INDC
 INTERNATIONAL NUGLEAR DATA COMMITTEE

The "GAPHYOR" System: A Computerized Retrieval System of the Properties of Atoms, Molecules, Gases and Plasmas

J.L. Delcroix

August 1977

IAEA NUCLEAR DATA SECTION, KÄRNTNER RING 11, A-1010 VIENNA

CM 3

Horking Paper
(Happort L.P. no. 153)

THE "GAPHYOR" STSTMM: A COMPUTERIZED RETRIEVAL SYSTEM CF The frcperitiss of atoms, molecules, gains and plasmas

J.L. Delcroix

Submitted to the First Meeting of A+M Data Centres
Vienna, 9-13 May 1977

The "GAPHYOR" System: A Computerized Retrieval System
 of the Froperties of Atoms, Molecules, Gases and Plasmas

J.L. Delcroix

Abstract

SWPNARY - GAPHYOR (GAz PHYsicque ORsay) is a retrieval system of the simple properties of atoms and molecules (energy levels, lifetimes, dipole moments, (cross-sections, reaction rates etc.) and of the macroscopic properties or the corresponding gases (viscosity, electronic and ion mobility, thermodynamic functions etc.). The chemical systems described must be based on 2 small number of elements (1 to 4 in the most recent version) and composed of molecules having 8 atoms at the most. In the present article the fundamental principles of GAPFHOR are described and by means of a few simple statistics the present state of the bank after five years of operation is analysed. On 1.11 .76 the file contained more than 33,000 lines, and these increase by about 10,000 per year. The information comes from about 300 periouicals, although 45% of the results are taken from 4 principal journals. Geographical analysis of the file provides useful information about the scientific work of the various research centres and the scientific publishing policies of the different countries. Finally, the qualities, difficulties end possible improvements of GAPHYOR are analysed.

IATRODUCIION
We besic properities or single atoms or malecules (emergy levels, Iifetimes of excited states, etc.), the properties of interaction between scah particles (cross-sections for varions collision processes etc.) and certain casic macroscopic properties (transport coefificients, etc.) sre the Iundamenial data of the physics of gases. This set of data is complex han ecnatantry wrorgsing onarge. In the present repont the worl done at the Orsay Plasma Physics Laboratory is described for purposes of classification and analysis of the data in question, ard a classification method winich permits the handirs of bibliozraphical information by computer is proposed.

The system which has evolved is called "GAPHYOR" (GAz - PHYsique ORsay). It is in effect a computer-based data bank for documentation. Conceived in broad outline at the beginning of 1972, GAPHYOR was initially tried out at the laboratory level. Early in 1973, it was offered as a specialized documentation service for users in France. In 1975, the service was extended to users in other countries.

DEMARCATION OF THE FTELD

The approach has been to select and classify data from the standpoint of a specific group of users - physicistsp physical chemists and engineers concerned with atomic and molecular physics and the physics of neutral or ionized gases under conditions of temperature and pressure attainable on Earth. Therefore no attempt has been made to meet the needs of nuclear physicists interested in very high energies or of chemists studying complex molecules. More precisely, the approach has been to limit the field studied according to the following guidelines:

- Only systems based on a small number of chemical elements are studied. In its 1972 version, GAPHYOR only included systems based on a chemical element X or two elements X and Y. For example, it covered the properties of N_{2} (l element),
or of the mixtures $\mathrm{H}_{2}-\mathrm{O}_{2}, 1 \mathrm{HO}-\mathrm{N}_{2}-\mathrm{O}_{2}$ (2 elements), but not those of CH_{3} of or of the mixtrare $\mathrm{N}_{2}-\mathrm{CO}_{2}(\mathrm{~S}$ eiememts). Sine elimination of systems winth more than two elements seemed essential for the compilation of data lists ofreasonable size. However, in practice this limitation proved too restrictive and, more recently, the exterstion of GAPHYOR to 3-element (GAPHYOR 3) and 4-element (GAPIHOR 4) systems has
 influenced the decision: Figure 1 shows that GAPHYOR 3 contairs a large proportion of useful information, that GAPEYOR 4 conteins very little and that GAPHYOR 5 harily exists at all. The statistics appearing in fig. 1 are based on a rather restricted number of samples. They musi be considered only as a first step. Especially the ascending arrows stress the fact that GAPHYOR 3 and 4 are possibly underestimated in this figure. Anyway this modification appears not so important as to change qualitatively the conclusions on the faible importance of GAPHYOR 4 and moreover GAPHYOR 5. In view of these conditions it was decided to set up GAPBYOR 3s which has been in operation since early 1976, and GAPHYOR 4, which will come into operation in 1977.
- In the systems defined above only the properties of "small" molecules (or ions) containing at the most 8 atoms are studied. Therefore the properties of $\mathrm{NH}_{3}, \mathrm{CH}_{4}$ and SF_{6} are described, but not those of benzene. However, in order to he \perp p certain users, an element in the code has been provided which makes it possible to show which publications deal with larger molecules.
- As far as the energies involved are concerned, a maximum of 10 keV (in the centre-of-mass system) has been taken as a limit. In other words, references which only contain information relating to energies above 10 keV have been eliminated. This does not mean that our lists contain no information in this energy range since numerous publications contain information straddling this limit (these are shown by a special code letter).
- With regard to low energies, no lower limit has, of course, been finced. as this is the fieid winch most interests physicists and piysicel chemists woljing on gases, a special code letter for refererses below 10 eV has been providej.

SCANTME OF JOLEMALS AD BOOKS
With due regerd to the field as nefinga above ank the facilitios
 30 journals winich seen to us to be the ruost important 1 are analysed as soon as they cone out. A iist of them is shown below in Table 3.

Also the followirg documents are scanned systematically:
Conference proceedings;
Reference books;
and in a less systematio fashion the following documents:
Internal laboratory reports;
French theses.
Finally, we obtain a wicier overall view by usirg section 165 of the Abstracts Buletin of the Kational Scientific Research Centre (C.N.R.S.).

1/ The choice of these joumnals is in fact influenced by an a posteriori statistical analysis of the contents of the file as presented in Table 3.

From each reference we make up one or more "computer lines". Each of these lines is composed of a set of "deseariptors" and recorded in the computer memory. All these wompoter lines* together make up the mgifinot file.

GISSCRIPTION OF A COMPUTER LINE
4.1. Descriptors carried by a computer line
hach nompater line carrieq the fallowing Ieacriptores
(a) Archive descriptor:

Fintry number
(b) Classification descriotors:

Families $A_{1} B_{2} G$ and $D \quad\left(D_{1}\right)$
Category K
 (subscripts/superscripts)

Simplified description
$\begin{aligned} & \text { Molecule } S \text { indices } \\ & \text { (subscripts/superscripts) }\end{aligned}$
$r$$\quad \begin{array}{lllllll} & f & u_{p} & j & y & \left(n_{7}\right)\end{array}$
 (subscripts/superscripts)

Year of publication
(c) Information and filtering descriptors

Experimental order V
Experimental order W
Elements concerned $X_{1} Y_{q} Z$ and Z
Marginal and qualitative descriptors
(d) Localization_descriptors

- Juman ("mavie")
- Volame ("Tome")
- Page ("Раде")
- Anthor ("Anteur")
- Country ("Nation")
- Raviace ("Invimse")
- City ("Citen)

The set of these descriptors can be represented by the following formila:

$$
\begin{aligned}
& \text { /REV, TCM, PAG, AOT/ANN/NA, PR, CI/QUAL/NMM/ }
\end{aligned}
$$

in which classification descriptors are underlined. A more detailed analysis of each of these descriptors is given below.
4.2. Mendeleev families (A, B)

All the processes concerned relate to a chemical system with
one element X, two elements X and Y, three elements X, Y, Z or four elements X, Y, Z and 2 '. Initial classification of the data is based not on the particular elements corcerned but on the Kendeleev families to which they belong. These families are designated by A, B, C, D. This approach simplifies classification because very often a given authon is stuaying in a given publication the prom perties of all the elements X of one family A with respect to a certain process. In other words, the whole set of $92 \times 91 \times 90 \times 89$ combinations $X, Y, Z, Z 1$ can be brought together using the Mendeleev families into a more manageable set of comlinations A, B, C and D, which is well adapted to actual neads. After a few experiments we therefore decided to classify the elements into families according to the following list:

R
:
A
: B
2A
2B
3 A
23
4A
4B
5A
53
6A
$6 B$
7A
75
8A
8B
8 C
3 A
9E
90
90
10
He Ne Ar Kr Xe Ra
플
LiNakRJCsfr
Cu Ag Au
Be Mg Ca Sr Ba Ra
Zn Cd Hg
BAl Ga In Tl
So zion
C Si Ge Sn Pb
Ti 2 : Hf
N EAs Sb Bi
VNbIa
0 S Se Te Po
Cr Mo W
FCl Br I At
M Te Re
Fe Co Ni
Ru Rh Pd
Os Ir D_{t}
Ce $\operatorname{Pr} N d \operatorname{Pn~} \operatorname{Sm}$
Eu Gd TH Dy Ho
Er Tm Yb Lu
Th Pa UNp Pu
general articl ss (see below)
It con be seen thet the elemerts ene in this wey ciserifien mom or less in order of electro-positive valence (from 0 to 7), and within a single family in order of their acomic masses. For convenience the "triads", rare-earth elements and actinides have been placed in positions 8 and 9.
The order thus defined can be considered a; a ranking order and the expressions
$A<B$
$X<Y$
mean that family A comes before family B in this order, and similarly for X and X (for example: $H<1 A, 4 B<5 A$, $L i<N a$, etc.).

In general teriss, a group of 4 families will aiways be writtex ABCD
on the assunption that
$A \leq B \leq C \leq D$
Groups of less than 4 families are written by inserting zerces on the right as follows:
A, B, C, O
$A, B, 0,0$
$A, 0,0,0$
Using these writing rules, the two groups A B C D and A^{\prime}. $B^{\prime}, C^{\prime}, D^{\prime}$ will be classified in the order

ABC D<A' B' C' ${ }^{\prime}$
if one of the following conditions is fulfilled:
$A<A^{\prime}$
$A=A^{\prime}, B<B^{\prime}$
$A=A^{\prime}, B=B^{\prime}, C<C^{\prime}$
$A=A^{\prime}, B=B^{\prime}, C=C^{\prime}=D<D^{\prime}$
Where the 0 is the first of the families, so that one has for example:

$$
A, B, C, O<A B C D
$$

Finally, in the bibliography, we sometimes find publications treating a specific process but without being limit: A to a specific cherical system (synthetic articles, theoretical stidies, etc.). These are to be classified by introducing the "family" .0 which can be combined with all the others to form groups such as $10-0-0-0$, $10-10-0-0$, 10-10-10-0, R-10-0-0 etc.

4.3. Process catesories (K)

In the same way that the elements are grouped in families, the process involved is rapidly identified by the "process category" descriptor K. The categories considered are:

1. Properties of atoms and molecules;
2. Photon collisions;
3. Electron collisions;
4. Atom-atam, atcm-molecule and molecule-molecule collisions (including the corresponding ions);
5. Hacroscopic processes.
4.4. Description of the process
4.4.1. Initial state (P, Q, R)

The process under consideration is normally identified by the followins wle letters:
$P, Q, R / S, T, U$
In the case of collisions between particles (process categories 2-4) the above is the classical method in collision physics of writing down the reaction:

$$
P+Q+R \rightarrow S+T+U
$$

$P_{P} Q_{9} R$ signify the initial state and S, T, U the final state. By convention this notation will be extended to two other process categories, according to rules that will be described later. Therefore, in general, the "initial" state will be described as follows:
$P, Q, R /$ - for a problem involving 3 bodies;
P, Q - for a problem involving 2 boiies;
P/ - for a problem involving 1 boiy.
The symbols P, Q and I may represent a photon, an electron or, more generally, an atom or molecule of the $A-B-C-D$ system which may be ionized and/or excited:

$$
A_{l} B_{m} C_{n} D_{p}^{i x}
$$

The subscripts ℓ, m, n and p thus define t empirical formula of the molecule while the superscripts i and x show (using the following conventions), the ionization and excitatica states of the molecule as appropriate:

```
i = superscript denoting ionization
    i = O neatral atom or molecale
    i = 1 positive ion with l charge
    i=2 positive ion with 2 charges
    i = 5 positive ion with more than 4 charges
    -----------------
    i = 6 regative ion with i chamge
    i = 7 negative con with 2 charges
    -ー゚ー--------------
    i = 9 inner shell ionized atom or molecule
    m = superscript denoting excitation
    x=0 ground state
    x = 1 rotational excitation (r)
    x=2 vibrational excitation (v)
    x = 3 electron excitation (x)
    x=4 oriented atom or molecule (s)
    x = 5 excitation (x r)
    I=6 excitation ( }x\textrm{F}\mathrm{ )
    x = 7 excitation ( }x\mathrm{ s)
    x = 8 excitation (rv)
    x = 9 excitation (% r v)
```

In conjunction with this system the following rules are used for purposes of ranking the various bodies that make up the initial state：

Cenerally，in the case of a collisior between three heavy particles the inital state P, Q, R will be written as follows：

$$
A_{i} B_{m} C_{n} D_{p}^{i x}, A_{q}, B_{m}, C_{n}, D_{p} i^{i \prime} x^{\prime}, A_{\ell} / 1 B_{m^{\prime \prime}} C_{n^{\prime \prime}} D_{p^{\prime \prime}} i^{1 " x^{\prime \prime}}
$$

two molecules being written in the following order：

$$
\begin{equation*}
A_{\ell} B_{m} C_{n} D_{p}^{i x}<A_{\ell}, B_{m}, C_{n}, D_{p}, i^{\prime} x^{\prime} \tag{1}
\end{equation*}
$$

if one of the following conditions is met：

2／With respect to positive ions with more than 4 charges，the exact state of chares is shown by the use，as an exception，of the superscripts $i^{\prime \prime}$ arà $x^{\prime \prime}$ ．

$$
\begin{align*}
& p<P^{\prime} \tag{2}\\
& p-P^{+}=z^{\prime} \tag{3}\\
& p=p^{\prime}, n=n^{\prime}, m<m^{\prime} \tag{5}
\end{align*}
$$

$$
\begin{align*}
& P=P^{\prime}, n=n^{\prime}, m=m^{*}, i=q^{\prime}, i>i^{\prime} \tag{6}\\
& p=P^{\prime}, n=n^{\prime}, m=m^{\prime}, L=i^{\prime}, i=i^{*}, x>x^{2} \tag{7}
\end{align*}
$$

- Where one or two of the particles involved are light pantioles (futuons or electrons) tiey are considerea to correspond to $=m=n=p=0$, and are written in first piace in the $F_{,} Q$ positions beginning with the photon;
- In problems involving tw, bodies it is assumed that $R=0$ and the particles are ranked in the order P, Q according to the same rules as for probiems involving three bodies (formulae (2) to (7));
- In problems involving one body, $Q=R=0$ is assumed;
- These rules make it possible in general to write the initial state P, Q, R in an unequivocal way. However, there are possible cases of ambiguity: where two of the families $A_{8} B_{8} C_{8} D$ considered are identisal. The special rules concerning these cases are discussed in Reference [4].

It may happen in certain cases that ranking order $P, Q_{9} R$ defined by the preceding rules is ill suited to the experimental conditions involved. For example, in charge exchange collisions most experiments are لiace with a veam of fast particles which play a special role and which it is therefore logical to write in the initial position, even though according to rules (2) to (7) these particles should possibly occupy position Q or R. In these circunstances the bodies will nevertheless be written in the order P, Q, R as defined by form mulae (2) to (7), but the different order (e.g. Q, P, F) that is best suited to the experimental situation will be indicated by the code sign V using the following conventions:

$$
V=0(P Q R), 1(Q P R), 2(P R Q), 3(R P Q), 4(Q R P), 5(R Q P)
$$

4.4.2. Final state:_ detailed_description ($\left.\mathrm{S}_{2} \mathrm{~T}_{\boldsymbol{2}} \mathrm{J}\right)$

In process categories 2-6 (collisions) the fimal state, if it is bnown completely, is indicated according to the same rules as the initial state, as follows:

$$
A_{r} B_{s} C_{t} D_{n}^{j y}<A_{r^{\prime}} B_{s^{\prime}} C_{I^{\prime}} D_{u} j^{\prime \prime} y^{\prime}<A_{r^{\prime \prime}} B_{s^{\prime \prime}} C_{t^{\prime \prime}} D_{u^{\prime \prime}} j^{\prime \prime \prime} y^{\prime \prime}
$$

S
T
U

The rales for rainking S, T, T are the same as for $P, Q_{,} R_{i}$ if an "experimentaf" order is preferred, this is indicated by the descriptor W. With: $W=0$ (SIU), 1 (ISU), 2 (SUT), 3 (UST), 4 (IIIS), 5 (UTS).

If the final state involves more than three particles they are ranked according to the same rules and only the last three are written.

If the final state is only partially known, only the bodies actually known are to be written, beginning with S and leaving blank the unknown bodies.
4.4.3. Final state:_ simplified_description_(D S)

In the case of some collision processes, such as elastic collision or symmetric charge transfer, there is no need to describe the final state in detail. In other cases, the process in question is a superposition of several elementary procosses resulting in different final states. Lastiy, in process categories 1 ard 5 the very concept of a final state loses all meaning.

For dealing with these cases a simplified description of the process is introduced - an abbreviation consisting of two code letters. (Appendix B contains a list of the abbreviations used in each process category).

Since the concept of the final state lacks all meaning in categories 1 and 5, the code is used in the following way:

DS is a substantive
S, T, U are complements
Example: $D S=M I \quad S=\mathrm{H}_{2} \mathrm{O}^{+} \rightarrow$ mobility of $\mathrm{H}_{2} \mathrm{O}^{+}$ions.
5.
6.
7.

ELEMGNTS CONCERTED ($X, Y, Z, Z 1$)
The Henceleev femilies (A, B, C, D) relating to a given publication heving been indicated, it shomld be stated which elements of these families are concerned; this is done by means of the descriptors $X, Y, Z, Z{ }^{\prime}$.

These can have the values $1,2,3,4,5,6$, where the figures 1, 2, 3, 4, 5, 6 denote the rank of an element in the family under discussion.

MARGINAL AND QUALITATIVE DESCRIPTORS (QUAL)
Marginal and qualitative descriptors are as follows:

- M (molecules) means publications daaling with systems containing molecules with more than eight atoms.
- H (high energies) means publications describing collision processes in the energy range above 10 keV (in the centre-ofmass system).
- L (low energy) means publications describing collision processes in the energy range below 10 eV (in the centre-ofmass system).
- N (nucleus) means publications involving isotopic effects.
- E,T mean publications containing work with an experimental or a theoretical bias, while S means review articles.
- Finally, it should be said that certain special conventions have proved useful during experimente with the system. These conventions, which are sometimes exceptions to the overall code, are described in Ref. [3].

BIBLIOGRAPHICAL REFERENCES (REV, TOM, PAG, AUT)
The title of the journal, the volume, the page, the first author and the year of publication are written in code language according to the following scheme:

For this the main journals have keen classified accordine to a code [1] composed of 2 digits for the more comon of them, 3 or

The sign 00 placed in position $\mathbb{A E N}$ means Conference Proceedings and 97 reviews in book form The list of these works constitates an annered file [1]; the corresponding references are indicated where necessary in positjor. TOM in the place of the volume number. Simiarit, the siens 40 no 20 Diared in mosition Kry mean lanoratory reports and theses: the lab or the place of dissertation is reported instead of the volume according to a code [1].
8. GEOGRAPHY OF LABORATORIES

The above bibliographical references do not always give exact information on where a given "GAPHYOR" result has beer obtained. It often happens in fact that a researcher working in a given country A publishes his results in a journal appearing in another country B.

For this reason we have specified the geographical location of the laboratory where work mertioned in a publication has been carried out, by means of a three-stage code:
NAtion
where the above example means United States, Massachusetts, Cambridge. A geographical code of countries, provinces and cities [2] has been drawn up. This code is unequivocai in the sense that, for example, two different towns in the same province are shown by two different abbreviations. When the publication concerned mentions several places where the work has been cas ried out, the one shown in GAPHYOR corresponds to the address of the first author.

Storage in the file is effected ly using the classification descriptors according to a hierarchy corresponcing to the order in wich we have written then. In other woris, two lines F and Fi characterized by the descriptors $D_{1}, D_{2} \ldots, D_{10}$ and D_{1}, D_{2}^{*} $\cdots D_{10}$ will be classified in the order

F before ${ }^{\mathrm{F}}$
if one oi the followire oncitions in fulfine :

$$
\begin{aligned}
& D_{1}<D_{1}^{\prime} \\
& D_{1}=D_{1}^{\prime} \text { and } D_{2}<D_{2}^{\prime} \\
& D_{1}=D_{1}^{\prime} \quad D_{2}=D_{2}^{\prime} \text { and } D_{3}<D_{3}^{\prime}
\end{aligned}
$$

As a last resort, if their 10 classification descriptors are the same, the lines F and F are ranked according to entry number. For these classification rules to be applied, an ordering of the values for each of the descriptors D_{1} to D_{10} must therefore be established. For the descriptors $D_{2}, D_{3}, D_{4}, D_{5}, D_{7}, D_{8}, D_{9}, D_{10}$ which have been coded in a mumerical form, this is simple: their values are ranked according to the natural order of whole numbers 3 / (for this ranking it is to be understood that a blank space comes before a zero).

For the descriptor D_{1} a ranking order has been worked out from the list of Mendeleev families as we have seen in section 4.2 . Finally, the ranking of the values of descriptor D_{6} mast be established for each process category: tre order chosen is that which appears in Appendix A. Apart from this it is accepted that when this iescriptor is not specified (D S spaces left blank), this corresponds to as infinite value of D_{6}. In other words, the lines where this descriptor is not shown are classified after all those on which it is.

3/ When a photon (P) or electron (E) is involved it has been agreed that $\mathrm{P}<\mathrm{E}<0$.
10.
11. STATISTIGAL ANALYSIS OF THE GAPHYOR FILE
11.1. Theoretical volume of the GAPHYOR file

It is useful to calculate the theoretical volume of the GAPFYOR file, i.e. the number of spaces it contains, a space being defined by a series of values taken by the descriftors D_{1} to D_{10}. A gimple combinatory analysis calculation [Appendix A] shows an enormous number, of the oxder of:

$$
\begin{array}{rllll}
4.10^{15} & \text { cases for "GRAPHYOR" } 1 \\
1,5.10^{20} & \text { " } & \text { " } & \text { "GRAPHYOR" } 2 \\
10^{24} & \text { n } & \text { n } & \text { "GRAPHYOR" } & 3 \\
1,5.10^{27} & \text { n } & \text { n } & \text { "GRAPHYOR" } & 4
\end{array}
$$

The number of lines actually contained in GAPMYOR on 1.11 .1976 was about 33,000 and is.increasing by about 10,000 lines per year. It can be seen how few of the spaces in the iile are filled.
11.2. Years of publication

Statistical analysis by years of publicatjon is shown in Table 1 which calls for the following remarks:

The sharp increase between 1969 and 1970 reflects the launching of GAPHYOR in 1970; the lines previous to 1970 only represented a partial scanning of the literature;

-28

TABLE 1 - Statistics by year of publication (on 1.11.1976)

YEAR	MOMEBER OF GARDS	5
1968	3376	10,0
1968	457	1,4
1969	705	2,1
1970	1245	5,2
1971	2443	7,2
1972	3612	11,3
1973	5483	16,2
1974	7428	22,0
1975	8118	24,0

TABLE ? Statistics by process caterories
(on 1.11.1976)

K	NUMBER OF CARDS	2
Properties of atoms ama molecules	14.388	42,7
Photon collisions	2.490	7,4
Electron collisions	3.898	11,6
Collisions between atoms and/or molecules	8.917	26,5
Macroscopic properties of gases	3.944	11,7

The progressive increase between 1970 and 1974 is dure to the refinement of our scaming methods rather than to an increase in scientific work. A more detailed analysis shomid be undertaken with the aim of better understanding the influence of these two factors.

On 1. 11.1976 the scanning of the third trimester of 1975 was complete. An effort mast be made to accelerate scanning and acquisi-
 more sfrstematic. Sinoe 2975 we bave beem mpating the file gramterly so that anticles that appear in months n to $n+3$ should shortly be included in the file by month $n+6$ or $n+7$. Conversely, it should be pointed out that the lanching of GAPHYOR 3 and 4 , on which we are at present engaged, is tending to retard the scanning process.

11.3. Process categories

Statistical analysis by process category is shown in Table 2. It can be seen that GAPHYOR, originally conceived as a retrieval system for the physics of gases, is becoming more and more a retrieval system for atomic and molecular physics.
11.4. Mendeleev "amilies

Statistical analysis by Mendeleev family is shown in Fig: 2. It can be seen that the most studied systems are, as is to be expected:

In GAPEYOR 1 (1 element system):
Rare gases
Fudragen
Oxygen
Nitrogen
In GAPHYOR 2 (2 element systems):

$$
\begin{aligned}
& \text { Carbon - oxygen }\left(\mathrm{CO}, \mathrm{CO}_{2}, \text { etc. }\right) \\
& \text { Nitrogen - oxygen }\left(\mathrm{N}_{2}+\mathrm{O}_{2}, \mathrm{NO}_{4} \mathrm{~N}_{2} \mathrm{O}, \text { etc. }\right) \\
& \text { Hydrogen - oxygen }\left(\mathrm{H}_{2}+\mathrm{J}_{2}, \mathrm{H}_{2} \mathrm{O}, \text { etc. }\right)
\end{aligned}
$$

Fig. 2

```
    #ydrogen - carbon (hydrocarbans, e:c.)
    Rare gases - hydrogen
There are as yet no statistics for GAPEYOR 3 and 4.
11.5. Scientific journals
```



```
In the colum entitled "Sanmimg method" the followins symbols are osed:
\(+\quad\) Direct scamning
(+) Direct bat not systematic scenning
- Indirect scanning from the Aostracts Bulletin of the National Scientific Research Centre (C.M.R.S.)
- + Indirect scanning until 1975, direct from 1976.
Analysis of this table shows that:
- \(50 \%\) of the information is obtained by scaming only the four most important journals and conference proceedings;
- To obtain \(72 \%\) of the information, books, theses and 12 other journals must be included;
- The 21 jomrans wick follew provide only \(13 \%\) of information;
- The last portion of information (15 \%) is scattered over all the other journals (about 300 in the present state of the file).
Figure 3 shows these same results in a graphic form; this statistical information is very useful for studying possible ways of perfecting the GAPHYOR system.
11.6. Geography of laboratories
11.6.1. Statistics by countries
The statistics by journals that we have just described do not give any exact information on the countries from which materiai contained in GAPHYOR was obtained. It frequently happens thet a researcher working in a given country A publishes his results in a journal appearing in another country B. In order to analyse in detail the
```


TABLE 3 Statistics by journal (on 1.11.1976)

\%	JOURNAL	Scamning. method	Fruber of cards	7
	Journal of chemical physics	+	6.443	19, 1
2	Physical Review A	$+$	3.322	9,9
3	Conférences	+	2.865	8,5
4	Journal of physics B	+	2.523	7,5
5	Chemical physics letters	$+$	1.930	5.7
	$\Sigma=$		17.083	50, 7
6	Ouvrages	(+)	1.029	3,1
7	Molecular physics	+	597	1,8
8	Optics and spectroscopy	+	587	1,7
9	Internat. J. mass spec. ion phys.	+	576	1,7
10	J. of molecular spectroscopy	+	571	1,7
11	Thèses (françaises)	(+)	556	1,7
12	J. of quant. spect. rad. transf.	+	484	1,4
13	Physica	+	450	1,3
14	Theor - chem. acta	+	420	1,2
15	Rapports	(+)	419	1,2
16	Phys. lett. A	+	416	1.2
17	Phys. rev. lett.	+	407	1,2
18	J. of phys. chem. ref. data	+	400	1,2
19	Canad. J. of physics	+	394	1,2
20	Chemical physics	+	394	1,2
	$\Sigma=$		24.783	73,5
21	z. für phys. A	+	388	1,2
22	Z. naturforschung A	+	382	1,1
23	Atom, and nuclear data	+	341	1,0
24	J. of the opt. soc. of Amer.	+	325	1,0
25	J.E.T.P.	+	310	0,9
26	J. chem. soc. Faraday II	+	292	0,9
27	Proc. Roy. Soc. A	$-+$	217	0,6
28	Comptes-Rendus B	+	196	0,6
29	J. de physique	$+$	192	0,6
30	J. chem. soc. Faraday Trans. I	+	177	0,5
	$\Sigma=$		27.603	81,9

TABLE 3- Statistics by jourmal (

	JOURNAL	Scanning method	Number of cards	$\%$
31	Physica scripta	- +	177	0.5
32	J. of the phys. soc. Jap.	+	167	0,5
33	J. of mol. struct.	- +	151	0,5
34	J. of eiectron spec. relat. phen.	- +	140	0,4
35	J. of phys. chem.	- +	139	0,4
36	Astrophys. J.	-	130	0,4
37	Sov. phys. techn. phys.	+	130	0,4
38	Ber. Bunsengesellsch. phys.	- +	128	0,4
39	Philes. mag.	-	107	0,3
40	Int. J. quant. chem.	-	103	0,3
50	Faraday discussions. Chem. soc.	- +	85	0,3
	$\Sigma=$		29.060	86,3
	Divers		4.622	13,7
	$\Sigma \Sigma=$		33.682	

Fig. 3
scientific work of the various countries and their scientific publishing policies, geographicai descriptors mast be used, i.e. Country, Frovince or Trow as they are defined in Ref. [2]. Unfortunately, we have bit recentiy introduced these descriptors into GAPFYOR and we oniy have staitistics on about 8000 lines (quarterly editions 1975-1-2-and 3). With the necessary reservations about the imprecise nature of these statistics, we do, however, believe it useful to indicate the most striking

Figures 4 and 5 show the relative importance of various countries as regards production (Fig. 4) or pablication (Fig. 5) of GAPEYOR material. Table 4 shows the positions of the top nine countries from these two points of view.

It will be seen in particular that France's position as far as production is concerned (6.9% of total production) is commendable, but is rather disastrous with regard to publications (0.8% of the total). It might be thought that this is due to the language problem; however, more detailed analysis will show that it is due more to a certain social and cultural behaviour of research people in France. In this connection we have characterized each of the nine most important countries with two indices:

The export index X_{e} of scientific work as defined by the formula:

and the import index X_{i} of scientific publications as defined by the formula:
$X_{i}=\frac{\text { amount of foreign GAPFYOR materia: }}{\text { total amount of GAPHYOR material } 1 \text { polished in the country }}$
The diagram of co-ordinates X_{e} and X_{i} in $F i_{f} \cdot 6$ shows how the different countries compare. The four side: of this diagram represent extreme behaviour:

- Nationalists $\quad X_{e}=0$ (no exports)
- Generous $\quad X_{e}=1$ (many exports)

Fig. 4

Fig. 5

TABLE 4 - Classification of countries accoring to nroduction or publication of GAPHYOR raterial (the last column shows
the dirference between tinese two classhïications)

Fig. 6

-29

- Self-sufficient $\quad X_{i}=0$ (no imports)
- Inqumess $X_{i}=I$ (many impurts).

It will be seen then that the first eigit countries son be classified with regard to their scientific publishing policy in four groups:

Group 1 - nationalist and importer: United Kingdom, Jetherlands;

Group 3-nationalist and self-sufficient: USA, USSP, Inar;
Group 4-generous and importer: Kest Germany.
The countries in Group 1 publish the majority of their sciewtific results in their own country and succeed in attracting a large number of publications from other countries. These are the overall winners of Table 4.

The other countries in Group 2 only publish in their own journals a small proportion of their scientisic results. Moreover, ther succeed in attracting only very few publications from other countries. They art the overall losers of Table 4 . France is the best exampe of this.

The countries in Groups 3 and 4 have an attidude which produces a certain equilibriun, two opposing effects cancel each other out. They are either open in both directions (e.E. West Germany) or closed in both directions (e.g. USSR). The case of the USA is rather wrusual in view of its dominant nosition in tems of pmonetion. Although it exports only a moderate amount in relative terms ($X_{e}=$ 0.27), in absolute terms it is the leading exporter and its exports represent 29% of all material exported by all countries. It is 2 lso a significant importer in absolute terms (20% of all results exported go to the USA).
11.6.2. Statistics by towns in France

A more detailed analysis of the amounts of ecientific material that various research centres produce can be made using the descriptor "CIté". The results of this statistical study are given for France in Fig. 7.

Fig. 7

12. COMCITSTIOR AND FORDCASTS
 12.1. Advantages of the cappryir system

We believe that the GAPFYOR system offers a large number of actrantages:

- it is not based on the use of more or less coordinated keywords, but on a quantitative code possessing internal logic and obeying syntax rules;
- the result is that Gaphyor allows a precise identification and arrangement of the data;
- in this mamer it is possible to ask Gaphyor for information in various ways, acording to the nature of the chemical system and the involved molecules on each reaction process, or other criteria (author, journal,): here, for instance, is one rather difficult problem wh. th Gaphyor can solve immediately:
- to find and classify literature on the reactions which produce carbone monoxide.
12.2. Disedventeces of the GADHYOQ sistem erd wers of imoroving it in tine fubre

The advantases of the GAPHICR sjstem arise from tie fact that its scope is strictly limited and that the relevant informetion leads itself quite well to a quantified logical description based essentially on conventioral cheriasl notation, the kendeleev pericdic tanle ard simple corcepts of atomic ard molecular physics. Nevertheleas, tiere are tio disadvantinges in the present systeg which should be noted:
(a) GAPGYOR clients consult our file by me:ting a specific reguest each time they need it. This method of examination on request is the most flexible. Its main disadrantase is a certain slowness (3-5 days' wait, taking postal delays into accou" For does it favour rapid exparsion of our sjstem. Consultetion on recuest producos a sort of snowball effect, but it is a method that is slow in the beginning. For this reason we have for some time been proposing three cor. mltation methods:

- Co:spultation on rempet
- Subscription to the mole file (4 instahente per joar)
- Subscription to a specified wort of the file (4 imsta-

It might be thoughi that in the long fun the ideal method of consultation wovid be a conversational systam allowins clients to consult our file directily by means of a visual display. In the present state of owr experience this would seem aangerous to us, as it very often happens tinat we are asked to interpret questions put by clients so that the compuier can provjde whem with the optimum response.
 information systems like GAPFYOR raises certain manpower problems, since it presupposes the active participation of experienced research worters specialirins in the field of interest. It is omiy in the last few montins that we have been able to form a well equipped scanning team as a resuit of the participation of a number of laboratories. (I)
(1) As of Nov. 1, 1976, the Gaphyor team is composed of the following staff:

Scanning: J.L. Delcroix*, A. Ricard*, F. Lafoat ${ }^{*}$ (Orsay)
A.M. Diamy*, M. Locqueneux ${ }^{*}$ (Paris VI)
J.M. Baronnet, J. Rakowitz (Limoges)

Computer processing and Manasement:
C. Leprince, C. Helft, D. Lecroc, R. Briquin*, E. Claudon* ${ }^{*}$.
*) on part time basise

Intermal renorta

Li」 UnPhiUn code of journals. Hasma Physics Laboratory, Driversite de Paris-sud, Certre d'Orsay.
[2] GAPHYOR geographical code. Plasma Physics Laboratory, Universite de Faris-Sud, Cemire d"Orsay.
[3] Special conventions associated with the GAPHYOR cocie. Plasma Physics Laboratory, Universite de Paris-Sud, Centre d•Orsay.
[4] Rapport L.P. 156, p. 35-37- Plasmamphysics Laboratory, Université de Paris-Sud, Centre d'Orsay (February 1976).

FIEMAS CHETMOM

Fig- 1 - Statistical malysis of data concerning the systems with $1,2,3,4$ or 5 elemeats.

Fig_2 - Statistics concerning "Families" ($\Sigma=22.000-1-8-75$)

Fig. 3 - Statistics concerning Vournal s $s^{\circ} \Sigma=33.682\left(\int_{0}^{75-3}\right)$

VIIIII Eur. w
averss

Fig. 4 - Production of "GAPHYOR" material (Jan.1975-0ct. 1975).
Fig. 5 - Publications of maphrorn zesults (Jan.1975-0ct. 1975).
Fig. 6 - Policies of various countries concerning scientific editing (for the definitions of x_{e} and x_{i}).

Fig: 7 - Production of "GAPHYOR" results concerning France (Jan. 1975 - Oct. 1975).

APPEIDIX A

Dimensions of the GAPHFOR file

11 Staternent of the proiniam
The indexing descriptors of a comproter cand are:

- the Hendeleav families A, B, C, D5
- the process category K;
- the initian-sitate malecrines $P_{5} H_{5}$
- the simplified descriptor DS;
- the final-state molecules $S, T_{9} U_{9}$ and
- the year and the file mumber.

Leaving aside the year and the file nomber, which complete the indexing operation, we shall consider that a compartment of the file is defined by a set of the descriptors ABCD, K, $P Q R$, IS, SIU, In this Appendix we propose to estimate the number of distinct compartments in GAPHYOR files $1,2,3$ and 4.

12 Fumber of ABCD family groups
The number of family groups is easily calculated as follows:

GAPHYOR. 1 groups of type A. 24
GAPHYOR 2 groups of type AB 276

	groups of type AA	24	
	Total:		300
GAPHYOR 3	groups of type ABC	2024	
	groups of type AAB	276	
	groups of type ABB	276	
	groups of type AAA	24	
	Totals		600

GAPHYOR 4	groups of type ABCD	10626
	Sroups of type AABC	2024
	groups of type ABBC	2024
	groups of type ABCC	2024
	groups of type AABB	276
	groups of type AAAB	276
	groups of type ABSB	276
	groups of type AAAA	24
	Total:	17550

Obviously, these numbers are fairly high. To appreciate the simplification achieved through choosing the families A, B, C, D as indexing descriptors and not the elements XYZZ themselves, one must compare these numbers with those which one would have with the elements:

GAPHYOR 197 (4.04)
GAPHYOR $2 \quad 4656$ (15.5)
GAPHYOR $3 \quad 1.47 \times 10^{5} \quad$ (56.5)
GAPHYOR $4 \quad 3.46 \times 10^{6}$ (197)

The figures in parentheses are the ratios of these numbers to the earlier ones.

A3 Number of molecules P
A molecule P is defined by:

- the indices $\& m n p$, which define the general chemical formala; and
- the excitation and ionization indices $i x_{0}$

The last two do not pose any problem; in general, they can assume ten values each and the number of possible combinations for $i x$ is 100 .
the momber of E m m formulas is rather more difficult to calculate as it is limiter by the condition:

$$
\begin{equation*}
2+m+n+p \leqslant m=8 \tag{1}
\end{equation*}
$$

which we have imposen. Each of the indices I In n p can assume a priori the N +1 values $0,1,2 \ldots$. M. If one takes the condition (I) into account, one can calculate the numbers of different $\& \mathrm{mmp}$ formulas $\mathrm{P}_{1}, P_{2}, P_{3}$ and P_{4} in GAPHYOR $1,2,3$ and 4 respectively, obtaining:

GAPTTOR $7 \quad P_{1}(N)=W+I$
GAPEYOR $2 \quad P_{2}(M)=1+2+\ldots+(M+1)=(M+1)(M+2) / 2$
GAPHYOR $3 \quad P_{3}(M)=P_{2}(0)+P_{2}(1)+\ldots+P_{2}(M)$
GAPMYOR $4 \quad P_{4}(M)=P_{3}(0)+P_{3}(1)+\ldots+P_{3}(M)$
Table al below gives the numerical values of these four numbers for values of \mathbf{M} from I to 9.

We have ringed the results in the $M=8$ column, which correspond to the choice made in the present version of GAPHPOR. With this table, therefore, one can estimate the extent of the simplification if one decided to confine oneself to a lower value of $\mathrm{M}_{\text {. }}$

A4 Dimensions of the "GAPHYOR" file

From the calculations performed in the two preceding sections it is possible to estimate approximately the number of compartments contained in GAPHYOR 1, 2, 3 and 4. The principle of the estimates is represented in Table A2. The total number N of compartments in the last line is obtained by maltiplying the numbers of cases by each descriptor. It must be borme in mind, however, that not all the descriptors are independent variables:

- The volume of the file is determined essentially by $K=4$ (collisions between heavy particles), or more precisely by the ternary collisions. The statistical weight of the descriptor K is therefore only l. The same applies to the descriptor $D S$, for in the $K=4$ category it is always associated with binary collision processes, the weight of which is negligible;
- The factors 1/6 introduced after $P Q R$ and SNU take into account the fact that the orders of writing PGR and SHU are impossd;
- The statistical weigit of the molecule $\overline{0}$ is reduced to 10 since oraly its excitation index is as indeppendert wariahle, its indices $2 \mathrm{~m} n$ and i being in general fixed (once FGRST are known) by the rales of conservation of the chemical elements and of electricity.

In brieif, we fimit that the mubers of compartments of GAPHROR filles: 1. 2. 3 and 4 are:

$$
\begin{array}{ll}
\mathrm{H}_{1} \sim 4 \times 10^{15} & \mathrm{~N}_{3} \sim 10^{24} \\
\mathbb{N}_{2} \sim 1.5 \times 10^{20} & \mathrm{H}_{4} \sim 1.5 \times 10^{27}
\end{array}
$$

Hence, these are files whose theoretical volume is extremely lage. In practice, only a very small fraction of this volume is "occupied" since at present we have only 33000 cards. A very incomplete stody of the file structure made in October 1976 (GAPHYOR 3 had been started only nine months previously) jielded the results presented in Table a3 as regards the muber of family groups actually occupied. We shall try in future to analyse in greater detail the statistical structure of the known information and to introduce the concept of the "useful volume" of a file.

TABLS nl - Numbers of $\ell \mathrm{min} \mathrm{p}$ formalas with $\boldsymbol{\ell}+\mathrm{m}+\mathrm{n}+\mathrm{p} \leqslant \mathrm{M}$

	M	0	1	2	3	4	5	6	7	8
GAPHYOR 1	1	2	3	4	5	6	7	8	9	10
GAPHYOR 2	1	3	6	10	15	21	28	36	45	55
GAPHYOR 3	1	4	10	20	35	36	84	120	165	220
GAPHYOR 4	1	5	15	35	70	126	210	330	495	715

TABIE A3 - Number of occupied family groups (see text)

GAPEYOR 1	GAPHYOR 2	GAPHYOR 3
24	133	85

TABLE A2 - Dimensions of GAPEYOR files 1,2,3 anc 4

$\begin{aligned} & \text { Descrip- } \\ & \text { tors } \end{aligned}$	GAPHYOR.	GAPHYOR 2	GAPHYCR 3	GPMYCR 4
4	24	-	-	-
A B	-	300	-	-
$A B C$	-	-	2600	-
A B C D	-	-	-	17550
K	1	1	1	1
P	9.10^{2}	45.10^{2}	165.10^{2}	495.10^{2}
8	9. 0^{2}	$+5.10^{2}$	255.40^{2}	485.10^{2}
$\underline{2}$	9.10^{2}	45.10^{2}	165.10^{2}	495.10^{2}
X	1/6	1/6	1/6	1/6
D S	1	1	1	1
S	9.10^{2}	45.10^{2}	165.10^{2}	495.10^{2}
T	9.10^{2}	45.10^{2}	165.10^{2}	495.10^{2}
U	10	10	10	10
X	1/6	1/6	1/6	1/6
N	4.10^{15}	1,5.10 ${ }^{20}$	10^{24}	1,5.10 ${ }^{27}$

APPEXDIX B

SIMPLIFIED TESCRIPTION OF PROCESSES

```
Category 1
EN Energy levels, wave function
GP Compton profiles
IP Dipole moments
NP Multipole moments
PE Electric polarization
VR Gurves of poteritial, strmeture of molemmles
4T Transition probabilities, lifetimes
Category 2
```

AN Absorption
EL Elastic collision
P2 2-photon interaction
P3 3-photon interaction
PN Multiphoton interaction
EE Production of electrons
Category 3
SN Total and transport cross-sections
EL Elastic collision
ER Line emission
EE Production of electrons
PP Production of positive charge
Category 4
SN Total and transport cross-sections
EL Elastic collisions
TE Excitation transfer
DX Quenching
10 Charge transfer 10 (fast particles)
20 Charge transfer 20 (fest particles)

LN LN charge transfer (fast particles)
MP NP charge transfer (target particles)
IP LI/AP charge transfer
ER Line emission
EHS Production of electrons
PP Production of positive charge
Category 5.
ZT Partition Ametiono
CO Correlations
PV Compressibility, equation of state, vanour pressare
FT Thermodynamic functions
DN Scattering
VI Viscosity
CT Thermal conductivity
DT Thermal diffusion

DM Diffusion of metastables
RN Relaxation in neutral gases
ME Electronic mobility
DE Electron diffusion
PI First Townsend coefficient
AT Attachment
DI Detachment

PC Power exchanges by electron - neutral collision
MI Ionic mobility
DI Ion diffusion
DA Ambipolar diffusion
RC Recombination
PD After-giows

