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Statistical Multistep Reactions : Application 

(submitted to Phys. Rev. C) 

H. Kalka, M. Torjman and D. Seeliger 

Technische Universität Dresden, Sektion Physik, G.D.R. 

Abstract 

A model for statistical multistep direct and multistep compound 

reactions is presented. It predicts (double-differential) neutron 

and proton spectra including equilibrium, preequilibrium, direct 

(collective and non-collective) as well as multiple particle 

emission processes. Calculations for nucleon-induced reactions has 

been performed for about 30 nuclei at incident energies between 5 

and 26 MeV without any parameter fit. 

I . INTRODUCTION 

Over the years nuclear rection mechanism has been investigated 

within the theoretical concepts of statistical multistep compound 
1 —7 2 3 8~10 

(SMC) and statistical multistep direct (SMD) processes.'' 

Till now a lot of experimental data are compared either within a 

pure SMC model2'"-13 or within a pure SMD approach8'14. But in 

nucleon-nucleus reactions at bombarding energies between 5 and 30 

MeV (which is of interest for nuclear engineering) both SMC and SMD 

processes are important. For this purpose, a SMD/SMC model including 

direct collective excitations was proposed in Ref.15. In subsequent 

papers10'17 this model was improved and derived from Green's 

function formalism3 and random matrix physics1'19. In this respect 

we try to overcome the gap between refined theories (which are too 

complicated for application) and simple-to-handle models for nuclear 

data evaluation. 
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In this paper we limit ourselves to the basic ideas of the SMD/SMC 

model. A brief foundation of this model and comparisons with other 

approaches are given in Sec.II. After discussion of the first-chance 

emission process (Sec.Ill) this model will be generalized for 

multiple particle emission (MPE) in Sec.IV. Finally, it will be 

applied for calculations of neutron and proton (double-

differential) emission cross sections. The results covering a quite 

large range of nuclear masses (A2s27) and incident energies (5 to 26 

MeV) 'are presented in Sec.V. 

II. SMD/SMC MODEL 

A. Basic formalism 

The differential cross section for a reaction (a,b) is given by 

do- . (E ) 4n3 
a b a. 

= -7 IT J 2 <5(E -E. ) (1) dE k 2 a b a b 
b a. 

where the T-matnx can be written as 
_ V b * < - > . _ , < + > , _ . T u = ) C „ < f

 T > (2) a b tu nXJ n U b a 
nV 

Here, the final wave function is decomposed into states of exciton 

classes n=p+h (of the composite system A); v is a running index in 

class n. In many-body theory"* the transition operator T is expanded 

in powers of the irreducible effective interaction I, 

T = I + I G T . ' (3) o 

The irreducible interaction I . is a sum of different Feynman 
graphs (containing the bare NN-mteraction) which can not be cut 
into parts by just cutting n lines. The Green's function (GF) in 
Eq.(3) is a product of n single-particle (s.p.) GF's. It has the 
spectral representation 

< • > < * > * p p P P 
n V n V nt>c n V c 

G (n,n) = 5 + y = G <n,n) + Gu(n,n) (4) 
E-e E-E . +in V nXJ U c nVc 

where p , P<+> are bound and unbound eigenfunctions of H +1 ^ n U n U c o n , n 
with eigenvalues e and E = e , +E +B .respectively. Here, " rtV nVc n - i , V c c 
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E = R2kZ/2m and B are the kinetic and binding energies of the c c c 

unbound nucleon. 
It is especially convenient if both the bound and unbound GF's in 
Eq.(4) are splitted into one pole part and one smoothly energy 
dependent regular part. Then we may convert Eq.(3) to an 
expression Ghich contain the pole parts of Gq only, 

T = I + I ( + G ^ + > ) T . ( 5 ) 

while the regular parts of Gq are used for a renormalization of the 

effective interaction, 

I = I + I ( G* + G* ) I . (6) u o 

This effective ineraction in form of (mean) squared matrix elements 
enters the further treatment as a main ingredient. According to the 
splitting in Eq.(4) we have to distinguish between four types of 
elements, I , I . , I „ , and I denoting the coupling between B B U UB u 
bound and/or unbound states. 

In nuclear physics it becames customary to decompose Eq.(5) into two 

parts, 

T = T U + T U G' + > T = T U + T® „ (7) B 

where the multistep direct part is given by the Born series, 

T U = I + I G ^ T" , (8) 

and the multistep compound part has the form 

T = T G„ T + T G„ T G„ T + . . . (9a) 
B B B 

Similar (approximative) expressions were derived either within a 
shell-model approach1 or projection operator formalism2. However, by 

2 3 U 

some authors ' the approximation T = I was used in Eq.(9a). 

Following Ref 1 we extend this approximation by an additional term, 

IG^+>I, which yields the matrix element 

T L . = ! U B [ G B + > - I . - I . „ G U + > I « . ] 4 I . U • ( 9 B ) 



In contrast to the multistep direct processes, Eq.(8), the multistep 
s 

compound series in Eqs.(9) describe processes in which the nuclear 

system undergoes at least one transition to stages in which all 

particles occupy bound orbitals characterized by Thus, a 

single-step contribution occurs only in Eq.(8). 

B. Statistical assumptions 

For complex nuclei and sufficient high incident energies the cross 

section in Eq.(l) can not be evaluated microscopically. Analytical 

expressions are obtained for energy-averaged cross sections only 

This fact is also governed by the finite energy resolution of the 

experimental facilities The energy uncertainty of the incident beam 

leads to an average over quasibound levels of the composite system 

A, while the finite detector resolution causes an exit channel 

averaging, i.e., it averages over the eigenstates in the residual 

nucleus*, A-l. 

It is well known10 that incident-energy averages taken 'over levels 

of the A-body system yield the decomposition 

. ... T .(E ) = T . (E ) + T '(E ) with T . = 0' • (10) ab a ab a ' ab a ab 

Since Eq.(8) is assumed to depend smoothly on incident energy we 

have 

T , (E ) T , ( E +iA ) = TU. (E ) (11) ab a ab a a a b a 

where the averaging width is taken as A ^ 0.1... 1.0 MeV. Comparing' 

Eqs.(7) and (10) it yields T ^ - T®b and via Eq.(l) also 
A 

der An ab s —————A 

d E b 
= "TT { |Tab'2 + O 2 } * ( 1 2 ) 

Now, if we take an exit-channel average (denoted by a bar carrying 

the index (A-l)) we arrive at analytical expressions for both the 

SMD and SMC cross sections, 
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-A- 1 
- A S M D S M C de , der a b a b a b 

(13) 
dEv dEu dE. b b o 

The statistical assumptions are defined by treating the effective 

interaction as a random matrix taken from G0E1'*5'10 Then, the first 

moments of all elements (mean value) vanish and the second moments 

are defined by 

1 1 ~ I" . .1 . .= (<5 6 6 . .6 . .+6 .6 . 6 , 6 . ) I (n,n').(14a) n u n V m/Jm x rim XJ/J n m V /J nm VJJ n m l> / j ' B 

Equationu(14a) is defined for the bound-bound case. Similarly we 

have for other cases (in a more compact prescription") 

W U B = O n c ' n ' > ' ^ u C ="l.;Cn.n'c-> . (14b) 

I u I* = ij(nc.n'c') . (14c) 

Here; the upper contraction lines denote an averaging over the 

A-body ensemble while the bottom lines indicate (A-l)-body ensemble 

averaging. Further both ensembles are assumed to be statistically 

uncorrelated. 

The channel index c={E ,0 or rc} will be chosen as kinetic energy, c c 

direction, and particle type (neutron or proton) of the unbound 

particle. Further, E=E +B and U=E-B.-E, are the excitation energies a a b b 

of the composite and residual systems. 

C. Restricted partial state densities 

The parti&l (or exciton) state density of the composite system 

results from-the pole part of the bound GF'(after averaging), 
, _ N n- 1 

1 g(gE ) 
- G;+>(n,n) - I <5(E-env) = J 6(E- J e ) = - P n(E) (15) 

{jfc} kr t p!h!(n-1)! 

and is given in the independent-particle model (IPM) by the Encson 
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formula20. Here, the density of the mean-field single particle and 
hole states j of energy e. is approximated by g, i.e., the s.p. 
state density at Fermi energy 40 MeV. By the same token, the 
exciton state density p of the residual system is obtained n - 1 

from G^+> All this results are derived from the assumption that the 

effective interaction changes the exciton number without any 

restriction. 

The formulas alter drastically if k-body forces are assumed which 

change the exciton number by An=nf-n^=-k,-k+2,...,k-2,k. As a 

consequence, p (E) and p (U) tend to the restricted partial state n n - i 

densities p<An>(E) and p < A n _ 1 >(U), respectively. They are defined by n n 

n r>— n n - 1 
3 i f 

< A n - L , ( S ) _ p - * ( E ) X J 6 ( E V ) J dt t-T e )ö(»-t-5 e. ) (16) 
r i , k , J k , J 1c (Jk> k=l O k=l ^ k=l 

where ni=pi+h^ and nf=pf+hf denote the numbers of active particles 
and holes before and after the collision. Mathematically, the k-body 
assumption is connected with a transition from GOE to the Embodded 
GOE (EGOE)1®. Comparing Eqs.(15) and (16) the GOE and EGOE 
quantities are related by 

P (E) = J p' A n >(E) (17) n n 
( A n ) 

where the sum runs in two-steps over all values An ^ In I. 
Starting out from Eq.(16) and assuming 2-body forces we obtain the 
(2-body) restricted partial state densities of both the composite 
system, p<An>(E). and the residual system, p < A n 4>(U). The former n t> 
enter the damping widths r < A n > | qjid were firstly suggested by n v 
Williams21 (cf. also Ref.22). The latter which enter the escape 

widths r < A n > ( E w ) T are pointed out firstly in Ref.2. 
n o O 
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D. Residual interaction 

The explicit values of all mean squared matrix elements defined in 

Eqs.(14) are obtained in three steps: (i) The dependence on exciton 

number is absorbed into the (2-body) restricted partial state 

densities introduced above, (ii) All types of unbound mean squared 
2 2 matrix elements are reduced to bound-bound ones, I_ = (V /A) , where 
D O 

VQ is the strength of the residual interaction, V(rt,r2)r 
4 3 

-V 3 n r
0
< 5( r

1" r
2) • (iii) Finally, VQ is found by equating the OM 

reaction cross section to the same quantity evaluated from the 

particle-hole concept. 

The reduction to I2 is realized (approximately) by 

O v = XB <2s+1) ^<oul><Eb> <18a> 
(cf. Ref.23) as well as 

- IuI<Ea> = ",tn,<Ba> ( 1 8 b ) 

_ 2 , _ _ < v n > , _ . _ 2 ( o u t ) , . . 

T U ( E A ' V = P A B P < V ' ( 1 8 C ) 

where 

P<tn>(E ) = (2s+l)~1 (k R)"2 P(E ) . (19a) 
c c c 

Here, 
2 R 1 4n v mk 

PiE ) = - ) (21+1) = — j (20) 3 7* ft fiv (2*) R X 

is the s.p. state density in the nucleus volume, Y = 4"R3/3, and 

R=r A . The value of the radius parameter 1.40 fm was obtained 

from the relation (in MeV-4) 

2 (2s+l) p(er) s g = A / 13 (21) 

where the factor 2 contains the isospin degeneracy. 
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If a surface delta interaction is assumed, 

^ • W = - Vo ro 6 < r ^ r z > . . (22) 

then Eg.(19a) changes into 

P:::;<V = t v * I2 »<tn,<E
c>. ust» 

Even this parametrization rather than Eq.(19a) provides a correct 
A-dependence of the OM reaction cross section (for neutrons and E Ok 
5 MeV) 

O M , . , 3 , , 2 , - 2 . _ . < A n = 2 ) , _ . . - „ . <rit (E ) = ( 4rr /k ) Iini<E ) Pt (E) (23) v a a ub a 1 

which is the formation cross section of a 2plh-doorway state 
starting out from a lp-configuration. Using 

E 

P ; A n = 2 > ( E ) = [ g* + g* ] r dE^ (E-E ) (2s+l) p(E +*_+B ) (24) 
1 N m « C C C r C 

o 
and g -= (N/A)g , = g-g^, . the value V ^ 19.4 MeV was obtained 

N Z N O 

from Eq (23). [ This value together with Eq.(19b) coincide with the 
parametrization given in Ref.17 ]. It will be used for all SMD 
calculations. 
Coulomb effects, i.e., the dependence of unbound mean squred matrix 
elements on particle type v and n are treated in a simple way 
Eq.(20) should be multiplied by a penetration factor, 
defined in Ref.15. 

E. SMC processes 

According to Eq.(13) the SMC cross section is obtained10'47 from 
Eq.(9b) using the contraction technique1 as 

A - l 
d<; C(E ) 4n3 — A 
— = T

b TB* <5(E -E. ) 2 a b a b a b dEw k b a 

= < M C< Ea> B n 
I 7 [ ^ V ? * r < ; ' « b > T ] < 2 5 > 
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where T satisfies the time-integrated master equation, n 

- h s = r<+>| r + r("}| r - r t . (26) nn n— 2v n —2 r>+2>̂  n+2 n n O 
The superscripts (+), (0), and (-) refer to An = +2,0,-2, 

respectively. Here, the damping and escape widths are given by 

r < A n > | = 2 * I? P < A n >(E) (27) n \ v B n 

» ( E . ) ? = 2rr I 2 p ' ^ ' c U ) (28a) no o Bu n 
E ~ D b 

_ < An > Sf. V r , „ ^ < An ) 
n b 

I JdE b r<J-(Eb)t • (28b) 
b=V,TT O 

The total width is r = r ( + > | + r*"'] + r < 0 > ? + r < _ )T Notice that an n n n >• n n 
escape mode r< + *T is absent since it is impossible from energetical n s 

arguments. The sum over exciton number in Eq.(25) runs from nQ=3 up 
1/2 — 1/2 to (2gE) which includes the equilibrium stage n^(1.4gE) 

2 It is an advantage of the parametnzation in Eq.(18a) that all I 

cancel exactly within the sum of Eq.(25). Thus, the shape of the SMC 
2 emission spectra becomes independent of IB. 

Finally, the normalization constant in Eq.(25) is approximated by 

<r<*j - 1 = - j (29) 
b b 

which is dictated by flux conservation. Here, <ys*D signifies the A O 
(energy-integrated) SMD cross section given below. 

F. SMC versus exciton model 

For the sake of completness we have to mention in which sense the 

SMC model, Eq.(25), differs from the phenomenological exciton 

model2*'25 (EM), 

do-E*(E ) r ab a = <y°M(E ) J r"(E )t - (30) 
a a Lt _ n b b dE. R b n 

11 



Within the EM the escape widths, 

em ^ (2s+l) P(n-l) r U .n-2 
" r * ? < E b ^ = ~ T T T " * E b < V — — ( " ' 77 R gE E J 

are obtained from detailed balance principle. Therein the inverse 

cross section is approximated by the OM reaction cross section, 

L nv OM , _ . ,... 
^ n < V 21 ° b ( E b > * ( 3 2 ) 

However, this is not always true since the exciton number dependence 

is ignored. More precisely, the inverse cross section should be 

defined as 

< n v ( E b ) = ( 4*3/k* ) I B
2(E b) P;0>(E) (33) 

rather than Eq.(32) After inserting Eq.(33) into Eq.(31) the 
1 . 1 <S relation 

r E " ( E . )T = r ' f ' c E . )T (34) 
no o no o 

is found. Hence, the EM follows immediately from the SMC model if 

(i) The backward escape mode is neglected, r*. '(E. )? = 0. n o O 
SMD (ii) Direct reactions are absent, a = 0 , which yields in Eq.(29) a b 

SMC OM a - a . 
a a 

It is clear from the above that the approximation in Eq.(32) 

prohibits a cancellation of if within the EM. Thus, if is treated as B B 
a fit parameter in the EM. 

G. SMD processes 

The SMD cross section follows from Eq.(8) as 

, SMD . . 3 j < r > . dor (E ) 4n A-l dor (E ) 
ab a „ U „ U * „ , r ab v a ' 

c c - i : : • • « » j ._ . 2 a b a b « ^ , dE. k dE, b a r = 1 b 

Before evaluating Eq.(35) we have to distinguish10 between the 

sudden and adiabatic approximations. However, whithin the IPM and 

using the parametrization in Eqs.(19) both approximations 
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coincide17. Thus, for the one-step and two-step processes we have 
3 2 (despite a kinematical factor 4" /k ) a 

da<4>(E ) — 

dc<2>(E ) dE — 
ab a p 1 ,2 

= I t O w dEb 4 n 

2n* P;^(B a-E t) i;(Et,Eb) ^ ' ( E ^ ) (36b) 

with the restricted partial state densities p(*'(U)=(g2+g2)U. 1 N Z 
To include collective modes (of multipolarlty X-, energy , and 
deformation parameter we decompose15-17 the transition 
probability, 

11 U) • Ij p;+>(U) + J ij . (37) 

The ansatz for the particle-vibration coupling, 
— A 

= ß \ V R < k a R ) Z P ( E a ) P < E b . ) ' ( 3 8 ) 

can be obtained after replacing in Eq.(22) the quantity VQro<5(r-R) 
A A 

by flKVRR<5(r-R) where /Jxs [4«<2X+1)] ~ t y Z \ . Here, 48 MeV is the 

real potential depth. 

Starting out from Eqs.(36), (37), and (19b) we finally obtain simple 

expressions for the SMD cross section, 

dcCf](E ) , m<K .2 4 n ab a f 1 ( 3 g ) 

d E b 
= f r 1 7 C « ] — ^.(E )^b(E ) , 1 2nEZ J (k R) k a a b b 

where [a] symbolizes 2 one-step and 4 two-step contributions, 
denoted according to the sequence of exciton and phonon excitations, 

[ex] = * a b (VoAr4'3g)2 U (40a) 
A 

[vib] = <5ab J pj V2 <5(U-o\) (40b) 
X. 

[2ex] = (V0A"*^3g)* qt U3/6 (41a) 

13 



/ V 

[ex, vib] = [vib.ex] = * a b (V 0A"" Sg) Z qt J ^ J V2 (U-'A^) (41b) 
/N A 

C2vib] = <5ab J < ß*x. v; qt 6 ( 0 - « ^ . ) . (41c) 
X.X' 

The combinatorial factor is given by 

and qt = | IT ( kiR)' 2p( E t) . 
I I I . F I R S T - C H A N C E E M I S S I O N 

The first-chance emission will be evaluated within the SMD/SMC model 

as 

d 2c . (E ) d o ^ C E ) _ 2L+1 1 das"c(E ) a., b a. ab a _ ab a : = V a, (E. )P, (cos©) + — — .(43) 
dE dO dE. , 4n 4n dEu b b b L = O b 

Here, the angular distribution of SMC emission is assumed to be 

isotropic, while for SMD processes the empirical systematics of 

Raibach and Mann20 are adopted. 

Since the SMD process terminates after a few collisions we restrict 

ourselves to one-step and two-step contributions for the incident 

energy range below 30 MeV All SMD calculations are performed with 

the residual interaction strength Vq=19.4 MeV. In case of phonon 

excitations we restrict ourselves to two low-lying vibrational 

states of multipolanty - 2* and 3 For odd-mass nuclei the weak 
27 coupling model was adopted The phonon parameters ft , are 

P3 
taken from Ref.28 (expect for Nb where Ref.29 was used). 

Otherwise, « are received from Refs.27, 30, and 31. All 

^-parameters are calculated from 

ft^ = <2\+l) / 2CX (44) 

with Ca=500 MeV. In summary, all parameters used in calculations are 

listed in Table 1 Moreover, the delta functions entering Eqs.(40b) 

14 



TABLE 1 Energy and deformation parameter of two low-lying 
phonon states of multipolarity 2+ and 3~ 

Target «2 (MeV) (MeV) 

2 7 A l , 2 B S i 1 .78 0 .41 6, .88 0, .22 
* e T i 0 .98 0 .27 3 . 0 0 0, . 14 
5 1 v 1. ,55 0. 1 7 3. ,00 0. 14 
S2Cr 1 .43 0. .22 4. .59 0. , 1 8 
"Mn 0 .83 0 .25 4 . 6 0 0, . 18 
Fe 0 .85 0 .24 4 . 5 2 0, . 18 

5 8 N i 1. .45 0. . 18 4. ,47 0. 1 8 
5<>Co 1 .33 0 .21 4 .05 0, . 1 7 
Cu 1 .35 0. . 1 8 3 7 0 0 1 6 

~Zr 2 . 1 9 0. 0 9 2 . 2 5 0. 13 
^ N b 0. 9 3 0. 1 3 2. 3 0 0. 18 
Zr 0, .92 0. .09 2. . 1 2 0 1 2 

~Mo 0. .87 0 1 5 2. .53 0. 13 
~Mo 0. .78 0. . 17 2. .24 0. 13 
"Mo 0 79 0 17 2 . 5 0 0. 13 

100Mo 0. ,54 0. 2 3 1. ,91 0. 1 2 
1 0 ? A g 0. .51 0 2 3 2. .07 0. 1 2 

1 1 2Cd/ t 3Cd 0. .35 0 2 2 1. .97 0. 1 2 
113 In 1 .29 0 . 11 1 .95 0 . 1 2 
"eSn 1, .30 0, . 11 2 .32 0. . 13 
124 Sb 1. . 17 0. . 11 2. .39 0. , 13 
127I 0 .44 0 1 8 2 30 0, . 1 3 
12BTe 0 .74 0, . 14 2 . 50 0. . 13 
181Ta 0, .09 0. .07 1. .50 0. 10 
1 8 d w 0 . 12 0 .08 1 .50 0. . 10 

ZOBPb, ZOt>Bi 4 . 0 8 0. 05 2. ,62 0. 14 
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and (41c) are replaced by Gaussians of width 1 MeV simulating both 
the limited (exit channel) energy resolution in experiments and the 
spreading of spectroscopic strength 

The SMC processes are calculated adopting the restricted partial 
state densities of Refs.2 and 21. Both Pauli and pairing corrections 
are considered by an energy shift", 

f - 2 g f . 
aph = APh I 1 + [2^(A)/n]2 J + ~ I A O ( A ) " a 2 ( A ) J ' (45) 

where A , =(p2+h2+p-3h)/4g. The ground-state correlation function p h 

Ao(A)=Aq(N,Z) depends on the neutron and proton numbers in the 

nuclear system. This quantity can be obtained from the condensation 

energy, C(N,Z)=gA*/4, inferred from odd-even (o/e) mass differences. 

More explicitly, C (e ,e)=A +A -6, C(e,o)=A C(o,e)=A and C(o,o)=0 
N Z N Z 

where A A 6 are taken from the systematics in Ref.33. 
N Z 

Thereafter, the excited-state correlation function A(n,U) will be 
32 

calculated analytically from Aq . 

The energy shift defined in Eq.(45) enters the restricted partial 

state densities in different modifications. More precisely, we have 

g (E-a ) ^ E-a » ^n-1 
p«*> = f E ^ l i 1 (46a) 

2(n+l) 1 E* J 

( . gph(n-2) f E-a* .n-i 
< C <E> = < 4 6 b ) 

% A which enter the damping widths in Eq.(27) and E =E-a . . Similarly, pr> 

the residual "excitation energy U which enters p < A n 4 >(U) in the n 
escape widths should be replaced by 

U = E - B. - E. - a A _ b . A k (47) b b p + A p , h + A K 

whereas the energy denominator, E, in Eqs.(5.16) to (5.18) of Ref.2 
# 

should be changed into E . In Eq.(47) the abbreviation Ap=An/2-l and 

Ah=An/2 hold. 

16 



IV. EMISSION SPECTRA 

A. General considerations 

The double-differential cross section (DDX) for the reaction (ax,b) 

is given by 

d 2c . (E ) do- . (E ) _ 2L+1 , a , x b a a , x b a r" _ < a , x b > 
2 fL<l'Xb>(Ea'Eb) P

L
( C O S 0 ) ( 4 8 ) 

dE. dO dE. " 4rt b b b L = O 

where the differential cross section (energy spectrum), 

der (E ) der der der 
a * x b a = — ^ + y a - c b + y Q - c d b + . . . , ( 4 9 ) 

dE ** dEK dEK b b c b c , a b 

is a sum of f i-rst-chance emission, second-chance emission, etc. 

Assuming isotropic multiple particle emission (MPE) the Legendre 

coefficients in Eq.(48) simplifies to ( L i 1 ) 

f ^ " " ( E ) dar (E ) . 
C < E < x ' E b > = f — — / * a 1 W . ( 5 0 ) 1 dEK dEK ^ o b 

Henceforth, the particle-type indices a,b = n, p and y denote 

neutron, proton (it should not be confused with exciton and particle 

number introduced above) and j'-ray. 

The following (model-independent) relations for energy-integrated 

cross sections should be satisfied (at incident energy E ) a 

& , = c , + y c . + y o + ... (5i) 
a , x b a . , b a , c b a , c d b 

c c , d 

where the partial cross sections are given by 

er - y a and er - \ a , etc. (52a) 
a . b Lt a , b e a , b e t a , b e d 

c d 
In this context the 0M reaction cross section is defined as 

° T < E a > = b < E a > • ( 5 2 b ) 
b 

Now, adopting Eqs.(52) the total emission cross section in Eq.(51) 
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can be cast into a form which contains excitation functions 

(e.g., measured by activation technique) only, 

y r w + * w ] L L a,be}' a.cbc J ^.xb = + + " • I + 

+ I C V b c d r
 + ffa.cbd^ + ] + . . • ( 5 3 ) 

c . d 
where b,c,d * r. Neglecting charged-particle emission Eq.(53) 

reduces to 

= y v at . (54) i, x n ^ a,Un a a. 
U= 1 

Otherwise, for example, the (a,2ny)-excitation function can be 

calculated by the relation 
a - a - a (55) 1,211/ a,2n a,3n 

B. Multiple particle emission 

The MPE is treated as a pure SMC approach. Hence, Eq (25) will be 

used, but it should be modified in two respects: 

(i) The residual excitation energy U given in Eq.(47) which enters 

the escape widths should be replaced by 

U = E - B - B . - EK - a A ~ r b
u A k (56a) c cb b p + üp , ri + ün 

for the second-chance emission (a,cb), and by 

U = E - B - B . - B . . - E . - a A"^" d~ b
 ( 5 6 b ) c cd cdb b p+Ap,h+Ap 

for the third-chance emission (a,cdb), respectively. The quantities 

B . and B are the binding energies of particle b in the residual co cdo 
systems (A-c) and (A-c-d). 

(ii) The normalization constant in Eq.(25) should be replaced by 

(cr -a ) for the (a,cb) process and by (c -a . ) for the a, c d, c - a, c a a # c ay 
(a,cdb) process, respectively. Approximative expressions for the 

^-emission processes are 

(E ) = f dE f der (E )/dE } , (57a) a J c V. a,c a c J a „ _ a,cf a 
E-B -B c c V 
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c c d -
r dE I der (E )/dE . J d I a., cd a d (57b) 

E - B - B c c cd c dX) 

All other SMC-quantities entering Eqs.(25) and (26) remain the 

same as in the first-chance emission case, i.e., the damping widths 

given by Eqs.(27) and (46) as well as the energy-denominator within 

widths for MPE via Eqs.(57) become much smaller compared to the 

first-chance emission the mean life-times r in the master Equation n 
(26) increase rapidly. Notice that T I S here the mean life-time of n 
exciton class n in the composite system A with reference to the 

emission of more than one particle. 

In comparison with other MPE approaches in our simple formalism 

the master equation has to be solved one time only for each MPE 

process (ct , a etc.). Formally, this model looks very a, c b a , c d b 

similar to a simple cascade-evaporation procedure where an average 

emission-energy shift (caused by the previous emitted particle) in 

Eqs.(56) is roughly simulated by the Pauli and pairing 

V. R E S U L T S 

To prove the consistency of the predicted SMD/SMC model neutron and 

proton spectra (n,xn), (n,xp), as well as (p,xn) including three 

decays of the compound system are calculated by code EXIFON35 for 

about 30 nuclei between A=27 and 209 at incident energies between 5 

and 26 MeV. Using throughout the same parameters (g=A/13, rQ=1.40 

fm, Vr=48 MeV, and Vq=19.4 MeV which is the surface-delta 

interaction strength in Eq.(22)) a global description was performed. 

Further, all binding energies are taken from Ref.36. The 0M reaction 

cross sections are calculated analytically37 (Wilmore-Hodgson for 

neutrons; Becchetti-Greenlees for protons) All phonon parameters 

are listed in Table 1 (cf. Sec.III). The running time on personal 

* the escape widths are both referred to E =E-a ph" Since the escape 

corrections a 
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FIG. la Angle-integrated (n,xn) spectra for various nuclei at 14 
MeV incident energy. Experimental data from Ref.38 (open 
circles), Ref.39 (closed circles), and Ref.40 (crosses). 
For denotations see text 

computer (IBM AT) is 5 to 50 seconds per nucleus depending on 
incident energy. 

The results are depicted and compared with experimental 
data2P'3°'38 48 in Figs.l to 9. (The meaning of the curves is the 
same in all Figures. Dot-dashed line: first-chance emission; 
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T—i—I i I i—i—i—i—i—i—i—i—r 
E n = U 1 MeV 

\ SMC x vib) (2 vib) \ 
i i i Ubj I I—i. 

En(MeV) 

FIG. lb Same as Fig.la 

dot-dot-dashed line- first-chance plus second-chance emission; long 
dashed line: SMD or SMC separatly, short dashed line: 
[ex]-contribution; dotted lines- [vib] and [2vib]-contributions 
separately; solid line: total emission spectrum). We see that 
despite the great simplicity of the model it is successful in 
reproducing experimental emission spectra for both different 
incident energies and different nuclei. This holds for energy as 
well as angular distributions. The latter are shown for neutron 
(Fig 3b) and proton emissions (Fig.8b) in form of the first two 
Legendre coefficients. 
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FIG. lc 
Sanie as Fig. la 
but crosses 
denote 
experimental 
data from 
Ref.30 

FIG. Id 
Same as Fig.la 
but crosses 
denote 
experimental 
data from 
Ref.30 
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En (MeV) 

FIG. le 
Same as Fig la 
but crosses 
denote 
experimental 
data from 
Ref.30 

EJMeV) 

FIG. 2 Same as Fig.la 
but at 18 MeV incident energy 



FIG 3a Same as Fig.la but at 25.7 MeV incident energy. 
Experimental data from Ref 41 

In summary, the following conclusions can be drawn: 
(i) Ignoring shell effects a fair description of emission spectra 
was obtained adopting global parameters only. However, special care 
is required for magic nuclei where the s.p. state density g strongly 
deviates from the global value A/13. This is the main reason for the 

ZOO 20P 
discrepancy in the description of Pb and Bi at 14 Mev in 
Fig.le. The influence of the emission spectrum on g is demonstrated 
in Fig.9 where calculations for 2°8Pb with g=A/13 and A/26 are 
compared. 
24 



E" (MeV) 

FIG 3b Legendre coefficients f± and f of (n,xn) spectra depicted 
in Fig.3a 

(ii) Whereas for the SMC description no nuclear structure 
2 

information is used (e.g., cancelation of IB ) the calculation of 
SMD processes, e.g. the excitation of collective modes requires 
spectroscopic values (/\, <\ ) • 
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FIG. 4a 
Angle-integrated 
(n,xn) spectra 
for ^Nb 
at different 
incident energies 
Experimental data 
from Ref.29 
and Ref 42 
(at E = 9 MeV). n 
For denotations 
see text 
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FIG. 5 Angle-integrated (n.xn) spectra for 
3PCo, ^Mo, teiTa at 8 MeV incident energy 
Experimental data from Ref 43 For 
denotations see text 
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FIG. 6 
Angle-integrated 
(p,xn) spectra for t»*.p<s.oe,ioô 0 a t 

25.6 MeV 
incident energy. 
Experimental data 
from Ref.44. 
For denotations 
see text 



FIG. 7 

En (MeV) 

Same as Fig.6 but for "Zr at different incident energies, 
Experimental data from Ref 45 

(ni) Whereas the proposed MPE model predicts the rigth spectral 
shape for the second- and third-chance emissions (cf. Fig 6) the 
magnitude of MPE-calculation in the threshold energy region 
overestimates the experimental data. Here, the magnitude of MPE as 
well as SMC cross section is determined only by a normalization 
constant in Eq.(25). For MPE the latter is too high since in 
Eqs.(57) so far a correct ^-competition is absent. Also (n,a) 
processes are ignored. Thus especially for ligth and medium nuclei 
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FIG. 8b 
Legendre 
coefficients f 
and f. of 
(n,xp) spectrum 
for ^Nb at 
14 MeV incident 
energy. 

10 
Ep.(MeV) 

FIG 8a 
Angle-integrated (n,xp) spectra for different nuclei at 14 
MeV incident energy. Experimental data from Ref.46 
<53 „ „ „ „ . _ . t > 3 , , , „ „ _ . _ . 1 0 7 . 1 1 3 Cu), Ref.47 ( Nb), 
denotations see text 

and Ref.48 , 1 0 7 . ( A g, In) 
( Fe, 

For 

Ep(MeV) 



206 
FIG. 9 Angle-integrated (n,xn) spectra for Pb at 14.1 MeV for 

g=A/13 (solid line) and g=A/26 (broken line) 

(27A1, 5<5Fe, SS>Co, and ö5Cu in Figs.l and 2) discrepancies in the 
low emission-energy region occure. 
(IV) As shown in Figs.6 and 8a for (p,n) and (n,p) reactions the 
calculated one-step direct contribution which influences the 
high-energy tail of the spectra overestimates the experiments. It 
results from Eq (40a) which is a rather crude approximation for 
charge-exchange processes 

To this end we continue with some general remarks of how a (n,n') 
process is composed of 
(l) The ratio of SMD to SMC contributions increases with incident 
energy and is close to 1 at 30 MeV incident energy. 
(ii) The one-step contribution dominates. It is about 18% (30%) of 
the OM reaction cross section at 14 (26) MeV incident energy. 
Otherwise, for the two-step contributions we have 3% (10%) at 14 
(26) MeV. The ratios are independent of mass number. 
(in) While the integral contribution of direct particle-hole 

2/3 excitations rises with incident energy ( [ex] " A E and [2ex] a 
4 / 3 3 

A E ) it decreases for phonon excitations. At about 10 MeV we 
have [ex] [vib] . 
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(iv) The ratio of two-phonon to one-phonon excitations is almost 
independent of A and E . It takes the value [2vib]/[vib] ^ 0.1 . a 
(v) Direct three-step processes, e.g. [3vib], are very small and 
thus can be neclected for incident energies below 26 MeV 
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