COMPILATION AND EVALUATION OF (N, T) CROSS-SECTIONS AROUND 14 MEV

Z.T. Bödy
(Kossuth University, Debrecen)
K. Mihály
(Technical University, Budapest)

[^0]
COMPILATION AND EVALUATION OF (N,T) CROSS-SECTIONS AROUND 14 MEV

Z.T. Bödy
(Kossuth University, Debrecen)
K. Mihály
(Technical University, Budapest)

Work supported by research contract No. 3114/RB with the International Atomic Energy, Agency, Vienna.

Abstract

Experimental (n, t) cross-section data around 14 MeV were reviewed and evaluated, partly using theoretical fits. Recommended values are given for 37 nuclides. For those nuclides where no experimental data exist, empirical formulae are referred to; their accuracy is analysed.

Reproduced by the IAEA in Austria February 1985

Fig. 1.
Cross sections for (n, t) reactions at 14 MeV
/Here 6×10 or $\sigma / 10$ means that the respective 6 is multiplied or divided by ten; t^{\prime} means lower while means upper limit; in the cases of 197 Au and ${ }^{40} \mathrm{Ca}$ the points mean partial cross sections only; means that the cross section refers to the element./

A compilation and evaluation programme has been started to survey the available /n,t/ cross-section data $L^{-} l_{-} \bar{l}$, $L^{-} 2_{-} \bar{T}$. Some of the findings are given below:
l/ The vast majority of measurements deals with the lightest elements /Li, Be, B/. For example, about one third of the measurements relate to the ${ }^{6} \mathrm{Li} / \mathrm{n}, \mathrm{t} /$ process if one takes into account the data at all energies.

2 / For other elements the experimental data are very scarce.
3/ Neglecting cross sections integrated over a broad energy range /the fission average cross sections of Heinrich and Tanner $L^{-} 3 _\bar{l}$ and those measured by Qaim and wölfle using deuteron break-up neutrons $L^{-} 4 _\bar{l} /$, following statements appear to hold for the atomic number range $10 \leq \mathrm{z} \leq 92$:
a/ Measurements were performed only for thirty elements or at least for one isotope of them. /In four cases for two isotopes of the same element./
b/ For more than half of the elements there are no experimental data at all. There are wider atomic number ranges $/ Z=33-37,53-56,62-67$ and $69-78 /$ where no experimental data are available.
c/ In the $14.2 \leq \mathrm{E}_{\mathrm{n}} \leq 14.9 \mathrm{MeV}$ energy range 54 cross section measurements were performed. In addition to this in 7 cases upper limits were given and in 8 cases partial cross sections were determined /lower limits/. See Fig. 1.
d/ Excitation functions /measurements for at least two energies/ were determined only in 8 cases.

4/ Cross section measurements by different authors up to 1970 yielded very different results. The maximum discrepancy can reach three order of magnitude $/^{32} \mathrm{~S}$, 40 Ca/. These cases might be exceptional; however, a one order of magnitude deviation is not unfrequent. The results reported after 1971, mainly from Juilich and Debrecen, are more consistent. Various reasons for discrepancies were discussed by those two groups. In many cases - if activation
method is used - high cross-section $/ n, 2 n /$ or other reactions leading to the same product nucleus can increase the value of the measured $/ \mathrm{n}, \mathrm{t} / \mathrm{cross}$ section. For example, the case of ${ }^{32} S$ the ${ }^{31} P$ contamination and in the case of ${ }^{40}$ Ca the ${ }^{39} \mathrm{~K}$ contamination must be less than about O.Ol \% in order not to disturbe the results appreciably L5_7.

A further problem arises if one uses the annihilation radiation; here the separation of the /n,t/ - activation product from some disturbing activities can only be achieved through the difference between the half-lives. For example in the case of ${ }^{40}$ Ca the activity of $/ 7.7 \mathrm{~min} /{ }^{38} \mathrm{~K}$ must be analysed from that on 19.98 min./ ${ }^{13} \mathrm{~N}$ resulting from the $/ n, 2 n /$ reaction of nitrogen present in the air $L^{-} 6 _$. Extensive studies on $/ n, t /$ reactions on even mass nuclei were carried out at Juilich $L^{-} 6,7 _\overline{7}$, followed by some measurements at Dallas $L^{-} 8_{-} \bar{T}$. The odd mass nuclei were investigated mostly at Debrecen L9, 10_7. From those investigations it can be stated that /n,t/ cross sections odd target nuclei are greater by about an order of magnitude than those on even target nuclei. /See Fig.2./ For the atomic number region with $Z \geq 20$ it can be established that all experimental data lie within in the following intervals:
$76 \exp \left(-9.2 \frac{N-Z}{A}\right) \leq \sigma^{\prime}|n, t| \leq 200 \exp \left(-8.3 \frac{N-Z}{A}\right)$ pub for even, $4500 \exp \left(-23.5 \frac{N-Z}{A}\right) \leqslant \sigma / n, t / \leqslant 5400 \exp \left(-13.9 \frac{N-Z}{A}\right)$ ub for odd target nuclei.

Qaim and Stöcklin $L^{-} 7 _\bar{l}$ had proposed an empirical formula of the form

$$
\sigma / n, t /=4.52\left(A^{1 / 3}+1\right)^{2} \exp \left(-10 \frac{N-Z}{A}\right) \rho^{u b}
$$

which was slightly modified by woo and Salaita $L^{-} 8$ _ \bar{l} in the following way:

$$
\begin{aligned}
& \sigma / n, t /=7.684\left(A^{1 / 3}+1\right)^{2} \exp \left(-13 \frac{N-Z}{A}\right) \text { pub. The quality } \\
& \text { of these formulae was analysed. It was found that they }
\end{aligned}
$$

Fig. 2. Depedence of $\sigma_{n, t}$ on $\frac{N-Z}{A}$
are good only for even nuclei; their qualities being about the same.

For the range $20<Z \leqslant 44$ the formula of Qaim and Stöcklin 17 I is better, while for $2>44$ the formula of Woo and Salaita [. 8 is preferable. For odd nuclei the calculated values should be multiplied by about ten in order to have a reasonable estimate /except ${ }^{205} \mathrm{Tl} /$.

The measured excitation function data were described by functions of the form

$$
\sigma / E_{n} /=e^{a x^{2}+b x+c}
$$

with fitted parameters a, b and c. /See Table l./

Here

$$
\begin{aligned}
& \mathrm{x}=\left(\frac{A}{A+1} \mathrm{E}_{\mathrm{n}}+Q\right)^{-1 / 2} \quad \text {, where } \mathrm{E}_{\mathrm{n}} \text { bombarding } \\
& \quad \text { neutron energy in lab. system; } \\
& A: \text { mass number; } \\
& Q: \text { reaction energy in c.m. system. }
\end{aligned}
$$

Eq. /l/ with the parameters of Table 1. gives the cross sections in microbarns. The "purely empirical" excitation functions are recommended in the given intervals except for 93 Nb . The "semiempirical" excitation functions are the Hauser-Feshbach calculations of Sudár and Csikai L-10_T fitted to the experimental points.

In order to develop a semi-empirical interpolation formula the logarithmic derivatives of the excitation functions at a fixed excess energy above the threshold $15 \mathrm{MeV} /$ were plotted against the atomic number Z and a linear /nearly linear/ dependence was established:

$$
\left(\begin{array}{rlrl}
\left(\frac{d \ln \sigma}{d E}\right)_{E}=\alpha+\beta \mathrm{Z}, & \text { where } \alpha & =-0.667 \mathrm{MeV}^{-1} \\
E & =5 \mathrm{MeV} & \beta & =0.056 \mathrm{MeV}^{-1}
\end{array}\right. \text { and }
$$

The reason for choosing just 5 MeV excess energy is that around this energy we have a common interval where all /used/ excitation functions have measured values. The above linear form has a theoretical basis: if we want to describe the energy dependence by the product of the Gamow penetration factor

$$
e^{\frac{-B Z}{\sqrt{E}}}
$$

and a slowly varying function $/ \mathrm{f} /$ of E , then we have

$$
\left(\frac{d \ln \sigma}{d E}\right)_{E=5}^{=} \operatorname{MeV}\left(\frac{f^{\prime}}{f}+\frac{1}{2} \frac{B Z}{E^{3} / 2}\right)_{E=5 \mathrm{MeV}}=\alpha^{\prime}+\beta^{\prime} Z
$$

with $\beta^{\prime}=0.076 \mathrm{MeV}^{-1}$.
The constant α^{\prime} cannot be determined without knowing f. It can be seen that although $\beta \neq \beta^{\prime}$, the two values are not very far from each other.

By using this result for the $13 \leq z \leq 28$ region, one can estimate a cross-section value σ^{σ} at $E=E_{0}+\Delta E$ from the value of the cross section σ_{0} at E_{0}. Let us denote by y the quantity $\quad / \alpha+\beta \mathrm{Z} / \Delta \mathrm{E}$, then we have

Table 1.
Empirical and semi-empirical excitation function parameters

$$
\begin{array}{lll}
\sigma=\sigma_{0} / 1+y \mid & \text { for } y>0, & 12 / \\
\sigma=\sigma_{0} / 1+\left.|y|\right|^{-1} & \text { for } y<0 . & 13 /
\end{array}
$$

A pure empirical observation that instead of eq. /3/ we can use

$$
\sigma=\sigma_{0}|1+|y| / \exp | 2 y \mid \quad \text { for } y<0 \quad|4|
$$

and reach a far better result iflyl is nearer the unity than zero. /For small arguments the two formulae yield about the same result./ Otherwise, eq. /2/ has a precision better than 7% for $\Delta E=0.5 \mathrm{MeV}$ and better than 15% for $\Delta E=1.0 \mathrm{MeV}$. Similarly, eq. $/ 3 /$ gives values within 20 \% for $\Delta E=-0.5 \mathrm{MeV}$ and within 85 for $\Delta E=-1.0 \mathrm{MeV}$. These later two percentages should be compared to 11% and 20% obtained from eq. /4/ for the same energy differences.

In order to check the excitation functions of form /l/ with parameters of Table l. integral /n,t/ data can also be used. Unfortunately, the available integral data are small. In 1961 Heinrich and Tanner $L^{-} 3 _\overline{/}$ measured some /n,t/ cross sections averaged over the thermal fission spectrum of ${ }^{235} \mathrm{U}$.

The averaged cross section $\sigma_{\text {eff }}$ is defined as

$$
\sigma_{e f f}=\int_{0}^{\infty} \sigma / E / S / E / d E
$$

where $\sigma / E /$ is the excitation function and $S / E /$ is the normalized energy spectrum of the bombarding particles.

Heinrich and Tanner suggested to use the formula of Hill [-13_] and Watt $L^{-14 _\bar{l}}$ for $S / E /$ describing the neutron spectrum of the ${ }^{235} U$ thermal fission:

$$
\left.S / E /=\sqrt{\frac{2}{e \pi}} \cdot e^{-E} \cdot \operatorname{sh} \sqrt{2 E} \quad \right\rvert\, E \text { in } M e V / / 6 /
$$

By inserting eqs. /l/ and /6/ into eq. /5/ the $\sigma_{\text {eff }}$ values were determined. The results obtained together with the experimental data of Heinrich and Tanner $L{ }^{-} 3 _\bar{l}$ can be found in Table 2. The upper integration limit in eq. /5/ was chosen to be 20 MeV in each case, above this value the contribution to the integral is negligible.

Table 2.
Measured and calculated $\sigma_{\text {eff }}$ values /*estimated/

Target nucleus	$\sigma_{\text {eff }} \text { lexperimental/ }$	$\sigma_{\text {eff }} /$ calculated/	$\eta=\frac{\text { Geff }\|\exp \|}{\sigma_{\mathrm{eff}} / \mathrm{calc} \mid}$
${ }^{27}$ A1	0.26 ± 0.04	0.30 ± 0.03^{4}	0.87 ± 0.16
${ }^{55} \mathrm{Mn}$	0.17 ± 0.03	0.094	$1.81+0.18$
${ }^{57} \mathrm{Co}$	$0.05 \leq \sigma_{\text {eff }} \leq 0.13$	0.058	$0.8 \leqslant \eta \leqslant 2.5$
$58{ }_{\text {Ni }}$	$\sigma_{\text {eff }}<0.05$	0.025	$\eta<2.0$

The experimental and calculated results agree within the error limits for ${ }^{2.7}$ Al. If one uses the excitation function for ${ }^{27}$ Al given in the ENDF/B IV file one obtains a calculated value for $\sigma_{\text {eff }}$ which is three-times as great as the experimental value. The excitation function for $/ \mathrm{n}, \mathrm{t} /$ reaction on ${ }^{27}$ Al given in the ENDF/B IV file is wrong as is evidenced by a simple comparison with experimental data /see Fig.3/.

The greater deviation of η from the unity for ${ }^{55} \mathrm{Mn}$ can be explained by the fact that the excitation function is reliable only within the $13.5-15.5$ interval /see Table 1/, and the contribution to the integral /5/ from outside this interval is not negligible at all.

In the cases of ${ }^{59} \mathrm{Co}$ and ${ }^{58} \mathrm{Ni}$ the measured and calculated values do not contradict each other. However, these agreements have not any special significance owing to the fact that here the measurements yielded only /lower and upper/ limits of $\sigma_{\text {eff }}$. In addition,it should also be taken into account that the measurement was made for elemental Ni while the calculation is for ${ }^{58} \mathrm{Ni}$ nuclide.

A comparison of the integral data of $/ \mathrm{n}, \mathrm{t} /$ reactions, induced by fission neutrons, with those deduced from the above equation does not describe an ideal case, because the thresholds of the $/ \mathrm{n}, \mathrm{t} / \mathrm{reactions} \mathrm{generally} \mathrm{lie} \mathrm{above} 10 \mathrm{MeV}$ and the contribution of neutrons with $E_{n}>10 \mathrm{MeV}$ in the fission spectrum is rather small. Qaim and wölfle $\left[^{-} 4 _\bar{J}\right.$ did extensive studies on $/ \mathrm{n}, \mathrm{t} /$ reactions using $53 \mathrm{MeV} \mathrm{d} / \mathrm{Be} / \mathrm{break}-\mathrm{up}$ neutrons. However, since the neutron spectrum extends up to 50 MeV , and it is not sure whether the above formulation would be valid up to such a high energy, we did not attempt a comparison with those data. Recent studies at Jülich $\underline{L}^{-} 24,23 . \bar{l}$ using $30 \mathrm{MeV} \mathrm{d} / \mathrm{Be} / \mathrm{break-up}$ neutrons for triton emission cross section measurements are more interesting since they cover

Table 3.
Measured and calculated $\sigma_{\text {eff }}$ values for deuteron break-up neutrons

| Target |
| :--- | :--- | :--- |
| nucleus |$\quad \sigma_{e f f} / \underset{/ \mathrm{mb} / \mathrm{experimental}}{ } \quad \sigma_{\text {eff }} /$| calculated/ $/ \mathrm{mb} /$ |
| :---: |

27_{Al}	1.40 ± 0.42	1.38
${ }^{55}{ }_{\mathrm{Mn}}$	0.64 ± 0.20	0.635
${ }^{59} \mathrm{Co}$	0.64 ± 0.20	0.41

a major energy portion of an $\mid n, t /$ reaction. The neutron spectrum was determined by multiple foil activation technique from 2 to 30 MeV using threshold reactions [-23_ \bar{J}. By inserting this spectrum and eq. /l/ into eq. $/ 5 /$ the $\sigma_{\text {eff }}$ values were calculated /with a lower limit 2 MeV instead of zero which affects the normalization/ and compared to the experimental data. A preliminary result of this comparison is given in Table 3.

The agreement between experiment and calculation is surprisingly good for ${ }^{27} \mathrm{Al}$ and ${ }^{55} \mathrm{Mn}$, resp., expecially if one considers that the experimental cross sections contain contributions also from /n,xt/ process while the calculations do not take into account these contributions.

The authors should like to thank the valuable advices of Prof. Csikai and S.M. Qaim /Jülich/, further they wish to acknowledge the financial support of the International Atomic Energy Agency, Vienna under contract No. 3l14/RB.

References

L^{-1} _ \bar{l}.t. Bõ̃y, F. Cserpák, J. Csikai, S. Sudár, K. Mihály, Nuclear Data for Sciences and Technology, pp.368-370, 1983. Ed.: K.H. Böckhoff, ECSC,EES, EAEC, Brussels and Luxembourg
[̄2_7 Z.T. Bődy, K. Mihály, Report zfk-491 /1982/ 201-203

L³_/ F. Heinrich, F. Tanner, Helvetia Phys. Acta 36/1963/298
L-4_T S.M. Qaim, R. Wölfle, Nucl.Phys. A 295/1978/150
[-5_7 Thesis of S. Sudár. 1979, Debrecen /in Hungarian/

L-6_7 S.M. Qaim, G. Stöcklin, J.Inorg. Nucl. Chem. 35/1973/19

L̄7_ S.M.Qaim and G.Stöcklin, Nucl. Phys. A 257 /1976/ 233
[-8_T T.W. Woo, G.N. Salaita, Int. Conf. on Nuclear Cross Sections for Techn. Oct. 22-26/1979/, Knoxwille, USA; NBS Spec.Publ. 594 GC 12/1979/ 853

L9_ך T. Biró, S. Sudár, Z. Miligy, Z. Dezsô, J. Csikai, J. Inorg. Nucl. Chem. 37/1975/ 1583

L¹0_T S.Sudár, J. Csikai, Nucl. Phys. A 319/1979/157
[-11_T S.M. Qaim, R. Wölfle, H. Liskien, Phys.Rev. C 25/1982/203
[12_ך Priv. comm. of S. Sudár and ref. 10.
['13_7 D.L. Hill, Phys. Rev. 87/1952/1034

L'14_ך B.E. Watt, Phys. Rev. 87/1952/ 1037
[¹5_/ A.P. Baerg, G.C. Bowes, Can. J. Chem. 39/1961/ 684
[¹6_/ E. Weigold and R.N. Glover, Nucl. Phys. 32/1962/ 106
[17_7 A. Poularikas, D.G. Gardner, A-ARK-63 /1963/ 14 BNL-325, Neutron Cross Sect. Vol.2, Curves, p. 86 /1976/

L-18_7 M. Bormann, F. Dreyer, P. Jessen, P. Schenka, Nucl. Data Tables A 18
[-19_T R. Sacher, H. Warhanek, Acta Phys. Austriaca 23/1966/181

L $20 _$M. Bormann, F. Dreyer, H. Neuert, I. Riehle and U. Zielinski, EANDC /E/66 U, 42/1966/. 1966. Paris Conf.

L²1_/ T.W. Woo, G.N. Salaita, EXFOR 10764 /1978/

L²2_T Z.T. Bôdy, K. Mihály: A calculation of integral /n,t/ cross section data from excitation functions and a comparison with experimental data /in Russian/. VI. Soviet Conference on Neutron Physics, Kiev, Oct.2-6, 1983 /to be published/

L'23_ך R.Wölfle, S. Khatun, S.M.Qaim, (Triton emission cross sections with 30 MeV d/Be/ break-up neutrons.) Nucl. phys.

A 423/1984/130

L²4_ך S.M. Qaim, S.Khatun, R. Wölfle, Symp. on Neutron Cross Sections from 10-50 MeV, May 12-14 /1980/ BNL, Upton USA, BNL-NCS-51245 /1980/539

Recommended values of (n, t) cross-sections around 14 MeV

On the following pages recommended values of (n, t) cross-sections are given for the neutron energies at which experimental data are available. Details are given describing how the recommended values were obtained.
${ }^{6}{ }_{L 1}$

$E(\underline{1} \mathrm{~V}$ V) 10.5	$\sigma(\mathrm{mb})$ 36.0	1in. - lin. 1nterpoiation σ error ia not more than 10%
10.8	34.8	
11.0	34.0	Taken from ENDF/B-5 Standarda file
11.5	33.0	(C.Eale, L.Siewart and P.G.Young,
12.0	31.0	1977; Rev. : 1979)
12.5	29.0	Data snd.error are based on
13.0	28.0	1./ E.D.Pendlebury, AWREO-60/64
13.5	27.0	(July 1964);
14.0	26.0	2./ B.DiKern and W.E.Kreger, Phys.
14.5	25.0	Hev. 112 (2958) 926.
15.0	24.0	ERDF/B-5 and JENDL-2 (S.Komode and
15.5	23.3	S.Igarasi, 1977; Rev.s1983) agree
		within 20 for the above interval
		for ${ }^{7} \mathrm{LI}(\mathrm{n}, \mathrm{nt})$ process !
$E(\underline{M} \times \mathrm{V})$	$\sigma(\mathrm{mb})$	1in. - lin. interpolation
10.1	370	σ error is not more than 6\%
11.4	353	
12.7	333	
14.1	318	1982; Rev.: Nov.1983)
15.5	306	

[^1]which was obtained by a atraight line least square fitting using the following experimental Values:

$1.1 \mathrm{E} / \mathrm{MeV} /$	$\sigma / \mathrm{mb} /$
13.55	15.5 ± 2.5
13.83	16 ± 2.5
14.10	19.1 ± 2.6
14.39	22.0 ± 2.8
14.63	18.9 ± 4
14.70	22.8 ± 3.4

of Z.T. Body, F.Cserpak, J.Caikai, S. Suder and K. Hihály, Proc. of the Internat. Conf. on Nucl. Data for sci. and Techn. Sept 6-10, 2982, Antworp. Proc. ed. by K. H. Böckhoff, 1983. ECSC, EEC, EAEC Brusselg and Luxembours; p. 368
2./ $E=14.7 \mathrm{MeV}, \quad \sigma=20 \pm 4 \mathrm{mb}$ of T . Birb, S. Sudar,
Z. Miligy, Z.Dezsö and J. Cgikai, J.Inorg.Nucl.Chem.
$32 / 1975 / 1583$
3./E $=14.1 \mathrm{meV}, \quad \sigma=28 \pm 1.5 \mathrm{mb}$ of M.E. Wyman, E.M. Fryer and M.M. Tiorpe, Phys. Rev. 112 /1958/ 2264.

E（ HoV ）	$\theta(\mathrm{mb})$	
9.0	129	2in．－1in．interpolation
10.0	122	σ arror 1s lose than 20 x
12.0	108	
14.0	94	
16.0	79	
18.0	65	
2c． 0	51	

σ wan calculated from the formula $\sigma=a E+b$ with $a=-7.1 \mathrm{ab} / \mathbf{M}_{\mathrm{e}} \mathrm{V}$ and $b=193 \mathrm{mb}$ valid for the interval $9 \mathrm{MeV} \leqslant \mathrm{F} \leqslant 20 \mathrm{MeV}$ ．The a and b para－ wetere were obtained by a straight line least square fiting of the following experimental values：

1.1	\mathbf{E}（ MeV ）	$\sigma(\mathrm{mb})$	
	$\left[\begin{array}{l} 5.6 \\ 7.7 \end{array}\right.$	$\left.\begin{array}{l}239 \pm 40 \\ 131 \pm 23\end{array}\right]$	G．M．Frye Jr．，J．H．Gamme 1，Phys．Hev． 103（1956） 328
	12.2	96 ± 21	taken from
	14.1	102 ± 17	EXFOR 11255002
	16.1	84 ± 16	For detection boron－loaded nuclear
	18.2	81 ± 16	emulaion was used．
	19．5	60 ± 12	
2．／	$\left[\begin{array}{l}4.0 \pm 0.2 \\ 5.60 \pm 0.05\end{array}\right.$	$\left.\begin{array}{r}95 \pm 10 \\ 230 \pm 25\end{array}\right]$	M．E．⿴囗十man，E．M．Fryer，M．Thorpe， Phye．Rev． 112 （1958） 1264
	9.60 ± 0.25	125 ± 15	taken from Tritium β counting
	14．10＊0．10	85 ± 6	EXFOR 11231003 was used．

Only the $\mathrm{E}>9 \mathrm{KeV}$ values were used for fititing．
As for the $E \leq 9$ MeV values of the different meaeurements they are（in addition to formerly mentionec data）：

$3 . / \mathrm{E}(\mathrm{KeV})$	$\sigma(\mathrm{mb})$	$\mathrm{E}(\mathrm{MeV})$	$\sigma(\mathrm{mb})$	$\mathrm{E}(\mathrm{MeV})$	$\sigma(\mathrm{mb})$
1.35	5	2.14	26	2.88	26
1.56	7	2.26	15	3.04	24
1.68	15	2.39	15	3.17	25
1.79	16	2.49	22	3.31	25
1.91 ± 0.0528	2.64	23	3.38	32	
2.03	30	2.77	24	3.45	39

$E\left(\mathrm{MaV}^{\text {V }}\right.$ ）	$\sigma(m b)$	E（Mev）	$\sigma(\square)$	E（ $\mathbf{M e V}$ ）	$\sigma(a b)$
3.52	32	4.75	87	6.10	80
3.58	34	4.79	89	6.23	82
3.73	37	4.83	84	6.31	84
3.80	43	4.88	83	6.39	79
3.88	49	4.91	86	6.50	71
4.05	62	4.95	81	6.63	65
4．17＊0．08	75	5.01	82	6.76	55
4.29	78	5.07	84	6.88	53
4.33	79	$r_{5.17}$	76	7.03	47
4.39	76	5.26	75	7.15	50
4.43	83	5.33	73	7.31	50
4.47	79	5.42	75	7.46	49
4.51	81	5.48	77	7.59	47
4.55	85	5.63	80	7.75	46
4.60	81	5.80	85	7.90	45
4.63	82	5.88	85	8.05	43
4.67	84	6.000 ± 0.085	82	8.200 ± 0.120	41

E．A．Davia，F．Gabbard，T．T．Bonner，R．Basa，Fucl．Phym． 27 （1961） 448 inken from kxpor 11195003．The σ errorn range from 30 to 60 percent． This is a partial crose section only（threo－body breakup through the 4.63 Kef level of ${ }^{7} \mathrm{LI}$ ）．Detector：grid－type Lonisation chamber．

4．／E（ $\mathrm{He}_{\text {e }}$ ）	σ（ x ）	
5.8 ± 0.2	$\begin{array}{r} 72+22 \\ -25 \end{array}$	F．Crexpat（Inst．Sxp．Phys．，Yoceuth
7.5 ± 0.2	60 ± 13 -8	Univaraity，Dobracen，Hungary）priv．comme 1984．Tritium β counting was usod．

One can see that there is a factor of 3 between the anallest and the higheat data for valuea with \mathbb{Z} less then 9 Kov，so it would be difficult so reconmend eafely any of them．In addition，it should be noted here （following Geerpak＇a oominnication）that if one applies tritiun beta count－ ing and omits the gubstraction of the different background contributions then he can obtain vajues which are twion an large than that with sub－ atraction．

$\mathrm{F}=24.1 \mathrm{MeV} \quad \sigma=15 \mathrm{mb}$

उerror is about 30\%

This is an experimental value of M.E. Wyman et al. Phys. Rev. $112 / 1958 / 1264$ who measured

$$
\sigma=15 \pm 5 \mathrm{mb} \text { at } 14.1 \pm 01 \mathrm{MoV}
$$

The error is an estimated one.
D. Miljanic et al. Nucl. Phys. A $156 / 1970 / 193$ obtained differeatial cross sections from 0° to $64^{\circ} 43^{\prime} / \mathrm{c} \cdot \mathrm{m} /$ at 14.4 MeV for the ${ }^{21} \mathrm{~B}_{\mathrm{B}} / \mathrm{n}, \mathrm{t} /{ }^{9} \mathrm{Be} / \mathrm{E} . \mathrm{g} / \mathrm{procesa}$. The integration of the differential crose section from 0° to $64^{\circ} 43$ ' by S. Suder, Theals, Kossuth Univ. Debrecen, Hungary, 1979 /in Eungarian/ gave a cross section $\sim 8.1 \mathrm{mb}$.
${ }^{23}$

$$
\begin{gathered}
E=14.6 \mathrm{MeV} \quad \sigma=6.9 \mathrm{mb} \\
\sigma \text { error } 1 \mathrm{~s} 40 \%
\end{gathered}
$$

This is an average a two exp. velues:
1./ T. Birf, The日ia, Kossuth Univ. Debrecen, Huagery, 1974 /in Hungarian / measured

$$
\sigma=6 \pm 1 \mathrm{mb} \quad \text { at } \quad 24.6 \mathrm{MeV}
$$

This value is also mentioned in T. Birb et al. J. Inorg. Nucl. Chem. $37 / 1975 / 1583 / F i g .3 /$ and in the Thesis of S. Sudér, Kossuth Univ., Debrecen, Hungary, 1979 / in Hungarian/,
2.1 $\sigma=7.8_{-1.0}^{+2.3} \mathrm{mb}$ at 14.6 MeV was measured
by F. Csorpaik, Kossuth Univ. Debrecen, Huncary /priv. comm. 1983/. From this moasurement a preliminary value 38 ab was given in F. Cserpák, T. Biró, J. Csikai, Harwell Conf./1978/ p. 762. The preliminary value has boen proven to be toohigh later, but the method is the saue /and different from the one used formeriy by Bir6 et al./.

$$
\begin{array}{cc}
E=24.4 \mathrm{MoV} & \sigma=20 \mathrm{mb} \\
\sigma \text { error is } / \text { maximaliy } / 50 \%
\end{array}
$$

Estimated value using exp. data
I. For the ${ }^{14} \mathrm{~N} / \mathrm{n}, \mathrm{t} /{ }^{12} \mathrm{C} / \mathrm{ground}$ state/process:
2.1 At $E=14.7 \mathrm{MeV} \quad \sigma_{1}=2 \mathrm{mb}$ by R.H. Lindacy,
J.J. Voit, Phys. Rev. 152/1967/933.
2.1 At $E=14.1 \mathrm{MeV} \sigma_{2} \approx 4 \mathrm{mb}$ estimated by
S. Sudar, Thesis, Kossuth Univ., Debrecen, Hungary, 1979 / in Huncarian/ on the basis of the paper: P. Fassendem, D.R. Maxson, Fhys. Rev. $158 / 1967 / 948$. EXFOR $30194 /$ diff. cross. s. integrated from 0° to $90^{\circ} \mathrm{com} / /$ From $\sigma_{1}, \sigma_{2}, \sigma_{3}$ the average is $\sigma_{I}=4.1 \mathrm{mb}$. II. For the ${ }^{14} \mathrm{~N} / \mathrm{n}, \mathrm{t} /{ }^{12} \mathrm{C} / 4.43 \mathrm{lieV}$ exc. state/ proceas D. Renaiac EXFOR 30194 gives $\sigma_{I I}=23.4 \pm 3 \mathrm{mb} /$ diff. crocs. 6 . 2ntegrated from 0° to $90^{\circ} \mathrm{c}, \mathrm{mol}$.
$\sigma_{I I}$ wes renormalized by $\tilde{\sigma}_{I I}=\sigma_{I I} \cdot \frac{\sigma_{I}}{\sigma_{3}}=15.0 \mathrm{mb}$
III. For the ${ }^{14} \mathrm{iN} / \mathrm{n}, \mathrm{t} / 30$ process:

$$
\text { at } E=25.7 \mathrm{MeV} \quad \sigma_{I I I}=0.8 \pm 0.5 \mathrm{mb} \text {, by J. Mösner }
$$

et al. Nacl. Thys. 1 103/1967/238.

$$
\sigma=\sigma_{I}+\sigma_{I I}+\sigma_{I I I}=19.9 \simeq 20 \mathrm{mb}
$$

The 50\% error was estimated on the basis of the papet of S.N. Qoim, R. Wölfe, Nucl. Phys. A 295/1978/150 who gave $\sigma=30 \mathrm{mb}$ for a higher energy, so the prosent σ must be $20 s s$ than 30 mb .

The curve was calculated by fitting the experimental points of S.M. Qaim, Figs. Rev. C 25/1982/203, and S. Sudar, J. Caikai, Nucl. Fhys. 1 319/1979/157

Exp. points:
$\left.\begin{array}{ll}E / \mathrm{MeV} / & \sigma / \mu \mathrm{V} / \\ 13.7 & 1780 \pm 300 \\ 14.1 & 2680 \pm 300 \\ 14.8 & 3130 \pm 400\end{array}\right\}$ Sudar - Csikai. 1979

It is discarded the $E=14.8 \mathrm{MoV}, \sigma<12.2 \mu \mathrm{~b}$
value of A. Poulsrikae, A.G. Gardner, EXFOR 11533 /1963/

The curve was calculated by fittiag the experimental pointe of M. Bormann, F. Dreyer, H. Neuert, I. Riehlo ond U. Zielinsk EXFOR 20898 /1966/

Exp. pointes
E/MeV/
$\sigma_{\text {/ub/ }}$

14.7 ± 0.35	7.5 ± 0.7
16.05 ± 0.95	471 ± 61
27.05 ± 0.95	737 ± 96
$18.00_{-0.9}^{+0.7}$	1000 ± 130
$18.70_{-0.70}^{+0.50}$	1260 ± 260
$19.60_{-0.30}^{+0.20}$	1380 ± 280

The calculated curve is not in disagreement with the following exp. pointes.

E/MeV/	$\sigma / \mu \mathrm{b} /$	
14.6	4	A.P.Baerg,G.C.Bowes, Can.J. Chem. $39 / 1961 / 648$
24.7 ± 0.3	20 ± 5	E. Weigold,R.N. Glover, Nucl. Phys. 32 /1962/106
24.8	<17	A. Poularikas, D.G.Gardner, EXFOR 11533 /1963/
24.7 ± 0.12	6.7 ± 1.9	R. Sacher, H. Warhenek, EXPFOR 20063/1966/
24.7 ± 0.3	7.2 ± 1.6	S.M. Qaim, G.I. Stöcklin, J. Inorg. Nucl.Chem. $35 / 1973 / 19$

Itis aiscerded the result of

14.6	154 ± 70	M. Diksič et al. J. Inorg. Nuci.Chem. $36 / 1974 / 477$
14.8	2200 ± 200	C.S.Khurana, I.M.Govil,

E/MeV/	$\sigma / \mu \mathrm{b} /$	
24.70	187	1in.-lin. interpolation
- 25.08	218	Oerror is 20% at 24.7 koV
15.45	261	23% at 25.08 MoV ,
		24% at 15.45 MeV

The 24.7 MeV value is an experimental one of
T. Bir6, S. Suder, Z. Miligy, Z. Dezaõ and J. Caikai,
J. Inorg. Nucl. Chem. $37 / 1975 / 1583, \sigma=187 \pm 37 \mu$ b. at 14.7 MeV .

The 15.08 MeV value was calculated by the formula

$$
\sigma=\sigma_{0} / 2+|7| / 0^{2 y}
$$

with

$$
\begin{array}{ll}
y=/ \alpha+\beta Z / \Delta E & \alpha=-0.667 \mathrm{MeV}^{-1} \\
E=E_{0}+\Delta E & \beta=0.056 \mathrm{MeV}^{-1} \\
Z & =19
\end{array}
$$

here
$E_{0}=25.08 \mathrm{MeV} / 5 \mathrm{MieV}$ excess energy above threshold/
$\mathrm{E}=14.7 \mathrm{MieV} \quad \sigma=187 \mu \mathrm{~b}$
$J=-0.1458 \quad \sigma_{0}=218 \mu \mathrm{~b}$

The 15.45 MeV value

$$
\begin{gathered}
\sigma=\sigma_{0} / 1+y / \quad \text { with } y=0.1458 \\
\sigma=261 \mu b
\end{gathered}
$$

see Z.T. Bödy, K. Mihály, Report ZfK-491/1982/200.

$\mathrm{E} / \mathrm{MeV} /$	$\sigma / \mu \mathrm{V}$	
14.5	11.7	2in.-lin. interpolation
15.0	36.5	σ error is bbout 80% for
16.0	92.2	$14.5 \mathrm{MeV}, 50 \%$ for 15.0 MeV
17.0	133	and 15% for $16.0-20.0 \mathrm{MeV}$
18.0	160	Calc. from $\sigma=e^{a x^{2}+b x+c}$
19.0	176	
20.0	187	with
$a=-7.47 \mathrm{MieV} \quad x=/ \frac{A}{A+1} F_{n}+Q^{-1} / 2$		
$b=4.25 \mathrm{MeV7} 2 \quad \Lambda=40$		
		$0=4.71 \quad Q=-12.92 \mathrm{hay}$

N
The curve was celculated by fitting the exp. points of M. Bormann, F. Dreyer, H. Neuert, I. Riehle and U. Zielinskg, EXFOR 20898 /1966/

. Exp. points:	
E/MeV/	$\sigma / \mu \mathrm{b} /$
$\begin{array}{r} 14.9+1.4 \\ -1.2 \end{array}$	31 ± 5
16.1 ± 1.4	92 ± 11
17.1+1.3	235 ± 15
17.7 -1.2	157 ± 17
$\begin{aligned} 18.0 & +1.0 \\ & -1.3 \end{aligned}$	158 ± 17
18.7 ± 0.7	188 ± 20
19.6 ± 0.2	169 ± 18

Bormann et al. /19966/.

The calculated curve is not in atrong diasgreement with the following exp. pointe:

E/heV/ $\quad \sigma / \mu \mathrm{L} /$		
14.7 ± 02	$<7_{1} 5$	R. Sachor, II. Warhanok, EXFOR 20083 / 1966/
14.7 ± 03	27 ± 8	S.M. Quim, G.L. Stöcklin, J. Inorg. Nucl. Chem. $35 / 1973 / 19$
14.7 ± 03	<100	E. Hoigold, R.H. Glover, Nucl. Thys. $22 / 1962 / 106$
24.6	16 ± 4	I.W. Woo, G.II. Salaita, Intornat. Conf. on liucl. Crose Sections for Techn.Knoxvillo,Oct. 22-26,1979 NBS Spec. Publ. $594 / 1980 / \mathrm{p} .853$
14.6	<20	A.P. Baerg, G.C. Bowes, Can. J. Chem. 29 /1961/648
14.7	$3.5 \pm$	
Z.T. Bởdy, F. Cserpák, J.Csikai, S. Sudár and K. Mihály, Nucl. Data for Sci. and Techn. Internat. Conf. Antwerp. Sept 6-10,1982. Proc. ed. by K.H. Döcl:hoff,1983. LCSC, EEC, EAEC Bruaseia and Luxembouig Discarced date: p. 368 .		
14.8	$20 \pm 4 \mathrm{mbl}$	C.S. Mhurana, I.M.Govil, Nucl. Phys. 69/1965/153
14.7	150 ± 50	R. Minetti, A. Fasquarolli.EXFOR 21288
14.2 ± 0.2	180 ± 20	N.Tivari, E. Kondaiah, Phys.Rev. $167 / 1968 / 1091$
24.6	320 ± 180	hi. Dikšiŏ ot al. J. Inorg. IHCl. Chem. $36 / 1974 / 477$.

$2=24.6 \mathrm{MeV}$	$\sigma=209 \mu \mathrm{~b}$
$\sigma_{\text {error is } 20 \%}$	\vdots

This is an average of two exp. valuea
1./ S.M. Qaim, G. Stöcklin, Nuol. Phys. A 257./1976/233 mexurod

$$
\begin{aligned}
& \sigma_{1}^{\mathrm{g}}=215 \pm 35 \mu \mathrm{~b} \\
& \sigma_{1}^{\mathrm{m}}<20 \mu \mathrm{~b}
\end{aligned} \quad \text { at } \mathrm{E}=24.6 \pm 0,4 \mathrm{MeV}
$$

2./T.W. WOO, G.N. Salaita, EXFOR $20764 / 1978 /$ measured

$$
\begin{aligned}
& \sigma_{2}^{G}=91 \pm 28 \mu \mathrm{~b} \\
& \sigma_{2}^{m}=9 \pm 3 \mu \mathrm{~b}
\end{aligned}
$$

From σ_{1}^{B} and $\sigma_{2}{ }^{B}$ we have $\sigma^{B}=100 \pm 21.8 \mu \mathrm{~b}$, So

$$
\sigma=\sigma^{\beta}+\sigma^{m}=\sigma^{8}+\sigma_{2}^{m}=109 \pm 22 \mu b
$$

${ }^{50} \mathrm{Cr}$

$$
\begin{gathered}
E=24.6 \mathrm{MeV} \quad \sigma=88 \mu \mathrm{~b} \\
\sigma \text { error is } 25 \%
\end{gathered}
$$

This is an average of two exp. valuea
1./ S.M. Qaim, G.I. Stöcklin, J. Inorg. Nucl. Chom. $35 / 1973 / 19$ messured

$$
\widetilde{O}_{1}=66 \pm 20 \mu \mathrm{~b} \quad \text { at } \quad E=14.6 \pm 0.4 \mathrm{Me} \mathrm{\nabla}
$$

2./ T.W. Woo and. G.N. Salaite, EXFOR $20764 / 2978 /$ measured
$\sigma_{2}=209 \pm 16 \mu \mathrm{~b}$ at $\mathrm{E}=24.6 \mathrm{MeV}$

From σ_{1} and σ_{2} one can have the /aimple/ mean

$$
\sigma=88 \pm 22 \mu \mathrm{~b}
$$

55
Mn

E/Mov/	$\sigma / \mu \mathrm{b} /$	1in.-lin. interpolation
14.0	658	σ error 19 about 15%
14.5	977	Calc. Arom $\sigma_{=0} 0^{8 x^{2}+b x+0}$
15.0	2300	with
25.5	1600	$a=-58.25 \mathrm{MeV}$
		$\begin{aligned} \mathrm{b} & =37.67 \mathrm{Mov}^{2} / 2 \\ c & =1.74 \end{aligned}$
		$x=1 \frac{A}{A+2} E_{n}+Q^{-1 / 2} \quad A=55$
		$Q=-9.3$

The curye was calculated by iftting the Heuser-Feshbach calculations of S. Suder, J. Csikai, Nucl.Fhys. 1319 /1979/157 /and priv. commo/ normalized to the exp. pointa obtained by the same authors.

Exp. points:

E/MeV/	$\sigma / \mu \mathrm{b} /$	
14.6	990 ± 100	Sudár-Caikai /1979/
24.8	1250 ± 150	

```
E= 24.6 MeV 济 212 \mub
Gorror 10 25%
```

This is an average of two exp. values.
I.f S.M. Qain and G.L. Stöckin, J. Inorg. Nual.Chem. 35/2973/19 meagured

$$
\sigma_{2}=105+35 \mu \mathrm{~b} \text { at } \mathrm{E}=14.6 \pm 0.4 \mathrm{MeV}
$$

2./ T.W. Woo and G.N. Salaita, Internat. Conf. on Nucl. Cross Sections for Tochn., Knoxville, Oct. 22-26, 2979, NBS Spec. Publ. 594/1980/ p.853 measured

$$
\sigma_{2}=122 \pm 42 \mu \mathrm{~b} \text { at } E=14.6 \mathrm{MeV}
$$

σ_{1} and σ_{2} Eive $\sigma=112 \pm 27 \mu \mathrm{~b}$ as an averago.
Discarded data: At $\mathrm{E}=14.8 \pm 0.9$ hoV $\mathcal{O}^{\mathrm{m}}=600 \pm 100 \mu \mathrm{~b}$ by D.H. Chittenden ot al. Phys. Rev. 122/1961/860. This is too high and it refers to the cross section loading to tho metastable.state only.
At $\mathrm{E}=14.6 \mathrm{MeV} \sigma^{\mathrm{m}}=351 \pm 150 \mu \mathrm{~B}$, by M. Dikšič et.al. J. Inorg. Nuol. Chem. 36/1974/477 is aloo too high / and also to the metastable state only/.

Note. The above papars give also values for σ^{m} and σ^{B}, namaly $\sigma_{1}{ }^{m}=95 \pm 30 \mu b$ and $\sigma_{2}{ }^{m}=10.5 \pm 4.2 \mu \mathrm{~b}$, while $\sigma_{1}^{B}=10 \pm 5 \mu \mathrm{~b}$ and $\sigma_{2}^{B}=17 \pm 6$ jbb.

This is not in oontradiotion with the result: of A.P. Baerg and G.C. Bowes, Oan. J. Chem. $32 / 2961 / 648$ who gave

$$
\sigma^{B}<75 \mu \mathrm{~b} \text { at } \mathrm{E}=14.6 \mathrm{3} \mathrm{AV}
$$

56
Fe

$$
\begin{gathered}
E=14.6 \mathrm{MeV} \quad \sigma=45 \mu \mathrm{~b} \\
\sigma \text { error is } 27 \%
\end{gathered}
$$

This is the exp. value of S.M. Qaim and G. Stöcklin, Nuc1. Fhys. A 252/1976/233 who measured

$$
\sigma=45 \pm 12 \mu \mathrm{bb} \quad \text { at } E=14.6 \pm 0.4 \mathrm{MeV}
$$

${ }^{59}{ }_{c}$

The curve was calculated by fitting the IaucerFeshbach calculations of S. Sudár and J. Ceikai, Nucl. Phy日. A $219 / 1979 / 157$, / and priv. comm./" normalized'm In a least square sense by the exp. points of the same authors and thodo of S. M. Qaim, Phys. Rov. C 25/1982/20 and that of T. Biró, S. Sudúr, 2. Miligy, Z. Dozgő, J. Csikaíj J. Inorg. Nucl. Crom. 27/1975/1583.

Exp. resultis:

E/MoV/	$\sigma / \mu \mathrm{b} /$	
14.5	690 ± 130	
14.5	$590 \pm 120\}$	Sudár-Csikà /1979/
14.8	1270 ± 250	
16.3 ± 0.6	860 ± 80	
17.7 ± 0.8	1220 ± 110	Qaim/1982/
19.0土 0.6	2610 ± 250	
14.7	$650 \pm 130\}$	Bird ot al. /1975/

Discarded date:
$E=14.8 \mathrm{MeV}$
$\sigma=2100 \pm 20 \mathrm{gb}$ C.S. Kiurana, I.M.Govil,
Nuci. Phys. 69/1965/153
$E=14.8 \mathrm{keV} \quad \sigma_{m} \quad 29 \pm 14 \mu \mathrm{H} \quad \mathrm{A} \cdot \mathrm{Poularikas} \quad$ A.G. Gardner

58

The curve was calculated by fitting the Nucl.Fhys. A $319 / 1979 / 257 / a n d$ priv. comm./normalized in a least square eense to the following exp. points:
$1 . / E=14.4 \mathrm{MeV}$
$\sigma_{1}=22 \pm 21 \mu \mathrm{~b}$
by S.Suder and. J.Ceikel, Nucд. Phya. A $319 / 1979 / 157$
$2.1 E=24.6 \pm C .4 \mathrm{MeV} \quad \sigma_{2}=92 \pm 27 . \mu \mathrm{b} \cdot$ by S.M. Qalm,
G. Stöcklin, Nucl.Fhys. A 252/1976/233
$3.1 E=14.6 \mathrm{MeV} \quad \sigma_{3}=211 \pm 23 \mu \mathrm{~b} \quad$ by T.W. Woo,
G.N. Selaita, EXFOR $10764 / 1978 /$
σ_{2} and σ_{3} were renormalized to

$$
\begin{aligned}
& r \sigma_{2}=8 \sigma_{ \pm} \pm 25 \mu \mathrm{~b} \\
& r \sigma_{3}=104 \pm 22 \mu \mathrm{~b}
\end{aligned}
$$

FFor the renormalization see comments at ${ }^{60} \mathrm{Ni}$ /

$$
E=14.6 \mathrm{MeV} \quad \sigma=57 \mu \mathrm{~b} \quad \sigma \text { error is } \sim 30 \%
$$

This is renormalized experimental value. S.M.Qaim and G. Stöcklin, Nuol.Fhys. A 257/1976/233 measured $\sigma=61_{ \pm} 20 \mu \mathrm{~b}$ at $14.6 \pm 0.4 \mathrm{Mev}$; the renormalized value: $57 \pm 19 \mu \mathrm{~b}$.

Renorialization: Qaim and Stöcklin used the reaction 58 Ni/n, p/ with cross section of $370 \pm 40 \mathrm{mb}$. On the basis of the BNL~325/2976/ the eight different values for this reaction at $24.5-14.8 \mathrm{MeV}$ gives an average value of $347 \pm 8 \mathrm{mb}$. This value was used for renormalization here and also in the cose of $58_{\mathrm{Ni} / \mathrm{n}, \mathrm{t} / \text { measured by the aame }}$ authors with the same standard and also for the $58_{\mathrm{Ni} / \mathrm{n}, \mathrm{t} /}$ measured by Woo with the same atandard.

E $/ \mathrm{MeV} /$	$\sigma / \mu \mathrm{b} /$	
14.60	75	1in.-lin. interpolation
15.44	216	σ error is 20% at 14.6 MoV,
16.28	395	25% at 15.4 MoV and
		27% at 16.2 MeV.

The 14.6 hin value is an average of two exp. values after renormalization:
$\widetilde{\sigma_{1}}$ measured by S.M.Qaim, G.Stöcklin, J.Inorg.Nucl.Chem.
N … $35 / 1974 / 477$.
σ_{2} measured by M. Dikǐit at al. J. Inorg.Nucl.Chem. 36/2974/477.
$/$ Both σ_{2} and σ_{2} were measured at $14.6 \mathrm{MeV} /$
Original
Renormelized
$\sigma_{1}: 86 \pm 23 \mu \mathrm{~b}$
$\sigma_{2}: 33 \pm 10 \mathrm{ub}$
$86 \pm 23 \mu \mathrm{~b}$
$\begin{aligned} 63 \pm 29 \mu \mathrm{~b} & \text { sinple mean: } \\ \sigma & =75 \mu \mathrm{~b}\end{aligned}$
The $75 \mu \mathrm{~b}$ value at 14.6 MoV is not in disagreement with the value of J. Csikai, K. Jost, A. Szalay, Acta Fhys. Hung. $24 / 1968 / 199 \mathrm{which}$ is $150 \pm 100 \mu$ b at 14.7 MeV , after renormalizetion it is $136 \pm 90 \mu \mathrm{~b}$.

The $75 \mu \mathrm{~b}$ value at 14.6 MeV is also agrees with the result of A.P. Baerg, G.C. Bowes, Can.J. Chem. 39/1961/648
which is $<100 \mu \mathrm{~b}$ at 14.6 MeV .
For the renormilizetion:
The σ_{1}, σ_{2} values and the σ of Caikai et al. were obtained by using the same standard, the ${ }^{64} \mathrm{Zn} / \mathrm{n}, \mathrm{p} /$ croes section. For σ_{1} the $159 \pm 12 \mathrm{mb}$, for σ_{2} the $83 \pm 15 \mathrm{mb}$ and for the σ of Caikal et al. the 175 mb value was used. Now, the 159 mb value was accepted for renormslization.

The 15.4 MeV value was calculated by the formulaz

$$
\begin{aligned}
& \sigma=\sigma_{0} / 1+|\exists| / e^{2 y} \\
& \text { with } y=/ \alpha+\beta Z / \Delta E \quad \alpha=-0.667 \mathrm{NeV}^{-1} \text {. } \\
& E=E_{0}+\Delta E \quad \beta=0.056 \mathrm{MeV}^{-1} \\
& z=30 \\
& \text { here } E_{0}=15.4 \mathrm{MeV} / 5 \mathrm{MeV} \text { excess energy above threshold/ } \\
& \mathrm{E}=14.6 \mathrm{MeV} \quad \sigma=75 \mu \mathrm{~b} \\
& \text { so } y=-0.8306 \text { and } \sigma_{0}=216 \mu \mathrm{bb}
\end{aligned}
$$

The 16.2 MeV value:

$$
\begin{aligned}
& \sigma=\sigma_{0} / 1+y / \quad \text { with } y=0.8306 \\
& \sigma=395 \mu \mathrm{~b}
\end{aligned}
$$

see: Z.T. Bödy, IK. Mihály, Repurt 2fK-491/1982/200.

This is an exp. vaiue of S.M. Qaim and G.I. Stöcklin, J. Inorg. Nucl. Chom. $35 / 1973 / 19$ who measured

$$
\sigma=36 \pm 10 \mu b \quad \text { at } E=24.7 \pm 0.3 \mathrm{MeV}
$$

This is en exp. value of T.W. Woo and
G.N. Salaita, Internat. Conf. on Nucl. Cross Sections for Techn., Knoxville, Oct. 22-26, 1979, NBS Spec. Publ. $594 / 1980 / 8.853$, who measured

$$
\sigma^{G}=30 \pm 8 \mu \mathrm{~b} \quad \text { at } \quad E=24.6 \mathrm{MeV} .
$$

This is the cross section of the process leading oniy to tise ground atate of the residual nucleus.

88
88

- This ia an experimental value of S.M. Qaim and
G. Stöcklin, Nucl. Phya.A $257 / 1976 / 233$ who measured
${ }^{89}$

$$
\sigma^{m} \text { only! }
$$

$E=24.6 \mathrm{MeV}$	$\sigma=2.9 \mu \mathrm{~b}$
σ error is 30%	

This is the evorage of two exp. values.
l.f S.M. Qaim and G.I. Stöckinn, J. Inorg. Nucl. Chem. $35 / 1973 / 29$ measured

$$
\sigma_{1}^{\text {II }}=3.8 \pm 1.0 \mu \mathrm{~b} \text { at } E=14.7 \pm 0.4 \mathrm{MeV}
$$

Crobs Sections for Techn., Knoxville, Oct. 22-26, 1979. NTSS Spec. Publ. 594/1980/p. 853 messured

$$
\sigma_{2}^{m}=2 \pm 0.6 \mu \mathrm{~b} \text { at } \quad \mathrm{E}=14.6 \mathrm{MeV}
$$

Discercied value: M. Dikšič et al. J. Inorg. Nucl. Cbem. $36 / 1974 / 477$ messured $\sigma^{m}=15.4 \pm 10 \mu \mathrm{~b}$ at $E=14.6 \mathrm{MeV}$ which is a too high value as compared to the others.

This is the cross eection of the $/ n, t /$ process leading ouly to the 2.8 hr . excited state of the residual nucleua.

$$
\begin{gathered}
E=14.6 \mathrm{MoV} \quad \sigma=41 \mu \mathrm{~b} \\
\cdots \\
\text { the error of } \sigma \text { is } 27 \%
\end{gathered}
$$

This" in an exp. value of S.M. Qaim and G. Stöcisiin, Nucl. Fbye. A 252/1976/233 who measured

$$
\sigma=41 \pm 22 \cdot \mu \mathrm{ib} \quad \text { at } E=24.6 \pm 0,4 \mathrm{MeV}
$$

E/MoV/	$6 /$	lin.-lin. interpolation
14.5	386	σ error is $\sim 10 \%$
15.0	400	
16.0	478	\mathcal{T} was calculated from the
17.0	620	formula:
18.0	846	$\sigma=e^{a x^{2}+b+c}$
29.0	1185	With parameteras

$$
\begin{gathered}
\varepsilon=24.6 \mathrm{hioV} \quad \sigma=62 \mu \mathrm{\mu b} \\
\sigma \text { esror is } \sim 30 \%
\end{gathered}
$$

This is the simple mean of two exp. values with increased exror.
1.1 $\sigma_{1}=50_{ \pm} 23 \mu \mathrm{~b}$ at $\mathrm{E}=24.6 \pm 0.4 \mathrm{MeV}$ by S.M. Qaim and G.I. Stöcklin, J. Inorg. Nucl. Chem. 35 /1973/19
$2.1 \sigma_{2}=73 \pm 8 \mu \mathrm{~b} \quad$ at $E=24.6 \mathrm{MeV}$
by T.W. Woo and G.N. Salaita, EXFOR $10764 / 1978 /$.
σ was obtained as a bimple mean of σ_{1} and σ_{2}. Because both group used the ${ }^{92} M_{0} / n, p /$ reection. with $\sigma=60.5 \pm 4.5 \mathrm{mb}$ cross section as a standard, and because according to Biif-325/2976/p. 239 this /n,p/ crose section is rather uncertain, the error of the present ${ }^{92} \mathrm{Mo}_{\mathrm{M}} \mathrm{n}, \mathrm{t} /$ cross bection has boen increased from 20% to 30%.

$$
\begin{gathered}
E=24.7 \mathrm{MoV} \quad \sigma=730 \mu \mathrm{~b} \\
\sigma \text { error is } 30 \%
\end{gathered}
$$

This is en exp. value of T. Biro, S. Sudér, Z. M11igy, Z. Dezaס and J. Caikai, J. Inorg. Nucl. Chem. $37 / 1975 / 1583$ who measured

$$
\sigma=730 \pm 220 \mu \mathrm{~b} \quad \text { at } \quad E=14.7 \mathrm{MeV}
$$

$\underset{\sim}{\omega}$

$$
\begin{gathered}
E=14.6 \mathrm{iisV} \quad \sigma=64 \mu \mathrm{O} \\
\sigma \text { error is } 34 \%
\end{gathered}
$$

This is an exp. value of T. W. Woo and G. N. Salaita, Internat. Conf. on Nucl. Cross Sections for Techn., Oct 22-26, 2979, Knoxville, TN, USA, Proos NBS Spec. Publ. No. $594 / 1980 /$ p. 853. who measured

$$
\sigma=64 \pm 22 \mu \mathrm{~b} \quad \text { at } \mathrm{E}=24.6 \mathrm{MoV}
$$

$$
\begin{array}{cc}
E=24.6 \mathrm{HeV} & \sigma=81 \mu \mathrm{~b} \\
\sigma \text { error is } 27 \%
\end{array}
$$

Thita is the sum of $\mathcal{\sigma}^{m}$ and σ^{g} measured by T.W. Woo and G. N. Salaita, Internat. Conf. on Nucl. Crose Seotions for Techn., Dot. 22-26, 1979, Knowville, NN, USA, Proc,:NBS Spec. Publ. No 594/1980/ p. 853.

For ${ }^{206} \mathrm{Cd} / n, t /{ }^{104 m} n g$. $\sigma^{m}=57 \pm 12 \mu b$, and for ${ }^{206} \mathrm{Ca} / n, t^{104 G_{A g}} \quad \sigma^{-B}=24+5 \mu b$ was obtained, resp. Jring σ^{m} and σ^{B} we have for

$$
\sigma=\sigma^{B}+\sigma^{m}=81 \pm 14 \mu b
$$

Both cross sections wore meacured at $E=24.6$ lieV.

Note for calculation of tho orror: In calculoting the error of σ we also took into account that for both cross aections the same monitor reaction was used with an orror of 8.67%.

This is an experimental value of T.W. Woo and G.N. Salaita, Internat. Conf. on Nucl. Cross Sections for Techn., Oct. 22-26, 1979, Knoxville, TN, USA, Proc.: NBS Spec. Publ. No. 594/1980/ p.853. who measured
$\underset{\sim}{\omega}$

112

$$
\begin{gathered}
E=24.6 \text { hieV } \quad \sigma=61 \mu \mathrm{~b} \\
\sigma \text { error } 1 \mathrm{~s} 16 \%
\end{gathered}
$$

This is the sum of σ^{m} and σ^{6} measured by T. W. Woo and G.N. Salaita, Internat. Conf. on Nucl. Crose Sections for Techn., Oct. 22-26, 1979, Knorville, TN, USA, Proc.z NBS Spec. Publ. No. 594 /1980/ p. 853.

The resulta of the measurement are:
for $\quad{ }^{112} \mathrm{Sn} / \mathrm{n}, \mathrm{t}^{110 m_{I n}} \quad \sigma^{m}=33 \pm 6 \mu^{\mathrm{m}} \quad$ and
for $\quad{ }^{112} \operatorname{Sn} / \mathrm{n}, \mathrm{t} /{ }^{110 \mathrm{~g}} \mathrm{In} \quad \sigma^{S}=28 \pm 7 \mu \mathrm{~m}$.

Now, we have

$$
\sigma=\sigma^{\xi}+\sigma^{m}=61 \pm 10 \mu b
$$

Both cross section were measured at $E=14.6 \mathrm{he}$.

Note for calculation of the crior: In calculating the error of σ we also took into account that for both. cross sections the same monitor reaction was used with an error of 7.3\%.

$$
E=14.6 \mathrm{MeV} \quad \sigma^{B}=24 \mu \mathrm{r}
$$

σ exror $2 \mathrm{a} 33 \%$

This ia the exp. value by T.W. Woo and G.N. Salaita, Internat. Conf. on Nucl. Cross Sections for Techn., Oct. 22-26, 1979, Znoxville, TN,USA. Proc. 3 ITBS Spec. Publ: No. $594 / 1980 /$ p. 853 who measured

$$
\sigma^{8}=24 \pm 8 \cdot \mu^{\mathrm{b}} \quad \ldots \quad \text { at } E=24.6 \mathrm{MeV}
$$

Shis is the croes section of the ${ }^{230} \mathrm{Te} / \mathrm{n}, \mathrm{t} / /^{128 \mathrm{~g}_{\mathrm{Sb}}}$ process leading only to the 8.9 hr . ground state of the residual nucleus!

$E=24.6 \mathrm{MaV} \quad \sigma^{m}=20 \mu \mathrm{~b}$
T error is 20%

This is the mean of two exp. values.
2./ $\sigma_{1}^{\prime \prime}=21 \pm 5 \mu \mathrm{~b}$ at $E=24.7 \pm 0.3 \mathrm{MeV}$ by S. M. Qa1m and G.I. Stöcklin, J. Inorg. Nucl. Chem. 25 /1973/19.
2.1 $\sigma_{2}^{\text {II }}=28 \pm 5 \mu \mathrm{~b}$ at $E=14.6 \mathrm{MeV}$ by T.W. Woo and G.N. Salaita, Internat. Conf. on Nucl. Cross Sections for Techn., Oct. 22-26, 1979, Knoxville, TN, USA. Proc.: NBS Spec. Publ. No. $594 / 1980 /$ p. 853.

From $\sigma_{1}{ }^{\text {m }}$ and $\sigma_{2}{ }^{\text {m }}$ we heve

$$
\begin{aligned}
& \sigma=19.5 \pm 3.6 \mu \mathrm{~b} \approx \\
& \approx 20 \pm 4 \mu^{\mathrm{b}}=20 \mu_{\mathrm{b}} \pm 20 \%
\end{aligned}
$$

This is the cross section of tho ${ }^{239} \mathrm{La} / \mathrm{n}, \mathrm{t} /{ }^{137 \mathrm{ma}} \mathrm{Ba}$ procese leading only to a 2.5 min . exoited etate of the residual nucieus!
$241 \mathrm{Pr}\rangle$

This is mean of two exp. values.
1./ $\quad \sigma_{1}=52 \pm 15 \mu b$ at $E=14.6 \pm 0.4 \mathrm{MoV}$ by S.M.Qaim and G. Stöcklin, Nucl. Fhya. $1.257 / 1976 / 233$ and renormalized by J. Caikai and A.K. Chouak, Radiochim. Acta $26 / 1979 / 135$ as

$$
{ }^{r_{O_{1}}}=204+30 \mu b
$$

2.f $\sigma_{2}=164 \pm 14 \mu^{\mathrm{bb}}$ at $E=14.7 \mathrm{MeV}$ by J. Csikai and A.K. Chousk, Radiochim. Acta $26 / 1979 / 135$.
σ was calculated as a simple mean of $\tilde{\sigma}_{1}$ and σ_{2}
as $\quad \sigma=134 \pm 30 \mu b=134 \mu b \pm 22 \%$
This velue is not in contradiction with the upper limit $\sigma<210 \mu \mathrm{~J}$ at 14.8 NieV by J. Csikai, V.I. Fominich, T. Lakatos. Acta Fhys. Hung. 24/1968/233.

$z=14,8 \mathrm{MoV}$	$\sigma=22 \mu \mathrm{~b}$
σ	orror
2025%	

This ia an exp. value by H. Liljavirta, T. Tuurnala, Physica Scripta $18 / 1978 / 75$ and EXFOR 20860 who measured

$$
\sigma=12 \pm 3 \mu \mathrm{~b} \quad \text { at } E=14.8 \pm 0.7 \mathrm{MeV}
$$

$$
\Sigma=24.6 \mathrm{MeV} \quad \sigma=33 \mu \mathrm{~b}
$$

σ error $2 \mathrm{~s} 24 \%$

This is an exporimental value of T.W. Woo and G.N. Salaita, Internat. Conf. on Nucl. Croas Sections for Techn., Oct. 22-26, 2979, Knoxville, TN,USA. Proc.:NBS Spec. Publ. No. $594 / 1980 /$ p. 853 who measured

$$
\sigma=33 \pm 8 \mu b \quad \text { at } E=24.6 \mathrm{MeV}
$$

204

This is the moen of two exp. values.
1.1: $\sigma_{i}=32 \pm 10 \mu b$ at $E=24.6 \pm 0.4 \mathrm{MeV}$ by S.M. Qaim and G. Stöcklin, Nucl. Phys. A 257 /1976/233.
2.1 $\quad \sigma_{2}=29 \pm 7 \mu^{\circ}$ at $E=14.6 \mathrm{MeV}$ by T.W. Woo

```
E=24.6 MoV }\sigma=300\mu\textrm{m
    O error is 17%
```

This is an experimental value of S. Stidar and J. Caikai, Nuci. Fays. A $319 / 1979 / 157$ who measured

$$
\sigma=300 \pm 50 \mu \mathrm{~b} \quad \text { at } \mathrm{E}=34.6 \mathrm{MeV}
$$

$$
\begin{aligned}
& \mathrm{s}=14 \mathrm{MeV} \quad \sigma \approx 20 \mu \mathrm{~b} \\
& \text { no } \sigma_{\text {error was given }}
\end{aligned}
$$

This is an exp. value by N. Trautmenn, R. Denig, and G. Eermann, Rediochim. Acta 11 /1969/ who meagured

$$
\sigma \approx 20 \mu \mathrm{~b} \quad \text { at } E=24 \mathrm{McV}
$$

/ no G orror was givent /

[^0]: February 1985

[^1]: Data and error are mainly based on
 1./ M.E. Wyman and M.M.Thorpe, Li-2235 (1958);
 2./ P.W.Lisowaki et al., LA-8342 (1980);
 3./ H.Liakien and A.Paulsen, INDC(EUR) 014/0 (1981) p. 14
 4./ D.L.Snith et al., Nuci. Sci. Kng. 78 (2981) 359.

 In the above enerey region $\mathrm{mmDF} / \mathrm{B}-5$ Rev. 2 ($\mathrm{P}, \mathrm{Young}, 1981$, as quoted in ref.5) give: somewhat lower values (by 2 xat 21.4 MoV and by 8 otat 25.5 MeV). See also ref. 5. who seasured a value between the two evaluationas
 5./ D.L.Smith ot al.,ANL/KDy-87(1984).They got $302 \mathrm{mb} \ddagger 5.3$ \% at 14.74 MeV. The differencen are within the estimated orror of $6 . \%$ So, the Jemplw, evaluation can etill be recommended.

