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ON THE NEUTRON RESONANCE CROSS-SECTION* 

K. Seidel, D. Seeliger, A. Meister, S. Mittag, U. Pilz 
Technical University Dresden, Sektion Physik 

German Democratic Republic 

ABSTRACT 

This paper gives a review of recent research into the influence of 
atomic, molecular and solid-state effects in a target on the 
cross-section for the interaction of neutrons with nuclei at low-
energy neutron resonances. The influence of these effects on Doppler 
broadening is examined, and calculated and experimental results are 
compared. The results are also given of an investigation of 
temperature and chemical shifts in neutron resonances analogous to the 
second-order Doppler effect and isomer shift familiar from Mössbauer 
gamma-ray spectroscopy. 

Introduction 

The cross-section for nuclear reactions is usually examined 

independently of the atomic, molecular or solid-state characteristics of the 

sample under investigation. The reason for this is that the energy of nuclear 

processes, as a rule, exceeds by many orders of magnitude the typical energies 

for chemical bonds or thermal motion of atoms in crystal lattices or 

molecules. However, there are some exceptions where the influence of crystal 

and molecular effects must be taken into account. One of these exceptions is 

the interaction of slow neutrons with nuclei. 

The present paper reviews recent research into the influence of atomic, 

molecular and solid-state effects on the cross-section for the interaction of 

neutrons with nuclei at low-energy neutron resonances. Neutron resonances are 

clearly defined narrow maxima in the cross-section for nuclear reactions 

involving neutrons which lead to the formation of isolated excited states of a 

compound nucleus with an energy somewhat greater than the neutron bonding 

energy. Resolved neutron resonances exist within a neutron energy range of 

one electronvolt to one kiloelectronvolt, depending on the nuclides in 

* Published in "Fizika Ehlementarnykh Chastits i Atomnogo Yadra 19 2 (l988)rt 
and translated from Russian. 
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question. The precise energy position and shape of the neutron resonances 

depend not only on the nuclear characteristics of the nuclides, but also on 

the surrounding medium. Research into this area has been going on since 

nuclear physics began. Thus, Doppler broadening of resonances was discussed 

as early as 1937 in a paper by Bethe [1], and the fundamental theoretical work 

on Doppler broadening for crystalline solid bodies was done by Lamb [2] 

in 1939. Neutron spectroscopy of nuclei with resonance neutrons using 

powerful pulsed sources has undergone such enormous development in recent 

years that new and more fine effects have been found in the experiments. 

These effects are related both to the structure of the nuclei and to their 

surrounding medium. It has, for instance, become possible to investigate the 

area of hyperfine interaction. 

In section 1, a short description is given of the experimental 

methodology used to investigate such effects as Doppler broadening and 

temperature and chemical shift in neutron resonances [3-10]. 

To investigate these fine effects one must have a more precise 

understanding of the influence of atomic, molecular, and in particular solid 

state characteristics on the behaviour of the neutron resonance cross-

section. This is relevant, primarily, of course, to the most significant 

effect - Doppler broadening. A comparison of the position and shape of 

measured neutron resonances for target nuclei bonded in different chemical 

compounds clearly shows the influence of the various vibration spectra of 

solid bodies and molecules on Doppler broadening [3, 5-8]. Section 2 presents 

methods for describing Doppler broadening of neutron resonances. By comparing 

the results obtained using these methods with experimental data, the accuracy 

of the theoretical methods can be evaluated. 

Thermal motion of target nuclei not only causes broadening of the 

neutron resonances, but also temperature-related displacements in the 

resonance positions. There is a well-known analogue to these displacements -

the temperature shifts of Mössbauer gamma lines [11, 12]. Temperature shift 
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of neutron resonances was first recorded experimentally, and substantiated 

theoretically, in Ref. [10]. This effect is dealt with in section 3. 

Section 4 examines the influence of hyperfine interaction between the 

nucleus and the atomic shell on neutron resonances. The first experimental 

investigation of this type of phenomenon - a shift in the position of the 

neutron resonances when performing measurements with polarized neutrons or 

with oriented nuclei and a change in polarization - is described in 

Refs [13, 14]. This shift is caused by the interaction of the atomic nucleus 

with the atom's internal magnetic field. By measuring the shift one may 

determine the magnetic moments of the atomic nucleus in the highly excited 

states occurring during resonance capture of neutrons. When measuring the 

passage of neutrons through targets containing various chemical compounds of 

the nucleus under investigation [3], chemical shifts in the neutron resonances 

caused by electrical hyperfine interaction of the nuclear charge with the 

electron shell were observed. Using this effect, one can determine the mean 

square charge radii of nuclei in highly excited compound states [3, 4, 9, 15]. 

Both effects have analogues in Mössbauer spectroscopy - in hyperfine splitting 

and isomer shift [16, 17]. In the present paper, we will limit ourselves to 

investigations using unpolarized neutrons and nuclei, while Ref. [18] deals in 

detail with the investigation of the interaction of polarized neutrons with 

nuclei. 

1. Measurement of fine effects in the total resonance cross-section 

These atomic, molecular and solid-state effects in the resonance 
-3 -1 

cross-section are, as a rule, small (Aa/a a 10 -10 ). Therefore, 

it is essential that a high level of statistical accuracy in the measurement 

of the resonance spectra and a suitably high resolution of the neutron 

resonances be achieved. These spectrometer power and resolution requirements 

can be met in measurements of neutron transmission through samples using the 

time-of-flight method and powerful pulsed neutron sources. 
5 



The dependence of neutron transmission on the total interaction 

cross-section °(En) f°r neutrons of energy E^ with nuclei is determined 

using the expression 

T(E ) = exp[-No(E )], (1) n n 

where N is the number of nuclei per unit area of the sample; the neutron 

energy E^, measured in eV, is determined from the time-of-flight t, measured 

in vs, 

E = (72.3L/t)2, n 

L being the length of the flight path in m. 

Owing to the negligible scale of the effects under consideration, the 

main aim of the experiments consists in measuring differences in the resonance 

cross-sections of various samples. Hence, the following requirements which 

must be met by those experiments: 

(a) Owing to the limited resolving power of the spectrometer, the 

energy spread AE should, as a rule, be less than the width n 
T of the resonance under investigation: 

AEn^T (2) 

In time-of-flight experiments with a neutron pulse length 

of At r 
AE - A<r E3'2 

where AE and E are measured in eV, L in m, and At n n r 

in jis. Expressions (2) and (3) set the upper limit on the 

energy of neutron resonances for which these investigations are 

possible; 

(b) To achieve statistical accuracy of measured spectra when studying 
—3 - 2 6 effects in the range Aa / a a 10 -10 , more than 10 counts 

are required in each time channel. At the same, time, the channel 



width should be less than the time resolution. This places 

additional restrictions on the scope for investigating effects 

from the point of view of intensity; 

(c) The relative difference in the number of nuclei of a given nuclide 

per unit area for two samples being compared must be less 
-3 

than 10 . Remaining experimental conditions should be as 

identical as possible. All these requirements for the experiment 

are very stringent; 

(d) An important condition for reliable measurement of the 

cross-section in the resonance region is optimum thickness of the 

sample 

where O(EQ) is the cross-section at the resonance maximum. If 

sample thickness (owing to a large resonance cross-section) is 

very small (0.1-0.01 mm) and samples in powder form are being 

used, the uneven thickness due to the graininess of the powder 

must be taken into account in expression (1). 

From these requirements it is clear that the investigation of these 

fine effects is an extremely difficult experimental task. 

Let us examine the actual equipment set-up used for such experiments of 

the OIYal (Joint Nuclear Research Institute) [3-10]. The experimental layout 

is shown in Fig. 1. The spectra of neutrons passing through the samples under 

investigation are measured using the beam of an 1BR-30 pulsed reactor working 

in booster mode with an LUEh-40 linear electron accelerator [19]. The flight 

path L = 50-60 m and the neutron pulse duration At^ ~ 4.5 ys. This 

means that the condition AE < T [cf. (2)] is met the energy region E < 13 eV n n ^ 

where r ~ 0.1 eV. In order to achieve identical experimental measuring 

conditions for different samples, measurements are performed on two (or three) 

samples which are introduced into the beam one after another for a short time, 

e.g. for five minutes. Each five-minute spectrum is checked against the 
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Fig. 1. Experimental layout in Refs [3-10]: 
1BR-30 - pulsed reactor operating in booster mode with the 
LUEh-40 accelerator; 1, II - samples under investigation; 
D - neutron detector; R - sample with reference resonances; 
M - neutron beam monitor. 

Fig. 2. Experimental time-of-flight spectrum for a natural uranium 
sample with a Tb control sample in the beam (t - number of 
the time channel of width 2 ps, N - number of readings). 

readings of the beam monitor and the reactor starting pulse counter. When the 

conditions for spectrum consistency laid down by the experimenter are 

fulfilled, the spectrum is recorded in the computer memory. 

Then the next sample is introduced into the beam. The total time 

required to measure two samples where loads in the detector channel can 

momentarily reach 3 x 10~* pulses/s is at least several days. A 

scintillation detector with a lithium window is used to register neutrons. In 

addition to the sample under investigation, a reference sample is constantly 

held in the beam, and the resonances from this sample provide an objective 

control for the time spectra. In Fig. 2, one of the spectra for a uranium 
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sample is shown; it was obtained over ten hours of measurement during which 

time three spectra were obtained from different samples. Some experimental 

examples of differences in neutron transmission are given in Pig. 7. 

The IBR-30 reactor operating in booster mode with an LUEh-40 linear 

accelerator is, at present, one of the most powerful pulsed neutron sources 

available for studying effects of this type. With this device, measurements 

of this kind are limited by the above-mentioned requirements to low-energy 

resonances covering the energy region E^ up to 25 eV. This means that at 

present, a maximum of approximately 200 resonances for 100 nuclides can be 

investigated. 

The development of pulsed neutron sources using high current proton 

accelerators and pulsed boosters [20] will open up the possibility of 

investigating fine effects in neutron resonances at energies up to 

one kiloelectronvolt and will help reduce measurement times and sample mass 

correspond ingly. 

2. Doppler broadening of neutron resonances 

The cross-section in the region of isolated resonances for a stationary 

target nucleus. The energy dependence of the total cross-section for neutron 

interaction with nuclei for a stationary nucleus OQ(E^) can be represented 

by the following summation: 

C*o {Ex) = a,. + I [OBW (Ex) - oB,t (Ex) + o[nt (Ex)]}. 3 (4) 

The potential scattering cross section a is determined using the 
P 

expression: 
2 a = 4irR , P P 

where R^ is the potential scattering radius. 

The summation in expression (4) is carried out for all resonances j 

contributing to the total cross-section at the energy under consideration. 



The first term in the summation is given by the well-known Breit-Wigner 

formula [21]: 

üravfF)-"^ **rn(£°>F ( 

where _ 2J — 1 _ h S — 2 (2/ — H & x — 2(2/̂ 1) -- • 

Here is the resonance energy; r is the total width; r (E„) is the 
u n 0 

neutron width for E^; J is the resonance spin; I is the target nucleus spin; 

k is the neutron wave number and m^ is the neutron mass. The quantity 
p 

0. . (Ex ) takes into account interference between potential and 
int x r 

resonance scattering: 

rrP . I f \ — i-n^aT) 
(£,-£,)•+ (172)» 

The last term in the summation contained in expression (4) describes 

the interference of resonance j with neighbouring resonances [22]: 

CT.NT {£>*)- p g (Ex_£0)«-r(r/2)* ' ( 6 ) 

The parameters u and v, like the other resonance parameters, can be determined 

experimentally. Formula (6) gives only one possible, simple description of 

the interference (for other methods of describing this see Refs [22-26]). The 

r 
interference contributes <s. . to the cross-section if resonances with 

int 

identical spin overlap and if the condition r,. +• r > r holds 
f n " Y 

for the fission width r^, the gamma-decay width r , and the neutron 

width r [27]. Where this is not the case, its contribution is negligibly 
n 

small. The influence on the cross-section of a nuclear state with an energy 

somewhat lower than the neutron binding energy can be accounted for in terms 

of a resonance with a negative energy E^. 

The influence of target nucleus motion on the cross-section. A. real 

atom is not attached to anything; it is surrounded by a medium which allows 

its external degrees of freedom to be excited, i.e. the atom is brought into a 

state of motion in the gas, liquid or crystal. Since momentum is conserved in 
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neutron absorption by a nucleus, some part of the neutron's kinetic energy 

E^ is transferred to these external degrees of freedom. Therefore, the 

nucleus excitation energy E* after capture of the neutron is: 

E* = B + (E - E,) ~ B ¥ E , 
n n t n x 

where B is the neutron binding energy in the nucleus, 
n 

The cross-section tfÄ(E ), which is dependent on the energy E 
O x x 

imparted to the nucleus, is determined exclusively by the properties of the 

nucleus. In experiments, however, the cross-section is measured as 

a function of the neutron energy E in the laboratory system of n 

co-ordinates. The connection between the cross-sections <J(E ) and 
n 

cf (E ) can be given as follows: O x 
En 

a(En) = j Co (En - Et) S (En, Et) dEt, (7) 
— 00 

where the transfer function S(E ,E. ) determines the probability of 
n t 

transfer of energy E^ to the external degrees of freedom of the atom. 

Motion of the atom absorbing the neutron before and after capture of 

the neutron produces so-called Doppler broadening of neutron resonances. It 

is determined by the characteristics of the transfer function S(E ,E ). n t 

Doppler broadening significantly complicates the exact measurement of all 

nuclear parameters of neutron resonances. Therefore, an exact description of 

Doppler broadening, is in many cases, a precondition for the accurate 

determination of the nuclear characteristics of neutron resonances. 

Finer effects such as, for instance, temperature shift of neutron 

resonances (see section 3) require detailed examination. The neutron wave 

number k, which is dependent on the relative motion of the neutron and the 

target nucleus prior to capture, forms part of the resonance cross-section 

ö (E ) [see expression (5)J: 
B W X 

k=»4" I Pn —Pa I • 

where p is the momentum of the neutron, and p. is the momentum of the 
n A 
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absorbing nucleus. For an ideal gas, the law of conservation of momentum 

operates in the "neutron + atom" system, and we therefore obtain the following 

relationship for the wave number: 

kG = \ V 2 m n ( E n - E t ) (8) 

However, if the target nucleus is bonded in a crystal lattice, the law of 

conservation of momentum must be applied to the "neutron +• crystal" system. 

The quantum mechanical mean of the momentum of a single atom in a crystal 

lattice is zero, and hence 

kn=±y2^J-n. (9) 

In the case of a molecular gas, where absorption of a neutron may cause 

excitation of intramolecular degrees of freedom, we have: 

*.. = x V 2mn (En - Et-AE„), 

where AE is the change in excitation energy of the internal degrees of 

freedom of the molecule. 

Ideal gas of target nuclei. Doppler broadening for a monoatomic ideal 

gas can be described using classical mechanics. When a neutron of energy E^ 

(in the laboratory system of co-ordinates) is captured by an atom of mass M at 

a velocity w, the kinetic energy of the atom increases by E^: 

where W|| and are the components of the velocity w parallel and 

perpendicular to the direction of motion of the neutron. 

Using the Boltzmann distribution for the velocity components W|| 

and w , and taking into account the kinematics of the motion of the neutron 

and the atom, we obtain the transfer function 
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O /17 r \ I A/ + mn ( En-Et \ 

f [ (2En ( l - l A 1 -BtJEn) M+
M

mn ) x\exp ^ 
2~ (11) 

p[ V~EtlEn) Mtrmn )j J 

where is the Doppler width, which is a measure of the broadening of 

neutron resonances and is determined using the expression 

Ad=2 (12) 

where k is the Boltzmann constant and T is the gas temperature. D 
In addition to broadening, there is a small displacement of the 

resonance towards the lower energy region. It is determined in a first 

approximation by the recoil energy 

R --= -rr^2—En. M T mn 

This displacement of the resonance is discussed in greater detail in section 3. 

In the rest of this investigation of neutron cross- sections we shaLl 

depart somewhat from the traditional approach [1, 28]. In the latter, the 

cross-section at temperature T = 0 is taken as and, consequently, the 

neutron resonance parameters E^, r, r^ ... are in the laboratory 

system. In our approach, we use resonance parameters in the centre-of-mass 

system (CMS), i.e. the same parameters as for crystalline and molecular 

gaseous samples. 
1 2 Working from the approximation M >> m and E >> — Mw , we n n 2 

obtain from expression (11) the following expression for the transfer function 

which is already familiar to us from the paper by Bethe 11]: 

(13) 

(A = M/m^). By introducing a few additional approximations, the integral in 
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expression (7) can be expressed using the functions ij; and x familiar from 

optics [29]. 

It should be noted that, although the ideal gas model is correct only 

for inert gases, it is widely used in other cases too (see below). 

Crystalline solid-state target. It is customary to use the concept of 

"Doppler broadening" of neutron resonances for solid bodies as well, even 

though the physical picture is significantly different from the classical 

Doppler effect. When neutrons are captured by atoms in a crystal lattice, 

they are absorbed and phonons are emitted. These processes have a noticeable 

influence on the energy behaviour of the resonance cross-section. 

Displacement of atoms from lattice points through neutron capture can be 

disregarded, since the recoil energy for the low-energy neutron resonances 

under investigation is significantly smaller than the bonding energy of atoms 

in the lattice. 

Assuming that the crystal lattice during neutron capture passes from 

the |a> state to the |n> state, then 

E. = E - E . t n a 
The main type of excitation in the crystal lattice during capture of resonance 

neutrons is vibrational modes. Vibrations of atoms in a crystal lattice can 

be described using the system of normal co-ordinates. At low excitation 

energy levels, vibrations in the lattice can be represented by 3N independent 

harmonic oscillators, where N is the number of atoms in the crystal. Here, 

the transfer function takes the following form [2]: 

SK (£„, Et) = 2 w{a ) (T) 2 | <{",} | exp (ipn (£„) rW ) | (as}> |2 x «V ' <»,> 
X 6 ( £ t - S K-a s)/ng, (14) 

s 

where {a } and {n } are the sets of quantum numbers characterizing the s s 
vibrational state of the lattice before and after neutron capture; wf . (T) 

s 
is the probability of the state {a } being populated before neutron 



capture at temperature T; hvs is the phonon energy in relation to the 

normal co-ordinate s; p is the neutron momentum and r the displacement of n 
the atom from its position of equilibrium. The matrix element is the 

probability of transition from state {a } to state {n } during s s 
neutron capture. If we are only looking at neutron absorption, then the 

matrix element is used in the same form for any nuclear reactions taking place 

by way of a compound nucleus as well. The 6-function in expression (14) 

takes into account the conservation of energy. Note that, in formula (14), 

the increase in mass of the atom due to neutron capture is disregarded, i.e. 

the approximation M + m^ ;s M is used. 

We do not intend to describe in detail the methods for transforming 

expression (14) into a convenient form for calculations. The relevant details 

of the expansion of the function S^E^.E^) are contained in Refs [2, 30-33]. 

For a monoatomic ideal isotropic crystal, the transfer function S K 
can take the following form [31]: 

oo 

S„ (E„, Et) = ^ J dt exp [ — iEtt] exp {R [7 (f) — y (0)]}, (15) 

where 
OD 

Y (*) = j d (hv) [cth ( ) cos (hvt) - i sin (hvt)] ; 

Assuming isotropy of the crystal enables us to express the transfer function 

in terms of the spectrum of normal crystal frequencies (phonon spectrum) p(hv) 

only. 

A relationship like the one in expression (15) can be established also 

for multicomponent lattices, such as exist, for example, in chemical 

compounds, if the elements of the transition matrix in expression (14) are not 

dependent on the direction of the incident neutron. Isotropy of this kind 

occurs for certain types of lattice with cubic symmetry, e.g. lattices of the 

NaCl and CaF^ type. Where a neutron is absorbed by a nucleus of X bonded in 
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a chemical compound XY_ , the transfer function S, (E ,E1) takes the r I k n t 

following form [34, 35]: 

oo 

SK(En, Et) = ± ( Aexpl-i£.«]exp{Ä[Yx(«)-Yx(0)]}. <16> 
2n 

- 00 

where 
Vx (0 = j d(h. V) -EiM [cth ( ) cos (hW) + i sin (/IV/)] ; 

In place of the phonon spectrum p(hv), a weighted phonon spectrum pX(hv) is 

introduced into expression (16); it contains only those vibrational states of 

the lattice which are possible when a neutron is absorbed by a nucleus of X. 

The recoil energy R is determined by the mass H^ of the nucleus of X. 

Computation of the transition matrix for a non-isotropic crystal must 

be performed separately for all directions of vibration of the atoms. Then 

the matrix elements are averaged over the orientations of the crystallites in 

the sample under investigation. Since neutron resonance shape does not depend 

on fine structures in the phonon spectrum (see below), and since few data are 

available on the phonon spectra of polycrystalline samples, the method given 

in this section for calculating the function S, (E ,E.) meets current 
k n t 

requirements entirely. 

The lattice phonon spectrum during neutron capture. If the target 

consists only of atoms of one element, the target nucleus vibrations are 

described by the full phonon spectrum p(hv). If, however, the target 

nucleus of X is bonded in a lattice with other nuclides of Y, the target 

nucleus of X is not displaced from its position of equilibrium for every 

vibrational state of the lattice. In other words, when neutrons are absorbed 

by a nucleus of X, not all states of the spectrum p(hv) are excited. 

Therefore, when calculating the transfer function, the weighted spectrum is 

used, which is determined in the following manner [34]: 

[ s s m - n f l . 
8 i Px (M = lim Aftv-0 "1/1V 
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where displacement of the atom of X from the 

position of equilibrium, j is the dispersion relation branch number, and q the 

phonon wave vector. For the present paper low-energy neutron resonances, 

occurring mainly in heavy nuclides, are of special interest. If chemical 

compounds of these elements include light elements such as H, 0, C, N, etc. 

where M^ >> M^ the weighted phonon spectrum will differ substantially from 

the full spectrum. 

Fig. 3. Normal frequency spectra 
p(hv) for vibration in 
UC>2 and UC lattices, and 
the contributions of 
U-weighted spectra 
(shaded)[3]. 

60 /w, meV 

Let us consider, for example, UO^ and UC, for which full and weighted 

spectra were calculated in Refs [34, 36]; these spectra are presented in 

Fig. 3. Debye spectra with upper frequency limits corresponding to the Debye 

temperatures are often used for the quantitative description of phonon 

spectra. Clearly, the Debye temperature of the total spectrum 8^, for M^ » M^ 

will differ substantially from the corresponding effective Debye temperature 

9 for the weighted spectrum p (hv). For UO , 9 = 520 K, but for the U 
A A / U 

in U02 the effective temperature 8^ = 250 K and for the 0 in U02 the 

effective temperature 8 Q - 749 K (where T = 293K)[37]. 
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Approximation of the phonon spectrum usins delta functions. 

Computation of the transfer function using expressions (15) or (16) for 

continuous phonon spectra is a fairly complex task. It is therefore useful to 

introduce an approximation for the phonon spectra in the form of a summation 

of Dirac 6-functions, as follows: 
m 

Px (hv) = 2 afi {hx — hvj) (17) 
3-1 

with the normalization 
m 

2 aj — i . 
i=i 

By choosing an appropriate set of values for v. and a., expression (17) 
3 3 

can be used to give an approximate description of any phonon spectrum. The 

larger the number m, the better that approximation is. By inserting 

expression (17) into the function y(t) in expression (15) [or y (t) in 
A 

expression (16)], we obtain 

Ral . 
°> h\j (1 — exp (—h V j / k - g T ) ) ' 

b] = b+j exY>( — hvj/kBT). 

By expanding the exponential functions 

oo ± ±hv,t 

exp 
A=0 

we obtain from expression (15) for the transfer function: 

SAEn, Et) = D{En) 2 2 . . . 2 SQSeSPmX 
P I = - O O P 2 = - O O P M — 00 

Xfi(£f+ .2 P|ÄVy) , 

where D(E ) is the Debye-Waller factor: 
n 

m
 I 

Z?(£n)=5exP(-i?2-g7cth(1g7)) 
i=i 

_ W)P>+nW . 
p J _ Z j ( P j - t - n ) ! n ! ' 

n =/ 
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and 

r 
- p . , if p. £ 0 (photon absorption); 

t = -S J J 

0, if p. > 0 (photon emission), 
v. J 

The values of S^ are the probabilities of p^ phonons with an energy 

of hVj being absorbed or emitted during reaction of the neutron with the 

nucleus. Since expression (18) for S, (E ,EJ contains 4-functions, it 
k n t 

can be used for easy computation of the cross-section o(En). The 

summations in expression (18) proved to converge fairly quickly. 

In Refs [3-9, 32], the Nemst-Lindemann approximation was used for the 

weighted phonon spectrum: 

Px (h\) = ax6 (hv — hvj -f a26 (hv — hvf), 

a2 = 1, 

i.e. a spectrum of the type given in expression (17) was used for m = 2. For 

metallic samples, the Einstein model proved appropriate, i.e. 

p (hv) = 6 (hv - h v j . ( 2 0 ) 

Let us attempt a qualitative discussion of this approach and examine 

briefly the basic features of the weighted phonon spectrum for compounds 

irtiere H^ >> H^. There exist normal vibrations of low frequency (Ä U^), 

associated with movements of heavy atoms of X, which make a basic contribution 

to the weighted phonon spectrum p (hv). Interaction of atoms of X with 

atoms of Y leads to a small^contribution at higher frequencies (« v^), 

described by the second term in expression (19). The energy hv^ can also 

be evaluated from data on the specific heat capacity in the temperature 

region T <. 100 K, where the hv^ mode remains practically unexcited. For 

the frequencies v^ and v^ we obtain, in the first approximation, 

1/2 
~ ii» i 

1,2 
v, . ~ (M^) 
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The weighted phonon spectrum parameters obtained when using expression (19) to 

analyse the behaviour of the. neutron resonance cross- section are given in 

Table 1 for several uranium compounds. 

Table 1 
Parameters of U-weighted phonon spectra pu(hv) for several 
uranium compounds, obtained from an analysis of neutron resonances. 

Sample ftv,. meV ftv2,meV Reference 

U U02 u8oe 
a - U 0 8 

ftV^kjO 
U0S(N0S),-6H»0 

1,0 
0,92±0,02 
0,90±0,05 
0,84±0,03 
0,90±0,02 
0,82±0,04 
0,53±0,00 
0,82±0,04 

il±2 
12±3 
13±3 
10±3 
i 0 ± 3 
14±i 
8±1 

14±1 

4G±4 
52±8 
45 ±4 
69±5 
54±4 
28±3 
54±4 

[32J [01 
[32| 
19] 
191 
13) 

13) 

Fig. 4. Behaviour of the 6.6 7 eV 
resonance cross-section 

238 
for U at 300 K: 
top left - U; 
top right - UgOgj 
bottom - difference 
between the two 
cross-sections. 
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In Fig. 4, the resonance shapes calculated using expressions (19) 

and (20) are shown. At top left is the 6.6 7 eV resonance for metallic 238. 

at room temperature. The parameters for py(hv) correspond to the data 

given in Table 1. As may be seen, the cross-section is made up of a 
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recoil-free component and of components associated with the excitation (right) 

and absorption (left) of phonons. The top right of Fig. 4 depicts calculated 

cross-sections for the compound U 0 . The contribution of the recoil-free 
3 8 

component and the sum of the contributions associated with excitation and 

absorption of hv^ and hv^ phonons are highlighted, as is the joint 

action of both vibration types hw^ and hv^- The lower part of Fig. A 

shows the difference between the cross-sections for metallic uranium 

and U 0„. 3 8 

Ideal gas approximation for solid-state samples. Lamb, in Ref. [ 2 ], 

noted two simple extreme cases for the determination of the transfer 

function S, (E .E^). The first is characterized by weak bonding of the k n t 
atoms in the lattice. Here, the following relation holds: 

r + AD»2/rBeDf (2i) 

where r is the total resonance width, A^ is the Doppler width defined in 

expression (12), and 8^ is the Debye temperature of the sample. The shape 

and position of the neutron resonance coincide with the corresponding values 

for an ideal gas of target nuclei with, however, an effective temperature 

of T instead of the crystal temperature T. The effective temperature is 

determined by the mean energy of the atoms of the crystal per vibrational 

degree of freedom: 

Tef * < C > / V 

where 
(0|— y j fcvp(fcv)cth d(/iv). 

In Fig. 5, the relationship between T ^ and T is shown for monocomponent 

crystals and various Debye temperatures. The formula for determining T _ ef 
from Debye temperature data and specific heat capacity data is given 

in Ref. [38]. 
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Fig. 5. Dependence of the effective temperature T „ on the ef 
crystal temperature T measured in units of the Debye 
temperature 6 of the crystal [2J. 

The relationship in expression (21) holds in the first instance for 

monocomponent lattices. For polycomponent lattices it is modified in line 

with the above considerations to 

Tef - < c W ( 2 2 ) 

where 

<e>x = 4- j fcvpx (hv) cth ( - ^ - j d (hv) 

is the mean energy per degree of freedom of the atom of X absorbing the 

neutron, and p (hv) is the relevant weighted phonon spectrum. & 

Figure 6 gives, in addition to the behaviour of the 6.67 eV cross-
238 

section of the U resonance according to the Breit-Wigner formula (4), the 

cross-sections for a crystalline sample of UO^ calculated at a temperature 

T = 300 K using p (hv) from expression (19), in a gas approximation A with a corresponding temperature T , = 324 K, and for an ideal gas at a ef 
temperature T = 300 K. Both models give generally similar resonance shapes. 

However, in the gas model the resonance curve is more symmetrical 
-22 2 than for the crystal sample. The difference in the curves is up to 4 x 10 cm , 

i.e. 5% of the cross-section at the resonance maximum. The use of T -ef 
instead of T does not improve the reproduction of the resonance curve for a 

solid-state target; on the contrary, there remain qualitative differences. 

Condition (21) is here fulfilled at the level (T +• An)/(2kei) sr 2. D D U 
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sample at a temperature 
T = 300 K, and in an ideal 
gas model for T = 300 K, 
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The second extreme case mentioned in Ref. [2] is a strong bond in the 

lattice, When the following conditions are fulfilled: 

In this case, the curve cr(E ) obtained using the relationship in O n 
expression (4) is recoil-free and not broadened (see Fig. 6). This case can 

be viewed as being analogous to the Mössbauer effect [39]. 

Comparison of model and experimental results for solid-state targets. 

The influence of crystal bonding on Doppler broadening can be clearly shown by 

investigating the difference in Doppler broadening for the same resonance in 

different samples as illustrated in Fig. 4. In Refs [3-9] the transmission 

spectra for various chemical compounds of uranium are measured for low-energy 

resonances. Some examples are given in Fig. 7. The differences in the 

experimentally obtained curves are described using the simple expression (19) 

for phonon spectra with the accuracy achieved experimentally. 

In Refs [3-10], target nuclei with mass numbers A = 109, 161, 234, 235 

and 238 were investigated over an energy range of 1-15 eV. The total 

widths r of the resonances studied ranged from 25 to 120 MeV. Apart from 

measurements at room temperature, samples were heated to temperatures of 

373 and 670 K in a number of experiments; in addition, resonance curves for a 

solid-state sample of U0 and gaseous UF were compared. In all cases, 

r, <e>, R « k 9 BD" 
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Fig. 7. Transmission spectra (top) and spectrum differences (bottom) 
238 in the 6.6 7 eV resonance range for U. Sample 

temperatures (left to right): room temperature, 373 K, room 
20 temperature, 370 K; sample thicknesses: 12 x 10 , 

20 20 20 2 
A x 10 , 12 x 10 , 5.5 x 10 nuclei/cm [8]. 

expression (19) for phonon spectra proved applicable. Firstly, the natural 

neutron resonance width r evens out the influence of phonon spectrum fine 

structures. Structures with a width of less than T are unresolvable in 

principle. Secondly, in the extreme case of a weak crystal bond, the sole 

parameter determining the energy behaviour of the resonance cross-section is 

the mean energy of atoms per vibrational degree of freedom [see 

expression (22)]. This parameter is virtually independent of phonon spectrum 

details. 
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Fig. 8. Differences in the 6.6 7 eV resonance cross-sections 
238 

for U in UC>2 and U for atom vibrations in the lattice 
(continuous line), using the gas model with appropriate 
values of T (broken line), and the gas model with values 
for T _ and T adjusted by or = 1 meV (dotted line) [8], ef y y 

In addition, it proved impossible to describe the measured differences 

in the cross-sections of various samples satisfactorily using the gas model. 

In Fig. 8, by way of example, a comparison is drawn between the difference in 

the cross-sections Ao for samples of U02 and U in the 6.67 eV resonance 
238 

region for U calculated using a model with a phonon spectrum, and the 

difference obtained when using the gas model. Asymmetric behaviour with 

regard to the resonance maximum is due to the quantum nature of vibrations in 

a crystal lattice. The gas model result is different in both value and shape 

from the lattice model result. For the sake of comparison, results of a 

calculation using the gas model with a different value for changed by 

1 meV are given in the same figure. This level of accuracy is required for 

nuclear power engineering calculations [40]. As may be seen, calculations 

using different models give a very noticeable difference in cross-sections. 

Usually, Doppler broadening is described within the framework of the 

gas model. In this respect, the question arises under what conditions and to 

what extent solid-state effects influence the resonance cross-section. Let us 

consider first of all the dependence of solid-state effects on sample 

temperature. Figure 9 shows the difference and the ratio between the 6.6 7 eV 
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Fig. 9. Difference A and ratio <J/<J„ for 6.67 eV resonance 
° 238 

cross-sections for U calculated for vibrations in the 

lattice and using the gas model for values of 1 = 300 

and 600 K [8]. 

238 

resonance cross-sections for U at T = 300 and 600 K, obtained either by 

taking into account crystal lattice vibrations, or using the gas model (for 

identical resonance parameters). As may be seen, when the temperature is 

doubled the differences are reduced by approximately half. (The use of T 

instead of T in the gas model does not fundamentally alter the picture.) 

In Fig. 10, results are given for various resonances: 6.67, 20.9 and 238 240 
36.7 eV for U, and 1.06 eV for Pu in a U02 sample at T = 300 K. 

As a measure of the difference in the cross-section we will use the quantity 

P = 
(jd£„ |0(fin)-~Pga!j£n)lM

1/2 

j dE„a (En) 

In Fig. 10, P is shown as a function of the value 

•~(T + AQ) - ~r 4- (Eq <c>uM/mn)
1/2, which according to expression (21) 
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should, if the gas model is correct, be much larger than k 6 . For the 
B D 

UO 1 sample under investigation here, Kgöp Ä 22 meV. As may be seen, P falls 

fairly quickly as the energy E^ and the resonance width T increase. This 

means that solid-state effects have a strong impact on the resonance 

cross-section for the lowest-energy neutron resonances in heavy nuclides. The 

higher the Debye temperature and the lower the sample temperature, the 

238 

stronger the effect. The data in Table 2 for the 6.67 eV resonance of U 

show the error in determining the resonance parameters from experimentally 

obtained spectra in a gas model approximation rather than an exact description 

of Doppler broadening [41]. The value found for the width was up by 

1%, and that for by several per cent. In conclusion, one might add 

that systematically taking into account lattice vibrations for low-energy 

resonances in uranium could be of interest to experimenters. 

Table 2 

Change in the widths Ar and Ar due to the use of the gas 
n "Y 238 

model for Doppler broadening of the 66 7 eV resonance for U for the 

samples and temperatures indicated [41]. 

S a m p l e T, K A 1 V r „ Arv/rv 

U02 300 —0,009 —0,08 
UOj 600 —0,006 - 0 , 0 7 
u 300 —0,005 —0,04 
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Molecular gas. The neutron resonance cross-section for a molecular gas 

is determined not only by the overall thermal motion of the molecules, but 

also to a significant extent by internal excitations. Vibration and rotation 

spectra and other essential parameters, chiefly the force constants of many 

molecules, are already known to a fair degree of accuracy. Therefore, 

resonance cross-section calculations for molecular gases are more unambiguous 

than for solid bodies. The transfer function for neutron absorption in a 

molecular gas can be given in the form 

Su(En, E t ) = 2 Wt „ 2 ^ " I ' S C ^ N . E t - ( E b - E a ) ) . ( 2 3 ) 
<n?) ln(,("f).l,,i> 

a b where {n^}, {n^} are the sets of quantum numbers defining the states 

of the molecule before and after capture of a neutron having the corresponding 

energies E and E. . Only those excitations which may change as a result a b 

of resonance capture of a neutron by a nucleus of X must be taken into account 

here. (This is analogous to the introduction of the weighted phonon spectrum 
in the case of solid bodies.) W^a^ is the probability of the 

r a, ü 
molecular state being populated before neutron capture at a 

specific gas temperature; p is the probability of a molecule passing from 
a b the {n?} state to the {n.} state on neutron capture. The line denotes 

averaging over the molecule's orientations relative to the neutron's direction 

of motion; S is the transfer function for a monoatomic ideal gas as given G 
in expression (11), but E. must be replaced by the energy Et - (E. - E ), and M by t t b a 
the mass of the whole molecule. When a resonance cross-section is calculated 

r a i using formula (23), many states {.n̂ j must be taken into account, and 

in the case of asymmetrical molecules the cross-sections must be averaged over 

the molecules' orientations. 

At low-energy neutron resonances, the energy of the neutrons is too low 

to break up the molecule. Consequently, the vibrational states of the 

molecules and rotations, and also the connection between them must generally 
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be taken into account. This problem was examined in Ref. [42] for the capture 

of gamma quanta by biatomic molecules. The situation is simpler for 

symmetrical molecules of the type XY^CÜ. = 2, 3, 4, 5, 6), where the 

X nuclei absorb neutrons and are situated at the mass centre of the 

molecules. For molecules of this type only the vibrational transitions need 

to be considered, whereas the rotational ones can be ignored [43]. 

In Refs [43, 44] a general theory was developed for the emission and 

absorption of gamma quanta by nuclei of X in symmetrical molecules of the 

type XY^. This theory served in Ref. [5, 45] as a basis for the 

calculation of neutron resonance cross-sections for gaseous UF . 6 

Symmetrical molecules of the type XY^ have several normal vibrations 

which, in the vast majority of cases, are degenerate. There are some too 

where the nucleus regains at rest. These normal vibrations are not excited 

when a neutron is captured by a nucleus of X, and therefore they are not of 

interest when calculating the neutron resonance absorption cross-section. 

The molecular vibrations which are of interest to us are described by 

the set of quantum numbers ( n
s a)• index s denotes the various 

normal vibrations, while a stands for the various components of a single 

degenerate normal vibration. The probability of a molecule passing from the 
a b fn } state to the K{n } state when a neutron is captured by a sa sa 

nucleus of X may be calculated, according to Ref. [43], using the formula 

I I b (<?.a) |exp{iA,AaC>.a^,/2}l 0>„°o (<?,a)>\*t ( 2 4 ) •"sa' i, a sa 

where Q s a is the normal co-ordinate of the a-component of the s-th 

normal vibration; <J>„o and d)„b are the linear harmonic oscillator wave 
sot 

functions; b is the normalized displacement of the nucleus of X from its sa 
equilibrium position; k^ is the neutron wave vector; and is the mass 

of the nucleus of X. The value of b may be determined from the elements sa 
A 

of the matrix ft., which performs the inverse transformation of the matrix of 

mass-weighted Cartesian co-ordinates q into the matrix of normal co-ordinates 
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Q [43, 46], or it may be determined from the molecular force constants. The 
matrix elements in expression (24) were calculated in Ref. [43]. In the event 

b a of energy absorption by a molecule (nga > n ) we get the following 

(Q.J\ex?{ikab.aQ.aMZU2)\<t>na (<?,a))|2 = «o sa 

= Zib'^exp {-Zta cos* (ßia)> X 

xcos2(n'«"n"«)(ß,a) 

(25) 

L("Ja-"sa) (ZiaC0S2(ß>a)) 
ta 

where L are associated Laguerre polynomials; ß is the angle between 
sa 

the direction of the incident neutron and the displacement direction of the 

nucleus of X due to the a-component of the s-th normal vibration. Where 
b a (n < n ) we get an analogous formula because the matrix element does not sa sa 

change if we switch round the initial and final states. The parameters 

essentially determine the transition probability. 

( 2 6 ) 

where R is the recoil energy of the molecule, and hvg is the energy of a 

quantum of the s-th normal vibration. 

Comparison of model and experimental results for UF,. Resonance 6 
238 cross-sections for an energy of 6.67 eV in gaseous UF were calculated 6 

in Refs [5, 45] for various temperatures using expressions (23)-(26). 

Molecules of gaseous UF. belong to point group 0; they have an 
6 

octahedral structure. The uranium atom is at the mass centre of the 

molecule. The distances between the uranium atom and the fluorine atoms are 

identical. The angles between the U-F bond lines are 90° or 180° only. 

UF has six normal vibrations. However, only the triply degenerate normal 6 
vibrations v and v of symmetry type F contribute to the displacement 3 4 ly 
of the uranium nucleus. The necessary frequencies of v3 and v^ are given in 

Ref. [47]: h«3 = 0.07 76 eV, hv^ = 0.0231 eV. The b ^ parameters were 

calculated from force constants [47, 48]. 
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Fig. 11. Cross-section for the 6.6 7 eV resonance in UF^ at T = 373 K 
both taking into account (continuous line), and not taking 
into account (broken line), internal molecule excitations [51. 
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Fig. 12. Ratio of the 6.67 eV resonance cross-sections for 
238 238 U 0 and UF at room temperature: J o 6 
dots - experimental result from Ref. [45]; 
broken line - calculated result from Ref. [45]; 
continuous line - calculated result from Ref. [51. 

In Fig. 11, the neutron resonance absorption cross-sections obtained in 

Ref. [5] for the 6.6 7 eV resonance are shown both taking into account, and not 

taking into account, internal excitation of the molecules. In Ref. [45], the 

ratio of the neutron resonance absorption cross-sections for polycrystalline 

U 0 and for gaseous UF at room temperature was measured. The 3 8 ' 6 
experimental result is presented in Fig. 12 together with the results of 

theoretical calculations from Refs [5, 45]. The resonance cross-section for 

polycrystalline U 30 g was described in both papers using the above methods 

and the phonon spectrum from Ref. [32]. Some approximations were made when 

5 
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calculating the cross-section for UF in Ref. [45]: in particular, the 
6 

number of states was significantly cut down, and transitions involving 

the transmission of more than 1 phonon of the same energy were disregarded, as 

was the dependence of the parameter on energy1. In Ref. [5] there are 

no approximations of this kind, and the calculated result agrees fairly well 

with the experimental data. Fig. 7 shows the differences in the transmission 

spectra for UF and UO which were measured in Ref. [5] in the 6.67 eV 
6 3 

238 
resonance range for U, and the corresponding calculated result. 

3. Temperature shift of neutron resonances 

Temperature shift of Mössbauer lines and neutron resonances. 

Temperature shift of Mössbauer resonance y-lines was discovered in 1960 

[11, 12, 49]. A change in source or absorber temperature leads to energy 

shift of the resonance y-line but no significant change in its shape. This 

shift is equal to: 

Ev 

6 £ V = —an*
 A<e«>' (27) 

where A <e > is the difference in the mean kinetic energies of the atoms 
K which corresponds to the temperature difference AT = T^ - T^, and 

00 

<£"> = T J fevP(Mcth 
ö B 

M being the mass of the atoms, and />(hv) the crystal phonon spectrum. At 

high temperatures expression (2 7) takes the form: 

A similar effect should also exist during neutron capture [15]. In 

contrast to Mössbauer Y-Ü n e s» the shape of the neutron resonance in 

crystalline samples is determined to a considerable extent by phonon emission 

and absorption. A temperature rise leads to broadening of the resonance. Let 
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us define the concept of resonance "shift": in this paper, the position of 

the centre of mass of a resonance will be taken to be the position of that 

resonance: 

Ea 
O R ( £ „ ) En dEn 

En^-^t; ' ( 2 8 ) 

[ Oft (En) dEn 

Ei 

where o ( K ) is the resonance portion of the total cross section, and 
R n 

the integration limits E^, E^ are set at the points where the 

cross-section a (E ) may, with the experimental accuracy achieved, be 
R n 

assumed to equal zero: 

OR(E1) » OR(E2> » 0. (29) 

Of course, one must be dealing here only with isolated resonances. The 

following quantity is called the temperature shift: 

AE = E (T ) - E (T,). (30) 
n n 2 n 1 

Description in the monoatomic ideal gas model. Let us consider the 

simplest case of an ideal gas. If we insert into expression (7) the transfer 

function contained in expression (11), and use the 6-function (an infinitely 

narrow resonance) for the stationary nucleus cross-section o^: 

on(E ) ~ 6(E - E ), 
O x x 0 

formula (28) generates the integrals: 

dx x" exp (— ax2) sh (bx); 

= b = T T VA(A + i)E0, 
B B 

where A is the mass number of the target nucleus and n = 2 or n = 0 [the 

numerator or denominator of expression (28)]. Integration [50] yields the 

centre of mass: 

Ena = Et + 4- [E0 + 4 <eA)c] f 4 <eA>c. 
A L ö J A / n erf (x) 0 

where ~ 

erf (x) — —(tft exp (-/»); 
/n J 
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<c^>G is the mean kinetic energy of an atom in an ideal gas at 

temperature T: 

<e»>c = -f" kBr-

Any cross-section °Q(e
x) which is dependent on the neutron wave number k 

can be given in the form: 

i 

From this it is not difficult to obtain: 

E n G = E0 + ± [ E 0 + ±(th)(:], (31) 

where EÄ is the centre of mass of a cross-section d-(E ) of arbitrary 0 O x 
shape. 

If, instead of expression (11), we use the Bethe transfer 

function (13), we obtain as the centre of mass: 

E'nG=E0 + -^[E 0^^{B h) G]. (32) 

The difference between expression (31) and (32) may be understood if we look 

at the energy Ê , as in expression (10). Averaging (10) over a Maxwellian 

distribution, we obtain: 

Et = A\ t E„ — \ <efc)c. >14-1 " A-ri 

In the Bethe approximation, the last term of expression (10) is 

ignored, and therefore: 

As may be seen, the Bethe approximation overestimates E^ by ~ ~ a nd this 

is precisely the difference between expressions (31) and (32), i.e. the 

Bethe approximation, in which the increase in the atom's mass as a result of 

neutron capture is disregarded, is inadequate for an accurate description of 

temperature shift in a neutron resonance. 

Description for the case of a solid-state target. To calculate the 

centre of mass of a resonance as a transfer function we use Lamb's 
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expression (14). However, as is shown above, the increase in the atom's mass 

by the mass of the neutron on its absorption must not be neglected. 

Expression (14) contains the same approximation as the Bethe formula: 

M + m ^ M or A + 1 x A. Let us account for the mass increase in terms n 

of the change in the energy associated with the nucleus's motion in the 

crystal after neutron capture 

2fcv.(n. + 4-) = 2, (!{«-» = I /» 

s 

and before neutron capture 

(!{«.»=17». 
< 

•o 

The energies E^ and E^ relate to the different Hamiltonian functions H 

and H: 

H\i) = E)\J); 

H \1) = Et |/>; 

The first term in the Hamiltonians gives the kinetic energy and the second the 

potential energy. Note that the Hamiltonians H and H relate to different sets 

of eigenfunctions. As to the description of the cross-section a (E ) 0 x 
for the stationary nucleus, we shall use the Breit-Wigner formula (5) with the 

condition « T. Using also the transformation 
oo 

— OD 

the relationship 

exp ( • - i - p»r) H (p j exp Pnr) = H (pA + pn) = - V (r) 

and expressions (5), (9) and (14), the cross-section (7) can be presented in 

the form 

$ ̂ ^ ''""[T«^-^']' <33. _OD -oo 
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where 

S (t) •-= S W} ( j jexp [ -i- H (pA + p„)] | j) exp (-j- Ejt) . 
i 

As only small values of E,(|E.| « E ) contribute to the integral t t n 
in (7), infinity has been substituted for the upper limit E in the n 
integral. In the harmonic approximation, using the method of second 

quantization, we have the operators 

PA = 2 I V hvsmn (A + L)/2N (a*-at) e4, s 
where N is the number of atoms in the crystal; 

(34) 

H (PA + PN) - S K [ ( « ? - » « . ) K + I A . ) + T ] 

a« = (Pne»)//2mn (A -f i)Nhvt. 

Since the various s mode vibrations are independent of one another, 

expression (34) can be presented in the form of a product 

s (t) = n s, (t) = n S (Xl,/Z.) exp [2ni6v.<]. 
• < 

Here we introduce the designations 

= |0>(4), Q, = exp [ - 2mv,t) (at-ia3) (a; + ias); 

^= e xp ( - +2™<<) •• = S exP ( - ̂ ) -i 
1 

hv, \ ' 

K = v. — 
To calculate the function S(t) we shall use the Berezin method [51]. The 

quantity <v in the first approximation can be given by the expression s 
6v = v" 0V" 2AX • 

After integrating expression (33) with respect to E^ and t the cross-section 

cr(E ) takes the form n 

, o <eM i; > d* -I rn (£„) r . 
A dE" J (fn-Eo^+r^ 
E0=E0AI(A + i), 
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where is the mean kinetic energy per degree of freedom: 

and is ^ e kinetic energy corresponding only to the co-ordinate 

x^, which is related to the direction of motion of the neutron 

p = p »e . From the foregoing it is not difficult to find the 
n n x | 

position of the centre of mass of the resonance using formula (28): 

En -= VeI + (172)*- -jj- (<eM> - <e„, » -

<Efti> —<6fcl » cos cos (-|-) ; 

* = arctg (I7£0). 

For a cubic crystal we may assume <evill> = <£.>, and so, where K JL K 

<t> « 1, we get 

En= Y E\ + (I72)2 — <eA>/3̂ 4, 

and, consequently, the temperature shift in crystals 

A£„„= —3^A<efc>„. (35) 

3 
At high temperatures we have <e > ~ <c > - —- k T. The 

k K K G 2 B 

result in (35) can also be used as an approximation for any polycrystalline 

solid body. 

If we disregard the increase in the atom's mass due to neutron 

rJ 

absorption, i.e. H = H, we obtain a result which differs by the term (1/A)A 

<e > from expression (35) in exact analogy to the results for a gas. K R 
If we use k (8) instead of k (9) for the neutron wave number, then we 

G K 
l 

get for the temperature shift the expression AE = T;A <e > , i.e. the sign 
n »5Ä K K 

changes. Thus these fine points, which are practically unnoticeable in 

Doppler broadening of resonances, play a major role in temperature shift. 

Experimental observation of shifts in the centre of mass of neutron 

resonances. Temperature shifts in the centre of mass of neutron resonances 

were observed for the first time in Ref. [10]. In this paper, transmissions 

through Dy, Rh and Ag samples were measured at various temperatures in the 

low-energy resonance region. The experimental layout is described in 
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section 1. To measure the neutron transmission, two identical samples at 

different temperatures T^ and T 2 were introduced successively into the 

beam for ten minutes. Every twelve hours the temperature of the samples was 

changed to T^ and T^ respectively. The energy behaviour of the spectrum 

for the incident beam and background was measured in additional experiments. 

The temperature shifts AE^ were determined using two methods. In 

the first method, the difference between the measured resonance cross-sections 

is determined: Ao„(E ) = «„(T^.E ) - o (T,,E ). When this difference R n 8 2 n R l n 
is determined correctly, the following condition must hold: 

if E^ and E^ are selected in accordance with condition (29). In practice, 

however, condition (29) is not strictly satisfied, and minor corrections must 

therefore be introduced. The error for the shift obtained is determined from 

the error in the determination of the background, the resolution function and 

the incident beam spectrum. The second method consists, in essence, of a 

comparison of experimental spectra with theoretical calculations. The 

cross-sections <s (T ,E ) and ö (T ,E ) were calculated on the basis of the R 2 n R l n 
methods described in section 2. The Einstein model (20) was used for the 

phonon spectrum, hv being chosen such that the thermal capacity's 

temperature behaviour was correctly described. In addition, at one of the 

temperatures an additional energy shift A is introduced and serves as a 

fitting parameter: 

The theoretical transmission spectra N..(T,t) are then calculated, and the th 
parameter A is found by fitting the differential theoretical spectrum 

Air.(t) = N.. (T-,t) - N.. (T,,t) to the differential experimental th th 2 tn l 
spectrum AN (t), after which the temperature shift is obtained from exp 
formulae (28) and (30). The second method is good in that the results 

Or{T2, En) = OR (T2, En - A ) . 
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obtained thereby are less affected by errors in the measurement of the 

incident beam and background spectrum than in the case with the first method. 

The main errors here are related to the choice of resonance parameters and the 

phonon spectrum. In this respect both methods are independent. 

AE„veV 

4<c<r>K meV 

Fig. 13. Dependence of temperature-related resonance shifts 
on A<c >k/A [10]: 

103 109 • - Rh (1.26 eV); • - Ag (5.19 eV); 
o, • - Dy ( 1 6 3Dy 1.71 eV, 1 6 1Dy 2.72, 3.68, 4.34 eV); 
the black symbols represent shifts obtained using the first 
method, and the white those obtained using in the second 
method; the broken line is formula (35). 

109. The results of the experiment are shown in Fig. 13. For Ag and 
161. Dy, the first method did not yield results owing to'the difficulties of 

determining the cross-section at a distance from the resonance maximum, or 

owing to resonance overlap. In the remaining cases, the results obtained by 

the various methods show a high level of agreement one with another. The 

shifts measured for polycrystalline samples are negative, i.e. when the 

temperature rises the centre of mass moves in the direction of lower 

energies. The experimental results agree satisfactorily with the theoretical 

evaluation given in expression (35). Within the limits of error of the 

experiment, there were no additional effects related to recoil energy, phonon 

spectrum, or resonance parameters which might have imitated a temperature 

shift. 
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A. The influence of hyperfine interaction on neutron resonances 

Chemical shift of neutron resonances. Interaction of an atomic nucleus 

with electrons produces a dependence of the observed energy levels of the 

nucleus and electron shell both on the electric and magnetic moments of the 

nucleus, and on the electron shell configuration. This hyperfine interaction 

manifests itself during any quantum transitions in the nucleus and the shell 

in the form of such familiar phenomena as isotope and isomer shifts, multipole 

splitting, etc. These phenomena are observed in shell spectroscopy in the 

optical and X-ray ranges, in Mössbauer spectroscopy, and in muonic atom 

spectroscopy. In principle, they also occur when compound states of the 

nucleus are excited by neutrons, and they cause displacements and broadenings 

of neutron resonances. 

F.L. Shapiro was the first to point out the possibility of measuring 

such effects (with a view to determining the electromagnetic moments of 

compound nuclei) in 1967 [52]. In Ref. [15] by V.K. Ignatovich et al., the 

existence of chemical shift of neutron resonances as an analogue to Mössbauer 

isomer shift is pointed out, as is the possibility of using it to determine 

mean square radii of the nucleus in isolated compound states. 

In order to calculate the effects of hyperfine interaction effects in 

neutron resonances, we will consider its electric and magnetic components 

separately: 

•̂nf — Bet "I" ̂ mg-

Let us consider first of all the electric contribution. We wilL begin with 

the Coulomb interaction 

* c - S I - S ^ M «>*•)• <3« 
v rP 

where 0;. and <t> are the wave functions of the nucleus and electrons, k e 
and the summation is carried out for all electron co-ordinates r and proton e 
co-ordinates r . Expanding , r from expression (36) using p I re — rp | 

spherical harmonics, we obtain E in the form of a summation with ascending 
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orders of multipoles. OriLy the monopole term is written out below: 

(34) 

The first sum in expression (37) represents the Coulomb energy (not 

contributing to the hyperfine interaction) between the point nucleus and the 

shell electrons, and the second sum represents the deviation from that energy 

due to the finite dimensions of the atomic nucleus. The next non-zero term of 

expansion (37) describes the quadrupole interaction which is discussed below. 

The remaining terms with higher orders of multipoles are negligibly small or 

equal to zero. 

With a view to simplifying expression (37) still further, let us 

consider the electron density within the boundaries of the nucleus. In the 

non-relativistic case, i.e. for lighter atoms, it is made up only of 

s-electrons. For heavy atoms, where electron motion is relativistic, 

p^2-electrons also make a small contribution. Their density in a first 

approximation is constant within the boundaries of the nucleus. Under those 

circumstances, the second sum in expression (37) can be rewritten as 

where p (0) is the electron density at the nucleus's position; Z is the 
e 

2 
charge number of the nucleus, and <r^> is the mean square charge radius 

of the atomic nucleus. Figure 14 illustrates schematically the shifts E , 
el, 0 

caused by the finite dimensions of the nucleus for the ground and excited 

levels. These shifts amount to approximately 350 eV for a heavy nucleus, for 

example of uranium. For two samples consisting of different chemical 

compounds (I and II) with different electron densities p ^ ( 0 ) and P J J C O ) the 

positions E of the neutron resonance differ by 

£ei.o=-?ü-P«f (0)<rS„), (38) 

A £ 0 = [£ell0 (I, c) - Et,.„ (I, g) - £„.o ( I I . e) - Eell0 (II, g)l 
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<rcht 
rch>c 

Nucleus without 
electron shell— 

<rcK>9 

M 

<rch>g 
.Hi L ^ M L _}f.i,o("i9) 

Nucleus in electron shell 

Point 
nucleus 

Nucleus of finite dimensions 
?,(0) I C„(0) 

Fig. 14. Influence of electric interaction of the nucleus with the 
electron shell at the energies of the ground and excited 
states. 

By substituting E , . from expression (38) into this formula we obtain el,0 

AE 0 = -g- (p, (0)-p„ (0)) ((r|h)c- <rlb)g). (39) 

In deriving expression (39) it was assumed that the changes in p^O) and 

due to excitation of the nucleus were mutually compensatory. This 

assumption was confirmed by the evaluations performed. 

The order of magnitude of chemical shifts. Let us now look at the 

magnitude of chemical shifts. Figure 15 shows evaluations of the differences 

in the electron densities Apß(0) for various pairs of chemical compounds 

as a function of Z. The data were calculated using the Hartree-Fock-Slater 

method from Ref. [53] for free ions. The difference Ap (0) is caused by 

derealization of s- and p^^^^ctrons • as far as they take part in the 

chemical bond, and, indirectly, by the remaining p- and d-electrons etc. 

through screening of external s- and p^^^i^trons. A sharp rise in 

Ape(0) may be seen as the atomic number Z of the element increases. Using 

the above-mentioned calculations [53], we obtain 

Ape (0) « 6,7-10'24 e°.07Z CM"3. (40) 
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Fit». 15. Maximum differences in the electron densities Ap (0) — e 
between different chemical compounds as a function of the 
atomic number Z, based on data from Ref. [53]. 

Fig. 16. Dependence of the chemical shift AE on the atomic 
2 number Z when A<r . > varies. ch 

The change in the mean square radius of the nucleus is due, primarily, 

to the isotope effect between the target nucleus and the ground state of the 
2 compound nucleus, and secondly, to the change in <t"ch> resulting from 

2 

excitation of the nucleus. If we assume the variation in r to range 

from a fraction of a per cent to several per cent [54, 55], and using 

expression (40), we obtain the evaluation of chemical shifts given in 2 

Fig. 16. For heavy nuclei the shifts may be greater than 10 yeV, whereas 

for lighter nuclei they are substantially smaller. 

Determination of chemical shifts. Despite the small scale of chemical 

shifts by comparison with the width of neutron resonances (T z 100 meV) 

and additional difficulties connected with the influence of Doppler broadening 

of neutron resonances, measurements have been performed in recent years for 
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several resonances of uranium isotopes [3, 4, 9], The experiments were 

carried out using a pulsed IBR-30 reactor working on the principle described 

in section 1. Neutron transmission through targets of different chemical 

compounds of uranium was measured for identical sample temperature. By 

contrast, the temperature shifts were investigated using samples of the same 

substance, but at different temperatures. Both in the first and the second 

case, the difference in the kinetic energies of the atoms 

A<e) = (e (r)>, — (e {T))u 

in both samples being compared (I and II) causes a resonance shift [see (35)] 

AE„=--̂ rl<e(r)>i-(c(7')>n]. 

This shift, which occurs in addition to the chemical shift, is so small as to 

be negligible in the first instance. For all the samples investigated it is 

less than 4 yeV. The chemical shifts were determined directly from the 

experimental transmission spectra N^(t) and S (t) using the method 

described in section 3; the spectra were compared in the resonance range using 

the method of least squares, and varying in relation to N^(t) by 

the parameter At(N^(t) -» +• At)). Doppler broadening and 

several other factors affecting transmission were determined by calculating 

spectra having the same shapes as N^(t) and but- no chemical shift. 
238 Figure 17 shows chemical shifts for the 6.67 eV resonance in U as 

2 a function of Ap (0). Table 3 gives values for A <r . > for all the e ch 
resonances investigated, obtained while measuring chemical shifts in neutron 

resonances. The values of Ap (0) were obtained within the framework of e 
the "effective configurations of valence electrons" model, using experimental 

data on chemical shifts of X-ray lines in uranium and isomer shift of the 
237 

Mössbauer line in the neighbouring nuclide Np. 

The influence of dipole and quadrupole interaction. If the atomic 

nucleus has a spin I > 0, then in addition to electric monopole interaction 

there will be contributions from hyperfine interaction of a higher order up 
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a - UOj(NOj)J• 6HjO — UO3 
D - UF^-H 2D-UD 2 

• - U D J - U 
* - UO2(NO3)2-6H2O-I; 
O- UDj-Û -HjD 

2 H B 
Lpe(0) , ' I 0 2 6 C M - : 

Fig. 17. Dependence of the chemical shift AE^ on the difference in 
electron densities Ap (0) for the pairs of chemical e 
compounds indicated, measured for the 6.6 7 eV resonance in 
2 3 8U (3J. 

Table 3 
Changes in mean square radii of nuclei, determined from the chemical 
shifts in resonances measured in Refs [3, 9]. 

Target 
nucleus 

Resonance 
Co. eV A <>&,>, fo? 

I I Target 
|nucleus 

Resonance 
So. eV A<»"2b>>. 

*s«u 
i s»u 
ss&u 
s«U • 
*s»u 
1 

5,16 
1.14 
2,03 
3.15 
3,61 

—0,41dfc0,25 
+0,01±0,22 
—0,13±0,21 
+0,20±0,48 
+0,02±0,25 

.. S"U s«U 
MBU 

4,85 
8,77 
11,67 
12,39 
6,67 

—0,52±0,25 
+0,09±0,26 
—0,24±0,29 
+0,25±0,3i 
—1,7±0,5 

to l = 21. Of course, other contributions apart from magnetic dipole and 

electric quadrupole interaction are too small to be significant. Dipole and 

quadrupole interaction causes splitting of nuclear levels. The influence of 

this splitting on the neutron resonance cross-section is discussed separately 

in this section for purely dipole and purely quadrupole interaction. 

Magnetic dipole interaction of an atomic nucleus having spin 1 and 

dipole moment y with a magnetic field of strength H existing at the nucleus 

position causes Zeeman splitting of each energy level into 2 1 + 1 equidistant 
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sub-levels. For splitting, we have 

Ems — — j - j n H , 

where m is the projection of the spin onto the direction of the magnetic 

field, m = I , I - 1, ..., - I. The intra-atomic magnetic field is produced by 

uncompensated electrons in the atomic shell and their interaction. In the 

transition elements (iron group, lanthanides and actinides) the field strength 

is as high as 105-107 Oe [56]. For H = 106 Oe and y = 1, the distance 

between the highest and lowest sub- level is approximately 5 yeV. 

Since both the ground state of the target nucleus and the compound 

state are subject to Zeeman splitting, the resonance cross-section is made up 

correspondingly of the cross-sections for the transitions between the 

individual sub-levels m^ and m^ of the ground and compound states with 

energies differing by AE (m,,m_). For the total cross-section we mg I J 
obtain 

Oo (£ , )= 2 o0(Ex. E0 + &Emg(rn,, mj))W(mIt m.,). (41) 

where W (m ,m ) is the probability of transition between the states m X J I 
and m . If the sample temperature is not very low (over a millikelvin), J 
then population of the individual Zeeman states is equally probable and, 

consequently, <m^> =0. In addition, for unpolarized neutrons we 

have <m > = 0. Hence for unpolarized nuclei and neutrons, displacement of 
3 

the centre of the neutron resonance can not, on principle, occur. There is, 

however, broadening of the neutron resonance. Its order can be evaluated 

using the expression yH/1, which varies from several microelectronvolts to 

several tens of microelectronvolts. Experimental research into the broadening 

of the neutron resonance working with values of this order is unlikely to be 

successful with currently available experimental facilities. Nevertheless, it 

has proved possible to measure the small energy shift in neutron resonances 

caused by dipole interaction in the case of polarized nuclei or neutrons [18]. 
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The energy of interaction of the automatic nucleus's spectroscopic 

quadrupole moment Q with an electric field gradient, for the simplest case 

of an axially symmetrical gradient V , may be written in the form 
z 

F / . / ( / + D \ (42) £el.2- 4/(27-1) l m j 3 J ' 

where T is the spin of the nucleus and m^ its projection onto the gradient's 

direction, and m^ = 1, I - 1 - I. In the general case, 

expression (42) is of course more complicated, but it suffices for a 

discussion of the main effects. 

The resonance cross-section oÄ(E ) is made up of the O x 

cross-sections for the individual transitions as in the case of dipole 

interaction. We must simply replace AE (m,,m) in expression (41) 
mg 1 J 

with the energy differences AE , „ (m,,m,) which correspond to the 
el,2 I J 

quadrupole sub-levels. From expression (42), it may be seen that level 

splitting yields non-equidistant sub-levels. Hence, it follows that, even for 

unoriented and unpolarized neutrons, a small shift in the centre of mass of 

the resonance in the order of 1 yeV or less may occur. In addition, the 

resonance is broadened, by an order which may be evaluated using the 

expression eV Q /I. This broadening amounts at most to some tens of 

microelectronvolts. If such small shifts in neutron resonances with values of 

approximately 1 yeV could be measured, as mentioned in Ref. [52], it would 

be possible to determine also the quadrupole moments of nuclei in excited 

compound states. This would certainly be interesting, especially for fissile 

nuclei. 

Conclusion 

Research into neutron resonances has been going on since nuclear 

physics begun, and for that reason it is numbered amongst the traditional, 

classical areas of nuclear physics. Nevertheless, thanks to the constant 

improvement of neutron spectroscopy methods, new phenomena are being 

discovered in this area even today. On the basis of research using neutrons, 
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it has proved possible in recent years to penetrate deeper into the area of 

physics concerned with the characteristics of atomic nuclei themselves and 

their interaction with the environment. 

The observation of hyperfine interaction effects in neutron resonances 

has opened up a new branch in the study of nuclear compound states formed 

during resonance neutron capture. In addition to those characteristics of 

these nuclear states which have been studied in depth already, such as energy, 

spin, parity and width, it became feasible about ten years ago to study the 

magnetic moments of nuclei. In recent years it has proved possible for the 

first time to measure the mean square radii of nuclei in compound states. On 

the basis of these data, our knowledge of the structure of highly-excited 

nuclear states has been significantly extended. For the heaviest nuclei, 

these states are fissile, with fairly large fluctuations in the fission 

probability from resonance to resonance. Naturally, the search for 

correlations between the mean square radii of resonance states and their 

fission probabilities is an interesting subject for research. 

Detailed study of neutron resonance structure has uncovered connections 

between target nuclei and their surrounding medium. The influence of the 

vibrations of different lattices on Doppler broadening of neutron resonances 

and on temperature shift in neutron resonances, for example, has been observed 

experimentally. Effects of this type have proved significant for applications 

as well. Thus, for example, taking into account the influence of bonds in a 

solid body is essential for an accurate determination of nuclear constants for 

nuclear reactor calculations. 

Research indicates that there are still a lot of new effects in the 

border region of nuclear physical and solid-state phenomena. Increasing the 

power of neutron sources will facilitate further research in this area. 

The authors wish to express their heartfelt thanks to L.B. Pikelner for 

reading through the manuscript, and for his useful comments, and also to 

V.K. Ignatovich for the fruitful discussions we had with him. 
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