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A SOLUTION FOR THE NEUTRON SPECTRUM UNFOLDING PROBLEM
WI THOUT USING INPUT SPECTRUM*

S. Sudér
Institute of Experimental Physics,
Kossuth University, H-4001 Debrecen Pf. 105, Hungary

Abstract

A nev method for the neutron spectrum unfolding has been developed,
based on the improvement of the generalized least sguares method.
The new method allows an iterative treatment of the problem and
the number of the independent statistical variables of the solution
is less than the number of the measured reaction rates. The
capabilities of the method are demonstrated by a numerical
experiment and by the solution of a real problem.

-1. Introduction

The determination of the neutron spectrum from an integral
experiment has an imporiant and rising role in neutron dosimetry.
Therefore, a lot of efforts have been made to check and improve the
calculation methods.[1] Recently, the construction of fusion
reactor blankets requires integral experiments to check the
accuracy of the computationgl methods and the nuclear data used in
the calculations. [2) _

The problem of the neutron spectrum unfolding is the following:
the activation rates a, of n neutron reactions with different
threshold energies are measured in a neutron field, and the neutron
spectrum has to be determined from these data. The activation rates

can be expressed as:

a,t=f¢CE)a_lCE)dE Ci=1..nmd c1d

where at= reaction rate of the i-th neutron reaction

okCE)= excitation function of the i-th neutron reaction

¢CE>= unknown differential neutron flux

Several methods and computer codes have been developed for the
solution of this problem.
If the neutron spectrum could be given in the form of an

analytical function fCE,afH..am). coentaining m<n parameters then
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the problem could be solved. Practically, this method is not used
because in the real cases the neutron spectrum can not be written
in the form of an analytical function. An interesting approach in
this way is to approximate the neutron spectrum with spline
functions (3].

The most frequently used solutions of the unfolding problem
represent the neutron spectrum in numerical form i.e. the energy
scale is divided into N energy groups and the differential flux is
replaced by its average over these energy intervals. In the feal
cases the number of intervals is much more than the number of the
activation rates C(N>nd; therefore, the system of equations can not
be solved without 'some additional a gpriori information. Some
unfolding codes such as SAND-II (4], SPECTRA [5)], ITER [6] obtain
their solution by introducing the additional information in the
form of an input or trial spectrum and make an iterative refinement
of this input spectrun. Naturally, the solution depends more or
less on the input spectrum and if it is far from the real one the
iteration procedure may stop at a local minimum. The main
difficulty is that it isn’t clear how the solution depends on the

input spectrum.

(‘ A clearer solution has been proposed by F. G. Perey [7] based on
the generalized least-squares method. The starting point of tLhis
solution is that the input spectrum is treated as if it would be
taken from an earlier real measurement and it has a covariance
matrix describing the variance and correlation of ~the input
spectrum data. This input  spectrum can be taken not only from
experiment but also from neutron transport calculation. If  a
correct covariance information is availabie for the input spectrum,
the generalized least-squares method gives a correct solution with
correct covariance matrix (i.e. if the assumption of the model is
valid the results will be correct.) This method has also some

practical difficulties:

1.  The activation method is preferred when other methods can

not be used for the determination of the neutron

spectrum, i.e. when there is no experimental input
spectrum. '
2. The .calculation of the input neutron spectrum with a

-neutron transport- code needs a ‘lot of efforts  and
computation time. The calculations use several
approximations and it is difficult to estimate their

effect on the>result.




3. Calculation .of the covariance matrix of the  input
spectrum is much more difficult than the calculation of
the spectrum itself. If the  covariance matrix is
incorrect then the result will be incorrect, too.

4. The statement that there is no need for iteration [7] is
true only if the initial spectrum is close to the new
sélution. If the initial spectrum and ‘its covariance
matrix is correct from the statistical point of view, but
the input spectrum is poorly determined then the solution
should be iterated. After the first step, however, the
input spectrum and the reaction rates become correlated;
therefore, the equations derived‘in»[7l‘must not be ‘used

. for the iteration. T N

«~

2. Seclution. without ‘input spectrum.

’Our aim was to solve the unfolding problem without tnput
spectrum.:bgqause it is the most critical point of all numerical
solutiqnsh The principal reason why the unfoldihg codes need an
input spectrum is the following: The differential neutron flux on
the energy grid consisting of N energy intervals are treated as N
independeﬁt data i. e. the covariance matrix of the input spectrum
has a rank of N. If'n activation rates are measured, ‘only m<n
independent parameters can. be determined. Suppose that the
differential neutron flux can be given in the form of an analytical
function with m parameters i. e. ¢CE)=fCE,a1,;..,amD. After solving
the unfolding problem we get a sclution for the a parameters and
the covariance matrix of these parameters Na. This function can be
tabulated as a number of points and we can construct from it a &
vector as:

¢§E1>
&= ¢§Ei) Ci=1...ND cad
¢CEN)

This consists of N independent data only if the covariance matrix
of & is not given. But the covariance matrix of & can be calculated

from the covariance matrix of the a parameters in the usual way:

N, =SN 5 R&>

- -] a ; . o
where $ is the sensitivity matrix whose ij-th element is SU=~_—
da.
3

and C+ denctes matrix transpose. The rank of the matrix Na is m
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and therefore the rank of NQ is not higher than m as the matrix
~multiplication does not increase the rank of the matrix. The rank
of the covariance matrix shows the number of free parameters used
in the solution. Therefore, we are looking for a solution that is
given in numerical form but its covariance matrix has a rank less’
.than the number of the measurements Cnd:. In this way the number of
-the free‘parameters are less than the number of the measurements
and ,therefore, we do not need an input. spectrum to overdetermine
the unknown parameters. As our solution is given in numerical form,
therefore, a priort analytical'function»is'net necessary. We want
to solve the unfolding problem in a way that’ thesrank of the
covariance matrix does not exceed the number of thejmeasurements.
The generalized least squares method does not “increase the rank of
the covariance matrix of the solution, but the usual derivation of
this method assumes that the covariance matrix of the input
spectrum is non-singular which is not true in our case. We can
start from a first approximation whose rank is known and then we
can transform our solution into a more detailed representation. We
can also transform the covariance matrix of the first approximétion
into the new representation using Eq. 3. without increasing the
rank of the covariance matrix. ' ‘

The procedure that is called sSuccessive approximation may be the
following: ‘

1. Divide the energy range investigated into m, <nn. intervals
and solve the unfolding problem approxnmately In this
case the the rank of the covariance matrix of the
solution will be m . Therefore, the number of the unknown
variables is less than that of the equations so the
system of the equations can be solved. The -solution will
be § and its covariance matrix N

2. Transform this solution into a more detailed energy gr1d
with a C(linearY interpolation: '

§zo =‘51§1 |N2 =$1l741$l Cda,bd
where §20 is the new initial approximation of @he
differential neutron flux and ’mzo is its covariance
matrix. The rank of mzo does not increase because matrix
multiplication is used.

3. Solve the unfolding problem with thls new approximation.

4. Repeat step € and 3 until the requested density of the
energy. grid is reached: C ' ‘

To ‘solve the unfolding problem in this way, a modifled vers;on of

the 'generalized least—squares method 'is needed because ‘the
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covariance matrix of the solution is singular and an iterative
solution of the problem is required. The iterative solution means
the Q,m and the original data set C"aib are correlated because ii.o

is determined from the measured data.

B.lterative solution of the generalized method of the least squares.

Muir [8] derived the generalized method of least squares oh the
basis of the minimum‘ variance approach. This derivation allows the
nonlinearity of the problem, correlation between measured data and
calculated parameters, non~normal. distribution of the statistical
variables 'and non-singularity of the covariance matrix of the
parameter vector. It is assumed that there is an initial set of
parameters P, (denoted by the vector P> that one wishes to improve
by taking into account new measurement of certain relevant physical
quantities; Let the result of the new measurement the ﬁctor Do
while DC(PD are the same physical quantities calculated from the
parameters P then the information content, of the new measurement

can be represented in terms of the di screpancy vector,
X=D°-D 5D
The best adjustment of any vector Z that depends on these physical

quantities can be calculated as follows:

2 =2-covCZ, ON_'X C6ad
N_=N_-cov(Z,XON_'covcz,X>” CBb>
z = x ,
where 2’ is the improved estimate of the Z vector and [Nx. INz, lNz'
are the covariance matrices of X,2,2°’, respectively. The cov(Z,XD

denotes a rectangular matrix whose ij-th element is the pre-
adjusted covariance cov( z.» ij .

As correlation between the vectors is allowed we can apply these
equations to the iterative solution of the problem. Consider a
non-linear case which is linearized near the on point. In this
case the fit function is

*=D +GCP__>CP*-P > \ o
8D_L
P

i)
D1 is the calculated value of D in the P1° point. If P1o and Do are

and

where GCPxoD is the sensitivity matrix with elements Gi.j=

independent then the improved P1 vector is the following:

. -1
P=P -cov(P ,D -DD {covCD -D,D -D )] CD -DD.
1 10 ’ 10° 0 1 o 170 1 o 1




However .,

- v g " N N B B ’ +
cov(P . ,D -DJ=cov(P ,D d-cow(P ,DD=—covwP ,G P DO=-N G
10 0 1 10" "0 10 1 10 1 10 Pio 1
since Pao and Do are independent, and

N, =cov(D -D ,D -D d=cov(D ,D dD+cov(D ,DJ-cov(D ,DJd-covwD ,D D
)(1 o 1 ©o g o o 171 o 1 12’ O

covCD _-D_,D_-D J)=M+cov(GP ,GP J>=M+G N, G
. o 12 o 1 10 10 1 on 1
since Do,and D‘ are. independent. Then the final result for Pa is

-1
P=P +N_ G |M+GN_. G | CD -D> C8ad
1 10 P 1 1 P 1 o 1
" 10 10
and its cbvaria.nce matrix is
-1
N, =N_ -N_ G |[M+GN_ G | &N c8bd>
P P P 1 1+ P 1 = P
1 10 10 10 © 10

These expressions for the improved estimation are exactl y the same
as obtained in the usual way of the generalized least sqguares
derivation. But now l"1 and Do are not i ndependént and their

covariance 11_1 can be calculated as:

L. =cov(P ,D D=cov(P +IN
1 10O 10 P

-1
+ +
G |[M+G N G <D -D>,D >
1 1 P 1 o 1 o
10 10

-1
+ +
L =N G |M+G N G M. : oced
1 P 1 1+ P s AR
10 10

Qur aim is to transform the solution to another energy grid with a
linear tra@hsformat,ion and then to improve the solution. Denocte this
transformation by S_L in the i—-th step; then the new initial vector
and its covariance matrix will be the following:

-+
Pi.o usi ~1Pi—1 and [NP_ =S£—1‘NP‘.
[X s -1

>, - C10a,bd
i-1

Suppose that we have cyalcglatedithe {i=12>~th step and now the i-yt,hk
step is being performed. Introduce the [K,L matrix by the i‘ol‘low:"Lr_Ag

definition: K =-cov(P ,D -DD>. Then
T 10O (] L R
K =cov(P, ,DD-cov(P,_ ,D d>=N_. G -cov(S, P, ,D D
(R o1 0 o Pi.b i . i1 i-t o

i1 i-f

K=N_ & -$ _ cov(P, ,D>=N_ G -S
L P i i1, i-1" 0o P. i
o o io

Let IBL=covCD.L,D°), ihen it can be expressed as

i~ i-g

B, =coveD, ;D d=covCG P ,D d=cow®S P  ,D >=GS
i i o i to o i i-1 i-1  ©O i



Using these abbreviations one can get for [Nx
' i
+ +
, _ [in-m'*ethth -B,-B, :
Sc both IK'; and [Nx can be taken from the previocusly calculated
i’ - .
matrices and now the new sensitivity matrix, the new improved
vector, as well as its covariance matrix can be calculated.
P.=P_+K N, 1¢D -D>
i 1w i X o i
. i 3
Np, =M, .

L 10

+
—D(ile IK,‘

1

The new IL,t can be determined in the following way:

L =covCP, ,D >=covCP. +KN. 1¢D -D>,D >
i- i o io i Xi o i o

L=S_0L +KN, lcowD -D,D >=S L +KN, tcH-B>
it i~ i-1 i xi o i o i—1 i-1 i Xi i
Summarizing, the equations of the iterative solution of the
generalized least squares method are
P=P_+KN, *¢D -D)> c1tad
t o i X, o i
= - 1.+
NP,—INP, IJ(,‘INX. IK‘,' C1ibd
19 10 13
L=S L +KN, TcH-B)> CC11ed
T i=~1 it-1 i Xi_ i
where
B=6S5 0L ’ Ci11dd
i L i1 i-1 :
N, =M+G.N_ G -B B C11ed
X. i P, i i1
t 10
K=N, G -S§ L, 111D
i P i i1 i-1
io
+
Pio=Si-Fis Np =S, N S, ¢iig.h>
tOo 1-4
with

L =0 % =l

o o
initial matrices.
This solution can be applied for any problem that needs the
iterative solution of the least~squares method.: Usually, the
transformation between the iterative steps are not used. In these

cases the substitution $i=ﬂ is needed.




4. Solution of the unfolding problem by successive aggroxiﬁation'

Assume that we know the‘values of the excitation functions at N
points and their covariance matrices for n reactions. Usually N>n
because the good representation of the excitation function need: a
finé' energy grid sttucture. Let us divide the energy range
investigated on.E"mx], where @CED>O and‘ there is at least one
okCED>O. into m{N energy %ntervals. "The reaction rates can be
written into the following form:

m i1
a = E J &Ko cEddE Ci=1..md a2
Jj=1 Ej

where EisEo and E =E . Since @C(E>>0, the reaction rates can be

I'I'H'l_ mox
transformed into the following form:

j+1

_[ #CEdo CEXME
m E. E .
J+ 1 J )
a=z J #«EdXE — L Ci=toind. GA®
i E jva
R [ ¢E>dE
. E

J
Introducing the notations:

E.
i j* 1
<¢J.>E=::———-— J & E>dE C14ad

i1 By E,
J

je1
f $CEdo CEDE
E.
1 )

<e. . = ; ' C14bd

i E,@ Ej*i
f < EDdE
E.
J -
and

1 Ej+1

<a‘j>‘=s———_-s J o cE>dE, C14cd>

3
the reaction rates become

m
a= z D<o >y (CE,,-ED Ci=t....m 18>
j=1
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The <a.LJ,> S values are unknown; therefore, we have to estimate
them. The simplest way to do this is to substitute <.aiJ>E for
<@, >¢ .
m ,
a 2<¢> <o, Dp CE LED ci=1..... nd 16
i=1 i
Since we get oLC ED  from experiments, we never know their exact
values, only estimate and their wvariances. Therefore, we can use
the sign of equality instead of & if we can estimate the ' errors of
using (o' ) _instead of <o, ) S From physical reasons ¢CE)>0O and
o, CED >0. Therefore, '

min Lo CEd>=<<(o. .>¢ pSmax <o CE>> C17ad

(E ,E. 1 ° WeE B LE. ) L
J J+ e J J+1

min <o CE>»<Ko, > <max <o CE>> C17b>

[EJ,,Ej . e [E E: oy)

where min{ > and max{ > denote the minimum and maximum values of
the érgument in the given energy interval, respectively. Both
(o'ij> S and <o 1.3>r-: are between the same limits and their
difference can be small if the otCE) does not change too much over
the energy interwval [E EZ ]. On the other hand, it can be large
if the excitation functlon of the reaction decreases or increases
sharply in this energy interval. Therefore, it seems a reasonable

estimation for the variance of the deviation of .<aij>¢ E-<ai.j>t:

O, . E
cri iiJ 1 .r,wt
=var({e. >, o > 0% el (0o CE)—(a > >3dE s
CE. ~-E>2 Wer TUE Cp _p |
i+1 3 j+e L} E

Let us introduce a diagonal matrix ¢D, with elements given in c18d.
Denote the values (a > CE —E 2 by Z its correspondent values
in the original fine grid structure by Z and to simplify the

, . = <N
notation we introduce the cross section vectors 2,L and ZL. As we

know the original and the new energy grid, we can generate a C

matrix which transforms the original ET vector to the new one. With
this transformation we can get the new covariance matrix, too,

taking into account the correction introduced above.

£=CZ, N =CN)C'+0 €19a,bd .
Using this notation and constructing a & vector from <¢j> the

reaction rates can be written as
a =53 - ca2om
L 1 .

In solving this system of eguation we have to take into account

n



that the average cross sections also have errors. This can be done

[71 by introducing the parameter vector P and its covariance
matrix
N§ . ©
p={%:| and n=| O N O c2la,bd
£ o o W

Here the excitation functions of the different reactions are
considered to be independent; this, however, is not necessary. In
this case a is a bilinear product of some elements of P;
therefore, our model is nonlinear. To get the sensitivity matrix we
must linearize the model by performing an expansion about the
estimated expectation value of & and I, and we get
a; =T 848 CT;-ED+F, C8" -8 +C SIESRE 3 SR cazd

We have to drop the last term only to become the model linear,
therefore, our model is very near to a linear one. Comparing this

with the expression

D*=D +G(P DJC(P'-P O ‘ 230
1 10 10
we get
rE 8700 ... )
08 0...
G=] 2 . a4
=t +
Zs oo® ...
. D o
Since our problem is nonlinear we need an initial vector P to

. 10
start the iteration procedure. We choose an energy grid where the

number of the energy intervals, m » is less than n, the number of
the measured reaction rates. Thls m, will determine the free

parameters of the neutron spectrum dur;ng the evaluation. The
vectors Et are known, so we have to create only the vector §°

Considering eq. 20. with constant vectors E:,we have m°<n unk nown
variable for a system of equation consisting of n equations.
Therefore, thls can be solved by the usual linear least squares

procedure. Introducxng the matrlx G as

.
Z;

6 =] 25>
o N

=
and the vector Do containing the measured reaction rates and M for
its covariance matrix, then & can be calculated as
B =G MG > "as:;m"u)o | | 28D

12




W¥e could calculate~the'covafiehCe matrix of §° but in this case we

do not take into account Lhe efrors of E: which is very important
because we approximate the original equations. Therefore, we
‘consider this §° as the starting point of the iteration without
real information content. So we generate its covariance matrix in
the following form: the diagonel‘elements contain very large values
Cfof'exahple‘looz standard deviation D and the other elements are
set~te zero. This is the reason why weynay ‘suppose that'phis
initial wvector hes no correlation with Do' Puttieg this §° into P“;
and its covariance matrix into NP eq. C200 canrbe sol ved udth‘the
generalized least squares method’:ed we ge; e real estimation for
the ;o?ariance matrix. We have included the E; vector into P in
order to propagate their uncertainties to the soclution. The cross
sections are assumed to be only “formally adjbstable” during ‘the
calculation. Thie,takes into account that our model (Ci.e. eq. 200
is inexact. After obtaining the solution of the first step, we can

expand the solution of & into a new, finer energy gri;diwitﬁ an
interpolation procedure. The newlga vectors are generated in every

step from the original E?‘vectors; therefore, eur model will be
more and more exact. Using the previously introduced iterative
solution of the generalized least sQuares 'method we can treat

correctly the error propagation during the process. This iterative
procedure is to be conﬂinued; at least; until the origihal‘energy
grid is achieved. Since neither the linear interpolation ncf thek
generalized least squares method‘ doesk increase the rank of the
covariancermatrix, the.rank of m§ will not be highef than m,» i.e.

the number of the free parameters in & is not higher than m .

B. Iest of the successive approximation method.

A computer program (SULSAD, written in FORTRAN, was developed for
an IBM PC/XT compatible computer to solve the unfolding prqblem by
the successive approximation method. The present version of the
code uses diagonal cross section covariance matrices and an

equidistant grid  for E?. For testing purposes an  artificial

spectrum has been generated, which is the sum of an exponential and
a Gauss type functions. The activation rates. for 10 neutron
reactions were calculated using this artificial spectrum (exact

datad and 1% standard deviations were associated to: them.

13




g/s,kdifference of the input

Table 1. Input reaction rates in :10—1
and the calculated ones in percentage, and the global

parameters of the unfolding.

Exact dﬁta Random-1 Random—2
Reaction Reaction Dif. Reaction] Dif. ] Reaction| Dif.
| rate (%1 | rate | 21 | rate [%)
N1 58 n, p>co® 3042.0 |-0.42| 3020.0 |-5.07] 2o80.0 | o.82
Feo*Cn, pdMnot 2058.0 |-0.41] ze3s.0 | 2.82| 2274.0 |-4.42
A1%7¢n, oNaSt 350.0 |-0.38] ss8.0 |-0.98| 338.0 |-5.57
Co>%¢n, 2ndCo°0 354.0 | 0.13] 3s1.0 | o0.20] s3se.0 |-1.10
At n,2n0aut % | 4284.0 |-0.10] 4274.0 |-0.20] 4033.0 |-2.00
cuCcn, poni ZC 4.3 | o.25] e7.6 | 4.08] e3.s5 |-0.05
T148cn, p>sc?® 138.0 | o.0t] 13m0 |-2.88] 14s.0 | 7.88
1ntt%n,n>1nt15"| 1030.0 |-0.07| 1088.0 | 0.48] 1888.0 .30
v®%n, 2 y®® 1e7.0 |-0.81] 180.0 |-3.87] =208.0 | 1.7
z%%n, 202 | 104.0 |-0.77] 101.0 | s.00] e0.4 |-7.m0

X 0.156 0.324 0.712
x5, 1.13 0.943 1=

Two other data sets (Crandom-1,random-2> for the reaction rates
were generated by randomly altering the exact data with 5% standard
deviation. Using these data sets +three neutron specira were
evaluated. Two global parameters were calculated for every solution

to test their acceptability:

2= D _-D>'M D -D> a7
a n o] (o]
N 2
Cp. -9 O
2_ 1 i Ti0

X5= 2 c28d

, N

i=1 @,

where Do' D are the vectors of the input and output activation

rates, M is the covariance matrix of mo, while ¢u“¢§ and N are

?..
the original artificial, the calculated differential neutronuflux
and the diagonal element of its covariance matrix, respectively.
The input data and the results of the calculation are summarized in
Table I. and Figures 1.+3. In the calculation the number of the
reaction rates was 10 and m, i.e. initial number of the intervals

was chosen to 8. The value of m was increased by 8S0% in every

14
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’ NEUTRON ENERGY (MeV)

Figure 1. Comparison of the original and calculated specira using

the exact data set for the reaction rates:.

iteration step until the final grid of 30 energy intervals . was
reached. Both X, and Xg shows good soclution both for the
calculated reaction rates and for the differential neutron flux. In
the case of the exact data the x, value is low arising from the
overestimation of the error of the reaction rates. Figures 1.4+3.
show the original artificial spectrum and the calculated ones for
comparison. It can be seen that in all three cases the original
function is very well approximated in the high energy range where
the errors are small, while the low energy range shows larger
deviations and stronger sensitivity for the values of the reaction

rates. To see the goodness of the error estimation, Figure 4. shows

t.he‘k quan'tit.y( C¢i—¢t°)/Y,N_i: as function of the 'yeriergy‘. It can ‘be
seen that the error estimation is correct, independently of the
value of the error which is changing from a few per cent to more
than hundred per cent.

Beside this artificial spectrum the program was tested with real

measured data. Figure 5. shows the result of such a calculation

15



cm?® .s. MeV

2.00

A

-0 Calcuilated -spectrum A Original spectrum

1.20 A

0.40 4

—0-40 ¥ 1 | 3 T T 1 1 T
000 200 400 6.00 800 1000 12.00 1400 16.00 18.00
- NEUTRON ENERGY (MeV)

Figure 2. Comparison of the ori ginal ' and calculated spectra using

the random—1 data set for the reaction rates.

where a differential neutron spectrum from the Be+d reaction at
17.5 MeV deuteron energy @ was calculated from our earlier
measurements [8]. For comparison, the result of the SAND-II
calculation is also shown. The shape of the sclutions is very
similar. There are only two regions where the deviations are
significant: from 4 to 8 MeV and from 13 toc 168 MeV. In the first
interval the deviation is less than twice the calculated error, but
in the second region the new sclution seems to be more realistic
because there is'no physical reason for the long, almost constant
differential neutron flux. Unfortunately, we do not know the real
spectrum; . therefore, we can not decide  which is the better
solution. The aim of the present work is to demonstrate that the

model is working in a real case, toco.
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Figure 3. Comparison of the original and calc¢ulated spectra using

the random-2 data set for the reaclion rates.

6. Summary

The successive apbroximation meﬂhod which is based on " the
iterative solution 6f thé generalizéd least tsquares method and
keeps the number ofvthe inde?ehdent statistidal variabies'lbwet
than the number of the measﬁred réaction rates, can be used
successfully for the soluiion‘of thé unfolding problem. A great
advantagé of’ this method‘ is that fhé neﬁﬁrén spectrum ‘can be
determinéd Qhén no other real infOrmation is available éxcept the
reaction rates. fhe enébgy‘re$blution of the method is determined
by ‘the number of the éross secﬁions and. the shapes of"the
excitation functions. Therefore, the soluﬂion’ i$ similar t¢~ a
neutron spectrum measured by a neutron spectrometer with low energy
resolution.

If an independent measurement exists for the differential neutron
spectrum, there are two possibilities to combine thesekdata with

the result of the unfolding calculation:
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Figure 4. The gquantity c¢t—¢to>/1 Ntt in the function of neutron
energy for the three data sets.

If the covariance matrix of this independent measurement is
non-singular, i.e. it is a real measurement, then it can be
combined with the solution of the successive approximation
method on the basis of the general least squares method and
the new improved solution will be:
g*=IN CIN +N > '8 +N CIN +N > '3
1 1 2 2 z2_ 1 2 1
IN>=IN CIN +IN > "IN
1 1 2 2
If the covariance matrix of the measurement is singular, the
usual way of the unfolding by the generalized least squares
method can be used. But if the measurement has large errors,
the result can be improved by the iterative method described

in the present paper.



Neutron spectrum Be+d(17.5MeV)
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Figure 5. Differential neutron spectrum from the Be+d reaction at
17.5 MeV deuteron energy, calculated by the successive
approximation method and the SAND-II unfolding code.
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