
PLAN DE CLASSIFICATION DES RAPPORTS ET BIBLIOGRAPHIES CEA

and the second sec

(Classification du système international de documentation nucléaire SIDON/INIS)

- A 11 Physique théorique
- A 12 Physique atomique et moléculaire
- A 13 Physique de l'état condensé
- A 14 Physique des plasmas et réactions thermonucléaires
- A 15 Astrophysique, cosmologie et rayonnements cosmiques
- A 16 Conversion directe d'énergie
- A 17 Physique des basses températures
- A 20 Physique des hautes énergies
- A 30 Physique neutronique et physique nucléaire
- B 11 Analys' chimique et isotopique
- B 12 Chimie minérale, chimie organique et physico-chimie
- B 13 Radiochimie et chimje nucléaire
- B 14 Chimie sous rayonnement
- B 15 Cori sion
- B 16 Traitement du combustible
- B 21 Métaux et alliages (production et fabrication)
- B 22 Métaux et alliages (structure et propriétés physiques)
- B 23 Céramiques et cermets
- B 24 Matières plastiques et autres matériaux
- B 25 Effets des rayonnements sur les propriétés physiques des matériaux
- B 30 Sciences de la terre
- C 10 Action de l'irradiation externe en biologie
- C 20 Action des radioisotopes et leur cinétique

C 30 Utilisation des traceurs dans les sciences de la vie C 40 Sciences de la vie : autres études

Contraction and the second second second

- C 50 Radioprotection et environnement
- e ee saaroptotoenen et entrissionient
- D 10 Isotopes et sources de rayonnements
- D 20 Applications des isotopes et des rayonnements
- E 11 Thermodynamiq.ie et mécanique des fluides
- E 12 Cryogénie
- E 13 installations pilotes et laboratoires
- E 14 Explosions nucléaires
- E 15 Installations pour manipulation de matériaux radioactifs
- E 16 Accélérateurs
- E 17 Essais des matériaux
- E 20 Réacteurs nucléaires (en général)
- E 30 Réacteurs nucléaires (types)
- E 40 Instrumentation
- E 50 Effluents et déchets radioactifs
- F 10 Economie
- F 20 Législation nucléaire
- F 30 Documentation nucléaire
- F 40 Sauvegarde et contrôle
- F 50 Méthodes mathématiques et codes de calcul
- F 60 Divers

Rapport CEA-R-4826

Cote-matière de ce rapport : A.33

DESCRIPTION-MATIERE (mots clefs extraits du thesaurus SIDON/INIS)

en français	en anglais
REACTIONS PAR NEUTRONS	NEUTRON REACTIONS
NEUTRONS	NEUTRONS
CIBLE OR 197	GOLD 197 TARGET
OR 196	GOLD 196
OR 195	GOLD 195
OR 194	GDLD 194
DOMAINE D1 - 10 MEV	MEV RANGE 01 - 10
DOMAINE 10 - 100 MEV	MEV RANGE 10 - 100
SECTIONS EFFICACES	CROSS SECTIONS
NOYAUX ISOMERES	ISOMERIC NUCLEI
DONNEES	DATA

NEANDC (E) 185 "L" INDC (FR) 19/L

πř

- Rapport CEA-R-4826 -

Centre d'Etudes de Bruyères-le-Châtel

EVALUATION DES SECTIONS EFFICACES DES REACTIONS :

 $\frac{197}{Au(n,2n)} \frac{196}{Au} - \frac{197}{Au(n,2n)} \frac{196mI_{Au}}{828} - \frac{197}{Au(n,2n)} \frac{196m2}{4u} (9,7h) \\ \frac{197}{Au(n,3n)} \frac{195}{4u} - \frac{197}{Au(n,4n)} \frac{194}{4u}$

раг

Claude PHILIS, Olivier BERSILLON

- Mai 1977 -

CEA-R-4826 - PHILIS Claude, BERSILLON Olivier

EVALUATION DES SECTIONS EFFICACES DES REACTIONS : $^{197}Au(n, 2n)^{194}Au$, $^{10}Au(n, 2n)^{194}Au$, ^{10}Au ,

Sommaire.- Les évaluations des sections efficaces des réactions ¹³⁷Au(n, 2n)¹³⁵Au, ¹³⁵Au (n, 3n) ¹³⁵Au (n, 4n)¹³⁹ ^{Au} ont été faites des seuils à 30 MeV, et ¹³Au (n, 2n)¹³⁶MAU (â, 25), ¹³⁷Au (n, 2n)¹³⁶MAU (a) (9, 7h) des seuils à 20 MeV uniquement à partir des résultats expérimentaux. Nus avons abouti aux données recommandées après analyse, sélection, et normalisation des résultats à un "nsemble cohérent de données de références. Les données évaluées sont discutées at comparées aux valeurs théoriques. Une estimation des incertitudes sur des données

1977

91 p.

Commissariat & l'Energie Atomique - France

CEA-R-4826 - PHILIS Claude, BERSILLON Olivier EVALUATION OF NUCLERAR CROSS SECTIONS: ¹³⁷Au(n,2n)¹³⁶Au, ¹³⁷Au(n,2n)¹³⁴Mau (\$2,\$), ¹³⁷Au(n,2n)^{134Mau}(3,7h), ¹³⁷Au(n,3n)¹³⁷Au

Summary.- The preliminsry evaluations of the nuclear cross sections for the reactions ¹²⁷Au (n,2n) ¹³⁸Au, ¹³⁷Au (n,3n) ¹³⁷Au, ¹⁴⁷Au (n,4n) ¹³⁷Au have been completed from thresholds to 30 Jolev and for the reactions ¹³⁷Au (n,2n) ¹³⁴Th Au (8,2s) and ¹³⁷Au (n,2n) ¹⁴⁴Th Au (9,7h) from thresholds to 20 MeV. The evaluations are based entirely on experimental results. The recommended values were determined after analysis, selection, and normalization to a consistent set of studards. The evaluated data are discussed and compared with theoretical values, and estimates of the uncertainties in the adopted data are provided.

1977

ł

91 p.

Commissariat à l'Energie Atomique - France

PLAN

		pages
1	- INTRODUCTION	2
II	- METHODES DE MESURE EMPLOYEES PAR LES AUTEURS	4
111	- DONNEES GENERALES SUR LES REACTIONS ETUDIEES ET LES REACTIONS	
	EN COMPETITION	5
IV	- DONNJES DE REFERENCES UTILISEES POUR LA RE-NORMALISATION	6
v	- RESUME DES PUBLICATIONS RETENUES, RE-NORMALISATIONS	9
	Fiche n° 1 E.B. PAUL et al. [22]	10
	Fiche n° 2 V.J. ASHBY et al. [23]	12
	Fiche n° 3 H.A. TEWES et al. [26]	14
	Fiche n° 4 R.J. PRESTWOOD et al. [28]	17
	Fiche n° 5 H.K. VONACH et al. [30]	21
	Fiche n° 6 W. DILG et al. [33]	23
	Fiche n° 7 A.K. HANKLA et al. [34]	25
	Fiche n° 8 S.M. QAIM [37]	28
	Fiche n° 9 D.R. NETHAWAY [39]	30
	Fiche n° 10 D.S. MATHER et al. $[45]$	33
	Fiche n° 11 J. FREHAUT et al. [47]	35
	Fiche nº 12 A. PAULSEN et al. [48]	37
	Fiche n° 13 B.P. BAYHURST et al. [50]	39
	Fiche nº 14 D. ZELLERMAYER et al. [63]	44
VI	~ DONNEES ISSUES DE CALCULS OU D'EVALUATIONS	45
VII	- DONNEES NON RETENUES	52
VIII	- DISCUSSION - DONNEES RECOMMANDEES	53
IX	- CONCLUSION	61

Ń

- 1 -

- 7

I - INTRODUCTION

- 2 -

Les évaluations des sections efficaces des réactions $1^{97}Au(n,2n)^{196}Au$, $1^{97}Au(n,3n)^{195}Au$ et $1^{97}Au(n,h_n)^{194}Au$ des seuils à 30 MeV, ainsi que $1^{97}Au(n,2n)^{196ml}Au$ et $1^{97}Au(n,2n)^{196m2}Au$ des seuils à 20 MeV constituent une partie du programme en cours au Service de Physique Nucléaire destiné à améliorer la connaissance de données microscopiques. Une partie de cette étude répond à la demande n° 692315 de WRENDA 74 [1].

Dans ce rapport, nous avons défini la réaction $197_{Au}(n,2n)^{196m1}Au$ comme celle qui, directement ou par l'intermédiaire de niveaux excités supérieurs (sauf l'isomère de 9,7h) et avec émission de rayonnements y, alimente l'isomère de période 8,2 s ; la réaction $197_{Au}(n,2n)^{196m2}Au$ est celle qui, directement ou par l'intermédiaire de niveaux excités d'énergie supérieure et avec émission de rayonnements y, alimente l'isomère de période 9,7 h. Enfin, la réaction $197_{Au}(n,2n)^{196}Au$ est celle qui, directement ou par l'intermédiaire de niveaux excités d'énergie supérieure avec émission de rayonnements y, conduit au niveau fondamental de période 6,183 j.

Cette évaluation a nécessité l'analyse d'une trentaine d'articles représentant, sauf omission, les documents connus au 30/8/75. Deux résultats n'ont pas été retenus : un pour manque d'information, l'autre car il était ancien et ne constitua., qu'une estimation.

Comme dans nos travaux antérieurs [2, 3, 4, 5], nous avons re-normalisé les résultats des auteurs par rapport à une série de données de références récentes concernant les périodes des radioisotopes formés, leur schéma de désintégration et les sections efficaces servant à déterminer le flux neutronique.

Il est à noter que ces données de références ("standards évaluateurs") sont plus récentes que celles de nos dernières évaluations [2, 3, 4, 5].

Les données recommandées sont l'aboutissement de l'étude résumée dans les paragraphes suivants :

- Méthodes de mesures employées par les auteurs.
- Données générales sur les réactions étudiées et réactions en compétition.
- Données de références utilisées pour la re-normalisation.

٩)

- Résumés des publications retenues, re-normalisations.

- Résultats expérimentaux.

- Résultats de calculs théoriques ou d'évaluations.

ijŻ

- Publications non retenues.

۶

II - METHODES DE MESURE EMPLOYEES PAR LES AUTEURS

Pour ce noyau, les méthodes sont au nombre de deux :

- mesures directes du nombre de neutrons émis au cours de la réaction.
- mesure par activation.

Ces méthodes ont déjà été décrites, et elles sont résumées dans nos évaluations antérieures [2, 3, 4], nous ne les reprendrons pas ici. Il faut noter que la première méthode peut conduire uniquement aux sections efficaces des réactions $^{197}Au(n,2n)^{196}Au$, $^{197}Au(n,3n)^{195}Au$ et $^{197}Au(n,4n)^{194}Au$, tandis que la deuxième méthode permet d'obtenir des résultats sur toutes les sections efficaces.

III - DONNEES GENERALES SUR LES REACTIONS ETUDIEES ET REACTIONS EN COMPETITION

.

Réaction	Q [6] (MeV)	Seuil (MeV)
¹⁹⁷ Au(n,2n) ¹⁹⁶ Au	- 8,080 <u>+</u> 0,012	8,121
¹⁹⁷ Au(n,2n) ^{196m1} Au	- 8,165 <u>+</u> 0,012	8,207
¹⁹⁷ Au(n,2n) ^{196m2} Au	- 8,675 <u>+</u> 0,012	8,719
¹⁹⁷ Au(n,3n) ¹⁹⁵ Au	- 14,748 ± 0,013	14,824
¹⁹⁷ Au(n,4n) ¹⁹⁴ Au	- 23,152 <u>+</u> 0,024	23,27]

- Principales réactions en compétition et ordre de grandeur de leur section efficace -

Les valeurs ci-dessous ont été extraites de [7] pour une énergie de 14 MeV.

Réaction	Section efficace (mb)	Q (MeV)
¹⁹⁷ Au(n,p)	1,8	+ 0,036
¹⁹⁷ Au(n,a)	0,25	+ 6,979
¹⁹⁷ Au(n,y)	10,1	+ 6,5127
197 _{Au(n,n')}	298	- 0,0774(ler ni- veau excité)

- Section efficace de la réaction ¹⁹⁷Au(n,2n)¹⁹⁶Au pour le spectre de neutrons de ²⁵²Cf [8]

 $\sigma = 4,93 \pm 0,14$ mb

17

- 5 -

IV - DONNEES DE REFERENCES UTILISEES POUR LA RE-NORMALISATION

A - Sections efficaces servant à la mesure du flux :

Pour la méthode de mesure directe, les valeurs de la section efficace $^{197}Au(n,2n)^{196}Au$ ont été obtenues relativement à la section efficace de fission de 238 U. Une des plus récentes évaluations de cette dernière est celle donnée par [9] (qui reste assez proche de celle que nous utilisions jusque là [10]) et que nous avons prise comme donnée de référence ; elle est représentée avec les valeurs tabulées planche 1.

Pour les mesures par activation, les réactions qui ont été utilisées pour les mesures de flux sont :

- ${}^{27}Al(n,\alpha)^{24}Na$: nous avons retenu l'évaluation [11] comme donnée de référence (représentée avec les valeurs tabulées planche 2). Celle-ci ne diffère qu'aux hautes énergies (216 MeV) de l'évaluation que nous avions choisie précédemment [12].

- ${}^{56}Fe(n,p){}^{56}Mn$: pour cette réaction nous avons extrait de l'évaluation [13] la valeur 118,3 mb à 14,4 MeV, seule valeur dont nous avons eu besoin.

B - Données diverses, schémes de désintégration

- Nombre moyen de neutrons prompts de fission spontanée du 252 Cf. Il a été pris égal à 3,762 [14] .

- Schémas de désintégrations

a) Schéma de désintégration de $^{196m1}Au$ (8,2 s) et $^{196m2}Au$ (9,7 h) (Planche 3).

Les données nucléaires essentielles du schéma de désintégration que nous avons retenues ont été extraites de celles données par WAPSTRA [15]. Les intensités des principaux rayonnements y sont regroupées dans le tableau suivant :

١ř

- 6 -

	Έγ (keV)	Ιγ (%)
γ ₁	147,77	43,5
¥2	174,87	0,43
Υ3	188,23	38,2
ŶĄ	285,44	4,44
۲5	316,11	2,95
		1

Iy : Nombre de rayonnements y émis pour cent désintégrations du niveau de 9.7 h de ¹⁹⁶Au.

Un ordre de grandeur de l'incertitude sur ces valeurs retenues peut être obtenu en les comparant à celles de BENOIT [16]. Pour γ_1 et γ_3 elle est d'environ 6%.

b) Schéma de désintégration de ¹⁹⁶Au (6,183 j) (Planche 3)

Les données sont basées sur le schéma proposé par JANSEN [19] et les calculs théoriques des coefficients de conversion [17]. Les intensités des principaux rayonnements y sont regroupées dans le tableau suivant :

	Ey (keV)	Iγ (%)	
γ6	333,0	23,1	Iγ : nombre de rayonnements γ
γ7	355,7	87,7	émis pour cent désinté- grations du niveau fonda-
	•	•	mental de 196Au.

πř

c) Schéma de désintégration de ¹⁹⁵Au (Planche 4)

Les données essentielles du schéma de désintégration de ¹⁹⁵Au que nous avons retenues sont celles de [20].

Les intensités des principaux rayonnements y sont données dans le tab_eau suivant :

	Eγ (keV)	α _t	IY (%)	Ty , nombia de revoncemente y
γl	98,857	7,14	98, בנ	émis pour cent désinté- gretions de 195 _{Au}
γ2	129,735	1,73	0,89	gravious de Au.

Il est à noter que des mesures plus récentes de GOVERSE [21] conduisent à des valeurs d'intensités assez différentes de celles qui ont été retenues (10,97 pour γ l et 1,16 pour γ 2). Une comparaison entre ces deux séries de valeurs nous donne un ordre de grandeur de leur précision ($\sim 15\%$).

ųř

V - RESUME DES PUBLICATIONS RETENUES, RE-NORMALISATIONS

- A partir de chaque publication retenue, nous avons constitué une fiche résumant les informations principales extraites et les re-normanisations effectuées.

- Les références supplémentaires indiquées sur certaines fiches sont d'autres publications du même auteur qui ont aidé à la description de l'expérience.

- Les quantités mesurées indiquées sur les fiches n'intéressent que les sections efficaces $197_{Au(n,2n)}^{196m1}Au$, $197_{Au(n,2n)}^{196m2}Au$, $197_{Au(n,2n)}^{196}Au$, $197_{Au(n,2n)}^{196}Au$, $197_{Au(n,2n)}^{196}Au$, $197_{Au(n,4n)}^{194}Au$, même quand les auteurs décrivent d'autres mesures sur d'autres noyaux.

- Pour les auteurs n'ayant pas indiqué les valeurs des périodes et intensités qu'ils ont prises, nous avons admis implicitement qu'ils avaient utilisé les périodes que nous avons retenues comme données de références.

٩ř

- Aucune des re-normalisations n'a conduit à une majoration des erreurs données par les auteurs. - FICHE Nº 1 - [22]

AUTEURS : PAUL E.B. et CLARKE R.L.

REFERENCE : Can. J. of Phys. 31 (1953) 267.

LABORATOIRE : CHALK RIVER (Canada)

QUANTITE MESUREE : Section efficace de la réaction $^{197}{\rm Au(n,2n)}^{196}{\rm Au}$ à E_n = 14,5 MeV.

PRECISION : Résolution en énergie non donnée, précision sur o = 27%.

METHODE DE MESURE : activation.

ŝ

STANDARDS : $T_{1/2}(^{196}Au) = 5,5 \text{ jours.}$

PRODUCTION DE NEUTRONS : Réaction $T(d,n)^{4}$ He, cible Ti-T, $E_{d} = 100$ keV.

ECHANTILLONS : Cylindre métallique, épaisseur = 1,27 cm, diamètre = 3 cm.

MONTAGE EXPERIMENTAL : Echantillons placés à 3 cm de la source de neutrons, particules a détectées à 90° .

MESURE DU FLUX : Mesure absolue, détection des particules a par un compteur proportionnel, contrôle du flux par un compteur au bore, flux constant à mieux que 20%.

MESURE DE L'ACTIVITE : Détection 8 dans un compteur à fenêtre de mica.

CORRECTIONS : Absorption des β (2%), présence des rayonnements γ et des électrons de conversion interne.

ERREURS : Pas d'informations.

COMMENTAIRE : Ces auteurs ont été les premiers à mesurer la section efficace de la réaction $^{197}Au(n,2n)^{196}Au$, mais ils ne donnent pas de détails sur l'erreur obtenue qui est grande (27%).

٦ř

V - RESUME DES PUBLICATIONS RETENUES, RE-NORMALISATIONS

- A partir de chaque publication retenue, nous avons constitué une fiche résumant les informations principales extraites et les re-normatisations effectuées.

- Les références supplémentaires indiquées sur certaines fiches sont d'autres publications du même auteur qui ont aidé à la description de l'expérience.

- Les quantités mesurées indiquées sur les fiches n'intéressent que les sections efficaces $197_{Au}(n,2n)^{196ml}Au$, $197_{Au}(n,2n)^{196ml}Au$, $197_{Au}(n,2n)^{196}Au$, $197_{Au}(n,2n)^{196}Au$, $197_{Au}(n,3n)^{195}Au$ et $197_{Au}(n,4n)^{194}Au$, même quand les auteurs décrivent d'autres mesures sur d'autres noyaux.

~ Pour les auteurs n'ayant pas indiqué les valeurs des périodes et intensités qu'ils ont prises, nous avons admis implicitement qu'ils avaient utilisé les périodes que nous avons retenues comme données de références.

~ Aucune des re-normalisation- n'a conduit à une majoration des erreurs données par les auteurs. - FICHE Nº 1 - [22]

AUTEURS : PAUL E.B. et CLARKE R.L.

REFERENCE : Can. J. of Phys. 31 (1953) 267.

LABORATOIRE : CHALK RIVER (Canada)

QUANTITE MESUREE : Section efficace de la réaction $^{197}{\rm Au}(n,2n)^{196}{\rm Au}$ à E_n = 14,5 MeV.

PRECISION : Résolution en énergie non donnée, précision sur d = 27%.

METHODE DE MESURE ; activation.

4

STANDARDS : $T_{1/2}(^{196}Au) = 5,5 \text{ jours.}$

PRODUCTION DE NEUTRONS : Réaction $T(d,n)^{l_{i}}$ He, cible Ti-T, $E_{d} = 100$ keV.

ECHANTILLONS : Cylindre métallique, épaisseur = 1,27 cm, diamètre = 3 cm.

MONTAGE EXPERIMENTAL : Echantillons placés à 3 cm de la source de neutrons, particules a détectées à 90°.

MESURE DU FLUX : Mesure absolue, détection des particules a par un compteur proportionnel, contrôle du flux par un compteur au bore, flux constant à mieux que 20%.

MESURE DE L'ACTIVITE : Détection & dans un compteur à fenêtre de mica.

CORRECTIONS : Absorption des β (2%), présence des rayonnements γ et des électrons de conversion interne.

ERREURS : Pas d'informations.

COMMENTAIRE : Ces auteurs ont été les premiers à mesurer la section efficace de la réaction $^{197}Au(n,2n)^{196}Au$, mais ils ne donnent pas de détails sur l'erreur obtenue qui est grande (27%).

٦,

NORMALISATION, RESULTATS : Le valeur de PAUL a été normalisée par l'intermédiaire de la période de $^{196}_{Au}$.

En	51	R	а5	*å a ₂ /a ₂
(MeV)	(mb)		(шр)	(%)
14,5	1722	1,124	1936	27

R : Période standard de ¹⁹⁶Au / période utilisée par PAUL (6,183/5,5).

 σ_1 : Valeur de la section efficace de $197_{Au}(n,2n)^{196}_{Au}$ donnée par PAUL.

 $σ_2$: Veleur adoptée de la section efficace de ¹⁹⁷Au(n,2n)⁻³⁶Au, avec $c_2 = R. σ_1$.

٦ř

.

AUTEURS : ASHBY V.J., CATRON H.C., NEWKIRK L.L. et TAYLOR C.J.

REFERENCES : Phys. Rev. 111 (1958) 616.

LABORATOIRE : Lawrence Radiation Laboratory, LIVERMORE (USA). QUANTITE MESUREE : Section efficace de la réaction $197_{Au(n,2n)}^{196}_{Au}$ à E_n = 14,1 MeV.

PRECISION : Résolution en énergie non donnée, précision sur $\sigma = 7,3\%$.

METHODE DE MESURE : Mesure directe par comptage 40 des neutrons émis au cours de la réaction.

STANDARDS : $\bar{v} (^{252} cr) = 3.869 \pm 0.078 [24]$.

PRODUCTION DE NEUTRONS : Réaction $T(d,n)^{4}$ He, Cockroft-Walton, Ed = 500 keV, bouffées de 0,5 µs, fréquence 2 kHz.

ECHANTILLONS : Assemblage de plusieurs disques de diamètre inférieur à 6", épaisseur totale égale au tiers du libre parcours moyen de neutrons de 14, 1 MeV.

MONTAGE EXPERIMENTAL : Echantillon placé au centre d'un gros scintillateur liquidc «phérique, mesure séparée du bruit de fond avec et sans faisceau, l'échantillon étant enlevé.

MESURE DU FLUX : Mesure absolue, détecteur des particules α à 90° par un compteur proportionnel, contrôle du flux par un petit détecteur plastique.

CORRECTIONS : Corrections des empilements d'évènements à un neutron, du bruit de fond, de l'atténuation du flux incident (7,7%).

ERREURS : Efficacité (2,5%), flux (3,4%), absorption des neutrons (4%), statistique (< 8%), sur \overline{v} (2,1%).

COMMENTAIRE : Dans une communication privée en 1966 [25] , ASHBY a donné après re-normalisation la valeur 2.520 mb, qui est très proche de la valeur que nous avons adoptée.

NORMALISATION, RESULTAT : Nous avons re-normalisé la valeur de ASHBY par l'intermédiaire de notre valeur standard de $\bar{\nu}$ (^{252}Cf).

En	σ ₁	R	σ ₂	± 402/02
(MeV)	(mb)		(mb)	(%)
14,1	2600	0,972	2,527	7,3

- σ_1 : Valeur de la section efficace de ¹⁹⁷Au(n,2n)¹⁹⁶Au donnée par ASHBY.
- σ_2 : Valeur adoptée de la section efficace de $^{197}{\rm Au}(n,2n),$ avec σ_2 = R. σ_1 .
- R : \bar{v} (²⁵²Cf) standard / \bar{v} (²⁵²Cf) utilisé par ASHBY (3,762/3,869).

- 14 -

AUTEURS : TEWES H.A., CARETTO A.A., MILLER A.E. et NETHAWAY D.R. REFERENCE : UCRL 6028 T (1960), référence supplémentaire (WASH 1028)[27]. LABORATOIRE : Lawrence Radiation Laboratory, LIMERMORE (USA). QUANTITE MESUREE : Section efficace des réactions ¹⁹⁷Au(n,2n)¹⁹⁶B_{Au} (*) et ¹⁹⁷Au(n,2n)¹⁹⁶Au^{m2}, E_n = 8,4 à 15,1 MeV (16 énergies). PRECISION : Résolution en énergie \pm 0,2 MeV ; précision sur $\sigma \pm$ 20%. METHODE DE MESURE : Activation. STANDARD : H(n.n)H. PRODUCTION DE NEUTRONS : Réaction $D(d,n)^{3}$ He, cyclotron de 90". ECHANTILLONS : Pas d'informations. MONTAGE EXPERIMENTAL : Pas d'informations. MESURE DE FLUX : Contrôle par un télescope à proton de recul. MESURE DE L'ACTIVITE : Détection des y par compteur à scintillation différentiel. CORRECTIONS : Influence des neutrons de cassure du deutéron. COMMENTAIRE : Bien que ne disposant que de peu d'informations sur les conditions expérimentales et sur le schéma de désintégration utilisés par TEWES, nous avons cependant retenu ses résultats car ils ont constitué les

(*) La réaction ¹⁹⁷Au(n,2n)^{196g}Au est celle qui, directement ou par l'istermédiaire de niveaux excités d'énergies supérieures (sauf l'isomère de 9,7 h) et avec émission de rayonnements γ, alimente le niveau fondamental de ¹⁹⁶Au (6,183 j).

seuls résultats expérimentaux, pour $E_n > 12$ MeV, ayant servi au tracé de la courbe BNL-325 [25] qui a été utilisée pendant de nombreuses années.

NORMALISATION, RESULTATS : Pour la section efficace de la réaction $197_{Au(n,2n)} 196m^2_{Au}$, les valeurs de TEMES ont été ajustées aux alentours de 14,5 MeV sur les valeurs re-normalisées des autres auteurs, ce qui a déterminé le coefficient 0,857 appliqué ensuite aux autres énergies.

A ces valeurs ont été ajoutées celles de la réaction 197 Au(n,2n) 1968 Au données par TEWES, pour obtenir les valeurs de la section efficace de la réaction 197 Au(n,2n) 196 Au.

٦ř

1.			
J.	۶	·	
42	~		

E _n (MeV)	ΔE _n (MeV)	σ <u>1</u> (mb)	σ2 (mb)	σ1 + σ2 (mb)	R ₂	σ3 (mb)	σկ (mb)	Δσ3,4/ (%) ^{σ3,4}
8,4	0,20	11		11			11	20
9,1	0,20	235		235			235	20
9,35	0,20	380	8	388	0,857	6,9	387	20
9,8	0,20	710	10	720	0,857	8,6	719	20
10,35	0,20	1250	35	1285	0,857	30	1.280	20
11,0	0,20	1555	60	1615	0,857	51	1606	20
11,5	0,20	1620	.5	1695	0,857	64	1684	20
11,8	0,20	1800	99	1899	0,857	85	1885	20
12,1	0,20	1555	90	1645	0,857	77	1632	20
12,3	0,20	1725	99	1824	0,857	85	1810	20
12,8	0,20	2000	145	2145	0,857	124	2124	20
13,0	0,20	1930	144	2074	0,857	123	2053	20
13,85	0,20	1960	164	2124	0,857	140	2100	20
14,0	0,20	2030	184	2214	0,857	158	2188	20
14,5	0,20	1960	208	2168	0,857	178	2138	20
15,1	0,20	2110	194	2304	0,857	166	2276	20
	1			1				

 σ_1 : Valeurs de la section efficace ${}^{197}Au(n,2n){}^{196}g_{Au}$ données par TEWES.

 σ_2 : Valeurs de la section efficace $197_{Au(n,2n)}^{196m2}Au$ données par TEWES.

σ3: Valeurs adoptées de la section efficace de ¹⁹⁷Au(n,2n)^{196m2}Au après normalisation des valeurs de TEWES sur celles des autres auteurs, avec σ3 = R2.σ2. 197

 σ_4 : Valeurs adoptées de la section efficace de $^{197}Au(n,2n)^{196}Au$, avec $\sigma_4 = \sigma_1 + \sigma_3$.

- 16 -

- FICHE Nº 4 - [28]

- 17 -

AUTEURS : PRESTWOOD R.J. et BAYHURST R.P.

REFERENCE : Phys. Rev. 121 (1961) 1438.

LABORATOIRE : Los Alamos (USA).

QUANTITE MESUREE : Section efficace des réactions $^{197}Au(n,2n)^{196}Au$ et $^{197}Au(n,2n)^{196m^2}Au$, $E_n = 12,13$ à 19,76 MeV (10 énergies).

PRECISION : Résolution en énergie de 0,1 à 0,'3 MeV ; précision sur o de 5 à 10%.

STANDARDS : $T_{1/2}(^{196}Au) = 6,06 \text{ jours}, T_{1/2}(^{196m2}Au) = 9,83 \text{ heures}, ^{238}U(n, f) [29]$.

PRODUCTION DES NEUTRONS : - Réaction $T(d,n)^4$ He, cible Zr - T, Cockcroft-Walton pour E_n = 13,3⁴ à 14,95 MeV.

- Réaction T(d,n)⁴He, cible gazeuse, Van de Graaff pour E_n = 12,13; 16,5; 17,95 et 19,76 MeV.

ECHANTILLONS : Feuilles métalliques, diamètre 9,53 mm.

MESURE DE FLUX : - Sur le Cockcroft-Walton, mesure absolue par détection des porticules a, contrôle par des moniteurs d'Al placés derrière chaque échantillon ;

- Sur le Van de Graaff, mesure indépendante du flux par chambre à fissions à 238 U et vérification des fissions par analyse radiochimique d'un disque de 238 U irradié simultanément.

MESURE DE L'ACTIVITE : Détection y, efficacité inconnue.

CORRECTIONS : - Sur le Cockcroft-Walton, flux corrigé par la fonction d'excitation de la réaction 27 Al(n,a) 24 Na.

- Sur le Van de Graaff, correction pour les fragments de fission perdus et pour l'atténuation du flux dans les échantillons. ERREURS : Angle solide pour la mesure des particules α (4%), variations du flux (particules α ou fissions) durant la mesure, erreur de pesée, erreur statistique.

COMMENTAIRES : Cette publication est l'une des seules à donner des valeurs sur une gamme d'énergie aussi étendue par la méthode d'activation. Cependant l'auteur n'a donné aucune indication concernant la normalisation entre les mesures faites sur le Cockcroft et sur le Van de Graaff.

NORMALISATION, RESULTATS : Les valeurs de PRESTWOOD obtenues sur le Van de Graaff ont été normalisées par l'intermédiaire de la section efficace de 238 U (n,f). La section efficace de $^{197}Au(n,2n)^{196}Au$ a également été normalisée sur la période.

٦ř

t∆En (MeV)	ол (mb)	¤2 (Ъ)	(Ъ) аз	Rl	σկ (mb)	± Δσι/σι (%)
0,15	2081	1.02	1.001	1.020	2162	5
0,20	2330	-,	, -	1,020	2377	5
0,10	2369			1,020	2417	5
0,10	2403			1,020	2452	5
0,13	2420			1,020	2469	5
0,20	2403			1,020	2452	5
0,31	2356			1,020	2404	5
0,30	1860	1,38	1,349	1,020	1941	10
0,32	1398	1,38	1,325	1,020	1486	10
0,43	1111	1,38	1,406	1,020	1112	10
	<u>* Abn</u> (MeV) 0,15 0,20 0,10 0,10 0,13 0,20 0,31 0,30 0,32 0,43	▲ ΔEn o1 (MeV) (mb) 0,15 2081 0,20 2330 0,10 2369 0,10 2403 0,13 2420 0,20 2403 0,31 2356 0,30 1860 0,32 1398 0,43 1111	* Abn o1 o2 (MeV) (mb) (b) 0,15 2081 1,02 0,20 2330 0,10 0,10 2403 0,013 0,13 2420 0,031 0,31 2356 1,38 0,32 1398 1,38 0,43 1111 1,38	* Abn o1 o2 d3 (MeV) (mb) (b) (b) 0,15 2081 1,02 1,001 0,20 2330 1,02 1,001 0,10 2369 1 1,02 0,10 2403 1 1,02 0,13 2420 1,001 1,001 0,31 2356 1,02 1,349 0,32 1398 1,38 1,349 0,43 1111 1,38 1,406	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

R1 : Période standard de ¹⁹⁶Au / période utilisée par PRESTWOOD (6,183/6,06).

ol : Valeurs de la section efficace de ¹⁹⁷Au(n,2n)¹⁹⁶Au données par PRESTWOOD.

 σ_2 : Valeurs de la section efficace de $^{238}U(n,f)$ utilisées par PRESTWOOD.

 σ_3 : Section efficace standard de $23\delta_{U(n,f)}$.

 $σ_{4}$: Valeurs adoptées de la section efficace de ¹⁹⁷Au(n,2n)¹⁹⁶Au avec $σ_{4} = R_{1}$. $σ_{1}$. $\frac{\sigma_{2}}{2}$.

σ3

En	<u>+</u> ΔE _n	σl	(P)	(p)	Rl	σl,	<u>+</u> Δα4/α4
(MeV)	(MeV)	(mb)	25	a3		(mb)	%
12,13 13,40 13,69 14,01 14,31 14,50 14,81 16,50 17,95 19,76	0,15 0,20 0,10 0,13 0,20 0,31 0,30 0,32 0,43	68,3 118,8 128,1 134,3 137,1 142,1 145,1 166,8 164,1 136,2	1,02 1,38 1,38 1,38	1,001 1,349 1,325 1,406	0,987 0,987 0,987 0,987 0,987 0,987 0,987 0,987	63,7 117,2 126.4 132,5 135,3 140,2 143,2 168,4 168,7 131,9	5 5 5 5 5 5 10 10 10

1 20 ١

 R_1 : Période standard de $\frac{196m2}{M}$ Au / période utilisée par PRESTWOOD (9,7/9,83). σ_1 : Valeurs de la section efficace de $\frac{197}{M}$ Au(n,2n)^{196m2}Au données par PRESTWOOD.

 σ_2 : Valeurs de la section efficace de ²³⁸U(n,f) utilisées par PRESTWOOD.

 σ_3 : Section efficace standard de $^{238}U(n,f)$.

4.

ou : Valeurs adoptées de la section efficace de $^{197}Au(n,2n)^{196m2}Au$, avec $\sigma_4 = R_1, \sigma_1, \frac{\sigma_2}{2}$ σ

AUTEURS : VONACH H.K., VONACH W.G., MUNZER H. SCHRAMEL P.

REFERENCE : EANDC (E) 89 U 37 p. 37 , Conf. Washington (1968) § E31, p.885 [31], référence supplémentaire.

LABORATOIRE : Gesselschaft für Strahlenforchung, Neuherberg (RDA).

QUANTITE MESUREE : Section efficace de la réaction $^{197}Au(n,2n)^{196}$, E_n = 13,5 à 14,7 MeV (12 énergies).

PRECISION : Résolution en énergie de 0,10 à 15 MeV ; précision sur $\sigma \in .75$.

METHODE DE MESURE : Activation.

STANDARDS : ${}^{27}Al(n,\alpha){}^{24}Na$; $\sigma = 111.5 \pm 2$ mb à $E_n = 14,7$ MeV [32].

PRODUCTION DES NEUTRONS : Réaction $T(d,n)^4$ He, cible Ii-T, E_d = 0,120 MeV, Van de Graaff.

ECHANTILLONS : Disques métalliques.

MONTAGE EXPERIMENTAL : Echantillons situés à 10 cm de la source de neutrons, tous les 6°.

MESURE DE FLUX : Pas d'informations.

MESURE DE L'ACTIVITE : Détection des rayonnements y d'énergie supérieure à 30 keV par Na I(T1) 5" x 5".

CORRECTIONS : Atténuation du flux (0,4 à 7,5%), diffusion élastique des neutrons par les parois (< 2,9%).

ERREURS : Erreur statistique (< 0,75%), erreurs de géométrie (< 1%), erreur sur la période.

COMMENTAIRE : VONACH a mesuré la section efficace de $197_{Au(n,2n)}^{196}Au$ pour 27 énergies comprises entre 13,5 et 14,7 MeV, puis il a ajusté ses

٩ř

- 21 -

résultats par une droite et il ne présente que 12 points de mesure espacés de 100 keV, entre 13,6 et 14,7 MeV.

NORMALISATION, RESULTATS : Les résultats de VONACH ont été normalisés par l'intermédiaire de la section efficace de ${}^{27}A_2(n,\alpha)^{24}$ Na. VONACH n'ayant pas précisé les énergies pour lesquelles la résolution était de 0,15 MeV ou 0,10 MeV, nous avons pris 0,15 MeV pour l'ensemble des énergies.

E ₁₂ (MeV)	± Δ E _n (MeV)	σ <u>ι</u> (mb)	R	ອ <u>ວ</u> (ກາວ)	± Δσ2/σ2 (%)
13,6	0,15	2079	1,047	2177	6,7
13,7	0,15	2081	1,047	2180	6,7
13,8	0,15	2083	1,047	2182	6,7
13,9	0,15	2085	1,047	2184	6,7
14,0	0,15	2087	1,047	2186	6,7
14,1	0,15	2090	1,047	2188	6,7
14,2	0,15	2090	1,047	2188	6,7
14,3	0,15	2092	1,047	2191	6,7
14,4	0,15	2094	1,047	2193	6,7
14,5	0,15	2096	1,047	2195	6,7
14,6	0,15	2098	1,047	2197	6,7
14,7	0,15	2100	1,047	2199	6,7

- σ_1 : Valeurs de la section efficace de ¹⁹⁷Au(n,2n)¹⁹⁶Au données par VONACH.
- $\label{eq:R} R : Section efficace standard <math>\sim ^{27} {\rm Al(n,a)}^{24} {\rm Na} \ / \ {\rm section} \ {\rm efficace} \ {\rm de} \ ^{27} {\rm Al(n,a)}^{24} {\rm Na} \ utilisée \ {\rm par \ VONACh} \ {\rm a} \ 14,7 \ {\rm MeV} \ (116,8 \ / \ 111,5).$

١ř

 σ_2 : Valeurs adoptées de la section efficace de $^{197}Au(n,2\pi)^{196}Au$ avec σ_2 = R. σ_1 .

- FICHE Nº 6 - [33]

- 23 -

AUTEURS : DILG W., VONACH H., WINKLER G. et HILLE P.

REFERENCE : Nucl. Phys. All8, 9 (1968).

1

LABORATOIRE : Physik Departement der Woonnischen Hochschule, München (RDA).

QUANTITES MESUREES : Sections efficaces des réactions $^{197}Au(n,2n)^{196}Au$ et $^{197}Au(n,2n)^{196m}Au$ à E_n = 14.7 MeV.

PRFCISION : Résolution en énergie 0,15 MeV ; précision sur σ \pm 8%, sur σ^m \pm 10%.

METHODE DE MESURE : Activation.

STANDARDS : ${}^{27}\text{Al}(n,\alpha){}^{24}\text{Na}$; $\sigma = 111,5 \pm 2 \text{ mb à } E_n = 14,7 \text{ MeV } [32].$

PRODUCTION DES NEUTRONS : Réaction T(d,n)¹He, Van de Graaff 400 keV.

ECHANTILLONS : Feuilles métalliques (12 x 20 mm²) d'épaisseur 15 à 85 ma/cm².

MESURE DE FLUX : Mesure de l'activité du ²⁴Na produit.

MESURE DE L'ACTIVITE : Détection des rayonnements X_{K} par Na I(T2), diamètre 3,8 cm, épaisseur 0,6 cm.

CORRECTIONE : Correction des électrons de conversion interne, de l'autoabsorption, des rapports K/L et K/M.

ERREURS : Trois fois l'erreur statistique moyenne plus valeur maximale des erreurs systématiques.

NORMALISATION, RESULTATS : Les valeurs de DILG ont été normalisées par l'intermédiaire de la section efficace de 27 Al $(n, \alpha)^{21}$ Na.

-i î

	E _n (MeV)	±ΔE _n (MeV)	σ <u>1</u> (mb)	R	σ ₂ (mb)	± ¹ 02/02 (%)
¹⁹⁷ Au(n,2n) ¹⁹⁶ A.,	14,7	0,15	2320	1,047	2430	8
¹⁹⁷ Au(n,2n) ^{196m2} Au	14,7	0,15	148	1,047	155	10

4,

- $\sigma_1: \text{ Valeurs des sections efficaces } {}^{197}\text{Au}(n,2n) {}^{196}\text{Au} \text{ et } {}^{197}\text{Au}(n,2n) {}^{196m}\text{Au} \text{ données par DILG.}$
- R : Section efficace standard des ${}^{29}\text{Al}(n,a){}^{24}\text{Na}$ / section efficace de ${}^{27}\text{Al}(n,a){}^{24}\text{Na}$ utilisée par DILG (116,78/111,5).
- σ_2 : Valeurs adoptées des sections efficaces de $^{197}Au(n,2n)^{196}Au$ et $^{197}Au(n,2n)^{196}Mu$.

ı

- FICHE Nº 7 - [34]

AUTEURS : HANKLA A.K., FINK R.W. et HAMILTON J.H.

REFERENCE : Nucl. Phys. A180 (1972) 157.

۶

LABORATOIRE : School of Chemistry, Georgia Institute of Technology (USA).

QUANTITES MESUREES : Sections efficaces des réactions

;) $197_{Au(n,2n)}196_{Au}$ b) $197_{Au(n,2n)}196m_{2Au}$ c) $197_{Au(n,3n)}195_{Au}$

à En = 14, 4 MeV.

PRECISION : Résolution en énergie 0,4 MeV ; précision sur σ ε) ± 8% b) ± 12% c) ± 33%

METHODE DE MESURE : Activation.

. . .

STANDARDS : a)
$$T_{1/2}(^{136}Au) = 6,2$$
 jours
 $I_{Y}(356 \text{ keV}) = 0,87$ [19]
 $I_{Y}(425 \text{ keV}) = 0,068$ [35]
b) $T_{1/2}(^{196}m_{Au}^{2}) = 9,7$ heures
 $I_{Y}(148 \text{ keV}) = 0,437$ [35]
c) $T_{1/2}(^{195}Au) = 183$ jours
 $I_{Y}(99 \text{ keV}) = 0,114$ [35]
 $^{56}Fe(n,p)^{56}Mn$; $\sigma = 100 \pm 6$ mb à $E_{n} = 14,4$ MeV [36]

PRODUCTION DES NEUTRONS : Réaction $T(d_n)^{i_i}$ He, cible T_i -T, E_d = 200 keV. ECHANTILLONS : l à i_i grammes de poudre.

٦ř

MESURE DE FLUX : Mesure de l'activité du ⁵⁶Mn produit, contrôle de la variation du flux par détection des particules α à 90° du faisceau incident.

MESURE DE L'ACTIVITE : Détection des rayonnements γ par une jonction Ge(Li) de 16 cm³ ; résolution 3,6 keV.

CORRECTIONS : Décroissance du flux incident pendant l'irradiation.

ERREURS : Erreurs sur les périodes, les coefficients de conversion, les rapports de branchement, erreurs de pesée, erreur statistique.

COMMENTAIRE : L'énergie à laquelle ces mesures ont été faites est bien inférieure au seuil de la réaction c). La résolution en énergie n'étant pas assez importante pour expliquer la valeur trouvée, nous n'avons pas tenu compte du résultat obtenu par HANKLA pour la réaction (n,3n).

NORMALISATION, RESULTATS : Les valeurs de HANKLA ont été normalisées par l'intermédiaire de la section efficace de 56 Fe(n,p) 56 Mn. Nous avons également normalisé sur les intensités γ et les périodes.

١ř

	En (MeV)	± ΔE _n (MeV).	σl (mb)	R1	R ₂	R3	σ2 (mb)	± ∆σ2/σ2 (%)
a) b) c)	14,4 14,4 14,4	0,4 0,4 0,4	1986 151 61	0,997 1,000	0,992 1,005	1,183 1,183	2324 180	8 12

 σ_1 : Valeurs des sections efficaces (n,2n) et (n,3n) données par HANKLA.

÷

23

T

- R_1 : Périodes standards / périodes utilisées par HANKLA. ($R_{1B} = 6,183/6,2$; $R_{1b} = 1$; $R_{1c} = 1$)
- $R_2 : \text{ Intensités } \gamma \text{ utilisées par HANKLA / intensités } \gamma \text{ standards.}$ $(R_{1:e} = 0.87/0.877 ; R_{1:b} = 0.437/0.435, R_{1:c} = 1)$
- R3 : Section efficace standard de ⁵⁶Fe(n,p)⁵⁶Mn / section efficace de cette réaction utilisée par HANKLA à 14,4 MeV (118,3 / 100)
- σ_2 : Valeurs adoptées des sections efficaces (n,2n) et (n,3n).

AUTEUR : QAIM S.M.

REFERENCE : Nuclear Physics A185 (1972) 614.

LABORATOIRE : Institut für Radiochemie der Kernforschungsanläge Jülich GmbH (Allemagne).

QUANTITE MESUREE : Section efficace de la réaction $^{197}Au(n,2n)^{196}Au$ pour En = 14.7 ± 0.3 MeV.

PRECISION : Sur l'énergie ± 0,3 MeV ; sur o:± 11,5 \$

METHODE DE MESURE : Activation.

STANDARDS : $^{75}As(n,2n)^{74}As$, $\sigma = 970 \pm 80 \text{ mb} [37]$, et $^{27}Ag(n,\alpha)^{24}Na$, $\sigma = 121 \pm 6 \text{ mb}$; $T_{1/2}(^{196}Au) = 6,2 \text{ j}$; Intensité du rayonnement γ de 0,355 MeV = 0,90 par désintégration ; coefficient de conversion interne (total) de la transition à 0,355 MeV : 0,04 [35].

PRODUCTION DES NEUTRONS : Réaction $T(d,n)^{4}$ He sur générateur Dynagen avec deuterons de 0,3 MeV ; cible tournante.

ECHANTILLONS : Forme pulvérulente d'Au (\sim 0,2 g) mélangée à 0,05 g d'élément de référence envelopée dans une fine feuille de polyéthylène.

FLUX DE NEUTRONS : Mesure de ^{7h}As formé au cours de l'irradiation, vérification par mesure de ^{2h}Na.

MONTAGE EXPERIMENTAL : Echantillon placé près de la cible tournante pour obtenir un flux important. L'angle solide important entre la cible et l'échantillon conduit à une dispersion en énergie relativement importante.

MESURE DE L'ACTIVITE : Par spectromètre Ge(Li) 28 cm³ ; résolution 2,8 keV.

CORRECTIONS : Efficacité du spectromètre γ ; intensité de la transition à 355 keV ; coefficient de conversion interne.

ERREURS : Détermination du flux ; efficacité du spectromètre y : ± 2% ;

٦ř

détermination du fond (spectre) ; pesées des échantillons ; auto-absorption des rayonnements y ; statistique des comptages. Les incertitudes sur le schéma de désintégration n'ont pas été prises en compte.

NORMALISATIONS - RESULTATS : Comme QAIM nous a signalé que les deux sections efficaces utilisées pour la détermination du flux donnaient des résultats cohérents, nous avons, pour éviter d'utiliser un standard supplémentaire, re-normalisé ses résultats par l'intermédiaire de la réaction $2^{7}Al(n,a)^{24}Na$. Nous avons également tenu compte de l'intensité du rayonnement y de 356 keV.

En	±∆E _n	σ <u>1</u>	σ2	σ ₃	R	σų	± Δσμ/
(MeV)	(MeV)	(mb)	(mb)	(mb)		(mb)	(%) ^{σμ}
14,7	0,3	121,6	116,8	2209	'ı,026	2177	11

 σ_1 : Valeur de la section efficace $27_{Al}(n,\alpha)^{24}$ Na utilisée par QAIM.

- σ_2 : Valeur de la section efficace ${}^{27}A\ell(n,\alpha){}^{24}N\alpha$ extraite de notre standard [11].
- σ3 : Valeur de la section efficace ¹⁹⁷Au(n,2n)¹⁹⁶Au mesurée par QAIM.
- R : Intensité du rayonnement γ de 356 keV donné par QAIM / notre intensité standard (0,90 / 0,877).

٦ř

 σ_4 : Valeur de la section efficace ¹⁹⁷Au(n,2n)¹⁹⁶Au adoptée, avec $\sigma_4 = \sigma_3. (\sigma_2/\sigma_1).R$. - 30 -

AUTEUR : NETHAWAY D.R.

REFERENCE : Nuclear Physics A190 (1972) 635.

LABORATOIRE : Lawrence Livermore Laboratory (USA).

QUANTITES MESUREES : Section efficace de la réaction $^{197}Au(n,2n)^{196}Au$ pour 10 énergies de 13,8 à 15 MeV.

PRECISION : Sur l'énergie \pm 0,025 MeV ; sur σ : \sim 5%.

METHODE DE MESURE : Activation.

STANDARDS : ${}^{27}A_{4k}(n,\alpha){}^{24}Na, \sigma = 117,0 \pm 0,8 \text{ mb à } 14,43 \pm 0,015 \text{ MeV} [40](*)$ $T_{1/2}({}^{196}Au) = 6,17 \text{ j ; } I_{(355,7 \text{ keV})} = 0,880 \text{ par désintégration du noyau} {}^{196}Au.$

PRODUCTION DES NEUTRONS : Réaction $T(d,n)^{h}$ avec cible tournante de Ti-T sur Insulated Core Transformer. Flux de l'ordre de 1-2 10^{12} neutrons par seconde.

ECHANTILLONS : Disques métalliques de diamètre 1,27 cm et d'épaisseur 0,25 mm.

FLUX DE NEUTRONS : Mesuré par l'éctivité du ²⁴Na produit dans les disques d'A4. Etablissement d'une courbe de fluence en fonction de l'énergie des neutrons.

MONTAGE EXPERIMENTAL : Irradiation simultanée de 6 échantillons d'Au et Al sur une sphère d'Al de 20 cm de rayon centrée sur la source de neutrons. Montage très aéré pour éviter les neutrons diffusés.

• Pour les autres énergies, NETHAWAY a pris les résultats de BAYHURST B.P. [41], BUTLER J.P. [42], PAULSEN A. [43], BARRALL [44].
CORRECTIONS : Auto-absorption des rayonnements dans l'échantillon. le contrôle du flux de neutrons est effectué à l'aide d'um télescope à protons de recul.

COMMENTAIRE : Ce travail est caractérisé par une très bonne définition de l'énergie (\pm 25 keV). Ceci a été rendu possible par un accélérateur à fort courant.

NORMALISATIONS - RESULTATS : Nous avons re-normalisé les valeurs de NETHAWAY par l'intermédiaire des valeurs de la section ${}^{27}A\iota(n,\alpha)^{24}$ Na qu'il utilise et que nous avons déjà extraites [3] de sa figure l. Nous avons également re-normalisé l'intensité du rayonnement gamma de 356 keV ainsi que la période de ${}^{196}Au$.

			-							
±Δ04/04 (\$)	رب ۲	s N	ر ک	s N	s N	s N	د ت	s N	s U	د ح
σ1, (mb)	2228	2205	2183	2187	2240	2219	22 h6	2253	751 h	2208
RT	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006	1,006
(qш) Ер	2154	1212	2115	2120	2168	2132	2149	2156	2121	2117
م2 (⊞))	126,0	125,3	123,6	123,3	120,2	118,5	116,5	116,1	2,411	113,5
ما (طس)	122,5	121,2	4, 021	120,2	0,711	2° ¶TT	1,511	ז, נננ	110	4, 001
En (MeV)	13,8	13,91	14,1	14,13	14,42	14,57	14,72	14,75	14,9	14,95

- or : Valeurs de la section efficace ${}^{27}\rm Ag(n,\alpha)^{24}\rm Na$ extraites de la figure 1 de NETHAWAY. \$27
 - σ_2 : Valeurs de la section efficace $^{27}AR(n,\alpha)^{24}$ Na extraites de notre standard.
- σ_3 : Valeurs de la section efficace $^{19}T_{AU}(n,2n)^{196}Au$ données par NETRANY.
- Rr : Coefficient tenant compte de la normalisation sur la période ¹⁹⁶Au et l'intensité úu rayonnement 356 keV =(6,183 x 0,680)/(6,17 x 0,677)
 - σ_{l_1} : Valeurs adoptées avec $\sigma_{l_1} = \sigma_3 \cdot (\sigma_2 / \sigma_1) R_T$

ų į

- 33 -

AUTEURS : MATHER D.S., BAMPTON P.F., COLES R.E., JAMES G., NIND P.J. REFERENCE : A.W.R.E. Report nº 072/72 (1972). LABORATOIRE : ALDERMASTON (Angleterre) QUANTITES MESUREES : Section efficace de la réaction ¹⁹⁷Au(n.2n)¹⁹⁶Au bour les énergies de 12,4 et 14,3 MeV. PRECISION : Sur l'énergie : ± 0,100 MeV ; sur o : 9,7% à 12,4 MeV et 6,6% à 14,3 MeV. METHODE DE MESURE : Mesure directe (comptage 4m des neutrons émis au cours de la réaction). STANDARDS : 236 U(n.f). $\sigma = 978$ mb ± 5% à 12,4 MeV et $\sigma = 1169$ mb ± 2% à 14,3 MeV [46] . PRODUCTION DES NEUTRONS : Réaction T (d.n) ⁴He (cible Ti-T) sur Van de Graaff de 6 MV. ECHANTILLONS : Au sous forme métallique ; épaisseur 24,49 g/cm². FLUX DE NEUTRONS : Mesure relative et contrôle par scintillateur plestique. MONTAGE EXPERIMENTAL : Echantillons d'Au et d'U placés alternativement au centre d'un gros scintillateur liquide sphérique dans un faisceau pulsé de neutrons. CORRECTIONS : Atténuation et dégradation du flux incident dans l'échantillon : ∿ + 15% ; atténuation dans l'élément de référence : - 2,6% ; présence de neutrons de faibles énergies dans le faisceau v + 12% ; réponse en énergie du détecteur · - 5% ; évènements multiples pour une même bouffée de neutrons ; neutrons secondaires perdus dans l'échantillon. Corrections totales appliquées : + 256 mb à 12,4 MeV et + 441 mb à 14,3 MeV.

ERREUR : Composée à partir des déviations standard des mesures faites et de l'incertitude de la somme des multiplicités > 4 dans la détermination du flux.

٩ř

COMMENTAIRE DE L'EVALUATEUR : Cette publication est remarquable par l'étude détaillée de toutes les corrections qui peuvent intervenir dans cette méthode de mesure.

NORMALISATION - RESULTATS : Les valeurs de MATHER ont été re-normalisées par l'intermédiaire des valeurs de la section efficace de la réaction 236 U(n,f) que nous avons choisie comme donnée de référence.

En	± ΔEn	σ <u>1</u>	σ2	σ <u>3</u>	თ.	± Δσιμ/σιμ
(NeV)	(MeV)	(mb)	(mb)	(σα)	(m.b.)	(%)
12,4	0,100	978	1014	1828	1895	9,7
14,3	0,100	1169	1182	2578	2607	6,6

- σ_1 : Valeurs de la section efficace $^{238}U(n,f)$ prises comme standards par MATHER [46] .
- σ_2 : Valeurs de la section efficace ²³⁸U(n,f) que nous avons retenues comme données de références [9].
- σ_3 : Valeurs de la section efficace $^{197}{\rm Au}(n,2n)^{196}{\rm Au}$ données par MATHER [45] .
- $σ_4 : Valeurs de la section efficace ¹⁹⁷Au(n,2n)¹⁹⁶Au adoptées, avec$ $<math>σ_4 = σ_1 . (σ_3/σ_2) .$

17

- FICHE nº 11 [47] -

- 35 -

AUTEURS : FREHAUT J., MOSINSKI G.

REFERENCE : Rapport CEA-R-4627 (1974) et communication personnelle. LABORATOIRE : Centre d'Etudes de Bruyères-le-Châtel (France) QUANTITE MESUREE : Section efficace de la réaction ¹⁹⁷Au(n,2n)¹⁹⁶Au pour 14 énergies de 7,93 à 14,76 MeV.

PRECISION : Sur l'énergie de \pm 0,065 à 0,150 MeV ; sur σ de \pm 4,0 % à 50 %.

METHODE DE MESURE : Mesure directe (comptage 4π des neutrons émis au cours de la réaction).

STANDARD : 238 U(n,f) [10] .

PRODUCTION DES NEUTRONS : Réaction $D(d,n)^3 \mbox{He}$ (cible gazeuse) sur Van de Graaff Tandem 12 MeV.

ECHANTILLONS : Au sous forme de cylindre métallique (18,112 g) gainé par une feuille mince de polyéthylène.

FLUX DE NEUTRONS : Mesure relative permanente par petit scintillateur liquide.

MONTAGE EXPERIMENTAL : Echantillons d'Au et d'U placés alternativement, au centre d'un gros scintillateur liquide sphérique, dans un faisceau pulsé de neutrons.

CORRECTIONS : Du bruit de fond ; du temps mort ; des évènements dus à l'enveloppe de l'échantillon ; neutrons de break-up ; empilements des évènements à un neutron.

ERREURS : Mesure relative du flux de neutrons : $\pm 1\%$; précisions statistiques des comptages < 1 %; précision sur les multiplicités des neutrons ; l'erreur sur le standard n'est pas incluse.

COMMENTAIRE : Ce travail est le seul qui donne autant de valeurs par cette méthode de mesure.

NORMALISATION - RESULTATS : Les valeurs de FREHAUT ont été re-normalisées par l'intermédiaire des valeurs de la section efficace de la réaction 238 U(n,f) qu'il a prises comme standards et de celles que nous avons retenues comme données de référence.

En (MeV)	±ΔEn (MeV)	σ _l (mb)	σ ₂ (mb)	σ ₃ (mb)	σ ₄ (mb)	Δσι/σι (%)
8,44	0,140	962	999	44	45,7	5.0
8,94	0,125	964	993	288	297	6,9
9,44	0,120	960	983	738	756	8,8
9,93	0,110	952	975	1027	1052	5,6
10,42	0,100	948	977	1378	1420	5,4
10,91	0,095	952	982	1589	1639	6,4
11,40	0,090	957	986	1691	1742	4,5
11,88	0,085	965	99 2	1.816	1869	5,2
12,36	0,085	978	1012	2012	2082	4,1
12,85	0,080	999	1039	2166	2253	4,0
13,33	0,075	1031	1081	2197	2304	5,6
13,80	0,075	1086	1123	2287	2365	3,9
14,28	0,070	1163	1179	2037	2065	7,2
14,76	0,065	1216	1236	2215	2251	7,1

 σ_1 : Valeurs de la section efficace $^{238}\text{U}(n,f)$ prises comme standards par FREHAUT [10] .

 σ_2 : Valeurs de la section efficace ²³⁸U(n,f) que nous avons retenues comme données de références [9].

σ₃ : Valeurs de la section efficace 197_{Au(n,2n)}166_{Au} données par FREHAUT [47] .

 σ_{4} : Valeurs de la section efficace ¹⁹⁷Au(n,2n)¹⁹⁶Au adoptées, avec $\sigma_{4} = \sigma_{3} \times (\sigma_{2}/\sigma_{1}).$

٩ř

- FICHE nº 12 [48] -

- 37 -

AUTEURS : PAULSEN A., LISKIEN H., WIDERA R.

REFERENCE : ATKE à paraître et communication privée.

LABORATOIRE : Central Bureau for Nuclear Measurements, Geel, Belgique. QUANTITE MESUREE : Section efficace de la réaction $^{197}Au(n,2n)^{196}Au$ E_n = 10,26 à 19,59 MeV (28 énergies).

PRECISION : Résolution en énergie: de 0,14 à 0,60 MeV; précision sur $\sigma:\pm$ 5,6% METHODE DE MESURE : Activation.

STANDARDS : H(n,n)H [49] pour $E_n = 12.8 \ge 19.59 \text{ MeV}$; $\sigma^{27}A\ell(n,\alpha)^{24}Na = 108 \text{ mb } a E_n = 11.53 \text{ MeV}$

 $T^{1/2}(196g_{Au}) = 6,13 \pm 0,02 \text{ jours ; } I_{\gamma}(356 \text{ keV}) = 0,894 \pm 0,009.$

PRODUCTION DES NEUTRONS : - réaction $T(d,n)^4$ He, Van de Graaff, $E_d = 1$ et 3 MeV.

- réaction $15N(d,n)^{16}O$, Van de Graaff,

 $E_{\hat{\alpha}} = 1,8$ MeV pour les énergies de neutrons de 10,3 à 11,5 MeV.

ECHANTILLONS : Disques métall'ques, diamètre 20 mm, épaisseur 5 mm ou 0,2 mm.

MESURE DE FLUX : Far télescope à proton de recul pour les mesures avec la réaction $T(d,n)^{4}$ He, par mesure de l'activité du ²⁴ Na pour les mesures avec la réaction ¹⁵ N(d,n).

MESURE DE L'ACTIVITE : Détection y par Ge(Li).

CORRECTIONS : Correction de géométrie de détection, correction des coîncidences, auto-absorption.

ERREURS : Sur le flux 3%, sur la géométrie d'irradiation 2%, sur la distribution angulaire des neutrons 3%, statistique 1%, sur la mesure d'activité 2%, sur le schéma de désintégration 2%, sur l'absorption et la diffusion des neutrons 0,5%, sur la pureté des échantillons 0,1%, soit au total 5,6%. NORMALISATION, RESULTATS : Les résultats de PAULSEN ont été normalisés par l'intermédiaire de la section efficace de ${}^{27}Al(n,a){}^{24}$ Na. Nous avons également renormalisé l'intensité du rayonnement y de 356 keV ainsi que la période de ${}^{196}Au$.

σ₂ = R₁ x R₂ x R₃ x σ₁,

4,

a5 : réaction utilisée par PAULSEN à ${\rm E}_n$ = 11,53 MeV (115,31/108). Valeurs adoptées de la section efficace de ${}^{197}{\rm Au(n,2n)}^{196}{\rm Au}$ avec

ВЗ : Section efficace standard de 27 A $_{\rm x}$ (n, $_{a}$) 24 Na / section efficace de cette Intensité y utilisée par PAULSEN / intensité y standard (0,894/0,877)

-

Rl : Période standard / période utilisée pur PAULSEN (6,183/6,13).

Valeurs de la section efficace (n,2n) donnée par PAULSEN.

ני יני

En (MeV)	$t \Delta E_n$ (MeV)	(mb)		P1	R1 R2	R1 R2 H3
10,26 10,43	0,15	1300 1400		600°T	1,009 1,019 1,019 1,019	1,009 1,019 1,068 1,008 1,008
£9,01	0,17	1500	Ļ,	600	000, I 000	009 1,019 1,068
10,85	81,0	1520	, r	600	6T0 ⁶ T 600	009 1,019 1,068
11,08	6t ' 0	1640	Ļ,	600	610 , T 600	009 1,019 1,068
11,28	0,20	1710	ŗ	600	6T0'T 600	890'T 6TO'T 600
11,11	0,20	1690	, 'n	000	610'T 600	890'T 610'T 600
11,53 12.80	0.20	1730 1860		00 00 90 00	600 600 600 600	000 1,019 1,0 000 000 000
13,20	0,21	1860	<u>ب</u>	600	6T0'T 600	0,1 010,1 600
13,60	0,23	1860	, t	ŝ	009 1,019	0,1 910,1 900
14,00	0,26	1860	,1 ,1	ő	(T0'T) 60	0,1 (10,1 00
14,20	0,28	1850	0,1	60	610°T 60	0,1 01,0 1,0
14,40	44,0	1870	1,0	60	610'T 60	0,1 010,1 00
14,60	0,32	1880	0,1	60	6TO'T 60	
0 8° †í	0,34	068T	0,1	<u>%</u>	09 L 1 60	0, 1, 1, 210, 1, 60
15,20	66,0	026T	1,0	60	6TO'T 60	0,1 019 1,0 00 00 00 00 00 00 00 00 00 00 00 00 0
15,60	14,0	026T	0,1	ŝ	09 1,019 60	0, 1 0, 1 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
16,00	61'0	096T	0,1	60		09 1,019 1,0 09 1,019 1,0 09 1,019 1,0 09 1,019 1,0 1,019 1,0
16,40	0,52	1920	0,1	60	610°T 60	09 1,019 1,0 09 1,019 1,0 09 1,019 1,0 09 1,019 1,0 09 1,019 1,0
16,60	0,58	2000	0 , T	ŝ	610°T 60 610°T 60	09 1,019 1,0 09 1,019 1,0 09 1,019 1,0 09 1,019 1,0 09 1,019 1,0 09 1,019 1,0
17,00	0,49	1770	0 , 1		600 ⁶ T 600 610 ⁶ T 600 610 ⁶ T 600	1,019 1,019 1,019 1,019 1,0 1,019 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
17,50	0,17	0191	, 1	ĝ	6T0 ^t T 600 6T0 ^t T 600 6T0 ^t T 600 6T0 ^t T 600	1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0
1,8,00	ղղ օ	1 ¹ 70		õ õ	610'T 600 610'T 600 610'T 600 610'T 600 610'T 600	1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0
18,40	0,42		, 1	00000	610'T 600 610'T 600 610'T 600 610'T 600 610'T 600	1,019 1,01 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0 1,019 1,0
18,80	0,36	1345	°t '	<u>0000000000000000000000000000000000000</u>	1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019	009 1,019 1,0 019 1,019 1,0 029 1,019 1,0 039 1,019 1,0 039 1,019 1,0 039 1,019 1,0 039 1,019 1,0 039 1,019 1,0 039 1,019 1,0 039 1,019 1,0 039 1,019 1,0 039 1,019 1,0 039 1,019 1,0
19,20	0,30	1345 1215	, , , ,		1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019	009 1,019 1,0 009 1,019 1,0 009 1,019 1,0 009 1,019 1,0 009 1,019 1,0 009 1,019 1,0 009 1,019 1,0 009 1,019 1,0 009 1,019 1,0 009 1,019 1,0 009 1,019 1,0 009 1,019 1,0 009 1,019 1,0 009 1,019 1,0 009 1,019 1,0 009 1,019 1,0
		1345 1215 1095		00000000000000000000000000000000000000	1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 009 1,019 1,019	N099 1,019 1,00 N099 1,019 1,00 N091 1,019 1,00 N092 1,019 1,00 N093 1,019 1,00

÷ 38 -

4

1

- FICHE nº 13 [50] -

- 39 -

AUTEURS : BAYHURST B.P., GILMORE J.S., PRESTWOOD R.J., WILHELMY J.B., JARMIE NELSON, ERKKILA B.H., HARDEKOPF R.A.

REFERENCE : Rapport LA-UR-75-307 (1975).

LABORATOIRE : LOS ALAMOS (USA).

QUANTITE MESUREE : Sections efficaces de la réaction $^{197}Au(n,2n)^{196}Au$ pour 17 énergies de 8,65 à 28,08 MeV, de la réaction $^{197}Au(n,3n)^{195}Au$ pour 9 énergies de 16,19 à 28,08 MeV et de la réaction $^{197}Au(n,4n)^{194}Au$ pour 3 énergies de 24,48 à 28,08 MeV.

PRECISION : Sur l'énergie de \pm 0,05 à \pm 0,310 MeV ; sur σ environ 5% en moyenne.

METHODE DE MESURE : Activation.

STANDARD : ${}^{27}_{A\ell}(n,\alpha){}^{2h}_{Na}$, $T_{1/2}({}^{196}_{Au}) = 6,18j$, $T_{1/2}({}^{195}_{Au}) = 1.83 \text{ j.}$, $T_{1/2}({}^{194}_{Au}) = 1.625 \text{ j. et télescope à protons.}$

PRODUCTION DES NEUTRONS : Réactions ${}^{1}H(t,n)^{3}He$ de 7,6 à 9,3 MeV, ${}^{2}H(d,n)^{3}He$ et ${}^{3}H(d,n)^{4}He$ de 13,4 à 22 MeV et ${}^{2}H(d,n)^{3}He$ jusqu'à 28 MeV ; sur Cockroft-Walton de 13,4 à 14,9 MeV (réaction ${}^{3}H(d,n)^{4}He$), sur Van de Graaff aux autres énergies ; cible gazeuse de 3 cm de long.

FLUX DE NEUTRONS : Mesure relative permanente par enregistrements du courant du faisceau et de la pression de la cible. Entre 20 et 30 MeV, mesure complémentaire du flux par télescope à protons (Si et INa) pour détermination de la section efficace ${}^{27}A_{2}(n,a){}^{24}Na(16,2 \text{ MeV et de 21,3 à 28 MeV}).$

ECHANTILLONS : Disques de 9,5 mm de diamètre d'Al (e = 0,13 mm) et d'Au (e = 0,05 mm) empilés dans un container léger en acier (longueur totale : environ 7 mm).

MONTAGE EXPERIMENTAL : Container chargé placé sous différents angles (0°, 15°, 90°, 150°) sur le Cockroft-Walton. Container placé à 10-15 mm du fond de la cible et variation de l'énergie du faisceau sur le Van de Graaff. Disque d'A& placé sur la face d'entrée du télescope et loin derrière le container.

CORRECTIONS : Décroissance de la radioactivité pendant et après l'irradiation ; géométrie (1%) ; absorption des neutrons dans la face d'entrée du

18 14

télescope (1,1%) ; réactions dans le détecteur INa (0,6%) ; temps mort (1,0%) ; neutrons produits par les particules chargées et par leur "breakup" sur l'environnement ; réaction n, γ .

ERREURS : Détermination du flux par le télescope : 2 à 3%. Section efficace du standard (3%).

COMMENTAIRE : Ce travail est remarquable par la gamme d'énergie qu'il couvre et par le soin avec lequel les risques d'erreurs ont été étudiés.

NORMALISATION - RESULTATS : Les valeurs de BAYHURST concernant les réactions $^{197}Au(n,2n)^{196}Au$ et $^{197}Au(n,3n)^{195}Au$ ont été re-normalisées par rapport à la section efficace de la réaction $^{27}Au(n,a)^{24}$ Na qu'il utilise et celle de notre standard jusqu'à 20 MeV avec interpolations linéaires quand nécessaire. Au dessus, ne disposant pas de standard, nous avons simplement adopté ses valeurs sans re-normalisation, et ceci d'autant plus facilement que jusqu'à 20 MeV, les écarts entre ses valeurs standards et les notres sont faibles. La période de ^{196}Au que nous avons adoptée étant très voisine de cette utilisée par BAYHURST [50] (écart < 5.10⁻⁴), nous les avons considérées comme égales. Pour la réaction $^{197}Au(n,4n)^{194}Au$, nous avons adopté les valeurs de BAYHURST sans re-normalisation.

٩ř

- 40 -

a) ¹⁹⁷Au(n,2n)¹⁹⁶Au

			_			
En (MeV)	$\frac{\pm}{(MeV)}$	σ ₁ (mb)	σ ₂ (mb)	σ ₃ (mb)	σ <u>μ</u> (mb)	± Δσι /σι (%)
8,65	0,23	62,8	60,6	147	142	4,8
9,32	0,31	78,3	77,9	629	626	4,9
9,38	0,24	79,6	79,2	680	677	5,0
13,41	0,05	121	128,1	2097	2220	4,2
14,10	0,05	122	123,6	2213	2242	4,2
14,89	0,05	108	114,3	2216	2239	4,2
16,19	0,13	88,6	93,7	2046	2164	4,3
16,20	0,12	88,5	93,6	2130	2253	4,2
17,23	0,17	73,5	75,6	2125	2186	4,2
18,23	0,10	58,2	60,4	1691	1755	4,3
19,98	0,11	39,2	38,2	1096	1068	4,3
21,25	0,18	29,6		750	750	5,1
22,00	0,14	25,6		613	613	5,1
23,36	0,12	18		469	469	6
24,48	0,13	15,2		427	427	1,9
26,06	0,13	9,8		340	340	5,3
28,08	0,14	2,6		339	339	5
		i 1				1 1

 $σ_1$: Valeurs de la section efficace ²⁷Al(n, α)²⁴Na obtenues par interpolation linéaire des valeurs données par BAYHURST [50].

 σ_2 : Valeurs de la section efficace ${}^{27}\text{Al}(n,\alpha){}^{24}\text{Na}$ extraites de notre standard [11].

σ₃ : Valeurs de la section efficace ¹⁹⁷Au(n,2n)¹⁹⁶Au données par bAIAURST [50].

 σ_4 : Valeurs de la section efficace ${}^{197}{\rm Au}(n,2n){}^{196}{\rm Au}$ adoptées avec σ_4 = σ_3 x (σ_2/σ_1).

En (MeV)	$\frac{\pm \Delta E_n}{(MeV)}$	σ <u>]</u> (mb)	σ2 (mb)	σ3 (mb)	σμ (mb)	+ Δσ4/σ4 (%)
16,19	0,13	88,6	93,7	35	37	57,1
17,23	0,17	73,5	75,6	309	318	4,9
18,23	0,10	58,2	60,4	670	695	4,8
19,98	0,11	39,2	38,2	1296	1263	4,6
21,25	0,18			1637	1637	4,8
22,00	0,14			1734	1734	4,6
24,48	0,13			1916	1916	5,0
26,06	0,13			1859	1859	5,0
28,08	0,14			1535	1535	4,6

 σ_1 : Valeurs de la section efficace ${}^{27}A\ell(n,\alpha){}^{24}Na$ obtenues par interpolation linéaire des valeurs données par BAYHURST [50].

 σ_2 : Valeurs de la section efficace ${}^{27}\text{Al}(n,\alpha){}^{24}\text{Na}$ extraites de notre standard [11].

 σ_3 : Valeurs de la section efficace $197 Au(n, 3n)^{195} Au données par BAYHURST [50].$

 σ_4 : Valeurs de la section efficace ${}^{197}Au(n,2n){}^{196}Au$ adoptées avec $\sigma_4 = \sigma_3 \ x \ (\sigma_2/\sigma_1).$

٦ř

c) ¹⁹⁷Au(n,4n)¹⁹⁴Au

۰.

۶

En (MeV)	+ ΔEn (MeV)	σկ (mb)	± Δσι/σι (%)
24,48	0,13	2	∿ 100
26,06	0,13	57	5,3
28,08	0,14	370	5,7

 σ_4 : Valeurs de la section efficace $197_{Au(n,\, l_n)} 1^{94}_{Au}$ données par BAYHURST et adoptées.

۳.

i,

AUTEURS : ZELLERMAYER D. et ROSNER B.

REFERENCE : Phys. Rev. C6 (1972) 315.

LABORATOIRE : Technion-Israël Institute of Technology, Israël.

QUANTITES MESUREES : Rapport des sections efficaces 197Au(n,2n) conduisant aux états métastables $J^{\pi} = 2^-, 5^+, 12^-$ à $E_n = 14$ MeV.

PRECISION : sur l'énergie : pas donnée, sur les rapports ∿ 15%.

METHODE DE MESURE : Activation.

STANDARDS : T1/2 (2⁻) = 6,18 jours, T1/2 (5⁺) = 8,2 s; T1/2 (12⁻) = 9,7 heures.

PRODUCTION DES NEUTRONS : Pas d'informations.

ECHANTILLONS : Feuilles d'épaisseur 10 mg/cm².

MESURE D'ACTIVITE : Détection des rayonnements γ de 148 et 356 keV par Ge(Li), détection des rayonnements X_L par NaI à fenêtre de béryllium. CORRECTIONS : Coefficients de conversion, rapports de branchement, efficacité du détecteur, auto-absorption des X dans l'échantillon.

RESULTATS : $\frac{\sigma_{12}}{\sigma_2 + \sigma_5} = 0.08 \pm 0.01$ avec $\sigma_2 = \sigma \begin{bmatrix} 197_{Au}(n,2n)^{196g_{Au}} \end{bmatrix}$ $\sigma_{12} = \sigma \begin{bmatrix} 197_{Au}(n,2n)^{196m_{Au}} \end{bmatrix}$ $\sigma_{12} = \sigma \begin{bmatrix} 197_{Au}(n,2n)^{196m_{Au}} \end{bmatrix}$

Soit en combinant ces deux résultats : σ_2 : σ_5 : σ_{12} = 1 : 0,22 : 0,10

En adoptant la valeur $\sigma \left[{}^{197}Au(n,2n) {}^{196}Au \right] = 2254 \pm 70$ mb à 14 MeV déterminée § VII , il vient

```
\sigma_{12} = 1720 \pm 175 \text{ mb}

\sigma_5 = 368 \pm 62 \text{ mb}

\sigma_2 = 167 \pm 25 \text{ mb}
```

VI - DONNEES ISSUES DE CALCULS OU D'EVALUATIONS

Dans ce paragraphe, nous considererons aussi bien les réactions $^{197}Au(n,2n)^{196}$, 196ml, $196m^2Au$ que les rapports isomériques de ces sections efficaces. Sans indication particulière, c'est la réaction $^{197}Au(n,2n)^{196}Au$ qui sera considérée.

1. R.J. HOWERTON UCRL 5351 (1958) [51]

Les valeurs ci-dessous ont été extraites de sa courbe :

En (MeV)	σ (mb)
9	200
10	600
11	1050
12	1500
13	1800
14	2000
15	2000

2. S. PEARLSTEIN [52]

Les calculs ont été refaits avec les énergies de liaison extraites de [6], soit EB1 = 8,08 MeV, EB2 = 14,748 MeV et a = 6,093 MeV⁻¹.

On a obtenu :

En (MeV)	σ(n,2n) (mb)	σ(n,3n) (mb)
9	530	
10	1288	
11	1801	
12	2099	
13	2265	
14	2355	
15	2370	34
16	1 91 2	519
17	1348	1097
18	897	1557
19	580	1879
20	370	2092

- 45 -

3. ENDF/BIV [53]

1

Dans ce fichier nous trouvons les évaluations des sections efficaces des réactions $^{197}{\rm Au}(n,2n)^{196m2}{\rm Au}$ (1), $^{197}{\rm Au}(n,2n)^{196}{\rm Au}$ (2) et $^{197}{\rm Au}(n,3n)^{195}{\rm Au}$ (3).

			· · · · · · · · · · · · · · · · · · ·	
	En (MeV)	σ(1) (mb)	(mb)	σ(3) (mb)
	9	5	195	
1	9,5	10	567	
	10	22	899	
	10,5		1202	
	11	55	1436	
Ì	11,5		1642	
	12	92	1798	
	12,5		1906	
	13	130	2003	
	13,5		2091	
ĺ	14	152	2140	ĺ
l	14,5		2150	
l	15	165	2101	122
l	15,5		2033	
I	16	170	1935	372
I	16,5		1832	
l	17	167	1720	702
I	17,5		1612	
I	18	160	1466	952
i	18,5		1358	
	19	147	1222	1202
l	19,5		1085	
	20	130	948	1452
L				

١ř

- 46 -

4. LLL [54]

۲

De ce fichier de données évaluées, nous avons extrait les sections efficaces des réactions $^{197}{\rm Au(n,2n)}^{196}{\rm Au}$ et $^{197}{\rm Au(n,3n)}^{195}{\rm Au}$.

En (MeV)	σ(n,2n) (mb)	σ(n,3n) (mb)
9	200	
9,55	500	
10	900	
11	1600	
11,5	1900	
12	2050	
15	2100	50
15,5	2000	150
16	1850	300
17		600
18	1270	900
19		1150
20	900	1 300

ų,

5. Z.T. BODY et el. [55]

Pour 14,7 MeV, BÖDY recommande 2122 mb.

6. M.D. COLDBERG et al. [25]

Les valeurs extraites des courbes de GOLDBERG sont indiquées ci-dessous pour les réactions $^{197}Au(n,2n)^{196m_{Au}^2}(1)$ et $^{197}Au(n,2n)^{196}Au$.

En (MeV)	σ(1) (mb)	σ(2) (mb)
9		200
10	20	920
11	55	1600
12	90	2000
13	130	2200
14	150	2230
15	165	2120
16	172	1950
17	170	1720
18	160	1500
19	145	1250
20	130	1000

7. A. GILBERT et al. [57]

Les calculs ont été faits en utilisant le modèle statistique. L'effet des niveaux discrets qui ne sont pas pris en compte est compensé par l'utilisation de "seulls effectifs".

÷

Pour 14,5 MeV, GILBERT trouve $\sigma = 2378$ mb.

8. UKNDL [58]

1.

Dans cette évaluation nous me trouvons que les données correspondant à la réaction $^{197}{\rm Au(n,2n)}^{196}{\rm Au}.$ Ce sont les suivantes :

E (MeV)	ช (mb)	
8,3	1	
8,5	30	
8,55	35	
8,7	100	
9	200	
9,1	229	
9,5	434	
10	7 65	
10,5	1292	
ц	1556	
11,5	1737	
12	1888	
12,5	2017	
13	2105	
13,25	2134	
13,5	2165	
13,75	2176	
14	2190	
14,6	2151	
15	21t.	

4 F

9. J.P. DELAROCHE - J. JARY [59-60]

L'un de nous (0.B.) a effectué un calcul au noyen d'un code basé sur un modèle statistique simple [59] ne tenant pas compte de la conservation du moment angulaire et de la parité. Les sections efficaces de formation du noyau composé et de réactions inverses nécessaires ont été obtenues par J.P. DELAROCHE [60] à l'aide d'un modèle optique sphérique. Cette dernière approximation, qui consiste è négliger le couplage des états collectifs de basses énergies à l'état fondamental s'est avérée satisfaisante pour le calcul d'un ensemble cohérent de sections efficaces de l'or. La détermination des paramètres du potentiel optique a été réalisée [60] de façon à reproduire les fonctions densité S_0 et S_1 , le rayon de diffusion potentielle R' et les variations avec l'énergie de la section efficace totale (méthode SFRT, cf [61]). Au delà de 10 MeV, il n'est pas tenu compte de la compétition entre absorption de volume et absorption de surface dans le potentiel optique, ce qui peut affecter les valeurs de la section efficace de formation du noyau composé.

Les densités de niveaux utilisées dans le calcul de la capture radiative suivent le formalisme de GILEERT et CAMERON [62]. Le paramètre de densité de niveaux <u>a</u> a été pris égal à 18,22 MeV⁻¹ pour l'ensemble des noyaux [63].

Le calcul présent tient compte de l'émission de neutrons, de protons, de particules α et de rayonnement γ . Il est cependant insuffisiant aurtout au voisinage des seuils (n,2n) et (n,3n) où l'importance des spins des niveaux discrets de la cible et des noyaux résiduels est certaine. Un calcul plus complet tenent compte de la conservation du moment angulaire et de la parité est en cours [64].

E(MeV)	N-2N	N-3N
8,5 9 9,5 10 10,5 11 12 13 14 15 16 17 18	50 357 805 1214 1549 1820 2106 2230 2276 2295 2269 2048 1644 1192	33 255 660
20	803	1496

٦ř

- 50 -

10. LISSAGE DES POINT? EXPERIMENTAUX [56]

Grâce à un programme de moindres carrés tenant compte à la fois des erreurs sur l'énergie et sur la section efficace [56], nous avons recherché les meilleurs paramètres d'une formule analytique décrivant au mieux les sections efficaces $197_{Au(n,2n)}^{196}_{Au}$ et $197_{Au(n,3n)}^{195}_{Au}$.

La forme analytique adoptée est celle proposée par PEARLSTEIN [63] où nous avons laissé libres les paramètres EB1, EB2, énergies de liaison d'un et de deux neutrons dans ¹⁹⁷Au, a et a', paramètres de densité de niveaux dans ¹⁹⁶Au et ¹⁹⁵Au, et σ_R , section efficace de réaction n + ¹⁹⁷Au. Les valeurs de ces paramètres correspondant au meilleur ajustement sont

$$a = 8,13 \text{ MeV}^{-1}$$
 $a' = 1.30 \text{ MeV}^{-1}$
EBl = 8.36 MeV EB2 = 14.57 MeV
 $\sigma_B = 2277 \text{ mb}$

et les valeurs correspondantes de $\sigma(n,2n)$ et $\sigma(n,3n)$ sont regroupées dans le tableau suivant :

En (MeV)	σ(n,2n) (mb)	σ(n,3n) (mb)	
8,5	23		
9	342		
10	1130		
11	1680		
12	1980		
13	2130		
14	2200		
15	2210		
16	2060		
16.5	1930	92	
17	1810	245	
18	1530	620	
19	1290	980	
20	1070	1280	

VII - DONNEES NON RETENUES

1. E.R. GRAVES et R.W. DAVIS ; Phys. Rev. <u>97</u> (1955) 1205 [66].

Cette publication étant ancienne et le résultat obtenu ne représentant, compte tenu de la méthode, qu'une estimation, nous n'en n'avons pas tenu compte.

2. S.K. MANGAL et C.S. KHURANA ; Nucl. Phys. 69 (1965) 158 [67].

Bien que la valeur donnée par MANGAL (1950 mb à l¹,8 MeV) ne soit pas très éloignée des autres, nous ne l'avons pas retenue par manque d'information (sur les standards en particulier).

٦ř

VIII - DISCUSSION - DONNEES RECOMMANDEES

Dans ce chapitre, après un bref rappel de l'ensemble des résultats expérimentaux dont nous avons eu connaissance (les valeurs brutes (σ) et re-normalisées (σ_r) classées par énergies croissantes sont regroupées planche 12), nous discutons le choix des données recommandées et des incertitudes adoptées (à partir des valeurs retenues re-normalisées) pour les sections efficaces des réactions :

 ${}^{197}_{A_{U}(n,2n)} {}^{196}_{A_{U}}(1), {}^{197}_{A_{U}(n,2n)} {}^{196m2}_{A_{U}}(2), {}^{197}_{A_{U}(n,2n)} {}^{196m1}_{A_{U}}(3),$ ${}^{197}_{A_{U}(n,3n)} {}^{195}_{A_{U}}(4) \text{ et } {}^{197}_{A_{U}(n,4n)} {}^{194}_{A_{U}}(5).$

Nous comparons ensuite ces valeurs à celles issues de calculs ou d'évaluations.Bien que les gammes d'énergies habituellement prises pour les évaluations de ces réactions soient limitées à 20 MeV, nous avons étendu cette gamme jusqu'à 30 MeV pour les réactions (1), (4) et (5).

1. Rappel des résultats expérimentaux

Nous avons représenté planche 5 les différents résultats expérimentaux des auteurs sans re-normalisation du seuil à 20 MeV avec leurs incertitudes sur σ et seulement quelques incertitudes sur l'énergie pour ne pas surcharger la représentation.

Pour la section efficace de (1), l'accord n'est pas très bon au voisinage du seuil jusqu'à 9,3 MeV : on note plus de 70% d'écart entre TEWES [26] et BAYHURST [50]. Aux alentours de 14 MeV, où la section efficace a une allure constante, les valeurs se situent entre 1722 mb (PAUL [22]) et 2600 mb (ASHBY [23]).

Pour la section efficace de (2), les résultats expérimentaux sont moins nombreux et on note un écart d'environ 40% entre les valeurs de TEWES [26] et celles de PRESTWOOD [28].

Planche 6 ont été indiquées les valeurs des sections efficaces pour les énergies supérieures à 19 MeV.

2. Présentation des valeurs retenues, données recommandées

Sur les planches 7 et ϑ (où les seuils des sections efficaces de (1), (2), (3), (4), (5) sont indiqués S₁, S₂, S₃, S₄, S₅) nous avons regroupé les différents résultats expérimentaux re-normalisés avec les erreurs sur σ et seulement quelques erreurs sur l'énergie. A partir de ces valeurs,

٦,

on a tracé les courbes de sections efficaces les plus crédibles (compte tenu des erreurs données par les auteurs, et après ajustement des résultats des mesures relatives) qui ont déterminé les données recommandées. Ce qui suit explique plus en détail, pour chaque section efficace, le choix des tracés.

a. Réaction ¹⁹⁷Au(n,2n)¹⁹⁶Au (Réaction (1)).

Au-dessous de 12,5 MeV, nous disposons d'un groupe de valeurs cohérentes BAYHURST [50], FREHAUT [47], PAULSEN [48], MATHER [45] et une valeur de PRESTWOOD [28]. Les valeurs de TEWES [26], bien que proches de celles de PAULSEN [48] et de FREHAUT [47] aux alentours de 10,5 MeV, s'en éloignent pour des énergies inférieures. Ceci a déjà été remarqué par PHILIS [3] pour un autre noyau. On pourrait expliquer ce fait en faisant l'hypothèse d'un mauvais calage en énergie ou a'une distribution de neutrons très excentrée vers les basses énergies pour les expériences de TEWES [26]. Aussi nous avons tracé la courbe en nous basant essentiellement sur le groupe de valeurs cohérentes qui sont constituées de résultats expérimentaux obtenus par des méthodes différentes. On remarque la faible valeur de MATHER [45] à 12,4 MeV (plus de 10% au-dessous de nos valeurs recommandées) ; ceci avait été déjà vu pour le ⁹³Nb par PHILIS [3].

De 12,5 à 15 MeV, nous disposons d'un maximum de valeurs expérimentales (qui ont été représentées à part, pour plus de clarté, planche 8) que nous pouvons regrouper en trois ensembles. Un ensemble de valeurs hautes (≥ 2400 mb) avec les valeurs de MATHER [45], PRESTWOOD [28], ASHEY [23], DILG [33] ; un ensemble de valeurs moyennes : VONACH [30], BAYHURST [50], NETHAWAY [39], FREHAUT [47], TEWES [26], HANKLA [34], QAIM [37] ; et un groupe de valeurs basses (< 2000 mb) avec les valeurs de PAULSEN [48] et PAUL [22]. Ces ensembles restent assez dispersés bien que la re-normalisation ait amélioré le regroupement des valeurs. Dans cette régi:n, le tracé de la fonction d'excitation a été fondé sur les remarques suivantes.

Certains auteurs comme PAULSEN [48], NETHAWAY [39], VONACH [30] ont donné des séries de valeurs qui sont en accord pour montrer que la pente de la fonction d'excitation asns cette gamme d'énergie est faible. Ceci étant admis, si l'on pondérait l'ensemble des valeurs pour calculer une section efficace moyonne à 14,2 MeV, on affecterait un poids important aux auteurs qui ont donné une série de valeurs par rapport à ceux qui

- 54 -

n'en ont donné qu'une. Ceci n'est pas réaliste car les erreurs sur une série de valeurs d'un auteur ne sont pas indépendantes. Aussi nous avons procédé de la façon suivante : nous avons moyenné chaque série de valeurs pour chaque auteur et lui avons affecté la plus grande des erreurs de la série. Nous avons donc obtenu un ensemble d'une valeur par auteur et nous avons admis qu'elle était représentative des expériences à l¹,2 MeV - les valeurs ont été pondérées entre elles - nous avons ainsi abouti à la valeur moyenne de 225¹ ± 70 mb à l¹,2 MeV.

Ce résultat est bien en accord avec la répartition des résultats des trois groupes (voir ci-dessus).

4

- Le groupe de valeurs hautes est constitué de résultats relativement anciens (≤ 1965) hors-mis celui de MATHER [45] dont PHILIS [3] avait déjà remarqué sur un autre noyau (⁹³Nb) que la valeur à 14,3 MeV semblait un peu forte.

 Le groupe de valeurs centrales est celui qui correspond au plus grand nombre d'auteurs qui ont travaillé avec des méthodes différentes.
 C'est le groupe le plus important.

- Le dernier groupe est constitué de la valeur de PAUL [22] qui est la plus ancienne (1953) et de la série de PAULSEN [48]. Pour ce dernier auteur, nous avions déjà remarqué pour le ^{93}Nb [3] 1°/ le bon accord dans la gamme d'énergie de 10,26 à ll,53 MeV entre ses valeurs (neutrons incients obtenus par la réaction $^{15}N(d,n)^{16}$ O) et celles des autres auteurs, 2°/ ses valeurs relativement basses pour les énergies supérieures (neutrons incidents obtenus par réaction $T(d,n)\alpha$).

En définitive, nous avons tracé la fonction d'excitation comme indiqué planche 8. Les valeurs tabulées correspondantes sont indiquées planche 13.

De 15 MeV à 20 MeV (planche 7) les formes données par les résultats de PAULSEN [48] et de BAYHURST [50] sont en bon accord entre elles. Nous avons conservé cette forme, moins en accord avec les résultats de PRESTWOOD [28], et l'avons ajustée pour la raccorder à la valeur recommandée à ..5 MeV précédemment définie.

Au dessus de 20 MeV (voir planche 10), nous nous sommes guidés sur les données de BAYHURST [50] qui sont les seules dans cette gamme d'énergie.

- 55 -

<u>b</u>. Réaction ¹⁹⁷Au(n,2n)^{196m2}Au (Réaction (2)).

×

Les valeurs re-normalisées ont été regroupées planche 7. Rappelons que les valeurs de TEWES [26] ont été considérées comme relatives et ajustées sur une moyenne des valeurs aux environs de l⁴ MeV de différents auteurs dont les publications sont récentes (\geq 1972). Les valeurs recommandées tabulées sont indiquées planche l⁴ : HANKLA [3⁴], DILG [33], PRESTWOOD [28] (valeur à l⁴,31 MeV) et ZELLERMAYER [63] associé avec la valeur de 225⁴ mb à l⁴,2 MeV pour ¹⁹⁷Au(n,2n)¹⁹⁶Au (voir fiche l⁴).

Les données recommandées ont été obtenues en traçant la courbe suivant les valeurs réajustées de TEWES [26] jusqu'à l⁴ MeV et jusqu'à 20 MeV suivant les valeurs de PRESTWOOD [28] tout en restant légèrement au-dessus, comme pour la réaction $^{197}Au(n,2n)^{196}Au$.

c. Réaction ¹⁹⁷Au(n,2n)^{196ml}Au (Réaction (3)).

Four tracer la fonction d'excitation de cette réaction, nous ne disposons que du résultat du rapport isomérique à 14 MeV de ZELLERMAYER [63]. La forme de cette fonction a été choisie entre celles des réactions $197_{Au(n,2n)}196m^2_{Au}$ et $197_{Au(n,2n)}196_{Au}$ plus proche de cette dernière pour tenir compte du fait que le spin du niveau de 8,2 s. (5) est plus proche de celui de l'état fondamental (2) que du niveau de 9,7 h (12). Cette forme a été ajustée sur la valeur de 368 mb calculée à partir du rapport isomérique de ZELLERMAYER [63] associé à la valeur de 2254 mb adoptée pour la section efficace de la réaction $197_{Au(n,2n)}196_{Au}$ (voir ci-dessus).

La représentation graphique des données recommandées est indiquée planche 7, et les valeurs tabulées indiquées planche 15.

Cependant, il faut noter que l'évaluation de cette fonction d'excitation est basée sur une seule valeur expérimentale et pourrait donc être fortement modifiée à la lumière de nouveaux résultats expérimentaux.

d. Réaction ¹⁹⁷Au(n,3n)¹⁹⁵Au (Réaction (4)).

A part le résultat de HANKLA [34], qui donne une valeur de 60 mb pour une énergie de 14,3 MeV (soit 0,5 MeV au-dessous du seuil de cette réaction) et dont nous n'avons pas tenu compte, on dispose uniquement des résultats de BAYHURST [50]. Pour déterminer une courbe moyenne à partir

πī

- 56 -

de ces valeurs, nous avons utilisé la méthode de BERSILLON [56] (voir paragraphe VI, 10). Les résultats obtenus sont indiqués planches 7, 9 et 16 (valeurs tabulées) et représentent nos données recommandées pour cette section efficace.

Pour cette réaction, on ne dispose uniquement que des données de BAYHURST [50]. Nous avons donc adopté ces valeurs que nous avons reportées planche 9. Les valeurs tabulées sont indiquées planche 17.

3. Incertitudes adoptées

191

Les incertitudes adoptées pour les sections efficaces des réactions (1), (2), (3), (4), (5) sont représentées graphiquement planche ll.

B. Réaction 197Au(n,2n)196Au (Réaction (1)).

Au-dessous de 9,6 MeV, nous estimons que l'incertitude sur les données recommandées est de ± 50%. Cette valeur tient compte des erreurs importantes sur les sections efficaces ainsi que sur les énergies (la pente de la fonction d'excitation étant grande dans cette gamme d'énergie). La plupart des valeurs expérimentales re-normalisées sont enveloppées dans cette zone d'incertitude. Les résultats expérimentaux ayant été obtenus par des méthodes différentes, aucune incertitude due aux standards n'a été ajoutée.

Entre 9,6 et 15,5 MeV, les incertitudes adoptées sont + 10% et - 15%. Elles ont été estimées en tenant compte des données de PAULSEN [46] qu'elles englobent. Par contre les valeurs de PRESTWOOD [28] qui donnent, aux alentours de 14,5 MeV une courbure opposée à celles des autres auteurs sont en dehors de ces limites ainsi que les valeurs de ASHBY [23] et MATHER [45]. Dans cette gamme d'énergie, aucune incertitude due aux standards n'a été ajoutée, puisque nous disposons de résultats cohérents obtenus par des méthodes différentes.

De 15,5 à 20 MeV, nous avons augmenté les incertitudes à + 15 et - 20% pour tenir compte du faible nombre de mesures et des incertitudes sur les standards dans cette gamme d'énergie où les résultats ne sont obtenus que par une seule méthode (activation).

πi ř

Au-dessus de 20 MeV, nous avons arbitrairement augmenté l'incertitude à \pm 30%. Ces incertítudes sont représentées planche 10 et tabulées planche 13.

b. Réaction ¹⁹⁷Au(n,2n)^{196m2} (Réaction (2)).

Au dessous de ll MeV, nous estimons l'incertitude des données recommandées à ± 50%. On veut ainsi tenir compte des erreurs importantes sur les résultats qui ne sont que d'un seul auteur, de la pente de la fonction d'excitation dans cette gamme et de l'incertitude sur le standard puisque le méthode d'activation est seule utilisée.

De 11 MeV à 15 MeV, compte tenu de la présence de données d'auteurs différents, nous avons réduit l'incertitude à ± 25%.

Pour les énergies supérieures, la pente restant faible mais n'étant basée que sur les résultats d'un seul auteur, nous avons admis ± 30% pour l'incertitude dans cette gamme (voir planches 10 et 14).

c. Réaction ¹⁹⁷Au(n,2n)^{196ml} (Réaction (3)).

Nous avons voulu tenir compte d'une incertitude de forme que nous avons estimée à $v \pm 40$ jusqu'à 10,5 MeV, $v \pm 20$ % de 10,5 à 12,5 MeV et $v \pm 10$ % au-dessous. A cela nous avons ajouté sur toute la gamme d'énergie l'erreur donnée par ZELLERMAYER [66] soit 17%. Au total, les incertitudes sur cette section efficace sont $v \pm 57$ % jusqu'à 10,5 MeV, ± 37 % de 10,5 à 12,5 MeV et ± 27 % pour les énergies supérieures (voir planches 10 et 15).

<u>d</u>. Réaction ¹⁹⁷Au(n,3n)¹⁹⁵Au (Réaction (4)).

Dans les incertitudes que nous avons adoptées pour cette section efficace, nous avons voulu tenir compte

 - du désaccord existant pour le schéma de désintégration de ¹⁹⁵Au (voir paragraphe IV).

- de l'imprécision des mesures à basses énergies.

- de l'imprécision des standards à ces énergies.

Nous avons arbitrairement adopté ± 50% au-dessous de 17 MeV, ± 30% de 17 à 30 MeV (voir planches 11 et 16).

۰,

- 59 -

<u>e</u>. Réaction $^{197}Au(n, l_n)^{19l}Au$ (Réaction (5)).

Four cette section efficace, nous avons adopté arbitrairement ± 50% du seuil à 30 MeV (voir planches 11 et 17).

<u>Comparaison des valeurs issues de calculs ou d'évaluations aux</u> <u>données recommandées</u>

Pour plus de clarté dans la représentation graphique, nous avons scindé arbitrairement les valeurs issues de calculs où d'autres évaluations en deux groupes.

. ler groupe

Planche 18, nous avons reporté les résultats des évaluations de ENDF/BIV [7], LLL [54] et HOWERTON [51] ainsi que les valeurs de GILBERT [57] et BOËDY [55].

Pour la réaction (1), nos données sont supérieures à toutes les autres du seuil à 11,5 MeV. De 11,5 MeV à 15,5 MeV on constate un regroupement des valeurs, un peu moins bon pour HOWERTON [51] mais il faut noter que cette évaluation date de 1958 ! Au-dessus de 15,5 MeV, nos données restent supérieures à celles d'ENDF/BIV [7] et de LLL [54] qui sont elles mêmes en désaccord d'environ 20% à 18 MeV.

Pour la réaction (2), nos données sont en accord à 10% au-dessus de 13 MeV avec ENDF/BIV [7] .

Les résultats concernant la réaction (4) sont en grand désaccord, du seuil à 20 MeV avec les autres évaluations (ENDF/BIV, LLL). Ceci est cohérent avec le désaccord observé plus haut à partir de 16 MeV sur la réaction (2) puisque la somme des deux sections doit être approximativement constante en fonction de l'énergie.

. 2ème groupe

Planche 19, les courbes basées sur les valeurs de DELAROCHE-JARY [59,60] et UKNDL [58] ont été reportées pour comparaison avec nos valeurs recommandées. Il apparaît que les données de [59,60] et les notres sont en bon accord sur l'ensemble de la gamme d'énergie sauf au-dessus de 17,5 MeV où nos valeurs restent plus hautes. Les données UKNDL [58] sont inférieures aux nôtres du seuil à 11 MeV, l'écart atteignant environ 25% à 9,5 MeV. Au dessus de 11 MeV les données UKNDL sont en bon accord avec les notres jusqu'à 15 MeV (limite supérieure des données UKNDL).

Les données de PEARLSTEIN [52] sensiblement supérieures aux nôtres entre 8,25 et 10 MeV sont en bon accord jusqu'à 15 MeV. Pour les énergies supérieures la croissance vraisemblablement trop rapide de la fonction d'excitation de la réaction (n,3n) (4) conduit à des données de la réaction (n,2n) qui sont de plus en plus inférieures aux données recommandées.

Enfin, les valeurs proposées par GOLDBERG [25] sont, pour la section efficace de la réaction (2), en assez bon accord avec les valeurs recommandées. Pour la réaction (1) les données de GOLDBERG [25] sont inférieures aux nôtres au-dessous de 11 MeV, en accord de 11 à 15 MeV, puis jusqu'à ~ 20% inférieures au-dessus.

٦ř

- 60 -

IX - CONCLUSION

Les évaluations des sections efficaces des réactions

 $\begin{array}{c} 197_{Au(n,2n)} 196_{Au} (1) \\ \\ 197_{Au(n,3n)} 195_{Au} (4) & et \\ 197_{Au(n,2n)} 196ml_{Au} (3) \\ 197_{Au(n,4n)} 194_{Au} (5) \\ \\ des seuils à 30 \, MeV & des seuils à 20 \, MeV \end{array}$

ont été faites dans le cadre du programme en cours destiné à améliorer la connaissance des données microscopiques. Une partie de cette étude répond à la demande 69 2315 de WRENDA 74 [1]. Les re-normalisations faites ont amélioré le regroupement des différentes valeurs, en particulier pour la section efficace de la réaction (2). Les incertitudes adoptées, qui enveloppent plus de 98% des points re-normalisés montrent que des mesures complémentaires par activation seraient nécéssaires pour les sections efficaces des réactions (2) et (3). Pour (4) et (5) il serait souhaitable d'avoir une autre série de résultats par une méthode différente (mesure lirecte).

τř

REFERENCES

- [1] INDC (SEC) 38/U , (1974).
- [2] C. PHILIS; CEA-R-4636 (1974)
- [3] C. PHILIS, P.G. YOUNG; CEA-R-4676 (1975)
- [4] C. PHILIS, P.G. YOUNG; CEA-R-4712 (1975)
- [5] N. NAVARRE-VERGES, C. PHILIS ; CEA-R-4729 (1976)
- [6] N.B. GOVE, A.H. WAPSTRA ; Nuclear Data Tables A, Vol. 7 n° 4 (1972).
- [7] ENDF/BIV, MAT = 1283.
- [8] H. PAUW, A.H.W. ATEN Jr; J. of Nucl. En. 25 (1971) 457.
- [9] ENDF/BIV MAT = 1262.
- [10] M.G. SOWERBY, B.H. PATRICK, D.S. MATHER ; AERE-R-72/73 (1973).
- [11] ENDF/BIV, MAT = 1193.
- [12] P.G. YOUNG, D.G. FOSTER Jr; LA-4726 (1972).
- [13] ENDF/BIV, MAT = 6410
- [14] Second Panel on Neutron Standard Reference Data, Vienne (20-24 Novembre 1972).
- [15] A.H. WAPSTRA, P.F.A. COUDSMIT, J.F.W. JANSEN, J. KONIJN, K.E.G. LÖBNER, G.J. NIJCH, S.A. de WIT ; Nucl. Phys. A93 (1967) 527.
- [16] P. BENOIT, M. HORS, C. PHILIS ; Rapport ESS/MES/534 (1968)
- [17] M.R. SCHMORAK ; Nuclear Data Sheets, vol 7 , nº 4 (1972).
- [18] B. ROSNER, J. FELSTEINER, H. LINDEMAN, D. ZELLERMAYER; Nucl. Phys. A172 (1971) 634.
- [19] J.F.W. JANSEN, H. PAUW; Nucl. Phys. A94, 235 (1967)
- [20] M.J. MARTIN ; Nucl. Data Sheets, B8, 5 (1972) 431.
- [21] S.C. GOVERSE, J. VAN PELT, J. VAN DEN BERG, J.C. KLEIN and J. BLOCK; Nucl. Phys. A201 (1973) 326.

۰,

- [22] E.B. PAUL, R.L. CLARKE ; Can. J. of Phys. 31 (1953) 267.
- [23] V.J. ASHBY, H.C. CATRON, L.L. NEWKIRK, C.J. TAYLOR ; Phys. Rev. 111 (1958) 616.
- [24] B.C. DIVEN, H.C. MARTIN, R.F. TASCHEK, J. TERRELL ; Phys. Rev. 101 (1956) 1012.
- [25] M.D. GOLDBERG, J.F. MUGHABGHAB, S.N. PUROHIT, B.A. MAJURNO V.M. MAY; Neutron Cross Section BNL 325 Vol. 2B, 1966.
- [26] H.A. TEWES, A.A. CARETTO, A.E. MILLER, D.R. NETHAWAY; UCRL-6028T (1960).
- [27] H.A. TEWES, A.A. CARETTO, A.E. MILLER, D.R. NETHAWAY; WASH-1028 D. 66.
- [28] R.J. PRESTWOOD, R.P. BAYHURST ; Phys. Rev. 121 (1961) 1438.
- [29] J.D. KNIGHT, R.K. SMITH, B. WARREN ; Phys. Rev. 112 (1958) 259.
- [30] H.K. VONACH, W.G. VONACH, H. MUNZER, P. SCHRAMEL ; EANDC(E)89 U 37
- [31] H.K. VONACH, Y.G. VONACH, H. MÜNZER, P. SCHRAMEL; Conférence Washington (1968) § E31, p.885.
- [32] W. NAGEL ; Thèse, Amsterdam (1966).
- [33] W. DILG, H. VONACH, G. WINKLEP, P. HILLE ; Nucl. Phys. All8 (1968) 9
- [34] A.K. HANKLA, R.W. FINK, J.F. HAMILTON ; Nucl. Phys. A180 (1972) 157
- [35] C.M. LEDERER, J.M. HOLLANDER, T. PERLMAN ; Table of Isotopes (Wiley, New York, 1967).
- [36] H. LISKIEN, A. PAULSEN ; J. Nucl. Energy 19 (1965) 73.
- [37] S.M. QAIM ; Nucl. Phys. A185 (1972) 614.
- [38] D. CRUMPTON, A.J. COX, P.N. COOPER, P.E. FRANSOIS and S.E. HUNT; J. Inorg. Nucl. Chem. 31 (1969) 1.
- [39] D.R. NETHAWAY; Nucl. Phys. A190 (1972) 635.
- [40] H. VONACH; Z. Phys. 237 (1970) 155.
- [4] B.P. BAIHURST, R.J. PRESTWOOD ; J. Inorg. Nucl. Chem. 23 (1961) 173
- [42] J.P. BUTLER, D.C. SANTRY; Can. J. Phys. 41 (1963) 372.
- [43] A. PAULSEN, H. LISKIEN; J. Inorg. Nucl. Chem. 19 (1965) 907.
- [44] R.C. BARRAL, M. SILBERGELD, D.G. GARDNER; SUHP-69-2 (1969).

- [45] D.S. MATHER, P.F. BAMPTON, R.E. COLES, G. JAMES, P.⁷ NIND ; A.W.R.E. Report n^o 072/72 (1972).
- [46] M.G. SOWERBY, B.H. PATRICK, D.S. MATHER ; AERE Mémo M 2497 (1972).
- [47] J. FREHAUT, G. MOSINSKI ; CEA-R-4627 (1974).
- [48] A. PAULSEN, H. LISKIEN, R. WIDERA ; A.T.K.E. à paraître.
- [49] J.L. GAMMEL dans Fast Neutron Physics Vol. 2 (ed. J.B. MARION et J.L. FOWLER, Interscience Publishers, New York, 1963).
- [50] B.P. BAYHURST, J.S. GILMORE, R.J. PRESTWOOD, J.B. WILHELMY JARMIE NELSON, B.H. ERKKILA and R.A. HARDEKOPF; LA-UR-75-307 (1975).
- [51] R.J. HOWERTON ; UCRL-5351 (1958).
- [52] S. PEARLSTEIN ; Nucl. Data Table A3, 3 (1967) 327.
- [53] ENDF/BIV MAT = 1283.
- [54] Bibliothèque du LLL (Lawrence Livermore Laboratory) MAT = 7047.
- [55] 2.T. BÖDY, J. CSIKAI, I. ANGELI ; IAEA-153 (1973) 173.
- [56] O. BERSILLON, à paraître.
- [57] A. GILBERT, R. GOMBERG ; UCRL 50736 (19.)
- [58] UKNDL DFN E222
- [59] J. J/RY; Rapport CEA-R-4647 et communication privée.
- [60] J.P. DELAROCHE ; Communication privée
- [61] J.P. DELAROCHE, Ch. LAGRANGE, J. SALVY; Review Paper 5, IAEA Consultant Meeting, Trieste (Déc. 1975).
- [62] A. GILBERT, A.G.W. CAMERON ; Can. J. Phys. 43 (1965) 1446.
- [63] S. PEARLSTEIN ; Nucl. Sc. Eng. 23 (1965) 238.
- [64] J.P. DELAROCHE, J. JARY ; à soumettre à Nuclear Physics.
- [65] D. ZELLERMAYER, B. ROSNER ; Phys. Rev. C6 (1972) 315.
- [66] E.R. GRAVES et R.W. DAVIS ; Phys. Rev. <u>97</u> (1955) 1205.
- [67] S.K. MANGAL et C.S. KHURANA ; Nucl. Phys. 69 (1965) 158.

Manuscrit recu le 1er février 1977

11

LEGENDE DES PLANCHES

- 1 Section efficace 238 U (n,f) de 8 à 20 MeV.
- 2 Section efficace 27 Al (n, α) 24 Na de 8 à 20 MeV.
- 3 Schéma de désintégration de ^{196m}Au et ¹⁹⁶Au.
- 4 Schéma de désintégration de ¹⁹⁵Au.
- 5 Données expérimentales brutes des seuils à 20 MeV.
- 6 Lonnées expérimentales brutes des seuils à 30 MeV.
- 7 Données re-no.malisées et courbes des valeurs recommandées pour les sections efficaces des réactions ¹⁹⁷Au(n,2n)^{196m1}Au, ¹⁹⁷Au(n,2n)^{196m2}, ¹⁹⁷Au(n,2n)¹⁹⁶Au, ¹⁹⁷Au(n,3n)¹⁹⁵Au des seuils à 20 MeV.
- B Données re-normalisées et courbes des valeurs recommandées pour les sections efficaces des réactions ¹⁹⁷Au(n,2n)¹⁹⁶Au de 12,5 à 15 MeV.
- 9 Données re-normalisées et courbes des valeurs recommandées pour les sections efficaces des réactions ¹⁹⁷Au(n,2n)¹⁹⁶Au, ¹⁹⁷Au(n,3n)¹⁹⁵Au et ¹⁹⁷Au(n,4n)¹⁹⁴Au des seuils à 30 MeV.
- 10 Incertitudes adoptées pour les sections efficaces des réactions 197_{Au(n,2n})196ml_{Au}, 197_{Au(n,2n})196m²_{Au}, 197_{Au(n,2n})196_{Au} et 197_{Au(n,3n})¹⁹⁵_{Au} des seuils à 20 MeV, avec des données re-normalisées.
- 11 Incertitudes adoptées pour les sections efficaces des réactions 197_{Au(n,2n)}196ml_{Au}, 197_{Au(n,2n)}196m²_{Au}, 197_{Au(n,2n)}196_{Au} et 197_{Au(n,4n)}19⁴_{Au} des seuils à 30 MeV.
- 12 Tableau des données brutes et re-normalisées (σ_R) classées par énergie croissante des neutrons incidents pour les sections efficaces des réactions : ¹⁹⁷Au(n,2n)^{196m1}Au, ¹⁹⁷Au(n,2n)^{196m2}Au, ¹⁹⁷Au(n,2n)¹⁹⁶Au, ¹⁹⁷Au(n,3n)¹⁹⁵Au, ¹⁹⁷Au(n,4n)¹⁹⁴Au.

- 13 Tableau des valeurs recommandées (avec leurs incertitudes) pour la section efficace de la réaction ¹⁹⁷Au(n,2n)¹⁹⁶Au.
- 14 Tableau des valeurs recommandées (avec leurs incertitudes) pour la section efficace de la réaction ¹⁹⁷Au(n,2n)^{196m2}Au.
- 15 Tableau des valeurs recommandées (avec leurs incertitudes) pour la section efficace de la réaction ¹⁹⁷Au(n,2n)^{196m1}Au.
- 16 Tableau des valeurs recommandées (avec leurs incertitudes) pour la section efficace de la réaction ¹⁹⁷Au(n,3n)¹⁹⁵Au.
- 17 Tableau des valeurs recommandées (avec leurs incertitudes) pour la section efficace de la réaction ¹⁹⁷Au(n,⁴n)¹⁹⁶Au.
- 16 Comparaison des données évaluées du groupe 1 (voir texte) avec les données recommandées.
- 19 Comparaison des données évaluées du groupe 2 (voir texte) avec les données recommandées.

Auteurs	n° fiche	Réference	Sigle
E.B. PAUL et al.	1	22	•
V.J. ASHBY et al.	2	23	•
H.A. TEWES et al.	3	26	
R.J. PRESTWOOD et al.	L	28	x
H.K. VONACH et al.	5	30	Δ
W. DILG et al.	6 -	33	▽
A.K. HANKLA	7	34	凶
S.M. QUAIM	8	37	8
D.R. NETHAWAY	9	39	
D.S. MATHER et al.	10	45	+
J. FREHAUT et al.	11	47	0
A. PAULSEN et al.	12	48	•
B.P. BAYHURST et al.	13	50	\diamond
D. ZELLERMAYER et al.	14	63	• /
E.R. GRAVES et al.		66	*
S.K. MANGAL et al.		67	-

٦Ì

LISTE DES SIGLES
- 67 -

PLANCHE 1

,

En (MeV)	σ (mb)	^E n (MeV)	σ (mb)	En (MeV)	σ (mt)
8,2 8,2 8,6 8,6 9,0 9,2 9,6 9,8 9,8 10,0	L1,3 L7,1 53,3 59,2 64,9 70,2 75,1 79,7 83,8 87,7 91,2	10,5 11 11,5 12,5 13,5 14 14,5 15,5	99,612 107,5 114,93 121,2 126,04 125,8 127,94 124,7 119,36 112,9 105,21	16 16,5 17,5 18,5 18,5 19 19,5 20	97,0 88,206 79,4 71,187 63,7 56,537 49,8 43,437 38,0

١ř

~

- 68 -

PLANCHE 2

1

En(MeV)	σ(ъ)	En(MeV)	₫(ъ)	$\Sigma_{n(MeV)}$	σ(ъ)
8 8,25 8,5 9,25 9,25 9,5 9,75 10 10,5	0,99 0,996 1,0 0,997 0,992 0,987 0,982 0,977 0,974 0,978	11 11,5 12 12,5 13 13,5 14 14,5 15,5	0,983 0,987 0,995 1,019 1,048 1,098 1,14 1,21 1,26 1,299	16 16,5 17 17,5 18 18,5 19 19,5 20	1,316 1,349 1,344 1,333 1,324 1,300 1,298 1,375 1,435

٦ř

PLANCHE 3

.

¥

-

πÌ,

PLANCHE 5

- 71 -

ł

,

4. 77

1

72 -

PLANCHE 6

Tes.

4

PLANCHE 7

- 73 -

4

PLANCHE 8

- 74 -

1.

4. 77

PLANCHE 9

- 75 -

4

,

ı.

PLANCHE 10

- 76 -

4.

x

ı.

- 77

١

PLANCHE 11

En (MeV)	$\frac{+\Delta E_n}{(MeV)}$	σ (mb)	σ _R (mb)	<u>+</u> Δσ/σ %	Réfs.
8,4 8,65 8,94 9,12 9,35 9,38 9,38 9,38 9,38 9,93 10,42 10,63 10,85 10,42 10,63 10,85 10,42 10,63 10,85 11,08 11,44 11,53 11,88 12,13 12,88 13,41 13,66 13,69 13,7 13,8 13,8 13,8 13,8	0,2 0,14 0,23 0,125 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2	11 44 147 288 235 629 388 680 738 720 1027 1300 1285 1378 1400 1500 1589 1615 1640 1710 1691 1690 1695 1645 2081 1824 2012 1860 2165 2081 2097 2079 2079 2079 2079 2069 2061 2369 2061 2369 2061 2369 2062 2369 2061 2369 2072 2079	11 45,7 142 297 235 626 386 677 756 127 1627 1276 1427 1276 1427 1669 1639 1600 1800 1800 1877 1742 1855 1676 1899 1874 1869 1623 2162 1799 2082 1895 2109 1912 2253 2038 1912 2277 2177 1912 24177 2180 2182 2288 2365	20 50 469 20 20 5 80 5 70 5 77 74 60 20 20 50 490 20 5 80 5 70 5 77 74 60 20 50 490 20 5 80 5 70 5 77 74 60 60 50 80 50 80 57 20 5 80 57 70 57 77 580 57 77 74 60 60 580 580 580 57 55 55 55 55 55 55 55 55 55 55 55 55	267076026788876888788878887888788878887888788887888878888

REACTION 197Au(n,2n)196Au

- 78 -

-

,

PLANCHE 12

- 79 -

-

.

Í

Ì

REACTION ¹⁹⁷Au(n,2n)¹⁹⁶Au (suite)

			· · · · · · · · · · · · · · · · · · ·		
En (MeV)	$\frac{\pm}{(MeV)}$	σ (mb)	σ _R (mb)	<u>+</u> Δσ/σ %	Refs.
13,85 13,90 13,91 14 14 14,01 14,10 14,11 14,12 14,22 14,31 14,2 14,22 14,33 14,4,13 14,2 14,33 14,4,13 14,2 14,33 14,4,13 14,4,2 14,33 14,4,5 14,5 14,5 14,5 14,5 14,5 14,5 14	0,2 0,15 0,025 0,26 0,1 0,15 0,025 0,025 0,025 0,025 0,025 0,15 0,025 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,1	2124 2085 2121 2214 2087 1860 2090 2155 2213 2120 2090 1850 2037 2578 2092 2420 1968 2094 1870 2168 2094 1870 2168 2094 1870 2132 2099 2149 2156 2132 2098 1880 2100 2309 2156 2132 2098 1880 2100 2309 2156 2132 2098 1880 2100 2309 2156 2132 2098 1880 2100 2309 2156 2132 2098 1880 2100 2309 2156 2132 2098 2139 2139 2139 2139 2139 2139 2000 2155 2037 2578 2092 2420 2094 1870 2135 2092 2420 2094 1870 2094 1870 2132 2096 2132 2096 2132 2096 2132 2096 2132 2096 2132 2096 2132 2096 2132 2096 2132 2096 2132 2096 2132 2096 2132 2096 2132 2096 2132 2098 2132 2098 2139 2139 2139 2139 2139 2139 2139 2139	2083 2184 2205 2168 2186 2186 2186 2152 2527 2183 2242 218 216 206. 2607 2191 2469 2324 2193 1923 2240 1936 2116 2195 2219 2197 2246 2195 22197 1933 2199 2199 2199 2199 2199 22197 1933 2251 1943 2253 2251 1974 2015 2164 2253 1974 1974	206520655765456577665865572056565681557554550554450 20652655765456577665865572056565681557554550554450 206557654565776658655720565681557554550554450	26 30 39 26 30 39 26 30 39 30 48 23 30 39 30 48 23 30 39 30 48 23 30 39 30 48 23 30 39 30 48 23 30 39 30 48 23 30 39 26 48 23 30 39 26 48 23 30 39 26 48 23 30 39 26 48 23 30 39 26 48 23 30 39 26 48 23 30 39 26 48 23 30 39 26 48 23 30 39 26 48 23 30 39 26 48 23 30 39 26 48 23 30 39 26 48 28 30 39 26 48 28 30 28 40 39 26 48 30 28 40 39 26 48 30 28 40 39 26 48 30 28 40 39 26 48 30 28 40 39 26 48 30 28 40 39 26 48 39 26 48 39 26 48 39 26 48 39 26 48 39 26 48 39 26 48 39 26 48 39 26 48 48 50 50 48 26 48 39 26 48 39 26 48 39 26 48 39 26 48 39 26 48 39 26 48 39 26 48 39 26 48 48 50 50 50 48 39 26 48 48 50 50 50 48 50 50 50 50 50 50 50 50 50 50 50 50 50

PLANCHE 12

٩,7

- 80 -	
--------	--

E _n	+ ΔΕ _n	σ	σ _R	<u>+</u> Δσ/σ	Refs
(MeV)	(MeV)	(mb)	(mb)	%	
16,6 17 17,23 17,5 18,23 18,40 18,80 19,20 19,59 19,76 19,98 21,25 22,36 24,48 26,06 28,08	0,58 0,49 0,17 0,32 0,447 0,32 0,447 0,12 0,42 0,36 0,23 0,43 0,14 0,12 0,13 0,14	2000 1770 2125 1610 1398 1470 1691 1345 1215 1095 995 1111 1096 750 613 469 427 340 339	2056 1820 2186 1655 1486 1511 1755 1383 1249 1126 1023 1112 1068 750 613 469 427 340 339	5,4 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2	48 50 68 48 50 68 48 48 48 50 50 50 50 50 50 50 50 50

REACTION ¹⁹⁷Au(n,2n)¹⁹⁶Au (suite)

PLANCHE 12

/

En (MeV)	$\pm \Delta E_n$ (MeV)	σ (mb)	σ _R (σm)	<u>+</u> Δσ/σ %	Réfs.
9,35 9,8 10,35 11 12,1 12,13 12,3 12,8 13,4 13,69 3,85 14 14,01 14,31 14,4 14,5 14,5 14,7 14,81 15,1 16,5 17,95 19,76	0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2	$\begin{array}{c} 8\\ 10\\ 35\\ 60\\ 75\\ 99\\ 90\\ 68,3\\ 99\\ 145\\ 144\\ 18,8\\ 128,1\\ 164\\ 184\\ 134,3\\ 137,1\\ 151\\ 208\\ 142,1\\ 151\\ 208\\ 145,1\\ 194\\ 148,1\\ 155,1\\ 194\\ 166,8\\ 164,1\\ 136,2 \end{array}$	6,9 8,6 30 51 64 85 777 68,7 124 123 117,2 126,4 140 158 167,5 135,5 135,5 135,5 1430,2 168,4 143,2 168,4 168,7 131,9	20 20 20 20 20 20 20 20 20 20 20 20 20 2	26 26 26 26 26 26 26 26 26 26 26 26 26 2

REACTION 197_{Au(n,2n)}196m2_{Au}

PLANCHE 12

\ .

٦ř

En	±ΔE _n	σ	σ _R	± ∆σ/σ	Refs.
(MeV)	(MeV)	(mb)	(mb)	%	
14,4 16,19 17,23 18,23 19,98 21,25 22 24,48 26,06 28,08	0,4 0,13 0,17 0,10 0,11 0,18 0,14 0,13 0,13 0,14	61 35 309 670 1296 1637 1734 1916 1859 1535	72 371 18 695 1263 1637 1734 1916 1859 1535	33 57,1 4,9 4,8 4,6 5,4,6 5 5,4,6	34 50 50 50 50 50 50 50 50 50

REACTION ¹⁹⁷Au(n,3n)¹⁹⁵Au

÷

٦,

REACTION 197 Au(n,4n) 194 Au

En	<u>+</u> ΔE _n	σ	σ _R	+ Δσ/σ	Refs.
(MeV)	(MeV)	(mb)	(mb)	%	
24,48 26,06 28,08	0,13 0,13 0,14	2 57 370	57 370	100 5,3 5,7	50 50 50

PLANCHE 12

,

<u>.</u> <u>.</u>

197 AU (N, 2N) 196 AU (1)

ENERGIE (MEV)

~

.

.

SECTION (ME) INCERTITUDES :

8.12500E 00	0.00000E 00		
8.30000E 00	1.087775 01	+507	
8.40000E 00	3-18400E 01	+50%	- 50%
8.50000F 00	6 29702E 01	+50%	- 50%
8. €0000E 00	1.03893F 02	+50%	-50-
8 30000E 00	1 10000102 02	+50%	- 50%
8 80000E 00	2 064805 02	+50%	- 50%
5+30000E 00	2:00409£ 02	+50%	- 507
9.20000E 00	4.94138E 02	+50%	- 50%
9.40000E 00	6.54646E 02	+50%	- 50%
9.6000GE 00	8.24911E 02	+50%	· ^ •
9.30000E 00	9.83659E 02	+10%	
1.000002 01	1.12445E 03	+10%	
1.02000E 01	1.26377E 03	+10%	
1.0500GE 01	1.44999E 03	+10%	
1-10000E 01	1.67281E 03	+10%	
1.15000E 01	1.84199E 03	+10%	
1-20000E 01	1.97248E 03	+10=	2
1.25000E 01	2.07623E 03	+102	·
1-3000DE 01	2.15009E 03	+10#	
1.35000E 01	2.21452E 03	+10%	*
1.40000E 01	2.23653E 03	+10%	- 7.
1.50000E 01	2.24003£ 03	+10%	-
1.60000E 01	2.21101E 03	+15%	
1.70006E 01	2.00498E 03	+152	0%
1.80000E 01	1-69379E 03	+15%	-20%
1.90000E 01	1.36236E 03	+15%	
2,00000E 01	9.99056E 02	+30%	30%
2.10000E 01	7.88733E 02	+30%	30%
2.20000E 01	6.28050E 02	+30%	0.0%
2.30000E 01	5.23979E 02	+30%	30%
2.40000E 01	4.54547E 02	+ 30%	-307.
2.500002 01	4.08696E 02	+30%	~ 30%
2+CUUUUE UI	3.77960E 02	+30%	- 30%
2. /UUUUE UI	3+54683E U2	+ 30%	-30%
2.80000E 01	3.35086E 02	+ 30%	- 30%
2.900001 01	3.17479E 02	+ 30%	-30%
3+0000F 01	5.3A863E 05	+30%	-30%

PLANCHE 13

 \mathbf{G}

÷

.

-

197 AU (N, 2N) 196(M2) AU (9, 7H) (2)

ENERGIE SECTION INCERTITUDES : (MEV) (MB)

8.71900E	00	0.00000E	00		
1.00000E	01	1.76982E	01	+50%	-50%
1.05000E	01	3.20886E	01	+50%	-50%
1.10000E	01	4.85956E	01	+50%	-50%
1.15000E	01	6.54587E	01	+25%	-255
1.20000E	01	8.35721E	01	+25%	-05%
1.25000E	01	1.01148E	02	+25%	-25%
1.30000E	01	1.17742E	02	+25%	-25%
1.35000E	01	1.33615E	02	+25%	-25%
1.40000E	01	1.47659E	02	+25%	-25%
1.45000E	01	1.58558E	02	+25%	-25%
1.50000E	01	1.67205E	02	+25% -	-25%
1.60000E	01	1.76136E	02	+ 30%	-30%
1.70000E	01	1.74709E	02	+ 30%	-307
1.80000E	Ci	1.65289E	02	+30%	-30%
1.9000E	01	l•49859E	02	+307	-30%
5.00000E	01	1.27023E	02	+30%	-30%

PLANCHE 14

2

197 AU (N, 2N) 196(HI) AU (8,2 5) (3)

INCERTITUDES :

٩ř

(AEV) (49) 8.20700E 00 0.00000E 00 8.50000E 00 1.33109E 01 + 60% -602 9.00000E 00 4.41650E 01 +60% - 60% 9.50000E 00 8.90443E 01 +60% -60% 1.00000E 01 1.37492E 02 +60% -607 1.84944E 02 1.05000E 01 + € 0% ~60% 2.28212E 02 1.10000E 01 +40% -40% 1.20000E 01 2.92315E 02 · 40% -40% 3.32565E 02 1.30000E 01 + 30% -30% 3.57150E 02 1.40000E 01 +30% -30% 1.50000E 01 3.70187E 02 +30% -30% 1.60000E 01 3.74202E 02 +20% -30% 1.70000E 01 3.68744E 02 +30% - 30% 1.80000E 01 3.43643E 02 +30% -30% 1.90000E 01 3.03827E 02 +30% ~ 30% 2.00000E 01 2.48733E 02 +30% - 30%

SECTION

PLANCHE 15

- 85 -

.

ENEPGIE

197 AU (N. 3N) 195 AU (4)

ENERGIE	SECTION	1	INCERTITUDES :	
(HEC)	(MB)			
1.48240E 01	0.00000E 00			
1.60000E 01	1.04144E 01	+50%	_	50-
1.61000E 01	1.97830E 01	+50%		50%
1.62000E 01	3.39146E 01	+50%		50%
1.63000E 01	5.36969E 01	+50%		50%
1.64000E 01	7.51127E 01	+50%		50.0
1.65000E 01	9.95178E 01	+50%		50%
1.67000E 01	1.57023E 02	+50%		50%
1.70000E 01	2.46334E 02	+30%	- 3	307
J. 75000E 01	4.22735E 02	+30%	- 3	30 7
1.80000E 01	6.09556E 02	+30 %	+ 3	107
1.85000E 01	7.92734E 02	+30%	- 3	10 2
1.90000E 01	9.65723E 02	+30%	- 3	101
1.95000E 01	1.11856E 03	+30%	- 3	02
2.00000E 01	1.28457E 03	+30%	- 3	0 2
2.10000E 01	1.53482E 03	+30%	- 3	0z
2.20000E 01	1.72498E 03	+30%	- 3	0 2
2+30000E 01	1.84336E 03	+ 30%	- 3	02
2.40000E 01	1.89596E 03	+30%	- 3	02
2.50000E 01	1-86205E 03	+30%	- 3	01
	1.77146E 03	+30#	- 3	07
	1.64378E 03	+30%	- 3	07
2,900005 01	1.48150E 03	+30%	- 3	0.2
3.00000E 01	1.27116E 03	+30%	- 3	0.2
	1.06424E 03	+30%	- 3	0%

PLANCHE 16

۰,

SECTION

.

Ń

-

ENERGIE

/

-

197 AU (N. 4N) 194 AU (5)

INCERTITUDES :

÷

•

i,

ENERGIE CHEVY	SECTION (MB)	INCERTIT	UDES :
2. 32710E 01 2. 50000E 01 2. 53600E 01 2. 55600E 01 2. 65000E 01 2. 65000E 01 2. 65000E 01 2. 75000E 01 2. 35000E 01 2. 35000E 01 2. 90000E 01	0.00000E 00 1.03240E 01 1.75659E 01 2.43498E 01 3.33633E 01 5.37178E 01 9.19518E 01 1.49746E 02 2.28480E 02 3.34043E 02 4.60586E 02 6.14214E 02	+50% +50% +50% +50% +50% +50% +50% +50%	- 50 % - 50 %
3-000005 01	A-8421AF 05	+50%	-50%

PLANCHE 17

4

PLANCHE 18

- 88 -

X.

4,

<u>____</u>

PLANCHE 19

 \mathbf{I}

Achevé d'imprimer par le CEA, Service de Documentation, Saclay Mai 1977

.

η

DEPOT LEGAL 2ème trimestre 1977

La diffusion, à titre d'échange, des rapports et bibliographies du Commissariat à l'Energie Atomique est assurée par le Service de Documentation, CEN-Saclay, B.P. n° 2, 91 190 - Gif-sur-Yvette (France).

Ces rapports et bibliographies sont également en vente à l'unité auprès de la Documentation Française, 31, quai Voltaire, 75007 - PARIS.

Reports and bibliographies of the Commissariat à l'Energie Atomique are available, on an exchange basis, from the Service de Documentation, CEN-Saclay, B.P. nº 2, 91 190 - Gif-sur-Yvette (France).

Individual reports and bibliographies are sold by the Documentation Française, 31, quai Voltaire, 75007 · PARIS.

- 7