pm 0.9$ $0.15+0.06$	－－	$15.0 \pm 0.5$ $0.17+0.03$	－－	$13.8 \pm 0.7$	$31.0 \pm 4.0$
130.7   135.3   150.15   0.10	0． $15+0.06$ $18.5+\frac{1}{2} .1$	－－－	$0.19+0.03$ $20.6+\overline{0} .5$	－－－	$17.0 \pm 2$	31． $5+2.5$
$151.9 \pm 0.12$	14． $2 \pm 1.0$	．．．	13．8 +0.5	29．5＋1．1	$14.5 \pm 0.7$	27．7 72.0
$162.7 \pm 0.13$	8． $6 \pm 1.0$	－－－	9．0さ0．3	27． $5 \pm 0.9$	$18.0 \pm 2.0$	$27.0 \pm 3.5$
$170.1 \pm 0.14$	13．7\＃1． 2	－－－	17．5\＃0．5	27． $3 \pm 0.9$	14．5 $\pm 1.5$	$30.0 \pm 5.0$
$185.8 \pm 0.16$	16，3＋1． 2	－－－	$18.8 \pm 0.5$	28．8さ0． 9	15．5 $\pm 1.5$	$32.7 \pm 5.0$
$192.0 \pm 0.20$	$0.20 \pm 0.12$	－－－	$0.3 \pm 0.94$	－－		－－－
$199.6 \pm 0.17$	$0.94 \pm 0.1$	－－－	1． $0 \pm 0.1$	－－－		－－－
239． $2 \pm \pm 0.15$	12． $2 \pm{ }^{0} .7$	－－－	$13.8 \pm 0.6$	$27.7 \pm 1.0$	12．2 $\pm 2.5$	$29 \pm 6$
$260.5 \pm 0.15$	$23.2 \pm 1.2$	$32 \pm 3$	25． $0 \pm 0.9$	30． $5 \pm 1.0$	23． $5 \pm 2.5$	$34 \pm 7$
287．1 $\pm 0.17$	138．2 27.0	$30 \pm 2$	137．000．4	33， $0 \pm 1.1$	$142 \pm 15$	$28 \pm 4$
$304.9 \pm 0.20$	$7.2 \pm 0.7$	－	7．4 $\pm 0.2$	－		
$318.3 \pm 0.15$	5． $2 \pm 0.5$	－－－	6． $0 \pm 0.3$	－－－		－－
$320.7 \pm 0.15$	19．3さ1．0	－－－	20．0さ0． 6	－－－	－－－	－－－

Table 1 （continued）

Laboratory	Geal ${ }^{5,9 \text { ）}}$		RPI ${ }^{6)}$		Harwell ${ }^{4!}$		
$\mathrm{E}_{0} \mathrm{reV} 7^{\text {9）}}$	$\Gamma_{n}$	$\Gamma_{V}$	$r_{n}$	$\Gamma_{Y}$	$\Gamma_{n}$	$\Gamma$	
$338.4 \pm 0.15$	$5,7 \pm 0.6$	－	$7.4 \pm 0.3$				
$346.0 \pm 0.15$	$16.5 \pm 0.7$	－－＊	17．7さ0．5				
$363.7 \pm 0.15$	$32.5 \pm 1.3$	$35 \pm 3$	$30.4 \pm 1.5$	32． $8 \pm 1.7$			
372．0土0．17	$13.8 \pm 0.8$	－	16． 0 ＋1． 5	27．5＋0．3			
$405.0 \pm 0.20$	108． $5 \pm 5.0$	$30 \pm 2$	102．6＋6． 0	$30.0 \pm 0.2$			
$419.0 \pm 0.20$	$6.1 \pm 0.7$	－－	$6.2 \pm 0.3$				1
445． $8 \pm 0.30$	$1.6 \pm 0.3$	－－－	2． $2+0.2$				
449．8 $\pm 0.20$	$16.5 \pm 1.2$	－－－	18．743．5				${ }_{\text {W }}^{\text {W }}$
466． $5 \pm 0.22$	$3.1 \pm 0.6$	－－－	$2.4 \pm 0.2$				
473．3土0． 22	$4.2 \pm 0.5$	－－－	4． $3 \pm 0.3$				
493．9＋0，22	$5.8 \pm 1.1$	－－	6． $4+0.3$				
499．3土0． 25	$19.3 \pm 1.4$	－－－	17．0＋2．2	33．5＋1． 5			
514． $3 \pm 0.25$	$21.5 \pm 1.5$						
$526.1 \pm 0.40$	$0.91 \pm 0.5$						
$530.8 \pm 0.40$	$0.70 \pm 0.4$						
$546.4 \pm 0.25$	31．0．$\pm 2.2$	$36 \pm 4$					
$553.2 \pm 0.25$	$18.5 \pm 1.5$						
$566.3 \pm 0.30$	$31.5 \pm 1.7$	29．542					
$584.1 \pm 0.45$	1． $14 \pm 0.6$						
596． $8 \pm 0.20$	57． $5 \pm 2.5$	33． $5+2$					
$608.1 \pm 0.20$	22． $8 \pm 1.4$	31．$\overline{5+3}$					
$632.5 \pm 0.20$	$13.3 \pm 1.2$						
637． $5 \pm 0.20$	$11.7 \pm 1.2$						
$665.1 \pm{ }^{\text {cti }}=20$	$197.0 \pm 8.0$	$33+2$					

Table 3: Recommended Parameters of ${ }^{240}$ Pu Resonances

$E_{0}(\mathrm{cV})$	$\Gamma_{n}(\mathrm{meV})$	$\Gamma_{\gamma}(\mathrm{meV})$	$\Gamma_{f}(\mathrm{meV})$
$1.056 \pm 0.002$	2.34+0.15	$2 \cdot 2 \pm 2$	0.006
$20.45 \pm 0.01$	$2.65 \pm 0.07$	32. $2 \pm 3.5$	0.23
$38.32 \pm 0.02$	$17.0 \pm 1.0$	28. $5 \pm 2$	0.11
$41.62 \pm 0.02$	$15.5 \pm 1.0$	$31 \pm 2$	
$66.62 \pm 0.05$	$52.0 \pm 2.0$	30, 5ı2	
$72.78 \pm 0.05$	$21.0 \pm 1.0$	29. $5 \pm 2$	
$90.77 \pm 0.06$	$13.5 \pm 0.6$	$28 \pm 3$	
$92.51 \pm 0.06$	$3.0 \pm 0.2$		
$105.00 \pm 0.07$	$43.0 \pm 2.0$	$34 \pm 2$	
$121.6 \pm 0.10$	$14.5 \pm 1.0$	$31.5 \pm 4$	
$130.7 \pm 0.15$	$0.15 \pm 0.06$		
$135.3 \pm 0.10$	$18.5 \pm 1.1$	$32 \pm 2.5$	
$151.9 \pm 0.12$	$14.2 \pm 1.0$	29. $5 \pm$ ¢	
$162.7 \pm 0.13$	$8.6 \pm 1.0$	$28 \pm 2$	
$170.1 \pm 0.14$	$13.7 \pm 1.2$	29.5 $5 \pm 2$	
$185.8 \pm 0.16$	$16.3 \pm 1.2$	31.512	
$192.0 \pm 0.20$	$0.20 \pm 0.12$		
$199.6 \pm 0.17$	$0.94 \pm 0.1$		
239.2 $\pm 0.15$	$12.2 \pm 0.7$	$29 \pm 2$	
260.5 $\pm 0.15$	$23.2 \pm 1.2$	32 72	
$287.1 \pm 0.17$	$132 \pm 7$	$30.5 \pm 2$	
$304.9 \pm 0.20$	$7.2 \pm 0.7$		
$318.3 \pm 0.15$	$5.2 \pm 0.5$		
$320.7 \pm 0.15$	$19.3 \pm 1.0$		
$338.4 \pm 0.15$	$5.7 \pm 0.6$		
$346.0 \pm 0.15$	$16.5 \pm 0.7$		
$363.7 \pm 0.15$	$32.5 \pm 1.3$	$34 \pm 2$	
372.0 I0.17	$13.8 \pm 0.8$	28. $5 \pm 2$	
$405.0 \pm 0.20$	$108 \pm 5$	$30 \pm 2$	
$419.0 \pm 0.20$	$6.1 \pm 0.7$		
$445.8 \pm 0.30$	$\because .6 \pm 0.3$		
$449.8 \pm 0.20$	$16.5 \pm 1.2$		
$466.5 \quad \pm 0.22$	3.1 $\pm 0$. ¢		
473, $3 \pm 0.22$	4. $2 \pm 0.5$		
$493.9 \pm 0.22$	5. $8 \pm 1.1$		
$499.3 \pm 0.25$	19.3 \# 1.4	34.5̇3	
$514.3 \pm 0.25$	$21.5 \pm 3$		
$526.1 \pm 0.40$	$0.91+0.5$		
$530.8 \pm 0.40$	$0.70 \pm 0.4$		
$546.4 \pm 0.25$	$31.0 \pm 2.2$	34. $5 \pm 4$	
$553.2 \pm 0.25$	18.5 $\pm 1.5$		
$566.3 \pm 0.30$	$31.5 \pm 1.7$	$25 \pm 2$	
$584.1 \pm 0.45$	1.14さ0.6		
$596.8 \pm 0.20$	57. $5 \pm 2.5$	$32 \pm 2$	
$608.1 \pm 0.20$	$22.8 \pm 1.4$	$30 \pm 3$	
$632.5 \pm 0.20$	$13.3 \pm 1.2$		
$637.5 \pm 0.20$	11.7 I1.2		
$665.1 \pm 0.20$	$195 \pm 8$	31. $5 \pm 2$	
$678.6 \pm 0.20$	$26.0 \pm 1.8$		

Table 3：（continued）

$E_{0}(\mathrm{eV})$	$\Gamma_{\mathrm{r}}(\mathrm{meV})$	$r_{Y}(\mathrm{meV})$	$r_{\mathrm{f}}(\mathrm{meV})$
$712.1 \pm 0.30$	$1.3 \pm 0.6$		
$743.3 \pm 0.30$	$1.0 \pm 0.7$		
$750.0 \pm 0.24$	$68.2 \pm 3.4$		
$758.9 \pm 0.25$	$6.0 \pm 0.9$		$7.8 \pm 1.0$
$778.3 \pm 0.30$	$1.2 \pm 0.8$		
$782.2 \pm 0.30$	$2.8 \pm .1 .0$		
$791.0 \pm 0.25$	$23.9 \pm 1.4$		45
$810.5 \pm 0.25$	$213.0 \pm 10$		
$819.9 \pm 0.26$	$110.0 \pm 5.5$		

Table 3：continued（change in arrangement of table）

$E_{0}(\mathrm{eV})$	$\Gamma_{n}(\mathrm{meV})$	${ }_{\text {il }}^{1} \mathrm{E} \mathrm{E}_{0}(\mathrm{eV})$	$r_{n}(\mathrm{meV})$	
		i1		
$845.6 \pm 0.27$	$10.3 \pm 1.0$	III $1362.9 \pm 0.6$	$7.4 \pm 3.0$	
854．9 ${ }^{\text {¢ }}$ 0． 27	48．0£ 2.5	iil 1377． $0 \pm 0.5$	64．7土 4.5	
876． $5 \pm 0.27$	$13.9 \pm 1.3$	if 1389．0£0．6	14．2土 2.8	
891． $5 \pm 0.27$	94．5土 4． 5	if 1401． $2 \pm 0.6$	$5.2 \pm 3.1$	
903． $9 \pm 0.28$	$21.8 \pm 1.5$	＂1408， $6 \pm 0.6$	$10.9 \pm 2.5$	
$908.9 \pm 0.28$	79．1 $\ddagger 4.0$	II 1426．1£0．5	$36.7 \pm 3.7$	
$915.3 \pm 0.28$	36．1 1 2．2	III 1429．00． 5	15．0£ 3．0	
943．5£5． 30	122．8土 5.5	\％1450．220．5	$64.6 \pm 5.2$	
$958.4 \pm 0,30$	$71.5 \pm 3.5$	If1462，9＋0．5	21．0̇ 3.3	
$971.3 \pm 0.30$	$80.4 \pm 4.0$	II 1481． $2 \pm 0.7$	9．4士 3.0	
$979.2 \pm 0.32$	7． $3 \pm 1.5$	III 1540．7士0． 5	101．0土 6.1	
$1001.8 \pm 0.32$	98．2土 5.0	I： $1549.5 \pm 0.5$	$156.7 \pm 8.6$	
1024．1 $\pm 0.42$	5．0土 1.5	if1563． $7 \pm \pm 0.5$	114．7士 8.0	
10̈4i． $5 \pm 0.35$	12．7士 1.9	11575．3\＃0．5	126．2̇ 7.6	
1045．7さ0．35	A．0̇ 1.6	ii．1609．6さn． 6	34．8さ 3.9	
$1072.6 \pm 0.35$	109．3 3.5	III 1621．4士0．6	20．6土 3.7	
1099．8さ0．35	$84.1 \pm$ B． 5	${ }_{11}^{11} 1643.0 \pm 0.6$	107．1士 7.0	
$1115.7 \pm 0.5$	$2.6 \pm 1.6$	is $1662.6 \pm 0.6$	$63.9 \pm 5.2$	
1128．8̇0．4	50．1£3．0	1687．9\＃0．6	32．7£ 4．3	
1133．8¥0．4	$6.7 \pm 2.0$	If $1724.1 \pm 0.6$	$83.5 \pm 6.7$	
1142． $7 \pm 0.4$	$40.4 \pm 2.8$	ii $1741.6 \pm 0.6$	24．9̇4．3	
$1159.6 \pm 0.4$	$22.1 \pm 2.2$	iil 1763．7さ0．6	$51.7 \pm 4.8$	
$1185.5 \pm 0.4$	157．5士 8.0	\＃1771． $4 \pm 0.8$	9．8̇ 5.0	
$1190.8 \pm 0.4$	$114.8 \pm 6.0$	III $17779.0 \pm 0.6$	$491 \pm 25$	
1208． $9 \pm 0.4$	$62.9 \pm 3.8$	III $1841.2 \pm 0.7$	125．8土 9.0	
1228．0土0．4	$10.0 \pm 2.0$	${ }_{\\|} 1852.7 \pm 0.7$	$34.4 \pm 5.5$	
1236．5士0．4	$11.4 \pm 2.2$	III 1872． $7 \pm 0.7$	$77.4 \pm 7.0$	
1254．7士0．4	$76.8 \pm 4.6$	iif 1901．6さ0．7	$209 \pm 12.5$	
$1281.4 \pm 0.4$	$4.3 \pm 2.1$	III 1916．6さ0．7	35．9士 6．1	
1300． $3 \pm 0.4$	$245 \pm 12.5$	$111943.3 \pm 0.9$	B． $0 \pm 5.0$	
1328．1 $\pm 0.4$	$369 \pm 18.5$	II 1949．1さ0． 7	$82.5 \pm 7.6$	
1345．	26．1 1 3．1	＂1956， $2 \pm 0.7$	$261 \pm 16.0$	
$1350.9 \pm 0.6$	8． $3 \pm 2.5$	\＃1973．1\＃0．7	68．1£ 7.5	

Table 3：（continued）

$E_{0}(\mathrm{eV})$	$\Gamma_{n}(\mathrm{meV})$	$E_{0}(\mathrm{eV})$	$\Gamma_{n}(\mathrm{me} \mathrm{V})$
1991．5£0． 7	i14． $5 \pm 9.5$	3029． $0+1.2$	21．0 $0+11.0$
1998． 3 0． 7	5． $6 \pm 4.0$	3054，7\＃1， 2	47 İ 5.0
$2016.7 \pm 0.7$	52．5士 7.5	$3077.4 \pm 1.2$	128 \＃19
2022．9土0．7	55．5士 7.3	3088．0£1．2	$35 \pm 17.0$
2033．4£0．7	101．5士 9.5	2112．7さt． 2	38． $5 \pm 14.0$
2055．6士0．8	68．5£ 7.5	$3172.5 \pm 1.3$	$225 \pm 23$
2082．8̇0．8	$98.8 \pm 9.5$	3142．5\＃1．3	$349 \pm 35$
2110.711 .0	$13.7 \pm 5.5$	3237．5 1 ． 3	$72 \pm 15.0$
$2154.0 \pm 1.1$	14．3土 7.0	3268．5\＃1．3	$134 \pm 20$
2182，0¢0．3	85．65 8． 5	3332．0土1．3	14． $5 \pm 10$
2198．2\＃0．8	$130 \pm 10.5$	$3423.0 \pm 1.4$	34． $5 \pm 12.0$
$224016 \pm 0.8$	$34.1 \pm 7.5$	$3458.0 \pm 1.4$	$68 \pm 13.5$
2256．6さ0．8	134．5士11	3465．541．4	$344 \pm 35$
2277．9＋0．8	$427 \pm 26$	3493． $5 \pm 1.4$	$65 \pm 13.5$
2290． $7 \pm 0.9$	208． $5 \pm 17$	$3555.0 \pm 1.4$	$91 \pm 15.5$
2303．3\＃1．2	17．2£ 7.0	3567． $5 \pm 1.4$	$162 \pm 20$
$2334.4 \pm 0.9$	$36.6 \pm 7.5$	$3595.0 \pm 1.4$	28． $5 \pm 13.5$
2350．9 $\pm 0.9$	$31.6 \pm 6.0$	3657 It． 5	$293 \pm 30$
2365． $8 \pm 0.9$	$241 \pm 17$	， $3665 \pm 1.5$	$54.5 \pm 19$
$2373.4 \pm 0.9$		$3702 \pm 1.5$	$51 \pm 17$
2386.140 .9	$18.7 \pm 7.5$	$3723 \pm 1.5$	$60 \quad \pm 20$
2405．0̇0．9	$25.1 \pm 7.5$	$3800 \pm 1.6$	$101 \pm 23$
2416．0̇0．9	$64.9 \pm 9.0$	$3844 \pm 1.6$	$76 \pm 20$
2434．3\＃0．9	$205 \pm 15:$	． $3852 \pm 1.6$	$98 \pm 20$
$2159.4 \pm 0.9$	25．6さ8．5	＇ $3872 \pm 1.6$	$46 \quad \pm 19$
2470．8\＃0．9	45．5士 8.0	$3900 \pm 1.6$	$209 \pm 27$
2485． $3 \pm 0.9$	21．2土 8.5	$3917 \pm 1.6$	$163 \pm 23$
2521，0¹．0	109．5\＃11	$3954 \pm 1.6$	$92 \pm 21$
2538．6さ1．0	287．5\＃20	3975 立2． 7	$102 \pm 22$
2549．2土1． 0	$79.7 \pm 12.0$	$3990 \pm 1.7$	$29 \pm 18$
2575．3＋1．0	47． 59.5	$4031 \pm 1.7$	$109 \pm 21$
2639．541．0	$426 \pm 42$	$4084 \pm 1.7$	$120 \pm 23$
2652．4＋1．0	$36.3 \pm 8.0$	$4100 \pm 1.7$	$257 \pm 28$
2692．8＋1．0	$345 \pm 26$	$4122 \pm 1.7$	$497 \pm 40$
2717．7\＃1．0	40．7£10．0	4134 ¥1．7	$67 \pm 23$
2739． $2 \pm 1.0$	$177 \pm 18$	$4149 \pm 1.7$	$265 \pm 29$
2748．4\＃1．0	$102 \pm 13$	$4161 \pm 1.7$	$89 \pm 24$
2817．5\＃1． 1	41． $2 \pm 10.0$	$\underline{2} 003 \pm 1.8$	$43 \mathrm{~B} \quad \pm 43$
2813．5ı1． 1	$157 \pm 16$	［ $4221-1.8$	$68 \pm 21$
2859． $7 \pm 1.1$	27 It1	4270 ¥1．8	$159 \pm 27$
2882．0＋1．1	$30 \pm 12$	$4288 \pm 1.8$	$316 \pm 41$
2895． 0 －1． 1	$60 \ddagger 12$	4329 I1．8	$302 \pm 35$
2905． 0	$115 \pm 14$	$4376 \pm 1.8$	$82 \pm 30$
2938．0上1． 1	132 \＄15	$4386 \pm 1.8$	$32 \pm 24$
2968．6＋1．1	85 ＋13．5	4398 \＃1．9	$78 \pm 25$
$2980.5+1.2$	$108 \pm 20$	$4422 \pm 3.9$	$61 \pm 24$
2986． $2 \pm .2$	12． $5 \pm 8.0$	$4433 \pm 1.9$	$47 \pm 22$
2994．7土1．2	$55 \pm 11.5$	$4458 \pm 1.9$	$102 \pm 27$
3004．0さ1． 2	76． $5+13$	$4570 \pm 1.9$	$220 \pm 45$
3018．0さ1． 2	$117 \pm 18$	$1588 \pm 1.9$	$526 \pm 60$

Table 3: (continued)

$E_{0}(\mathrm{eV})$	$r_{n}(\mathrm{meV})$	$E_{0}(\mathrm{eV})$	$\Gamma_{\mathrm{n}}(\mathrm{meV})$
$4599 \pm 1.9$	$75 \pm 30$	$5194 \pm 2.2$	$313 \pm 55$
$4615 \pm 2.0$	$262 \pm 63$	$5215 \pm 2.3$	$163 \pm 40$
$4646 \pm 2.0$	$149 \pm 45$	$5249 \pm 2.3$	$524 \pm 70$
$4721 \pm 2.0$	$510 \pm 75$	$5279 \pm 2.3$	$140 \pm 45$
$4745 \pm 2.0$	$245 \pm 50$	$5299 \pm 2.3$	$270 \pm 45$
$4755 \pm 2.0$	$56 \pm 28$	$5334 \pm 2.3$	$203 \pm 50$
$4766 \pm 2.0$	$15 \pm 15$	$5350 \pm 2.3$	$153 \pm 50$
$4771 \pm 2.0$	$22 \pm 20$	$5367 \pm 2.3$	$70 \pm 40$
$4779 \pm 2.0$	$34 \pm 25$	$5393 \pm 2.4$	$84 \pm 42$
$4792 \pm 2.0$	$133 \pm 34$	$5417 \pm 2.4$	$255 \pm 50$
$4812 \pm 2.1$	$172 \pm 35$	$5489 \pm 2.4$	$50 \pm 40$
$4823 \pm 2.1$	$63 \pm 25$	$5499 \pm 2.4$	$87 \pm 40$
$4894 \pm 2.1$	$59 \pm 27$	$5510 \pm 2.4$	$355 \pm 70$
$4958 \pm 2.1$	$291 \pm 55$	$5522 \pm 2.5$	$172 \pm 45$
$4969 \pm 2.1$	$158 \pm 50$	$5544 \pm 2.5$	$582 \pm 90$
$4993 \pm 2.2$	$92 \pm 35$	$5574 \pm 2.5$	$758 \pm 90$
$5072 \pm 2.2$	$509 \pm 50$	$5592 \pm 2.5$	$207 \pm 60$
$5113 \pm 2.2$	$93 \pm 35$	$5615 \pm 2.5$	$62 \pm 50$
$5134 \pm 2.2$	$42 \pm 30$	$5681 \pm 2.5$	$106 \pm 50$
$5148 \pm 2.2$	$50 \pm 35$	$5692 \pm 2.5$	$91 \pm 46$
$5162 \pm 2.2$	$40 \pm 30$		



# PLU'ONIUM 239 RESONANCE DARAMETERS 

H. DERRIEN, DPRMA, CEN SACLAY

Commissariat a l'énergie Atomique France

## I - INTRODUCTION

When examining Pu 239 resonance parameters, two kinds of information must be taken into account : (a) the experimental data and the corresponding analysis, and (b) the various evaluations made so far.

## A - Experimental data

The oldest to be taken into account are $L$. Bollinger's concerning the total cross section and the Eission cross section up to around 50 eV (ED 58). These data have been analysed with a one level formalism and E. Vogt also proposed a multi-level analysis up to 10 eV (Vo 60).

The total cross section and the scattering cross section have been measured and analysed at Harwell, the former by C.A. Uttley (Ut 65). who Droposed a set of resonance parameters in the 100 eV to 300 eV neutron energy range and the latter by $M$. Asghar (As 67) who also attributed a certain number of spin. up to 300 eV .
G. de Saussure, R. Gwin et al (Gw 71) made simultancous measurements of the fission cross section and the capture cross section at ORNL-RPI in order to determine $a$. But no reconance parameters has been propoged from these measurements.

The Saclay rosults are the largest and most completo set of data in tho resonance field (B1 70, De 70, Tr 70, De 73a). The transmission measurements used five sample thicknesses cooled at liquid nitrogen temperature, with 50 and 100 n fllght paths : the fission cross section was also measured at liquid nitrogen temperature \{up to around 30 KeV \}ith a 50 m filght path. The scattering reasurement was done with a 50 m flight path, thus providing a resolution comparable to that of the transmission and the fission. A complete set of parameters was obtained up to 660 eV by a single level analysis and up to 205 eV by a multi-level analysts.

The fission cross section was measured at Los Alamos (Sh 65) on an underground nuclear explosion and was analysed by J.A. Farrell with a multi-level formalism between 20 and 80 eV (Fa 68).

## B - The evaluations

We shall retain two evaluations : the first by P. Ribon and G. Le Coq (Ri 71) based on the set of Saclay experimental parameters and the second by O.D. Simpson and F.B. Sinpson (Si 72) who tried to match the Saclay and O.R.N.L. experimental data ; comments about the latter evaluation have been previously done (De 73b).

What are the problems arising on the resonarce paraneters of Pu 239 and their use for reactor calculation ? First, there is the problem of interferences due to the wide resonances of the $0^{+}$spin state. The single level analysis cannot provide a set of parameters correctly describing the cross sections in these resonances. We are therefore obliged to compare two sets of parameters due to two different kinds of analysis, namely the ore level analysis and the multi-level analysis. Sophisticated computation codes are required when using multilevel parameters. Then, it can be wondered if the problem of interferences is really important for calculating reactors and, if so, how can these calculacions be simplified. A second problem, which could also be important. is that of the intermediate structure obvious in the fission cross section due to the ${ }^{+1}$ spin state (De 7Ja) : what is its importance in calculating the average cross section at high energy and must the variations of $\left\langle\Gamma_{f_{1}}\right\rangle_{1}{ }^{+}$ due to the coupling between the class $I$ and class If ${ }^{1}$ states be taken into account ?

These various problems could be examined at this session. I shall merely examine the set of parameters that Saclay proposes, and compare this set with other results. Incidentally, two sources of significant disagreements can be eliminated righ:t from the start :

1) the anomalies mentioned by O.D. Simpson and F.B. Simpson (5i 72) concerning the narrow resonances disappear quite naturally when the spin of the resonances is taken into account in calculating the scattering cross section. This is a common place observation sufficient enough to warrant this evaluation being disregarded :
2) J.A. Farrell's (Fa 68) multi-level analysis leads to parameters that are far from reproducing the total cross section (De 73a), since it is quite impossible to determine all the parameters of the $1^{+}$resonances only from the fission, even by multi-level formalism : a theoretical interpretation of the distribution of fission widths obtained by Parrell, such as was done recently (Va 73), leads to wrong conclusions as to the number of exit channels and that of missed resonances. In this analysis just the resonance areas can be kept, but not the $\Gamma_{n}$, $\Gamma_{f}$ and $\Gamma_{Y}$ values which, particularly, lead to aberrant $\alpha$ values.

II - EKAMINATION OF THE SACLAY PARAMEIERS AND COMPARISON WITH THE PARTIAL RESIILTS FROM OTHER LABORATORIES.

A - Single level parameters
All the results concerning the definitive analysis of Saclay's experimental data will be found in reference (De 73a). They comprise :

1) the energies and the neutron widths of 254 identified resonances up to 660 eV neutron energy ;
2) tha fission widths of 212 resonances ;
3) the capture widths of 107 resonances;
4) the attribution of 164 spins by direct or indirect methods : 63 resonances in the $0^{+}$state and 101 in the $I^{+}$state ;
5) the attribution of spin it to the resonances for Which no direct of indirect spin assignment method could be used, 1.e. to the 90 remaining resonances, in agreement with the (2 $J+1)$ law for the level spacings; the risk of including a few ot resonances in this group is of no conscquence for the evaluation, since the $2 \mathrm{~g} \Gamma_{\mathrm{n}}$ values of this resonances are cenerally wery weak.

The table of the experimental parareter set has already been published (De 73a) ; this table is also reproduced in reference ( Ri 71 ).

The table $I$ shows the mean values of the parameters per spin state :

TABLE I

$3^{4}$	$t$	cs\% C		$5^{\circ} \times 10^{4}$	${ }^{42}$	
$0{ }^{*}$	1/4	9,60 $0.0,70$	0,72:0,13	1,5610,28	2145*390	35,5*4,0
-*	3/6	$1,2040,13$ $=0,20$	$7,5630,06$	1,13土0,12	33,524,0	42,241,4

The main difficulties of the single level analysis come from the wide $0^{+}$resonances, which interfer strongly and, owing to this, are very far from the single level Breit-Wigner form. Four partictiarly difficult cases should be considered :
a) the 11.5 eV resonance considered as $0^{+}$which is only used to mask the interference effect betwesn the 10.93 and $11.89 \mathrm{eV} 1^{+}$levels (one of the rare cases of significant interference between narrow resonances) ;
b) the group between 55 eV and 66 eV in which three wide $0^{+}$resonances were introduced, whereas the multilevel analysis will show that there are in fact orly two large and highly interfering resonances ;
c) the group between 80 and 86 eV also containing three large resonances against two in the multi-level analysis ;
d) between 300 and 400 eV the parameters resulting from the single level analysis do not reproduce the total and fission cross sections, unless a very high residual cross section is introduced. This led $P$. Ribon and G. Le Coq to introduce two extra very wide levels at 320 and 364 eV .

These difficulties being due to the interference effect the fact of introducing extra symmetrical resonances is obviously only a makeshift ; the use of Adler formalism shows that the true cross-section is the sum of symmetrical (pseudo Breit-Wigner) and asymmetrical functions, and that, in no case, can an extra symmetrical resonance account for the destructive part of the asy metrical function, unless it is of negative area, This fact is at the source of the introduction of a smooth file in the ENDF-B format to allow for these effects, when a single level set of parameters is used.

Comparison with other single level analysis
L. Bollinger et al. published the parameters of 20 resonances up to 53 cV (Bo [i8), obtained from the single level analysis of a total cross section ard fission cross section. We are only mentioning them here to draw attention to the overall good agreement existing between their results and those of Saclay. C.A. Uttley gave the values of $g r_{n}$ and $r$ for 63 resonances between 100 and 300 eV : his o $\Gamma_{\mathrm{n}}$ values are, on average, 68 smalier than ours. The local strenght functions deduced from the Gaclay measurements and ihose deduced from the Harwell measurements are compared in the table II.

TABLE II

$\begin{aligned} & \text { Energy } \\ & \text { in ev } \end{aligned}$	1	4	11	-	112	${ }^{*}$	$b$
0-100					1.56	0.02	0.36
100-200	1.13	0.03	1.04	0.02	1.13	0.01	0.25
200-350	1.34	0.02	1.27	0.04	1.51	0.02	0.33
$300-400$	1.02	0.02			0.84	0.01	0.19
403-300	0.36	0.02			0.75	0.01	0.17
503-600	1.71	0.02			1.77	0.03	0.39

$I \quad=S_{0} \times 10^{4}$ accoraing to C.A. Uttley's average cross sections ;
II $S_{0} \times 10^{4}$ accordins to C.A. Uttley's resorance parameters ;
TII : So $x 10^{4}$ according to the resonance paraseters (De 73a) ;
a : expeitmental statistical error.
b : sampling error.

Excellent agreement is found between the lacal atrengh functions obtained from the Saclay resonance parameters and those deduced Ercm the average walues of Uttloy'g total cross scctions ; the difference between the figures in colums II and III is due to two causes :
a) Uttley probably underestimated the zg F values;
b) he did not allow for the wide resonances in his analysis.

The comparison between the spin assignment due to M. Asghar and those due to $J$. Trochon was also made (Tr 70) ; out of 47 possible comparisons, there are only 6 diaggreements, all the explanations for which were favourable to the Saclay assignment.

As for the ORNL-RPI measurements, it is not possibie to establish a comparison on the resonance parameters t the only analysis made on these results is due to O.D. Simpson and F.B. Simpson, on the Saclay and ORNL-RPI data simultaneously. According to what we said at the beginning of this report, the rescits of this analysis are not an improvenent compared with the Saclay analysis.

## B - Multi-level parameters

The multi-level analysis carried out at Saclay is given in detail in reference (De 73a). It is a least square analysis simultaneously made on the total cross section and the fission crous section, between 4 eV and 205 eV . It uses the Reich-Moore formalism and is founded on three main assumptions :

1) the resonance spin assigmments have been correctly done by the single level analysis ;
2) there is only one fission channel, partly open, for the $1^{+}$transition states :
3) there are two, open or partly open, fission channels for the $0^{+}$transition states.

The following conclusions may be drawn from this multi-level analysis :

1) the base assumptions were confirmed and enabled the theoretical cross section to be adopted very satisfactorily to the experimental data :
2) the $1^{+}$resonance parameters are almost unchanged In relation to the single level analysis ; the few changes mads are due to three causes :
a) a. few rare cases of interference y
L) a better accuracy on the determination of the parameters is achicved by the eimultancous analyole of two cross sections ;
c) the analysio of the narrew resonances was made easier, since tho shape of the wido resonances, playing the role of "background noise" in relation to the narrow resonancea, was well reproduced ;
3) the individual $0^{+}$resonavico parametera are gonoralIy very different from those obtained in the aingle level anaiysis but theze is mo significant change in the average values, as it ie ghoun in the tablo III.
table III

4) the two $0^{+}$Eission charnels are respectively characterised by the man fission widths :
(ES) $0^{+}=1.305 \mathrm{cV}$ (open channel)
$\left\langle f_{s z}\right\rangle \mathrm{o}^{+}=0.276 \mathrm{cV}$ \{partly open than ']

Gape fecalts of the multi-jevel analysis are given In table IV.

Corearbon with astor rulti-level analysis
The fearnoneny amazyisitaje by E. Vogue (vo 60) and C.D. James (In 6 ill can hardly be considered for til esmaxisen, wioficst was made from 0.1 to 10 eV anis can be wed en enleulate the total cross section and *- Essidan cana gection in the thermal region. It ais. For ar negative resonance but is not in agricDebt wist the nor nssiegrent at present accepted for bite 15.74 ci woonoonec. The seesnd concerns the wide recstundeg in plan rangy range from 80 to 85 dV ; it was on fe dore to then teat the number of open, or partly open,


There retune $3 . \lambda$. Farrell's 20 oV to 78 ev anaiyctm. It the inteciuction to this report we explained Wi:\% it should te excluded. As for the work undertaken fy C.D. Adler anil F.B. Adler on the Pu 239 cross sections, the comparison with cur results can only be made through the transformainon whet diagonalises the level matrix
(Ad 68) ; there is no doubt that identical results are obtained if the analysis is carried out on the same cross sections and starting from the same bases.

## $C$ - The role of multi-level analysis in evaluating resonance parameters and calculating cross sections.

In order to define this role correctly, it would be necessary to know the effect of the interferences in the calculation of the cross sections in the non-resolved domain. As was said at the beginning of this report, we shall not go into this problem in detail, but simply recall that G. de Saussure and R.B. Perez (Sa 73a) studied it in the particular case of $U$ 235. They showed that pratically no differsone existied between the statistical properties of the cross sections achieved by multi-level formalism and that obtained by single lovel formalism ; these differences are too small, particularly towa:"'s the high temperatures ( $>300^{\circ} \mathrm{K}$ ). to have any effect on the reactor calculations, this conclusion being still more true for Pu 239 than for 0235.

Efforts are also being made in the United States, still by G. de Saussure and R.B. Perez, to develod simple calculation methods allowing multi-level parameter sets to be employed in the resolved region (Sa 73b). These methods transform multi-level sets into sets composed of pseudo Breit-wigner parameters and parameters defining a smooth background ; the calculations are then done only by means of the conventional $\psi$ and $\varphi$ functions. In such a case the set of multi-level parameters we are proposing can prove useful.

Where we are concerned, we shall only keep, from the multi-levei analysis, the extra accuracy it gives to the parameters of the $1^{+}$resonances and the fact that the mean farameters of the $0^{+}$resonances vary but little irrespective of the kind of analysis used.

TABLE IV

Encrey   (ev)	$\begin{gathered} i_{n} \\ (\mathrm{Ec} \cdot \mathrm{~V}) \end{gathered}$	Channed $1^{+}$	Channel ${ }^{\text {+ }}$		J	
		$r_{2}$ (00)	$\mathrm{r}_{\mathrm{t})}$ (ev)	*12 (ev)	(s)	(b)
0.296	0,26			0.3500	0	
7.800	0.77	-0.0470			1	
10.910	1.65	-0.1200			$t$	
11.870	0,98	0.0210			1	
14.307	0,66	0,0610			1	
14.660	1.92	0.0350			1	
15.c0s	1,73		-0,4620	0.0994	0	
17.633	1,83	-0.0805			1	
22,234	2,59	-0,0640			1	
23.876	0.09	0,0300				*
26,223	1.52	0,0460			1	
27.233	0.15	-0,0030				$1 *$
32,265	0.86			-0,2140	0	
35.422	0.25	0,0053			1	
41.373	3.79	-0,0036			1	
4i.0.23	1,38	0,0436				$1{ }^{\circ}$
44,435	5,43	-0.003c			1	
47,494	5,25		0,2010	-0,0700	0	
49.646	3,4:		-0,7860	-0,05s0	0	
30.033	2,97	-0.0125			1	
52,533	10,02	0,0030			1	
35,582	5,51	0,0220			1	
37.003	16,47		$-1,5560$	0,0280	0	
\$9.153	4,80	2,1020			1	
61.868	26,23		7,1020	0,0200	0	
69,018	0,70	0.0800				$1{ }^{\prime \prime}$
\$5.497	13.16		0,2380	0,1510		0
65.711	9.17	Q, 2885			1	
14.053	3.57	-0,0263			1	
74.937	27.70	-0.0370			1	
78,969	0,04	0.0020				
E0,915	4.95		c 9630	0,3820	0	
62,666	0.39	0,0160				1
25,490	7.45	0,0034			1	
e3,514	31.41		- 2,0100	0.0390	0	
90,711	11,88	0,0030			1	
52.433	0.70	0,0080				1
45.376	1.90	-0,0250			1	
46.332	70.88		0,3420	1.3160	0	
101,753	9.05		- 4, 12330	0.6250	0	
103.010	1,61	0,0100			1	
103,301	4. 78	- 0,0060			1	
104.670	8,93	- 0.0240			1	
110,410	0,44	D, 0130				1
114,672	2,50		$-1.6560$	- D., 5170	0	


$\begin{gathered} \text { Energy } \\ \text { (eu) } \end{gathered}$	$\begin{gathered} \Gamma_{n} \\ (\mathrm{sev}) \end{gathered}$	Channel ! ${ }^{\text {c }}$	chanmel $0^{+}$		$J$	
		$r_{t}$ (ev)	$\mathrm{r}_{\mathrm{H}}$ (cV)	$F_{12}$ (W)	(a)	(b)
115.185	C,21	0.1500				1
116.075	11.75		-0.1170	- 0,1390	0	
118,831	16.65	- 0,0340			1	
121,006	2,38	0.0960				1
123.467	0,51	- 0,0390				1
126,226	1.93	- 0,0200	:			J
127,557	0.51	0.0250				1
132,321	35,06		3,9910	-0,0350	0	
133.784	3.59	-0,0060			1	
136,770	10,24			- 0.0860	0	
139,340	0,10	.0,1200			1	
142.965	3.24	0,0820			1	
143,470	4,08	0,0310			1	
145,250	?,05	0,0130			1	
147.496	3,53		1.4990	0.0860	0	
148,242	0.44	0,1020				1
149,442	1,69	0,0500				1
157,009	32.55		0,0290	0.4730	0	
16\%,988	0,11	0,003				1
164,568	28,00	- 0.008			1	
167.128	5.83	0,069			1	
170,524	0,57	0,120				
171,150	3,16		- 0,200	1,606	0	
176,012	2,09	0.031				1
177,253	3,57	$0.00 \%$			1	
178,924	t,22	0,014			1	
183.673	1,68	0,028				1
183.167	16,93		- 1.422	0,499	0	
188.305	0.61	0,609				1
190,677	1.69	0.013				1
195, 199	57,73		-0,411	0.012	0	
196,742	4.01	0.025			1	
199,434	B,93	0.085			1	
203,473	2,26	0,036				1
203,980	59,39		0.343	0,018	$\bigcirc$	

a) Spins previously assigned;
b) Spins arbitrarly assigned; (the prohalities for a correct assignment is great); values with " can be consldered as resulting from multilevel analysis.

## III - SET OF RECOMMENDED PARAMETERS

This set 15 based on che results of the Saclay single level analyais of the 4 eV to 660 eV neutron energy range. Obviously some of the parameters cannot be measured : particularly some os the $\Gamma_{f}$ values cannot be determined experimentally, for they correspond to resonances which have too small neutron widths or fission widths. The evaluation made by P. RIBON and G. Le Coy enables the parameter table to be completed according to a certain number of coherence criteria with the reasured cross sections.

Table $V$ shows how the cross section, calculated as from meanured or evaluated parameters, compares with the Saclay experimental cross section. This comparison 'ighlighte the local deviations due to the interference effects in the $0^{+}$resonances. However there is a compensating effect, and the surn $\frac{E 2}{\sum_{E 1}} \frac{\pi}{2} \sigma_{0} \Gamma_{f}$ obtained between 40 and 500 eV (by introducing two additional large resonances between 300 and 500 eV$)$ aiffers very little from the fission integral calculated from the experimental fission cross section :

$$
\sum_{40}^{600} \mathrm{eV}{ }_{\mathrm{eV}} \frac{\pi}{2} \sigma_{0} \Gamma_{\mathrm{E}}=10513 \text { baras-eV }
$$



The difference between these values is only 0.28.
The one level rcsonance parameters recommended by Fibon and Le Cog are given in table VI (R1 71).

TABLE V

Energy Intervala	$\int_{E 1}^{E 2} \sigma_{F}(E) d E$	$\sum_{E 1}^{E 2} \frac{\pi}{2} \sigma_{0} r_{f}$	
	```from }\mp@subsup{\sigma}{f}{(E) experimental valucs [B1 70]```	frow $\sigma_{0}{ }_{f}$ experimeitni values [10120]	$\begin{aligned} & \text { from } \\ & \text { [Ri } 71] \\ & \text { cvaluation } \end{aligned}$
(eV)	(barns eV)	(barns ev)	(barns eV)
40-50	293.5	286	287.7
50-60	777.1	327	732.8
60-70	571	661	663.4
70-80	655.7	578	579.2
80-90	690.2	751	816.5
90-100	317.4	219	221
40-100	3305	3222	3303
100-200	1919	1837	1885
200-300	1802.5	1737	1772
300-400	904	333	933
400-500	985	911	946
$500-600$	1574	1652	1674
40-600	10488.5	10097	10513

239 Pu evaluated resonance parameters

	$\begin{gathered} E \\ (\mathrm{eV}) \end{gathered}$	Γ_{t}	$\begin{gathered} E \\ (8) \end{gathered}$	$\underset{\left(m \Gamma_{n}\right)}{ }$	$\left\|\begin{array}{c} E \\ \left(8_{0}\right) \end{array}\right\|$	r_{y}	$\begin{gathered} \epsilon \\ (\%) \end{gathered}$	$\underset{(m e V)}{\Gamma_{f}}$	$\begin{gathered} \varepsilon \\ (8) \end{gathered}$	J
1	0.297	98.8		0.0600		38.2		60.4		0
2	7.820	67. 8	5	0.5998	33	40.0	6	47.0	6	,
3	10.930	199.8	10	1.4077	53	55.0	17	143.0	12	1
4	11.500	51.8		0.0744		41.5		10.0		0
5	11.890	67.0	10	0.7634	65	42.0	12	24.0	13	1
6	14.310	101.6	B	0.4511	52	34.0	16	67.0	11	1
7	14.680	69.9	10	1.4177	17	38.0	10	30.0	10	1
8	15.460	699.31	7	0.4858	80	42.0	99	656.0	15	0
9	17.660	74.0)	11	1.3582	10	39.0	11	34.0	11	1
10	22.290	100.0	9	1.9828	25	44.0	11	62.0	10	1
11	23.940	70.1	17	0.0644	76	32.0	35	3 B 0	31	
12	26.240	83.4	12	2.0905	68	3 3 .0	12	4\% 50	15	1
13	27.240	42.2	19	0.1041	83	37.0	20	5.0	54	
14	32.310	151.8	13.	0.2082	49	42.0	19	110.0	14	0
25	34.600	91.5		0.0099		41.5		50.0		
26	35.500	47.3	19	0.2231	46	43.0	19	4.0	54	1
17	41.420	52.1	16	3.0733	29	44.0	17	4.0	26	2
18	41.660	108.0	16	1.0013	124	58.0	22	:6.0	25	
19	44.480	58.6	12	4.9421	20	47.0	13	5.0	13	1
20	47.800	311.6	8	1.4177	52	58.0	26	c 49.0	10	0
21	49.710	800.3	25	1.0905	92	50.0	99	746.0	27	0
22	50.090	57. 0	24	2.2554	44	41.0	25	13.0	26	1
23	52.600	60.4	14	T. 7824	95	49.0	16	9.0	17	1
24	55.630	58.4	50	1.0905	55	36.0	52	21.0	27	1
25	57.440	499.8	50	3.2220	500	42.0	59	445.0	40	0
26	58.840	1059.0	50.	2.7263	500	42.0	99	1047.0	50	0
27	59.220	180.4	8	4.0647	55	52.0	19	123.0	11	1
28	60.940	6797.0	50	4.9570	35	42.0	59	6736.0	40	0
29	63.080	155.1	11	0.5948	210	43.0	80	111.0	33	
30	85.350	92.0		0.2677		41.5		50.0		
31	65.710	137.0	10	9.0316	26	54.0	13	71.0	11	1
32	74.050	71.8	11	2.3545	42	36.0	13	32.0	13	1
33	74.950	146.9	10	16.4570	45	41.0	16	84.0	11	1
34	78.950	91.7		0.6800		41.5		50.0		
35	01.760	2047.0	50	2.4785	500	42.0	99	1996.0	40	0
38	82.680	70.7		0.3718		40.0		30.0		
37	83.520	2750.0	50	0.5948	500	42.0	99	1706.0	40	0
39	85.320	2059.0	50	13.0000	143	+2.0	99	2002.0	40	0
39	85.480	74.8.	12	5.8492	31	51.0	22	16.0	52	1
40	90.750	55.8	17	9.1456	23	39.0	22	8.6	19	1
42	92.970	57.0	9	0.5205	40	47.0	13	9.0	52	
42	95.361	96.1	10	1.5614	47	66.0	11	30.0	15	1
43	96.491	1700.0	20	3.3112	39	42.0	99	1645.0	23	0
4	100.250	6000.0	50	2.7759	500	42.0	99	5947.0	40	0
45	102.990	47.6	10	1.1995	33	36.0	12	10.0	27	1
96	105.30 C	48.0	15	3.4500	57	38.0	16	5.4	19	1
47	106.670	75.6	5	6.9199	42	40.0	6	26.4	7	?
40	110.380	43.6	37	0.3272	106	30.0	40	13.0	50	
49	114.440	1499.0	50	0.3470	504	42.0	99	1456.0	50	
50	115.100	205.3		0.1588		40.0		165.0		

TABLI: VI (continued)
${ }^{239} \mathrm{Pu}$ evaluated reconance parameters

	$\begin{gathered} E \\ (\mathrm{eV}) \end{gathered}$	$\underset{(\mathrm{meV})}{\Gamma_{\mathrm{t}}}$	$\begin{gathered} \varepsilon \\ (8) \end{gathered}$	$\underset{(m e V)}{g \Gamma_{n}}$	$\left\|\begin{array}{c} \varepsilon \\ \left(\%_{0}\right) \end{array}\right\|$	$\underset{(\mathrm{meV})}{\Gamma_{V}}$	(8)	$\underset{(\mathrm{meV})}{\Gamma_{f}}$	$\begin{aligned} & E \\ & (8) \end{aligned}$	J
51	116.030	267.7	6	2.8817	24	39.0	38	218.0	9	0
52	110.830	102.1	6	12.8480	23	43.0	9	42.0	8	1
53	120.990	78.3	15	1.8340	41	32.0	21	39.0	18	0
54	123.440	63.7	22	0.3470	110	24.0	86	39.0	56	
55	128.200	95.9	11	1.4672	40	70.0	18	20.0	51	101
56	127.510	64.8	19	0.3817	120	40.0	28	24.0	40	
57	131.750	3799.0	6	8.9226	69	42.0	99	3722.0	10	0
58	133.780	55.5	10	4.1539	36	44.0	13	6.0	51	1
59	136.750	126.1	8	2.5379	30	32.0	25	84.0	12	0
60	139.280	321.6		0.0892		41.5		280.0		
61	142.920	137.2	15	2.4091	44	52.0	28	82.0	20	1
62	143.470	83.0	14	3.0336	24	48.0	15	31.0	16	1
63	146.250	70.0	10	5.2445	30	50.5	11	12.5	12	1
64	147.440	1000.0	50	0.5948	500	42.0	99	956.0	50	0
65	148.210	149.6	50	0.3470	240	47.0	58	102.0	50	
66	149.420	119.5	17	1.2987	46	67.0	22	50.0	25	
67	157.000	621.6	8	8.4000	23	48.0	47	540.0	9	0
68	160.800	141.7		0:1041		41.5		100.0		
69	161.960	150.2		0.1041		40.0		110.0		
70	164.540	78.7	12	20.8190	72	43.0	20	8.0	15	1
71	167.100	111.7	7	4.3373	46	37.0	15	69.0	10	1
72	170.490	158.8	38	0.4263	23	38.0	59	120.0	48	
73	171.080	959.7	50	0.4412	34	42.0	93	956.0	35	0
74	174.560	241.5		0.0297		41.5		200.0		
75	175.980	73.1	7	1.5564	32	39.0	17	31.0	21	
76	177.220	51.5	12	2.6569	33	41.5	13	6.5	24	1
77	178.900	58.2	5	0.9071	33	43.0	9	14.0	26	(1)
78	183.640	72.3	50	1.1351	52	42.0	62	2 E .0	71	
79	184.870	2098.0	10	4.6595	200	42.0	99	2030.0	30	0
80	188.270	52.9	19	0.4560	75	43.0	22	9.0	54	
81	190.640	67.0	13	1.2442	36	49.0	19	13.0	52	03
82	195.360	446.4	9	14.8710	40	52.0	52	335.0	12	0
83	196.690	111.6	16	3.4897	60	53.0	21	54.0	20	1
84	199.390	132.5	10	7.1826	52	43.0	16	80.0	12	1
85	203.460	72.4		2.9742		41.5		25.0		
86	203.930	440.6	50	13.4000	38	42.0	99	345.0	52	0
87	207.370	56.9	9	5.2048	40	44.0	10	6.0	18	1
88	211.090	789.7	50	0.6940	500	42.0	99	745.0	50	0
89	212.020	1500.0	50	0.5948	500	42.0	99	1456.0	50	0
90	213.280	155.6	30	0.3470	280	42.0	99	157.0	65	
91	216.530	67.2	10	4.6595	42	50.0	13	11.0	32	1
92	219.490	70.5	14	2.6569	50	41.0	24	20.0	33	1
93	220.220	52.4	18	5.5220	44	34.0	23	11.0	35	1
94	223.160	59.4	10	2.5379	28	47.0	14	9.0	51	1
95	224.0ิ90	85.5	20	1.2689	56	58.0	30	25.0	54	
96	227.770	8095.0		7.6337	565	42.5		8024.0	50	0
97	227.890	86.7	15	1.2590	56	33.0	29	32.0	30	(1)
58	231.400	53.8)	18	8.8234	56	37.0	23	5.0	27	1
99	232.830	120.6	50	0.3272	220	40.0	66	80.0		
100	234.320	74.1	12	7.6089	40	49.0	14	15.0	17	1

TABLE VI (centinued)
${ }^{239}$ Pu evaluated resonance parameters

	$\begin{gathered} E \\ (\mathrm{eV}) \end{gathered}$	$\underset{(m e v)}{r_{t}}$	$\left\lvert\, \begin{aligned} & \varepsilon \\ & (s) \end{aligned}\right.$	$\begin{gathered} g \Gamma_{n} \\ (m e v) \end{gathered}$	$\left\|\begin{array}{c} \varepsilon \\ \left(\delta_{0}\right) \end{array}\right\|$	$\begin{gathered} \Gamma_{Y} \\ (m e v) \end{gathered}$	$\begin{gathered} c \\ (8) \end{gathered}$	$\underset{(m \cap v)}{r_{f}}$	$\begin{gathered} \epsilon \\ (\%) \end{gathered}$	J
101	239.040	72.4	12	4.0399	50	51.0	13	16.0	19	1
102	240.60c	241.5		0.0248		41.5		200.0		
103	242.880	96.5	6	4.9173	45	34.0	14	56.0	10	1
204	247.500	280.3	20	0.6741	140	45.0	99	234.0	39	
105	248.860	61.6	10	10.9690	40	42.0	13	5.0	16	1
106	251.230	82.2	6	20.4220	30	43.0	10	12.0	10	1
107	254.500	54.8	18	2.0819	70	27.0	24	25.0	24	(1)
108	256.110	91.3	17	4.7091	50	53.0	20	32.0	22	1
109	259.000	241.8		0.1983		41.5		200.0		
110	262.370	6299.0	50	24.7655	500	42.0	99	6158.0	30	0
111	262.740	59.6	17	1.8043	124	46.0	20	10.0	45	
112	264.230	341.7		0.1239		41.5		300.0		
;13	269.110	130.0	50	1.0409	1400	42.0	95	86.0	56	
114	269.540	71.8	28	2.8750	120	40.0	33	28.0	34	2
115	272.620	91.6	11	20.7200	36	33.0	20	31.0	13	1
116	274.800	791.8	50	6.9398	140	42.0	99	736.0	40	
117	275.570	149.1	20	17.3990	43	54.0	37	72.0	27	1
118	277.230	5299.0	50	4.4613	500	42.0	99	5240.0	50	0
119	279.590	111.0	7	5.2742	30	34.0	20	56.0	13	0
120	202.920	85.0	7	18.7370	73	49.0	10	11.0	14	1
121	205.730	342.5		0.0496		41.5		300.0		
122	268.000	8498.0	50	7.1380	503	42.0	99	6428.0	87	0
123	208.300	341.5		0.0397		41.5		300.0		
124	292.330	114.5	10	2.8849	41	31.0	34	72.0	17	(0)
125	296.400	81.2	15	2.4239	40	40.0	34	30.0	52	111
126	29B. 590	73.4	10	7.8320	39	43.0	15	20.0	23	I
127	301.810	108.0	6	13.5320	37	42.0	19	48.0	17	1
128	308. 200	150.3	20	2.1810	62	48.0	85	98.0	45	
129	309.010	84.9	14	10.4590	35	47.0	18	24.0	18	1
130	311.120	B2. 2		0.3619		41.5		40.0		
131	313.620	61.5	10	10.1220	35	38.0	13	10.0	15	1
132	316.660	73.1	14	3.8416	400	43.0	25	25.0	45	1
133	320.000	5081.0		10.0000		41.5		5000.0		
134	321.750	341.6		0.0991		41.5		300.0		
135	323.360	159.8	10	14.9700	39	53.0	24	47.0	18	(0)
136	325.300	104.4	10	6.3449	40	50.0	25	46.0	27	
137	329.650	1999.0	50	2.6767	500	42.0	99	1947.0	40	0
130	333.910	67.4	10	4.0845	36	52.0	14	10.0	51	1
139	335.530	82.6	7	13.1850	26	47.0	11	18.0	17	1
140	337.350	74.0	10	5.9530	35	55.0	12	11.0	32	1
142	339.240	80.7	15	2.4388	40	37.0	33	34.0	34	0
142	343.180	74.6	80	11.7430	33	41.0	99	18.0	16	1
143	346. 560	1200.0	50	2.5776	118	42.0	99	1143.0	55	0
144	350.300	97.3	6	15.9860	28	41.0	11	35.0	10	
145	352.820	68.8	19	2.8948	40	48.0	21	17.0	20	111
146	754.890	79.1		0.2974		42.5		37.0		
147	357.870	5099.0	50	2.2306	500	42.0	99	5949.0	50	0
148	359.990	153.6	20	0.8229	110	32.0	99	80.0	55	
149	361.280	341.8		0.1636		41.5		300.0		
150	364.000	3051.0		5.0000		41.5		3000.0		

TABLE VI (continued)
${ }^{239} \mathrm{Pu}$ evaluated resonance parameters

	$\begin{gathered} E \\ (\mathrm{eV}) \end{gathered}$	$\underset{(\mathrm{mev})}{\Gamma_{\mathrm{t}}}$	$\begin{gathered} \varepsilon \\ (8) \end{gathered}$	$\underset{(\mathrm{meV})}{ }$	$\left\|\begin{array}{c} \varepsilon \\ \left(8_{0}\right) \end{array}\right\|$	r_{γ} (meV)	$\begin{gathered} c \\ (\mathrm{y}) \end{gathered}$	$\underset{(\mathrm{mev})}{\mathbf{r}_{f}}$	$\begin{aligned} & \varepsilon \\ & (8) \end{aligned}$	J
15λ	366.000	4999.0	50	2.6767	500	42.0	99	4947.0	50	0
152	368.330	162.0		0.2974		41.5		120.0		
153	370.310	89.9	20	1.9332	41	57.0	46	29.0	83	
154	371.720	3399.0	50	5.7005	500	42.0	99	3335.0	50	0
155	375.020	42.9	28	1.9828	75	29.0	36	6.0	42	0
156	377.100	99.9	20	1.4771	100	58.0	29	39.0	37	
157	378.040	224.3		0.9319		41.5		181.0		
158	382.430	129.6	50	0.3123	240	43.0	99	66.0	75	
159	384-260	108.6	30	4.2382	58	28.0	55	75.0	34	1
160	385.900	999.7	50	0.6540	500	42.0	99	955.0	50	0
161	389.510	74.1	19	1.0380	90	51.0	31	21.0	64	
162	391.520	124.8	19	0.9369	100	55.0	65	68.0	54	
163	394.430	106.4	13	4.8479	30	48.0	22	52.0	20	1
164	396.910	108.1	20	1.5713	64	44.0	36	61.0	29	
165	401.560	219.2	10	14.4240	40	46.0	39	154.0	15	1
165	404.240	155.0	15	17.2500	37	56.0	24	76.0	18	1
167	406.030	321.2		1.3532		41.5		277.0		
168	406.950	331.4	50	0.7237	410	30.0	99	300.0	50	
169	408.710	114.9	50	0.9616	150	55.0	53	58.0	50	
170	412.310	144.8	10	6.6473	47	66.0	20	70.0	19	1
171	415.660	81.0	20	2.6239	74	50.0	23	7.0	54	
172	417.600	230.3	24	1.1896	140	50.0	99	178.0	57	
173	419.850	139.0	18	4.5150	50	59.0	32	74.0	27	λ
174	425.670	341.8		0.1983		41.5		300.0		
175	426.370	6996. C	50	7.3363		42.0	84	6925.0	50	0
176	429.640	779.6	50	2.8056	140	42.0	99	732.0	30	
177	432.290	3490.0		3.4699		41.5		3'43.0	50	
178	432.730	341.0		0.7634		42.5		298.0		
179	437.760	61.7	25	2.0026	74	49.0	28	10.0	58	(I)
180	438.720	60.9		2.1612		55.0		3.0	90	I
181	440.070	341-9		0.2082		41.5		300.0		
182	442.410	411.8	13	5.2048	50	44.0	87	347.0	17	0
183	449.. 50	133.4		0.9914	100	4:.5		90.0	55	
184	451.350	59.1		10.4590	50	4.1 .5		3.7	47	1
185	454.450	402.1		0.3470		41.5		360.0		
186	455.730	615.2		19.6790	60	41.5		495.0	32	0
187	457.330	170.5		5.5022	60	41.5		118.0	35	
186	458.800	79.1		3.4203	60	41.5		33.0	40	1
189	461.260	97.4		1.7349	100	41.5		52.4	46	
190	462.640	128.2		0.3966	300	41.5		86.0	85	
191	468.200	2092.0		3.2220	150	41.5		2045.0	30	
192	470.000	5085.0		7.4355	300	42.5		5030.0	50	
193	473.100	55.6		3.0733	60	41.5		10.0	57	1
194	475.310	582.0		2.7759	250	41.5		535.0	30	
195	476.900	1993.0		1.3383	400	41.5		1350.0	50	
:96	479.240	201.6		0.0991		41.5		160.0		
197	484. 150	59.9		1.9332	80	41.5		14.5	90	
198	407.290	224.7		1.6358		41.5		180.0		
199	487.810	226.6		2.5776		41.5		180.0		
200	490.650	2280.0		9.9140	60	41.5		2220.0	30	

- 259 -

TABLE VI (end)
${ }^{239} \mathrm{pu}$ ovaluated resonance parameters

	$\begin{gathered} E \\ (\mathrm{ev}) \end{gathered}$	$\begin{gathered} \Gamma_{t} \\ (n o v) \end{gathered}$	$\left\lvert\, \begin{gathered} \varepsilon \\ (\delta) \end{gathered}\right.$	$g \Gamma_{n}$	$\left\lvert\, \begin{gathered} \epsilon \\ \left(x_{0}\right) \end{gathered}\right.$	Γ_{y}	$\begin{gathered} c \\ 131 \end{gathered}$	$\begin{gathered} \Gamma_{f} \\ (\operatorname{sev}) \end{gathered}$	$\begin{array}{\|c\|} c \\ (B) \end{array}$	J
201	1,94.100	116.0		3.4203	60	41.5		70.0	41	1
202	495.630	202.6		0.5948		41.5		180.0		
203	500.500	76.9		2.5200	180	41.5		32.0	65	(1)
204	502.660	85.3		8.8234	100	41.5		32.0	43	1
205	505.720	4 2.3		0.4461		41.5		400.0		
206	508.220	692.1		0.3470		41.5		650.0		
207	509.740	250.1		38.7630	160	41.5		157.0	45	1
208	511.520	3353.0		6.3945	500	41.5		3300.0	50	
209	515.160	482.4		0.4957		41.5		440.0		
210	516.570	321.7		0.1487		41.5		200.0		
211	517.930	362.1		0.3470		41.5		320.0		
212	520.220	99.3		11.1030	130	41.5		43.0	38	(1)
213	524.210	91.0		22.7520	200	41.5		20.0	40	1
214	525.400	10650.0		59.9790		41.5		10500.0	50	
215	526.000	94.0		0.7435	500	41.5		51.0	90	
216	527.3E0	59.0		0.7435	600	41.5		16.0	90	
E17	530.570	243.01		21.8250	200	41.5		75.0	60	0
218	539.170	55.2		6.4764	150	41.5		2.4	88	1
219	540.710	85.5		1.9328		41.5		40.0		
220	54, 1.650	89.4		3.96"5		41.5		40.0		
221	543.080	58.1		8.72ヶ3	250	41.5		5.0	46	1
222	5185.050	1178.0		8.6747	90	41.5		1!20.0	30	
223	547.140	843.2		0.8523	600	41.5		800.0	50	
224	549.670	60.2		0.7738	70	42.5		7.0	49	1
225	553.500	61.3		8.4269	170	41.5		3.0	50	
226	554.130	1232.0		25.8750	50	41.5		1140.0	50	
227	555.720	446.3		2.4289	500	41.5		400.0	50	
228	559.160	95.5		20.2240	60	41.5		21.0	36	1
229	562.840	274.5		26.5690	60	41.5		180.0	50	
230	564.030	53.2		4.8578	120	41.5		2.0	53	
231	565.610	60.6		7.0389	70	41.5		5.0	38	
232	571.110	83.0		6.3945	70	41.5		33.0	38	111
233	574.0C0	417.1		39-4080	60	41.5		220.0	30	101
234	575.770	CB.9		29.5930	80	41.5		8.0	40	1
235	578.000	80.01		1.2392	300	41.5		36.0	90	
236	575.040	55.33		5.1057	85	41.5		7.0	39	1
237	584.810	322.1		0.3470		41.5		280.0		
238	588.090	62.7		8.3773	45	41.5		10.0	38	(1)
239	589.940	441.9		0.2478		41.5		400.0		
240	593.520	40.7		1.5862	150	41.5		4.0	99	
241	597.350	55.0		6.3245	150	41.5		5.0	66	1
242	598.040	5976.0		10.4090	200	41.5		5915.0	50	
243 244	604.010	67.0		10.6380	100	41.5		3.5	44	
244	607. 640	50.8		7.2372	60	41.5		7.7	39	
245	609.290	63.7		11.6480	75	41.5		6.6	41	1
246	612.820	64.7		4.3621	65	41.5		14.0	39	
24it	620.640	50.7		8.8234	60	41.5		5.4	40	1
2458	022.550	61.0		7.2887	60	41:5		9.8	39	
249	625.170	56.6		5.8492	65	41.5		7.5	45	[13
250	628.210	52.7		1.0905	120	41.5		9.0	65	
251	632.970	3974.0		28.8530	90	41.5		3800.0	30	
252	636.470	65.4		3.9655	120	41.5		16.0	65	
253	639.280	56.7		6.8902	60	41.5		6.0 480	47	2
254	641.420	522.1		0.3470		41.5		480.0		
255	644.940	50.3		4.3622	70	41.5		3.0 200.0	99	
256	846.650	242.7		0.7435		41.5		200.0 19.0		
257	658.290	242.4		60.4750	100	41.5		19.0	45	1

IV - CONCLUSTON

In this paper we have examined a set of parameters that may be used for calculatirg pu 239 cross sections from 4 aV to 660 eV by the single level formallsm. We have also proposed the Saclay multi-ievel parameter oet between 4 eV and 205 eV in the case it should be found necessary to allow Ear the interferences in wide cesonances. There arc probably other problens needing to be examined, particularly the inter normalization of the various eross sections existing in the ifterature. It is obvious, for instance, that a normalization of a Eission cross section will lead to a change in the corresponding fission widths, namely, to a change in the 0 waiues, This is why an evalvation of the kind carricd out by $0 . D$. Simpson and F.B. Simpson is worthy of further consideration, taking into account several total, fission and capture cross sections and the fact that the resonance spins are known.

REFERE:CES

(Ad 68) D.B. ADLER and F.T. ADLER, COO-:546-7 (1968)
(As 67) :1. ASGHAR, Nuclear data for Reactors, I.s.E.A. Vienne, Vol. II (1967) 195.
(B1 70) J.RLONS et al, Nuclear data for Reactors I.A. E.n. サienme (isioj. yoi I - page jij.
(an 58) 2.M. antuIsGen et al, Second Geneva Confereace, Vol $: 5$ - pige 127, Paper P/687
(De 70) 5. DERREE et al, Nuclear Data for Reactors I.A.E.A. Vienne (1930), Vol I - page 513.
(0e 7Ja) M. DERRIEN, These gerie A $n^{\circ} 1172$ - orsay (1973).
(De 73b) A. DERRIEN, note CEN-N 163日, ERNDC.
(E2 66) J.A. EARPRLL, Phys. Rev. 165 (1968) 1371.
(Gw 71) R. Gudil ct al - O.R.N.L. (July 1971).
(ia 69) G.O. JNQES, J. Nacl. Er. 22 (1968) 263
(01 71) T. 3idOR and G. LE COQ, Note CEA-N 1484, ENAGC (E) 138 "ML".
(Sa 73a) G. De SNOSOUNE and R.B. PEREZ, NGe. Sci. and Eng. 52, 372 (1973).
(Sa 73b) G. De SAUSSURE and R.b. MERER, Nue. Sct. anct Eng. 52, 412 (1973).

(Sh 65)	E.R. SHINK et al, rapport LADC - 7620
$(\mathrm{Si} \mathrm{72)}$	O.D. SIMPSON and F.B. SIMPSON, Report NNCR1045.
(Tr 70)	3. TROCHON et al, Muclear Data for Reactors I.A.E.A. Vienne (1970) Vol. I - page 495
(Ut 65)	C.A. UTTLEY, Int. Conf. on the gtudy of nuclear structure with neutrons, Antwarp (1965) $\mathrm{n}^{\circ} 98$.
(Va 73)	R. VANDENBOSCH et J.R. HUIZENGA, "Nuclear Fission", Academic Press, NY, 1973.
(Vo 60)	c. VOGT, Rhys. Rev. 118 (19\%0) 324.

THE MULTILEVEL EREIT-WIGNER FORMALISM NITH OSPPLER BRORDEUING APPLIEO TO THE Pu 239 RESONARCES

$$
p^{i}
$$

E. Menapace, M. Matta

PAPER presented at the "specialist sceting" on "Pesonance paramerers of forrile nuclei (${ }^{232}$ Th $,{ }^{23 B_{U}},{ }^{240_{\mathrm{Pu}}}$) and ${ }^{239} \mathrm{Pu}$ " held it. Saclay 20-22 May 1974.

1. INTRODUCTICN

A two step procedure is required in order to prepare the neutron cross sections in the resonance region, tc be utilized by the reactor physicists:
i) the analysis of experimental data
ii) the calculation of the cross section profile functions.

In the first step, a good fit of the experimental data iaplice the use of an adeouate formaliso besed on a theory of the nuclear reso nances.

For consistency, the same formalism mugt be uged in the second step.

It is well knem that meny difficulties are oncomporen ro carry out the full procedure, the main of whici are:
i) the complexity of the exact theoretical expressions which implies the use of some approximations;
ii) the great number of free garameters entering the formulas not linearly;
iii) the uncertaintics in the experimental data which generally make unuseful to adopt a sophisticated formalism.

Foi theoc reasons, cimified farmulns are used, which are a good compromise between the most rizorous formalian and practical exigencies of reactor physicists.

The formalismbcurrently utilized for the repregentation of the resolved resonances are:

1) Breit-Wifner oingle-level formula (SL)
2) Breit-Wigner multilevel formula (HL)
3) Reich-Moore formalism (RM)
4) Adler-Aaler Eormalian (AA).

A critical review of the advantages and disadvantages of such Eomalismshas already been presented in a previous meeting on neutron nuclear data evaluntion /1,2/. The conclusions are still actual and we want co recall the main oboervations there reported, useful to justify the present work.
\therefore The Si formaliom is a too poor approximation for all the cases where the ratio $\bar{\Gamma} / \overline{0}>0 . \mathrm{i}$. Then, it does not work properly for figoile nuclei and for light nuclei (Fe, $\mathrm{Hi}, \mathrm{Cr}, \ldots .$.) in the ten leverang'. As adrantage, the Doppler broadening ' x^{\prime} performed quite cacily through ete analytical functions $\dot{\psi}$ and X, so that the formalist is uaed as a firse guess in nearly all cases.
2. The MI formalism is gotetimes used also for non-fissile nuclei, taking into account only the resonance scattering interferences /3/, /4/: or it is used for the fission cross section calculations in the Sailor versior /5/, which was deduced from the Feshbach et al. approximation $/ 6 \%$. The formalisa would be very convenierat, because it use she physi*ally meaningful R-matrix parameters. The following diaddvantages can be attributed to the eechod:
a) It may not yield an accurate deocription of the crose sections in the region whore the widths are larger than the spacings (6/, 17/.
Nevertheless, under this regard; it can be observed that, in applicaticns, she approximate all version of the interference cern between two resonances, has been found to tiffer zroc the Lane-Thoms full approximation / $/ 8$ by leas than the experimental error /5/. /9/.
b) The femalise if settied down for the most comonly used approximation in which a great numer of levels but few channels are conaidered, It does not seed to be feasible if the approximation is needed in which fow levels but a great number of channe l_{a} are considered $/$ IO/.
e) In our information, a generalized analytical Doppler brondening fortalis: has not been given for all the reactions. The problee has been solvea for the one-channel fission reaction by Cook /9/. A correoponding pr:sedure for the elaseic reaction, including both reconance to potential and resenance co reoonance interference cerms, has not been found in the literature.
3. The RM formalian is convenient fur the analgsis and ealculation of the fission crose scetion. The r-ratrix paraccecrs are used. Statting frow the Wigner-Eisenbud fomalisn /ll/ the order of the leve: matrix to be invertad is reduced to the number of retained interfering channels by using the simplification coning from the
stacistical hypothesis for the radiation widths. In our opinion, the main disadvantage of the formalism lies on the fact that numerical Doppler broaiening is needed, because the annlytical con volution with the maxwellian could not be ticne till now.
4. The AA formalism, by means of a previous diagonalization of the A level matrix, has the property that the Doppier broadening can be performed analytically through the usual ψ and x functions. 3ut the R-aatrix real parameters are lost and any conversion to these ones from the new complex and energy dependent parameters is quite cifficult. Moreover the assessment of interfering levels cannot be guessed "a priori".

The above picture on the status of the formalism seems to indicate as convenient, in many cases, the use of the ML fomaliam which gay be a good compromise between the exigency of simplicity for reactor calculations and the requested accuracy of the fit which would be, as renarked above, generally better than experimental precision.

For these reasons, the Authors were interestad in the arrangement of the formalism in order to obtain analytical Doppler broadening for all the reactions.

In fact, the main disadvantage of the numerical broadening is that it may be quite easily arong if not sufficiently fine tabular description of the resonant cross section is given. The fine tabulation is hard to be carried out, due to the game nature of the resonance funccion which requires a high number of pointe to be well described.

The arrangement started from a zeduction of the exiscing formula in t.actix form. The main advantage of such a representation is a croos section factorization in which:

- one factor is an energy independent matrix with the elewents containing the product of the reduced widths γ 's ;
- another factor is an energy dependent matrix which does not contain the reduced widthe.

As a eonsequence we have:
i) The role of the interference is more evident and easily aesigned;
i引) the aign attribution to the reduced widths, in all the passible permutatio-s, is wore easily generated /12/.

The first version of the fomalism so asaessed ha been presented at the Karlaruhe Meeting on structural materials / $13 /$. Any reaction and both interference type were included (i.e. for elastic reaction, the resonance to potential and the resonance to resonance interference teros).

In the last veraion, which will be described by us in a separate report /14/, an analytical expression has been obtained for the M Joppler broadened cross sections which make use of the well known is and x functions.

Here we want now to describe sone results of the application of the ML formalism to the multilevel m-macrix parameters of Pu^{239}.

The Farrell set / $15 /$, with two open fission channels in the interval between 14 to 90 eV , has been used. It consists of 47 resonances of which 32 have been asgigned to the l^{*} spin state and the remaining 15 :0 the 0^{+}state.

The fission width of each resononce was put entirely in one channcl or in the other one, as justified by che Author, This fact made possible to use our SL code, essentially prepared for the case of one open fission chennel, which can be casily adapted to the two-channel calculation, in this special case.

Our choise of parameters does not involve any judgement on their validity with respect to other discussed setg (e.g. 16/./17/ and references there reported) which coull not be used with our codf, in absence of the condition of only onc open fission channel, at each level.

The ain of application was to solve some questions arising when
the ML formalism is used.
The questions are the following:
i) The sensirivity of the fiosion cross section, at different energiea, duc to any oolected sequence of aigns for the reduced width producto.
ii) The variability with the cenperature of the SL and ML cross section profile functiono.
isi) The dependence upon dilution and temperature of the group SL and \& cross aectianc.

Let wo examine auch problems in some detail.
i) Cross eection dependence upon the set of the reduced width signs

According to Bethe"s assumption (see /B/, pag. 302), when a large number of levels must be treated, the average cross section, within a finite energy interval. can be obtained assuming rindow aigne for the reduced uidtin amplitudes.

On the ofher hand, the consequence of randorf woice of the signs on the cross section values at any given energy, till now were not examines by calculations. With respect to the randon choice of signs, it will therefore be interesting to calculace:
a) the amount of meertainty in the cross section vaiues and its variaioility as a function of the neutron energy:
b) the difference between the arithmetic mean of the cross section values at fixed energies and the corresponding SL values, which does not depend upin the y gigne;
c) Che search for the distribution density of the cross section values at any fixed energy point.

In order to solve chese questions, it has been calculated - at four energies - the frequency diatributions of the cross section within the range determined by a sample of 1000 different permutations of the γ signs (the total number of permutations is 2^{46} for 47 resonances f12/).

The frequency hystograms are shown in figs. 1 to 4.
The main statistical quantities of such digtributions are given in cable 1.

The folloring coments can be made:
a) The chaice oi signs of the reduccil width amplitudea may have a great influcnce upon the results. If the choice is randam, the cross sectíon uncertainty is lorgely variable with the energy. the dispersion coctificient ranges, in our examples, from 1.75% at a resonance energy to a maximum of 93.137 in the energy inter val between two resonance peaks.
OE course, only the expericental values lying within the uncertainty band can be satiafactarily approricated by mans of a proper choice of the signs. In the other cosce, it oeems reaoon able to change the resanano parameters.

The coan value of the frequency digtribution always resuled to be equal to the $S L$ value, at each energy and temperature. It has been previougly observed that, if the interference tems "contribute constructively at one energy, they will contribute degtructively - in roughty equal measure - at soce other energy" /10/. /12/. Fron the present resule, cne can infer that a similar fuil compensatior exists, with regard to the rhange of signs, at each fixed energy and for any temperature.
ii) Temperature dependence of the ML and SL cross sections

The Pu^{239} fission, elastic and capture cross sections have been calculated from the Fartell's paraceterg in the range $14-90$ ev at 0 , 300,900 and $2100^{\circ} \mathrm{K}$ temperature degrees.

Follouing a previous work conceming calculations of elastic cross section at $0^{\circ} \mathrm{K}$ emperature for structural materials /13/, both $M L$ and SL forcalise have been used again for the fission and elastic crogs sections, in order to estimate the error arising from the applica tion of the SL formalise to Maramerers for different tetperatures.

In the figures at the enc of the paper the differences ML-SL are ploted.

Looking at the results, sore relevant local differences between ML and SL curves can be observed. However, a remarkable absoiute reduction and smoothing of such differences were obtained with the increasing of the tetperature. Moreover, the difference in the cean, over energy intervals including pany resonances, tends to diminish and reduces here to the relative value 2.637 over an interval including all the reasnances (10 ill0 cV). By considering the Farrell set of y signs as a random onc, rteBethe's assumption mans that, by the random choice, a convergence to the SL reoults is obtained in the mean for an increasing nuther of resonances.
(ii) Titperature and dilution dependence of the mland SL proup crose

bectiong

lt may be itportant for reactor calculations to compare the change, with dilution and tesperatuze, of both the SL and ML group cross sections.

The formalism comonly adoped by reacto phyaicista is the single level one, sometices corrected with a background term / $4 /$.

In order to verify the hypothesis that a temperature independent background can be retained when large groups are considered, in the present work this term has been assumed to be equal to the difference ML-SL at $0^{\circ} \mathrm{K}$ degrees.

The comparison among AL , SL and SL+ "background" (SL•Bg) fission and total group cross sections in the Rusaian library (ABBM) schema, is shown in tables 2 and 4 respectively, as function of the dilution $\left(O_{0}\right)$ and temperature (T) values therein considered.

As expectec, because of the self-shielding effect, the relative differences between $\because \mathbb{L}$ and SL cross sections decrease with the increasing of the temperature and, more appreciably, of the dilution. In table 3 the percent differences, for the fiesion cross sectien, are given. The same behaviour has been observed for the total cross aection, with regard to the dilution parameter σ_{0}, thile the temperature dependence becomes unsignificant.

It can be seen in tables 2 and 4 that, by the addition of the background term to the SL cross eection, the relativ: differences [(SL+ +g$)-\mathrm{ML}] / \mathrm{ML}$ becomen negligib'e.

In any casc, vith the fol 1 parameters, the SL fcronlism gives rise co an overestimate of te group eross ocetic...

CONCLUSIONS

The ML formalism, set up vith the analytical Doppler broadening, can be considered to be suitable, i. I large number of caoes, for reactor calculaticas. In out opinion, the fiagion crose aection can alao be treated cisecesafully, if no more than one or two partial fibsion widehs are asoum for wich reaction.

The lication of the formsism to the Pu^{239} resonences had ohow, prelicinarly, come itportant resules, the main of which are:

1) The great variability of the fistion, and concequently of the total crecs section, with the choice of the y signa. An investigation co find the dibtribution law va. encrgy, enpirically found with the histograzts of fige. 1-4, would probably be very ugeful for the cross section fits.

Significane veriability of the ois roscopic differences M-SL With the terperature was observed, in the present calculations. Then, with the above defined "background" term, the assmption:

$$
\mathrm{SL}+\mathrm{Bg} \approx \mathrm{HI}
$$

may introduce non-negligible errors, whenever microscopic or finc group croos oections are required (e.g. Monte Cario, MC ${ }^{2}$ calcularsons, ere..).
3) The varidbility of the differences M-SL are reduced in the mean, if large group croso sections are considered, as in the ABBN achera. Then the condition SL+BgrmL is satisfied in ABBA i- oup calculations with the ossumed Pu^{239} parameters. If generally confirmed, chis result oight be of great practical importance in the applicationo.

ACKNONLEDCRENT
The authors are greatly indehted to Mr. T. Martinelli for his cnctribution to this worl in prograrming the eochine codes.

REFERENCES

/1/ Neutron Nuclear Data Evaluation - Techidrep.146-IAEA-Vienna 73 p. 107
/2/ P. Fibon: Working Paper submited to IAEA Panel on Evaluacion-Vianna 1971
/3/ K. Gregson et al.: AEEK-M 517 (1955)
/4/ ENDF 102 - vol.I - Appendix D (1570)
/5/ V.L. Sailot - Gen. Conf. vol.IV, 199 (1955)
16/ H. Feshbach, C.F. Porter and V.F, Keisskopf: Phys. Rev. 96, 2, 448 (1954)
/7/ C.f. Reich and M.S. Moore: Pr;s. Rev. 111, 3. 929 (1958)
18/ A.M. Lane and R.G. Thomas: Rev, Med. Phys. 30,2,330 (1958)
/3/ J.L. Cook: Austr.J.Phys. 20, 67 (1967)
/lo/ E. Voge: Phys. Rev. 112, 1, 203 (1950)
ill/ E.P. Wigner and L. Eisenbud: Phys. Rev. 72, 29 (1447)
/12/ M. :orta: CNEN report RT/FI(72)5?
fl3/ I, Martinelli et al: Paper presented ar Karlsruhe meeting on "KeV caprure cross section in btructural material" (B-9 May 1973)
/14/ PIUME code version II - CNEN report in prese
/15/ ̇.A. تarre11: Phys. Rev. 165, 4, 1371 (1968)
(16/ Hi. Derfien ct al.: C:-26/61 Helsinki LAEA Conf, on Nuclear Data for Reactors (1970)
/17/ H. Derrien: EAMDC(E) 158 "L" (1973)

$\begin{gathered} \text { Exerg } \\ \text { (0.6) } \end{gathered}$	$\begin{aligned} & \text { Sarge } \\ & \text { farngy } \end{aligned}$	$\begin{gathered} A \\ : \tan \\ (x=50) \end{gathered}$	$\begin{gathered} f \\ \text { Kode } \\ \text { exacis } \end{gathered}$	c Standard deviarion (barns)	Skemeas $(A-D) / C$	$\begin{aligned} & \text { Disperaion } \\ & \text { coufficient }(g) \\ & \text { c/A } \end{aligned}$	Nearcse rebonances (cV)	$\begin{gathered} \text { FarrelI'o } \\ \text { value } \\ \text { (barns) } \end{gathered}$
36.75	4.86	0.95	0.1827	0.88	0.87	93.13	35.47 ; 37.25	0.233
41.50	45.2B	E5.4	71.9776	13.83	1.04*	16.00	41.43 ; 41.72	97.35
64.58	10.00	119.9	118.4685	2.10	0.63	1.75	reaonance level.	118.368
$6 \mathrm{~B}, 30$	124.70	110.6	77.1293*	30.03	1.11*	27.15	$63.16 ; 65.40$	109.04

- Sus-ugiondal digtributicns; she cedes have been assured to be in the maximum peak (gee figb. 2 and 4).

TABLE 2
FISSION CROUP CROSS SECTION OF Pu ${ }^{239}$ IN TIE RESOLVED REGION (ABEN WEICHTING FLUX AND REF./1S/PARANETERS) DOPPLER BROADENED

BARN LNITS

$\begin{gathered} E \\ \text { loder } \\ (\mathrm{eV}) \end{gathered}$	E upper (eV)		0	10	10^{2}	10^{3}	∞	FORMULS.	GROUP No
10.	21.5	300	$\begin{aligned} & 7.48 \\ & 5.20 \\ & 5.23 \end{aligned}$	$\begin{aligned} & 9.70 \\ & 7.31 \\ & 7.34 \end{aligned}$	16.97 16.31 16.31	37.99 35.08 35.08	50.98 48.58 48.48		20
		900	$\begin{aligned} & 7.65 \\ & 5.38 \\ & 5.42 \end{aligned}$	$\begin{aligned} & 9.97 \\ & 7.59 \\ & 7.64 \end{aligned}$	$\begin{aligned} & 19.80 \\ & 17.16 \\ & 17.21 \end{aligned}$	39. 50 36.77 36.72	51.56 49.14 49.01	$\begin{gathered} \mathrm{SL} \\ \mathrm{ML} \\ \mathrm{SL}+\mathrm{Bg} \end{gathered}$	
		2100	$\begin{aligned} & 7.90 \\ & 5.64 \\ & 5.70 \end{aligned}$	10.38 8.03 8.10	$\begin{aligned} & 20.95 \\ & 18.37 \\ & 18.38 \end{aligned}$	41.06 38.81 38.19			
21.5	46.4	300	$\begin{aligned} & 3.69 \\ & 2.71 \\ & 2.73 \end{aligned}$	$\begin{aligned} & 4.61 \\ & 3.70 \\ & 3.72 \end{aligned}$	$\begin{aligned} & 8.28 \\ & 7.51 \\ & 7.52 \end{aligned}$	$\begin{aligned} & 16.27 \\ & 15.25 \\ & 15.27 \end{aligned}$	$\begin{aligned} & 21.67 \\ & 21.01 \\ & 21.03 \end{aligned}$	$\begin{gathered} \mathrm{SL} \\ \mathrm{ML} \\ \mathrm{SL}+\mathrm{B}_{\mathrm{B}} \end{gathered}$	19
		930	$\begin{aligned} & 4.04 \\ & 3.05 \\ & 3.07 \end{aligned}$	$\begin{aligned} & 5.15 \\ & 4.22 \\ & 4.23 \end{aligned}$	9.44 8.64 8.62	17.69 15.74 16.72	22.21 21.54 21.54		
		2100	$\begin{aligned} & 4.46 \\ & 3.43 \\ & 3.45 \end{aligned}$	$\begin{aligned} & 5.76 \\ & 4.78 \\ & 4.80 \end{aligned}$	$\begin{array}{r} 10.72 \\ 9.86 \\ 9.87 \end{array}$	$\begin{aligned} & 18.92 \\ & 18.13 \\ & 18.13 \end{aligned}$	22.50 21.83 21.91		
4.6:	300.	300	$\begin{aligned} & 18.73 \\ & 15.73 \\ & 15.02 \end{aligned}$	22.33 18.95 10.95	$\begin{aligned} & 36.33 \\ & 34.16 \\ & 34.13 \end{aligned}$	$\begin{aligned} & 62.27 \\ & 61.55 \\ & 61.59 \end{aligned}$	$\begin{aligned} & 89.31 \\ & B B .77 \\ & 6 B .85 \end{aligned}$		10
		930		$\begin{aligned} & 23.31 \\ & 19.69 \\ & 19.87 \end{aligned}$	$\begin{aligned} & 38.07 \\ & 35.93 \\ & 35.90 \end{aligned}$	$\begin{aligned} & 64.55 \\ & 64.02 \\ & 63.95 \end{aligned}$	$\begin{aligned} & 89.53 \\ & 89.01 \\ & 89.09 \end{aligned}$	$\begin{aligned} & \mathrm{SL} \\ & \mathrm{H} \\ & \mathrm{~L}+\mathrm{D}_{\mathrm{B}} \end{aligned}$	
		2100	$\begin{aligned} & 20.38 \\ & 16.81 \\ & 16.80 \end{aligned}$	$\begin{aligned} & 24.63 \\ & 21.26 \\ & 21.24 \end{aligned}$	$\begin{aligned} & 40.33 \\ & 38.15 \\ & 38.16 \end{aligned}$	$\begin{aligned} & 67.15 \\ & 66.87 \\ & 66.55 \end{aligned}$	$\begin{aligned} & 89.72 \\ & 89.21 \\ & 89.29 \end{aligned}$	$\begin{gathered} \text { SL. } \\ \mathrm{ML} \\ \mathrm{SK}+\mathrm{B}_{\mathrm{E}} \end{gathered}$	

 bYOM TABLE 2

TABLE 4
: fal (abBN-type) GROUP CROSS SECTION IN THR RESOLVED REGION FOR Pu^{239} (ABBN WE IGGTING FLUX AND REF./15/PARAMETERS)
bark Units

 Gis - Sircte Invol.
vo a Mincilovel.

FIGURE CAPTIOA:S

Frequency higtograms of the Pu^{239} fission cross section at differen. energict, ob:ained by 1000 randow permutations of signs (\pm) of the reauced widths. The absolese values of Farrell's parameters /15/ were used.

FIC. 1 - neutron energy Ean6.35 ev
FIG. 2 - " " E=41.50 eV
FIG. 3 - " " Eャ44.51 eV
EIG. 4 - " " Eaf5.30 ev

FIG. 1

FIG. 2

PYG. 3

FIG. 4

CROSS SECTIONS

NL-SL differences of Pu-239 fisgion and elastic cross sections from Farrell's parameters /15/ in the interval $10: 100 \mathrm{eV}$ at different temperatures.

FISSION PU-2S9 T=0 DIFFERENCE ML-SL

- 882 .-

!

the temperature cuefficients in THE THERIAL KEACTCRS

G. LE COQ et P. RDUSS

The temporature coefficient if a reactor is defined as the logarithmic derivative of the multiplication factor k with respact to the temperature :

$$
\alpha=\frac{1}{k} \frac{\partial k}{\partial T}
$$

It is genoraly sxprossed in "pen per degrea".

Experiment-calculation comparisuns

Some ecmparisons have been eade for graphite or wat 3 moderated lattices : it appears a discrepancy of sbout $2 \mathrm{pcm} /^{\circ}$ (calculation < experiment) at roan temparature. This difference dacreases at higher temperature. Notice that sometimes tho maasurements can bo mado with a precision of $\pm 0.5 \mathrm{pcm} /{ }^{\circ}$.

Doppler efdect

fit urror un Lifo Doppler effect connot explain such a deviation, Indeed the order of magnitude of this offect is -2 pem f° : so it would be necessary to cancel this affect to nulility the dovjation.

Origin of the temperature coesficient in the thermal range

When the temparatura increases, the thermal neutron spectrum moves towards the higher energies. If all the cross-sections had the same law with cnargy, this shift would not produca any effect on the multiplicativn factor which is a quotient oi reaction rates. It is because that is not the case that the temparature coofficient coes exist.

Reference law for tie crosb-sections

It is practical to chose the $\frac{1}{v}$ - law" os the reference law for tho cross-sections. Then ons can say that the temperature cocfficient is due to the deviation of the cross-sections from this $\frac{1}{v}$ - law. At the first ordor the devia* tion can be characrealize by a λ parameter such that :

$$
\sigma[E]=\frac{a}{\sqrt{E}}[1+\lambda E] \quad[\theta: \text { constent }]
$$

Iff the Ereit and Wigner form a con be used one can gee that λ a $2 / E_{r}$ where E_{r} is the emargy of the resonencel. One can also characterize the deviation by the difference tetween the wasteott's E-factor and 1. A simpla calculation shows that :
(2)

$$
g-1=\frac{1}{2} \lambda E_{0} \quad\left[E_{0}=[3.0253 \mathrm{eV}]\right.
$$

Incentaintios on the calculation of the temperature cocficient

An approximate celculation of a is sufficient to estimate the incertainties. Let us consider the contribution of the raction rate R to α. It an be writton :

$$
\frac{\partial k / k}{\partial R / R} \cdot \frac{\partial R / R}{\partial T}
$$

The first factor, h, can be deduced of the neutronic balame. The secand one is.:

$$
\frac{1}{1+\lambda \bar{E}} \cdot \frac{\partial(1+\lambda \bar{E})}{\partial T}=\frac{\lambda}{1+\lambda \bar{E}} \cdot \frac{\partial \vec{E}}{\partial T} \approx \lambda \frac{\partial \vec{E}}{\partial T}
$$

Since R is proportionnel to $a(1+\lambda \bar{E}) \quad(\bar{E}:$ evarage energy of the thermal ncutrons) as shown by (1). Finally one can approximatively take :

1.0. eloppoee that the derivative of \bar{E} is the same than the derivative of the everage encray of the Maxwell's spoctrum, Therefore this contribution is :

$$
h \lambda \frac{3}{2} k
$$

and the incertainty on this contribution due to the incertainty on λ :

$$
\begin{aligned}
& \text { (3) } \Delta \alpha=\frac{3}{2} k h \Delta \lambda=13 h \Delta \lambda \\
& \left(\Delta \alpha: p c \pi / \beta^{\circ}: \Delta \lambda: e V^{-1}\right)
\end{aligned}
$$

Applications

The tablo below gives some numerical examples of thase incertainties.

- For the fisgils nuclides λ and $\Delta \lambda$ have been ovaluated by (2) from g and $\Delta \mathrm{g}$ of $[1]$.
- For ${ }^{238}{ }_{U}$ we have taken $\Delta \lambda=\lambda$ becausa a pracige measurement of the slope of ore hes never been mado [wo had studiad in [2] the implications of a possible p-wave resonance in tho thermel range for this isotipe ; the effect on α walla be small and incroase the discripancy with experiment].
- For ${ }^{240} \mathrm{Pu}$ wo have token the same $\Delta \lambda$ then for ${ }^{239} \mathrm{P}_{\mathrm{u}}$ fission.

Conclusions
－The incertainties on a appear rather big ：the discripancy oetween celcu－ lation onc experiment is not a priori surprising．
－Eor e great part the tatal incprteinty comes from the incertainty of the ceptura cross＊section of the fissile nuclides．
－The integral meesurenient of a can be precise enaugh to bring en useful informations for the knawledge of these cross－sections in the thermal range（olopes of o 应）．

Rニイジッジロご

［1］H．D．LEMMEL
Third IAEA evaluation of thermal fissicn data 1 G fantors． （1 September 1973）
［2］M．J．EASIUK－G．LE COD－P．REUSS Interfit d＇une mosure de la section afficace de copture de $1,{ }^{238} \mathrm{U}$ dens lo comoino thermique． Internal report ：CEA／SERMA n＂ 140 ＂ S°（1973）

THE LOW-ENERGY NEUTRON INDUCED FISSION CROSS-SECTION OF ${ }^{239} \mathrm{Pu}$ AND the temperature dependence of the hestcott $g_{f}-$ FACTOR

C. WAGEMANS* and A.J. DERUYTTER**
S.C.K. C.E.N., B-2400 MOL and C.B.N.M. Euratom, B-2440 GEEL

BELGIUH

Introduction

The neutron induced fission crras-section of ${ }^{239} \mathrm{Fu}$ was determined in an absolute way at the slcu chopeer facility of the GR2 high-ilux reactor of S.C.K.jic.e.N., rol in the onargy region 0.005 eV to 0.1 eV ? From this measurement an otosolute value of tho thermal fission cross-section $\sigma_{f}^{0}=1744.9 \pm 3.41$ barn was calculated. A complementary measurement wes performed at a well collimoted short filght path of the CEif Linac ${ }^{2 \prime}$. Here we detormined the relative figsion cross-gection from 0.01 eV to 30 eV . The large region o overl:p with the above mentioned BR2 measurament permitted a diract normalization to the absclute σ_{f}^{0} value obtained thare.

Both masarements were parformed with Si (Au) surface barifer setectors. The

 reaction cross-section. For a detailed description of the epparatus, the expurimentai proceoure and the treatmane of data we refer to ${ }^{1}{ }^{2}$].

In this paper wa oxaming the nost important $\sigma_{f}(E)$ measurements in the energy ragion canjidered and wh look for the onigins of the discrepancies between them. Wo furthar use aur differential cross"section date to calculate the westcott $g_{f}-$ fector in function of tho temperaiure of the Maxwellian neutron distribution.

- NFWO, University of Ghent and S.C.K./C.E.N. . Mol
* prosent adarega : INW, Proeftuinstraat, 86

B-9000 Gent. Eelgium.

The neutron induced fission cross-bection dete and the ioportance of aproper normalization procedure

Figure 1 shows the ${ }^{299} \mathrm{Pu}_{\mathrm{i}}$ nautron inauced fission crass-gection σ_{f} (E) in function af the nastron energy from 0.008 oV to 10 oV . The data balaw 0.02 oV are obtanas at the QR2 resctor 1 those ebove D. Q2 in are the Linac reaulte. Figure 2 covers the same enargy region but here ald the BR2 date are used [0.008 - 0.0717 av] ard complated with the Limac rasultg fram 0,0747 - 10 av. Figure 3 shows $\sigma_{f}(E) v e r s u s$ E from 1 oV to 30 eV.

The Lipac results ere normailzed to the integral

obtained at the $日 R 2$. This normalization method is more accurate than a simple no-malization of the ralative cross-section at thermal enargy to tha $2200 \mathrm{~m} / \mathrm{g}$ reference cross-ssetion.
 one can obtain difierent σ_{i}^{6}-values in function of the fitting procedure epplied. So they obtained $\sigma_{f}^{0}=\{742.5 \pm 3.3 〕$ barn when opplying a gtraight line fit through the data points in the regian around D. 0253 gV . With a fit of more physical natury. 1.e. a formula taking into account interference between four 1^{+}levels $\{-0.53$ oV ; $0.30 \mathrm{eV} ; 7.9 \mathrm{~L}$ ev and 11.0 eV) with the usual Areit*Wignar tarms added, and when minimizing the sum of the squares of the deviations between the exparimental points and the fit in a small region around 0.0253 eV , they obtained $\sigma_{f}^{0}=(740.7 \pm 3.3)$ barn. Egcause of the small sensitivity of the obtained $\sigma_{f_{\text {a }}}^{0}$ - value to the fitting procedure used they then calculated fits of the type $\sigma_{f} \sqrt{E}=\sum_{1=1} C_{1} \varepsilon^{ \pm-1}$ for N going from 2 to 8 . From this series of fits they feel that an error of 0.10 has to bs added to the totel error, due to the curva fitting procedure the the malghbourhood of $2200 \mathrm{~m} / \mathrm{s}$. The final value accepteo in their work is the overage valus of all fits : $\sigma_{f}^{0} \sqrt{E}=119,00$ barnov$^{2 / 2}$ leading to $\sigma_{f}^{0}=\{741,9 \pm 3.4\}$ b.

The sgme fitting prablem reappears when one neads ta determine the relative Offalue $^{\text {-valu }}$ at D.D253 ev, This smell but nat negligible "fitting effect" can be avaided by using fission integral as we did.

The great advantage of this set of deta is that the Linac ragults as well as tha deta uged for normalization are obtained with the asme besic detection techniques by the same group of physicista.

To compare thase datawith pravious rasulte obtained with other detection techaiques or by othar ways of normalization, we axamined the results of several authars.
In fable 1 the moat relevent fission intagrale $\int_{E_{1}}^{E_{2}} \sigma_{f}$ (E)dE are givon.

Tho intogralg in the lower part of this Table (E>6 eV) were obtained from an integration by tha N.E.A. Neutron Data Compilation Centre,

Sigclay (Franco) of the differential date retrieved from their files; the lowensegy integrols givan in the upper pari (barrowad from GWIN et al. ${ }^{3}$) Jare In good egrocment. The lower part of tilis table rujeals differences up to more than a factor of two setwoen the different integrals. The same differences are found back whan calct lating the resonance integrals

$$
\int_{E_{1}}^{E_{2}} \sigma_{f}[E] \frac{d E}{E}
$$

Ta determine tho, reagons far these differgnces wa first of all examined the normalization methids appiled in the differant measurements. Table 2 shows thet thoy are nearly al different. Only half of the measurement: ere direct ly nomalized to σ_{f}^{0} but different numerical values are used. All the other

So wo wanted to check up to what extent the differencesin normaitzetion procedures were responsible for the discrapant fission integral values. Therefore we looked for a convanient fiosion integral which could be t ad to renormalize the different mgagurements in the name way. Such an integral -. have a sufficiently high counting rate, thus contain one or more large resonancor. Furthermore its numerical value should nearly not be affected ty timing errors, which implies that the crosg-section at its limits must be very smalk. Finally it should cover an energy region easily atiainable by most experiments.
We found that the fiosion firtegrals
$\int_{4.0 \mathrm{eV}}^{20.0 \mathrm{Et}} \sigma_{\mathrm{f}}(E) \mathrm{dE}=(1226.3 \pm 12.2)$ bern ol^{V}
and $\int_{9.0 \mathrm{eV}}^{20.0 \mathrm{eV}} \sigma_{f}(E) \mathrm{dE}=(1146.6 \pm 10.4)$ barn eV
obtgined fram our musaurement would be very convenient. The indicated errars are composed of the error on tho primary normalization integral fobtained at the ER2\} and the error on the relative cross-section experiment (interconnection of the diffarent runs, fitting of the noutrun spactrum, background, correction, statistical errors].

Bafore renormalizing the σ_{f} - mesurments mentionad in Tsble 1, we verified their relstive bahaviour with respect to our σ_{f} - curve: Therefore we calculated the ratio of our fiseion integrals in the most interesting energy intervals to the corrasponding integrals obtained from the other masurements. These reaults are given in Table 3.

They clearly show that the ratios are constant within tha pracision of the experi-
 the ratios are about equal to 1 which means that their normailzation yialds about the same result as ours. This nearly constant ratio means that the four o_{f} - moesurements congidered have a very ginslar shape and that the differencen are mainly a normelization $\theta^{\text {ffact. The seme can be said with faspect to the integralb obtainad }}$ from the ENDF/BIIf file.

In the case of BaLLINGER et al. ${ }^{6]}$ the ratios fluctuate aignificantly but within reasanable limits. The seme can ba said about ICNATIEV'S ${ }^{7}$) regults although the fluctuations became important. The ratio for the energy intarval $9 \mathrm{eV}-20 \mathrm{oV}$ [which is indeed the renormalization factor] is about the mean value of the extreme ratios as well for BDLLINGER as for IGNATIEV. This could be an indication that the integral considered is well chosen for normalizatinn purposes.

Finally with the data of RYABOV et al.") the ratios fluctuate very strongly. It is clear that such strong discrepancies can oniy to a minor extent be explained by normalization affects ; they are probably due to systematicai errors or expoximental effects. Since the normalization of one crose-section to enothe: is ondy valuable and accurate if the normalization factar dogs not change with the energy, it has no sense to renormalize RYABOV'S data which should in fact be rejacted. In Table 4 we sumarize the numerical valuss of the fisgion integrals of Gwin, Blons Bollinger and Ignatiov after renormalization to our integral

$$
\int_{s e V}^{20 e V} \sigma_{f}(E) d E=[1045.6 \pm 10.4] \operatorname{tarn} \mathrm{eV}
$$

The original discrepancies are considerably reduced, in such e way that aur results and those of Gwin and Blans are in good agreement now over the whole energy range covered. Recently BLONS ${ }^{9}$ renomalized his date in the way propoaed by us. Campered with the ENOF/日 III results the agreanent is goad except from 350 ev to 650 eV. Also the dinta of Eollinger agree rather wal. The rosults of Ignatiev are in better agreemant now but there remains clearly a slope in his date.

Thase rogults together with the prececing cansiderations stress ance mors w fed for a reliable common normalization methiúd of all relative fission crose-section curves.

The Mestcatt g_{f} - factor in function of the cemperature
The gennral oxpresgion for tho reaction rots per atom fot a neutron induced reactian 15

$$
\begin{equation*}
R=\int_{0}^{\infty} n(v) \cdot \theta(v) \cdot v \cdot d v \tag{1}
\end{equation*}
$$

with $n(v)$ tha neutron dengity distribution in the velacity interval [u.v e du] and $\sigma(v)$ the roaction cross-sidetion.

WESTCOTT 10$]$ dofined a so-called effactive cross-section öft and a g(T) factar for a pure Maxwellfen distribution with absolute temperature T in the following way :

$$
\ddot{\sigma}(T)=\sigma_{0} \cdot g(T)
$$

$$
\begin{equation*}
R=n \cdot v_{0} \cdot \dot{\sigma}=n \cdot v_{0} \cdot \sigma_{0} \cdot g(T) \tag{2}
\end{equation*}
$$

with $n=\int_{a} n(v) d v, v_{0}=2200 \mathrm{r} / \mathrm{s}$ and $\sigma_{0}=\sigma\left\{v=v_{0}\right.$:
From (1) and (2) folla:ving expressfan for $g(T)$ is deduced :

$$
g(T)=\frac{\int_{0}^{\infty} n(v) \cdot \sigma(v) \cdot v \cdot d v}{\sigma_{0} \cdot v_{G} \cdot \int_{-2}^{\infty} n(v) \cdot d v}
$$

which givas in function of tho $=:=-\overline{5} y$

$$
\begin{equation*}
g(T)=\frac{1}{\sigma_{0} \sqrt{E_{0}}} \int_{0}^{\infty} \sigma(E) \cdot \sqrt{E} \cdot n[E] \cdot \sigma E \tag{3}
\end{equation*}
$$

with $\int_{0}^{\infty} n(E) d E=1$

$$
\therefore(E)=\frac{2 \pi \sqrt{E}}{[\pi k T]^{3 / 2}} \exp \left[-E_{/ K T}\right]
$$

$k=$ the Boltzmann conotant
$\mathrm{E}_{\mathrm{g}}=0.0253 \mathrm{BV}$.
In the case of a fiesion reaction the explicit temperature dependance $g_{f}(T)$ is derived from eq. (3) :
$g_{f}(T)=\frac{1}{\sigma_{f}^{0} \sqrt{E}} \int_{0}^{\infty} \frac{2 \pi}{(\pi k T\}^{3 / 2}} \exp [-E / k T] \sigma_{f}(E) E d E$

So the g-factor is a function of temperature and can be calculatad fram the crosssection curve o(E] in the low-energy region. Especialiy for the fisgile nuclides the g_{f} - factor is of considerable importance for the physics of thermel roactors. From equation (3) it followg that $g\{T\}=1$ for cross-gections with a $1 / v-1$ aw, So the git\}-factor is measure for the deviation from the $1 / v-1 \mathrm{bw}$. It should be stressed that $g[T]$ depends only on the shape of the aross-saction ard not on its absolute value.

For the calculation of $g_{f}[T]$ we had to extrapolete our $\sigma_{f}[E]$ date from 0 eV to O. חinge el ft.o. our first difforential data point): Therefore we fitted our $\sigma_{f}(E) \sqrt{E}$ curve from 0.0066 gV to 0.0717 GV with a polynanisel function $\sigma_{f}(E) \sqrt{E}=\sum_{i=1}^{3} c_{1} F^{1-1}$. By extrapelation this polynomich function yields the missing part of the $\sigma_{f}(E) \sqrt{E}$ curva.

Based on expression (4) we calculated $g_{f}\{T$) in thres steps with a pragram written by H. DE PUYOT ${ }^{11]}$;
$E_{f}(T)=A . \int_{0 V V}^{0.0085 E V} \exp [-E / K T] \sqrt{E} \cdot\left[\sum_{i=1}^{3} c_{1} E^{1-1}\right] \leq$

Thanks to the very small energy distence between the differential data palnts, the part of the integral (4) between 0.0086 oV end infinity cen in very good eppraximation be replaced by the second and thind termsin eq (5). The enargy limit E_{1} is introduced as a variable, and fatermines the pert of the afferantial di*a that in fact determanes g_{f}.

With expression [5] we first calculated g_{f} for T a $20.44{ }^{\circ} \mathrm{C}$ with the σ_{f} (E) data givan in fig. i which sie mainly Linse - results, This yolded $g_{f}\left(20.44{ }^{\circ} \mathrm{C}\right]=1.0522$. The Linac deta contribute for 67 : chia value.

Tho aama calculationg wera redone with the data given in Fig. 2 (mainly GR2 data). So wo obtainad $g_{f}\left(20.44^{\circ} \mathrm{C}\right)=1.0534$. The BR2 dets contribute far 86\% to this valua.

From both rasults wo deduce a final value af

$$
g_{f}\left[20.44^{\circ} \mathrm{C}\right]=1.053 \pm 0.003
$$

which suparsadeg the values givan in ${ }^{11}{ }^{2}$.
Tha orror is to a lerga oxtent due to the extrapolation ta zoro energy, for which wo adopted very conearvative errors. The first term from (5) (extrapalated term) Indaed contributeg for ebout 11 ; to g_{f} (st $20.44^{\circ} \mathrm{C}$. Ita nagnitude decreases congiderably at higher tomperatures : from 5 : at $200{ }^{\circ} \mathrm{C}$ to 0.5 at $1000{ }^{\circ} \mathrm{C}$. From 0.35 aV on the contribution is negligible at $20.44^{\circ} \mathrm{C}$. This result for $g_{f}\left(20.44^{\circ} \mathrm{C}\right)$ is in perfect agrament with IAEA recommended value ${ }^{12}$)

$$
g_{f}\left(20,44^{\circ} \mathrm{C}\right)=1,0540 \div 0.0030
$$

and with WESTCOTI's "Dest velue"

$$
\mathrm{B}_{\mathrm{f}}\left(20.44{ }^{\circ} \mathrm{C}\right)=1.0522 \pm 0.00348
$$

Furthermore we calculated the temparature dependsnce of the G_{f} - factor. Tharefoici we variad T in aq. (5) fram $0{ }^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$ in ateps of $10{ }^{\circ} \mathrm{C}$. Based on the $\sigma_{f}(E)$ data from Fig. 1 we obteined the g_{f} © T) curve from $0{ }^{\circ} \mathrm{C}$ to $1000{ }^{\circ} \mathrm{C}$ Which is shown in Fig. 4. The rumforical valuas ere given in Table 5 , With the G_{f} (E) data from fig. 2 wo obtain quite almilar results Hoh are given in Table 6. Eoth, desulta are sifghtly highar than the tabuleted $g_{f}(i)$ - valuas of WESTCOTT ${ }^{14}$).

Referen es

1. A.J.Deruytter and W. Becker, accepted for pulification in Annals of Nucl. Sci. and Engng.
2. A.J.Deruycter and C. Wagemans, Journ. of Nucl. En.. 26. 293 (19;2)
3. R. Gwin, L. Heston, G. de Sayssure, R. Iagle, J. Todd, F. Gillespie, R. Hockenbuty and R. Block, Nucls Jci, and Engng. 45, 25 (;579)
4. R. Gwin, L. Fieston, G. de Saussure, R. Ingle, J. Todd, F. Gilleipie, R. Hockenbury and R. Block, Nucl. Sci. and Engng. 40; 306 (2370)
5. Blons J., Derrien G., Michaudon A., Ribon P. and gaugsure G., C.r. habd. Séanc. Acad. Sci., Paris 262, 79 (1966j the results quoted are corrected far scattaring and back-scattering in the detector windows lprivate commoleation by J. Blens, 10713
t. L. Bollinger, R. Cote and G. Thomas, Prac, of the Sac. Int. Conf. on Peaceful Jses of Rtamic Energy, Gensva 15. 527 (195B)
6. K. Ignatiev, I. Kirpicknikov and S. Sckhoruchkin, Sov. At. En . 16, 121 (1968)
B. Z.Ryaboy, E. Donssik, N. Chikav and N. Yaneva, Sov. At. En, 24, 351 \{1988\}
7. J. Blons, Nucl. Sci. and Engng. 5!s 130 (1973)
8. C. Westcott, J. Nuci. En. 2, 59.(1955)
9. H. Depuydt and P. Jansen, In+omal report S.C.K.-Mol (1974) \{unpublighad)
10. G. Hanna, C. Kestcott, $\mathrm{A} . \mathrm{I} \cdot-$. . B. Leonard, J. Story and P. Ateree, At. En. Rav. VII, 4 (19Cs)
11. C. Westeott, report AECL 3255 (:969)
12. C. Westcott, report AECL 110j (19ה̃)

Figure 1: Fission crossesection from 0.008 eV to 10 eV for ${ }^{239} \mathrm{P}_{\mathrm{u}}$ (mainly Linac data)

Figure 2: Fission cross-section from 0.008 eV to 10 eV for ${ }^{239} \mathrm{Pu}$ (mainly fiR2 data)

Fisure 3: Fission CrossmSection from 1 eV to 30 eV for ${ }^{239} \mathrm{Pu}$

Table 1: ${ }^{239}{ }_{\mathrm{Pu} \text { fibsion integrals }} \int_{E_{1}}^{E}{ }_{2} \sigma_{i}(\mathrm{E}) \mathrm{dE}($ Barn, eV$)$ without renormalization

Energy interval (eV)	This measurement	$\operatorname{ENDF}_{\text {III }}$	$\begin{gathered} \text { Gwin } \\ (1971) \end{gathered}$	$\begin{aligned} & \text { Gwin } \\ & (1969) \end{aligned}$	$\begin{aligned} & \text { Blons } \\ & (1971) \end{aligned}$	$\begin{aligned} & \text { Eollinger } \\ & (1958) \end{aligned}$	Ryabov (1968)	$\begin{aligned} & \text { Ignatiev } \\ & (1964) \end{aligned}$
0.02 .0 .03	7.53	7.50	7.49	7. 52				
$0.03=0.04$	6.42	6.43	6.44	6.47				
0.04-0.06	11.21	14.11	11.17	11.25				
0.06-0. 010	19.51	19.39	19. 53	19.68				
6. 0-9.0	179.7	181.4	180,8	181.0	182.7	173.0	107.0	: 59.0
9.0-12.6	502. 8	505. 2	494.8	497	512.7	516.9	348.3	412.9
12,6-20.0	543.8	554.2	547.5	546.5	558.0	538.4	479.5	443.2
20.0-24. 7	223.2	226. 7	224.3	223	224. 5	2.21.4	192.5	171.8
24.7-30.0	100.3	103.7	100.7	100.5	103.2	105. 5	46.8	83.7
30-54		429	421	425	466		250	324
54-78		1734	1719	1750	1850		939	1070
78-92		748	735	746	785		529	435
92-109		412	405	417	441		323	
109.152		827	818	839	852		635	
152-172		332	329	338	355		205	
172-350		2639	2718	2780	2830		1860	
350-415		662	583	596	640		283	
$415=650$		2742	2458	2510	2540		1710	
650.1000		2185	2145	2180	2220		2600	

Table 2: Comparison of the normalization methods applied in the different o_{f} measurements of ${ }^{239} \mathrm{Pu}_{\mathrm{p}}$

Bollinger ct al. (1958)
Ignatiev et al. (1964)
James (1965)
De Saussure et al. (1967)
Blons et al. (1966)
Blons ot al. (1968)
Patrick ct al. (1968)
Ryabov et al. (1968)
Gwin ct al. (1969) (1971)
This measurement

Blons (1973)
$\sigma_{\mathrm{f}} \begin{aligned} & \text { normalized at } 0.0253 \mathrm{eV} \text { to } \sigma_{\mathrm{f}}^{\circ}=730 \text { barn } 0 \text {. This value is about }\end{aligned}$
J_{f} normalized to the value $\Gamma / \Gamma=0.465$ for the 7.8 eV resonance. Estimated normalization errof $\leq 5 \%$.
σ_{f} normalized to the integrated fission crose-section from 4 eV to 16 eV of Bollinger.
σ_{f} normalized at 0.0253 eV to $\sigma_{f}^{\circ}=(741.6 \pm 3.1)$ barn,
σ_{f} normalized to the valuc $o^{\Gamma_{f}}=108.2$ barn. eV for the $7,8 \mathrm{eV}$ f resonance as given by Beflinger.
$\sigma_{\text {f }} \begin{aligned} & \text { normalized to the or } \\ & \text { and } 74.95 ~ e V ~ r e s o n a l i c e s ~ f r o m ~ B l o n s ~(1966) . ~\end{aligned}$ and 74.95 eV resonances from Blons (1966).
σ_{f} normalized at 10.95 eV to $\eta=2.041$ aseuming $\bar{v}_{\mathrm{p}}=2.864$.
σ_{f} normalized at 0.0253 eV to $\sigma_{f}^{0}=(740 \pm 4)$ barn. Lowest data point given by the author is 5 eV .
σ_{f} normalized at 0.0253 eV to $\sigma_{f}^{0}=(741.6 \pm 3.1)$ bara.
σ_{f} normalized to the absolute integral $\int_{0.02001 \mathrm{eV}}^{0.06001 ~ \mathrm{eV}}{ }_{f}(E) \mathrm{dE}=25.15 \pm$ 0.13 barn. eV corresponding to a σ_{f}^{0}-value of (741.9 ± 3.4) barn
${ }_{f}$ normaizet to our integral $\int_{6 \mathrm{eV}}^{20 \mathrm{eV}}{ }_{\sigma_{f}}(E) \mathrm{d} E=(1226.3 \pm 12.2) \mathrm{barn}, \mathrm{eV}$.

Table 3: Ratio of our fibsion integrals $\int_{E_{1}}^{E_{2}} \sigma_{f}(E) d E$ to the corri sponding integrale obtained from other

Energy interval (eV)	ENDF/B III	Gwin (1971)	Gwin (1969)	Blons (1971)	Bollinger (1958)	Ryabov (1968)	Ignatiev (1964)
$6.0-9.0$	0.991	0.994	0.993	0.984	1.939	1.679	1.130
$9.0-12.6$	0.995	1.016	1.012	0.981	0.373	1.444	1,218
$12.6-20.0$	0.981	0.993	0.995	0.975	1.010	1.134	1.227
$20.0-24.7$	0.984	0.995	1.001	0.994	1.008	1.159	1.299
$24.7-30.0$	0.967	0.996	0.998	0.972	0.951	2.143	1.198
$9.0-20.0$	0.988	1.004	1.001	0.976	0.999	1.262	1.220

Table $:{ }^{239}$ Pu fission integrale (barn. eV) renormalized via our integral $\int_{9 \mathrm{eV}}^{20 \mathrm{eV}} \sigma_{\mathrm{f}}(\mathrm{E}) \mathrm{dE}=1046.6$ barn. eV

Energy interval (eV)	This measurement	ENDF/B III	$\begin{gathered} \text { Gwin } \\ (1971) \end{gathered}$	$\begin{gathered} \text { Gwin } \\ (1969) \end{gathered}$	$\begin{aligned} & \text { Blons } \\ & (1971) \end{aligned}$	$\begin{gathered} \text { Bollinger } \\ (1958) \end{gathered}$	$\begin{gathered} \text { Ignatiev } \\ (1964) \end{gathered}$
6.0- 9.0	179.7	179.2	181.5	181.5	178.6	171.6	194.4
9.0. 20.0	1046.6	1046.6	1046.6	1046.6	1046. 6	1046.6	1046.4
20.0. 24.7	223.2	224.0	225.2	223.7	219.4	219.6	210.0
24.7-30.0	100.3	i02.4	101.1	100.8	100.9	104.6	102.3
30-54		424	423	426	455		396
54-78		1713	1726	1755	1808		1308
78-92		739	738	748	767		532
$92-109$		407	407	418	43.		
109-152.		817	821	842	833		
$\begin{array}{ll}152 & -172\end{array}$		328	330	339	347		
$\begin{array}{ll}172 & -350\end{array}$		2607	2729	2788	$276{ }^{6}$		
$\begin{array}{lll}350 & -415\end{array}$		654	585	598	62.		
$415-650$		2709	2468	2517	2483		
650-1000		2159	2154	2187	2170		

Table 5: The Weatcott g_{f} factor in function of the temperaturc (based on $\sigma_{f}(E)$ data from fig. 1)

T(${ }^{\circ} \mathrm{C}$)	g_{f}		T(${ }^{\circ} \mathrm{C}$)	g_{i}	T(${ }^{\circ} \mathrm{C}$)	B_{f}	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	\mathfrak{r}_{f}
0	1. 04003	11	250	1.35107	500	1.97256	750	2.61394
10	1.04577	:	260	1. 37152	510	1.99968	760	2.636\% 1
20	1.05192	"	270	1.39251	520	2,02678	770	2. 65961
30	1.05850	II	280	1.41403	530	2.05384	780	2. 68204
40	1.06555	II	290	1.43606	540	2. 08086	790	2. 70420
50	1.07308	\#	300	1.45856	550	2.10781	800	2. 72607
60	1.08113	II	310	1.48152	560	2. 13467	810	2. 74767
70	1.08971	:	320	1. 50492	570	2.16145	820	2. 76898
80	1.09586	"	330	1. 52872	580	2.18811	830	2. 79001
90	1.10859	\%	340	1. 55291	590	2. 21464	840	2. 81075
100	1.11892	"	350	1,57746	600	2. 24105	850	2. 83121
110	1.12986	"í	360	1. 60235	610	2, 26730	860	2.85137
120	1.14145	\#	370	1,62754	620	2,29340	870	2.87124
130	1.15367	"	380	1.65303	630	2. 31932	880	2. 89083
140	1.16655	${ }_{11}$	390	1.67877	640	2. 34506	390	2. 91012
150	1.18008	I	400	1. 70475	650	2. 37062	900	2. 92912
160	1.19428	"11	410	1.73095	660	2. 39597	910	2. 94782
170	1. 20914	II	420	1.75733	670	2.42112	920	2. 96624
180	1. 22466	"	430	1.78388	680	2. 44605	930	2.98436
190	1. 24083	1)	440	1.81057	690	2.47076	940	3.00219
200	1. 25763	!	450	1. 83739	700	2. 49523	950	3.01973
210	1.27509	"	460	1.86431	710	2. 51947	960	3.03698
220	1.29317	II	470	1.89130	720	2. 54347	970	3.05394
230	1.31188	11	480	1.91835	730	2. 56721	980	3. 07061
240	1.33118	II'	490	1.94545	740	2. 59070	990	3.08699
		!					1000	3. 10309
		\#1						

Table 6: The Westcott g_{f}-factor in function of the temperature (based on ${ }^{T}{ }_{f}(\mathrm{E})$ data from fig. 2)

$\mathbf{T}\left({ }^{\circ} \mathrm{C}\right)$?!	T(${ }^{\circ} \mathrm{C}$)	g_{f}	T(${ }^{\circ} \mathrm{C}$)	E_{f}	T(${ }^{\circ} \mathrm{C}$)	${ }^{\text {g }}$
0	1.04137	!	250	1. 35139	500	1.97262	750	2. 61392
10	1.04705	\%	260	1. 37182	510	1.99973	760	2. 63689
20	1.05313	ii	$2 \% 0$	1.39279	520	2.02683	770	2.65959
30	1.05965	"11	280	1.41430	530	2.05389	780	2.68202
40	1.06664	"180	290	1.43631	540	2. 08090	790	2. 70418
50	1.07411	\%	300	1.45880	550	2.10784	800	2. 72605
60	1.08210	"	310	1.48174	560	2. 13470	810	2. 74765
70	1.09063	ii	320	1. 50513	570	2. 16147	820	2. 76896
80	1.09972	"	330	1.52892	580	2. 18813	830	2.78999
90	1. 10940	il	340	1. 55310	590	2. 21467	340	2. 81073
100	1.11969	ii	350	1.57764	600	2. 24107	850	2.83118
110	1.13059	ii	360	1.60251	610	2. 26731	860	2.85135
120	1.14213		370	1.62769	620	2. 29341	9.70	2. 87122
130	1.15432	ii	380	1,65317	630	2,31933	880	2.89080
140	1.16716	"	390	1.67890	640	2. 34507	890	2.91009
150	1.18066	"	400	1.70487	650	2. 37062	900	2.92909
160	1.19482	,	410	1.73106	660	2. 39597	910	2. 94779
170	1.20965	i1	420	1.75743	670	2. 42112	920	2.96621
180	1. 22514	"	435	1.78398	680	2.44605	930	2.98433
190	1.24129	"	440	1.81067	690	2. 47075	940	3.00216
200	1. 25806	H1	450	1,83748	700	2. 49523	930	3. 01970
210	1.27549	${ }^{11}$	400	1.86439	710	2.51946	960	3.03695
220	1.29356	i11	470	1.89137	720	2. $5434{ }^{6}$	970	3.05391
230	1. 31224	"	450	1.91842	730	2. 56720	980	3. 07058
240	1. 33151	i1	490	1.94551	740	2. 59069	990	3.08696
		"1					1000	3. 10306

Achove dimprimer

Lur
le CEA, Service de Documentation, Saclay
FÉrrier 1975

DEPOT LEGAL
fer primestre 1975

[^0]: - Valueg in last column from INDC(CCD)-11/U. Otherwise data in BAND 90 quoted.

