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Chapter 1

Introduction

The groups SU(6), SU(3) and O(6) have successfully been applied in nuclear theory
by A.ARIMA, F.IACHELLO and O.SCHOLTEN [AR76), [AR78], [AR78a], [SCT8].

Weight diagrams of the Lie algebra A, permit an elegant classification of nuclear
rotational states [SC81]. The basic concept of such a classification is the assignment
of nuclear rotational states to weights.

In the present work we apply in a systematic way such weight diagrams to classify
nuclear rotational states.

The main objectives of such a classification are:

An esthetical representation of nuclear rotational states in form of geometrical
patterns.

To enlarge the level energy formula given in [AR78] by terms depending on the
quantum numbers M and X which directly result from the representation of
nuclear rotational states by means of weight diagrams of the Lie algebra A,.
This generates additional fine structures of nuclear rotational states which in
turn offers the possibility of experimentally checking the validity of the applied
model.

A systematic and complete computation of rotational state energy levels using
this more general formula and comparison of the computed values with the
available experimental values and the values obtained by the help of the more
restrictive formula given in [AR78].

To study the influence of the levels generated by the quantum numbers M and
X on the statistical values related to nuclear levels.

The main results of this study are:

The great manifold of nuclear rotational states can be classified by a quite
reasonable number of distinct weight diagrams.

There are only three different categories of shapes of possible weight diagrams.

The weights and their multiplicities of these diagrams can easily be determi-
nated by some simple laws.

o
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o One obtains a lot of additional rotational states due to the quantum numbers
M, X which specify these states in the here proposed A,();, X;) representation.



Chapter 2

Basic notions

2.1 The interacting boson model

The interacting boson model of collective nuclear states is based on the following
assumptions: ‘

o Two equal nucleons (protons, neutrons) pair together and appear as bosons.

o These bosons may occupy two levels, a ground-state level with angular momen-
tum L = 0 (s-state) and an excited state level with angular momentum L = 2
(d-state).

e The five components (-2, -1, 0, 1, 2) of the d-state and the component of the
s-state span a linear vector space which provides a basis for the representation

of the group SU(6).

e The closed shell is considered as a vacuum state; only nucleons outside the
closed shell are taken into account. As closed-shell in nuclei is currently con-
sidered a configuration which is built-up by a number of protons or a number
of neutrons taking the values : 2, 8, 20, 50, 82 and 126.

One finds that the subgroups SU(5), SU(3) and O(6) of SU(6) describe three
limiting cases of this model [AR76], [AR78], [AR78a]. The group SU(5) describes
vibrationallike nuclei [AR78]. These are usually nuclei at the beginning of major
shells. The group SU(3) describes rotationallike nuclei [AR78]. These are nuclei in
the middle of major shells. Finally, the group O(6) describes nuclei towards the end
of major shells [ART7S].

For these three limiting cases analytical expressions can be derived for energy
levels and transition probabilities. Also the intermediate cases can relatively easily
be described by this model [AR78].

The results obtained by this description are in astonishing good agreement with
the available experimental values.

We summarize these group-theoretical tools to describe collective nuclear states
in Table 2.1.
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Table 2.1: Groups and Lie algebras to describe collective nuclear states.

Type of nuclei Group | Lie-algebra
rotationallike SU(3) A,
vibrationallike SU(5) Ay

nuclei towards the end
of major closed shells 0(6) D; = A;

2.2 Rotationallike nuclei

The bosonlike pairs ZN of neutrons and protons outside the next closed shell of a
nucleus is in the frame work of the model which we consider a central number. In
fact, it characterizes a nucleus. This can be seen in the following example.

Example 2.1 We determine ZN for Gd-156. This nucleus is built up of 64 protons
and 92 neutrons. The next closed shell (magic numbers) has 50 protons and 82
neutrons. There are, therefore, 14 protons and 10 neutrons outside this closed shell.
That yields 7 proton- and 5 neutron-pairs. Thus, ZN = 7 + 5 = 12. In other words,
ZN = 12 characterizes in our case Gd-156.

Note that the ZN-value is not sufficient to identify a nucleus in an unique way.
Different nuclei can yield the same ZN-value (see Table 3.1). However, it uniquely de-
fines the representation As(A;, A2, A3, Ag, As) in SU(6), because the model considered
assumes the fundamental relation

-

As(A1, A2, A3, A, A5) = As5(ZN,0,0,0,0) (2.1)

which connects the physical quantity ZN with the Lie algebra As.

In the present work we investigate only rotationallike nuclei. For doing that
we need according to Table 2.1 the Lie algebra A,. We have, therefore, to express
As(21,0,0,0,0) by means of representations A3(\;, Ay). This is a well-known formula
[AR78].

As(21,0,0,0,0) = Ay(2X1,0) ® A2(2X —4,2) & Ay(2) — 8,4) @ (2.2)
A2\ —12,6) @ - @ (gfg’lAl)l) ii o

Ax(2X; —6,0) & Ax(2); —10,2) & Ax(2) — 14,4) &

Az(2) [ (0,A\; —3) X\ —3 even ]
| (2,0 —4) A =3 odd |
A2(2X1 —12,0) & A2(22 — 16,2) @ A(2) — 20,4) 4

-(0,)\1—6) M —6 even |
| (2, M1 =T7) A1 —6 odd |

1 —18,6)& - @ P

& & & D D

A2(20 —24,6) @ - D @
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® A(2M — 18,0) @ Ap(2), — 22,2) & Ay(2); — 26,4) @
(O, /\1 - 9) /\1 —9 even

& A2(2M-30,6)8--S ) 5\ _10) A —9 odd

Formulae (2.1) and (2.2) permit finding of all representations Aj(A1, A;) corre-
sponding to a given ZN-value. In other words, they yield all SU(3) representations
describing a given rotationallike nucleus.

2.3 Weight diagram of the Lie-algebra A,

A representation Aj()\;, A;) is equivalent with a geometrical. representation, a so-
called weight diagram. Such a diagram is constructed by a series of vectors in a
two-dimensional space. The number of vectors or weights W of Az(A;, A2) is given

by the relation [JA62, p.255],

WA A2) = (A1 + 1)z + D + X +2)/2. (2.3)

Using this formula and formula (2.2) one can calculate the number of weights of
the representation As(\;,0,0,0,0).

Quite generally, the number of weights W of As(A1, A2, A3, A4, As) is given by the
relation [JA62, p.225],

W (A1, A2, A3, A0, As) = (Mg + DA 4+ 2)(As + 3)(Ag + 4) (X5 + 5) (2.4)
A+ +2) Qe+ A +2)(Aa + A+ 2)(Aa + X5 +2)(A + A2 + A3+ 3)
A2+ A3+ A +3)As+ A+ A+ 3) A1+ Ao+ As+ Xy +4)

Ao+ Az + A+ A5 + (A + Ao+ Az + Ay + A + 5)/34560.

With (2.2) it immediately follows the identity
W(A1,0,0,0,0) = 3" W (A1, A2)i = W(ZN,0,0,0,0) (2.5)

where i runs over all Ay(\;, A2) resulting from (2.2).

We assign to a weight of A;()\;,);) a nuclear rotational state. From this
basic concept directly follows:

o The total number of rotational states of a nucleus is given by (2.5).
e The number of rotational states represented by A,(Aq, A;) is given by (2.3).

e The different weight diagrams A,(A;, Ay) representing the total number of ro-
tational states of a nucleus are given by (2.2).
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2.4 The construction of weight diagrams A;(A;, A2)

We quote here some essential theorems which are needed to calculate the weights of

A2()‘17 /\2)

Theorem 2.1 If o; is a simple root (vector) of the algebra Az and if A is a weight,
then the following equation is valid:

2A, @) = N, (2.6)

where i = 1, 2; Ay, Ay are defined by Az(hi, he). A is called a maximal weight.
Proof in [JA62, p.113].

Theorem 2.2 If A is a mazimal weight then any other weight m has the form

m=A-)Y_ kai, (2.7)

where a; are simple roots and k; are non-negative integers. Proof in [JA62, p.213].

Definition 2.1 If oy, ay are simple roots of the algebra A,

Aij = 2(0‘2',0_7') (28)
is called a CARTAN matriz,
2 -1
Aij(Az) = \ ~1 2 (2.9)

Theorem 2.3 If a; are simple roots then
(ai,a]-) = |Of,'”0’]']COS 0,-j = COSs 00‘. (210)

log| =1, ¢ =1,2. Proof in [JA62, p.128].

Firstly, we calculate the simple roots a;, a;. From (2.10) and (2.8) it follows
1
(g, 09) = ~3= cos i, = B3 = 120 deg,

i.e., the angle 6;, between the two root vectors a; and a5 is 120 degrees. As the
length of the roots is equal to one (see (2.10)), we obtain the coordinates of a; and

Q9!
1 3
01=(170)102= _—57%)7 (211)
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(-1233/2)

%)

\120° (1.0)

Figure 2.1: Two simple roots.

supposing that the orthogonal coordinate system of the two-dimensional root space
is chosen in such a way that one axis coincides with the direction of o;. These two
simple roots are represented in Figure 2.1.

Next, we calculate the maximal weight A. Using (2.6) we obtain

2(/\1,/\2)(&1170112) = M
2(A1, A2) (g, a22) = Ag. (2.12)

Inserting (2.11) yields

2(/\1,/\2)(1 0) = N

13
201, A)(—5,) =
and thus
A] = —)‘—1

-Ar 4+ \/5/\2 = A
A
Ay = (A2 + ?1)/\/§

For the two fundamental representations A,(1,0) and A3(0,1) we obtain, therefore,
the maximal weights

1 1
AL, A) =(z,—= 2.13
(A1,89) = (5. 575) (213)
and .
A, A2) = (0,—=). 2.14
respectively.

The representation A,(1,0) has according to (2.3) three weights. By means of
(2.7) we obtain
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Figure 2.2: Weight diagram A,(1,0).
1, 2 and 3 denote elementary pathes.

and

m3.=my; —a; = (~,

S —
———~
|
o —
|
o
I
—
FD
Y
g

1
2°9/3

The fundamental weight diagram A,(1,0) has, therefore, the three weights

0)
1 1 1 1 1
my = (?3‘\/—?—,) =A,my= (- > \/—),77'13 (0, —%

They are represented in Figure 2.2 in the form m; = (M, X).
Analogously, one obtains the three weights of the fundamental representation
Ay(0,1). They read

)

1 1 1 1 1
5 3 =5 3 = 07 :
Cr e =Gk =0 )
The corresponding weight diagram is represented in Figure 2.3.

Note that the weight diagram A;(0,1) is generated by reflecting the weight dia-
gram A3(1,0) on the M- and X-axis.

m; =

For the construction of weight diagrams A,(A;, A;) of higher order (higher A, As)
one can apply a geometrical prescription or an analytical procedure.

2.4.1 Construction of weight diagrams A5(\;, Ay) using a ge-
ometrical prescription
Prescription 2.1 Centre the triangle A3(1,0), Figure 2.2, over each vertex of the

triangle Ay(1,0) and add the weights. Do this \;-times. Do the same with A2(0,1)
Ag-times.
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Figure 2.3: Weight diagram A(0,1).
1, 2 and 3 denote elementary pathes.

This prescription follows from a theorem which is given in [JA62, p.259].
We will illustrate the application of Prescription 2.1 in the two following examples.

- Example 2.2 Construction of the weight diagram A,(2,0) using Prescription 2.1.

Solid arrow heads indicate weights of the Ay(1,0) diagram, open arrow heads
indicate weights of the A;(2,0) diagram. W(2,0) = 6, i.e., there are 6 weights, see
(2.3).
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Example 2.3 Construction of the weight diagram Ay(1,1) using Prescription 2.1.

Solid arrow heads indicate weights of the Ay(1,0) diagram, open arrow heads
indicate weights of the A3(1,1) diagram. W(1,1) = 8, i.e., there are 8 weights (6 on
the outer ring and 2 at the centre), see (2.3).

The construction of still higher weight diagrams is thus straightforward. The
determination of the multiplicity of weights, however, becomes for higher weight
diagrams increasingly difficult. This problem is solved in the following section.

2.4.2 Determination of the multiplicity of the weights

The analytical procedure described below is designed to calculate the M and X co-
ordinates of each weight together with its multiplicity for a given weight diagram
AQ(AI, /\2)

The coordinates are easily deduced recursively from the geometrical procedure
given in Section 2.4.1 starting from the weight diagram A45(0,0).

To determine the multiplicity of the weights we make use of the pathes followed
to reach the weights. A path is a sequence of A\; + A, elementary pathes which
summarizes the geometrical path followed to reach a weight from (0,0).

At each superposition of the diagram A;(1,0) or A3(0,1) one elementary path is
added to the total path according to the notation given in Figures 2.2 and 2.3.

Using this concept it appears that one weight may be reached following different
geometrical paths. These equivalent paths are divided into classes.. Those with
the same number of elementary paths 3 or 3 of the representations A,(1,0) and
A2(0,1), respectively, belong to the same class. The number of different classes is the
multiplicity of the weight.

Example 2.4 The paths 232, 131 and 333 yield the same weight. The paths 232 and
131 belong to the same class. The path 333 is a different class. The multiplicity of
the weight is, therefore, equal to 2.
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Only one path per class is conserved before performing the next superposition.
The procedure is illustrated in the following examples where we construct the weight
diagrams A,(1,0), A5(0,1), A5(2,0) and A,(2,1) starting from the weight diagram
A5(0,0).

Example 2.5 Construction of the weight diagram Ay(1,0) from the weight diagram
A2(0,0).

43(0,0) A5(1,0)

M| X M | X [ Path | Mult.

0 0 1 1 1
111 2 1
0|-2 3 1

Example 2.6 Construction of the weight diagram A5(0,1) from the weight diagram
A5(0,0).

A2(0,0) A2(0,1)

M| X | M| X | Path | Mult.

0{ 0 1] 2 1
101 1 1
01{2 3 1

Example 2.7 Construction of the weight diagram A,(2,0) from the weight diagram
A,(1,0).

A5(1,0) A3(2,0) A,(2,0)
M| X | Path || M| X | Path || M | X | Path | Mult.
191 1 2| 2 11 -2 2 22 1
02| 12 ||-1]-1]2332] 1
1]-1 13 0}-4 33 1
1)1 2 0] 2 21 01! 2 21 1
202 22 11-1713,31 1
-1]-1 23 21 2 11 1
0]-2 3 1 {-1 31
-11-1 32
0|-4| 33
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Example 2.8 Construction of the weight diagram A,(2,1) from the weight diagram
A2(2a0)

A3(2,0) A3(2,1) A2(2,1)
Mi{X|Path|[ M| X |Path | M| X Path Mult.
212 22 [ -1]1]22 (31 221 1
31| 221 || -2|-2 231 1
214|223 || -2 4 223 1
-1p1) 23 | 0]-2] 232 -1]|-5 331 1
22| 23T || -1 1 | (222, 211), (233) 2
-1 1] 233 || 0 -2 (232, 131), (333) 2
0|-4| 33 1(-5]332 |04 213 1
10-51 3T || 11}-5 332 1
0 {-2| 333 | 1|1 |(212,1171), (133) 2
02| 21 11| 212 || 21-2 132 1
11211 | 2 4 113 1
0 |4] 213311 112 1
1|-1] 13 || 2]|-2| 132
0 |-2| 131
11 133
212 11 3 11| 112
1 (1] 1i
2 14| 113

Further details on the theory of weights of Lie algebras are for example given in
[JA62], [HUT2], [BO68]. Computer codes to calculate weight vectors are published
in [AG69] and [BET2].
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Inventory of rotationallike nuclei

Prior to the classification of levels of rotationallike nuclei by means of weight diagrams
Az(Aq, Ag) it is instructive to make an inventory of the nuclei concerned. In the
Tables 3.1 and 3.2 we give these nuclei together with the characteristics which are of
interest for our work.

As the number ZN is within the framework of the interacting boson model of
central interest, we give in Table 3.3 the rotationallike nuclei sorted according to
increasing ZN-values.

The frequencies of the occurence of the ZN-values is another interesting informa-
tion. They are given in Table 3.4.

From these tables we can conclude

e ZN < 30,i.e., the number of rotational levels is limited (see (2.5)). That means
that the number of weight diagrams A,(A;, Ag) is limited (see (2.2)).

e Many nuclei have relatively few rotational levels.

e Many nuclei have according to this model the same number of rotational lev-
els and an identical classification scheme, as the ZN-value is for many nuclei
identical.

In other words, from the point of view of the classification, nuclei with identical
ZN-value cannot be distinguished. That does, however, not mean that the rotational
levels are the same, as we will see in Section 4.2.

14
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the next closed shell (magic number: 50)

N,

m

Table 3.1: Rotationallike nuclei (sorted according to increasing 7).
Z = number of protons, N = number of neutrons, Z,, = number of protons of
= number of neutrons of the next
closed shell (magic number: 82), Z, = (Z — Z,,)/2 = number of proton pairs, N, =

(N — N,,)/2 = number of neutron pairs, ZN = (Z — Z,,)/2+ (N — N,,)/2.

Z N 2, N, Z N 7, ZN 7 N 7, 7N
Nd 60 8 5 3 8|Yb 70 90 10 14 74 90 12 16
Nd 60 90 5 4 9[Yb 70 92 10 15 492 12 17
Nd 60 92 5 5 10(Yb 70 94 10 16 4 94 12 18
Yb 70 96 10 17 74 96 12 19
Sm 62 9 6 4 10|Yb 70 98 10 18 T4 98 12 20
Sm 62 92 6 5 11|Yb 70 100 10 19 74100 12 21
Sm 62 94 6 6 12|Yb 70 102 10 20 74102 12 22
Yb 70 104 10 21 74 104 12 23
Gd 64 90 7 4 11|Yb 70 106 10 22 74 106 12 24
Gd 64 92 7 5 12|Yb 70 108 10 23 74 108 12 25
Gd 64 94 T 6 13 74 110 12 26
Gd 64 96 7 7 14|Hf 72 90 11 15 74 112 12 27
Gd 64 98 7 8 15|Hf 712 92 11 16
Hf 72 94 11 17 76 94 13 19
Dy 66 90 8 4 12|Hf 72 96 11 18 76 96 13 20
Dy 66 92 8 5 13|Hf 72 98 11 19 76 98 13 21
Dy 66 94 8 6 14|Hf 72 100 11 20 76 100 13 22
Dy 66 96 8 7 15|Hf 72 102 11 21 76 102 13 23
Dy 66 98 8 8 16|Hf 72 104 11 22 76 104 13 24
Dy 66 100 8 9 17 |Hf 72 106 11 23 76 106 13 25
Hf 72 108 11 24 76 108 13 26
Er 68 90 9 4 I3|Hf 72 110 11 25 76 110 13 27
Er 68 92 9 5 14 |Hf 72 112 11 26 76 112 13 28
Er 68 94 9 6 15
Er 68 96 9 T 16 78 96 14 21
Er 68 98 9 8 17 78 98 14 22
Er 68 100 9 9 18 78 100 © 14 23
Er 68 102 9 10 19 78 102 14 24
Er 68 104 9 11 20 78 104 14 25
78 106 14 26
78 108 14 27
78 110 14 28
78 112 14 29
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Table 3.2: Rotationallike nuclei (sorted according to increasing 7).
Z = number of protons, N = number of neutrons, Z,, = number of protons of
the next closed shell (magic number: 8‘2), N,, = number of neutrons of the next
closed shell (magic number: 126), Z, = (Z — Z,,)/2 = number of proton pairs,

N, = (N — N,,)/2 = number of neutron pairs, ZN = (Z — Z,)/2 + (N — N,,)/2.
Z N Z, N, ZN Z N Z, N, ZN Z N Z, N, ZN
Po 84 130 1 2 3|0 92 134 5 4 9| Cm 96 142 7 8 15
Po 84 132 1 3 4|0 92 136 5 5 10| Cm 96 144 7 9 16
Po 84 134 1 4 51U 92 138 5 6 11 | Cm 96 146 7 10 17
U 92 140 ) 7 12| Cm 96 148 7T 11 18
Rn 86 130 2 2 4|0 92 142 5 8 13| Cm 96 150 7 12 19
Rn 86 132 2 3 5|10 92 144 5 9 14| Cm 96 152 7 13 20
Rn 86 134 2 4 6{U 92 146 5 10 15| Cm 96 154 7T 14 21
Rn 86 136 2 5 71U 92 148 5 11 16
Rn 86 138 2 6 8 Cf 98 142 8 8 16
Rn 86 140 2 7 9| Pu 94 138 6 6 12 | Cf 98 144 8 9 17
Pu 94 140 6 7 13 | Cf 98 146 8 10 18
Ra 88 130 3 2 5| Pu 94 142 6 8 14| Cf 98 148 § 11 19
Ra 88 132 3 3 6| Pu 94 14 6 9 15| Cf 98 150 8 12 20
Ra 88 134 3 4 7| Pu 94 146 6 10 16 | Cf 98 152 8 13 21
Ra 88 136 3 5 8| Pu 94 148 6 11 17| Cf 98 154 8§ 14 22
Ra 88 138 3 6 9| Pu 94 150 6 12 18 | Cf 98 156 8 15 23
Ra 88 140 3 7 10} Pu 94 152 6 13 19
Ra 88 142 3 8 11 Fm 100 144 9 9 18
Fm 100 146 9 10 19
Th 90 130 4 2 6 Fm 100 148 9 1 20
Th 90 132 4 3 7 Fm 100 150 9 12 21
Th 90 134 4 4 8 Fm 100 152 9 13 22
Th 90 136 4 5 9 Fm 100 154 9 1 23
Th 90 138 4 6 10 Fm 100 156 9 15 24
Th 90 140 4 7 11
Th 90 142 4 8 12
Th 90 144 4 9 13
Th 90 146 4 10 14
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Table 3.3: Rotationallike nuclei (sorted according to increasing ZN-values).

7

ZN Z N]|ZN Z N]J|ZN N
3 Po 84 130| 14 Th 90 146 | 20 Hf-. .72 100
4 Po 8 132 | 14 U 92 144 | 20 W = 74 98
4 Rn 8 130| 14 Pu 94 142| 20 Os 76 96
5 Po 84 134| 15 Gd 64 98| 20 Cm 96 152
5 Rn 8 132 | 15 Dy 64 96| 20 Cf 98 150
5 Ra 88 130| 15 Er 64 94| 20 Fm 100 148
6 Rn 8 134| 15 Yb 74 92| 21 Yb 70 104
6 Ra 88 132| 15 Hf 74 90| 21 Hf 72 102
6 Th 90 130] 15 U 92 146 21 W 74 100
7 Rn 86 136 | 15 Pu 94 144 21 Os 76 98
7 Ra 8 134| 15 Cm 96 142| 21 Pt 78 96
7 Th 90 132| 16 Dy 66 98| 21 Cm 96 154
8 Nd 60 88| 16 Er 68 96| 21 Cf 98 152
8 Rn 8 138| 16 Yb 70 94| 21 Fm 96 150
8 Ra 88 136 | 16 Hf 72 92| 22 Yb 70 106
8 Th 90 134| 16 W 74 90| 22 Hf 72 104
9 Nd 60 90| 16 U 92 148 | 22 W 74 102
9 Rn 86 140 | 16 Pu 94 146 | 22 Os 76 100
9 Ra 88 138| 16 Cm 96 144 | 22 Pt 78 98
9 Th 90 136 | 16 Cf 98 142 22 Cf 98 154
9 U 92 134| 17 Dy 66 100| 22 Fm 100 152
10 Nd 60 92| 17 Er 68 98| 23 Yb 70 108
10 Sm 62 90| 17 Yb 70 96| 23 Hf 72 106
10 Ra 88 140| 17 Hf 72 94| 23 W 74 104
10 Th 90 138 | 17 W 74 92| 23 Os 76 102
10 U 92 136| 17 Pu 94 148 | 23 Pt 78 100
11 Sm 62 92| 17 Cm 96 146| 23 Cf 98 156
11 Gd 64 90| 17 Cf 98 144 | 23 Fm 100 154
11 Ra 88 142| 18 Er 68 100| 24 Hf 72 108
11 Th 90 140 | 18 Yb 70 98| 24 W 74 106
11 U 92 138| 18 Hf 72 96| 24 Os 76 104
12 Sm 62 94| 18 W 74 94| 24 Pt 78 102
12 Gd 64 92| 18 Pu 94 150 | 24 Fm 100 156
12 Dy 66 90| 18 Cm 96 148 | 25 Hf 72 110
12 Th 90 142 18 Cf 98 146| 25 W 74 108
12 U 92 140| 18 Fm 100 144| 25 Os 76 106
12 Pu 94 138| 19 Er 68 102| 25 Pt 78 104
13 Gd 64 94| 19 Yb 70 100| 26 Hf 72 112
13 Dy 66 92| 19 Hf 72 98] 26 W 74 110
13 Er 68 90| 19 W 74 96| 26 Os 76 108
13 Th 90 144{ 19 Os 76 94| 26 Pt 78 106
13 U 92 142 19 Pu 94 152 27 W 74 112
13 Pu 94 140 19 Cm 96 150 | 27 Os 76 110
14 Gd 64 96| 19 Cf 98 148| 27 Pt 78 108
14 Dy 66 94| 19 Fm 100 146 | 28 Os 76 112
14 Er 68 92| 20 Er 68 104| 28 Pt 78 110
14 Yb 66 90| 20 Yb 70 102| 29 Pt 78 112

17



CHAPTER 3. INVENTORY OF ROTATIONALLIKE NUCLEI

Table 3.4: Frequency F of the occurence of a given ZN-value.

ZN | F(ZN) | ZN [F(ZN) | ZN [ F(ZN)
3 1 [12] 6 |21 8
4 2 |13 6 |22 71
5 3 |14 7 |23 71
6 3 |15] 8 |24 5
7 3 |16 9 |25| 4
8 4 17| 8 |26 4
9 5 |18 8 |21| 3
10 5 [19] 9 |28]| 2
11| 5 |[20] 8 |29] 1




Chapter 4

Classification of nuclear rotational
levels by means of weight
diagrams A45(A1,A9) of the Lie
algebra A,

4.1 Weight diagrams A(\, Ao)

A nucleus with a given ZN-value has according to (2.4) W(ZN,0,0,0,0) theoretical
rotational states (or weights). These states of a given nucleus are represented in a
series of weight diagrams A,(\1, A2);, where (A1, \2); is for a given ZN determined
by (2.2). A nuclear state corresponds to a weight. Taking into account the possible
ZN-values (see Tables 3.1 and 3.2) one would at a first glance believe that we have to
deal with a non-maniable number of different weight diagrams A(A;, Az). It turns,
however, out that this manifold can condiderably be reduced. There remain in fact
only a reasonable number of weight diagrams for the classification of the rotational
states of the nuclei which are tabulated in Tables 3.1 and 3.1.

That is becoming evident from Table 4.1, where we give (A1, A;); for all ZN-values
of rotational-like nuclei.

From Table 4.1 we immediately see that many of the (\;, Ay); appear there several
times. In Table 4.2 we give the frequency F of all possible (A1, A2); which are given
in Table 4.1.

Another result which directly follows from Table 4.1 is the following theorem.

Theorem 4.1 If ZNM denotes the upper limit of ZN then

As(ZNM,0,0,0,0) = > Ax(M, X2)i, (4.1)
As(ZNM —1,0,0,0,0) = > Az(Xg, A2);, and (4.2)
As(ZNM —2,0,0,0,0) =D Ay(M, A2)i, (4.3)

19
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comprise all possible Ay(Ay, Ay) resulting from

As(ZN,0,0,0,0) = 3" Az(A1, X2);, (4.4)

where ZN < ZNM and )\, X\ =0,2,4 --- even.

In other words, if we determine all A,(\;, \;) resulting from A5(29,0,0,0,0),
As5(28,0,0,0,0) and As(27,0,0,0,0) then we know all A;(A;,);) which are
needed for the representation of the rotational states of the nuclei given
in Tables 3.1 and 3.2.

In the following we present some representative drawings of the weight diagrams
A2(X, X2) appearing in Table 4.2. o

For its construction we can use the Prescription 2.1 (see Section 2.4.1) together -
with the analytical procedure described in Section 2.4.2.
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Table 4.1: (A, A2); corresponding to ZN-values given in Tables 3.1 and 3.2.

(1,0,0,0,0
(2,0,0,0,0

(4,0,0,0,0
(5,0,0,0,0

(7,0,0,0,0)

(8,0,0,0,0) =

(9,0,0,0,0)
(10,0,0,0,0)
(11,0,0,0,0)

(12,0,0,0,0)

(13,0,0,0,0)

(14,0,0,0,0)
(15,0,0,0,0)
(16,0,0,0,0)
(17,0,0,0,0)
(18,0,0,0,0)
(19,0,0,0,0)
(20,0,0,0,0)
(21,0,0,0,0)

(22,0,0,0,0)

)

)
(3,0,0,0,0) =

)

)

= (2,0)

(4,0) & (0,2)
(6,0) & (2,2) & (0,0)

= (8,00©(4,2)9(0,4) & (2,0)
= (10,0)%(6,2) 9 (2,4)  (4,0) & (0,2)
(6,0,0,0,0) =

(12,0) 8 (8,2) ® (4,4) & (0,6) & (6,0) & (2,2) B (0,0)

(14,0) & (10,2) & (6,4) H (2,6) B (8,0) ® (4,2) & (0,4) D (2,0)

(16,0) ® (12,2) & (8,4) & (4,6) @ (0,8) ©(10,0) & (6,2) & (2,4) &
(4,0) 3 (0,2)

(18,0) & (14,2) ® (10,4) & (6,6) & (2,8) ® (12,0) B (8,2) & (4,4) &
(0,6) & (6,0) @ (2,2) @ (0,0)

(20,0) & (16,2) & (12,4) @ (8,6) & (4,8) @ (0,10) & (14,0) & (10,2) B
(6,4) 9 (2,6)® (8,0) & (4,2) 9 (0,4) & (2,0)

(22,0) @ (18,2) @ (14,4) & (10,6) & (6,8) @ (2,10) & (16,0) & (12,2) &
(8,4) @ (4,6) @ (0,8)  (10,0) & (6,2) & (2,4) ® (4,0) & (0,2)

(24,0) ®(20,2) & (16,4) & (12,6) & (8,8) P (4,10) & (0,12) & (18,0) &
(14,2) & (10,4) @ (6,6) & (2,8) @ (12,0) B (8,2) & (4,4) & (0,6) & (6,0)
®(2,2)

(26,0) @ (22,2) & (18,4) & (14,6) & (10,8) & (6,10) ® (2,12) & (20,0)
®(16,2) ® (12,4) @ (8,6) @ (4,8) ® (0,10) & (14,0) & (10,2) &

(6,4) $(2,6)® (8,0) P (4,2) 9 (0,4) & (2,0)

(28,0) @ (24,2) @ (20,4) & (16,6) @ (12,8) & (8,10) B (4,12)  (0,14) &
(11,0,0,0,0)

(30,0) @ (26,2) @ (22,4) @ (18,6) & (14,8) 3 (10,10) & (6,12) & (2,14)
®(12,0,0,0,0)

(32,0) & (28,2) @ (24,4) & (20,6) ® (16,8) 3 (12,10) P (8,12) B (4, 14)
@(0,16) @ (13,0,0,0,0) ‘

(34,0) & (30,2) @ (26,4) ® (22,6) © (18,8) 3 (14,10) & (10,12) & (6, 14)
®(2,16) & (14,0,0,0,0)

(36,0) @ (32,2) & (28,4) ® (24,6) & (20,8) B (16,10) & (12,12) & (8,14)
®(4,16) & (0,18) & (15,0,0,0,0)

(38,0) & (34,2) @ (30,4) & (26,6) @ (22,8) & (18,10) & (14,12) &
(10,14) & (6,16) & (2,18) & (16,0,0,0,0)

(40,0) & (36,2) @ (32,4) & (28,6) B (24,8) & (20,10) ® (16,12) &
(12,14) & (8,16) & (4,18) & (0,20) § (17,0,0,0,0)

(42,0) & (38,2) ® (34,4) B (30,6) & (26,8) 3 (22,10) & (18,12) P
(14,14) ® (10,16) & (6, 18) & (2,20) & (18,0,0,0,0)

(44,0) & (40,2) & (36,4) & (32,6) & (28,8) P (24,10) 3 (20,12) &
(16,14) @ (12,16) & (8, 18) & (4,20) & (0,22) & (19,0,0,0,0)
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Table 4.1 (Continued).

(23,0,0,0,0) = (46,0)5 (42,2) ® (38,4) 3 (34,6) & (30,8) 4 (26,10) & (22,12) &
(18,14) & (14,16) & (10,18) & (6,20) & (2,22) ©(20,0,0,0,0)
(24,0,0,0,0) = (48,0)9 (44,2) G (40,4) F(36,6) @ (32,8) G (28,10) & (24,12) &

(20,14) @ (16,16) & (12,18) & (8,20) & (4,22) % (0,24) @ (21,0,0,0,0)

(25,0,0,0,0) = (50,0) & (46,2) & (42,4) & (38,6) & (34,8) & (30,10) & (26,12) &
(22,14) @ (18,16) @ (14, 18) & (10,20) & (6,22) b (2,24) & (22,0,0,0,0)

(26,0,0,0,0) = (52,0) (48,2) & (44,4) @ (40,6) & (36,8) & (32,10) & (28,12) &
(24,14) @ (20,16) @ (16,18) & (12,20) & (8,22) & (4,24) & (0,26)
(23,0,0,0,0)

(27,0,0,0,0) = (54,0)a (50,2) & (46,4) & (42,6) & (38,8) & (34,10) & (30,12) @
(26,14) @ (22,16) @ (18,18) & (14,20) B (10,22) & (6,24) @ (2,26) @
(24,0,0,0,0) |

(28,0,0,0,0) = (56,0)& (52,2) & (48,4) & (44,6) & (40,8) & (36,10) & (32,12) &
(28,14) & (24,16) & (20,18) @ (16,20) & (12,22) & (8,24) @ (4,26) &
(0,28) & (25,0,0,0,0)

(29,0,0,0,0) = (58,0)d (54,2) & (50,4) & (46,6) & (42,8) & (38,10) & (34,12) &
(30,14) & (26,16) @ (22,18) & (18,20) & (14,22) & (10,24) & (6,26) &
(2,28) % (26,0,0,0,0)
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Table 4.2: Frequency F of the occurence of a given (A, Az).

O.x2) F|(Onx) Fl(OnLA) FlOnx) Fl(A.r) F
(0,0) 9| (6,8 7] (14,0) 8| (22,8 4| (34,2) 4
(0,2) 10| (6,10) 6| (14,2) 71 (22,10) 3| (34,4) 3
(0,4) 9| (612) 5| (14,4) 7] (22.12) 3| (34,6) 3
(0,6) 8| (6,14) 5| (14,6) 6| (22,14) 2| (34,8) 2
(0,8) 8| (6,16) 4| (14,8) 5| (22,16) 1| (34,10) 1
(0,000 7| (6,18) 3| (14,0) 5| (22,18) 1] (3412) 1
(0,12) 6| (620) 3| (14,12) 4| (24,0) 6| (36,0) 4
(0,14) 6| (622) 2| (14,14) 3| (24,2) 6| (36,2) 4
(0,6) 5| (624) 1| (14,16) 3| (24,4) 5| (36,4) 3
(0,18) 4| (626) 1| (14,18) 2| (24,6) 4| (36,6) 2
(020) 4| (80) 9| (1420) 1| (24,8) 4| (36,8) 2
(0,22) 3| (8,2) 8| (1422) 1] (24,10) 3| (36,10) 1
(024) 2| (8,4) 8| (16,0) 8| (24,12) 2| (38,0) 4
(026) 2| (8,6) 7| (16,2) 7| (24,04) 2| (38,2) 3
(028) 1| (8,8) 6| (16,4) 6| (24,16) 1] (38,4) 3
(2,0) 10| (810) 6| (16,6) 6| (26,0) 6| (38,6) 2
(2,2) 9| (812) 5| (16,8) 51| (26,2) 5| (38,8) 1
(2,4) 9| (814) 4 (16.10) 4| (26,4) 5| (38,10) 1
(2,6) 8| (816) 4| (1612) 4| (26,6) 4| (40,0) 4
(2,8 7| (818) 3| (16,4) 3| (26,8) 3| (40,2) 3
(2,10) 7| (820) 2| (16,16) 2| (26,10) 3| (40,4) 2
(2,12) 6| (822) 2| (16,18) 2| (26,12) 2| (40,6) 2
(2,14) 5| (824) 1| (1620) 1| (26,14) 1| (40,8) 1
(2,16) 5| (10,0) 9| (18,0) 7| (26.16). 1| (42,0) 3
(2,18) 4| (10,2) 8| (18,2) 7| (28,0) 6| (42,2) 3
(2,20) 3| (10,4) 7| (18,4) 6| (28,2) 5| (42,4) 2
(222) 3| (10,6) 7| (18,6) 5| (28,4) 4| (42,6) 1
(224) 2| (10,8) 6| (18,8) 5| (28,6) 4| (42,8) 1
(2,26) 1] (10,10) 5| (18,00) 4| (28,8) 3| (44,0) 3
(228) 11| (10,12) 5| (18,12) 3| (28,10) 2| (44,2) 2
(4,0) 10| (10,14) 4| (18,14) 3| (28,12) 2| (44,4) 2
(4,2) 9| (10,16) 3| (18,16) 2| (28,14) 1| (44,6) 1
(4,4) 81| (10,18) 3| (18,18) 1| (30,0) 5| (46,0) 3
(4,6) 8| (10,20) 2| (18,20) 1] (30,2) 5| (46,2) 2
(4,8) 7] (1022) 1| (20,0) 7] (30,4) 4| (46,4) 1
(4,10) 6| (10,24) 1| (20,2) 6| (30,6) 3| (46,6) 1
(4,12) 6| (12,0) 8| (20,4) 6| (30,8) 3| (48,0) 2
(4,14) 5| (12,2) 8| (20,6) 5| (30,10) 2| (48,2) 2
(4,16) 4| (12,4) 7| (20,8) 4| (30,12) 1| (48,4) 1
(4,18) 4| (12,6) 6] (20,10) 4| (30,14) 1| (50,0) 2
(420) 3| (12,8) 6 (20,12) 3| (32,0) 5| (50,2) 1
(422) 2| (12,00) 5| (20,14) 2| (32,2) 4| (50,4) 1
(424) 2| (12,12) 4| (20,16) 2| (32,4) 4| (52,0) 2
(426) 1| (12,04) 4| (2018) 1| (32,6) 3| (52,2) 1
(6,00 9| (12,16) 3| (22,0) 7| (32,8) 2| (54,0) 1
(6,2) 9| (12,18) 2| (22,2) 6 (32,10) 2| (54,2) 1
(6,4) 8| (1220) 2| (22,4) 5| (32,12) 1| (56,0) 1
(6,6) 7| (1222) 1| (22,6) 5| (34,0) 5| (58.0) 1

23
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4.1.1 Drawings of weight diagrams A45();,0), A;-even

One can easily verify that the weight diagram A,(0, \;) is obtained by reflecting the
weight diagram A,(A;,0) on the M- and X-axis. Furthermore, it immediately follows
from (2.3) that

W (A1, A2) = W(Az, A1), (4.5)

i.e., the numbers of weights of A;(A;, A2) and Az()A2, Ay) are identical.

Figure 4.1: Weight diagram A,(2,0).
Dots indicate weights. The number of weights W (2,0) = 6, see (2.3).

Figure 4.2: Weight diagram A.(4,0).
Dots indicate weights. The number of weights W (4,0) = 15, see (2.3).
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X
6 ——o ®
3
0

Figure 4.3: Weight diagram A,(6,0).
Dots indicate weights. The number of weights W (6,0) = 28, see (2.3).

Figure 4.4: Weight diagram A,(8,0).
Dots indicate weights. The number of weights W (8,0) = 45, see (2.3).
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In Table 4.3 we summarize the characteristics of the weights diagrams A,(A1,0).

Table 4.3: Characteristics of weight diagrams A;(Aq,0), A;-even.

Number | Weights | Multiplicity | Sequence Sequence Total
(A1,0) of at of rings of of number
rings centre | (outer to M-values X-values of
inner) AM =1 AX =1 weights
(2,0) 1 0 1 92 —1/3-2/3 6
(4,0) 2 0 1,1 —4—4 -8/3—4/3 15
(6,0) 2 1 1,1 —6—6 ~12/3—6/3 28
(8,0) 3 0 1,1,1 —-8—8 -16/3—8/3 45
(10,0) 4 0 1,1,1,1 ~10—10 | —-20/3—10/3 66
(12,0) 4 1 1,1,1,1 —12—12 | —24/3—12/3 91
(14,0) 5 0 1,1,1,1,1 —-14—14 —28/3—14/3 120
(16,0) 6 0 1,1,1,1,1,1 -16—16 -32/3—16/3 153
(M,0) r c 1 r-times A1 = A | =20/3 — A;/3 | formula
(2.3)

= (A1 4+ A2)/2 = [(M — A2)/6], where [ ] means that only the integer part is valid,
¢ = 1if A\, /6 integer, 0 otherwise.

The next weight diagram we draw are A,(A;, A;), i.e., A} = A,
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4.1.2 Drawings of weight diagrams A5(A;, 1), Aj-even

Figure 4.5: Weight diagram A,(2,2).
Dots indicate weights. The number of weights W(2,2) = 27, see (2.3).

X

12 L +—o

9o | — o

6 L

3 L

0 L

3L

-6 |

9 L *—eo

121 *—eo
| | — | | | | ] 1
84 6 4 2 0 2 4 6 8 M

Figure 4.6: Weight diagram A,(4,4).
Dots indicate weights. The number of weights W (4,4) = 125, see (2.3).
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We summarize the characteristics of the weight diagrams A,(A;, A1), Aj-even, in Ta-
ble 4.4.

Table 4.4: Characteristics of the weight diagrams Az(A1, A1), Aj-even.

Number | Weights | Multiplicity | Sequence Sequence Total
(A1, A1) of at of rings of of - | number
rings centre | (outer to M-values X-values of
inner) AM =1 AX =1 weights
(2,2) 2 3 1,2 -4 — 4 -6/3 — 6/3 27
(4,4) 4 5 1,2,34 -8 — 8 -12/3 — 12/3 125
(6,6) 6 7 1,2,3,4,5,6 -12 —12 | -18/3 — 18/3 343
(8,8) 8 9 1,2,3,4,5,6, -16 — 16 | —24/3 — 24/3 729
78
(A],A]) /\1 )\1 +1 1 — /\1 —2)\1 — 2/\1 —)\1 — )\1 formula
(2.3)

The last weight diagrams we draw are those with Ay # Xy, Ay > 0, Aq-even,
Az-even.
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4.1.3 Drawings of weight diagrams Ay(A;,2), A\;-even

X

8 |

5 L

2 L

1 L

4 |

7 L

-10 L
' 1
-8 8 M

Figure 4.7: Weight diagram A,(4,2).
Dots indicate weights. The number of weights W(4,2) = 60, see (2.3).

Figure 4.8: Weight diagram A,(6,2).
Dots indicate weights. The number of weights W(6,2) = 105, see (2.3).
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We summarize the characteristics of the weight diagrams A3(A;,2), A;-even, in Ta-
ble 4.5.

Table 4.5: Characteristics of the weight diagrams Az(A1,2), Aj-even.

Number | Weights | Multiplicity Sequence Sequence Total
(A1,2) of at of rings of of number
rings centre | (outer to M-values X-values of
~ | inner) AM =1 AX =1 weights
(4,2) 3 0 1,2,3 -6 —6 -10/3 — 8/3 60
(6,2) 4 0 1,233 -8 =8 -14/3 — 10/3 105
(8,2) 4 3 1,2,3,3 -10 — 10 -18/3 — 12/3 162
(10,2) 5 0 1,2,3,3,3 -12 — 12 ~22/3 — 14/3 231
(12,2) 6 0 1,2,3,3.3,3 -14 — 14 -26/3 — 16/3 312
(14,2) 6 3 1,2,3,3,3,3 -16 — 16 -30/3 — 18/3 405
(A1,2) r c 1,2, —(A1+2) = | =(2X\1 + A2)/3 | formula
3 (r — 2)-times A+ 2 — (M +2X2)/3 | (2.3)

r = see Page 26,
¢ =3 if (A, — 2)/3 integer, 0 otherwise.
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4.1.4 Drawings of weight diagrams 4,();.4), A;-even

X
14

11

T

-10

-8

Figure 4.9: Weight diagram A,(6,4).
Dots indicate weights. The number of weights W (6,4) = 162, see (2.3).

The characteristics of the weight diagrams Aj(A;,4), Aj-even, are summarized in

Table 4.6.

Table 4.6: Characteristics of the weight diagrams Az(A1,4), Ai-even.

Number | Weights | Multiplicity Sequence Sequence Total

(A1,4) of at of rings of of number
rings centre | (outer to M-values X-values of

inner) AM =1 AX =1 weights
(6,4) 5 0 1,2,3,4,5 -10 — 10 | —16/3 — 14/3 210
(8,4) 6 0 1,2,3,4,5,5 -12 - 12| -20/3 — 16/3 315
(10,4) 6 5 1,2,3,4,5,5 —14 — 14| —24/3 — 18/3 440
(12,4) 7 0 1,2,3,4,5,5,5 ~16 — 16 | —28/3 — 20/3 585

(M A4) T c 12,34, —(M+4) | —(20 +)X2)/3 | formula
5(r—4)-times | — A +4 | = (A1 +2X2)/3| (2.3)

r = see Page 26,
¢ =5 if (A; — 4)/3 integer, 0 otherwise.
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4.1.5 Drawings of weight diagrams 4,();,6), A\;-even

-22_l l : | 1 f ? r * L ! 1 1
14 12 10 8 6 -4 2 0 2 4 6 8 10 12 14 M

Figure 4.10: Weight diagram A,(8,6).
Dots indicate weights. The number of weights W (8,6) = 504, see (2.3).
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The characteristics of the weight diagrams Aj()\;,6), A\;-even, are summarized in

Table 4.7.

Table 4.7: Characteristics of the weight diagrams As();,6), A;-even.

Number | Weights | Multiplicity Sequence Sequence Total

(A1,6) of at of rings of of number
rings centre | (outer to M-values X-values of

inner) AM =1 AX =1 weights
(8,6) 7 0 1,2,3,4,5,6,7 -14 — 14 | -22/3 — 20/3 504
(10,6) 8 0 1,2,3,4,5.6,7,7 -16 — 16 | -26/3 — 22/3 693
(12,6) 8 7 1,2,3,4,5,6,7,7 -18 — 18 | -30/3 — 24/3 910
(14,6) 9 0 1,2,3,4,5,6,7,7,7 | -20 — 20 | -34/3 — 26/3 1155

(A1,6) r c 1,2,3,4,5,6, —(A1+6) | —(2M\ + A2)/3 | formula
7(r—6)-times | — A +6 | — (A +2X2)/3 | (2.3)

T = see Page 26,
¢ = Tif (A; — 6)/3 integer, 0 otherwise.

33
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4.1.6 Drawings of weight diagrams 45(\;,8), A\;-even

The characteristics of the weight diagrams As();,8), Aj-even, are summarized in
Table 4.8.

Table 4.8: Characteristics of the weight diagrams A3(A;,8), A;-even.

Number | Weights | Multiplicity Sequence Sequence Total
(X1,8) of at of rings of of number
rings centre | (outer to M-values X-values of
inner) AM =1 AX =1 weights
(10,8) 9 0 123456789 | —18 — 18 | =28/3 — 26/3 | 990
(12,8) 10 0 1,2,3,4,5,6,7,8,9.9 | =20 — 20 | —32/3 — 28/3 1287
(14,8) 10 9 1,2,3,4,5,6,7,8,9,9 | -22 — 22 | —36/3 — 30/3 1620
(M1,8) T c 1,2,3,4,5,6,7,8, —(A1 +8) | —(2X\1+ A2)/3 | formula
9 (7‘ - 8)—times — /\1 + 8 — ()\1 + 2/\2)/3 (23)

r = see Page 26,
c = 9if (A1 — 8)/3 integer, 0 otherwise.

It can easily be verified that the weight diagram A,(As, A1), A1 # Aq, is generated
by reflecting the weight diagram A,(Aq, A2), on the M- and X-axis.

The weight diagrams enumerated in Table 4.2 in which we are interested can thus
be classified into three categories:

e the diagrams A,(),,0),
o the diagrams Ay(Ay, A2), A1 = A,
o the diagrams Ay(A;, A2), A1 # A2 # 0, Ay > A,

Geometrically, they are characterized by the following forms:

[ ] Az()\l,O) : ;

[ ] Az(/\l,)\l)
) A2()\1,/\2), /\1 > /\2.

It remains still the problem fo find the characteristics of any weight diagram
As(Aq, Ag), A-even, Ag-even: the number of rings, the multiplicity of rings, the se-
quence of M-values and of X-values.
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Recall that we have according to the Table 4.2 only to deal with weight diagrams
Ay()j-even, Aj-even).

Analysing these weight diagrams we have found the following:
Theorem 4.2 The number of rings r for Ay(A;-even, Ay-even) is
r=(A+A2)/2 = [(A1 — A2)/6] (4.6)
where [ ]| means that only the integer part is valid.

Theorem 4.3 The multiplicity MW of weights on a ring (counted from outer to
imner rings) is

ring +centre|1 2 3 4 5 6 7 8 9 10 --- AM+1
MW X, = ), 2 3 4 5 6 7 8 9 10 --- A +1
MFA|IL 2 3 4 5 6 Az +1 -+ (r—Ay) times

Theorem 4.4 The M-coordinates for Ay(A-even, Ay-even) are given by the inequalites
—(AM+A) <M < (A + X)), with AM = 1.

Theorem 4.5 The X-coordinates for Ay(\;-even, \y-even) are given by the inequal-
ites

The proof of these theorems can be made by mathematical induction.

We have still to assign the angular momentum L to the weights (M,X) of the
diagrams Az(Aq, Az). This is done in the following section.

4.2 L-assignment to (M,X)-coordinates of the weight
diagrams As(\;, A2), A;-even, Ay-even

The L-assignment to (M,X) coordinates of the weights for the diagrams Ay(A1, A2) is

based on the analysis of the geometrical paths followed to reach the weight from the

(0,0)-coordinates (a path is a sequence of A\; 4+ A, elementary paths, see Figures 2.2

and 2.3). The L-values can be assigned either directly (Case 1 below) or recursively
(Cases 2 and 3 below) on the successive elements of the path.

The L-values should obey the following conditions:
° [M|<L;

o There exists no identical triplett L, M, X for a given A,(\;, A;) representation.

The ad-hoc procedure used for L-assignment is summarized as follows:
Case 1. If the path contains only the elementary paths 3 (A;-times) and 3 (A;-times):
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e if )\, is odd, then L =1,

e if )\; is even and
— if A2 is odd, then L =1,
— if Ay is even, then L = 0.

Case 2. If the path contains \;-times the elementary path 3 in the first A; positions,
the L-recursion starts with L = 0 on the A, remaining positions:

e if the next elementary path is T or 2, then AL =1,
e if the next elementary path is 3:

— if the rank (counts of path 3 is odd, then AL =1,
— if the rank is even, then AL = —1.

Case 3. (General case) Starting from the second element of the path and with L = 1:
o if the elementary path is 1,2, T or 2, AL = 1,
e if the elementary path is 3:

— if the rank is odd, AL =1,
— if the rank is even, AL = —1.
e if next elementary path is 3, AL = 0.

Theorem 4.6 The frequency F(L) of the occurence of L = max |M| can be calculated
by means of the relation

X2/2 _

F(L;d,20) = Y. AF(L;h + 21,4 — 20), (4.8)
1=0,1,2---

AF(L;/\l,AQ) =1 for /\QSLS A1+1, AQ#O, (49)

0 otherwise,

F(L;21,0) = 1 for L-even, 0 < L < Ay, (4.10)

0 otherwise,
F(L§ Ay Ag) = F(L; Ay M) (4.11)

The total number of quantum states belonging to a given representation As(A1, Az)
is expressed by the relation

W(A2(A, 202)) =Y F(Li A1, 02).(2L +1) = (A + 1)(Az + 1)(A 4+ A2 +2)/2. (4.12)
L

We illustrate Theorem 4.6 by some examples.
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Example 4.1 AF(L; A1, X;) for (A, Ay): (20.0), (18,2), (16.4), (14,6), (12,8), (10,10).

Lo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A1, Az

{20, 0) T 0 1 0 1 0 1 0 1
(18, 2) 1 1

(16, 4) 11
(14, 6)
(12, 8)
(10,10)

—

—
—
bt et ped D
— e et i e
e N e e N =]
—_— e s O
— e e
ot e e D
—_—
_— = O

—

—

—

—

s ot e et

According to (4.8) we obtain for F(L;16,4): F(L;16,4) = AF(L;16,4)+AF(L;18,2)+
AF(L;20,0). Therefore,

10 11 12 13 14 15 16 17 18 19 20

L 0
1 3 2 3 2 3 2 3 2 2 1 1

7 3 4
F(L;16,4) 7 1 3

N} O
[V] N

1
0

N =3
Wi oo
B[ ©

For F(L;10,10) we get F(L;10,10) = AF(L;10,10)+AF(L;12,8)+AF(L;14,6)+
AF(L;16,4) + AF(L;18,2) + AF(L;20,0). Therefore,

L 0
F(L:10,10) | 1

2 3
2 1

o W

6 8
4 5

ro| en
ol =

1
0

Example 4.2 AF(L; M1, X2) for (A1, X2): (12,0), (10,2), (8,4), (6,6).

L0123 456 78 9 10 11 12
/\l’/\2
(12, 0) 1 01 01010710 1 0 1
(10, 2) 11 11 1 1 1 1
(8, 4) 111111
(6, 6) 11

Using (4.8) F(L;8,4) reads: F(L;8,4) = AF(L;8,4)+AF(L;10,2)+AF(L;12,0)
which give explicitely

L{01 2 3 45 6 7 8 9 10 11 12
FI;8,4)(1 0 2 1 3 23 2 2 1 2 1 1
For F(L;6,6) we obtain F(L;6,6) = AF(L;6,6) + AF(L;8,4) + AF(L;10,2) +
AF(L;12,0).
Lio1 2 3 4 5 6 7 8 9 10 11 12
F(L;6,6){1 0 2 1 3 2 4 3 3 2 2 1 1

For illustration we give in Table 4.9. explicit L-assignments for the A;(A1, A2)-
diagrams which are involved for the description of nuclei with ZN = T7: A,(14,0),
A2(107 2)7'A2(6a4)$ A2(2’6)a A2(8a0)7 A2(4’ 2)3 A2(0a4)a A2(270)
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Table 4.9: Values for M, X and L of the A3(\;, A;)-diagrams
involved in the description of nuclei with ZN = 7.

Values of M, X and L for the diagram A,(2,0).

M_X LIM X LM X LM X LM X LM X T
2 2 2|1 1 2|0 4 0] 0 2 2|1 a1 2|2 2 2
Values of M, X and L for the diagram A,(4,0).

M X LM X L]M X L]M X LIM X L
4 4 4|2 4 4]0 B8 o1 5 2|2 4 4
3 1 4|1 5 2|0 2 2|1 1 4|3 1 4
2 -2 2|1 1 4]0 4 4|2 2 2|4 4 4
Values of M, X and L for the diagram A,(8,0).

M X LM X L[M X LM X L]M X LM X T
8 8 8|4 8 8|1 43 2|0 8 8] 2 8 8|5 5 8
-7 5 8|3 7 4| 7 4|1 a3 2|3 7 4|6 2 6
6 2 6{-3 -1 6|-1 1 6|1 -7 4|3 1 6|6 8 8
6 8 8|3 5 8|1 5 8|1 -1 6|3 5 8|7 5 8
5 -1 6|-2 10 2|0 16 0|1 5 8| 4 -4 4|8 8 8

5 5 8|-2 -4 4 0 2| 2 10 2|4 2 6

4 4 4)-2 2 6|0 -4 a|2 4 4|4 8 8

4 2 6]|-2 8 8|0 2 6|2 2 6|5 1 6
Values of M, X and L for the diagram A,(14,0).

M_X L[M X LM X L]M X LM X L[M X L
14 14 14| 6 -10 6|3 5 12| 0 4 8|3 7 8|7 7 38
13 11 14|66 -4 8|-3 11 14|00 2 103 -1 10| 7 -1 10
12 8 12|66 2 10|-2 -22 2|0 8 123 5 127 5 12
12 14 14]-6 8 12|-2 -16 4| 0 14 14| 3 11 14| 7 11 14
-1 5 126 14 14|-2 -10 6| 1 -25 2| 4 -16 4| 8 -4 8
A1 11 14{-5 13 6 |-2 4 8|1 19 4|4 0 6|8 2 10
-0 2 0|5 -7 8|-2 2 10{1 -13 6|4 -4 8|8 8 12
-0 8 12/-5 - 10|-2 8 12|1 -7 8|4 2 10| 8 14 14
-0 14 14{-5 5 12|-2 14 14| 1 -1 10| 4 8 12 9 -1 10

9 -1 10)-5 11 4|-1 25 2|1 5 12| 4 14 14| 9 5 12

9 5 12| -4 -16 4 |-1 -19 4|1 11 14|55 13 6| 9 11 14

9 11 14|-4 -10 6 |-1 13 6| 2 -2 2|5 -7 8|10 2 10

8 -4 8|4 4 8|1 7 8|2 -16 4|5 -1 10|10 8 12

8 2 10|-4 2 10|-1 -1 102 -10 6|5 5 12|10 14 14

4 8 12|-4 8 12|-1 5 12| 2 -4 8|5 11 14|11 5 12

8 14 14|-4 14 14|-1 11 14{ 2 2 10| 6 -10 6|11 11 14

-7 -7 8{-3 -19 4|0 -28 0o|2 8 12|6 -4 8|12 8 12

7 -1 10(-3 -13 60 -22 2|2 14 14|66 2 10|12 14 14

7 5 12|-3 -7 8|0 -16 4|3 -19 4|6 8 12|13 11 14

7 11 14]-3 -1 10/ 0 -10 6|3 -13 6|6 14 14|14 14 14

38
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Values of M, X and L for the diagram A,(4,2).

-4

-1

-10

-4

-10
-4

-2
-2
-2
-2

-7

-1
-1

-10

-4

-6

-4

-4
-4
-4
-3
-3
-3

-7
-1

Values of M, X and L for the diagram A,(6,2).

-2

10

-2

10

M

10
-11

-5

-14

-8
-2

10
-11

-5

-8

-13

-7

10
12

10 11

11
-10

10
12

11

10

14
-7

I~

12

10 11

11

-4

10
11

12

10
10

14

12
11

10
10
11

11

10
10
10

12

10
12
11

14

11

11
12

12

10
12

11

10

14
-19
-13

10 11

11
-22

-16
-10

12

11

10

14
-19
-13

12

11 10 11

-16
-10

10
12

11

10

14

-3
-3

-14

-8
-2

-2
-2

10
-11

-14

-8

-2

-8
-7
-7
-6
-6
-6
-5
-5
-5
-4
-4
-4
-4
-3
-3

-2

10

-5

-8
-2

10
-11

-5

Values of M, X and L for the diagram A,(10, 2).

-10
-4

-4
-4
-4
-4
-4
-3
-3
-3
-3
-3
-3
-2
-2
-2
-2
-2

10
12

11

10

14
-19
-13

-7

10
12

10 11

11

-22

-16
-10
-4

10
12

11

10

14
-19
-13

-7

-1

10
12

-1

11

10

11

-22
-16

-10

12
12
11

-12
-11
-11

11

10
11

-10
-10
-10

12

10
10

14
-1

-9
-9
-9
-8
-8
-8
-8
-7
-7
-7
-7
-6
-6
-6
-6
-6
-5
-5
-5
-5
-5
-4

12
11

10

11

-4

10
11

12

10

14

-7
-1

10

12

10 11

11
-10

-4

10
12

11

10

14
-13

-7
-1

10
12

10 11

11

-16
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Values of M, X and L for the diagram A,(6,4).

-7
-1

10

-16
-10
-4

10

14
-13

10

-10

10

14

10

I~

-4

10

11
-16

-3
-2

-10

-4

-2
-2
-2

10

14
-13

-1

10

-1

11
-16
-10

-4

10

14
-13

10

-1

-16
-10

-4

14
-13

10
10

-10

-1

-9
-9
-8

5
-4

0

10

-~

-7
-7
-6
-6
-6
-6
-6
-5
-5

-10

-4

10

14
-13
-7
-1

10

-5
-5
-4
-4
-4
-4
-4
-4
-3
-3
-3
-3

11

-16
-10
-4

10

-

14
-13
-7
-1
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4.3 Classification of nuclear rotational states

Recall that we are assigning nuclear rotational states to weight vectors. The coordi-
nates of a weight vector are interpreted as quantum numbers of a state. Any state
is, therefore, within this description defined by the weight diagram A2()\1, Ay), 1.e. by
the values A;, A, and the coordinates of the weight vector.

We illustrate that by classifying nuclear rotational states of nuclei with ZN = 4.
From Table 3.2 follows that Po-216 and Rn-216 have such a ZN-value. The total
number of rotational states is given by (2.4), W(4,0,0,0,0) = 126. Using (2.2) we
obtain As(4,0,0,0,0) = A2(8,0) + A2(4,2) + A2(0,4) + A2(2,0) (see also Table 4.1).

These weight diagrams are already drawn in sections 4.1.1 and 4.1.3. The corre-
sponding M, X, L-values are given in Table 4.9.

A nuclear rotationnal state is thus in our classification specified by the quantum
numbers M, X and L and the values ), A, of the representation Aj(A;, A2).

These quantum states are for nuclei with ZN = 4 explicitely given in Table 4.9.
From this table directly follows that the classification of rotational levels by means of
weight diagrams of A;(), A2) yields much more levels than the conventional classifi-
cation according to the angular momentum L only. This is illustrated in Table 4.10.

Table 4.10: Number of rotational states of various nuclei.
W is the number of rotational states, with unequal tripletts (L, M, X) resulting from
our Az(Ay, A2)-classification (see (2.4)). W, is the number of rotational states, with
unequal L-values, in the usual classification [AR78] (see (5.2)).

ZN | Element | Z N w Wo
4 Rn 84 | 132 126 16
6 Th 90 | 130 462 38
8 Nd 60 | 88 1287 75

10 Sm 62| 90 3003 131
12 Th 90 | 142 | 6188 209
14 U 92 | 144 | 11628 | 316
16 Pu 94 | 146 | 20349 | 453
18 Er 68 | 100 | 33649 | 624

20 Yb 70 | 102 | 53130 | 836

22 Hf 72 | 104 | 80730 | 1090

24 W 74 1 106 | 118755 | 1390
26 Os 76 | 108 | 169911 | 1743
28 Pt 78 { 110 | 237336 | 2150




Chapter 5

Calculation of nuclear rotational
level energies

In the preceeding Section we have classified nuclear rotational states by means of
weight diagrams A;(A;, A2). There, a nuclear state is described by the coordinates of a
weight vector. Asthese are vectors in a two dimensional space, they are defined by two
coordinates. A nuclear rotational state is thus within this description characterized
by the coordinates (quantum numbers) M and X and the values A;, A, which in turn
define the form of the weight diagram to which a state (weight vector) belongs.

The energy value E of a state of a nucleus can be considered as a quantity de-
pending on numbers which define a nuclear state in the present model, i.e. on L, M,

X, A1, A2 and on Z and N. Thus we have
E=E(Z,N;L,M,X, )\, \,). (5.1)

A formula for E depending on Z, N; L, A;, A, but not on M and X is already given
in [ART78]. It reads

E(Z,N; L, )\, \) = o(Z, N).L(L+1) = B(Z, N).(A + X3+ Mda + 3001 + 1)) (5.2)

where o and 3 remain constant for one and the same nucleus. They are determined
from well-known energy levels. This formula yields energy levels which are degenerate
in M and X, i.e. energy levels with constant L but varying M and X are not resolved.

In order to take into account all quantum states which follow from our classifi-
cation using the Lie algebra A;, we propose a more general formula for the nuclear
level energy. To establish this formula we add to (5.2) terms depending on M and X,
respectively. The formula for the level energies becomes then

E(Z,N;L,M, X, )\, \,) = ' (5.3)
a(Z,N).L(L+1) = B(Z,N).(A2 4+ 22+ M hy + 300 + X)) +
Y(Z,N).M(M+1)+6Z,N)X(X+1)

The constants a, 3, 7 and é have to be determined from well-known level energies.
As these constants are different for different nuclei, the level energies for nuclei

with the same ZN are also different in spite of having the same quantum numbers
and the same values )y, As.

42
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From the mathematical point of view, formula (5.3) is a sort of series expansion
of E(Z,N;L,M,X,)A;,);) in powers of L, M, X, A;, A, where only up to quadratic terms
are taken into account.

We now apply (5.2) and (5.3) to compute energy levels of ™ Er and compare
them with the available experimental values.
Using (5.2) and the well-known levels Ey(L = 2) = T9keV, Ex(L = 0) = 891keV

one obtains

a= E|(L=2)/6=12.50, (5.4)
_ E(L=0) _ ]
B = —6(2ZN i 4.01. (5.5)

One cannot determine the values for v and é which appear in (5.3), because no
levels energies depending on M, X are known. We choose, therefore, the trial values:
~=0.1, 6 =0.1.

The corresponding results are given in Table 5.1 and illustrated in Figure 5.1.
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- Table 5.1: Energy levels of 1 Er calculated with (5.3) and (5.2).
Z =68, N=102, ZN =19, a = 12.50, 8 = 4.01, v = 0.1, 6 = 0.1. Total number of
levels computed with (5.3) = 42504. Total number of levels computed with (5.2) =
725. The higher level energies are not printed, as the listing would become too bulky.

E(53) |L|M| X [ (A,A) | E(5.2) | Ecrp [ZH8T]
keV keV keV

0.0 0| 0f-76} (38,0) 0.0 0.0

6547 | 2| 0|-70 (38,0)

6567 | 2|-2|-70| (38,0)

66.07 21 21-70] (38,0) 75.00 78.68

70.13 2| -11-73] (38,0)

70.33 21 1[-73] (38,0)

23173 | 4| 01-64 | (38,0)

23193 | 4| -2|-64| (38,0)

23233 |4} 21-64]| (38,0)

23203 | 4| -4|-64 ] (38,0)

233.73 [ 4] 4|-64 | (38,0) 250.00 260.18
236.00 | 4| -1|-67 | (38,0)

23620 | 4| 1-67| (38,0

236.60 [ 4 [ -31-67| (38,0)

23720 | 4| 3|-67 | (38,0)

49880 | 6 1 0| -58 | (38,0)

499.00 | 6 | -2 | -58 | (38,0)

49940 [ 6 | 2| -58 | (38,0)

500.00 | 6 | -4 | -b8 | (38,0)

500.80 [ 6 | 4|-58 | (38,0)

501.80 | 6 | -6 | -58 | (38,0)

502.67 [ 6| -1|-61| (38,0) 525.00 540.8

502.87 | 6| 1]-61| (38,0)

503.00 | 6| 6 [-61 [ (38,0)

503.27 | 6 | -3 | -61 | (38,0

503.87 | 6 3|-61| (38,0)

50467 | 6 | -5 | -61 | (38,0)

505.67 [ 6| 5| -61 1 (38,0)

87273 | 0| 0[-64 | (34,2) 891.00 891.0

93980 | 2] O [-58 | (34,2)

940.00 | 2 | -2 | -58 | (34,2)

04040 | 2 | 2| -58 | (34,2) 966.00 934.03
943.67 | 2 | -1 |-61 | (34,2)

94387 | 2 1]-61| (34,2)

952.00 | 2 [ -1|-67 | (34,2)

952.20 | 2 1]-671] (34,2)

95647 | 2| 0 -70 | (34,2) 966.00 959.85
956.67 | 2| -2|-70 | (34,2)

95707 12| 2|-70| (34,2)

101867 | 3 | -1 | -61 | (34,2)

1018.87 | 3 1]-61] (34,2)

1019.27 | 3 | -3 | -61 | (34.2)

101987 | 3| 3 |-61| (34,2) | 1041.00 1010.37
102273 | 3| 0| -64 | (34,2)

1022.93 | 3 | -2 | -64 | (34,2)

102333 | 3| 2[-64 | (34,2)
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Figure 5.1: Energy levels of 1™ Er.




Annex A

Explanation of the logogram:
Matter —~ Mathematics

Hexagons: e The points symbolize the twelve basic elements of matter: the six
points of the inner hexagon symbolize the six quarks (up, down, strange,
charm, bottom, top); the six points of the outer hexagon symbolize the six
leptons (electron, neutrino of type electron, muon, neutrino of type muon,
tau, neutrino of type tau).

e The two rings symbolize the two elementary forces: the nuclear force {(inner
ring), the electromagnetic and weak forces (outer ring).

Triangle: e The three points symbolize three essential items described by math-
ematics:

1. Kinds (or states) of matter.
2. Assembly (or formation) of matter.
3. Dynamic of matter.

o The ring symbolizes the third fundamental force, the gravitational force.

Centre: Symbolizes the origin of everything, the fundamental law.

‘If one uses for the mathematical description of the three items which are symbol-
ized by the points of the triangle the Lie algebra As then it follows:

1. There exist two basic kinds of matter corresponding to the representation
As(A1, A2, A3, Mgy As), A1: matter; As: anti-matter; Ay, A3, As: para-matter (mat-
ter, anti-matter or a mixture of both).

2. The assembly (or formation) of general matter (matter, anti-matter) is de-
scribed by the weights of the Lie-algebra As:

6
Wi(As(My Ags A3y A, As)) = [ rom7o,

=1

-

r indicates the fundamental weight r of A5(1,0,0,0,0); a quark r is assigned
to each weight r.
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7 indicates the fundamental weight 7 of A5(0,0,0,0,1); an anti-quark 7 is as-
signed to each weight 7.

a,; denotes the number of times the weight r is applied, i.e. the number of
quarks of type r involved.

Br; denotes the number of times the weight T is applied, i.e. the number of
anti-quarks of type T involved.

S ari+ B, i = 1,2,...1, is constant for a well-defined entity, for example
a nucleus. I is the total number of weights (quantum states) of the nuclear
entity.

Consequently, a multiple of six quarks and six anti-quarks can be involved in
the formation of a nuclear quantum state. Such a state can be real or virtual.
A nucleus has one real state and many virtuals states, i.e. energy levels. The
real state of a nucleus is defined by the number of protons and neutrons of the
nucleus. Its virtuals states (or levels) can be activated by energy input.

Example: A nucleus with m protons and n neutrons consists of (2m +n) quarks
up (r =1) and (m + 2n) quarks down (r = 2). This is its real state:

I/V](As) — 12m+n 2m+2n 30 40 50 60.
Its virtual states or energy levels (weights) are
VVi(As) — 10!1;' 20'2.' 303.' 44 50'5i 606:'
with
6 :
Y ai=3(m+n)i=23,...,1

r=1

Deuteron has for example the real state

Wi(As) =13 2°3%4°5°6°
and the virtual states or energy levels (weights)

Wi(AS) = ] Q%2 JO3 fOu4i Hosi 66l
with
6
Y ai=6,i=23,..,1I

r=1

The total number I of possible states = 46656 = 6°.

3. We assign to each weight r a function Y, and to each weight ¥ a function
Y,. Physically these functions can somehow be interpreted as a measure of
the communication flow (dynamic) between the quarks. A certain dynamic of
matter can then be described by the system of differential equations:

dY, (1)
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dv,t) . SR U
dt - Z bsz H )7' YT [

=1 r=1 T

s = 1,...,6. I is the total number of quantum states (weights) of a nuclear
entity considered, for example a nucleus. b;; are coupling constants.

The solution of such systems can formally be represented as follows

Yit)= 3 o (CT P,

n=0 : -l
C are mathematical constants, I are interaction forces (coupling constants),
P = Y(t == to).
For further details of this representation of ¥, and for the numerical procedure

see SCHETT et al. [SC85].

A more complete study of quantum states of nuclei using Lie algebras A, would
thus include all cases which are represented in the following table.

Table A.1: Outlook on a more comprehensive study of quantum states of nuclei using

Lie algebras A,.

Mathematical | A, Az Ay As
method: Lie
algebra
Nuclear neutron pairs or proton pairs (bosonlike) Quark-strings
concept (hadrons)
Description Approximate model | Approximate Approximate Concept
for rotational states | model for states of | model for quark-string
of nuclei nuclei towards the | for vibrational | (hadron) states
end of major closed | states of nuclei | of nuclei
shells
Comment Present report see Table 2.1 of present report see this Annex

Recall that the rotational states of nuclei which are presented in this report are
a mathematical consequence of the use of the Lie Algebra A,.

The quark-string states of nuclei are in a similar way a mathematical consequence
of the use of the Lie algebra As to describe quantum states of nuclei, i.e. the con-
struction of neutrons and protons and in general hadrons by quarks.
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