International Atomic Energy Agency

<u>INDC(GDR)-044/GI</u> INT(86)-12

INTERNATIONAL NUCLEAR DATA COMMITTEE

DIFFERENTIAL NEUTRON EMISSION CROSS SECTIONS FROM

LEAD AND CARBON BOMBARDED WITH 14 MeV NEUTRONS

 T. Elfruth, D. Hermsdorf, H. Kalka, K. Noack, J. Pöthig, D. Seeliger, K. Seidel and S. Unholzer
 Technische Universität Dresden, Sektion Physik, Mommsenstr. 13, Dresden, DDR-8027, GDR

December 1986

.

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

.

DIFFERENTIAL NEUTRON EMISSION CROSS SECTIONS FROM

•

.

LEAD AND CARBON BOMBARDED WITH 14 MeV NEUTRONS

 T. Elfruth, D. Hermsdorf, H. Kalka, K. Noack, J. Pöthig, D. Seeliger, K. Seidel and S. Unholzer
 Technische Universität Dresden, Sektion Physik, Mommsenstr. 13, Dresden, DDR-8027, GDR

, .

December 1986

Reproduced by the IAEA in Austria December 1986 .

.

87-00197

DIFFERENTIAL NEUTRON EMISSION CROSS SECTIONS FROM LEAD AND CARBON BOMBARDED WITH 14 MEV NEUTRONS

T. Elfruth, D. Hermsdorf, H. Kalka, K. Noack^X, J. Pöthig, D. Seeliger, K. Seidel and S. Unholzer Technische Universität Dresden, Sektion Physik Mommsenstr. 13, Dresden, DDR-8027, GDR.

Abstract

Neutron emission cross sections measured with a time-of flight spectrometer which allows accurately to take angular distributions are presented. The date are compared with previous experimental results and with calculations basing on direct, pre-equilibrium and equilibrium emission models.

1. Introduction

Lead is used as neutron multiplier material in conceptual designs of fusion reactors /1/. Therefore, the differential neutron emission cross sections at 14 MeV neutron incidence energy have to be determined with relatively high accuracy /2/. Direct and preequilibrium reaction components cause anisotropic, forward-peaked angular distributions, so that the emission spectra must be studied for a wide angular range, especially in their high-energy part. In earlier measurements, spectra were taken only at 90° /3,4/. Later on, angular ranges from 25° to 145° /5/ and from 40° to 150° /6/, respectively, were covered. The low-energy part of the emission spectrum was angle-averaged measured by Vonach et al. /7/. Recently, Takahashi et al. /8/ determined spectra with a high-resolution spectrometer from 15° to 154°. At the TU Dresden, a time-of-flight (TOF) spectrometer was developed which allows by its arrangement and data acquisition procedure to take spectra from 15° to 165° with widely equal experimental conditions. The spectrometer is described in chapter 2. The obtained data and comparisions with those of previous works are given in chapter 3. A carbon sample was parallely with the lead sample used in the measurements to check spectrometer and data reduction. The obtained data from carbon are also given in chapter 3.

2. Experiment

The geometrical arrangement is shown in Fig. 1. Ring geometry with flight path perpendicularly arranged to the deuteron beam direction, was chosen. The distance between tritium target and neutron detector was 4.9 m. Collimator channel, shadow bar, sample ring and neutron source diameter allowed to measure at scattering angles $15^{\circ} \leq 91 \leq 165^{\circ}$.

The neutron generator operated in a pulsed regime with deuteron pulses of 2 ns f.w.h.m. and 5 MHz repetition rate /9/, produced

x-Zentralinstitut für Kernforschung, Rossendorf

with a mean deuteron beam of 30 μ A a Ti-T-target 2...5x 10⁹ neutrons/s. The source strength was determined by counting the α -particles with a silicon surface-barrier detector at $\Phi = 166^{\circ}$ with respect to the deuteron beam direction. From $dN_{\infty}(\Phi)/d\Omega$, the neutron production for all directions Θ to the deuteron beam $dN_n(\Theta)/d\Omega$ was determined calculating $f(\Theta, \Phi_o) = \frac{dN}{d\Omega}(\Phi_o)/d\Omega}(\Theta)$ for the thick Ti-T-layers of the used targets and measuring the influence of target tube, backing and cooling on the source neutron distribution with $2^{\circ}Al(n, \alpha)$ -activation and recoil-proton counting (plastic scintillator, bias at 7 MeV) for the full range of $\Theta = 0^{\circ} \dots 180^{\circ}$. The $f(\Theta, \Phi_o)$ corrected for influences of the target construction, were used to calculate for each sample position $f_1(\mathcal{M}, \Phi_o) = \frac{d}{d\Omega}(\Phi)/\frac{dM}{d\Omega}(\mathcal{M})$ by averaging over all Θ covered by the sample ring. The average neutron incidence energies $E_o(\mathcal{A})$ were analogously determined. The energy distributions of the neutrons were calculated as functions of Θ , and averaging the spectra of those Θ covered by the given ring positions resulted in the incidence energy spectra for the \mathcal{M} , with their average $E_o(\mathcal{M})$. $E_o(\mathcal{M})$ and $f_o(\mathcal{M}, \Phi_o)$ are shown in Fig. 2. Their dependence on \mathcal{H} is very weak, since the flight path was arranged at $\Theta = 90^{\circ}$.

The samples had natural isotopic compositions. The ring had inner diameters of 8.0 cm and outer diameters of 12.0 cm. Their thicknesses in flight-path direction were 1.0 cm for Pb and 1.5 cm for C (pressed powder of density 1.45 g/cm³) respectively. A ring segment of 4.4 cm width was taken away at the deuteron-beam-tube position in measurements around $\mathcal{A} = 90^{\circ}$.

The block scheme of the spectrometer is shown in Fig. 3. The neutron TOF detector was a liquid scintillator NE 213 of 12.7 cm in 3.8 cm length coupled with a XP diameter and 2041 photomultiplier. Its anode signals were used for timing as well as for neutron-gamma discrimination /10/ and proton-recoil basing. The neutron detector efficiency ξ (E) was measured by TOF spectrometry of the neutrons emitted from a Cf-252 fission chamber /11/, of the neutons scattered from H replacing the Pb sample in the spectrometer arrangement with a thin polyethylene ring (thickness 0.4 cm) and of the 14 MeV neutrons of the generator removing the shadow bar in the spectrometer. Besides this measurements, $\mathcal{E}(E)$ was calculated with the Monte Carlo code NEUCEF /12/. The results are shown in Fig.4 together with the curve used for the data reduction. The neutron source strength monitored by the \propto -particle counter was checked during TOF measurements against the counts of two neutron monitors (a plastic scintillation detector with 7 MeV bias and a long counter). A microcomputer controlled the TOF runs. Sample shifting (\mathfrak{A}) and changing were free programmable.

Measurements of TOF spectra were carried out for M from 15° to 165° in steps of 15°. In one run, 5 or 6 of these M were chosen symmetrically to M = 90° and the run was so subdivided in shorttime data acquisition periods that the M could be successively covered more than 10 times. The spectra obtained in short-time measurements with and without sample were inspected using the number of events in a given part of the spectrum, the position of the 14 MeV neutron peak and the counts of the monitors and of Fig. 1 Geometrical arrangement of the time-of-flight spectrometer. T, tritium target; S, ring sample; D, neutron detector.

Average incidence neutron energy (upper part) and number of α -particles/sr counted per neutron/sr (lower part) striking on the sample ring (dashed curves) and on the ring without a segment of 4.4 cm width (solid curves), respectively, as function of the scattering angle.

22 CH2

CSI C CH2 • B

> Е₀ [Меу] ::Ж

Cu

Fe Pb

5

a timer. The spectra were accumulated, if the inspected values were within given intervals. In this way, possible instabilities of the spectrometer or of the generator could be eliminated, and nearly equal experimental conditions, with the exception of the effect/background relation, were realized. Examples of TOF spectra are shown in Ref. /13/. The average width of the time channels was determined with 14 MeV source-neutron TOF peaks shifted by several delay lines in the START branch of the spectrometer. The differential linearity was measured with the statistical events of a Po/Be neutron source.

In the data reduction at first the TOF spectra were corrected for dead time and differential nonlinearity of the spectrometer. Then the effect spectra N(i) were calculated as differences of the spectra obtained with sample and the corresponding taken without sample and taking into account an additional background component determined in the channel region between 14 MeV neutron peak and γ -peak position and assumed to be constant for all channels i. The N(i) were smoothed over about 10 channels with the exception of peak regions. The time scale t was calculated with the average channel width Δ t beginning at the peak position of elastically scattered neutrons. The continuous parts of the time spectra dN(t_i)/dt = N(i)/ Δ t were transformed into energy spectra dN(E_i)/dE resulting in laboratory system cross sections by:

$$\mathcal{G}_{nm}(E,\mathcal{M}) = \frac{d^{2}\mathcal{G}(E_{o};E,\mathcal{M})}{dE \cdot d\Omega} = \frac{dN_{dt} \cdot \Delta\Omega_{c} \cdot L^{2} \cdot s^{2} \cdot f_{1}(\mathcal{M},\phi_{o}) \cdot f_{2}(E,\mathcal{M}) \cdot f_{3}(E,\mathcal{M})}{N_{c} \cdot Z_{M} \cdot F_{D} \cdot \mathcal{E}(E)}$$
(1)

with $N_{\rm c}$ being α -counts; $\Delta \Omega_{\rm c}$, solid angle of α -counting; f₁, number of α -particles/sr counted per neutron/sr striking on the sample; s, distance neutron source/sample; L, distance sample/neutron detector; $F_{\rm D}$, neutron detector front-area; ξ , neutron detector efficiency; $Z_{\rm N}$, number sample nuclei; f₂, correction of multiple scattering in the sample; f₃, correction of flux attenuation in the sample.

The ratio of single-scattered to multiple-scattered neutrons (f_2) was calculated /14/ with the neutron transport code MORSE /15/ using ENDF/B-IV data /16/. The factor f_3^{-1} includes both flux attenuation of the incident neutrons up to the interaction and of the neutrons outgoing in direction of the TOF-detector. It was calculated by integration over the sample volume. The values of $f_2 \cdot f_3$ were between 0.94 and 1.09.

Transformation of the $\mathbf{5}_{nm}$ into center-of-mass system yielded $\mathbf{5}_{nm}^{cm}$. The formulas used for the data reduction are described in Ref. /17/.

For groups of monoenergetic, scattered neutrons well resolved in dN/dt, the peak areas $N_{\mathbf{Q}}(\mathbf{A})$ were determined which, replacing dN/dE in eq. (1), yielded $d\mathbf{G}(\mathbf{E}_{\mathbf{o}}; \mathbf{Q}, \mathbf{A})/d\mathbf{\Omega} = \mathbf{G}_{\mathbf{nn}}(\mathbf{A})$. No multiple-scattering correction was carried out for $N_{\mathbf{Q}}(\mathbf{A})$.

Fig. 4

Neutron detector efficiency measured with TOF spectrometry of 14 MeV source neutrons (\Box), of neutrons scattered from Hydrogen (Δ) and of Cf-252 fission neutrons (o) and calculated with Monte Carlo technique (-.-). The resulting solid courve was used for the data reduction.

Fig. 5

Angle-integrated emission cross sections of Pb obtained in the present work (o) and compared with experimental data of Hermsdorf et al. (Q, /6/), Vonach et al. (+, /7/)and Takahashi et al. $(\nabla, /8/)$ and with the ENDF/B-IV evaluation (---).

Fig. 6

Measured neutron emission spectrum from Pb (o, present data; ∇ ,/8/) compared with a theoretical interpretation (-----) as direct collective excitations, pre-equilibrium and equilibrium emission of primary neutrons (....) and secondary neutrons from (n,2n).

For comparisions of the data obtained for Pb with results of other experiments, with theoretical model predictions and with evaluated data, the angle-integrated emission spectrum was derivated,

 $\mathcal{G}_{nm}(E) = \frac{d\mathcal{G}(E_{o};E)}{dE} = \int_{4\pi} d\Omega \cdot \frac{d^2 \mathcal{G}(E_{o};E,h)}{dE \cdot d\Omega}$ (2)

It is plotted in Fig. 5 together was the experimental data of Vonach et al. /7/, of Takahashi et al. /8/ and those of a previous measurement at TU /6/. Taking into account statistical and systematic uncertainties of the data as given by the authors, the four measurements are consistent. Compared with the ENDF/B-IV evaluation the experimentally determined cross sections are obviously larger. Remarkable more neutrons as evaluated are observed in the energy range 1.5 MeV $\leq E \leq 5$ MeV. The deviation is up to 30 % in the range 2 $\leq E \leq 3.5$ MeV.

In Fig. 6 the experimental data are theoretically interpreted as superposition of three components: direct excitations of vibrational modes calculated in DWBA approach /19/, pre-equilibrium and compound-nucleus neutron emission calculated with the Generalized Exciton Model code AMAPRE /20/ and secondarily emitted neutrons of (n, 2n) calculated with the statistical model code STAPRE /21/. The agreement of the calculated spectrum with the experimental is satisfactory in the low-energy part. In the highenergy part the neutron emission is overestimated. The direct component with the averaged deformation parameters used would alone explain the neutron emission for E > 8 MeV. But, reducing adequately the pre-equilibrium emission, discrepancies appear in the middle part of the spectrum where only the pre-equilibrium component is able sufficiently to describe the experimental data.

Angular distributions of neutrons emitted from Pb with E = 3.5, 5.5 and 7.5 MeV are presented in Fig. 7. The experimental data show with increasing E a pronounced forward scattering. In the ENDF/B-IV evaluation these angular distributions are assumed to be isotropic. In the measurements of Kammerdiener /5/ and of

8

Fig. 7

Angular distributions of neutron emitted from Pb with the energies E inserted. Experimental data (\circ , present work; \times ,/5/; \Diamond ,/6/; \bigtriangledown ,/8/) are compared with the ENDF/B-IV evaluation (---) and with a calculation (---). The pre-equilibrium and equilibrium component of primary neutron emission (---) is at E = 5.5 MeV practically equal to the total emission (---).

Takahashi et al./8/ the increase of the incidence neutron energy E_o by about 1.5 MeV going from backward to forward angles has the tendency to overestimate the forward-peaking. The theoretically obtained angular distributions describe the present experimental data at E = 5.5 MeV satisfactory. At E = 3.5 MeV they deviate for $\mathcal{M} \leq 30^{\circ}$ and at E = 7.5 MeV the sum of the calculated direct collective excitations and of the pre-equilibrium emissions over-estimates the neutron emission as discussed for the angle-integrated spectrum.

The data obtained for C are compared in Fig. 8 with other experimental data and with the ENDF/B-V evaluation. Generally, they agree with the expected values so that this check of spectrometer and data reduction may be considered to be satisfying.

Fig. 8

Differential neutron scattering cross sections from C for the levels inserted. The experimental data of the present work (\circ) are compared with those from other measurements (Δ ,/8/; \Box ,/22/; x,/23/) and with the ENDF/B-V evaluation evaluation (---).

Table. 1.

Differential neutron emission cross sections from Pb in the center-of-mass system (cm)

$$E_0 = 14.00 \text{ MeV}$$

E ^{cm} [MeV]	\mathbf{G}_{nm}^{cm} $\begin{bmatrix} \mathbf{b} \cdot \mathbf{sr}^{-1} \\ \cdot \mathbf{MeV}^{-1} \end{bmatrix}$	45 [%]	E ^{cm} [MeV]	$\begin{array}{c} \mathbf{G} \mathop{\mathrm{cm}}_{\mathrm{nm}} \\ [b \cdot \operatorname{sr}^{-1} \\ \cdot \operatorname{MeV}^{-1}] \end{array}$	25/5 [%]	E ^{cm} [MeV]	$\begin{array}{c} \mathbf{G} \operatorname{cm}_{nm} \\ \operatorname{b} \operatorname{sr}^{-1} \\ \operatorname{b} \operatorname{wev}^{-1} \end{array}$	Аб_{ус} [%]
2.99 3.02 3.04 3.07 3.09 3.12 3.14 3.17 3.20 3.22 3.25 3.28 3.31	.0771 .0751 .0729 .0695 .0666 .0638 .0621 .0624 .0627 .0631 .0633 .0632 .0634	27 24	4.78 4.83 4.88 4.93 4.99 5.04 5.10 5.15 5.21 5.21 5.26 5.32 5.38 5.44	.0215 .0209 .0201 .0195 .0190 .0184 .0179 .0174 .0170 .0165 .0163 .0159 .0155	29	8.92 9.05 9.19 9.33 9.47 9.62 9.77 9.92 10.08 10.24 10.40 10.57 10.74	.0147 .0155 .0164 .0181 .0188 .0190 .0198 .0174 .0139 .0083 .0115 .0173 .0172	20
3.34 3.36 3.42 3.45 3.48 3.52 3.55 3.58 3.61 3.64 3.68	.0632 .0632 .0631 .0627 .0616 .0597 .0576 .0558 .0544 .0527 .0510 .0488	21	5-556 5-556 5-555 5-555 5-555 5-555 5-555 5-555 5-555 5-555 5-555 5-555 5-555 5-555 5-555 5-552 5-552 5-552 5-552 5-552 5-552 5-552 5-552 5-552 5-552 5-552 5-552 5-552 5-552 5-552 5-552 5-552 5-5555 5-555 5-555 5-555 5-555 5-55555 5-55555 5-55555 5-55555 5-55555 5-55555 5-55555 5-55555 5-55555 5-55555 5-55555 5-55555 5-555555	.0153 .0146 .0147 .0144 .0140 .0138 .0137 .0135 .0135 .0131 .0128 .0125	30	10.92 11.10 11.29 11.48 11.68 11.89 12.10 12.32 12.54 12.77 13.01 13.26	•0223 •0286 •0297 •0354 •0395 •0470 •0612 •0928 •1350 •1871 •3308 •6652	6
3.71 3.75 3.78 3.82 3.85 3.89 3.92 3.96 4.00 4.04 4.08	•0467 •0448 •0431 •0395 •0378 •0364 •0352 •0340 •0331 •0321	24	6.31 6.39 6.47 6.55 6.63 6.71 6.88 6.97 7.06 7.15	•0122 •0121 •0120 •0119 •0118 •0118 •0118 •0118 •0118 •0118 •0118 •0118	30	13.51 13.78 14.05 14.32 14.63 14.94 15.25 15.58 15.88 15.88 16.24 16.61	1.4537 2.4018 2.5044 2.4095 1.4469 .6669 .2918 .1845 .1143 .0818 .0669	0
4.12 4.16 4.20 4.24 4.28 4.32 4.36 4.41 4.45 4.50 4.50	•0314 •0306 •0298 •0285 •0278 •0278 •0272 •0266 •0261 •0255 •0249	22	7 • 24 7 • 34 7 • 53 7 • 53 7 • 63 7 • 74 7 • 84 7 • 95 8 • 06 8 • 18 8 • 29	.0121 .0123 .0125 .0128 .0124 .0129 .0135 .0136 .0138 .0138 .0138	24	16.98 17.34 17.74	•0541 •0357 •0194	2
4•59 4•63 4•68 4•73	•0243 •0236 •0229 •0221	26	8•41 8•53 8•66 8•79	•0136 •0135 •0136 •0140	22			

	E _o =	14.10	MeV	J =	30•0 ⁰			
E CM [MeV]	\mathbf{G}_{nm}^{cm} $\begin{bmatrix} b \cdot sr^{-1} \\ \cdot MeV \end{bmatrix}$	15 [%]	E ^{Cm} [MeV]	\mathbf{G}_{nm}^{cm} $\begin{bmatrix} \mathbf{b} \cdot \mathbf{sr}^{-1} \\ \cdot \mathbf{MeV}^{-1} \end{bmatrix}$	А Б [%]	E ^{cm} [MeV]	\mathbf{G}_{nm}^{cm} $\begin{bmatrix} \mathbf{b} \cdot \mathbf{sr}^{-1} \\ \cdot \mathbf{MeV}^{-1} \end{bmatrix}$	15 [%]
2.99 3.02 3.04 3.06 3.09 3.11 3.14 3.16 3.19 3.21	•0662 •0651 •0640 •0618 •0592 •0569 •0569 •0538 •0535 •0531	12	4.57 4.62 4.67 4.71 4.76 4.81 4.86 4.91 4.91 4.96	•0176 •0170 •0164 •0158 •0152 •0147 •0143 •0139 •0135	13	7.90 8.01 8.11 8.23 8.34 8.46 8.58 8.70 8.82 8.95	•0083 •0084 •0082 •0085 •0090 •0088 •0099 •0094 •0084	12
3.24 3.27 3.30 3.32 3.35 3.38 3.41 3.44 3.44 3.47	•0527 •0520 •0512 •0504 •0496 •0490 •0483 •0477 •0462	10	5.07 5.12 5.17 5.23 5.28 5.34 5.40 5.46 5.52	•0132 •0128 •0125 •0122 •0119 •0116 •0114 •0110 •0107 •0104	15	9.08 9.22 9.35 9.49 9.64 9.79 9.94 10.09 10.25	•0065 •0082 •0091 •0106 •0104 •0088 •0061 •0069 •0057	10
3.50 3.53 3.56 3.59 3.62 3.65 3.69 3.72 3.75	•0445 •0429 •0416 •0405 •0394 •0382 •0369 •0356 •0344	10	5.58 5.64 5.70 5.77 5.83 5.90 5.96 6.03 6.10	•0101 •0098 •0095 •0092 •0089 •0087 •0085 •0083 •0081	17	10.41 10.57 10.74 10.92 11.09 11.28 11.46 11.66 11.85	•0039 •0055 •0056 •0063 •0078 •0083 •0083 •0083 •0064 •0049	12
3.79 3.82 3.86 3.89 3.93 3.96 4.00 4.04 4.08 4.11	•0333 •0323 •0314 •0304 •0296 •0288 •0282 •0282 •0275 •0269 •0261	10	6.17 6.24 6.31 6.39 6.46 6.54 6.62 6.70 6.78 6.86	•0080 •0078 •0076 •0075 •0074 •0073 •0072 •0071 •0071	18	12.06 12.27 12.48 12.71 12.94 13.18 13.42 13.68 13.94 14.21	.0056 .0045 .0058 .0112 .0236 .0424 .0870 .1480 .2018 .2138	3
4.15 4.19 4.23 4.27 4.31 4.36 4.40 4.44 4.48 4.53	•0254 •0247 •0239 •0230 •0221 •0213 •0205 •0197 •0190 •0183	11	6.95 7.03 7.12 7.21 7.40 7.49 7.59 7.69 7.79	•0070 •0070 •0070 •0071 •0071 •0072 •0073 •0075 •0077 •0080	16	14.48 14.78 15.09 15.40 15.73 16.03 16.38 16.75	•1470 •0848 •0398 •0209 •0119 •0081 •0057 •0042	10

•

.

 $E_0 = 14.12$

\$= 45.0°

E ^{cm}	G ^{cm} nm	15/5	E ^{cm}	G ^{cm} _{nm}	45/5	E CM	G ^{cm} _{nm}	15/5
[MeV]	lb.ar .MeV -]	[%]	[MeV]	[b·sr ·MeV-1]		[MeV]	[b·sr_1 •MeV_1]	[%]
3.00 3.02	•0597 •0586	9	4•58 4•63	•0148 •0143	11	7•96 8•07	•0065 •0065	
3°02 3°02	•0573 •0548		4.67	•0139 •0135		8•18 8•29	•0067 •0071	11
3.10 3.12	•0519 •0492		4.76	•0131		8•40 8•52	•0073 •0073	
3.15	•0465		4.86	•0123		8.64	•0067	
3.20	•0439		4•91 4•96	•0120 •0116		8.89	•0062	
3•22 3•25	•04 <i>3</i> 0 •0420	10	5.01	•0113 •0110		9.02 9.15	•0069 •0088	
3•27 3•30	•0409 •0397		5.11	•0107	12	9.28 9.42	•0091 •0080	a
3.33	.0388		5.22	•0104		9.56	•0086)
3•38	•0374		5•27 5•33	•0099 •0096		9.71	•0078 •0073	
3•41 3•44	•0370 •0367		5.39	•0093		10.01 10.16	•0068 •0060	
3.47	•0361 •0352		5.50	•0088		10.32	•0059	
3.53	•0344	9	5.50 5.62	•0085 •0083		10.45	•0052	
3.50 3.59	•0332		5•68 5•74	•0080 •0078	13	10.82 11.00	•0056 •0065	10
3.62 3.65	•0328 •0323		5.87	•0077 •0076		11.18 11.37	•0060 •0068	
3.68 3.71	•0315 •0307		5.94	•0074		11.56	•0055	
3.74	•0299		6.07	•0074 •00 73		11.95	•0036	
3.81	•0290		6.14 6.21	•0072 •0071		12.16	•0038 •0030	
3•84 3•88	•0271 •0262	9	6.29	•0070		12.59 12.81	•0086 •0200	
3.91 3.94	•0252 •0242	-	6.44	•0068	14	13.84	•0383	3
3.98	•0234		6•51 6•59	•0065 •0065		13.52	•1509	
4.02	•0228		6.67 6.75	•0064 •0063		13.77 14.02	•2099 •2378□	
4.09 4.13	•0212 •0205		6.83	•0062		14.30 14.57	•2479 •1900	0
4.17	•0199 •0192	10	7.00	•0060		14.83	•0976	
4.24	•0186		7•09 7•18	•0060 •0060	14	15.43	•0483	
4•28 4•32	•0180 •0174		7.27	•0060 •0060	-	15•75 16•05	•0186 •0135	3
4•36 4•41	•0169 •0165		7.46	•0061		16.38	•0081	
4.45	•0160		(+25 7+65	•0062		17.07	•0015	
4•54	•0152		7•75 7•85	•0064 •0065		17041	•0007	

 $E_0 = 14.14$ Me V

ð= 60.0°

E ^{cm} [MeV]	$ \begin{array}{c} 6 \begin{array}{c} \mathrm{cm} \\ \mathrm{nm} \\ \mathrm{b} \cdot \mathrm{sr}^{-1} \\ \cdot \mathrm{MeV}^{-1} \end{array} $	25 6 [%]	E cm [MeV]	G ^{cm} _{nm} [b·sr ⁻¹ .MeV ⁻¹]	45 <u>6</u> [%]	E ^{cm} [MeV]	$ \begin{array}{c} \mathbf{G}_{nm}^{cm} \\ [b \cdot sr^{-1} \\ \cdot MeV^{-1}] \end{array} $	45/6 [%]
2.99 3.01 3.04 3.06 3.08 3.11 3.13 3.16 3.18 3.21 3.23 3.26 3.28	•0574 •0562 •0549 •0535 •0511 •0483 •0456 •0432 •0418 •0410 •0404 •0398 •0391	8	4.68 4.72 4.82 4.86 4.91 4.96 5.06 5.12 5.17 5.22 5.28	•0134 •0130 •0126 •0122 •0119 •0115 •0112 •0109 •0106 •0103 •0100 •0097 •0095	9	8.49 8.61 8.73 8.85 8.98 9.11 9.24 9.38 9.52 9.66 9.81 9.96	•0063 •0064 •0063 •0063 •0070 •0072 •0073 •0071 •0056 •0057 •0061 •0058 •0051	7
3.31 3.34 3.37 3.39 3.42 3.45 3.45 3.51 3.51 3.57	.0383 .0376 .0370 .0366 .0362 .0359 .0352 .0352 .0341 .0330	7	5.33 5.440 5.562 5.668 5.688 5.6985 5.688 5.6885 5.6885 5.6885 5.6885 5.6885 5.6885 5.6885 5.6885 5.6885 5.6885 5.6885 5.6885 5.6885 5.68855 5.688555 5.6885555555555	.0092 .0089 .0087 .0084 .0081 .0078 .0076 .0073 .0071	10	10.27 10.43 10.59 10.76 10.93 11.11 11.30 11.48 11.68	•0052 •0046 •0052 •0050 •0059 •0064 •0060 •0060 •0047	10
3.60 3.63 3.66 3.69 3.72 3.75 3.78 3.82 3.85	•0320 •0312 •0305 •0298 •0290 •0281 •0272 •0265 •0257 •0250	7	5.87 5.93 6.00 6.14 6.21 6.28 6.35 6.43 6.50	•0069 •0067 •0065 •0064 •0063 •0061 •0060 •0059 •0058 •0058	12	11.87 12.07 12.28 12.72 12.94 13.18 13.41 13.66 13.91 14.18	.0040 .0028 .0013 .0021 .0059 .0152 .0298 .0432 .0477 .0534	19
3.88 3.92 3.95 3.99 4.02 4.06 4.10 4.10 4.17 4.21	•0243 •0236 •0229 •0224 •0219 •0213 •0207 •0202 •0196 •0190	В	6.58 6.66 6.82 6.90 7.08 7.08 7.16 7.25 7.35	•0057 •0057 •0056 •0056 •0056 •0057 •0057 •0058 •0058 •0058	11	14.44 14.70 14.99 15.29 15.60 15.89 16.22 16.55 16.89 17.23	•0472 •0297 •0142 •0061 •0033 •0026 •0018 •0015 •0009 •0004	11
4 • 25 4 • 29 4 • 33 4 • 37 4 • 41 4 • 46 4 • 50 4 • 59 4 • 63	•0184 •0178 •0172 •0166 •0161 •0156 •0151 •0147 •0143 •0138	8	7.44 7.53 7.63 7.73 7.83 7.93 8.04 8.15 8.26 8.37	•0058 •0059 •0059 •0062 •0062 •0058 •0059 •0061 •0062 •0066	9			

 $E_0 = 14.24 \text{ MeV}$ $f = 75.0^{\circ}$

[MeV] [$\begin{array}{c} \mathbf{G}_{nm} \\ \mathbf{-1} \\ \mathbf{b} \cdot \mathbf{sr} \\ \mathbf{N} \mathbf{v} \mathbf{-1} \end{array}$	76 [%]	E CM [MeV]	$\begin{bmatrix} \mathbf{G}_{nm}^{cm} \\ \mathbf{f}_{nm}^{-1} \\ \mathbf{f}_{nm}^{-1} \end{bmatrix}$	[%]	E ^{CM} [MeV]	\mathbf{G}_{nm}^{cm} $\begin{bmatrix} \mathbf{b} \cdot \mathbf{sr}^{-1} \\ \mathbf{Mev}^{-1} \end{bmatrix}$	45 [%]
3.01 .0	583	11	4.61	•0143		7.93	.0049	
3.03 .0	573	••	4.65	•0139		8.03	•0049	
3.06 .0	561		4.70	•0135		8.13	•0050	
3.11 .0	521		4.79	•0127		8.34 8.34	•0052	
3.13 .0	493		4.83	•0123		8.45	•0053	
3.15 .0	466		4.88	•0118		8.56	•0054	
3.18 .0	441		4.98	•0114		8.67	•0055	
3.23	400 423	q .	5.02	•0104	13	8.91 8.91	•0055	13
3.25 .0	416	-	5.08	•0100	-	9.03	•0055	.,
3.28 .0	410		5.13	•0096		9.15	•0061	
3.31 .0	403		5.23	•0092		9.27	•0056	
3.36 .0	292 389		5,29	•0084		9.40	•0052	
3.39 .0	383		5.34	•0081		9.67	•0057	
3.41 .0	380		5.40	•0078		9 •80	•0050	
3.44 .0	377		2+40 5-51	•0073		9.94	•0057	
3•50 •0	365	9	5.57	•0071	16	10.09	•0049	13
3.53 .0	354	,	5.63	•0069		10.38	•0054	
3.56 .0	343		5.69	•0067		10.53	•0033	
3.59 .0	331		5.82	•0065		10.68	•0038	
3.65	314		5.88	•0063		10.84	•0040	
3.68 .0	304		5.95	•0062		11.17	•0039	
3.71 .0	293		6.01	•0061		11.33	.0038	
3.75 .0	282		6.15	•0060 •0059		11.51	•0037	
3.81 .0	270	٩	6.22	•0058	17	11.68	•0048	22
3.85 .0	250)	6.29	•0056	•	12.04	•0024	2)
3.88 .0	240		6.36	•0055		12.23	.0018	
.3.91 .0	231		6.50	•0054		12.42	•0000	
3.98	222		6.57	•0051		12.62	•0000	
4.02 .0	206		6.65	•0050		13.03	•0060	
4.06 .0	200	1	6.73	•0049		13.24	.0170	
4.09 .0	194		6.88	•UU48		13.46	•0296	
4.17 .0	189	11	6.96	•0047	18	13.68	•0390	
4.21 .0	178		7.04	•0046	. 🗸	12.15	•0417	2
4.24 .0	174		7.12	•0046		14.40	•0463	L -
4.28 .0	169		1.20	•UU46		14.65	•0365	
4.36 -0	161		7.38	•0046		14.90	•0180	
4.40 .0	157		7.46	•0046		15.46	•0070 •0028	
4.44 .0	154		7.55	•0046		15.74	.0016	
4.48 .0	151		7.71	•0047 •0047		16.02	•0012	
4•52 •0 4•57 =0	148 146	11	7.83	•0048	15			

15

.

е С
U
14.25
MeV

J= 90.6°

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00000044444444444444444444444444444444	๛๛๛๛๛๛๛๛๛๛๛๛๛ ๛๛๛๛๛๛๛๛๛๛๛๛ ๛๛๛๛๛๛๛๛๛๛๛	00000000000000000000000000000000000000	20002220000000000000000000000000000000	в ст [MeV]
014488266844055	01997	022778 022778 022778 02278 022778		005 005 005 005 005 005 005 005 005 005	ر میں (b.gr میں Mev ا
 	10	10	യ	ە ە	45/5 [%]
87777777777 09876548827 38445678075	77666666666 -0988765544 -078-1688-14	55555555555555555555555555555555555555		555444444444 200000000000000000000000000	E cm [MeV]
	00044422222222222222222222222222222222	•00049 •0005577992	00092 000777 00068 000774	.0137 .0137 .0137 .0137 .0127 .01123 .01123 .01123 .01123 .01123 .01123 .01123 .01123 .01123 .01123 .01137	G ^{cm} nm [b·sr_1 · MeV-1]
16	19	19	15	1 S	[%] 26/6
111111 655555 56804 4446804	44400000000000000000000000000000000000	12.00 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.0000 12.0000 12.0000 12.0000 12.0000 12.00000 12.00000 12.0000000000	10000000000000000000000000000000000000	9900 9000 9000 9000 9000 9000 9000 900	ß cm [MeV]
.00031 .00017 .00004	• • • • • • • • • • • • • • • • • • •	00033 00030 00033 0003000000	•0033 •0025	•00443 •00443 •00443 •00444 •00443 •00444 •00444 •00444 •00445 •00445	ر ست (b.sr_1 .Mev_1
17		1 8	19	-1 ບັ	15 [%]

 $E_0 = 14 \cdot 24 \text{ MeV}$

J= **1**04.5°

	E ^{Cm} [MeV]	6 ^{cm} _{nm} [b·sr ⁻¹ ·MeV ⁻¹]	45% [%]	E ^{CM} [MeV]	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	25/6 [%]	E ^{Cm} [MeV]	$\mathbf{\tilde{G}}_{nm}^{cm}$ $\begin{bmatrix} \mathbf{b} \cdot \mathbf{sr}^{-1} \\ \cdot \mathbf{MeV}^{-1} \end{bmatrix}$	∆5 ⁄6 [%]
-	3.00 3.03 3.05 3.07 3.10 3.12 3.14 3.17 3.19 3.22 3.24 3.24 3.27	•0557 •0555 •0551 •0545 •0536 •0522 •0495 •0495 •0444 •0420 •0441 •0401	11 10	4.65 4.69 4.74 4.78 4.82 4.87 4.92 4.97 5.01 5.06 5.11 5.16	•0130 •0126 •0121 •0117 •0113 •0110 •0106 •0103 •0099 •0096 •0093 •0089	11	8.15 8.26 8.36 8.47 8.58 8.69 8.80 8.92 9.04 9.16 9.28 9.41	.0041 .0041 .0040 .0039 .0046 .0038 .0031 .0018 .0038 .0039 .0037	19
	3.29 3.32 3.35 3.40 3.43 3.45 3.45 3.51 3.54 3.57 3.60	•0392 •0383 •0373 •0364 •0355 •0347 •0341 •0336 •0330 •0320 •0329 •0299	11	5.227 5.27 5.33 5.439 5.49 5.67 5.67 5.79 5.85 5.85	•0086 •0083 •0080 •0077 •0074 •0071 •0068 •0065 •0065 •0063 •0060 •0057 •0055	17	9.54 9.67 9.81 9.95 10.09 10.23 10.38 10.53 10.68 10.84 10.99 11.16	•0026 •0031 •0032 •0025 •0025 •0028 •0026 •0023 •0015 •0015 •0010 •0017 •0029	28
	3.63 3.66 3.69 3.72 3.75 3.78 3.82 3.85 3.88	•0289 •0282 •0275 •0267 •0259 •0250 •0242 •0235 •0228	11	5.92 5.98 6.05 6.11 6.18 6.25 6.32 6.39 6.46	•0053 •0051 •0050 •0048 •0046 •0045 •0043 •0042 •0042	21	11.32 11.49 11.66 11.84 12.02 12.21 12.40 12.59	•0023 •0024 •0016 •0025 •0019 •0007 •0010 •0010	40
	3.92 3.95 3.95 4.02 4.06 4.10 4.13 4.17 4.21	•0221 •0215 •0209 •0203 •0198 •0194 •0190 •0186 •0181	11	6.53 6.61 6.68 6.76 6.93 6.99 7.07 7.15	•0039 •0039 •0038 •0038 •0038 •0038 •0038 •0038 •0038 •0038	23	12.79 12.99 13.20 13.42 13.64 13.86 14.10 14.34 14.58	•0000 •0037 •0054 •0107 •0127 •0145 •0155 •0148 •0129	20
	4 • 24 4 • 28 4 • 32 4 • 36 4 • 40 4 • 44 4 • 48 4 • 52 4 • 56 4 • 61	.0177 .0172 .0168 .0162 .0157 .0152 .0147 .0143 .0138 .0134		7 • 23 7 • 32 7 • 40 7 • 49 7 • 58 7 • 58 7 • 67 7 • 76 7 • 86 7 • 95 8 • 05	•0039 •0039 •0040 •0040 •0041 •0041 •0041 •0042 •0043 •0042	19	15.10 15.37 15.65 15.94	•0045 •0013 •0006 •0005	14

17

 $E_0 = 14.12 \text{ MeV}$ $\sqrt[3]{=} 120.0^{\circ}$

t	· · · · · · · · · · · · · · · · · · ·	1			;			
E ^{cm}	G ^{cm}	150/~	E ^{cm}	Gcm	105/~	E ^{cm}	6 ^{cm}	15/~
[MeV]	[h1	10	[MeV]	[h1		[MeV]	[b.m1	/ /6
		[%]		10'Br	[%]			[%]
1	• Me v -	<u> </u> !		• Mev]	<u> </u>	1	• Mev j	
2.98	•0564	8	4.62	•011 7	10	8.17	• 0 028	
3.01	•0552		4.66	•0114		8.28	.0029	
3.05	•U540 •0531		4.71	•U110		8.39	•0029	
3.08	•0522		4.80	•0102		8.61	•0029	
3.10	·0512		4.84	•0098		8.73	•0030	
3.12	•0500		4.89	•0094		8.85	.0032	14
3.15	•0481		4.94	•0090		8.97	•0034	
3.19	•0431		4.99	+0086	11	9.10	•0031	
3.22	.0410	7	5.09	•0079		9.36	•0028 •0028	
3.24	•0395		5.14	•0075		9.49	.0024	
3.27	•0386		5.19	•0072		9.63	.0022	
3.32	•U3(7 •D367		5.24	•0069		9.77	•D021	
3.35	•0357		5.35	•0064		9.92	•0020	
3.37	•0346		5.41	•0062		10.00	•0010	25
3.40	•0335		5.47	•0060		10.37	.0014	->
3.43	•0325		5.52	•0058	13	10.52	•0009	
3.48	•0309	8	5.61	•UU56 •0054		10.69	•0014	
3.51	•0303		5.70	•0053		11.02	•0012	
3.54	•0295		5.76	•0051		11.19	.0010	
3.57	•U285		5.82	•0049		11.37	.0019	
3.63	•0267		5.05	•UU48		11.55	•0016	25
3.66	•0261		6.01	•0044		11.93	•0012	35
3.69	•0257		6.08	•0043		12.12	.0007	
3.75	•0253		6.15	•0041	17	12.32	•0010	
3.79	•0241	8	6.28	•0040 •0039		12.53	•0011	
3.82	•0235	-	6.35	•0038		12.97	•0015	
3.85	•0229		6.42	•0036		13.19	.0037	
3.89	•0223		6.50	•0036		13.42	•0055	
3,95	•0208		6.65	•0035 •0034		13.66	•0068	
3.99	•0201		6.72	•0034		12.92	•0065	11
4.02	•D193		6.80	•0034		14.44	•0045	••
4.06	•0186		6.88	•0034	17	14.71	•0037	
4.13	•0173	8	7.01	•0034		15.00	•0030	
4.17	•0166	Ū	7.13	•0034		15.59	•0029 •0014	
4.21	•0160		7.21	•0034		15.91	.0010	33
4.25	•0154		7.30	•0033		16.24	.0005	
4.33	•0149		7.48	•UU33		16.58	•0004	
4.37	•0139		7.57	•0032		10.89	+UUU6	
4-41	•0134		7.67	•0030				
4•45	•0130 •0127		7.76	•0029	17			
4.53	•0124		7.96	•0032				
4.57	•01 <u>20</u>		8.07	•0031				

 $E_0 = 14.12 \text{ MeV}$

J = 135.0 °

	E ^{cm}	6 ^{cm} _{nm}	15/5	E ^{cm}	G ^{cm} _{nm}	15/5	ECM	6°m nm	15%
	[MeV]	[b.sr ⁻¹ .MeV ⁻¹]	[%]	[MeV]	$[b \cdot sr^{-1}]$ $\cdot MeV^{-1}]$	[%]	[Me V]	[b·sr ⁻¹ • MeV ⁻¹]	[%]
•	3.00 3.02 3.04 3.06 3.09 3.11 3.13 3.16 3.18 3.20 3.23 3.25 3.28 3.25 3.28 3.30 3.33 3.35	•0550 •0536 •0521 •0510 •0498 •0487 •0474 •0457 •0435 •0414 •0395 •0381 •0377 •0373 •0369 •0364	10	4.55 4.63 4.68 4.72 4.81 4.86 4.95 5.00 5.05 5.10 5.15 5.20 5.25	.0121 .0117 .0112 .0108 .0104 .0100 .0096 .0093 .0089 .0086 .0083 .0081 .0078 .0076 .0074 .0072	15	7.86 7.96 8.06 8.17 8.27 8.38 8.50 8.61 8.73 8.85 8.97 9.99 9.22 9.35 9.48 9.62	.0032 .0032 .0033 .0033 .0033 .0033 .0033 .0033 .0032 .0031 .0031 .0031 .0030 .0029 .0028 .0026 .0025	19
	3.43 3.43 3.443 3.46 3.49 3.52 3.55 3.60 3.63	•0357 •0350 •0342 •0336 •0330 •0323 •0317 •0305 •0293 •0291	9	5.31 5.36 5.42 5.53 5.58 5.64 5.70 5.76 5.82	•0069 •0067 •0065 •0062 •0057 •0055 •0053 •0053 •0050 •0048	18	9.76 9.91 10.05 10.20 10.36 10.52 10.68 10.84 11.01 11.19	.0023 .0022 .0020 .0019 .0018 .0016 .0013 .0012 .0012 .0012	29
	3.66 3.69 3.72 3.75 3.78 3.82 3.85 3.85 3.88 3.95	•0271 •0263 •0255 •0248 •0239 •0231 •0222 •0215 •0208 •0202	10	5.00 5.94 6.01 6.07 6.14 6.21 6.28 6.35 6.42 6.49	•0045 •0043 •0041 •0039 •0037 •0035 •0034 •0032 •0030 •0029	24	11.37 11.55 11.74 11.93 12.13 12.33 12.54 12.75 12.97	.0012 .0012 .0010 .0008 .0007 .0007 .0009 .0014 .0024	52
	3.98 4.02 4.05 4.08 4.12	•0195 •0189 •0183 •0179	11	6.57 6.64 6.72 6.50 6.88	•0028 •0027 •0026 •0025 •0025	31	13.43 13.68 13.91 14.16	•0038 •0049 •0065 •0071 •0073	13
	4.16 4.19 4.23 4.27 4.31 4.34 4.38 4.42 4.46	•0169 •0165 •0160 •0156 •0151 •0146 •0141 •0136 •0130		6.96 7.04 7.12 7.21 7.30 7.39 7.48 7.57 7.57	•0025 •0025 •0026 •0026 •0027 •0028 •0029 •0029 •0029 •0030	22	14.70 14.97 15.23 15.53 15.84	•0065 •0059 •0046 •0028 •0014 •0004	33

E cm [MeV]	$\mathbf{6}_{nm}^{cm}$ $\begin{bmatrix} \mathbf{b} \cdot \mathbf{sr}^{-1} \\ \cdot \mathbf{MeV}^{-1} \end{bmatrix}$	45/6 [%]	E ^{Cm} [MeV]	б ^{ст} лт [b·вг ⁻¹ .MeV ⁻¹]	45 [%]	E ^{Cm} [MeV]	$ \begin{bmatrix} 6^{cm} \\ nm \\ · MeV -1 \end{bmatrix} $	∆5 ⁄6 [%]
3.01 3.03 3.05 3.08 3.10 3.12 3.15 3.17 3.19 3.22 3.24 3.27 3.29	•0662 •0642 •0621 •0603 •0584 •0565 •0546 •0519 •0487 •0458 •0431 •0412 •0401	13	4.62 4.66 4.75 4.80 4.84 4.89 4.98 5.03 5.08 5.13	.0125 .0121 .0117 .0112 .0107 .0102 .0097 .0092 .0082 .0082 .0078 .0074 .0070	24	8.08 8.19 8.29 8.40 8.51 8.63 8.74 8.86 8.98 9.10 9.23 9.36	.0024 .0024 .0023 .0023 .0023 .0023 .0022 .0022 .0021 .0020 .0019 .0017	46
3.32 3.34 3.37 3.39 3.42 3.45 3.45 3.45 3.53 3.55 3.55 3.55	•()391 •0382 •0372 •0363 •0354 •0346 •0341 •0337 •0333 •0329 •0310	15	5.24 5.29 5.34 5.40 5.45 5.57 5.62 5.68 5.74	• 0066 • 0063 • 0058 • 0056 • 0053 • 0053 • 0051 • 0049 • 0047 • 0045	33	9.49 9.62 9.76 9.90 10.05 10.20 10.35 10.50 10.66 10.82 10.99	•0015 •0016 •0013 •0010 •0009 •0007 •0006 •0006 •0006 •0008 •0014	90
3.59 3.62 3.65 3.68 3.71 3.74 3.77 3.80 3.83 3.83	•0319 •0309 •0299 •0290 •0283 •0275 •0266 •0255 •0244 •0234	15	5.80 5.93 5.99 6.05 6.12 6.19 6.25 6.32 6.39	•0043 •0041 •0040 •0038 •0036 •0035 •0033 •0032 •0031 •0029	42	11.16 11.33 11.51 11.69 11.87 12.07 12.26 12.46 12.67 12.89	.0016 .0018 .0013 .0009 .0004 .0002 .0008 .0012 .0013 .0025	55 100
3.90 3.93 3.97 4.00 4.04 4.07 4.11 4.11 4.18 4.22	•0224 •0214 •0205 •0196 •0188 •0180 •0180 •0174 •0169 •0164 •0160	18	6.46 6.53 6.61 6.68 6.76 6.83 6.99 7.07 7.16	•0029 •0028 •0028 •0027 •0027 •0027 •0027 •0027 •0027 •0027 •0027	49	13.11 13.33 13.57 13.81 14.06 14.31 14.58 14.85 15.14 15.42	•0050 •0062 •0073 •0079 •0064 •0040 •0019 •0017 •0027 •0029	20
4 • 26 4 • 29 4 • 33 4 • 37 4 • 41 4 • 45 4 • 49 4 • 54 4 • 58	•0156 •0152 •0149 •0145 •0142 •0138 •0135 •0132 •0128	19	7.24 7.33 7.42 7.51 7.60 7.69 7.79 7.88 7.98	•0027 •0027 •0026 •0026 •0026 •0025 •0025 •0025 •0025 •0025	45	15.73 16.05 16.38 16.72	•0027 •0020 •0010 •0006	

E _o [MeV]	ע [°]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	€ ^{cm} [±] ⊿€ [mb⋅sr ⁻¹]	^{°m} ور [°]	$5_{nn'}^{cm} 45_{mb \cdot sr^{-1}}$	([*] °]	C ^{cm} , [±] [mb.sr ⁻¹]
		Q =	• 0	Q	= -4,439 MeV	Q	= -7,653 MeV
14.08	15.0	16.2	430.6 ± 1.2	16.5	37•3 ± 0•5	16.9	4.6 ± 0.3
14.10	30.0	32•4	224•5 ± 0•8	32•9	30.0 ± 0.2	33•7	1.9 ± 0.1
14.11	40.3	43•4	118.1 ± 0.6	44.1	27•3 ± 0•3	45•1	1.0 ± 0.3
14.11	45.0	48.4	74.8 ± 0.3	49•2	22.4 ± 0.2	50.3	1.0 ± 0.2
14.12	55.6	59•5	33•7 ± 0•4	60•4	19.5 ± 0.3	61.7	1.1 ± 0.1
14.12	60.0	64.1	22.6 ± 0.2	65.1	15•7 ± 0•2	66.4	0.97 ± 0.1
14.24	75.0	79.6	20.1 ± 0.2	80.7	10.3 ± 0.1	82.2	0.85 ± 0.1
14.25	90.6	95•4	29•3 ± 0•2	96•5	7•5 ± 0•1	98.0	0.69 ± 0.1
14.24	104•5	109.1	30•4 ± 0•3	110.2	8.9 ± 0.1	111.7	0.75 ± 0.1
14.12	120.0	124.1	22•2 ± 0•3	125.1	11.3 ± 0.1	126.4	0.84 ± 0.2
14.11	135.0	138.4	15•7 ± 0•2	139.2	14.2 ± 0.2	140.3	0.46 ± 0.1
14•10	150.0	152.4	17•9 ± 0•5	152.9	19•9 ± 0•3	153•7	0.94 ± 0.2
14.08	165.0	166.2	27•1 ± 1•3	166.5	28.5 ± 0.7	166•9	1.8 ± 0.6

Tab. 2. Angular distributions of neutrons elastically and inelastically scattered from C in the center-of-mass system (cm).

21

References

- 1/ International Tokamak Reactor, IAEA STI/PUB/619, / Vienna 1982, p. 450-476. World Request List for Nuclear Data, INDC(SEC)-88/URSF, 2/ Ι IAEA Vienna, 1983. 3/ P.M. Schetman and J.D. Anderson, Nucl. Phys. 77(1966) 241. G. Clayeux and J. Voigner, CEAR 4279(1972). J.L. Kammerdiener, Thesis Ph.D., UCRL-51232(1972). D. Hermsdorf et al., ZfK-277(U)(1975), INDC(GDR)-2/L. H. Vonach et al., BNL-NCS-51245, INDC(USA)-84/L(1980). A. Takahashi et al., Oktavian-Report A-83-01(1983). / 4/ / 5/ 6/ 7/ 8/ H. Helfer et al., INDC(GDR)-34/GI, IAEA Vienna 1985, p.13. 9/ / 10/ R. Arlt et al., ZfK-408(1979) 154. M. Adel-Fawzy et al., ZfK-408(1979) 150. D. Hermsdorf, ZfK-315(1976) 192. T. Elfruth et al., INDC(GDR)-34/GI, IAEA Vienna 1985, p.11 / 11/ / 12/ / 13/ L. Rodrigues, Forschungspraktikum, TU Dresden, 1985. / 14/ / 15/ / 16/ M.B. Emmet, ORNL-4972(1975).
- F.G. Percey, ENDF/B-IV, Library, MAT 1288.
- / 17/ H.D. Giera et al., Kernenergie 14(1971) 115.
- K. Nakagama et al., Nucl. Instr. Meth. 190(1981) 555.
 A.I. Ignatyuk, V.P. Lunev, private comm., 1983.
 H. Kalka, Diplomarbeit, TU Dresden, 1983.
 M. Uhl, B. Strohmaier, IRK-76/1, 1976.
 K. Guhl et al., Phys. Rev. 24(1981) 2458. / 18/
- / 19/
- / 20/

- / 21/ / 22/ / 23/ C. Bonazzola et al., Lettre al Nuovo Cimento 3(1972) 99.