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ABSTRACT: The Code OSIRIS (Order and step Idently Adjusting
Runge-Kutta Integrator of §ystems) has been developed on the
basis of both explicit as well as implicit Runge~Kutta
processes of various orders: &(5), 7(8), 8(%9), to for
explicit processes and 4 and 6 for implicit processes of the
Rosenbrock type. This permits an optimization of the integra-

tion procedure by choosing the appropriate type of Runge-

Kutta methods(explicit or implicit) and by adjusting dynamical-
ly the order of ihe process as well as the step-size.

The performance of the Code OSIRIS is demonstrated by soume
representative examples and is compared with the Code GEAR

which is applying multistep methods.

OSIRIS : un code de résolution de systéme d'équations différentielles
ordinaires & haute dynamique.

Le code Osiris (Order and Stepsize Idently Adjusting Runge-Kutta Integrator
of System) comporte différents algorithmes de Runge-Kutta tant explicites
(d'ordres 4(5), 7(8), 8(9), 10) qu'implicites (ordres 4 et 6 de type
Rosenbrock). Ceci permet d'optimiser la procédure d'intégration par un
ajustement permanent des méthodes utilisées et du pas d'intégration.
Quelques exemples représentatifs permettent de comparer les performances du

code OSIRIS Z celle du code GEAR utilisant des méthodes & pas liés.
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INTRODUCTION

Considerable progress has been made during the last decades

in the field of numerical methods for solving initial value

problems of systems of ordinary differential equations. Even

recent publicafions on classical numerical methods as RUNGE=-

KUTTA and multistep are numerous.

Naturally, several computer codes have been developed on the

basis of these methods.

Perhaps, the most performant code in this field is the Code

GEAR /HI74/ which is based on multistep methods. This Code,

since its first release in 1971, has continually benefited

from basic mathematical progress as well as from considerable

user experience,

However, we have met problems which could not be solved success-

fully using the Code GEAR., This has obliged us to look for

other codes, particularly those based on RUNGE-KUTTA methods,

because they are a natural alternative to multistep methods.

Surprisingly, all those codes which we found in current mathe-

matical program libraries, have major deficiencies:

- Some use RUNGE~KUTTA procedures which are clearly superse=-
ded;

- others apply up-to-date, but not optimal RUNGE-KUTTA proces-
ses.

~ Finally, to our great annoyance, none of these codes is
powerful enough to solve problems being modestly to extre-
mely stiff which are the kind of systems with which we deal,

This situation has motivated the present work which is prima-

.

rely devoted to RUNGE«KUTTA methods.




Approximately speaking, this report is divided into three

main parts: .

The first is devoted to a concise survey of modern RUNGE-~-KUTTA
processes. .

The second is concerned with the choice of those processes
which have been used in our ODE-sclver codes

The third is centered on applications of our code.
Essentially, the code which we have developed is based on

modern explicit as well as implicit RUNGE-KUTTA processes

of both low and high order. It permits, therefore, an effi-

cient solution of systems, which are low to extremely stiff,

7

to accuracies lying in the range 10~ to 1077,
{ All in all, we have incorporated six RUNGE«KUTTA processes

into our code (see TABLE 4.2 in CHAPTER 4); four of them are

explicit and two are implicit of the Rosenbrock type.
An economical execution is guaranteed by an automatic choice
of the locally most efficient RUNGE-KUTTA process and, of
course, of an automatic choice of optimal step-size during
the integration process.
Concerning the performance of our RUNGE~KUTTA solver in com-
parison with the Code GEAR the following can be concluded:
- Thce RUNGE-KUTTA code has successfully solved all problems
which the Code GEAR failed to do.
-~ The RUNGE-KUTTA code is competitive with the Code GEAR
as far as other problems which we treated are concerned,
In ANNEX 1 we present a new algorithm to solve systems of

non=!inear coupled ordinary diflferential eyiations ol Lhe

Ltype (1ed)e




1.0 FORMULATION OF THE PROBLEM.

Let us consider the general initial value problem

d‘[i(t)/dt = fi(t,Yi(t),...,YI(t)) ’ (1.1)
where i=1,2,3,.0e,1 &
A subclass of (1.1) is the system

(1.2)

S I r. .
. isj
dY, (t)7dt =§ By 4(t) II YJ (t) ,
s=1 Jj=1

where g,  are either constants or depending on t .
r  are integers.
isj
Eqe.{(1.2) comprises many applications in natural science
in general and in physics in particular.
In what follows we shall mention just some of the applica-
tions which are somehow relevant in the context of our
study.
A quantitative description of the nuclear

Application 1:

fusion processes:

D+ T - >He=4 + n ,
U+ Db > lie=3 + n ,
b+ D T + p ,
D + He=3 >lie=4 + p ,
is given by the following eguations

el -1 -1 -1‘ /b1Y1Y2
dY(t)/dt = |-1 v 1 u!. b2¥1¥1,| . (1.3)

[ -l

U 1 U =l b3Y1Y1!
bqY1Y3 ’
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where bi are interaction parameters; Y1' Ya, Y3 dencte

the amount of D, T, He-3, respectively; dY(t)/dt is a one
column matrix.

Application 2: Matter which is irradiated by means of a par-
ticle beam is changing its composition with time., Such a

transformation is described by the following differential

equations
I

in(t)/dt = 2 Sinj(t) . (1.4)
j=1

where Yi denotes the quantity of the nucleus i .
if gij are constants, then either the particle flux is
constant or it is absent (decay). The particle flux depends

on time otherwise.

Application 3: Let us consider in abstracto the following

chemical reactions

where Yi denotes the concentration of the chemical species 1 .

The equations describing these processes quantitatively read

-]l =1 6] V] b1Y1
1 o o -t LY, Y
1 _
dy(t)/dt = N (1.5)
1 -1 1 -1 bqu
3] 1 -1 V) b,‘YzY3



where dY(t)/dt .is a one column matrixe.

In many applications one has to deal with stiff non-linear
ordinary differential equations,

THE NUMERICAL METHODS WHICH WE SHALL DISCUSS IN THIS WORK
ARE QUITE GENERALLY APPROPRIATE TO SOLVE THE INITIAL VALUE
PROBLEM (1.1).

However, our main numerical effort is focused on the solu-

tion of (1.4). We integrate this system for various €550




2.0 SOLUTION OF INITIAL VALUE PROBLEMS FOR SYSTEMS OF

ORDINARY DIFFERENTIAL EQUATIONS.

£q.(1.1) is manifestly complicated. Analytical solutions
exist only in rare cases, Usually, to solve it one has to

have recourse to numerical methods,

2.1 ANALYTICAL SOLUTIONS.

If (1.1) is non-linear, the analytical solution is only
known for some cases, for example, for EULER's equation
of motion in a force-free field and for equations resul-
ting from the YANG-MILL theory /RA82/.

If (1.1) reduces to a linear system as (1.3), then two
cases have to be distinguished:

Case 1: Si. are constants. Then, the analytical solution

of (1.3} is known. It reads in matrix form

Y(t) = PTEC , (2.1)
where PP is the transpose of the eigenvector-matrix P,

t
1
e O seeeee O
r b
[§) € " eeee O

s o sasssecoanas

rS
O ecoeassesnss U el

t

‘i (i=1,2,3,..4,1) are the eigenvalues of the matrix
SiJ , and C is a one column matrix containing arbitrary
constants which can be determined with the help of (2.1)

using the 1nitial values Y(t:Lo). La.(2.1) bLecomes then

Y(t) = P]Elrrh(L:L ))-1Y(L=L ) . (2e2)
18] (9]




Observe that the solution of (2.2) can be obtained without

computing explicitely the inverse of s matrix. It can in

fact be achieved with the aid of a GAUSSIAN elimination

process together with a complete pivoting followed by a

back substitution. One should bear in mind that the solution

via direct matrix inversion REQUIRES ABOUT THREE TIMES MORE

computational effort than via GAUSSIAN elimination.

An equivalent representation of the analytical solution (2.1}

can be obtained by means of LAPLACE-transformation. This

solution method offers for not too large systems (1,3) several

advantages because:

- No eigenvalue has to be computed.

-~ No eigenvector has to be computed.

~ Unly the solution of one linear algebraic system is ne-
cessary.

Here, we will only sketch this method to exhibit its under-

lying principles.

The transformation £ of (1.3) into the image space yields

\

,C(dyi(t)/dt - giJ.YJ.(t)) = s2; - Y, (t=t j - §5452; = O (2.3)

Ihe determination of the unknowns Zi by solving (2.3) and

the transformation of Zi back to the original space, i.e.,

-1
L z, = ¥ (t) (2.4)

yield directly the solution fuuctions Yi(t).
I'inally, we wish to emphasize that an analytical solution,

despLte 1ts mathematical beauty is not necessarcly THE MOST




APPROPRIATE METHOD FOR PRACTICAL COMPUTATION. This is
especially true, if the input data are only known within

a certain accurac& and, therefore, the solution do not

need to be computed exactly either. Integration using nu-
merical methods might in such a case be more economical than
the use of the analytical representation of the functions,
because the former permits a flexible adaptation to the accu-
racy requirements and avoids thus wasteful computational
effort.

Case 2: gij are not constancs. Then, for some specific func-
tions gij(t)' analytical solutions of (1.,3) are known. In
general, however, the solution of (1.3) and of course of
(1.1) can only be obtained using numerical methods. To solve
such a system several numerical methods are at our disposal.
ALL OF THEM ARE ESSENTIALLY EXTRAPOLATORY IN A SENSE THAT
THEY START FROM A POINT AND DEVELOP THE SOLUTION FOR A
NEIGIHBOURING POINT.

We are now going to enumerate the common numerical methods

and to outline their essential features.
2.2 NUMERICAL METHODS.

2.2.1 Categories and characteristics.

For obvious reasons, a great deal of attention has in lite-
rature been given to this subject and comprehensive books
have been published on it /GE71/, /HA70/, /LA73/.

It is of course not our aim to rejpeat here details on these
methods, but to exhibit their fundamental features and to

sclect amonyg the various methods those which seem to be



a1t

most appropriate and performant to sove problems with which
we have to deal, Five categories of numerical methods are of
particular interest: the Taylor series method, the RUNGE-

KUTTA methods, the multistep methods, the hybrid method and

the OBRECHKCFF method.

® The Taylor series method.

This is conceptually the most attractive numerical method.
Essentially, one uses there all information of a function
(value plus derivatives) at a point to determine the function
at another point. The LIE~series method /GR6o/ can be regar-
ded as a more elegant form of it. The Taylor series method
permits in principle an automatic choice of both the order

of approximation as well as the step size. It has the obvious

demerit of requiring derivatives of functions,

® The RUNGE-KUTTA methods.

These methods can be considered as approximations to the
Taylor series method. However, it uses only the knowledge

of the value of the function at a point (none or only one
derivative) to determine another function value in its vicie
nity. This simplification is gained at the price of the de=
termination of the socalled RUNGE-KUTTA schemes for each order
of approximation separately. That involves tedious and labo-
rious calculations, especially for RUNGE=~KUTTA processes of

high order.

® The multistep methods.
Essentially, these methods use the knowledge of the functions
at several points (multistep) to determine the value of .the

function at a further point. Also for these methods one has
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to determine coefficients prior to computation.

¢ The hybrid method.
This method is a combination of the RUNGE-KUTTA and the multi-

step formalism,

® The OBRECHKOFF method.

This method is a combination of the Taylor series and the

multistep formalism.

Each of these methods has its merits and drawbacks. They are
complementary. For most purposes one of the methods mentioned
above should prove sufficient. As for our applications, we
need first of all methods which do not require derivatives of

functions involved. Therefore, only two basically different

methods remain for our aim: The RUNGE~-KUTTA and the multistep

t

methods.

2.2.2 The multistep methods.

These are main numerical methods. They have seen a great deal
of attention in literature. A ¢ode based on these methods

is available. For these reasons we will confine ourselves
only to some pr;ctical remarks on them.

We have already mentioned above that the essential feature
of these methods is the use of several function values to
determine a function value at another point. Several formalisms -
were proposed for that process. Well known are the ADAM-
BASHFORTH-MOULTON- and GEAR's methods. Both have been incor-
porated in the program package called GEAR /HI74/.

This Code has a relatively long history. The first version

of it was published 1971 under the name DIFSUB. Since then

this Code has benefited continually from the basic mathe-
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matical progress and the considerable user experience.

The present version (4-th version) of the Code GEAR applies
the ADAM-BASHFORTH-MOULTON method up to the order 12 and the
GEAR's method up to the order 5. The Code is self-starting
and changes automatically step-size and order of method. It
is claimed to be particularly well suited to solve stiff
problems.

The Code GEAR has since its release been widely used as re-
ference code to test newly developed methods relative to its
performance.

PERHAPS, THIS CODE CAN AT PRESENT BE REGARDED AS THE MOST
PERFORMANT ODE-SOLVER.

However, as we shall see later, we have treated problems
which could not successfully be solved by means of the Code
GEAR. More precisely, the Code could either not start or

yielded erroneous results.

2.2.3 The RUNGE-KUTTA methods.

We will treat these methods in more detail, because we have

implemented a RUNGE-KUTTA solver of systems of ordinary

differential equations. The following reasons have prompted

the implementation of such a code :

- The Code GEAR could not suc¢uessfully sclve some problems
with which we had to deal.

= RUNGE-KUTTA methods are an attractive alternative to multi-
step methods, because they do not require derivatives of
functions involved either. Al

- Comparison studies of the performance of numerical methods
showed that the RUNGE-KUTTA methods are competitive in

general and even superior in certain cases /EN75/, /EN76/,
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/uu72/, /SH76/, /GOB1/, /KAaBi/ and /G082/.

- Une possibility of controlling the total accwnulated

error is the comparison of the solution funciions obtained

with the aid of two different ccdes each of them based on a

different mathematical algorithm , for example, based on
RUNGE-KUTTA--or on multistep methods.

2.2.3.1 Basic notions of RUNGE~KUTTA methods.

2.2.3.1.1 The algorithm of these methods.

Let us consider the initial value problem

dY, (x)/dx = £,(x,¥,,¥p,00,Y,) (2.5)

where i=1,2,3,.ce4nt &

The formal RUNGE-KUTTA approximation of the solution
functions reads in vector form

s
Y(x+h) = Y(x)+h.; b.g.

j=s JJ

and the next higher approximation can be written

s (2.6)

Y(x+h) = Y(x)+ht§;;53§5 ’

where
h is the increment or step-size,

s is the stage(number of function evaluations) of the

method,
gO = f(xo' Y(x=x°)) ’ s
g = f(xo+cih,Y(x=xo)+h }:baijgj) R
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The determination of these coefficients is in fact the cen-
tral problem of a RUNGE-KUTTA process of a given order.
They are derived in two main steps:

- establishment of the algebraic equations for then,

= solution of these equations with a view to an optimal

numerical performance of the RUNGE~KUTTA process,

2e2.3.1.2 Definitions.

If aij=° for i€j, then the method is said to be explicit.
If aij=° for i<j, then the method is said to be semi-implicit.
The method is said to be implicit otherwise.

2,2.3.1.3 Applicability of explicit and implicit methods.

Explicit methods are much simpler than implicit methods,
because in this case the giin (2.7) can be computed in a
straightforward manner, i.e. , without solving an algebraic
system. HOWEVER, SUCH METHODS HAVE TOO LIMITED STABILITY
REGIONS (see Chapter 3). The integration of socalled stiff
systems of ordinary differential equations with the help

of such methods is thus risky, expensive or even impossible,
because the step-size is limited to a much too small value.
Whereas, THE IMPLICIT METHODS PERMIT A LARGE STEP-SIZE

EVEN FOR STIFF PROBLEMS. However, when applying implicit
methods, the 8; in (2.7) must be determined via the solution
of algebraic equations, which can be non-linear. That requires
not only more computational effort in comparison with expli-
cit methods, but introduces also new error sources in the

computational procedure.
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2.2,3.2 Brief history of RUNGE-KUTTA methods.

2.2.3.2.1 Generalities,

These methods were invented by the mathematicians C.D,T.RUNGE
(1856-1927)/RU95/ and M,W.KUTTA(1867-1944)/KUo1/,., The basic
theory of the remainder of the approximative solution,resulting
from these methods,haa been developed by L.BIEBERBACH/BIS51/.
The formal theory of RUNGE-KUTTA processes of any order was

published by J.C.BUTCHER /BU63/,/BU64a/,/BU64/.

242e3.,2.2 Explicit methods.

A central problem in numerical analysis is the error esti-
mation. Concerning RUNGE-KUTTA methods, it was R.H.MERSON/ME57/,
who made a pioneering work in this field with a view to prac-
tical calculations. Although his error estimation was not
optimal and led generally towasteful computation, it provided

a fresh impetus to investigate this item. It was R.ENGLAND
/EN67/, /EN69/, who proposed a more realistic error estimation
along with optimal explicit RUNGE-KUTTA processes, Both are
naturally related. Almost at the same time, E.FEHLBERG /FE68/,
/F69/ and /FE70/ succeeded in deriving still more optimal
RUNGE=-KUTTA schemata together with economical error estima-
tions. These error estimations fail, however, for problems

of the form Y'(x)=f(x) and a RUNGE-KUTTA process of an order .
greater than 4 /EN76/. It was J.H.VERNER/VE78/ who develo-

ped explicit RUNGE-KUTTA schemata along with error estima-

tions which are claimed to work for any system of ordinary
differential equations to be integrated. Recently, J<R.CASH
/CA83/ has published a RK-algorithm permitting an automatic

change ol step-size and order of method.
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2e2e3.2.,3 Implicit methods.

These methods evoked interest at a later stage. (ne reason
for that is that implicit methods are more cumbersome algo-
rithms. Furthermore, one has realized rather late that for
the solution of certain systems of ordimary differential
equations, more precisely, of the so=called stiff systems,
methods having large stability regions are required. The
integration of stiff systems over a longer path can only be
carried out by means of implicit methods, because only they
permit an appropriate integration step-size,

The general theory of implicit RUNGE=-KUTTA methods of any
order has been developed by J.C.BUTCHER/BU64/. An important
breakthrough was made by B.L.EHLE/EH69/. HE SHOWED THAT ONE
CAN OBTAIN A-STABLE IMPLICIT RUNGE-KUTTA FORMULAE OF ARBI-
TRARY ORDER.

Note that multistep methods are only A-stable for orders
not larger than 2 /DA63/.,

In principle, the implicit RUNGE-KUTTA methods permit thus
integration of any system of ordinary differential equations.
Unfortunately, to integrate a system of m differential equa-
tions, implicit RUNGE=-KUTTA methods with a full matrix re~
quire the solution of m.q (g-stages) simultaneous implicit
(in general non-linear) equations at each integration step.
This problem was simplified by S.P.NORSETT/NO74/ in that

he reduced the full matrix aij to a triangular matrix,
aijzo for i<j. M.CROUZEIX/CR75/ and R.ALEXANDER/AL77/ con-
tinded investigations in this direction. Another important

simplification has been proposed by H.!11. ROBENBROCK/R063 /.
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HIS METHOD CAN BE REGARDED AS A LINEARISATION OF SEMI-
IMPLICIT RUNGE_KUTTA METHODS. More precisely, whenever semi-
implicit RUNGE=KUTTA methods would require¢ the solution of

q non-linear equations, the Rosenbrock-type method calls for
the solution of g linear equationse. This renders implicit
methods more economical and numerically more raliable.
C.F.HAINES/HA69/ undertook further researches concerning
this method. Later B.A.GOTTWALD and G.WANNER/GO081/ and then
P.KAPS together with G.WANNER /KA81/ have published RUNGE-
KUTTA processes of the Rosenbrock type of orders 4 and 5, 6,
respectively. Recently, J.R.CASH/CA83/ and G.J.CUOPER together
with A.SAYFY/C083/ have published additiomal implicit

RUNGE=-KUTTA processes.

2.2.3.3 Status of coefficients of RUNGE-KUTTA methods.

In the subsequent TABLE 2.1 we give a selection of RUNGE-~KUTTA

processes.

TABLE 2.1: A selection of RUNGE~KUTTA methods for which

coefficients are available.

Explicit Implicit
Urder |References Order |References )
1-9 /FE58/|/FE59/./FE?;}.WA;“”mm }ROGB/{/HA69/
5=9 /VE?8/ 4 /Go81/

1o /CU?5/,/HA78/ 5-6  |/KA81/

Observe that there exist additional schemata of RUNGE-KUTTA

coefficients, for example, those by ENGLAND /ENG?7/,/EN69/,
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by SHANK/SH66/, by SARAFYAN /SA72/ and by others, However,
it seems that they are not so efficient as those given in

TABLE 2.1.

From this Table one can also see that the highest order of
explicit RUNGE~KUTTA methods for which coefficients are
available in literature is equal to 1o, and that the highest
order of implicit methods for which coefficients are published
is equal to 6.

IT SHOULD BE EMPHASIZED THAT COEFFICIENTS OF STILL HIGHER ORDER
RUNGE~KUTTA PROCESSES MIGHT NOT BRING ANY SUBSTANTIAL GAIN
ANYMORE.

Besides the question of the usefulness of still higher order
RUNAE-KUTTA methods for practical computation, the effort
required for the determination of the corresponding coeffi-
cients is quite considerable. This is well illustrated in

TABLE 2.2, where we iist the number of non-linear algebraic
equations which must be solved for the computation of the

coefficients of an explicit RUNGE~KUTTA process of order p.

TABLE 2.2: The number of non-linear algebraic equations to
be solved for the determination of the coefficients of an

explicit RUNGE-KUTTA process of order p/HA78/.

RK-order p 1 2 3 4 5 6 7 8 9 lo 11

Number of non-

1 2 4 8 17 37 85 200 486 1205 3047
linear equations

to be solved.

Moreover, the solution of these equations is not unique

and a judicious choice with a view to an economical RUNGE=-

KUTTA process requires skill and experience.
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A measure of such an optimal choice is the number of function
evaluations (or stages) for a process of a given order.

In TABLE 2.3 we give theoretical lower and upper bounds
together with the actual values of the smallest number of
function evaluations which are needed for an explicit RUNGE-~
KUTTA method of a given order. Formulae for the estimation

of the bounds of the stages are published in /C072/ and /BU7S/.

TABLE 2.3: Bounds of the minimum number of stages S in of

explicit RUNGE-KUTTA processes and the corresponding actual

values,

RK-order |1 2 3 4 5 6 7 8 9 1o 11 12

min

Lower 1 2 3 4 6 7 9 1o 11 12 13 14
Actual 310 41) 51 g1) 42), 2),52),.52) 18%)
33)103713%7163) 175)

11 16 22 29 37

upper

1) /FE68/, 2) /FE69/, 3) /VE78/, &) /CU75/, 5) /HA78/.

2.2.3.4 Tables of coefficients of RUNGE~KUTTA methods.

In what follows-we give for convenience a selection of
fables of RUNGE-KUTTA processes. We list only coefficients

which deserve particular attention. The notation is that

used in (2.6) and (2.7).
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2.2.3.4.1 Coefficients of explicit methods.

TABLE 2.4: RK-coefficients of order 1(2) by FEHLBERG/FE70/.

a. . "E .
cy ij b i i
0 1
1 1
0 0 356 BT
1 | 255 255
1 ) 3 356 356
o 1 255 1
2 ! 956 350 512

TE=_(s,~g) M

512

where TE is the truncation error.

TABLE 2.5: RK-coefficients of order 2(3) by FEHLBERG/FE70/.

1o, %ij b, B,
J 1 1 i
i 0 1 2
214 533
0 0 0 891 2106
1 1 1
! T T ER) 0
5 27 189 [ 729 650 800
- 350 ~ 800 800 891 1053
5 . 214 1 650 1
891 33 891 T

23 1 350 1 ;
TE= (— 787 ot 33 51— Tgws S2t 73Sl

where TI 1is the truncation error.



- 20 =

TABLE 2,6: RK-codfficients of order 3(4) by FEHLBERG/FE7o/.
AN a
. i
\J c, J bi Bi
i (] 1 2 3
79 229
0 0 0 £90 1470
2 2
1 - 5 ] 0
5 7 77 343 2175 1125
15 500 900 3626 1813
3 35 805 77175 97 125 2166 13718
38 1444 54 372 54 872 9063 1585
79 2175 2166 1
+ 1 290 0 3626 9065 18
4 75 5776 1
TE= (735 8o~ Fooe %2t BTG 53— Té’g‘l} k.
wvhere TE is the truncation error.
TABLE 2.7: HK-coefficients of order 4(5)} by FEHLBERG/FE7o/.
y a,. |,
\J ij b. 5.
[+ by i
i\{ 1 0 1 2 3 4
25 16
0y 0 0 216 i35
T 1
LA 2 ] ]
1| 4 i .
3 3 9 1 408 6 656
2l 5 32 32 565 12 825
121 1932 7 200 7 296 197 | 28361
115 | 2197 ~ 2197 3167 4104 | 56430
439 3630 845 1 8
o B 216 ~-8 513 4104 5 50
] 1 8 . 3544 1859 | 11 2
St o | — 37 2 ~ 3565 3104 40 53
1 123 2197 1 2
D L — Gy - —&
1 E_( 560 Sot Ta75 2T 75240537 504 55 5)"1
where T 1s the truncation error.
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TABLE 2.8: RK~coefficients of order 5(6) by FEHLBERG/FE68 s/

and /FE69/.

a.
ey ij b, B
i \J 0 1 2 3 4 5 6
31 T
0 ° 0 384 1408
e
i i
i ()
! 8 8
2 | £ ] 4 18 28
15 76 5 2816
3 2 2 =
3 [ 3 2 32
. 4| 2 s 16 425
5 5 25 26 768
| | e —
s | o | 38 _18 s U 86 5 0
320 5 128 80 128 66
a1 1 _ i L
6 O 1-st00 ° 25 "160 286 ° 68
7 ' S 18 g3 i W 1 5
640 6 2668 160 258 66

The truncation TE reads

TE = g%—(so+55-56-s7)h .




TABLE 2.9: RK~coefficients of order 5(6) by VERNER /VE78/.

i ay
i a t 2 3 4 s 6 7 s
1 -0
2 (& %
3 i g
- 4
4« 3| F A N
4 - -
s (318w 5 i
- 7 12288 26
6 1] =% 3 I 384 35
7 g l-a716 e3¢ 29830 e 2
s 5o bry 891 i o]
I R G
: 2 4 243 1 1
b, o 0 s file 18 06
- 1317 ¥91
b, 25 0 * e ¥ 0 a5 33

with the truncation error

=(\ 32 9 gL
TE —(mugn"_Js:.sR:"'582{7)8-")):)6521"70089-""}5%%87*i??fs'u)h :

TABLE 2.10: RK-coefficients of order 6(7) by VERNER /VE78/.

S
NJ i
i \ P 1 2 3 4 $ 3 7 8 9
t 0
2 | & I+
3 4 o !
4 P % O &
s 3 # oo ¢ $
: 16 1344688 =1709184 13635632 -78208
o 17 250563 0 83521 #1521 250800
1 =339 =204 4 =491)
7 H 38 O 6 47 5 78208
“ =628 - 4 4739
8 t # oo 12 =58 5t ¥os6s $
- 7 = 11
9 i o i 0] s R omh )
9517 ~1296" 268728 472 =3522621 1 =1239
‘0 I 2582 o ts7 7379 2043 10743824 T‘sul 0 4396
; 7 16 2
b, 9a 0O 0 }g a5 0 izs 30
2881 1216 2624 2413736 -4 ayy
hl 40320 0 0 1961 4095 571828!’% 21 0 3920

with tLhe truncation error

ORI T/ A1 112 24111569 4. ) a2 182
L (fmt + 5 5e 5‘7:55"’suuuuoﬁb“f‘us.&':—o_a'Ku"ii‘fzngo_l'ms'm)h .
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TABLE 2.11: RK~coefficients of order 6(7) by FEHLBERG /FE68/.

Rt ° 3% g
L @ “S 8
- - 3wz 4%
& ::]g ” =
- (-] o
/B °§ 23
° 8|2 §|_ 53
- g% 33 33 &3
il 55 3 = ae w-
-l 8
. os §E 95 B 88 53
] ' [ '
w) S He e
- -3 gz g3 §|'§ -
- -3 o o ° o o o e
ol o o3 o -z s §3 §§ Az 97 g3
o o N2 -3 Nl;: - e Nl'ﬂ ol - o -
7 o -t -~ ™ - w © t~ © [ 3

with the

. 11
TE =ze———
k 270

truncation error TE

(g°+g7-ga~g9)h .
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TABLE 2.12: RK-coefficients of order 7(8) by FEHLBERG /FE68/.

: o o
" o < :I; ...Iz
| o -l o o
o o -} °© oS mlg a'g ol ol
. ) °
- -
- Ll
2 o o
) 2[" c!: ﬁ,:
]
(]
© ”!ﬂ 'IE "l: nl§
- o Sle 9 -z 3
1
o rlo oo 68 ale
° =g slz 21z 32 -8 53
e ) 0lg djo *1 ”'v ”IN - QIN
o gz clogle 52 g2 ez g
L -dd @i
| cl« clg ol< gagg 3 = g8
i © w0 - -
" A=~ & o 3o g3 T - FT
t ] ]
« ~lm we o o © o o o o =3
)
~ ",,‘3 e o o © o o o o o o
@ ~|o -
ol slu-jg-lzeln-1z 8378 ~ 8 & -z EE
' i !
; -
o o N“; -‘,m --,eo m,g —-ch w]we —|o N'ﬂ o ~ o -
7 © =~ & ® w © & =W a S = B

with the truncation error

- 41
TE = g75(8,+8,,-811"8 ) -




TABLE 2.13:

13

12

n

10

v kd . v =t
- ARG R Y B AR AN R
- 42 Nm ~ln xjo ~12
- n HS 2 =
40
= 1

- 25 =

RK-coefficients ol order

~
8
&

o O

Yo Eg e
] o4 p-d &

o MR D

S ~2 Wa._l.lunw
~ o = a3 dv S
e Siv ik D Je g0
- [ e S S ]

M > 1= gle

;IOI
=1
13
=41703
EXE]
z:ls!l!
300125
=42%99
128
%1&&1
3813
4n46
16275

l_noooooooooo

7(8) by VERNER /VE?8/.

£

(-]

mm%
b Ry

3 ~Q
2 c|d
5
< AR

19 «
N g10= 135811 + eo 812+ 1581 )b -

SRR

e
!
o
o
o o o
[
e
+
.4
9 b
o Mm
<
o o M =
) +
[
m o
S &
» [
] !
. =] b
r -
o o » r
o o
=4
P 12
"~ _(D + ~—
45 43
= ]
Es]
- 2
x =
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TABLE 2.14: RK-coefficients of order 8(9) by FEHLBERG /FE68/.

e(1) = 0,4436 8940 3764 9818 3109 5994 0428 1370
c(2) = 0,66G5 3410 5647 4727 46641 3991 0642 2055
c(3) = 0,9983 0115 8471 2091 1996 5988 5963 3083
c(4) = 0.3155 0000 0000 0000 0000 0000 0000 0000
c(s5) = 0,5054 4100 9481 6906 8626 5161 2673 7384
c(6) = 0.1714 2857 1428 5714 2857 1428 5714 2857
c(7) = 0,8285 7142 8571 42835 7142 8571 4285 7143
c(8) = 0.65654 3968 1210 1156 2534 9537 6925 5586
c(9) = 0,2487 8317 9680 6265 2069 7222 7456 0771
c(10) = 0,1090 0000 0000 0000 0000 0000 G000 0000
c(11) = 0.8910 0000 0000 0000 0000 0000 0000 0000
c(12) = 0,3995 0000 0000 0000 0000 0000 0000 0V00
c(13) = 0.6005 0000 0000 0000 0000 0000 0000 0000
c(14) =1

c(15) =0

[+ ( 16 ) =1

a(1,0) = 0.4436 8940 3764 9818 3109 5994 0428 1370
a(2,0) = 0,1663 8352 6411 8681 8666 0997 7660 5514
a(2,1) = 0,4991 5057 9235 6045 5998 2993 2981 6541

a(3,0) = 0.2495 7528 9617 8022 7999 1496 6490 8271
a(3,2) = 0.7487 3586 8853 4068 3997 4489 9472 4812
a{l,0) = 0,2066 1891 1634 0060 2426 5567 1039 3185
a(4,2) = 0,1770 7880 3779 8634 7040 3505 9728 8319

a(4,3) ==0.6319 7715 4138 6949 4669 3770 7681 5048 - 10
a(5,0) = 0,1092 7823 1526 6640 8227 9038 9092 6157
a(5,3) = 0,40321 5962 6423 6799 5421 9905 6369 0087 . 102
a(5,4) = 0,3921 4118 1600 7898 0444 3923 3017 4325
a(6,0) = 0,9889 9281 4091 6466 5304 8447 6543 4355 . 10~
a(6,3) = 0,3513 8370 2279 6396 6961 2044 8735 6703 + 10~
a(6,4) = 0,1247 6099 9831 6001 6621 5206 2387 2489
a(6,5) ==0,5574 5546 8349 8970 0643 7429 0146 6348 - 10~
a{7,0) ==0,3680 6865 2862 4220 3724 1531 0108 0691
a(7,%) =-0,2227 3897 4694 7600 7645 0240 2004 4166 » 10"
a(7,5) = 0.1374 2908 2567 0291 0729 6668 9124 5744 . 10
a(7,6) = 0,2049 7390 0271 1160 3002 15693 6409 2208 - 10™
a(8,0) = 0,4546 7962 6443 4715 0077 3519 5060 2349 - 10~}




- 27 -

TABLE 2.14 (cont.).

a(8,5)
a{8,6)
a(8,7)
a(y,0)
a(9,5)
a(9,6)
a(9|-7)
a(9,8)
a(lo,0)
a(1o0,8)
a(1o0,7)
a(10,8)
a(lo0,91
a(11,0)
a(11,7)
a(11,8)
a(11,9)
a(i1,10}
a(12,0)
a(12,5)
a{12,6)
a(12,7)
a(12,8)
a(12,9)
a(12,10)
a(12,11)
a(13,0)
a{13,5)
a(13,6)
a(13,7)
a(13,8)
a(13,9)
a{13,10)
a(13,11)
a{13,12)
a(14,0)
a(1h,5)

0.3254 2131 7015 8914 7114 G774 6D64 4853
0.2847 6660 1385 2790 8888 1824 2057 J6i?
0.9783 7801 6759 7915 2435 H6G¥3 9727 1059
0.6084 2071 0626 2205 7051 U941 4520 5142
==0,2118 4565 7440 3700 7526 3232 7525 1208
= 0,1959 6557 2661 7083 1957 4644 8066 2983
==0,4274 2640 3648 1760 3675 1448 3534 2699
0.1743 4365 7363 1491 1995 3234 5255 8189
= 0.5405 9733 2959 3191 345 7857 2411 1182
= 0,102 8325 5978 2392 65392 2831 2764 8228
=-0,1256 5008 5200 7255 6414 1477 G374 2250
= 0.3679 0043 4775.8146 0136 3840 1356 6339
==0,5778 0542 7703 7207 3740 38406 2857 1866
= 0,1273 2477 0636 5711 4546 6431 8179 9160
0.1141 8393 0013 93510 5323 6588 7572 1817
0.2877 3020 7036 9799 2776 2022 0184 9198
0.5094 5379 4596 1136 3153 7358 8507 9465
==0,1479 9682 2443 7257 5900 2421 {444 9640

=-0,3552 6793 8766 1674 05335 8485 4439 4333 -

= 0.8162 9896 0123 1891 9777 8194 2124 7030
=~-0,3860 7735 6356 9350 6490 5176 9434 3215
= 0,3086 2242 9246 0510 6450 4741 6602 5206
=-0,5807 7254 5283 2060 2815 8293 7473 3518
= 0,3359 8639 3289 8497 1493 1434 5136 2322
= 0,4108 6880 4019 4995 8613 3496 2278 6417
=-0.1184 0245 9723 5598 5520 6331 5615 4536
=-0,1237 5357 9212 4514 3254 9790 9613 5689
=~0,2443 0768 5513 5478 5358 734¥ 6136 6763
= 0,.5477 9568 9327 7865 68050 4365 2899 1173
=~0,4441 3863 5334 1324 6374 9598 9656 5346
= 0,1001 3104 8137 1326 6094 7926 1785 1022
==0,1489 5773 1020 5175 8447 1709 8507 3142
a 0,5804 6948 5232 1701 3620 8245 3965 1427
= 0.1738 0377 65034 2898 4877 6168 5744 0542
= 0,2751 2330 6931 6873 0263 7545 2286 0276
=0,3526 0859 3883 3432 2700 50289 5887 5588
=-0,1839 6103 1448 4827 0375 0441 9898 8231

1072
10
10~

10°*
107!
107!

10-2
10-*

107!

107!

107"
107!

107!
1 o'ﬂ.
10

1 °+l
10"
10"
101'1
1™
1o*?
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TABLE 2.14 (cont.).

a(14,6)
a(14,7)
a(14,8)
a(14,9)
a(14,10)
a(14,11)
a(14,12)
a(14,13)
a{t5,0)
a(15,8)
a(15,9)
a(15,10)
a(15,11)
a(15,12)
a{15,13)
a(16,0)
a(16,5)
a(16,6)
a(16,7)
a(16,8)
a(16,9)
a(16,10)
a(16,11)
a(16,12)
a(16,13)
a{16,15)

b(o)
b(8)
b(9)
b(1lo)
b(11)
b(12)
b(15)
b(14)

==(,6557 0189 4497 4164 5138 00688 7998 5251
==0,3808 6144 8804 3988 3435 0255 2024 13210

0.2679 4646 7128 5002 2936 5844 2327 1209

==0,1038 3022 9913 8249 0865 7698 5850 7437 » 10™

n

0.1667 2327 3242 5867 1664 7273 46186 8501 - 10*!
0.4955 1925 8553 1597 7067 7329 6707 1441

0,1139 4001 1323 9706 3228 5867 3614 1784 « 10
0.5133 6696 4246 5861 3688 1990 9719 1534 « 107}
0.1046 4847 3406 1481 0391 8730 0240 67556 * 10~

==0,6716 3686 8449 8028 2237 7784 4617 8020 « 10~

0.8182 8762 1894 2503 1265 3300 6524 8989 « 10~

a=0,4264 0342 8644 8334 7277 1421 3808 7581 * 10~

0.2800 9029 4741 6893 6545 9763 3115 3703 - 10™°

==0,8783 5333 8762 3867 6639 0573 1314 5633 * 10~°

0.1025 4505 1108 2555 8084 2177 6966 4009 - 10!

==0,1353 6550 7861 7408 7080 4421 6188 9966 - 101
==0,1839 6103 1448 4827 0375 0441 9898 6231
2=0,8557 0189 4497 41/4 5138 0068 7998 5251
==0,3908 6144 5504 3986 3435 0255 2024 1310

0,2746 £285 5212 9982 5758 9622 0773 2989

==0,1048 4851 7535 7191 5887 0351 8857 2678 - 10*

0.1671 4967 6671 2315 5012 0044 8830 6588 « 10
0.4952 3918 8258 4180 8131 1869 5074 0287
0.1148 1836 4662 7330 1905 2257 8595 4930 « 10"
0.4108 2191 3138 3305 5603 9813 2752 7525 « 10~}
1

0.3225 6083 5002 1624 9913 6129 0096 0247 » 10~
0.2598 3725 2837 1540 3018 8870 2317 1963
0.9284 7805 9965 7702 7788 0637 1430 2190 + 10~}
0.1645 2339 5147 6434 2881 6477 3184 2800
0.1766 59851 6378 6007 4367 0842 9839 7547
0.2392 0102 3203 53275 9374 1089 3332 0941
0.3948 4274 6042 0285 3746 7521 1882 9335 * 10~
0.3072 6495 4758 60684 0406 3683 0552 2124 « 10~

with the truncation error

T = b(lﬁ)(g°+g14—gls—g16)h .
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TABLE 2.15: RK-coefficients of order 8{9) by VERNER /VE78/.

131
W
h &
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8
103
i
8
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a+3V6
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ERA N SR £ .
bl ml > -
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) e g <
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TABLE 2.16: RK-coefficients of order 1lo by CURTIS /CU?75/.

+0-08947 10093 67311 14229

a3y = +014525 18960 31615 05176 @y = O
c; = +0-14525 18960 31615 05176 Gy = 0
g3, = +007262 59480 15807 52588 a,. = 0
as; = +007262 59480 15807 52588 dus = 0
e, = +0-14525 18960 31615 05176 a,,.6 = +0-39460 08170 28556 18607
den = +0:05446 94610 11855 64441 07 = +0:34430 11367 96333 34877
4, = O 2,,.¢ = —0-D7946 58266 42926 61291
a,; = +0-16340 83830 35566 93323 ayy.e = —0-39152 18947 89596 61238
co = +0-21787 78440 47422 57764 Gygo= 0
as, = +0:-54469 46101 18556 44411 e = +0-35738 42417 59677 45184
agy = 0 a2, = +003210 00687 79632 09213
asy = —2:04260 47879 44586 66540 842, = O
as. = +2:04260 47879 44586 66540 a3, = O
cs = +0-54469 46101 18556 4441 @aq = 0
a5, = +006536 33532 14226 77329 a5 = 0
2 = 0 a6 = 0
s = 0 a0 = 0
age = +0-32681 67660 71133 B6646 a,;.s = —000018 46375 99751 20501
a5 = +0-26145 34128 56507 09317 @25 = +0:15608 94025 31321 98608
¢ = +065363 35321 42267 73293 2,140 = +0:19344 96857 65456 02528
a,; = +0:08233 70775 74827 16585 ay3.4y = +0:26116 12387 63663 64969
@72 = 0 ¢,; = +064261 57582 40322 54816
ay = 0 agy, = +0:04423 74932 85249 96327
ay. = +0:21191 71963 20280 35617 032 = 0
Qg5 = --0-03997 34350 30542 18312 3, = 0
g, = +0:02037 7531 75960 06198 2y = 0
cy = +0-27465 94919 90525 40088 Hirg = 1]
agy = +0:08595 30577 90073 43832 036 = 0
ag, = 0 a1 = 0
agy = 0 ay3.s = +0-00464 07744 34539 03964
dgs = O ay3.9 = +0:04704 66028 26151 36532
aps = 0 @530 = +0-08620 74994 80114 88160
ags = +029117 69478 05885 09603 43,11 = ~0-02607 98302 46821 38093
agq = +0-39644 75145 14702 41049 i3,z = ~0-03858 02017 43966 21532
€y = +0-77357 75201 10660 94484 cyy = +0-11747 23380 35267 65357
as, = +0-03612 09348 56069 67550 @10,y = +002318 04671 74294 11567
agy; = 0 - 9 = 0
ag3 = 0 a4y = 0
a4 = 0 Gy = 0
ags = 0 Gy = 0
a5, = +0:13974 64826 82444 20890 G = 0
agy = +0-39510 98495 81567 45999 Gap = 0
gy = —004079 41270 37085 63576 @48 = +0-31978 56784 11636 70673
s = +0-58018 31400 82995 70863 24,9 = +0-59332 33331 84189 86861
ayoq = +0-07233 14442 23379 48078 ay4.10 = —0-11171 27832 23452 87347
oz = O a4, = +0-18039 50557 03050 23573
doy = 0 @003 = —0-45540 14298 85722 07269
yas = 0 145y = +0-33295 73406 00736 36534
Gros = O = +0-88252 76619 64732 34643
8106 = +0-22002 76284 68999 81021 ayy, = +0-02624 36432 57981 05892
@yoq = +0-08789 53342 54367 34013 sy = 0
Gro.e = —00H445 38399 62603 50864 Tisg = 0
@ros = —0-21832 B2289 48875 46891 I
cro = +0-11747 23380 35267 65357 s = (‘)’
= th &

By

Uys .2
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TABLE 2.16 (cont.).

ays,e
Q5,09
3,10
LTERT
Tys,12
ais.13
ays,14
Cys
ay6,1
ay6,2
aye,3
di6.4
16,5
d16,6
16,7
dy6,8
dy6,9
ay6.10
56,11
6,12
6,13
dyg,14
16,15

a7
57,2
a7
17,4
31,3
1.6
a1
a1,
3.9
ai1,10
1701
ag712
17,13
17,14
Ty7.15
3700

dy9,1
ayy,2
asa,3
yy.a
Uiy,
Ay,
Qya,7

L T /1 T T O O I O T R

L O T O I T T

+0-04863 13942 38672 66107
+0-04274 38253 83464 78868
—0-15575 14733 74349 19785
+0-13260 47194 91765 23318
~0-09402 96215 29465 15652
+0-36891 19544 21896 67414
—~0-01197 02001 30288 60976
+0-35738 42417 59677 45184
+0-10284 18616 86822 30957

Coococeoo

—1-29708 67206 53005 11984
~3-30609 69033 14255 58655
—0-06747 08496 92334 33385
—3-59679 15480 63726 08732
+4-00369 56199 26740 87775
+0-04100 57488 26127 81166
+0-26978 32108 90450 67539
+4:49273 53386 33502 00133
+6:64261 57582 40322 54816
+0-00876 60933 97736 46361

oCoocoo

+0-58404 29244 96019 59632
+1-29877 96899 66251 57393
~0-05854 75188 23U66 37183
+0-96649 29364 08446 17558
~1-41862 48359 70972 65394
+0-32460 19941 17747 10444
~0-05497 11264 10616 89342
—0-91544 14072 48110 49093
+0-14742 89120 31297 84267
+0-88252 76619 64732 34643
+0-10173 66974 11157 66388

cCCQoOoOoO

LI T T T ' I R N

~1-69621 75532 09432 81071
—3-82523 58462 11624 25452
~0-05854 75188 23066 37183
~2-52076 77892 27152 29120
+ 5-06895 15710 79828 19146
+0-03221 83852 50196 89969
+0-09661 35792 25014 27296
+3-44722 70365 27756 71816
~0-20173 27870 73975 92774
+0-55575 42250 51297 90987
+ 1-00000 00000 00000 00000
+0-03333 33333 33333 33333

CQO0O0COOC oo

+0-23119 09904 31452 64709
+0-18923 74781 48923 49016
+0-03153 95796 91487 24836
+0-27742 91885 17743 17651
+0-04623 81980 86290 52942
+0-15769 78984 57436 24180
+0-03333 33333 33333 33333



http://l6.II
http://1l7.ll

TABLE

C()m=
C(2)~=
C(I=
C(4) =
C(5)=
C(6) =
C(N=
C( 8) =
C(D=
C(10) =
CQI) =
C(12) =
C(13) =
C(18) =
c(s) =
C(16) =
c(17) =

2.17:

0-00000000000000000000 + 000
5-00000000000000000000— 001
5-26509100141612162751 —00}
7-897636502)2418244126—001
3-93923570125671611283— 001
766653986253548200000-001
2-89763650212418244126~001
1-08477689219566212540—001
3-57384241759677451843—~001
8:82527661964732346426—001
6:42615758240322548157~001
1.17472338035267653574—001
7-66653986253548800000—001
2:89763650212418244126—001
5:26509100141612162751 —001
5-00000000000000000000— 001
1-00000000000000000000+4-000

2, 1) = 5-00000000000000000000—~001

A( 3,
A( 3,
A( 4,
A( 4,
A( 4,
A( S,
A( S,
A( 5,
A( S,
A( 6,
A( 6,
A( 6,
AC 6,
A( 6,
ACT,
ACT,
AT,
AT,
AT,
A7,
A( 8,
A( 8,
A( 8,
A8,
A( 8,
A( 8,
A( 8,
A( S,
A9,
A(9,
A9,
A( 9,
A( 9,
A( 9,
A(9,
A(J0,
A(10,
A(10,
A0,
A(J0,
A(10,
A(I0,
Ac10,
A(]0,

1) = 2-49297267609681978013—001
2) = 2-77211832531930184738—001
)= 1-97440912553104561032—001
2) = 0-00000000000000000000 + 000
3) =  592322717659313683095— 001
1) = 1-97320548628702140900— 001
=0 +000
3) = 2:95083334092671853711~001
4) = 9-84803125957023833277~002
1) = 1:31313417344461520076—001
2) = 0.00000000000000000000400¢
3) = 0-00000000000000000000 -+ 00D
4) =  1-10154439538638507040— 001
5) =  525186129370448772884— 001
1) = 1-34200341846322406193~ 001
2) = 0-00000000000000000000+ 000
3) = 0-00000000000000000000+ 000
4) =  6-96088703288076208079—00]
5)=  2:50497721570339375352—001
€) = —7:91023116492320445498 001
1) = 7:22182741896621454448—002
2) = 0-00000G0000O0DO0O000D-4- 000
3) = 0-00000000000000000000+ 000
4) = 0-00000000000000000000+ 000
5) = —5-83363229364550369126—002
6) = 3-04755766857449437925—003
)= 9-15481802977846100286—002
1) = 3-12550081351656170620—002
2) = 0-00000000000000000000 4000
3) = 0-00000000000000000000+000
4) = 0-00000000000000000000+ 000
$) = 0-00000000000000000000 + 000
6) =  1.09123821542419946873— 004
1-56725758630995015164 —001
1-69294351171974399670—001
I 19066044146750121445 — 002

LI T
ga:

6) = 2 83437082024606548112 —00!
7) = —4-16312167570561315056—00)
8) = 2:64646333949743004837—00]
9) = 7-38849809146269076388—001

32 -

RK-coefficients of order 1o by HAIRER /HA78/.

AQUL, 1) = 2-34065736913354493717 002
AQLL, 2) =
A1, 3) =
AL, 4) =
AQL, ) =
AClL, 6) = 9-44931301894961802240—002
A(11, 7) = —2:72872055901956419006—00]
A(1L, 8) =  2:24022046115592207410~001
A(11, 9) =  6-04381441075133095416~001
A(11,10) = —3-08153769292799652586—002
A(12, 1) e 4-54437753101753699408—002
A(12, 2) = +000

A(12, 3) =

A(12, 4) =  0-00000000000000000000 + 000
A(12, S) = 0-00000000000000000000+- 000
A(12, 6) = —1-18799667186441567723—003
A(12, 7) =  1-20356549909281134803—~002
A(12, 8) =  7-5126902987647924059]1 — 002
A(12, 9) = —1:82209240988845690412~002
A(12,10) = —2-57)52854084065042855 —004
A(12,11) =  4-53207837134829585506—003
A(13, 1) = 1-78401086400436425292 ~001
A(13, 2) = 0.00000000000000000000+ 000
A(13, 3) = 0-00000000000000000000 + 000
A(13, 4) =  1-10154439538638507040—001
A(13, 5) =  5-25186129370448772884~001
A(13, 6) = —4-89148591820436212803—001
A(13, 7) = 9-32443612635135733038--001
A(13, 8) = —7-74475053439839525409 — 001
A(13, 9) = —1-05490217813935824270+4-000
A(13,10) = 1-310467120341 57154509 —001
A(13,11) =  5-87049777599487392267—001
A(13,12) = 6-20898052074878791881 — 001
A(14, 1) = 1-30220806600497792496— 001
A(14, 2) = §-00000000000000000000+ 000
A(14, 3) = 0-00000000000000000000 + 000
A(14, 4) =  6-96088703288076908079 —001
A(14, 5) =  2-50497721570339375352 001
A(14, 6} == —-7-58948987129607342662— 001
A(14, T) = —1-71517208463488383577 —001
A(14, 8) = —3-70217673678906704688 — 001
A(14, 9y = 1-249810085T4747347602 — 001
A(14,10} =  3-35310924837267073965~003
A(14,11) = —6-63254613676153581907 —003
A(14,12) = 429116573121617904714—001
A(14,13} = —~3-71778567824697893108 —002
A(lS, 1) =  2-49297267609681978013 —00!
A(15, 2) = 2:77211832531930184738 001
A(1S, 3) = 0-00000000000000000000 + 000
A(15, 4) = 0-00000000000000000000 + 000
A(15, 5) = 0-00000000000000000000 + 000
A(1S, 6) = —1-45940555936085218185—001
A(L5, 7) = —7-99015893511029475358—001
A(1S, 8) = 0-00000000000000000000 + 000
A(13, 9) = 0:00000000000000000000 + 000
A(15,10) = 0-00000000000000000000-+ 000
A(15,11) = 0-00000000000000000000 + 000
A(15,12) = 0-00000000000000000000 + 000
A(15,13) = [-45940595926085218185 — 001
A(15,14) =~ 7-990158935110294753538 ~ 00t
A(16, 1) =  5-00000000000000000000 — 001
A(16, 2) =  0-00000000000000000000 + 000
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TABLE 2.17 (cont.).

A(16, 3) = ~8-07097076095341093251 — 43 A(1T,11) = 6-95057049459982281780~001
A(LS, 4) = 0-00000000000000000000-+- 30 A(17,12) =  2-T1487376457383239111—001L
A(16, 5) = 0-00000000000000000000+ 000 A(17,13) = 5:85423734866589756811—001
A(16, 6) =  0-00000000000000000000 4- 000 A(17,14) = 9:58819072213235370429—001
A8, T) = 0-00000000000300000000 + 000 A(17,15) = 8:97470163394855184206—001
A(16, 8) =  0-000000000000000C0000 - 0% A(17,16) =  5-00000000000000000000—001
A(16, 9) = 0-00000000000000000000-+ 0C B( 1) =~ 3-33333333333333333333—002
A(16,10) =  0-00000000000000000000-000 B( 2) = —3-33333333333333333333-002
A(16,11) = 0-0000000000000000000C 4-CCT B( 3) = —1-20000000000000000000—001
A(16,12) = 0-0000000000GO00000000 4520 B( 4) = 0-00000000000006000000--000
A(16,13) = 0-00000000000C00000000+4- 003 B( 5) = G-0000000)000000000000+000
A(16,14) =  0-00C000000CVOVAV000C -+ 050 B( 6) = —1-30000000000000000000—001
A(16,15) = 8-07097076095341093251 —001 B( T) = ~1-30000000000000000000—001
A(17, 1) = 5:73207954320575412321-- 002 B( 8) =  0-00000000000000000000+-000
A(17, 2} == —5-00000000000000000000 —00] B( 9) = 2:77429188517743176508—001
A(17, 3) = ~B8:97470163394855120846 ~00] B(10) =  1-89237478148923450158—001
A(17, 4) =  0-00000000000000000000 400 B(11) = 2-77429188517743176508—001
A(17, 5) = 0-00000000000000000000 4 00 B(12) = 1:89237478148923490158 ~001
A(17, 6) = ~1-03991004922695343354 4000 B(I3) =  1-30000000000000000000 001
A(17, 7) = —4-07357014288385809022—001 B(14) = 1-80000000000000000000—001
A(17, 8) = —1-82830236640741849663— 001 B(15) =  1-20000000000000000000 —001
B(16) =  3-33333333333333333333—002

A(17, 9) = —3-33659270649225021137-- 001

A(17,10) =  3-95548542376057924001 — 001 B(17) =  3-33333333333333333333 —002
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2,2.3.4.2 Coefficients of implicit methods of the Rosen~

brock type .

we take here over the formulae and the notations from /Ka81/.

Given the initial value problem
L}
y (x) = £(y(x)), y(xo) =y, (autonomeous system) (2.8) -

then the approximate solution Y4 of the exact solution

y(x°+h) reads

s
Yy = ¥y +h 2 mik;, , with (2.9)
i=1

i-1 i-1
Bk, = £(y_+h E__aijkj)+ E::cijkj , (1=21,2,3,.4.,5), (2.10)

j=1 j=1
and
E = I-anl(yo), £ = Jt/dy , 1 is the unit matrix. (2.11)
The coetficients a.., c.., i, and y are constant.

ij ij i
Given the initial value problem
L]

y (x) = £(x;y(x)), y(xo)=yo (non~autonomeous system) (2.12)

'
then by putting x =1, the differential equation
becomes autonome;us and the foregoing fermalism applies.
Hiowever, if one leaves (2,12) non-autonomeous then the
following formalism is valid
s
¥y, = y°+h E—-miki ’ (2.13)
i=1 . ,
i=1 i=1

. 51!
J_laijkj)+uih1x(xo,yo)+ El_c..k. ’ (2.14)

Eki = f(xo+Aih,y°+ ‘ 5%
Jj=1
(1i51,2,...48),

E = I- yhfy(xo,yo) ’ (2.15)
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(i=2|5)|

a.

lij/:y (i=1,s) .

We will now give the tables of these

of the orders 4, 5 and 6,

WANNER /G081/.

b, =.729044879960308
b, =.0541069773272405

Cqy =
Ce2=

(2.16)

RUNGE-KUTTA processeaey

TABLE 2.,18: RK - - coefficients of order %4 by GOTTWALD~-

y=J395
ay, =438 €y, = — 1.94347441894707
ay, =.938948678483428 ey = .416957530989189
ay,=.0730795420615381 ¢;;= 1.32396782072923

1.51951325778448
1.35370815030093

by =.281599362440017 Cay= —.854151495257539
b, =e,=.25 e, = —.0190858871999474
e, =.255608791716455 e, = —.0863816280897592

with the error estimator

4

EST=Max (UM. Max ( T

I=i.n it
TABLE 2.,19: RK-coefficients of order
y=0.141127125787 oy =
a;, = 0.28225425157410630D + 00 a,, =
c;, =—0.81524951688460885D + 00 Coa =
ay, = 0.57116380169300584D + 00 m, =
cy, = 0.81127189717323099D 4-01 my =
ay; = 0.12386230035678339D + 01 my, =
€33 = 0.64300627424554704D 4-00 m, =
a,, = 0.72285966684392441D 400 my =
¢y = 0.18891319022399990D - 01 A, =
a,, = 097672836707474073D + 00 B, =
Cyy = —0.37493862667874616D + 01 A, =
a,; = —0,32856006264202144D —01 B, =
cey = 0.95094153717403742D - 01 Ay =
w5y = 0.67849717523250110D + 00 By, =
csy, = 0.53507619725099805D + 01 A, =
ay; = 0.20208927497707465D + 01 8, =
¢y = —0.25460873945213962D + 01 A, =
a,, = —0.10701369811124179D +00 8, =

o) 0] [Max (0. 21 e (m)))

5 by KAPS-WANNER /KA81/.

0.41864844423231233D + 00
0.66019768386713535D + 00
—0.33062805583808154D + 01
0.77900694405566295D + 00
0.37121621947171690D + 01
—0.73417673328703555D + 00
0.24040545624571883D + 01
0.59299247626627483D + 00
0.00000000000000000D + 00
0.14112712578705315D + 00
0.28225425157410630D + 00
0.260733046698446460 —01
4.80000000000000000D + 00
0.13028171350787572D +01
0.60000000000000000D + 00
0.16992460579297673D + 00
0.85887287421294685D + 00
0.81348381758071946D + 00
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with the truncation error

TE = max(ly
j_=1,n

TABLE 2,20: RK-coefficients of order 6 by KAPS-WANNER /KA81/.

¥=0.17315586842719120

a2y
€2
asy

Cot
2
Co2

with the same error estimator as for

= 0.34631173685438241D +000
= —0.63453397891179372D +000
= 0.51484422823733024D +000
= 0.36437911365480913D +001
0.61607853745814515D +000
0.12945713592535053D + 001
0.42083594880532555D + 000
0.69161953050956585D — 001
0.12398256101276536D + 000
—0.12905884218846234D + 000
—0.43663557947609954D — 002
—0.40532167899763093D — 001
0.44508808952624152D + 000
0.17583309748309236D + 001
0.14790956438776313D + 000
0.17092158755220803D + 001
—~0.10863189236472590D — 001
—0.54015868028686558D — 001
0.16749655714649715D + 000
—0.14204573489819585D +001
-0.78286965861140857D + 000
0.92366768689092273D +001
= —0.16763611643856503D +00!
= 0.11681533450127634D +002

I}

LI I I A R I T A

TABLE 2.19

gy =
Coy =
Qs =
Coq =

Qg5
Cos
m,

m;
my
m,

>
(LN 1 O O VT T (Y

2‘i-§r2’i]/(2p-l)max(l, lyz’il )),

s

, 92 = y°+2h Zmiki -

i=1

—0.54599770789200043D +000
0.24468706426428219D +001
—0.42431494939094088D +000
0.28555063127446144D +-001
0.27503664994042264D + 001
—0.12600541876984773D + 002
—0.67245858827422954D +001
—0.12998203944959025D + 002
—0.41709683120954452D +001
~0.20786455336141335D +001
0.15638447165125274D + 002
0.10493031673621379D +-00%
0.00000000000000000
0.17315586842719120D + 000
0.34631173685438241D + 000
0.63282586262158533D — 00}
0.74000000000000000D +000
0.88602351075795778D + 000
0.44380509942047506 D +-000
0.14105203545498545D +000
0.58000000000000000D + 000
0.33756706706153310D +000
0.82684413157280881 D +000
0.82901025130889673D +000

the process of
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2.2.3.5 Concluding remarks,

The derivation of a performant RUNGE-KUTTA method is cen-

tered on two main themes:

- the choice of optimal coefficients, i.e.; they should
permit economical computation, which is to say, there
should be a minimum number of function evaluations
(stages). In addition, the estimated error should be
close to the true error and its computation should require
little effort.

-~ the stability of the methods. THE FACT THAT ALL ERROR
ESTIMATIONS OF AVAILABLE RUNGE-KUTTA PROCESSES ARE ONLY
LOCALLY VALID RENDERS CONSIDERATIONS ON STABILITY PARTICU=-
LARLY IMPORTANT.

If the integration takes place outside or close to the boun-

dary of the stability region the solution risks destabili-~

sation. The knowledge of the stability region of a method

is thus crucial. Moreover, knowing this region one can esti-

mate,using a stiffness diagnostic of the system to be solved,

prior to the integration, the total computational effort
required for the solution.

Stability considerations assume thus a prominent position

in numerical integration. Therefore, we will now explore

this important field with a view to our needs.
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3.0 ON THE STABILITY OF THE METHODS.

A basic problem of the numerical solution of ordinary diffe-
rential equations is the stability of the method applied.
Approximately speaking, the question is, which step-size is
permitted for the integration of a given system without
risking destabilisation of the solution functions. This
problem is nowadays well studied and the so-called stabili-
ty regions are for the numerical methods well known /LA?73/,
and /HA76/.

FOR PRACTICAL CALCULATIONS THE FOLLOWING RULE IS HELPFUL,

hA =h € R, (3.1)

where R is the stabilty region of the method considered,
h is the step-size, A is the maximal value of all Ai .

and Ai are the eigenvalues of the matrix
1
afi/ayj =3yi/3yj y (i,j=1,2,..4,n) (3.2)

(see (2.11)).

Note that. can be complex.

Eq.(3.1) says simply that the step-size h must be chosen
such that h does not lie outside the stability region.
We give here for convenience stability regions which

are relevant in the context of our work.

The stabiiity intervals for explicit RUNGE-KUTTA methods
are /LA73,p139/ given in TABLE 3.1.

TABLE 3.1: Stability intervals Re(h) of explicit RUNGE-

KUTTA methods.,

RK~order -1 2 3 4 7

Interval Re(h) x
of absolute -2.0 =2.0 =2.,51 =2.78 =5.

stability x heuristic value
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The graphical representation of the corresponding stability

regions in the E-plane is given in FIG. 3.1 /LA73, p.227/.

FIG.3.1: Stability regions of explicit RUNGE-KUTTA methods

of orders p: 1,2,3,4.

The stability values Re(h) of the ADAM-BASHFORTH~MOULTON
methods /LA73,p.l07/, which are applied in the CODE GEAR,

are listed in TABLE 3.2.

TABLE 3.2: Stability intervals Re(h) of the ADAM-BASHFORTH-

MOULTON methods.

Order 4 5 6 7 8
Stability
intervals | -1.35 =1.0 =0.7 =-0.5 =0.4

From TABLE 3.1 and TABLE 3.2 follows that the stability

interval le(h) 1s SHRINWING WITH INCREASING URDER b THE
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ADAM~BASHF ORTH=-MOULTUN methods, whereas it is extending

with increasing order of explicit RUNGE=KUTTA methods.

The implicit RUNGE-KUTTA process of the Rosenbrock type of
order 4 published by GOTTWALD-WANNER /GO81/ is A-STABLE. .

The corresponding stability region is indicated in

FIG.3.2.

h=h1+1h2-plane

FIG.3.2: Stability region of A-~STABLE methods.

The implicit RUNGE-KUTTA process of the Rosenbrock type

of order 6 published by KAPS~WANNER /KA81/ under the
designation ROW6B is A(@=85.74°)<STABLE. The A(&)-STABILITY
region is sketched in FIG.3.3. Note that several RUNGE-
KUTTA processes of the ltlosenbrock type of order 5 and 6

are published together with their stability regions in /KA81/. .

A -
h=h1+1h2-p1ane

N
| >
4

o
———— -
—_— R -
T

&

F1G.3.5: A(@)-STABLL1TY region.



The so-called GEAR's method, which is used in the CODE
GEAR, is STIFFLY~-STABLE. The corresponding stability regions

are sketched in FIG.3.4. For further details see /LA73,p.234/.
A

h=ﬂl+iﬁz-plane

)

FIG.3.4: stability regions R1 and R2 of STIFFLY-STABLE methods.

From the above considerations we can conclude the following

with a view to practical computations:

-~ The step-size decreases when the order of the ADAM-

BASHF ORTH-MOULTON methods increases.

~ Conversely, the step-size can increase when the order of
the explicit RUNGE=-KUTTA methods increases.

- 1f A= max(A;) is very large and the path of integration
is not very short then neither the ADAM~-BASHFORTH-MOULTON
methods nor the explicit RUNGE-KUTTA methods can success-
fully solve the system, because the number of steps requi-
red for the integration exceeds any tolerable computational
time as well as any acceptable error propagation. In such
a case METHODS WITH LARGE ABSOLUTE STABILITY REGION MUST BE
USED.

- To solve such problems, the Code GEAR uses the GEAR's method,
which is stiffly stable (see FIG.5.%}. We will in that case
apply the implicit RUNGLE-RUTTA wmethods ot the Rosenbroék

Ltype ol order 4 and 6. They are A-stable (see F1G. 3.2)
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and A(@)~-stable (see FIG.3.3), respectively.
- Generally speaking, any performant ODE-solver should
thus apply two classes of methods, such with large stabi-
lity regions for the integration of stiff problems, i.e.,
implicit methods, and such with smaller stability regions
for the integration of non-stiff problems., Recall that the
latter requires much less computational effort per step
than the former and is moreover numerically safer.
STABILITY CONSIDERATIONS GIVE THUS A VALUABLE INSIGHT WITH
REGARD TO APPLICABILITY OF THE VARIOUS NUMERICAL METHODS

OF SOLUTION OF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS.
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4,0 THE RUNGE-KUTTA SOLVER OSIRIS OF SYSTEMS OF UDBs.

4.1 CRITERIA OF THE CHOICE OF RUNGE-KUTTA METHODS.

To make a choice among the variety of available RUNGE-KUTTA

processes we applied the following criteria:

= The RUNGE=-KUTTA solver should permit integration of systems
of ordinary differential equations of the types charac-
terized in TABLE 4,1.

- The RUNGE-KUTTA solver should enable an automatic optimi-

zation of the computational time of an integration.

TABLE 4.1:; Characteristics of systems of ODEs which we

wish to integrate.

n i )] 2
W 10°-10" 104—106 106-107 lob-lo °
RUNGE~hRUTTA |explicit explicit implicit implicit
method (implicit) {(explicit)
applicable

).

W = Path of integration xIRe(j

6 18
‘Re(/lmax)/l{e(/lmin”: 1o -1o0

max

Number of ODEs : lo~1o00 .

A. are eigenvalues of the Jacobian matrix (3.2).
i g

According to the first criterion, we have to use both
explicit as well as implicit RUNGE~AUTTA methods.

The 2-nd criterion calls for RUNGE-WUTTA methods of low
order (for low precision computation) and of high order

(for high precision computation).
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Results of performance comparison calculations using the
various methods which are published in /SH76/, /EN76/,
/FE69/, /FE70/, /VE78/, /GO81/, /XA81/ and /HA78/ together
with our own experience have led us to incorporate in our

RK-solver code the methods which we list in TABLE 4.2.

TABLE 4.2: RUNGE=-KUTTA methods applied in our ODE~solver code.

Author(s) Ref., Order Local error estimator

Explicit methods

FEHLBERG /FE70/ 4(5) given
/FE69/ 7(8) given
VERNER /VE78/ 8(9) given
HAIRER /HA78/ 1o by step-size division

Implicit methods(of the Rosenbrock type):

GOTTWALD-WANNER /Go81/ 4 given (by step-size division)

KAPS-wANNER /KA81/ 6 given

Comments on TABLE 4.2:

- We found that the FEHLBERG RK~processes are more efficient
than those by VERNER. We have included the process 8(9) by
VERNER in our RK-solver, because FEHLBERG's processes of
orders > 4 fail when applied to solve problems of the
kind y'=f(x) (see in 2.2.3.2.2).

-~ We have included HAIRER's process also, because this is .
the highest order of explicit RK-processes which is available
at present,

- Among the implicit RUNGE-KUTTA processes, those of the
Rosenbrock type are the most efficient and the safest,
because they offer the advantage of linearizing a problem

(see in 2.,2.3.2.3).
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Moreover, the application of RUNGE-KUTTA processes of low
and high order is appropriate¢ for integration with low and

high precision,

4,2 DETERMINATION OF THE STIFFNESS OF A SYSTEM.

In addition to the integration methods listed in TABLE 4.2,
a diagnosis of the difficulty(stiffness) of the problem is
helpful and instructive. To make such a diagnosis, the

' .
eigenvalues of the matrix Byi/ayj must be determined
(see 3.2). They give information about the stiffness and

offer in principle a criterion to select dynamically the

most appropriate integration method.

4,3 THE EBRROR CONTROL.

we estimate the uncertainty caused by a single integration

step (local error) and verify the total accumulated error

(global error).

4.3.1 The local error.

An estimation of the local error is available for each
RUNGE-KUTTA process mentioned in TABLE 4.2, except for the
process by HAIRER., For this process we estimate the local

error by step-size division.

4,3.2 The total aécumulated error.

Essentially, we verify this kind of error with the aid of
an additional integration imposing a different tolerance.
Another possibility to verify this error is a supplementary
integiation using a code which is not based on RUNGE-KUTTA

methods, but, for example, on the multistep methods.
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In other words, we can compare results obtained indepen-

dently with the help of both codes, the RK-solver as well

as the Code GEAR.

Iln some cases, conservation laws can be used to check the
accuracy of the computed functions. This is of course the

ideal way to determine the total accumulated error.
4,4 THE IMPLEMENTATION UF THE RUNGE~KUTTA SOLVER OSIRIS.

The general structure of the program OSIRIRB is schematized

in the following FIGURE 4.1.

OSIRIS

RKUN

JS F8 Hairer V9 ROW4A: DEC, SOL
FAS, FDAS

PILOT

FCT, FCD

FLGURE #.1: scheme of the program 051113.

KKUN: In this subroutine the appropriate algorithm for the
integration is chosen. Tuv this end the performance of the
various algoritlms is memorized: the iutegration slep-sizes
1t {of i-th method) and the number of operations n, required
to perlorm one iteration ("1 is constant ror a pgiven wuoetnod)

are stored and i ellicicucy = hl/“L ts ucteruined Lor each

wethod 1.
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when the integration starts, the efficiency of each explicit
RUNGE=-KUTTA method is evaluated with the constrain of maximal
50 iterations per step. Then the integration is continued with
the most efficient method until it needs more than 50 iterations
per integration step. Then the method previously memorized as
the 2-nd most efficient method is applied, etc.. If all expli-
cit RUNGE-KUTTA methods fail to integrate one step with maxi-

mal 50 iterations then if the number of iterations> N2> 50,
and in any case it the estimated total number of integratio n
steps is too high, then implicit methods are called for.

The program is returning to explicit methods whenever they
are judged to be enough efficient., The criterium for such a

switch 1s based on the eigenvalues of the Jacobian matrix.

F5, F8, Hagirer, V9, ROW4A ¢ Designate the subroutines oi the

algorithm RUNGE=-KUTTA-FEHLBERG %4(5), RUNGE-KUI'TA-FEHLBERG 7(8),
RUNGE-KUTTA-HAIRER (l10), RUNGE~-KUTTA-VERNiER 8(9) and RUNGE-
LUTTA-4 implicit of the Rosenbrock type, respectively.

The latter subroutine is that developed by .ANNER,

(VisC and 50L are subroutines of ROw4A solving a linear alge-
braic systemj; FAS and FDAS render a non-~autoftoliieous sysctici

aulomatically autonomeous).

PLILOT: I'nis subroutine varies instantancously cthe integrat.on
sLep~size in dependence on:

- tite ration R=luvcal erroi/requircd precision,

- Lthe acceptance of the preceding step-sirzes{(tdl).
Furthermore, P1LUT is estimating contwnuously the total

ris ntuaber aticcls Lgu

twmber of 1anltegration stejs nceeded,

cliorce ol Lthe algor:tim to be uscad,




Users of OSIRIS must furnish the subroutines FCT and FCD.

FCT; FCT(T,Y,DY) defines the system of ODE to be solved,

where

DY(I):in(t)/dt:fi(t,Yl(t),...,YI(t)).

FCL: FCD(T,Y,dF) or DF(I1,J) denotes the Jacobian of the

system

'ari/ayj .

Users of O3IRlS must furthermore supply the following

input data:

- the initial values,

- the precision to which the solution functions -should be
computed{common relative error for all unknowns),

- the maximal number N of iterations permitted per integra-
tion step,

- the upper bound of the integration.
The initialisation of the step-size is automatically done.
For this purpose the eigenvalues ol the Jacobian matrix are

used.

I'he global error is estimated by ueans ol two integration

runs with difierent tolerance.
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5.0 APPLICATION :.

We consider the following system of differential equations

J K
<
RY, (t)/dt =/_j(Z by 8y (t)4ey Iy (E) (5.1)
where
bijk and c;; are constants, i=1,2,3,.+0,1 &

J=142,3,c00,J .

k=11213|--¢'K .

Sk(t) = pk(t).C.eat, where o and C are constants.

In the following we give a representative example of problems

which we have solved with the aid of OSIRIS,

Input data:

6
a=0'3.10 B

6

C=o,43.1o9 for t£10-6; C=o for t>lo . N
values of pk(t) v k=1,2,3,%:
K=} K=2 K=Z2 K=y

0.1000E 00 00,2000k 00 V.3000E 00 0,4000E 0O
0.40u0E 00 0,30v0E 00 0,2000£ 06 0,1000E 0O

-2
They have to be interpolated (in log(t)) between t=1lo °
'
(values in first line) and t=1o'6 (values in 2-nd line).

Initial values Yi(t=to), i=1l,2y340e8413
1L v
9 L.t 2v

\l'(] ) 0 elnce.
13 J,k20




Values of cij' 133214243, 004,13

Values of bijk’

-c-oc-cc-o&a:ocmccwquuuwoooooccaaaammmmv—-»—

NONOTNWE=O &N W

CSONTEN- LT LENDODNS

—— b -
CE~NTN=C O~

—— ——
Ne N -

J BC(IL,J,1) 8(l,J,2) B8(1,J,3) BCl,J,4)
0. E 00 O, E V0 0.5960E~01 0,.1940E 00
6.2230E 01 0,57 £ 00 0,9 E-01 0.,2450E-02
0. E 00 O, £ 00 0, E 00 0,479 E 00
0. £ 00 O, E 00 0. £ 00 0,071 £ 00
0. £ 00 v, € 00 0,133 E €0 0.35 E 00
4,3000L 00 0,1610E 00 0.,042%E 00 0,24 E=02
0. E 00 O, £ 00 0, £ 00 0.3970E 00
0. E 00 O, £ 00 0, E 00 0.259 E 0O
0.,1870E 00 0,038 E 00 0.33 E 00 0.117 E 00
1.4140€ 00 0.018 £ 00 0.,0041E 00 0,85 E=03
0.1290E 00 0,017 E 0O 0,0040E 00 1.5 E=~C4
0.7780c 00 0,101 E 00 0,024 £ 00 0.0011€ 0O
0. E 00 O, E 00 0, £ 00 0.283 E 00
0, £ 00 0, E 00 0. E 00 0,751 E 00
0. E vo O, E v0 0,215 E 00 0.048 £ 00
0. £ 00 O, E 00 0.153 E 00 0.0266E 00
0. E 00 O, E 00 0,21 E 00 0.0023F GO
0. E 00 v, E 00 90, E 00 0,517 £ 00
0. E 00 O, E 00 0. E 00 0,663 E 00
0.5000E 00 0,197 E 00 0.5 £ 00 0.187 £ 00
0. £ V0 0, £ 00 0,0453E 00 0,102 € 00
1.0820 00 0,177 £ 00 0.0183E 00 0.,0008E 00

0 0,3830£ 00 0,063 E 00 0,0065E 00 0,0012E 00
0. £ vo 0, E 00 0. E 00 0,105 E 00
0. £ 00-0, £ 00 O, € 00 0,553 E 00
1.7700€ 00 0,245 £ 00 0.238 £ 00 0.1S1-E 00
2.6000L=08 1,4 E-07 1.2 E-03 (.48 E=02
0.,2800E OV 0,005 E 00 0,001 E£E QU 0.0UN1E 00
1.2200€ 00 0,163 E 00 0.019 £ 00 0.0019€ 00
0. E 00 O, E 00 O, E 00 0,564 E 00
0. £ 00 0, £ 00 o, £ 00 0,14 E 00
0. £E 00 o, E 00 O. £ 00 ¢,132 € 00
0. E 00 0O, € 00 0.0907t 00 0,482 € 00
1.2800L 90 0,1315£ 00 0,0047E 00 (,38 E-03
0,0010€ UV 1,06 E=u4 2,3 E~04 7.7 £-04
0. £ ovo 0, € vo 0, £ 0V 0,945 E 00
U £ vy v, £ 00 O, E 40 0,093 £ 00
0. £ Ou 0, E 00 0. £ 00 .41 E 00
1.7590c 00 0,2 E 00 0,171 & 00 0,178 £ 00
U O65uF vt 00,0043 v 00,0011 00 v, 0005E 09
Da2000L V0 V,013 £ GO 00,0034 00 0,0010E OO0
(UM £ oua a, & g o, t OV v.Hl E Vv
[} 2% [T I £ 00 0, ooy J,931 & U0
[UN L vy v, £ uft 9,009 £ Q0 y 010 £ VO
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1

4

7

4

10 13

5 1 1:4
4 2 7.

4 6 1.

8 7 7.

12 11 7,

i.j:l,a,},--o|13'3k=1'213l4:

J C(1.,Jd)

13 1,4811E V6
13 2.3105¢ 07
13 4.9511F 05
4,3322€ 97

£ 048
E 04
£ 03
£ Oe



- 51 -

—
—~—

(R0 f0f (e 1t

FUNCTIONSG Y7 i

i

llJ_U LLLIIUJH Lt

111 lll\HLHl 11}

T BTN TTTT T T T T T T O P e T T o T T TS

18~8 -8 -7 -

—

£§-5-4-3-2-1 @

1

2 3 4 5

oy LIL LU LOU 00 GO0 LI 108 D0 00 100 000 O 00 10 00 U0 08 L]

L

T T 7T T T 15 T T T 17

T T T T T T T T T T T 1

REAL ETGENVHLUES

IMAGINARY £1

777

LI AU O BB BL REL B

ES

1
i
1

LIRLAL
+

=IHIIR I

145

13 F

12 E

1t F

= 18 F
= g E
E 8F_
- ’E

I = 6
|3 5 F
N 4 F
3 3F
= EEI

: = IE
e =
—3  -1E |
o3 -2 F
-

11 4

-11-18-8 -8 -7

-6 -5 211-18-8 -8 -7 -6

Explanation of the figures (next page).

10 UH e gy b e Il|§ll I[NNI

{
4]




- 52 -

- the numbers on the scale are exponents, for example,

~11 means 10-11,

- the eigenvalues of the Jacobian matrix remain constant

in the interval t=1o-b to 106.

The calculations for this particular example have been carried
out on a MITRA-125. Cowmputing time: 216 minmtes, This corresponds

to about 1 minute on a CLUC=7boo.
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ANNEX 1: An Algorithm to solve Systems of non~linear, coupled

urdinary Differential Equations,

We consider the system (1,2) which we repeat here for the

sake of convenience

S I r
= isj (A.1
dy, (t)/dt -E g;,(t) HYJ (t) , )
s=1 J=1
where i=1,2,3,.2431 ¢ r  are integers.

isj

The formal Solution of (A.1) can be written

ol (t )n 1 k
_ -t j H j .
Y (t) = E o (ai'H'Ke W Hy" , (A.2)
nl Jj=1

n=o H,K
where hq11 hq12"'hq18
K=k1k2k3"'k1 sy H = hq21 hq22'°'hq25 (A.3)
hor1 Pqree-Pq1s

with q=0,1,2,3,...,n=-1 for a term of order n.

If the g, are constants,then gq=o for terms of any order.

n-1 I S h .
H qis

(G )n = ' ‘ r]- I-I 8ig here q symbolizes the (A.k4)

g=0 i=1 s=1

h_ . =7 3
. . 3is”_ d 7
number of derivations of - for example,gis = (;:i Sis)
and .= Y,(t:t )-
Y J o (Ae3)

Evidently, for the computation of the solution

functions Yi one has first to know the coefficients



ai,H K By means of mathematical induction one can
L

show that the following recurrence relation is valid

I S
(a, ) = ({k,+1-r. .)a.
i,H,K'n+1 i isi 1,k1+D1-ri51,k2+D2-ri52,
i=1 s=1
'k3+D3-ri53’""kI+DI—risI;Hois)+
n I S (n.0)
+ E E E (hq-l,is+1)ai,H is'K)n
g=1 i=1 s=1 1
with the initial values
(a;,1,k’0 = (®i,0,k, =1,=0 else) = 11 for example,
i (A.7)
(25 0,010...00 =1 °
Di=j:ﬁi-p)dp=1 if i=p and equal to zero else.
H . =H-1 . ,
ois ois
(A8)

HQ+1.iS=H+1qis-1q+1,is ) Wwhere, for example,

H _ .
023 means the element h023 becomes h023 1, and H remains

unchanged else.

The recurrence relation (A.(G) has the folilowing

essential features:

-~ The coefficients of series terms of order n+l can

be calculated from coefficients of series terms of

order n.
Thereby, the labels H and K of (ai,H,K)n+1 are automati-

B

cally determined too.

It permits calculation of the solution functions



to any order of approximation and thusito any accuracy desired.

-~ The coefficients 2 H.K have only to be computed
L L]

once for a given system (A.1). They are neither dependent

on the initial values nor on the 8ig° They can , therefore, .
be stored on a permanent file. As the labels H,K are .
known automatically with the coefficients, the quantity

GH in (A.2) is also known and can equally be stored on a

permanent file, if the g;, Aare constants. In this latter

case the whole integration process is simply reduced
to the formation of the initial value dependent part
k.

ij in (A.2) and the summation of the power series.

This renders the present method economical.

- If the 8;, are constants, then only terms with Hoia'

i.e. only the first two lines of (A.6) remain active.

In this case (A.6) is substantially simpler.

- Finally, the recurrence relation (A.b) generates

curiously in certain cases, i.e. for certain systems (i.1),
number sequences which are known from other mathe-
matical disciplines, for example, from combinato-

rial theory /s5C76/, /DU79/, /5Ci3/«

To illustrate this algorithm we apply it to solve EULER's

equations of motion in a torce-~free field., They read

dy, (t)/at = b Y Yo

dY,(t)/dt = byY, ¥, ,
(A.1.1)

b.Y,Y, , where bl'bz’b3 are constants.

dr3(t)/dt 3¥9Y5

Cowparin: (A.l.1) with (A.1) one obLtains



biagii, b2=321, b3=331, and

=1, and r;  .=0 else.

F1127F113%0y Faq17Fa13=1 Ty orgy, isj

Eq.(2) becomes thus

k, k, k
} (t-t » (" 1.2 (A.2.1)

n=o0
where
= (A.3.1)
H_h11h21h31, K_klkzk3 s and
(cfy = b 11,21, 31 (A %.1)
n - 1 2 3
(A.6) becomes
(a; H,K'ne1 = ‘(k1"1)"‘i,uou,k1+1,k2-1.k3-1+
(A.6.1)
k,+1).a, +(k_ +1).a, .
(kp+1) a1,H°21,k1-1,k2+1,k3—1 3 iy H gy ky=1,kp=1,k.
with the initia)l values
= = =1 i
(a4, H=0,100°=(®2,H=0, 010’ (a3 4=0,001’ » and with
-1 H =h h -1,
Hoyq=hy=1ihgyhgys Hopy=hyyBag=TiRggs Hozg 21P31
(Aac.l)

We can make the following concluding remarks:

- By means of the here presented method the solution

functions of a system of type (A.1) can be computed

directly, which is to say, without being obliged to

pass by the intermediate step of determining schemata,

up to any approximation desired.

- The new method is economical. This is due to the fact

that the computation is split-up into three parts:

- lhe determination of the coellicients ST which
L]

are independent of the 1nitial values, i.e. they

are constant for a given systom (Aol e
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- The calculation of the quantity GH which is also
variable independent, if the g;, are constants.

= The formation of the initial value dependent part
consisting of the yj’

A substantial part of the computation has thus only

to be done once for a given system (A.1), more pre-~

cisely, the coefficients aH,K and the quantity GH

can be stored on a permanent file, if the §, o are

variablz independent,

Consequently, the integration is essentially reduced

to the summation of the terms of the power series.

This results, of course, in a considerable gain of

execution time.

- The application of the newly developed algorithm does

not involve the solution of algebraic equations at

eath integration step as this is, for example, the

case when applying implicit methods.

According to our experience the here presented

method seems to be particularly efficient for solving

non-linear systems of type (A.l) with 8is constant.

-~ The method which has been developed in this ANNEX 1
should be regas+ded as being complementary to RUNGE-

KUTTA and multistep methods.

Finally, we summarize for convenience in TABLE A.l some

characteristics of the numerical methods discussed in

this work.



TABLE A.1:

Method

RUNGE-KUTTA

Multistep

This work

A-6

Order of approximation
for which coefficients
are available

explicit implicit

up to lo up to 6.

ADAM~BASHFORTH-MOULTON
up to 12,

GEAR's method

up to 5,

unlimited

(recurrence relation

for coefficients),

Characteyistics of numerical methods,

Comment

Schemata prior to compu-
tation have to be estab-
lished for each order.

Algebraic equations have
to be solved, when applying

implicit methods.

No schemata prior to its
usage needed.
No algebraic equations to

be solved.
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