

I N D C international nuclear data committee

International Reactor Dosimetry File IRDF-2002

Final steps in preparation of the library

E.M. Zsolnay, H.J. Nolthenius*

Institute of Nuclear Techniques Budapest University of Technology and Economics Budapest, Hungary

* The Netherlands

Final Report on IAEA Research Contract No. 11455

November 2004

IAEA NUCLEAR DATA SECTION, WAGRAMER STRASSE 5, A-1400 VIENNA

This report has also been published with additions as BME-NTI-279/2004

Reproduced by the IAEA in Austria November 2004

International Reactor Dosimetry File IRDF-2002

Final steps in preparation of the library

E.M. Zsolnay, H.J. Nolthenius*

Institute of Nuclear Techniques Budapest University of Technology and Economics Budapest, Hungary

* The Netherlands

Final Report on IAEA Research Contract No. 11455

November 2004

BME-NTI-279/2004

INSTITUTE OF NUCLEAR TECHNIQUES BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

INTERNATIONAL REACTOR DOSIMETRY FILE IRDF-2002 Final steps in preparation of the library

FINAL REPORT IAEA Research Contract No 11455/R2

E. M. Zsolnay, H. J. Nolthenius*

* The Netherlands

Budapest, 2004 May

TABLE OF CONTENTS

INR	RODUCTION	3
1.	BACKGROUND	4
	1.1 Detailed analysis and intercomparison of the data of different neutron cross section libraries	4
	1.2 New evaluations	5
	1.3 Candidate cross sections for IRDF-2002	5
2.	INTERCOMPARISON OF THE CANDIDATE CROSS SECTION DATA WITH EXPERIMENTAL VALUES (C/E) IN STANDARD NEUTRON FIELDS, AND PRELIMINARY SELECTION OF THE DATA FOR IRDF-2002	5
	2.1 C/E values and pre-selection of the cross section data in standard thermal and 1/E neutron fields	6
	2.1.1 Characterization of the recommended cross section data	8
	2.1.2 Conclusions	10
	2.2 Pre-selection of the cross section data for IRDF-2002 in the fast neutron energy region2.2.1 Recommended fast neutron cross sections for IRDF-2002 and	11
	characterization of the data	11
3.	FINAL SELECTION OF THE CROSS SECTIONS FOR IRDF-2002	13
4.	PREPARATION OF THE CROSS SECTION DATA IN THE "IRDF" FORMAT	13
5.	REFERENCES	15
6.	TABLES AND FIGURES	19
7.	CHAPTERS WRITTEN FOR TECDOC ON IRDF-2002	39

INTRODUCTION

As the result of updating the old reactor dosimetry file IRDF-90, a new reactor dosimetry library "International Reactor Dosimetry File: IRDF-2002" has been developed. The work was done by an international team – under the co-ordination of IAEA NDS – with the following participants:

- International Atomic Energy Agency, Nuclear Data Section (IAEA NDS);
- Institute of Nuclear Techniques (INT), Budapest University of Technology and Economics (BUTE), Budapest, Hungary;
- Institute of Physics and Power Engineering (IPPE), Obninsk, Russia;
- Physikalisch Technische Bundesanstalt (PTB) Braunschweig, Germany;
- Centre d'Etudes Nucleaires (CEA), Bruyeres-le-Chatel, France;
- Sandia National Laboratories (SNL), Albuquerque, USA;
- Pacific Northwest Laboratory (PNL), Richland, USA;
- Nuclear Data Center (NDC), JAERI, Japan.

The library – together with the documentation in the form of a TECDOC – has been completed in February 2004. The new library contains:

- cross sections accompanied with uncertainty information for 66 dosimetry reactions (see in Table 7);
- total cross sections for three cover materials (B, Cd, Gd);
- radiation damage cross sections for some elements and compounds;
- nuclear data for dosimetry application, based on the most up-to-date ENSDF data.

This report presents the final steps in the development of the file IRDF-2002,

performed by INT BUTE. The programme of the work – in agreement with the corresponding IAEA contract – was as follows:

- 1. "Culling of the selected candidate data files by applying criteria such as: magnitude of cross section uncertainty over the complete energy range of reaction, recent evaluation data, graphical display of the energy-dependent cross section should not reveal any unrealistic physical features, the evaluation should clearly indicate the residual product of reaction, format or comments must indicate if the cross section represents the reaction of interest or a sum of reaction products, available comments should include detailed references that permit the underlying calculations to be repeated, etc.
- 2. Standard benchmark fields (1/E slowing down spectrum in hydrogeneous moderator and the Maxwellian thermal spectrum at specified neutron temperature) will be used to differenciate between candidate evaluations.
- 3. Preparation of a preliminary version of IRDF-2002; send to NDS.

4. Prepare TECDOC chapters according to statements made in the report of last IRDF meeting. Data and final report to be made available to IAEA-NDS."

1. BACKGROUND

1.1. Detailed analysis and intercomparison of the data of different neutron cross section libraries

As a part of the updating procedure of the International Reactor Dosimetry File IRDF-90 [1], the data of up-to-date reactor dosimetry files (JENDL/D-99 [2], original and up-dated RRDF-98 [3]) and new evaluations in the files ENDF/B-VI (V.8), JEFF-3.0 and CENDL-2 [4] have been analysed, in order to select the best quality cross section and related uncertainty information for the new library, IRDF-2002. The analysis involved the following actions:

- Checking the content and formats of the cross section and uncertainty information in the files of interest;
- Numerical characterization of the cross section data by spectrum averaged cross section values for three theoretical spectrum functions: Maxwellian thermal, 1/E and Watt fission neutron spectrum;
- Intercomparison of the above integral spectrum characteristics;
- Analysis of the uncertainty information of the different libraries (including detailed analysis of the covariance matrices), and intercomparison of the corresponding uncertainty data.

The results, together with the detected errors, discrepancies and shortcomings (related sometimes to the physics and/or to the mathematics content, sometimes to the format of the data) were presented in the form of Progress Reports [5-7] and, communicated to the evaluators of the libraries via IAEA NDS. The evaluators then revised and modified numerous data in the cross section files JENDL/D-99 and IRDF-98, furthermore, a number of new evaluations have been prepared [8-10].

Altogether about 180 different cross section data were analysed (several ones more times, due to the revisions). It has turned out that, for several reactions no better quality cross section evaluations are available in the literature than the data in the file IRDF-90, and only a limited number of new evaluations accompanied by covariance information (the majority of them for RRDF) have been prepared in the energy region from thermal to 20 MeV, during the last decade.

1.2. New evaluations

New cross section evaluations with uncertainty information have been prepared for inclusion in IRDF-2002, by IPPE, Obninsk [8,9] for the following reactions: ${}^{27}Al(n,p)$, ${}^{58}Ni(n,p)$, ${}^{103}Rh(n,n')$, ${}^{115}In(n,n')$, ${}^{139}La(n,\gamma)$ ${}^{186}W(n,\gamma)$, ${}^{204}Pb(n,n')$ and ${}^{237}Np(n,f)$. Also these data were analysed in the way described above.

1.3. Candidate cross sections for IRDF-2002

After repeated investigation of the revised data and analysis of the new data [6], a collection was prepared for each of the libraries mentioned above, containing the reactions with cross sections suitable for inclusion in IRDF-2002 [6-7,11]. Table 1 shows the last updated list of these candidates [11]. The cross sections together with the uncertainty information, listed in this Table, are the best quality data available in the open literature at the end of 2002 - first part of 2003 and, the content of the new international reactor dosimetry file has been selected from them.

A file with the corrected data of the candidate cross sections has been compiled and sent to IAEA NDS [12].

There are some reactions interesting for dosimetry applications, but a part of them has shortcomings in the cross section information, while for another part no suitable cross section data were found in the open literature. These reactions are also listed in Table 1.

2. INTERCOMPARISON OF THE CANDIDATE CROSS SECTION DATA WITH EXPERIMENTAL VALUES (C/E) IN STANDARD NEUTRON FIELDS, AND PRELIMINARY SELECTION OF THE DATA FOR IRDF-2002

The next step in preparation of the file IRDF-2002 was the selection of the best quality data from among the candidate cross sections in Table 1. The final decision on the content of the new libray was preceded by a preliminary selection process.

The base of the cross section pre-selection procedure was the comparison of the integral values of the cross sections from the libraries of interest with each other, and with experimental data of standard neutron fields. Another important criterion of the

selection was the quality of the uncertainty information accompanying the cross sections of interest, and the consistency of the data. Therefore, integral (spectrum averaged) cross section values and the related uncertainties were calculated for the reactions of Table 1 in three (standard) neutron fields: Maxwellian thermal, 1/E and ²³⁵U fission neutron field [13-14]. The data were then compared with each other and with up-to-date experimental ones (C/E) [15-17]. Based on the results, a recommendation was made on the cross section information to be included in IRDF-2002.

2.1. C/E values and pre-selection of the cross section data in standard thermal and 1/E neutron fields

An intensive review of the literature identified two sources that contained up-to-date experimental data in the Maxwellian thermal and in the 1/E neutron fields. These were the evaluated experimental data of S. F. Mughabgbab [15] and of N. E. Holden [16]. The thermal neutron cross sections in both evaluations of experiments refer to a neutron energy of 0.0253 eV (v_0 =2200 m/s), while the resonance integrals were calculated by Mughabgbab with a lower energy limit of 0.5 eV and, with an upper energy limit corresponding to the upper resonance with known scattering width [18]. Holden calculated the resonance integrals from 0.5 eV to 0.1 MeV. In our calculations the thermal neutron cross sections refer to 0.0253 eV to 1.05 MeV (see also [5] and [6]), with using a multigroup representation (SAND type 640 energy groups) of the the cross sections of interest.

The uncertainty information for the cross sections of interest have been represented by the corresponding relative standard deviation values (with the same energy boundaries as used in the cross section calculations), weighted with a typical MTR spectrum (see Figure 1 [19]).

The results of the comparison can be seen in Table 2. From the data of this Table one can see that, for a few reactions the same cross section information was present both in IRDF-90 and in the other libraries of interest, while the related uncertainty information was sometimes different. This type of reactions are: NA23G, MN55G, CU63G, NB93G,

IN115G, TH232G and PU239F. When the corresponding cross section and uncertainty values were identical, the file IRDF-90 was taken as the source of the data for IRDF-2002.

In case of the reaction FE58G the resonance integral for both cross section files of interest (IRDF-90 and JENDL/D-99) meaningfully deviates from the corresponding data of Mughabgbab, while the JENDL/D-99 value shows a good agreement (as compared with the relevant uncertainties) with the corresponding data of Holden. The situation needs further clarification, eg. by comparison with experimental data in benchmark neutron fields. Nevertheless, for the JENDL/D-99 data generally a better agreement was found with the experimental values than for the corresponding IRDF-90 ones. Taking into consideration the corresponding uncertainty values as well, the JENDL/D-99 data seem to be more realistic, therefore, it has been recommended that the cross section to be included in IRDF-2002 for this reaction should be taken from the file JENDL/D-99.

The other reaction in Table 2, being the subject of selection, is PU239F. As it can be seen, the cross section values for this reaction are practically the same in the considered libraries, but the uncertainties in the file JENDL/D-99 seem to be more reliable, than the corresponding IRDF-90 values. Therefore, again the JENDL/D-99 data have been selected for IRDF-2002.

2.1.1. Characterization of the recommended cross section data

The thermal and epithermal neutron cross sections, recommended for the file IRDF-2002, are presented by Table 3. For numerical characterization of the data the thermal cross sections (σ_L) at 2200 m/s (0.0253 eV) and the resonance integral (IR_L) values from 0.5 eV to 1.05 MeV have been calculated. All the cross section and resonance integral values are compared with the evaluated experimental data of S. F. Mughabgbab [15] and of N. E. Holden [1], as described in the previous chapter.

For representation of the uncertainty information of the selected cross sections, the relative standard deviation values (weighted with an MTR spectrum) were calculated for the thermal and intermediate neutron energy regions separately, using the same energy boundaries as in case of the cross section characterization. The results can be seen in Table 4.

Evaluating the data in Tables 3 and 4, the following statements can be made:

- 1. The thermal neutron cross sections for the selected reactions in general agree with the evaluated experimental data within one standard deviation of the corresponding library and experimental values.
- 2. However, the resonance integrals calculated from the library data deviate from the evaluated experimental ones more than one standard deviation of the corresponding library and experimental values, for several reactions (details see below).
- 3. List of the problems by reactions, related to the data in Tables 3 and 4:
 - **B10A and LI6T**: the uncertainty of the library cross sections in the intermediate neutron energy region is to small (not realistic), as compared with the corresponding C/E values (or the library data deviate significantly from the experimental values).
 - **NA23G:** The uncertainty information contains only a diagonal matrix new evaluation is required.
 - **MN55G:** The C/E value for the resonance integral is deviating by 16 % from the unity. It is too large deviation also as compared with the related uncertainty

values. New cross section evaluation is needed for this reaction in the intermediate neutron energy region.

- **FE58G:** The C/E value for the resonance integral with the Mughabghab data is deviating by 19 % from unity. At the same time, a large difference is present between the experimental data of the sources considered. Clarification of the situation is needed, as this reaction is one of the most frequently used detectors in the reactor dosimetry. Maybe also new cross section evaluation is needed in the intermediate neutron energy region.
- **NB93G:** The C/E value for the resonance integral is deviating by 17% from unity, furthermore, the uncertainty information contains only a diagonal matrix. New evaluation is needed.
- **AG109G:** The C/E value shows a large deviation from unity both in the thermal and in the intermediate neutron energy regions, furthermore, the evaluated cross section in the library IRDF-90 is given in a rough energy group structure. Re-evaluation of the data is needed. (For this reaction Mughabgbab gave the sum of the cross sections of reactions leading to Ag110(m+g), while the dosimetry libraries contain the cross sections for the reaction leading to Ag110m. Therefore, no comparison with the data of Mughabgbab was possible in this case.)
- **IN115G:** The uncertainty information contains only diagonal matrix. New evaluation is needed.
- **TA181G:** The uncertainty information contains only a diagonal matrix. New evaluation is needed.
- **AU197G:** The available uncertainty information for this reaction is not reliable, it has been withdrawn from ENDF/B-VI. The uncertainty data in IRDF-90 are deriving from the same source. New evaluation is needed.
- **TH232G:** In the uncertainty information below 15 eV diagonal matrix is present. New evaluation is needed.

- **U235F:** The uncertainty information has been declared to be not reliable and has been withdrawn from ENDF/B-VI. The data in the library IRDF-90 have the same origin. New evaluation is needed.
- **AM241F:** No up-to-date experimental data are available for this reaction, therefore, the corresponding C/E values could not be derived.

2.1.2.Conclusions

Based on the results of the cross section selection procedure outlined above, the following conclusions can be drawn, related to the data of Tables 3 and 4:

- 1. Practically no new cross section evaluations have been made in the low neutron energy region during the last one-two decades, except the reactions 139 La(n, γ) and 186 W(n, γ), evaluated for the Russian Reactor Dosimetry File [8, 9 and 20].
- 2. In the thermal neutron energy region the selected cross sections show in most cases a very good agreement with the corresponding evaluated experimental values.
- 3. At the same time, the resonance integrals for the reactions MN55G, FE58G and NB93G, meaningfully (>10%) deviate from the corresponding experimental data. This deviation is too large even in comparison with the corresponding uncertainty information. Further investigations (eg. testing the data also in benchmark neutron fields) and new cross section evaluations will be needed in these cases.
- 4. For the reactions NB93G, IN115G, TA181G and for TH232G below 15 eV, the uncertainty information consists of diagonal covariance matrices only. New evaluations with complete covariance information are needed in these cases.
- Unreliable uncertainty information (withdrawn from ENDF/B-VI) is present in all the investigated cross section libtraries for the reactions AU197G and U235F. Therefore, new cross section evaluations with complete covariance information are needed for these reactions.
- 6. Before the final decision on the content of IRDF-2002, also a consistency test will have to be made on the pre-selected cross sections in Tables 3 and 4, by comparing the relevant integral data in benchmark neutron fields.

2.2. Pre-selection of the cross section data for IRDF-2002 in the fast neutron energy region

For characterizing and comparing the cross section data of the fast neutron (threshold) reactions present in Table 1, spectrum averaged cross sections were calculated for the theoretical function of the Watt fission spectrum [19], with using a multigroup representation (SAND type 640 energy groups) of the the cross sections of interest. The uncertainty information for the cross sections was represented by the corresponding standard deviation values above 1.05 MeV, weighted with a typical MTR spectrum [19]. The results obtained can be seen in Table 5.

W. Mannhart calculated the responses of activation reactions in the standard neutron field of spontaneous fission of ²⁵²Cf and, compared them with experimental data obtained in that neutron field [17]. Spectrum averaged cross sections were calculated together with the related standard deviations, and C/E values were derived. Also qualification of the considered cross section information was given. He investigated the cross section data of the files IRDF-90.v2, JENDL/D-99 and an updated version of RRDF-98, furthermore, the ones of the reactions selected in Table 1 from ENDF/B-VI and JEFF-3.0. His results – with consideration of the differences between the two spectrum functions – show a good agreement with the data in Table 5.

In the present chapter we give a recommendation on the fast neutron cross sections to be included in the file IRDF-2002, and characterize the selected data.

2.2.1. Recommended fast neutron cross sections for IRDF-2002 and characterization of the data

In the fast neutron energy region the applicable standard neutron field for characterization and selection of the cross section data, is the one of the spontaneous fission of ²⁵²Cf. Therefore, our earlier findings (see [5,6] and Table 5) were combined with the ones of W. Mannhart [17], and the procedure resulted in the data of Table 6 [14]. This Table contains the list of the 46 fast neutron cross sections recommended to be included in IRDF-2002, together with their characteristics, taken from [17]. The column with the uncertainty values of the calculated average cross sections ($<\sigma_c>$) shows the

standard deviation values in $\langle \sigma_c \rangle$ due to the cross sections, while the values in brackets give the total standard deviation of $\langle \sigma_c \rangle$, including the contribution of the uncertainty of the ²⁵²Cf spectrum function as well. The uncertainty of the C/E values involves the standard deviations present in the experimental data, in the cross sections of interest and, in the ²⁵²Cf spectrum function. So they can be calculated based on the data of column 4 in brackets and, on the data of column 6.

The following conclusions can be drawn regarding the cross section values of this Table:

- No up-to-date experimental cross section data were available for the reactions P31P, TI0XSC46, TI0XSC48, TI462, TI47NP, TI48NP, TI49NP, CR522, FE542, FE54A, AS752, Y892, IN1152 and PR1412. Therefore, the corresponding C/E values could not be derived. At the same time, a large deviation was found between the cross section values of the reaction TI47NP in the libraries RRDF-98 and IRDF-90. Clarification of the situation is needed.
- 2. C/E values larger than 5 per cent are present for the following reactions: CU632, RH103N, I1272, TM1692, HG199N, and TH232F. The relatively large deviation between the experimental and calculated cross section values originates from the side of the library cross sections, except the reaction TM1692, where the measured cross section has a large (~ 6%) uncertainty. Improvement of the situation would be useful.
- 3. Inconsistency is present between the C/E value and the corresponding uncertainties for the reaction MG24P. Clarification of the situation is needed.
- 4. The uncertainties of the cross sections in Table 6 is in most cases below 4 %. Larger uncertainty values are present in case of the ractions TI47NP, TI48NP, TI48P, TI49NP, NI60P, AS752, PR1412, HG199N, TH232F. During the neutron spectrum adjustment procedure in the energy regions with responses of more detectors, these reactions will have a much smaller weight than the other ones with meaningfully smaller uncertainties.

5. The selected cross sections in Table 6 will have to go through a consistency test as well, by comparing the relevent integral data with experimental values in benchmark neutron fields.

3. FINAL SELECTION OF THE CROSS SECTIONS FOR IRDF-2002

The final selection of the cross sections for the International Reactor Dosimetry File IRDF-2002 was made in frame of a Technical Meeting, held on the project at IAEA NDS, Vienna, from 1 to 3 October 2003 [21]. The selection procedure was based on the following considerations (applied also in the preliminary selection process):

- comparison of the integral values of the candidate cross sections with the corresponding experimental ones in the four standard neutron fields (thermal Maxwellian, 1/E slowing down, ²⁵²Cf fission and a 14 MeV neutron field) recommended for the purpose of cross section selection [22];
- quality of the uncertainty information;
- consistency of the data.

The result – final content of the new library – can be seen in Table 7. Characterization of the cross section data present in IRDF-2002 is given in Table 8.

4. PREPARATION OF THE CROSS SECTION DATA IN THE "IRDF" FORMAT

Table 7 gives the list of the cross sections together with their origin, present in the file IRDF-2002. The library is available in two forms:

- point cross section data, and
- group cross section data in the SAND II extended 640 energy group structure.

The group-wise data are given in a simplified ENDF-6 format (referred further on as "IRDF" format). The simplified format means that all the cross section information is given in File 3 (ENDF-6 notation), and the uncertainty information is given in the form of file 33 (ENDF-6 notatin).

The neutron temperature, used to calculate the group cross section data, was 300K.

The conversion of the point cross section data to the 640 group ENDF-6 format was made by IAEA NDS. To obtain the IRDF format library from these data, several additional conversions, corrections and modifications had to be introduced. This chapter presents the work done in this field in frame of the IAEA contract.

The work involved the following actions:

- Conversion of the ENDF-6 format cross section data to the simplified IRDF format (converting the data of MF=10 to MF=3, and changing the MT numbers for the reaction cross sections leading to metastable states of the reaction product nuclei).
- Conversion of the cross section uncertainty information to the simplified IRDF format (converting the data of MF=40 and MF=32 to MF=33, changing the format of the uncertainty data in accordance with the actions described in the former point).
- Correction of the lower energy limit of the uncertainty information for several threshold reactions, in order that the cross section and related uncertainty data should refer to the same energy region
- Calculation of integral characteristics for the newly generated group cross section and uncertainty data.
- Converting the format of the damage cross sections to the format of the file IRDF-2002, and adding the converted damage data to the cross section library.
- Preperation of the covariance matrices of the cross sections in IRDF-2002 in a 27 groups structure, to be presented in the TECDOC.

Results

Table 9 shows the MAT, MF and MT numbers for the cross sections present in the file IRDF-2002.

The original and corrected lower energy limits of the cross section and uncertainty data for the threshold reactions can be seen in Table 10.

Some integral characteristics of the newly generated group cross section data (derived from the corresponding point values in frame of this project) are given in Table 11. Characteristic cross section values have been calculated in three energy groups: in the thermal neutron energy region the cross sections are given at 2200 m/s; resonance integrals have been calculated from 0.5 eV to 1.05 MeV; and in the fast neutron energy region the cross sections spectrum (details see e.g. in [6]). The corresponding uncertainties were calculated in the same energy group structure as applied at the cross sections, except the fast neutron energy region, where the lower energy limit was 1.05 MeV. The results can be seen in Table 12. A typical MTR spectrum (see [19] and Figure 1) was used as weighting spectrum in the uncertainty

calculations. These data can be used for intercomparison with the group cross section values from the source libraries of the selected cross section data.

5. REFERENCES

[1] N. P. Kocherov, P. K. McLaughlin: "The International Reactor Dosimetry File IRDF–90, Ver.2." Report.IAEA–NDS–141, Rev.2., IAEA, Vienna, Oct. 1993.

[2] K. Kobayashi, T. Iguchi, et al: JENDL Dosimetry File (JENDL/D-99). Report, JAERI1344, Japan Atomic Energy Research Institute, January 2002.

[3] K. I. Zolotarev, A.V. Ignatyuk, V.N. Manokhin et al: RRDF-98, Russian Reactor Dosimetry File. Report, IAEA/NDS/193. Rev.0. March, 1999.

[4] CD WINENDF, October 2002. ENDF package Includes Release 8 of ENDF/B-VI, Release 3.3.of JEDL, Release 3.0 of JEFF, WINENDF Prepro2000 codes, WNDVER codes, Utility codes, Manuals, Utils, ZaLibs. IAEA Nuclear Data Section.

[5] E.M. Zsolnay, H.J. Nolthenius, E.J. Szondi: "Nuclear Data for Reactor Dosimetry Libraries: Analysis, Intercomparison and Selection of Data" Progress Report, BME-NTI-251/2001, (INT, Budapest University of Technology and Economics) Budapest, 2001 September

[6] E.M. Zsolnay, H.J. Nolthenius, E.J. Szondi: Analysis, Intercomparison and Selection of Data for the Preliminary Version of the International Reactor Dosimetry File IRDF-2002. Progress Report. BME-NTI-265/2002. Budapest, 2002 December

[7] E.M. Zsolnay, H.J. Nolthenius: Selection of cross sections for thermal neutron capture and fission reactions for the file IRDF-2002, and characterizuation of the selected data. Progress Report, BME-NTI-269/2003. Budapest, 2003 June.

[8] K.I Zolotarev: Revisions and new evaluations of cross sections for 19 dosimetry reactions. In: Summary Report of the Technical Meeting on "International Reactor Dosimetry File: IRDF-2002". Report, INDC(NDS)-435. IAEA, Vienna, Sept.2002

[9] K.I. Zolotarev: Evaluated cross section data from Russian Reactor Dosimetry File. In: Summary Report of the Final Technical Meeting on "International Reactor Dosimetry File: IRDF-2002". Report, INDC(NDS)-448. IAEA, Vienna, Oct. 2003

[10] K. Shibata (NDC, JAERI, Japan): Private communication to IAEA NDS, 2002 Oct.

[11] International Reactor Dosimetry File-2002, IRDF-2002. TECDOC, IAEA NDS, to be published.

[12] E.M. Zsolnay: Private communication to IAEA NDS, Spring, 2003.

[13] E.M. Zsolnay, H.J. Nolthenius: Selection of cross sections in the thermal and epithermal neutron energy region for the file IRDF-2002, and characterization of the selected data. In: Summary Report of the Final Technical Meeting on "International Reactor Dosimetry File: IRDF-2002". Report, INDC(NDS)-448. IAEA, Vienna, Oct. 2003

[14] E.M. Zsolnay, H.J. Nolthenius: Selection of fast neutron cross sections for the file IRDF-2002 and and characterization of the selected data. In: Summary Report of the Final Technical Meeting on "International Reactor Dosimetry File: IRDF-2002". Report, INDC(NDS)-448. IAEA, Vienna, Oct. 2003

[15] S.F Mughabghab: Thermal Neutron Capture Cross Sections, Resonance Integrals and G-Factors. Report, INDC(NDS)-440, IAEA NDS, February 2003

[16] N.E. Holden: Neutron Scattering and Absorption Properties (Revised 1996). In:CRC Handbook of Chemistry and Physics (Ed.: David R. Linde), 80th Edition (1999-2000). CRC Press, New York, USA.

[17] W. Mannhart: Response of activation reactions in the neutron field of spontaneous fission of ²⁵²Cf. In: Summary Report of the Final Technical Meeting on "International Reactor Dosimetry File: IRDF-2002". Report, INDC(NDS)-448. IAEA, Vienna, Oct. 2003

[18] Private communication of S.F. Mughabghab, June 2003.

[19] J. H. Baard, W.L. Zijp, H.J. Nolthenius: Nuclear Data Guide For Reactor Neutron Metrology. Kluwer Academic Publishers (for the Commission of the European Communities), Dordrecht, The Netherlands, 1989.

[20] K.I. Zolotarev (IPPE, Obninsk, Russia): communications to IAEA NDS, 2002, 2003.

- [21] Summary Report of the Final Technical Meeting on "International Reactor Dosimetry File: IRDF-2002". Report, INDC(NDS)-448. IAEA, Vienna, Oct. 2003
- [22] Workshop on benchmarks. In: Reactor Dosimetry in the 21st Century.(eds: J. Wagemans, H.A. Abderrahim, P. D'hondt, C. De Raedt) Proc. of the 11th

International Symposium on Reactor Dosimetry, Brussels, Belgium, 18-23 August, 2002. World Scientific, 2003.

6. TABLES AND FIGURES

-			IRD1 2002	-		
		REAC	FIONS FROM	IRDF-90		
LI6T	B10A	MG24P	AL27P	AL27A	P31P	S32P
SC45G	TI46P	TI47NP	TI47P	TI48NP	TI48P	CR522
MN55G	FE54P	FE58G	CO592	CO59G	NI582	NI58P
CU632	CU63G	CU63A	CU652	ZN64P	ZR902	NB932*
NB93N*	RH103N*	AG109G*	IN1152*	IN115N*	I1272	AU1972
AU197G	TH232F	U235F	U238F	U238G	PU239F	
NA23G+	NB93G+	IN115G*+	TH232G+			45 reactions
		REACTI	ONS FROM J	ENDL/D-99		
F192	MG24P	AL27P	AL27A	P31P	TI0XSC46	TI0XSC48
TI462	TI46P	TI48NP	TI48P	TI49NP	CR522	MN55G
FE54P	FE58G	NI582	NI58P	CU632	CU652	Y892
ZR902	IN115N	I1272	TM1692	AU1972	HG199N	U238F
NP237F	PU239F	AM241F	NA232•	TA181G+		
						33 reactions
		REACT	TIONS FROM	RRDF-98		
F192	TI462	TI46P	TI47NP	TI48NP	TI48P	TI49NP*
V51A	FE542	FE54A	FE56P	CO59A	CU63A	AS752
NB932	NB93N	LA139G	PR1412	W186G	PB204N	
AL27P•	NI58P•	RH103N•	IN115N•	NP237F•		25 reactions
		REACTION	NS FROM EN	DF/B-VI (V.8)		
CR522	NI58P	NI60P	CU632	CU63G	CU652	
NA23G+	NB93G+	IN115G*+	TH232G+			10 reactions
		REACT	TIONS FROM	JEFF-3.0		
FE56P	NI582	NI58P	NI60P			
						4 reactions
					C 117 r	agotions

Table 1. Reactions from the	e different libraries	with cross sections	suitable for
	IRDF-2002		

					3 = 11	/ reactions		
Problematic reactions								
NA23G EU151G	TI0XSC47 TA181G	CR50G TH232G	MN552	FE57NP	NB93G	IN115G 10 reactions		

REMARKS

• New evaluations or updates, 2003.

* Metastable state of the reaction product nuclide.

+ Diagonal covariance matrix

1) The SAND type short reaction names in the Table have to be interpreted as follows: the chemical symbol and mass number of the target nucleus is followed by the name of the reaction product. The letters A, G, F, 2, N, P, NP and T mean (n,α) , (n,γ) , (n,f), (n,2n),(n,p), (n,np) and (n,t) reactions, respectively. TI0XSC-46, -47 and-48 indicate the reactions on natural Ti target leading to ⁴⁶Ti, ⁴⁷Ti and ⁴⁸Ti, respectively.

2) No suitable cross section data have been found for the reactions: TI0XSC47, CR50G, MN552, FE57NP and EU151G.

3) Only diagonal covariance matrices are available in all the investigated libraries

for the reactions: NA23G, NB93G, IN115G, TA181G and TH232G (below 15 eV).

Reaction	Library	Calc.cross.	Rel. std. of	Calc. res.	Rel. std. in				
code	_	sec. σ_L	σ ι.*	int.	intermed. E	Thermal cross sec. ratio		Res. in	t. ratio
		(2200 m/s)	-	IR _L *	region**				
		(m^2)	(%)	(m^2)	(%)	σ_L / σ_M	σ_L / σ_H	IR_L/IR_M	IR_L/IR_H
NA23G+	IRDF-90	5.28-29	2.00	3.16-29	3.15	0.99		1.02	1.06
NA23G+	ENDF/B-VI	5.28-29	2.00	3.16-29	3.15	0.99		1.02	1.06
MN55G	IRDF-90	1.34E-27	4.18	1.18E-27	3.84	1.00	1.01	0.84	0.84
MN55G	JENDL/D-99	1.34E-27	6.31	1.18E-27	8.04	1.00	1.01	0.84	0.84
FE58G	IRDF-90	1.15E-28	5.07	1.51E-28	5.12	0.88	0.88	0.89	1.16
FE58G	JENDL/D-99	1.30E-28	12.60	1.37E-28	8.75	1.00	1.00	0.81	1.05
CU63G	IRDF-90	4.48E-28	4.11	4.96E-28	3.86	0.99	1.00	1.00	0.99
CU63G	ENDF/B-VI	4.48E-28	4.11	4.95E-28	3.86	0.99	1.00	1.00	0.99
NB93G+	IRDF-90	1.16E-28	10.0	9.92-E28	9.49	1.01	1.05	1.17	1.17
NB93G+	ENDF/B-VI	1.16E-28	10.0	9.92-E28	9.49	1.01	1.05	1.17	1.17
IN115G+	IRDF-90	2.11E-26	6.00	3.28E-25	5.98	1.04	1.03	0.99	0.96
IN115G+	ENDF/B-VI	2.11E-26	6.00	3.28E-25	5.98	1.04	1.03	0.99	0.96
TH232G+	IRDF-90	7.40E-28	4.33	8.57E-27	10.92	1.01	1.00	1.01	1.01
TH232G+	ENDF/B-VI	7.40E-28	4.33	8.57E-27	10.92	1.01	1.00	1.01	1.01
PU239F	IRDF-90	7.48E-26	0.25	2.93E-26	0.26		0.99		0.98
PU239F	JENDL/D-99	7.47E-26	0.71	2.97E-26	3.82		0.99		0.99

Table 2. Comparison of the cross section characteristics for some thermal and epithermal neutron reactions, with evaluated experimental data

REMARKS

 σ_L and IR_L are calculated values from the corresponding library data.

* Calculated for a typical MTR spectrum from 1E-4 eV to 0.5 eV.

** Calculated for a typical MTR spectrum from 0.5 eV to 1.05 MeV.

♣ Calculated from 0.5 eV to 1.05 MeV.

+ Diagonal covariance matrix.

 σ_M and IR_M are evaluated experimental data of S.F. Mughabghab [15].

 $\sigma_{\!H}$ and IR_{\!H} are evaluated experimental data of N.E. Holden [16].

Reaction	Mat	MT	Library,	Libr.cross	Evaluated exp.	Evaluated exp.	Cross sec.		Res. Int.	Evaluated	Evaluated	Res	. int.
code	No.	No.	source	sec.at	data	data	ratio		from libr.data	res.integral	res.integral	ra	tio
			of selection	2200 m/s	(2200 m/s)	(2200 m/s)			IRL	IRM	IR _H		
				σ_{L}	σ_{M}	$\sigma_{\rm H}$				_			
				(m ²)	(m ²)	(m ²)	σ_L/σ_M	σ_L/σ_H	(m ²)	(m ²)	(m ²)	IR_L/IR_M	IR_L/IR_H
LI6T	325	105	IRDF-90	9.41E-26	Not available	9.4(.1)E-26		1.00	4.25E-26	Not available	4.22(.04)E-26		1.01
B10A	525	107	IRDF-90	3.84E-25	Not available	3.84(.01)E-25		1.00	1.72E-25	Not available	1.73(.01)E-25		0.99
SC45G	2126	102	IRDF-90	2.72E-27	2.72(.02)E-27	2.7E-27	1.00	1.01	1.19E-27	1.20(.05)E-27	1.20E-27	0.99	0.99
MN55G	2525	102	IRDF-90	1.34E-27	1.336(.005)E-27	1.33(.01)E-27	1.00	1.01	1.18E-27	1.40(.03)E-27	1.40(3)E-27	0.84	0.84
FE58G	2637	102	JENDL/D-99u	1.30E-28	1.30(.03)E-28	1.3(.1)E-28	1.00	1.00	1.37E-28	1.7(.1)E-28	1.3(.2)E-28	0.81	1.05
CO59G	2725	102	IRDF-90	3.73E-27	3.718(.006)E-27	3.72E-27	1.00	1.00	7.45E-27	7.59(.02)E-27	7.4E-27	0.98	1.01
CU63G	2925	102	IRDF-90	4.48E-28	4.52(.02)E-28	4.5(.2)E-28	0.99	1.00	4.96E-28	4.97(.08)E-28	5.0(1)E-28	1.00	0.99
NB93G ⁺	4125	102	IRDF-90	1.16E-28	1.15(.05)E-28	1.1E-28	1.01	1.05	9.92E-28	8.5(.5)E-28	8.5E-28	1.17	1.17
AG109G	4731	102	IRDF-90	4.69E-28		4.2E-28		1.12	6.56E-27		7.0E-27		0.94
IN115G*+	4931	102	IRDF-90	2.11E-26	2.02(.02)E-26	2.05E-26	1.04	1.03	3.28E-25	3.3(.1)E-25	3.4E-25	0.99	0.96
LA139G	5712	102	RRDF-98 n	8.89E-28	9.04(.04)E-28	9.2(.2)E-28	0.98	0.97	1.19E-27	1.21(.06)E-27	1.2(.1)E-27	0.98	0.99
TA181G ⁺	7328	102	JENDL/D-99	2.07E-27	2.05(.05)E-27	2.01E-27	1.01	1.04	6.59E-26	6.6(.23)E-26	6.504E-26	1.00	1.01
W186G	7452	102	RRDF-98 n	3.79E-27	3.85(.05)E-27	3.7(.2)E-27	0.98	1.02	4.79E-26	4.85(.15)E-26	5.10(.50)E-26	0.99	0.94
AU197G*	7925	102	IRDF-90	9.89E-27	9.865(.09)E-27	9.87(.1)E-27	1.00	1.00	1.57E-25	1.55(.028)E-25	1.55(.03)E-25	1.01	1.01
TH232G*	9040	102	IRDF-90	7.40E-28	7.35(.03)-28	7.37(.04)-28	1.01	1.00	8.57E-27	8.5(.3)E-27	8.5(.3)E-27	1.01	1.01
U235F*	9228	18	IRDF-90	5.86E-26	Not available	5.86(.02)E-26		1.00	2.74E-26	Not available	2.75(.05)E-26		1.00
U238G	9237	102	IRDF-90	2.71E-28	2.68(.019)E-28	2.7(.1)E-28	1.01	1.00	2.77E-26	2.77(.03)E-26	2.77(.03)E-26	1.00	1.00
PU239F	9437	18	JENDL/D-99	7.47E-26	Not available	7.52(.03)E-26		0.99	2.97E-26	Not available	3.0(.1)E-26		0.99
AM241F	9543	18	JENDL/D-99	3.03E-28	Not available	3.15(.1)E-28		0.99	7.84E-28	Not available	Not available		

Table 3. Thermal neutron cross sections and resonance integrals for the reactions, recommended for IRDF-2002 (Neutron temperature 300 K)

REMARKS

At the evaluated experimental cross section data the values in brackets mean the "absolute" uncertainties (one standard deviation).

+ Diagonal matrix

* For the reaction AU197G the uncertainty information has been withdrawn from ENDF/B-VI (similar old evaluation is present in IRDF-90).

- For the reaction TH232G below 15 eV diagonal matrix is present.
- The uncertainty information for the reaction U235F is not reliable, it has been withdrawn from ENDF/B-VI.
- n Means new evaluation, u means up-dated data.

The subscripts L, M and H mean library data, and the evaluated experimental data of S.F. Mughabghab [15] and N.E. Holden [16], respectively.

Reaction	Library, source	Mat.MT No.	Relative	std. (%)
code	of selection		For the spe	ectrum part
			Thermal ^o Ir	ntermediate*
LI6T	IRDF-90	0325.105	0.14	0.14
B10A	IRDF-90	0525.107	0.16	0.16
SC45G	IRDF-90	2126.102	0.73	0.76
MN55G	IRDF-90	2525.102	4.18	3.84
FE58G	JENDL/D-99u	2637.102	12.60	8.75
CO59G	IRDF-90	2725.102	0.66	0.77
CU63G	IRDF-90	2925.102	4.11	3.86
NB93G ⁺	IRDF-90	4125.102	10.00	9.49
AG109G	IRDF-90	4731.102	5.10	6.90
IN115G ⁺	IRDF-90	4931.102	6.00	5.98
LA139G	RRDF-98 u	5712.102	3.87	5.50
TA181G ⁺	JENDL/D-99	7328.102	3.00	3.77
W186G	RRDF-98 u	7452.102	2.31	3.32
AU197G*	IRDF-90	7925.102	0.14	0.17
TH232G*	IRDF-90	9040.102	4.33	10.92
U235F*	IRDF-90	9228.018	0.19	0.27
U238G	IRDF-90	9237.102	0.35	0.37
PU239F	JENDL/D-99	9437.018	0.71	3.82
AM241F	JENDL/D-99	9543.018	2.00	1.56

Table 4. Relative standard deviation values averaged over a typical MTR spectrumfor the reactions in Table 3, selected for IRDF-2002.

REMARKS

- $^{\circ}$ From 1E-4 eV to 0.5 eV.
- * From 0.5 eV to 1.05 MeV.
- u Means up-dated data.
- + Diagonal matrix
- For the reaction AU197G the uncertainty information has been withdrawn from ENDF/B-VI (similar old evaluation is present in IRDF-90).
- For the reaction TH232G below 15 eV diagonal matrix is present.
- The uncertainty information for the reaction U235F is not reliable, it has been withdrawn from ENDF/B-VI.

Reaction	Library	Cross. sec.	Rel. std. of
code		<{\medskip_f}>	<σ _f >*
		(m^2)	(%)
F192	JENDL/D-99	6.773E-34	2.92
F192	RRDF-98(u)	5.855E-34	3.02
MG24P	IRDF-90	1.473E-31	2.26
MG24P	JENDL/D-99	1.488E-31	1.24
AL27P	IRDF-90	3.825E-31	3.31
AL27P	JENDL/D-99	4.224E-31	0.72
AL27P	RRDF-98(new)	3.980E-31	2.06
AL27A	IRDF-90	6.860E-32	1.37
AL27A	JENDL/D-99	6.860E-32	1.37
P31P	IRDF-90	2.783E-30	3.60
P31P	JENDL/D-99	2.938E-30	1.34
\$32P	IRDF-90	6 345E-30	3.54
TI0XSC46	JENDL/D-99	9.117E-32	2.28
TI0XSC48	JENDL/D-99 (u)	1.971E-32	2.10
TI462	JENDL/D-99	3 621E-34	1.84
TI462	RRDF-98(u)	3.359E-34	4.40
TI46P	IRDF-90	1.002E-30	2.43
TI46P	IENDL/D-99	1 105E-30	2.27
TI46P	RRDF-98(u)	1 118E-30	313
TI47NP	IRDF-90	7.958E-34	30.00
TI47NP	RRDF-98(11)	6 380E-34	8.53
TI47P	IRDF-90	1 760E-30	3 69
TI48NP	IRDF-90	1.302E-34	30.00
TI48NP	JENDL/D-99	1 235E-34	2.65
TI48NP	RRDF-98 (u)	1.264E-34	8.59
TI48P	IRDF-90	2.596E-32	2.54
TI48P	JENDL/D-99	2.673E-32	1.85
TI48P	RRDF-98(u)	2.878E-32	5.17
TI49NP	JENDL/D-99	7.668E-35	10.01
TI49NP	RRDF-98(u)	7.657E-35	7.31
V51A	RRDF-98(u)	2.231E-33	3.13
CR522	IRDF-90	3.194E-33	2.68
CR522	JENDL/D-99	3.149E-33	1.29
CR522	ENDF/B-VI	3.248E-33	8.09
FE542	RRDF-98(u)	9.138E-35	4.96
FE54A	RRDF-98(u)	8.122E-32	3.28
FE54P	IRDF-90	7.880E-30	2.13
FE54P	JENDL/D-99 (u)	7.955E-30	0.99
FE56P	RRDF-98(u)	1.022E-31	2.62
CO592	IRDF-90	1.719E-32	2.85
CO59A	RRDF-98(u)	1.498E-32	3.76
NI582	IRDF-90	2.947E-34	3.11
NI582	JENDL/D-99	2.850E-34	0.90
NI582	JEFF-3.0	2.946E-34	2.75
NI58P	IRDF-90	1.038E-29	2.20

Table 5. Comparison of the cross section characteristics for the fast neutronreactions candidates for IRDF-2002, in the Watt fission neutron spectrum

Continuation	of Table 5.		
NI58P	JENDL/D-99	1.029E-29	0.61
NI58P	RRDF-98(new)	1.055E-29	1.73
NI58P	ENDF/B-VI	1.038E-29	2.45
NI58P	JEFF-3.0	1.054E-29	3.56
NI60P	ENDF/B-VI	1.867E-31	10.15
NI60P	JEFF-3.0	2.111E-31	8.83
CU632	IRDF-90	7.738E-33	1.75
CU632	JENDL/D-99(u)	7.877E-33	1.36
CU632	ENDF/B-VI	7.608E-33	4.43
CU63A	IRDF-90	5.017E-32	2.34
CU63A	RRDF-98(u)	5.128E-32	2.84
CU652	IRDF-90	2.894E-32	1.84
CU652	JENDL/D-99 (u)	3.024E-32	0.92
CU652	ENDF/B-VI	2.894E-32	2.31
ZN64P	IRDF-90	3.774E-30	4.80
AS752	RRDF-98(u)	2.562E-32	6.12
Y892	JENDL/D-99	1.255E-32	1.45
ZR902	IRDF-90	7.536E-33	1.60
ZR902	JENDL/D-99	7.355E-33	0.55
NB932	IRDF-90	3.878E-32	2.80
NB932	RRDF-98	3.839E-32	1.06
NB93N	IRDF-90	1.376E-29	3.01
NB93N	RRDF-98	1.410E-29	2.80
RH103N	IRDF-90	6.968E-29	3.01
RH103N	RRDF-98(nu)	7.061E-29	3.95
IN1152	IRDF-90	7.535E-32	3.57
IN115N	IRDF-90	1.828E-29	2.18
IN115N	JENDL/D-99	1.828E-29	2.18
IN115N	RRDF-98(nu)	1.848E-29	1.71
I1272	IRDF-90	1.045E-31	2.53
I1272	JENDL/D-99	1.090E-31	3.09
PR1412	RRDF-98(u)	9.328E-32	11.68
TM1692	JENDL/D-99	3.458E-31	2.33
AU1972	IRDF-90	3.112E-31	4.28
AU1972	JENDL/D-99	3.140E-31	1.18
HG199N	JENDL/D-99 (u)	2.354E-29	8.08
PB204N	RRDF-98(new)	1.744E-30	4.64
TH232F	IRDF-90	7.372E-30	5.18
U238F	IRDF-90	2.997E-29	0.54
U238F	JENDL/D-99	3.034E-29	2.09

REMARKS

 $< \sigma_f >$ Cross section, averaged over the Watt fission spectrum.

* Weighted with a typical MTR spectrum from 1.05 MeV to 20.MeV.

- u update
- nu new update
- new new evaluation

Reaction	Library	Calc cross	Uncertainty	Exp. value	Uncertainty	C/F
code	Liotury	Sec $\langle \sigma \rangle$	$in < \sigma >$	$\Delta \alpha >$	$in < \sigma >$	C/L
code		(mb)	(%)	$\langle 0_{e} \rangle$	(%)	
F192	$RRDF-98(\mu)$	1 627E-2	292(533)	1 612E-2	3 37	1 000+0 064
MG24P	IRDF-90	2 160	2.92(3.33)	1 996	2 44	1.000 ± 0.004 1.082 \pm 0.040
AI 27P	IRDF-90	4 674	3.24(2.75)	4 880	2.44	1.082 ± 0.040
	IRDE-90	1.074	1.36(2.12)	1.016	1.47	0.938 ± 0.039 1 022+0 026
P31P	IENDI /D_99	32.24	1.50(2.12)	not available	1.47	1.022±0.020
S32P	IRDF-90	70.30	3 60 (3 67)	72 54	3 49	0.969+0.049
TI0XSC46	IENDL/D-99	No infor-	mation	is	avail-	able!
TI0XSC48	$\frac{JENDL}{D-99}$ (u)	No infor-	mation	is	avail-	able
TI462	JENDL/D-99	1.308E-2	1.86 (8.58)	not available		
TI46P	RRDF-98(u)	13.83	3.05 (3.28)	14.07	1.77	0.983±0.037
TI47NP	RRDF-98(u)	1.941E-2	7.57 (9.58)	not available		
TI47P	IRDF-90	19.38	3.78 (3.83)	19.27	1.66	1.006±0.042
TI48NP	RRDF-98 (u)	4.359E-3	8.20 (11.62)	not available		
TI48P	RRDF-98(u)	0.4268	5.08 (5.32)	0.4247	1.89	1.005±0.057
TI49NP	RRDF-98(u)	2.644E-3	7.18 (10.84)	not available		
V51A	RRDF-98(u)	3.859E-2	3.02 (3.56)	3.900E-2	2.21	0.989±0.041
CR522	JENDL/D-99	9.555E-2	1.29 (5.75)	not available		
FE542	RRDF-98(u)	3.498E-3	4.87 (10.71)	not available		
FE54A	RRDF-98(u)	1.113	3.18 (3.48)	not available		
FE54P	IRDF-90	88.16	2.09 (2.23)	86.84	1.34	1.015±0.026
FE56P	RRDF-98(u)	1.475	2.61 (2.99)	1.465	1.77	1.007±0.035
CO592	IRDF-90	0.4228	2.67 (4.20)	0.405	2.51	1.044±0.051
CO59A	RRDF-98(u)	0.2212	3.54 (3.87)	0.2218	1.88	0.997±0.043
NI582	JENDL/D-99	8.985E-3	0.85 (6.24)	8.952E-3	3.57	1.004±0.072
NI58P	RRDF-98(new)	117.5	1.74 (1.89)	117.5	1.30	1.000±0.023
NI60P	ENDF/B-VI	2.494	10.11 (10.20)	(2.39)	5.44	1.044±0.121
CU632	ENDF/B-VI	0.2056	4.10 (4.81)	0.1844	3.98	1.115±0.078
CU63A	RRDF-98(u)	0.6933	2.83 (3.15)	0.6887	1.96	1.007±0.037
CU652	ENDF/B-VI	0.6777	2.25 (3.69)	0.6582	2.22	1.030±0.044
ZN64P	IRDF-90	42.10	4.87 (4.93)	40.59	1.65	1.037±0.054
AS752	RRDF-98(u)	0.6209	5.76 (6.55)	not available		
Y892	JENDL/D-99	0.344	1.40 (4.47)	not available		
ZR902	IRDF-90	0.2212	1.57 (5.31)	0.2210	2.89	1.001±0.061
NB932	RRDF-98	0.7717	1.03 (2.46)	(0.749)	5.07	1.030±0.058
NB93N	RRDF-98	146.1	2.59 (2.61)	(146)	3.45	1.001±0.043
RH103N	RRDF-98(nu)	725.1	3.94 (3.95)	(809)	2.97	0.896±0.044
IN1152	IRDF-90	1.586	3.23 (4.02)	not available		
IN115N	RRDF-98(nu)	191.8	1.66 (1.70)	197.4	1.37	0.972±0.021
I1272	IRDF-90	2.197	2.28 (3.30)	2.069	2.73	1.062±0.045
PR1412	RRDF-98(u)	1.990	11.03 (11.37)	not available		
TM1692	JENDL/D-99	6.233	2.26 (3.01)	(6.69)	6.28	0.932±0.065
AU1972	IRDF-90	5.747	4.19 (4.65)	5.506	1.83	1.044±0.052
HG199N	JENDL/D-99 (u)	248.6	7.82 (7.83)	298.4	1.81	0.833±0.067
PB204N	RRDF-98(u)	20.39	4.57 (4.67)	(20.58)	4.41	0.978±0.063
TH232F	IRDF-90	78.55	5.09 (5.11)	(89.4)	3.02	0.879±0.052
U238F	JENDL/D-99	319.2	2.00 (2.04)	325.7	1.64	0.980±0.026

Table 6. Cross section characteristics and C/E values in the ²⁵²Cf fission neutron spectrum, for the fast neutron reactions selected for IRDF-2002*

Remarks see on the next page

REMARKS

* Data taken from [17]

 $<\sigma_c>$ – calculated cross section, averaged over the ²⁵²Cf fission neutron spectrum $<\sigma_c>$ – experimental value, ²⁵²Cf fission spectrum-averaged cross section

u – update

nu – new update

new – new evaluation

"Experimental data given in brackets are from single experiments which were not part of the evaluation process" – information from [17]

Reaction	Selected Source	Reaction	Selected Source
$^{6}\text{Li}(n, t)^{4}\text{He}$	IRDF-90 [*]	$^{65}Cu(n, 2n)^{64}Cu$	IRDF-90 [*]
10 B(n, α) ⁷ Li	IRDF-90	64 Zn(n, p) 64 Cu	IRDF-90
$^{19}F(n, 2n)^{18}F$	RRDF-98(u)	75 As(n, 2n) 74 As	RRDF-98(u)
23 Na(n, γ) 24 Na+	IRDF-90 [*]	89 Y(n, 2n) 88 Y	JENDL/D-99
23 Na(n, 2n) 22 Na	JENDL/D-99(u)	90 Zr(n, 2n) 89 Zr	IRDF-90
24 Mg(n, p) 24 Na	IRDF-90	93 Nb(n, 2n) 92m Nb	RRDF-98
27 Al(n, p) 27 Mg	RRDF-98(new)	93 Nb(n, n') 93m Nb	RRDF-98
27 Al(n, α) 24 Na	IRDF-90	93 Nb(n, γ) 94 Nb+	IRDF-90 [*]
$^{31}P(n, p)^{31}Si$	IRDF-90	103 Rh(n, n') 103m Rh	RRDF-98(new)
$^{32}S(n, p)^{32}P$	IRDF-90	109 Ag(n, γ) 110m Ag	IRDF-90
45 Sc(n, γ) 46 Sc	IRDF-90	115 In(n, 2n) 114m In	IRDF-90 [*]
46 Ti(n, 2n) 45 Ti	RRDF-98(u)	115 In(n, n') 115m In	RRDF-98(new)
${}^{46}\text{Ti}(n, p){}^{46}\text{Sc}$	RRDF-98(u)	115 In(n, γ) 116m In+	ENDF/B-VI
47 Ti(n, x [#]) 46 Sc	RRDF-98(u)	127 I(n, 2n) 126 I	IRDF-90
47 Ti(n, p) 47 Sc	IRDF-90	139 La(n, γ) ¹⁴⁰ La	RRDF-98(new)
$^{48}\text{Ti}(n, x^{\#})^{47}\text{Sc}$	RRDF-98(u)	141 Pr(n, 2n) 140 Pr	RRDF-98(u)
$^{48}\text{Ti}(n, p)^{48}\text{Sc}$	RRDF-98(u)	169 Tm(n, 2n) 168 Tm	JENDL/D-99
49 Ti(n, x [#]) 48 Sc	RRDF-98(u)	181 Ta(n, γ) 182 Ta+	JENDL/D-99
51 V(n, α) 48 Sc	RRDF-98(u)	$^{186}W(n, \gamma)^{187}W$	RRDF-98(new)
${}^{52}Cr(n, 2n){}^{51}Cr$	IRDF-90	197 Au(n, 2n) 196 Au	IRDF-90
55 Mn(n, γ) 56 Mn	IRDF-90 [*]	197 Au(n, γ) 198 Au	IRDF-90 [*]
54 Fe(n, 2n) 53 Fe	RRDF-98(u)	199 Hg(n, n') 199m Hg	JENDL/D-99(u)
54 Fe(n, α) 51 Cr	RRDF-98(u)	204 Pb(n, n') 204m Pb	RRDF-98(new)
54 Fe(n, p) 54 Mn	IRDF-90 [*]	232 Th(n, γ) 233 Th+	IRDF-90
56 Fe(n, p) 56 Mn	RRDF-98(u)	232 Th(n, f)	IRDF-90
58 Fe(n, γ) 59 Fe	JENDL/D-99(u)	²³⁵ U(n, f)	IRDF-90
59 Co(n, 2n) 58 Co	IRDF-90	²³⁸ U(n, f)	JENDL/D-99
59 Co(n, α) 56 Mn	RRDF-98(u)	238 U(n, γ) 239 U	IRDF-90 [*]
${}^{59}\text{Co}(n, \gamma){}^{60}\text{Co}$	IRDF-90 [*]	237 Np(n, f)	RRDF-98(new)
58 Ni(n, 2n) 57 Ni	JEFF 3.0	239 Pu(n, f)	JENDL/D-99
58 Ni(n, p) 58 Co	RRDF-98(new)	241 Am(n, f)	JENDL/D-99
60 Ni(n, p) 60 Co	ENDF/B-VI	$^{nat}B(n, x)#$	ENDF/B-VI
63 Cu(n, 2n) 62 Cu	ENDF/B-VI	$^{nat}Cd(n, x)\#$	ENDF/B-VI
${}^{63}Cu(n, \gamma){}^{64}Cu$	IRDF-90 [*]	nat Gd(n, x)#	ENDF/B-VI
63 Cu(n α) 60 Co	RRDF-98(u)		

Table7. Final content of the file IRDF-2002 and source of the data

+ Diagonal covariance matrix.

Cover material; no covariance information available.

u Up-date.
* ENDF/B-VI Rel 8 (see explanation in the text above).
(n, x[#]) sum of the reactions (n,np) +(n,pn) +(n,d)

Reaction	Selected evaluation	¹⁾ Calculated library cross section at 2200 m/s s⊾ (barn)	^{¹)} Resonance integral from library data IR∟ (barn)	^{າ)} Unce in libra thermal (%	ertainty ry data epithermal %)	²⁾ Calculated average library cross section in ²⁵² Cf sf < sc> (mbarn)	²⁾ Uncertainty in <sc⊳< b=""> (%)</sc⊳<>	C/E
⁶ Li(n, t)	IRDF-90	942	427	0.14	0.14	-	-	thermal: ^{1)b)} 1.00±0.01 epithermal: ^{1)b)} 1.00±0.01
¹⁰ Β(n, α)	IRDF-90	3840	1730	0.16	0.16	-	-	thermal: ^{1)b)} 1.00±0.01 epithermal: ^{1)b)} 0.99+0.01
¹⁹ F(n, 2n)	RRDF-98(u)	-	-	-	-	1.627E-2	2.92 (5.33)	$^{2)}1.009\pm0.064$
²³ Na(n, γ)+	IRDF-90	0.529	0.317	2.00	3.14	-	-	thermal: $^{1)a)1.00}\pm0.02$
²³ Na(n, 2n)	JENDL/D-99(u)	-	-	-	-	8.611E-3	3.90(8.16)	No experimental data in ²⁵² Cf fission field
²⁴ Mg(n, p)	IRDF-90	-	-	-	-	2.160	2.24 (2.75)	²⁾ 1.082±0.040
²⁷ Al(n, p)	RRDF-98(new)	-	-	-	-	4.912	2.06 (2.37)	²⁾ 1.007±0.032
²⁷ Al(n, α)	IRDF-90	-	-	-	-	1.038	1.36 (2.12)	²⁾ 1.022±0.026
³¹ P(n, p)	IRDF-90	-	-	-	-	30.68	3.58 (3.65)	No experimental data in 252 Cf fission field
³² S(n, p)	IRDF-90	-	-	-	-	70.30	3.60 (3.67)	²⁾ 0.969±0.049
⁴⁵ Sc(n, γ)	IRDF-90	27.3	12.9	0.73	0.76	-	-	thermal: ^{1)a)} 1.00±0.01 epithermal ^{.1)a)} 1.00±0.04
⁴⁶ Ti(n, 2n)	RRDF-98(u)	-	-	-	-	1.218E-2	4.41 (9.55)	No experimental data in 252Cf fission field
⁴⁶ Ti(n, p)	RRDF-98(u)	-	-	-	-	13.83	3.05 (3.28)	²⁾ 0.983±0.037
⁴⁷ Ti(n, np)‡	RRDF-98(u)	-	-	-	-	1.941E-2	7.57 (9.58)	No experimental data in ²⁵² Cf fission field
⁴⁷ Ti(n, p)	IRDF-90	-	-	-	-	19.38	3.78 (3.83)	²⁾ 1.006±0.042
⁴⁸ Ti(n, np)‡	RRDF-98(u)	-	-	-	-	4.349E-3	8.20 (11.62)	No experimental data in ²⁵² Cf fission field
⁴⁸ Ti(n, p)	RRDF-98(u)	-	-	-	-	0.4268	5.08 (5.32)	²⁾ 1.005±0.057
⁴⁹ Ti(n, np)‡	RRDF-98(u)	-	-	-	-	2.644E-3	7.18 (10.84́)	No experimental data in ²⁵² Cf fission field
⁵¹ V(n, α)	RRDF-98(u)	-	-	-	-	3.859E-2	3.02 (3.56)	²⁾ 0.989±0.041
⁵² Cr(n, 2n)	IRDF-90	-	-	-	-	9.703E-2	2.72 (6.23)	No experimental data in ²⁵² Cf fission field

Table 8. Characteristics of the cross sections present in the file IRDF-2002 (neutron temperature 300 K)

⁵⁵ Mn(n, γ)	IRDF-90	13.4	11.8	4.18	3.84	-	-	thermal: ^{1)a)} 1.00±0.04 ^{1)b)} 1.01±0.04
								epithermal: ^{1)a)} 0.84±0.04 ^{1)b)} 0.84±0.04
⁵⁴ Fe(n, 2n)	RRDF-98(u)	-	-	-	-	3.498E-3	4.87 (10.71)	No experimental data in ²⁵² Cf fission field
⁵⁴ Fe(n, α)	RRDF-98(u)	-	-	-	-	1.113	3.18 (3.48)	No experimental data in ²⁵² Cf fission field
⁵⁴ Fe(n, p)	IRDF-90	-	-	-	-	88.16	2.09 (2.23)	²⁾ 1.015±0.026
⁵⁶ Fe(n, p)	RRDF-98(u)	-	-	-	-	1.475	2.61 (2.99)	²⁾ 1.007±0.035
⁵⁸ Fe(n, γ)	JENDL/D-99(u)	1.30	1.37	12.60	8.70	-	-	thermal: ^{1)a)} 1.00±0.13 ^{1)b)} 1.00±0.15 epithermal: ^{1)a)} 0.81±0.08 ^{1)b)} 1.05±0.18
⁵⁹ Co(n, 2n)	IRDF-90	-	-	-	-	0.4228	2.67 (4.20)	²⁾ 1.044±0.051
⁵⁹ Co(n, α)	RRDF-98(u)	-	-	-	-	0.2212	3.54 (3.87)	²⁾ 0.997±0.043
⁵⁹ Co(n, γ)	IRDF-90	37.2	76.0	0.66	0.77	-	-	thermal: $^{1)a)}1.00\pm0.01$
⁵⁸ Ni(n, 2n)	JEFF-3.0	-	-	-	-	9.256E-3	2.72 (6.67)	²⁾ 1.034+0.078
⁵⁸ Ni(n, p)	RRDF-98(new)	-	-	-	-	117.5	1.74 (1.89)	²⁾ 1.000±0.023
⁶⁰ Ni(n, p)	ENDF/B-VI	-	-	-	-	2.494	10.11 (10.20)	²⁾ 1.044±0.121
⁶³ Cu(n, 2n)	ENDF/B-VI	-	-	-	-	0.2056	4.10 (5.81)	²⁾ 1.115±0.078
⁶³ Cu(n, γ)	IRDF-90	4.47	4.96	4.11	3.86	-	-	thermal: ^{1)a)} 0.99±0.04 ^{1)b)} 0.99±0.06 epithermal: ^{1)a)} 1.00±0.04 ^{1)b)} 0.99+0.04
⁶³ Cu(n, α)	RRDF-98(u)	-	-	-	-	0.6933	2.83 (3.15)	²⁾ 1.007±0.037
⁶⁵ Cu(n, 2n)	IRDF-90	-	-	-	-	0.6779	1.83(3.44)	²⁾ 1.030±0.042
⁶⁴ Zn(n, p)	IRDF-90	-	-	-	-	42.10	4.87 (4.93)	²⁾ 1.037±0.054
⁷⁵ As(n, 2n)	RRDF-98(u)	-	-	-	-	0.6209	5.76 (6.55)	No experimental data in ²⁵² Cf fission field
⁸⁹ Y(n, 2n)	JENDL/D-99	-	-	-	-	0.344	1.40 (4.47)	No experimental data in ²⁵² Cf fission field
⁹⁰ Zr(n, 2n)	IRDF-90	-	-	-	-	0.2212	1.57 (5.31)	²⁾ 1.001±0.061
⁹³ Nb(n, 2n)*	RRDF-98	-	-	-	-	0.7717	1.03 (2.46)	²⁾ 1.03±0.058
⁹³ Nb(n, n')*	RRDF-98	-	-	-	-	146.1	2.59 (2.61)	²⁾ 1.001±0.043

⁹³ Nb(n, γ)+	IRDF-90	1.16	9.91	10.00	9.49	-	-	thermal: $^{(1)a)}$ 1.01±0.11
¹⁰³ Rh(n_n')*	RRDF-98(u)	_	_	_	-	725 1	3 94 (3 95)	$^{2)}$ 0 896+0 044
¹⁰⁹ Ag(n v)*	IRDF-90	4.21	68.6	5.10	6.93	-	-	thermal: $^{1)b)}1.00$
//9(///								epithermal: ^{1)b)} 0.98
115								No experimental uncertainty
¹¹⁵ ln(n, 2n)*	IRDF-90	-	-	-	-	1.586	3.23 (4.02)	No experimental data in
115								²³² Cf fission field
¹¹⁰ ln(n, n')*	RRDF-98(u)	-	-	-	-	191.8	1.66 (1.70)	² ⁰ .972±0.021
''čln(n, γ)*+	IRDF-90	167	2590	6.00	5.98	-	-	thermal: $1/a/1.04\pm0.06$
127.						a (a=		epithermal: $^{1/a}0.96\pm0.07$
¹²⁹ I(n, 2n)	IRDF-90	-	-	-	-	2.197	2.28 (3.30)	² '1.062±0.045
$La(n, \gamma)$	RRDF-98(new)	8.90	11.9	3.87	5.50	-	-	thermal: $^{1/2}0.98\pm0.04$
								$^{1,0,0}(0.98\pm0.04)$
								epithermal: $^{(0,0)}0.98\pm0.07$
¹⁴¹ Dr(n 0n)						1 000	11.00	Vie evenening entre dete in
PI(n, 2n)	KKDF-98(U)	-	-	-	-	1.990	(11.03	²⁵² Cf fission field
¹⁶⁹ Tm(n_2n)	JENDI /D-99	-	-	-	-	6 233	2 26 (3 01)	$^{2)}$ 0 932+0 065
¹⁸¹ Ta(n_v)+	JENDI /D-99	20.7	659	3 00	3 77	-	-	thermal $^{1)a)}101+004$
		2011	000	0.00	0.11			epithermal: $^{1)a)}100+005$
¹⁸⁶ W(n, γ)	RRDF-98(new)	37.9	479	2.31	3.32	-	-	thermal: $^{1)a)}0.98\pm0.03$
								^{1)b)} 1.02+0.06
								epithermal: ^{1)a)} 0.99±0.04
								^{1)b)} 0.94±0.10
¹⁹⁷ Au(n, 2n)	IRDF-90	-	-	-	-	5.747	4.19 (4.65)	²⁾ 1.044±0.052
¹⁹⁷ Au(n, γ) 	IRDF-90	98.8	1570	0.14	0.17	-	-	thermal: ^{1)a)} 1.00±0.01
								^{1)b)} 1.00±0.01
								epithermal: ^{1)a)} 1.01±0.02
100								^{1)b)} 1.01±0.02
¹⁹⁹ Hg(n, n')*	JENDL/D-99(u)	-	-	-	-	248.6	7.82 (7.83)	²⁾ 0.833±0.067
²⁰⁴ Pb(n, n')*	RRDF-98(new)	-	-	-	-	20.39	4.57 (4.67)	²⁾ 0.978±0.063
²³² Th(n, γ)+	IRDF-90	7.41	85.6	4.33	10.92	-	-	thermal: $\frac{1}{100}$ 1.01±0.04
								$^{()b)}1.00\pm0.04$
								epithermal: $\frac{1}{1}$ 1.01±0.12
232- ()								1.01±0.12
²⁰² Th(n, f)	IRDF-90	-	-	-	-	78.55	5.09 (5.11)	0.879±0.052

²³⁵ U(n, f) ♣	IRDF-90	586	272	0.19	0.26	1218	0.32 (0.32)	thermal: ^{1)b)} 1.00±0.004 epithermal: ^{1)b)} 0.99±0.02 ²⁾ 1.007±0.0102
²³⁸ U(n, f)	JENDL/D-99	-	-	-	-	319.2	2.00 (2.04)	²⁾ 0.980±0.026
²³⁸ U(n, γ)	IRDF-90	2.72	277	0.35	0.37	-	-	thermal: ^{1)a)} 1.01±0.01
								^{1)b)} 1.00±0.04
								epithermal: ^{1)a)} 1.00±0.01
007								^{1)b)} 1.00±0.01
²³⁷ Np(n, f)	RRDF-98(new)	-	-	-	-	1359	1.72 (1.74)	²⁾ 0.999±0.024
²³⁹ Pu(n, f)	JENDL/D-99	747	297	0.71	3.82	1804	2.04 (2.04)	thermal: ^{1)b)} 0.99±0.01 epithermal: ^{1)b)} 0.99±0.05
								²⁾ 0.996±0.025
²⁴¹ Am(n, f)	JENDL/D-99	3.03	7.84	2.00	1.56	1396	2.81(2.90)	thermal: ^{1)b)} 0.99±0.004 epithermal: no exp. data
								No experimental data in ²⁵² Cf fission field

Remarks

1) Calculated data at 300 Kelvin (Zsolnay, E.M., Nolthenius, H.J)

2) Calculated and experimental data from Mannhart, W., Response of activation reactions in the neutron field of spontaneous fission of ²⁵²Cf, in Ref. [17].

a) Evaluated experimental data from Mughabghab, S.F., Thermal neutron capture cross sections, resonance integrals and g-factors, INDC(NDS)-440, IAEA, Vienna, February 2003.

b) Evaluated experimental data from: Holden, N.E., Neutron scattering and absorption properties (revised 2003), pp. 198-213 in CRC Handbook of Chemistry and Physics, 84th Edition, Chapter 11, Editor-in-Chief: LIDE, D.R., CRC Press, 2000 NW Corporate Blvd., Boca Raton, Florida 33431, USA (2003).

U Up-date.

+ Diagonal matrix.

- * Metastable state of the product nucleus.
- \ddagger Sum of cross sections of (n, np) + (n, pn) + (n, d) reactions.
- Unreliable uncertainty (corresponding data have been withdrawn from ENDF/B-VI).

Column 8 shows the contribution of the energy-dependent library cross section data to the uncertainty of $\langle \sigma_c \rangle$; values in brackets give the total standard deviation of $\langle \sigma_c \rangle$; including the contribution of the uncertainty of the ²⁵²Cf spectrum function.

Uncertainties given for the C/E values involve the standard deviations of both the calculated and experimental cross-section data.

All uncertainty data in the table are expressed in terms of one standard deviation.

ACTIVATION AND FISSION REACTIONS

No Mat MF MT Mat MF MT 1 325 3 105 Li6A 6LI(N,T)HE 325 3 105 2 325 3 16 F192 19F(N,2N)18F 925 3 107 3 925 3 102 NA23G 22MA(2N)2NAA 1125 3 103 6 1225 3 103 M324P 27AL(N,P)2MAA 1225 3 103 8 1325 3 107 AL27A 27AL(N,A)2MAA 1225 3 103 10 1625 3 103 S32P 32S(N,P)32P 1625 3 103 11 2126 3 103 S32P 32S(N,P)32P 1625 3 103 12 2225 3 103 TH45P 4T(N,P)44SC 2228 3 103 14 2228 3 103 TH47P 4T(N,P)44SC 2231		Group	cross	sec.	Reaction	Reaction	Point cr	oss se	c. data
No. Mat. MP M1 1 325 3 105 LI6A 6LI(N,T)4HE 322 3 105 2 525 3 106 H125 3 107 3 3 925 3 16 H125 3 107 1325 3 103 4 1125 3 103 M2322 23NA(N,0)324AA 1125 3 103 7 1325 3 103 M227A 27AL(N,P)27MG 1325 3 103 9 1525 3 103 S12P 325(N,P)32P 1625 3 103 11 2126 3 102 S2C45G 455(N(G)465C 2228 3 103 12 2225 3 103 TH47P 47T(N,N,P)465C 2234 10 5 12 2228 3 103 TH47P 47T(N,N,P)445C 2234 10 5 12	No	di Mot	ata*	мт	Code		Мат	ME	мт
1 325 3 105 L6A 6L(N,T)+HE 325 3 105 2 525 3 16 F192 19F(N,2N)19F 925 3 16 4 1125 3 106 NA232 23NA(N,N)2ANA 1125 3 103 6 1225 3 103 MG2AP 2AMG(N,P)2ANA 1125 3 103 8 1325 3 103 AL27A ZYAL(N,A)2ANA 1325 3 103 10 1625 3 103 S32P 232S(N,P)32P 1625 3 103 11 2126 3 103 S32P 32S(N,P)32P 1625 3 103 11 2126 3 103 TH4P 4TI(N,P)47SC 2228 3 103 12 2225 3 103 TH4P 4TI(N,P)47SC 2238 107 12 2243 3 103 TH4P 4TI(N,P)44SC	NO	IVIAL					IVIA I		
2 3225 3 107 PUM 109(M,A)0L1 323 3 107 3 925 3 16 P192 218F(N,ZN)12FA 925 3 16 4 1125 3 16 NA232 23NA(N,G)24HA 1125 3 103 6 1225 3 103 MG2AP 2MA(N,G)24HA 1225 3 103 7 1325 3 103 P31P 27AL(N,P)27HG 1325 3 103 9 1525 3 103 S224 3 103 101 1625 3 103 11 2128 3 103 S245 3 103 104 1225 3 103 12 2225 3 103 144 2244 45T(N,N,P)46SC 2224 3 105 12 22243 3 107 144 45T(N,N,P)47SC 2234 10 5 13	1	325	3	105	LI6A	6LI(N,T)4HE	325	3	105
4 1025 3 16 NA232 23NA(N, 2N)22NA 1125 3 102 5 11255 3 102 NA236 23NA(N, Q2ANA 1125 3 103 7 1325 3 103 MG2AP 27AL(N, A)24NA 1225 3 103 8 1325 3 103 S32P 27AL(N, A)24NA 1225 3 103 9 1525 3 103 S32P 2326(N)451 12225 3 103 11 1225 3 103 TH46P 46T(N, P)46SC 2228 10 102 12 2225 3 103 TH47P 47T(N, P)46SC 2228 10 5 12 2228 3 103 TH47P 47T(N, P)46SC 2228 10 5 16 2231 3 103 TH48P 48T(N, P)44SC 2238 107 22431 3 105 FE542 52CCN, A)	2	525 925	3	107	B10A F192	10B(N,A)6LI 19F(N 2N)18F	525 925	3	107
5 1125 3 102 NA23G 23MAN.GG/24NA 1125 3 103 6 1225 3 103 AL27P 22MA(N.P)24NA 1225 3 103 8 1325 3 103 AL27P 27AL(N.P)27MG 1325 3 103 9 1525 3 103 P3P 37AN.A 1325 3 103 10 1625 3 103 S32P 16625 3 103 112 2126 3 103 TL462 4GTI(N,P)47SC 2225 3 103 13 2225 3 103 TL462 4GTI(N,P)47SC 2228 3 103 14 2228 3 13 147 147 147 147 13 103 143 123 103 103 15 2228 3 103 TL47 147 147 147 147 163 103 103	4	1125	3	16	NA232	23NA(N.2N)22NA	1125	3	16
6 1225 3 103 M624P 24MG(N,P)24NA 1225 3 103 7 1325 3 107 AL27A 27AL(N,A)24NA 1325 3 103 9 1525 3 103 S32P 328(N,P)315I 1525 3 103 10 1625 3 103 S32P 328(N,P)315I 1225 3 103 11 2126 3 103 TH462 45TI(N,P)46SC 2228 3 103 12 2225 3 103 TH47P 47TI(N,P)47SC 2228 10 5 16 2231 3 103 TH48P 48TI(N,P)48SC 2238 103 103 18 2234 3 103 TH48P 48TI(N,P)48SC 2328 3 107 224625 3 106 FE54P 54FE(N,A)215K 24825 3 107 224625 3 107 FE54P 54FE(N	5	1125	3	102	NA23G	23NA(N,G)24NA	1125	3	102
7 1325 3 103 AL27P 27AL(N,P)27MG 1325 3 103 8 1325 3 103 P31P 37P(N,P)31S1 1525 3 103 10 1625 3 103 S32P 1625 3 103 11 2126 3 102 S45G 455(N,G)46SC 2126 3 103 12 2225 3 103 TH4P 457(N,P)46SC 2228 103 103 14 2228 3 103 TH4P 477(N,P)46SC 2228 103 103 16 2231 3 103 TH4P 477(N,P)47SC 2228 103 103 18 2234 3 107 TH4P 477(N,P)48SC 2228 103 106 21 2255 3 107 THAP 477(N,A)48SC 2228 107 5 107 22 2255 3 107 TSAA 547(N,A)51CR 2451 3 103 22 2253 107 <td>6</td> <td>1225</td> <td>3</td> <td>103</td> <td>MG24P</td> <td>24MG(N,P)24NA</td> <td>1225</td> <td>3</td> <td>103</td>	6	1225	3	103	MG24P	24MG(N,P)24NA	1225	3	103
8 1325 3 107 AL27A 27AL(IN,A)24NA 1325 3 107 9 1525 3 103 S32P 33P(IN,P)31SI 1525 3 103 10 1625 3 103 S32P 33P(IN,P)31SI 1525 3 103 11 2126 3 105 S253 103 114 2225 3 103 114 2225 3 103 13 2228 3 231 THAPP 4TT(IN,NP)46SC 2228 3 103 14 2228 3 103 THAPP 4TT(IN,NP)47SC 2224 3 103 19 2328 3 107 V51A 51V(IN,A)48SC 2234 3 107 22 2425 3 106 CR522 S2CR(IN,A)51CR 2431 3 106 22 2625 3 107 TES4A S4FE(IN,A)51CR 26253 107	7	1325	3	103	AL27P	27AL(N,P)27MG	1325	3	103
3 132.5 3 103 S32P 325(N,P)32P 122.5 3 103 11 2126 3 103 S32P 325(N,G)48SC 2126 3 103 12 2225 3 103 TI44P 46TI(N,P)44SC 2225 3 103 14 2228 3 103 TI44P 47TI(N,P)47SC 2228 103 16 2231 3 103 TI44P 47TI(N,P)47SC 2231 105 17 2231 3 103 TI44P 45TI(N,P)48SC 2234 105 18 2234 3 103 TI48P 45TI(N,P)48SC 2234 105 12 2625 3 102 FI54A 54FI(N,2N)51CR 2431 3 107 22 2625 3 107 FI54A 54FE(N,2N)51CR 2631 3 103 23 625 3 103 FI554A 54FE(N,P)56MN 2631	8	1325	3	107	AL27A	27AL(N,A)24NA 21D(N D)21SI	1325	3	107
11 2126 3 102 SCAGG 45SC/N, GYABSC 2126 3 102 12 2225 3 16 TH462 46T(N,2N)45TI 2225 3 103 14 2228 3 231 THATNP 47T(N,NP)44SC 2228 3 103 14 2228 3 231 THATNP 47T(N,NP)44SC 2228 3 103 15 2228 3 231 THANP 47T(N,NP)44SC 2231 3 103 16 2231 3 231 THANP 45T(N,LA)44SC 2328 3 107 19 2328 3 107 T54A 54T(N,LA)44SC 2328 3 107 102 2431 3 16 CE542 54F(N,LA)44SC 2328 3 103 12 2525 3 103 FE544 54FE(N,LA)45ICR 2625 3 103 12 2625 3 103 <td>10</td> <td>1525</td> <td>3</td> <td>103</td> <td>S32P</td> <td>31P(N,P)3151 32S(N P)32P</td> <td>1525</td> <td>3</td> <td>103</td>	10	1525	3	103	S32P	31P(N,P)3151 32S(N P)32P	1525	3	103
12 2225 3 16 TH462 46T(N,P)A6SC 2225 3 103 14 2228 3 231 TH47NP 47T(N,P)A6SC 2228 103 16 2231 3 231 TH47P 47T(N,P)A4SC 2231 103 16 2231 3 231 TH48P 48T(N,P)44SC 2234 103 17 2231 3 103 TH48P 48T(N,P)44SC 2234 10 5 19 2328 3 107 V51A 51V(N,A)48SC 2334 16 21 2525 3 106 FE54P 54FE(N,2)S1CR 2431 3 16 22 2625 3 103 FE54P 54FE(N,P)S6MN 2637 3 103 26 2637 3 102 FE58G 58FE(N,A)S1CR 2437 3 102 27 2725 3 102 C595G 50C(N,A)S6MN 2725 <td< td=""><td>11</td><td>2126</td><td>3</td><td>102</td><td>SC45G</td><td>45SC(N,G)46SC</td><td>2126</td><td>3</td><td>102</td></td<>	11	2126	3	102	SC45G	45SC(N,G)46SC	2126	3	102
13 2225 3 103 TI4FRP 4TTI(N,P)46SC 2228 10 5 15 2228 3 103 TI4TP 4TTI(N,P)4FSC 2228 10 5 16 2231 3 103 TI4BNP 4BTI(N,NP)4FSC 2231 3 103 17 2231 3 103 TI4BNP 4BTI(N,NP)44SC 2234 3 107 19 2328 3 107 V51A 5V(N,A)48SC 2328 3 107 20 2431 3 16 CRS22 52CR(N,2N)51CR 2431 3 16 21 2525 3 103 FE54P 54FE(N,2N)53FE 2625 3 103 22 2625 3 103 FE54P 54FE(N,2N)56RN 2631 3 103 24 2625 3 102 FE56P 59CO(N,A)66CO 2725 3 102 27 2725 3 102	12	2225	3	16	TI462	46TI(N,2N)45TI	2225	3	16
14 2228 3 231 TH47NP 47TI(N,P)44SC 2228 10 5 15 2228 3 103 TH4P 4TI(N,P)44SC 2228 3 103 16 2231 3 103 TH4P 4TI(N,P)44SC 2231 3 103 18 2234 3 231 TH4NP 4STI(N,P)44SC 2234 10 5 19 2328 3 107 V51A 51V(N,A)48SC 2238 3 107 20 2431 3 16 CR522 52CR(N,2N)51CR 2431 3 16 21 2625 3 103 FE544 54FE(N,2N)53FE 2625 3 103 26 2637 3 102 FE58G 56FE(N,P)56MN 2637 3 102 27 2725 3 107 CO59A 59CO(N,A)56MN 2725 3 107 30 28253 106 CM532	13	2225	3	103	TI46P	46TI(N,P)46SC	2225	3	103
15 2228 3 103 118/4P 47 I(N,P)47SC 22231 3 105 17 2231 3 103 TM4NP 45T(N,NP)48SC 2231 3 105 18 2234 3 103 TM4NP 45T(N,NP)48SC 2234 105 19 2328 3 107 V51A 51V(N,A)48SC 2234 3 107 20 2431 3 106 CR522 52V(N,2N)51CR 2431 3 106 21 2525 3 107 FE544 S4FE(N,P)56MN 2625 3 103 22 2625 3 107 FE586 S6FE(N,G)56FE 2631 3 103 26 2637 3 102 CO59G S9CO(N,A)56NN 2725 3 102 27 2725 3 107 CO59A S9CO(N,A)56NN 2725 3 107 30 2825 3 103 N160P </td <td>14</td> <td>2228</td> <td>3</td> <td>231</td> <td>TI47NP</td> <td>47TI(N,NP)46SC</td> <td>2228</td> <td>10</td> <td>5</td>	14	2228	3	231	TI47NP	47TI(N,NP)46SC	2228	10	5
16 2231 3 231 1 Howr 401 (N, PI48SC 2231 3 103 17 2231 3 103 TH48P 451 (N, PI48SC 2231 3 103 18 2234 3 217 TH49NP 451 (N, PI48SC 2231 3 103 19 2328 3 107 V51A 517 (N, A)448SC 2328 3 107 20 2431 3 16 FE542 52CR(N, 2N)53FE 2625 3 103 22 2625 3 103 FE54A 54FE(N, P)56MN 2637 3 102 24 2625 3 102 FE58G 59CO(N, A)56CO 2725 3 102 27 2725 3 102 CO59A 59CO(N, A)56CN 2725 3 107 30 2825 3 103 NI58P 58N(N, N, P)56NN 2725 3 107 31 2825 3	15	2228	3	103		4711(N,P)47SC	2228	3	103
18 2234 3 231 TH9NP 49TI(N, NP)48SC 2234 10 5 19 2328 3 107 V51A 51V(N, A)48SC 2234 10 5 20 2431 3 16 CR522 52C(N), 2N)51CR 2431 3 16 21 2525 3 102 MN55G 55MIN(N, G)56MN 2525 3 103 22 2625 3 103 FE54P 54FE(N, P)56MN 2631 3 103 25 2631 3 103 FE54A 54FE(N, P)56MN 2631 3 103 26 2637 3 102 FE58G 58FE(N, P)56MN 2725 3 102 27 2725 3 102 C059A 59CO(N, A)56MN 2725 3 107 30 2825 3 16 K052 3 103 133 103 31 2825 3 16 <	10	2231	3 3	231	TI48NP TI48P	4811(N,NP)475C 4811(N P)48SC	2231	10	5 103
19 2328 3 107 V51A 51V(N,A)48SC 2328 3 107 20 2431 3 16 CR522 52CR(N,2N)51CR 2431 3 16 21 2525 3 102 MNS5G 55MN(N,G)56MN 2525 3 102 22 2625 3 103 FE54P 54FE(N,2N)54MN 2625 3 103 24 2625 3 103 FE54P 54FE(N,A)51CR 2637 3 103 25 2631 3 103 FE56P 56FE(N,P)56NN 2637 3 102 29 2725 3 102 CO59G 59CO(N,A)560CO 2725 3 107 208 225.3 106 N182P 58NI(N,2N)57NI 2825 3 103 31 2825 3 103 N158P 58NI(N,2N)57NI 2825 3 107 33 2925 3 107 C053	18	2234	3	231	TI49NP	49TI(N.NP)48SC	2234	10	5
20 2431 3 16 CR522 S2CR(N,2N)SGMN 2525 3 102 21 2525 3 102 MM55G 55MN(N,C)SGMN 2525 3 102 22 2625 3 103 FE54P 54FE(N,P)S4MN 2625 3 103 24 2625 3 103 FE54P 54FE(N,P)S4MN 2625 3 103 24 2625 3 107 FE54A 54FE(N,C)S9FE 2631 3 103 26 2637 3 102 FE58G 58FC(N,G)S9FE 2637 3 102 29 2725 3 107 C059A 59CO(N,A)S6CO 2825 3 107 30 2825 3 106 NIS8P 58NI(N,P)S8CO 2825 3 103 31 2825 3 102 CU63G 63CU(N,A)S6CO 2925 3 107 36 2931 3 16	19	2328	3	107	V51A	51V(N,A)48SC	2328	3	107
21 2525 3 102 MN55G 55MN(N, C)56MN 2525 3 102 22 2625 3 106 FE54P 54FE(N, P)54MN 2625 3 103 24 2625 3 103 FE54P 54FE(N, A)51CR 2625 3 103 25 2631 3 103 FE56P 56FE(N, C)56KN 2631 3 103 26 2637 3 102 FE56P 56C(N, C)58CO 2725 3 102 27 2725 3 102 CO59G 59CO(N, A)56MN 2725 3 102 30 2825 3 103 NIS8P 58NI(M, A)57NI 2825 3 103 31 2825 3 103 NIS6P 63CU(N, A)66CO 2831 3 103 32 2831 3 103 SECU(N, A)66CU 2925 3 107 34 2925 3 107 GE3	20	2431	3	16	CR522	52CR(N,2N)51CR	2431	3	16
22 2625 3 16 FE54P 54FE(N,2N)53FE 2625 3 103 23 2625 3 103 FE54P 54FE(N,P)54MN 2625 3 103 24 2625 3 107 FE54A 54FE(N,P)56MN 2631 3 103 25 2631 3 103 FE56P 56FE(N,P)56MN 2637 3 102 26 2637 3 102 FE58G 58FE(N,G)59FE 2637 3 102 29 2725 3 107 CO59G 59CO(N,A)560NN 2725 3 107 30 2825 3 103 NI58P 58NI(N,P)58CO 2825 3 103 31 2825 3 103 NI58P 58NI(N,P)58CO 2825 3 103 322 2831 3 103 NI60P 60NI(N,A)60CO 2825 3 103 34 2925 3 102 <td>21</td> <td>2525</td> <td>3</td> <td>102</td> <td>MN55G</td> <td>55MN(N,G)56MN</td> <td>2525</td> <td>3</td> <td>102</td>	21	2525	3	102	MN55G	55MN(N,G)56MN	2525	3	102
23 2625 3 103 FE54A 54FE(N, P)54MIN 2625 3 103 24 2625 3 107 FE54A 54FE(N, P)56MN 2631 3 103 25 2631 3 102 FE58G 58FE(N, P)56MN 2637 3 102 27 2725 3 102 COS9G 59CO(N, Q)60CO 2725 3 102 29 2725 3 107 COS9A 59CO(N, Q)60CO 2825 3 103 30 2825 3 103 NI68P 58NI(N, P)58CO 2825 3 103 31 2825 3 103 NI60P 60NI(N, P)60CO 2831 3 103 33 2925 3 106 CU63A 63CU(N, Q)64CU 2925 3 107 36 2931 3 106 CU63A 63CU(N, Q)64CU 3025 3 103 37 3025 3 <td< td=""><td>22</td><td>2625</td><td>3</td><td>16</td><td>FE542</td><td>54FE(N,2N)53FE</td><td>2625</td><td>3</td><td>16</td></td<>	22	2625	3	16	FE542	54FE(N,2N)53FE	2625	3	16
24 2625 3 103 FES6P 56FE(N,P)56MN 2625 3 103 26 2631 3 102 FE58G 56FE(N,P)56MN 2637 3 102 27 2725 3 102 CO592 59CO(N,A)56CO 2725 3 107 28 2725 3 102 CO59G 59CO(N,A)56MN 2725 3 107 30 2825 3 103 NI58P 58NI(N,P)57NI 2825 3 103 31 2825 3 103 NI60P 60NI(N,P)60CO 2831 3 103 33 2925 3 102 CU63A 63CU(N,A)60CO 2925 3 107 36 2925 3 107 CU63A 63CU(N,A)64CU 2931 3 16 37 3025 3 16 X752 75AS(N,2,N)74AS 33225 3 16 38 3325 3 16	23	2625	3	103	FE54P	54FE(N,P)54MN	2625	3	103
26 2637 3 102 FESBG SBFE(N,G)S9FE 2637 3 102 27 2725 3 16 COS9G S9CO(N,2N)S8CO 2725 3 102 28 2725 3 107 COS9G S9CO(N,A)S6MN 2725 3 107 30 2825 3 107 COS9A S9CO(N,A)S6MN 2725 3 107 31 2825 3 103 NIS0P S8NI(N,P)SRO 2825 3 103 32 2831 3 103 NIS0P S0U(N,2N)SCU 2925 3 107 34 2925 3 102 CU63G G3CU(N,2N)64CU 2925 3 107 36 2931 3 16 CU652 G5CU(N,2N)64CU 2931 3 16 40 4025 3 16 XP92 93VR(N,2N)84Y 3925 3 16 41 4125 3 16	24	2020	ა ვ	107	FE34A FE56P	54FE(N,A)5TCR 56FE(N P)56MN	2020	ა ვ	107
27 2725 3 16 COS92 59CO(N,2N)58CO 2725 3 16 28 2725 3 102 COS9G 59CO(N,2N)58CO 2725 3 102 29 2725 3 107 COS9A 59CO(N,A)56MN 2725 3 107 30 2825 3 16 NI58P 58NI(N,2N)57NI 2825 3 103 31 2825 3 103 NI60P 60NI(N,P)60CO 2821 3 103 32 2831 3 102 CU63G 63CU(N,A)60CO 2925 3 102 35 2925 3 103 CU63A 63CU(N,A)60CO 2925 3 103 38 3325 3 16 A5752 75AS(N,2N)74AS 3325 3 16 40 4025 3 16 K4572 75AS(N,2N)82R 4025 3 16 41 4125 3 292	26	2637	3	102	FE58G	58FE(N.G)59FE	2637	3	103
28 2725 3 102 COS9A 59CO(N,G)é0CO 2725 3 107 29 2725 3 107 COS9A 59CO(N,A)56MN 2725 3 107 30 2825 3 103 NI58P S8NI(N,P)57NI 2825 3 103 31 2825 3 103 NI60P 60NI(N,P)60CO 2831 3 103 32 2831 3 102 CU632 63CU(N,2N)62CU 2925 3 107 35 2925 3 107 CU63A 63CU(N,2N)64CU 2931 3 16 36 2931 3 16 CM652 75AS(N,2N)74AS 3325 3 16 39 3925 3 16 7852 75AS(N,2N)74AS 3325 3 16 41 4125 3 291 NB3N2 93NB(N,N)93NBM 4125 10 4 42 4125 3 291	27	2725	3	16	CO592	59CO(N,2N)58CO	2725	3	16
29 2725 3 107 CO59A S9CO(N,A)56MIN 2725 3 107 30 2825 3 16 NI582 S8NI(N,P)57NI 2825 3 103 31 2825 3 103 NI60P 60NI(N,P)60CO 2825 3 103 32 2831 3 102 CU632 63CU(N,2)64CU 2925 3 102 34 2925 3 107 CU63A 63CU(N,2)64CU 2925 3 107 36 2931 3 16 CU652 65CU(N,2)04CU 2931 3 16 37 3025 3 103 ZN64P 64ZN(N,P)64CU 3025 3 16 39 3925 3 16 X922 89Y(N,2N)88Y 3925 3 16 40 4025 3 16 ZR902 90ZR(N,2N)89ZR 4025 3 16 41 4125 3 102	28	2725	3	102	CO59G	59CO(N,G)60CO	2725	3	102
30 2825 3 16 NI582 S8NI(N,2N)57NI 2825 3 16 31 2825 3 103 NI58P S8NI(N,P)58CO 2825 3 103 32 2831 3 103 NI60P 60NI(N,P)60CO 2831 3 103 34 2925 3 107 CU63G 63CU(N,A)6CO 2925 3 107 36 2931 3 16 CU63G 63CU(N,A)64CU 2925 3 107 36 2931 3 16 CU63G 63CU(N,A)64CU 2925 3 103 38 3325 3 16 X752 75AS(N,2N)74AS 3325 3 16 40 4025 3 16 Z892 89Y(N,2N)88Y 3925 3 16 41 4125 3 292 NB3N 93NB(N,C)94NB 4125 10 4 43 4125 3 102	29	2725	3	107	CO59A	59CO(N,A)56MN	2725	3	107
31 2825 3 103 NI58P S8NI(N,P)58CO 2825 3 103 32 2831 3 103 NI60P 60NI(N,P)60CO 2831 3 103 33 2925 3 16 CU632 63CU(N,2N)62CU 2925 3 103 34 2925 3 107 CU63A 63CU(N,A)60CO 2925 3 107 36 2931 3 16 CU63A 63CU(N,A)60CO 2925 3 103 38 3325 3 16 AS752 75AS(N,2N)74AS 3325 16 39 3925 3 16 ZR902 90ZR(N,2N)89ZR 4025 3 16 40 4025 3 16 ZR902 90ZR(N,2N)89ZR 4025 3 16 41 4125 3 291 NB33G 93NB(N,A)9ANB 4125 10 4 43 4125 3 101 NB36 93NB(N,G)140LM 4331 10 102 44 4525 3	30	2825	3	16	NI582	58NI(N,2N)57NI	2825	3	16
32 2251 3 103 NIGUP DUNI(N, P)GUCU 2831 3 103 33 2925 3 16 CUG3G G3CU(N, 2N)G2CU 2925 3 102 34 2925 3 107 CUG3G G3CU(N, 2N)G4CU 2925 3 107 36 2931 3 16 CUG52 65CU(N, 2N)G4CU 2931 3 16 37 3025 3 103 ZN64P 64ZN(N, P)64CU 3025 3 103 38 3325 3 16 AS752 75AS(N, 2N)74AS 3325 3 16 40 4025 3 16 Z892 99ZNR(N, 2N)88ZR 4025 3 16 41 4125 3 292 NB33N 93NB(N, 2N)93NB 4125 10 4 43 4125 3 102 NB33G 93NB(N, G)94AB 4125 10 16 44 4525 3 51	31	2825	3	103	NI58P	58NI(N,P)58CO	2825	3	103
34 2925 3 10 CU632 G5C0(N,A)(ACC) 2925 3 102 35 2925 3 107 CU63A G3CU(N,A)60CO 2925 3 107 36 2931 3 16 CU652 65CU(N,2N)64CU 2925 3 103 37 3025 3 103 ZM64P 64ZN(N,P)64CU 3025 3 103 38 3325 3 16 AS752 75AS(N,2N)74AS 3325 3 16 40 4025 3 16 Z892 89Y(N,2N)89ZR 4025 3 16 41 4125 3 102 NB932 93NB(N,Q)92NB 4125 10 4 42 4125 3 102 NB93G 93NB(N,G)94NB 4125 10 4 44 42525 3 51 RH103N 103RH(N,S)110AGM 4731 10 102 44 432 293 AG109G 109AG(N,G)110AGM 4731 10 102 45 4731 3	32	2831	32	103			2831	3	103
35 2925 3 107 CU63A 63CU(N,A)60CO 2925 3 107 36 2931 3 16 CU63A 63CU(N,2N)64CU 2931 3 16 37 3025 3 103 ZN64P 64ZN(N,P)64CU 3025 3 103 38 3325 3 16 A5752 75AS(N,2N)74AS 3325 3 16 39 3925 3 16 ZR902 90ZR(N,2N)88Y 3925 3 16 40 4025 3 16 ZR902 90ZR(N,2N)82R 4025 3 16 41 4125 3 102 NB932 93NB(N,O)93NBM 4125 10 4 43 4125 3 102 NB33G 93NB(N,N)93NBM 4125 10 4 43 4125 3 51 RH103N 103RH(N,N')103RHM 4731 10 102 46 4931 3 292	34	2925	3	102	CU63G	63CU(N,2N)62CU	2925	3	102
36 2931 3 16 CU652 65CU(N,2N)64CU 2931 3 16 37 3025 3 103 ZN64P 64ZN(N,P)64CU 3025 3 103 38 3325 3 16 AS752 75AS(N,2N)74AS 3325 3 16 39 3925 3 16 ZS2 89Y(N,2N)88Y 3925 3 16 40 4025 3 16 ZR902 90ZR(N,2N)89ZR 4025 3 16 41 4125 3 291 NB93N 93NB(N,C)93NBM 4125 10 4 43 4125 3 102 NB93G 93NB(N,G)94NB 4125 10 16 44 4525 3 51 RH103N 103RH(N,N')103RHM 4525 3 51 45 4731 3 292 IN152 115IN(N,N')115INM 4931 10 102 46 4931 3 293	35	2925	3	107	CU63A	63CU(N.A)60CO	2925	3	107
37 3025 3 103 ZN64P 64ZN(N,P)64CU 3025 3 103 38 3325 3 16 AS752 75AS(N,2N)74AS 3325 3 16 39 3925 3 16 Y892 89Y(N,2N)88Y 3925 3 16 40 4025 3 16 ZR902 90ZR(N,2N)89ZR 4025 3 16 41 4125 3 292 NB932 93NB(N,2N)92NB 4125 3 16 42 4125 3 102 NB93G 93NB(N,G)94NB 4125 10 16 43 4125 3 102 NB93G 93NB(N,G)94NB 4125 10 16 44 4525 3 51 RH103N 103RH(N,2N)103RHM 4525 3 51 45 4731 3 292 IN152 115IN(N,N)113RHM 4931 10 102 46 4931 3 291 IN15C 115IN(N,2N)114INM 4931 10 102 47 4	36	2931	3	16	CU652	65CU(N,2N)64CU	2931	3	16
38 3325 3 16 AS752 75AS(N,2N)74AS 3325 3 16 39 3925 3 16 Y892 89Y(N,2N)88Y 3925 3 16 40 4025 3 16 ZR902 90ZR(N,2N)88ZR 4025 3 16 41 4125 3 292 NB932 93NB(N,2N)92NB 4125 3 16 42 4125 3 291 NB93G 93NB(N,C)93NBM 4125 10 4 43 4125 3 102 NB93G 93NB(N,G)94NB 4125 10 16 44 4525 3 51 RH103N 103RH(N,N')103RHM 4525 3 51 45 4731 3 293 AG109G 109AG(N,G)110AGM 4731 10 102 46 4931 3 293 IN1152 115IN(N,2N)115INM 4931 10 4 48 4931 3 293 IN115G 115IN(N,G)140LA 5728 3 102 50 <t< td=""><td>37</td><td>3025</td><td>3</td><td>103</td><td>ZN64P</td><td>64ZN(N,P)64CU</td><td>3025</td><td>3</td><td>103</td></t<>	37	3025	3	103	ZN64P	64ZN(N,P)64CU	3025	3	103
39 3925 3 16 Y892 89Y(N,2N)88Y 3925 3 16 40 4025 3 16 ZR902 90ZR(N,2N)89ZR 4025 3 16 41 4125 3 292 NB932 93NB(N,2N)92NB 4125 3 16 42 4125 3 102 NB930 93NB(N,G)94NB 4125 10 4 43 4125 3 102 NB93G 93NB(N,G)94NB 4125 10 16 44 4525 3 51 RH103N 103RH(N,G)140RM 4731 10 102 46 4931 3 292 IN1152 115IN(N,C)113INM 4931 10 16 47 4931 3 292 IN1150 115IN(N,C)116INM 4931 10 102 48 4931 3 293 IN1150 115IN(N,G)140LA 5728 3 102 48 4931 3 102 LA139G 139LA(N,G)140LA 5728 3 102 50	38	3325	3	16	AS752	75AS(N,2N)74AS	3325	3	16
40 4023 3 16 24902 902R(N,2N)92R 4023 3 16 41 4125 3 292 NB932 93NB(N,2N)92NB 4125 3 16 42 4125 3 291 NB93C 93NB(N,G)94NB 4125 10 4 43 4125 3 102 NB93G 93NB(N,G)94NB 4125 10 16 44 4525 3 51 RH103N 103RH(N,N')103RHM 4525 3 51 45 4731 3 292 IN1152 115IN(N,C)1140AGM 4731 10 102 46 4931 3 291 IN1152 115IN(N,C)115INM 4931 10 4 47 4931 3 293 IN115G 115IN(N,G)116INM 4931 10 102 49 5325 3 16 11272 127(N,2N)126I 5325 3 16 50 5728 3 102 LA139G 139LA(N,G)140LA 5728 3 102 51	39	3925	3	16	Y892	89Y(N,2N)88Y	3925	3	16
41 4125 3 291 NB32 303D[(n,21)31D] 4125 3 10 42 4125 3 291 NB93N 93NB(N,N')93NBM 4125 10 46 43 4125 3 102 NB93G 93NB(N,N')93NBM 4125 10 16 44 4525 3 51 RH103N 103RH(N,N')103RHM 4525 3 51 45 4731 3 293 AG109G 109AG(N,G)110AGM 4731 10 102 46 4931 3 291 IN1152 115IN(N,2N)114INM 4931 10 46 47 4931 3 293 IN115G 115IN(N,G)116INM 4931 10 42 48 4931 3 293 IN115G 115IN(N,2N)140LA 5728 3 102 49 5325 3 16 TM1692 169TM(N,2N)140LA 5728 3 102 50 5728 3 102 LA139G 139LA(N,G)140LA 5925 3 16	40	4025 /125	3 2	202	ZR9UZ NR032	902R(N,2N)892R 93NB(N,2N)92NB	4025	3	16
43 4125 3 102 NB33G 93NB(N,G)94NB 4125 10 16 44 4525 3 51 RH103N 103RH(N,G)94NB 4125 10 16 44 4525 3 51 RH103N 103RH(N,N)103RHM 4525 3 51 45 4731 3 293 AG109G 109AG(N,G)110AGM 4731 10 102 46 4931 3 291 IN1152 115IN(N,2N)114INM 4931 10 16 47 4931 3 291 IN115C 115IN(N,S)116INM 4931 10 102 48 4931 3 293 IN115G 115IN(N,G)140IM 4931 10 102 49 5325 3 16 I1722 127(N,2N)126I 5325 3 16 50 5728 3 102 LA139G 139LA(N,G)140LA 5728 3 102 51 5925 3 16 FM142 141PR(N,2N)168TM 6925 3 16 5	42	4125	3	291	NB93N	93NB(N N')93NBM	4125	10	4
44 4525 3 51 RH103N 103RH(N,N')103RHM 4525 3 51 45 4731 3 293 AG109G 109AG(N,G)110AGM 4731 10 102 46 4931 3 292 IN1152 115IN(N,2N)114INM 4931 10 16 47 4931 3 293 IN115G 115IN(N,2N)115INM 4931 10 4 48 4931 3 293 IN115G 115IN(N,G)116INM 4931 10 102 49 5325 3 16 I1272 127I(N,2N)126I 5325 3 16 50 5728 3 102 LA139G 139LA(N,G)140LA 5728 3 102 51 5925 3 16 TM1692 169TM(N,2N)168TM 6925 3 16 52 6925 3 16 AU1972 197AU(N,G)187W 7443 3 102 54 7443 3 102 M186G 186W(N,N')199AGU 7925 3 102	43	4125	3	102	NB93G	93NB(N,G)94NB	4125	10	16
45 4731 3 293 AG109G 109AG(N,G)110AGM 4731 10 102 46 4931 3 292 IN1152 115IN(N,2N)114INM 4931 10 16 47 4931 3 291 IN115N 115IN(N,2N)115INM 4931 10 4 48 4931 3 293 IN115G 115IN(N,G)116INM 4931 10 102 49 5325 3 16 I1272 127I(N,2N)126I 5325 3 16 50 5728 3 102 LA139G 139LA(N,G)140LA 5728 3 102 51 5925 3 16 TM1692 169TM(N,2N)168TM 6925 3 16 52 6925 3 16 AU1972 197AU(N,G)187W 7443 3 102 54 7443 3 102 W186G 186W(N,G)187W 7443 3 102 55 7925 3 102 AU197C 197AU(N,2N)196AU 7925 3 102 <	44	4525	3	51	RH103N	103RH(N,N')103RHM	4525	3	51
46 4931 3 292 IN1152 115IN(N,2N)114INM 4931 10 16 47 4931 3 291 IN115N 115IN(N,N')115INM 4931 10 4 48 4931 3 293 IN115G 115IN(N,G)116INM 4931 10 102 49 5325 3 16 I1272 127I(N,2N)126I 5325 3 16 50 5728 3 102 LA139G 139LA(N,G)140LA 5728 3 102 51 5925 3 16 TM1692 169TM(N,2N)168TM 6925 3 16 52 6925 3 16 TM1692 169TM(N,2N)168TM 6925 3 16 53 7328 3 102 TA181G 181TA(N,G)182TA 7328 3 102 54 7443 3 102 W186G 186W(N,G)187W 7443 3 102 55 7925 3 102 AU197G 197AU(N,2N)196AU 7925 3 102 <t< td=""><td>45</td><td>4731</td><td>3</td><td>293</td><td>AG109G</td><td>109AG(N,G)110AGM</td><td>4731</td><td>10</td><td>102</td></t<>	45	4731	3	293	AG109G	109AG(N,G)110AGM	4731	10	102
47 4931 3 291 IN115N 115IN(N,R)'115INM 4931 10 4 48 4931 3 293 IN115G 115IN(N,G)'116INM 4931 10 102 49 5325 3 16 I1272 127I(N,2N)126I 5325 3 16 50 5728 3 102 LA139G 139LA(N,G)140LA 5728 3 102 51 5925 3 16 TM1692 169TM(N,2N)168TM 6925 3 16 52 6925 3 16 TM1692 169TM(N,2N)168TM 6925 3 16 53 7328 3 102 TA181G 181TA(N,G)182TA 7328 3 102 54 7443 3 102 W186G 186W(N,G)187W 7443 3 102 55 7925 3 102 AU197G 197AU(N,2N)196AU 7925 3 102 56 7925 3 102 AU197G 197AU(N,9194BM 8024 51 58	46	4931	3	292	IN1152	115IN(N,2N)114INM	4931	10	16
48 4931 3 293 INT15G 115IN(N, G)116INM 4931 10 102 49 5325 3 16 11272 127I(N,2N)126I 5325 3 16 50 5728 3 102 LA139G 139LA(N,G)140LA 5728 3 102 51 5925 3 16 FR1412 141PR(N,2N)140PR 5925 3 16 52 6925 3 16 TM1692 169TM(N,2N)168TM 6925 3 16 53 7328 3 102 TA181G 181TA(N,G)182TA 7328 3 102 54 7443 3 102 W186G 186W(N,G)187W 7443 3 102 55 7925 3 16 AU1972 197AU(N,2N)196AU 7925 3 102 56 7925 3 102 AU197G 197AU(N,6)198AU 7925 3 102 57 8034 3 51 HG199N 199HG(N,N')204PBM 80245 71 59 <td< td=""><td>47</td><td>4931</td><td>3</td><td>291</td><td>IN115N</td><td>115IN(N,N')115INM</td><td>4931</td><td>10</td><td>4</td></td<>	47	4931	3	291	IN115N	115IN(N,N')115INM	4931	10	4
49 3323 3 10 1127 1271(11,21) 3323 3 10 50 5728 3 102 LA139G 139LA(N,G)140LA 5728 3 102 51 5925 3 16 FR1412 141PR(N,2N)140PR 5925 3 16 52 6925 3 16 TM1692 169TM(N,2N)168TM 6925 3 16 53 7328 3 102 TA181G 181TA(N,G)182TA 7328 3 102 54 7443 3 102 W186G 186W(N,G)187W 7443 3 102 55 7925 3 102 AU197C 197AU(N,2N)196AU 7925 3 102 56 7925 3 102 AU197G 197AU(N,G)198AU 7925 3 102 57 8034 3 51 HG199N 199HG(N,N')1204PBM 80245 3 71 58 8225 3 71 PB204N 204PB(N,N')204PBM 8225 3 71 59 <td>48</td> <td>4931</td> <td>32</td> <td>293</td> <td>IN115G</td> <td>115IN(N,G)116INW 127I(N 2N)126I</td> <td>4931</td> <td>10</td> <td>102</td>	48	4931	32	293	IN115G	115IN(N,G)116INW 127I(N 2N)126I	4931	10	102
50 51 522 3 16 EA1350 153EA(N,2N)140PR 5925 3 16 51 5925 3 16 TM1692 169TM(N,2N)168TM 6925 3 16 52 6925 3 16 TM1692 169TM(N,2N)168TM 6925 3 16 53 7328 3 102 TA181G 181TA(N,G)182TA 7328 3 102 54 7443 3 102 W186G 186W(N,G)187W 7443 3 102 55 7925 3 16 AU1972 197AU(N,2N)196AU 7925 3 16 56 7925 3 102 AU197G 197AU(N,G)198AU 7925 3 102 57 8034 3 51 HG199N 199HG(N,N')199HGM 8034 3 51 58 8225 3 71 PB204N 204PB(N,N')204PBM 8225 3 71 59 9040 3 18 TH232F 232TH(N,F) FP 9040 3 18	49 50	5728	2	102	1 Δ139G	1391 A/N G)1401 A	5728	3	102
52 6925 3 16 TM1692 169TM(N,2N)168TM 6925 3 16 53 7328 3 102 TA181G 181TA(N,G)182TA 7328 3 102 54 7443 3 102 W186G 186W(N,G)187W 7443 3 102 55 7925 3 16 AU1972 197AU(N,2N)196AU 7925 3 16 56 7925 3 102 AU197G 197AU(N,G)198AU 7925 3 102 57 8034 3 51 HG199N 199HG(N,N')199HGM 8034 3 51 58 8225 3 71 PB204N 204PB(N,N')204PBM 8225 3 71 59 9040 3 18 TH232F 232TH(N,F) FP 9040 3 102 61 9228 3 18 U235F 235U(N,F) FP 9228 3 18 62 9237 3 18 U238F 238U(N,F) FP 9237 3 18 63 <	51	5925	3	16	PR1412	141PR(N,2N)140PR	5925	3	16
53 7328 3 102 TA181G 181TA(N,G)182TA 7328 3 102 54 7443 3 102 W186G 186W(N,G)187W 7443 3 102 55 7925 3 16 AU1972 197AU(N,2N)196AU 7925 3 16 56 7925 3 102 AU197G 197AU(N,G)198AU 7925 3 102 57 8034 3 51 HG199N 199HG(N,N')199HGM 8034 3 51 58 8225 3 71 PB204N 204PB(N,N')204PBM 8225 3 71 59 9040 3 18 TH232F 232TH(N,F) FP 9040 3 18 60 9040 3 102 TH232G 232TH(N,G)233TH 9040 3 102 61 9228 3 18 U238F 238U(N,F) FP 9237 3 18 63 9237 3 102 U238G 238U(N,F) FP 9346 3 18 64	52	6925	3	16	TM1692	169TM(N,2N)168TM	6925	3	16
54 7443 3 102 W186G 186W(N,G)187W 7443 3 102 55 7925 3 16 AU1972 197AU(N,2N)196AU 7925 3 16 56 7925 3 102 AU197G 197AU(N,G)198AU 7925 3 102 57 8034 3 51 HG199N 199HG(N,N')199HGM 8034 3 51 58 8225 3 71 PB204N 204PB(N,N')204PBM 8225 3 71 59 9040 3 18 TH232F 232TH(N,F) FP 9040 3 18 60 9040 3 102 TH232G 232TH(N,G)233TH 9040 3 102 61 9228 3 18 U235F 235U(N,F) FP 9228 3 18 62 9237 3 18 U238F 238U(N,F) FP 9237 3 18 63 9237 3 102 U238G 238U(N,F) FP 9346 3 18 64 93	53	7328	3	102	TA181G	181TA(N,G)182TA	7328	3	102
55 7925 3 16 AU1972 197AU(N,2N)196AU 7925 3 16 56 7925 3 102 AU197G 197AU(N,G)198AU 7925 3 102 57 8034 3 51 HG199N 199HG(N,N')199HGM 8034 3 51 58 8225 3 71 PB204N 204PB(N,N')204PBM 8225 3 71 59 9040 3 18 TH232F 232TH(N,F) FP 9040 3 18 60 9040 3 102 TH232G 232TH(N,G)233TH 9040 3 102 61 9228 3 18 U235F 235U(N,F) FP 9228 3 18 62 9237 3 18 U238F 238U(N,F) FP 9237 3 18 63 9237 3 102 U238G 238U(N,F) FP 9346 3 18 64 9346 3 18 NP237F 237NP(N,F) FP 9346 3 18 65 943	54	7443	3	102	W186G	186W(N,G)187W	7443	3	102
50 7925 3 102 AU197G 197AU(N,G)198AU 7925 3 102 57 8034 3 51 HG199N 199HG(N,N')199HGM 8034 3 51 58 8225 3 71 PB204N 204PB(N,N')204PBM 8225 3 71 59 9040 3 18 TH232F 232TH(N,F) FP 9040 3 18 60 9040 3 102 TH232G 232TH(N,G)233TH 9040 3 102 61 9228 3 18 U235F 235U(N,F) FP 9228 3 18 62 9237 3 18 U238F 238U(N,F) FP 9237 3 18 63 9237 3 102 U238G 238U(N,G)239U 9237 3 102 64 9346 3 18 NP237F 237NP(N,F) FP 9346 3 18 65 9437 3 18 PU239F 239PU(N,F) FP 9437 3 18 65 9437	55	7925	3	16	AU1972	197AU(N,2N)196AU	7925	3	16
57 6034 3 51 19371G(i,i) (19371G(ii)) 6034 3 51 58 8225 3 71 PB204N 204PB(N,N')204PBM 8225 3 71 59 9040 3 18 TH232F 232TH(N,F) FP 9040 3 18 60 9040 3 102 TH232G 232TH(N,G)233TH 9040 3 102 61 9228 3 18 U235F 235U(N,F) FP 9228 3 18 62 9237 3 18 U238F 238U(N,F) FP 9227 3 18 63 9237 3 102 U238G 238U(N,G)239U 9237 3 102 64 9346 3 18 NP237F 237NP(N,F) FP 9346 3 18 65 9437 3 18 PU239F 239PU(N,F) FP 9437 3 18 66 9543 3 18 AM241F 241AM(N,F) FP 9542 19	50 57	1925	ა ა	102	AU19/G		7925	3 2	102
50 50 50 11 1254 2041 1041 50223 5 71 59 9040 3 18 TH232F 232TH(N,F) FP 9040 3 18 60 9040 3 102 TH232G 232TH(N,G)233TH 9040 3 102 61 9228 3 18 U235F 235U(N,F) FP 9228 3 18 62 9237 3 18 U238F 238U(N,F) FP 9237 3 18 63 9237 3 102 U238G 238U(N,G)239U 9237 3 102 64 9346 3 18 <np237f< td=""> 237NP(N,F) FP 9346 3 18 65 9437 3 18<pu239f< td=""> 239PU(N,F) FP 9437 3 18 66 9543 3 18<am241e< td=""> 241AM(N,F) FP 9542 3 19</am241e<></pu239f<></np237f<>	58	0034 8225	ა 2	51 71	PR204N	204PR(N N')204PRM	80034 8225	3	51 71
60 9040 3 102 TH232G 232TH(N,G)233TH 9040 3 102 61 9228 3 18 U235F 235U(N,F) FP 9228 3 18 62 9237 3 18 U238F 238U(N,F) FP 9237 3 18 63 9237 3 102 U238G 238U(N,G)239U 9237 3 102 64 9346 3 18 NP237F 237NP(N,F) FP 9346 3 18 65 9437 3 18 PU239F 239PU(N,F) FP 9437 3 18 66 9543 3 18 AM241F 241AM(N,F) FP 9437 3 18	59	9040	3	18	TH232F	232TH(N.F) FP	9040	3	18
61 9228 3 18 U235F 235U(N,F) FP 9228 3 18 62 9237 3 18 U238F 238U(N,F) FP 9237 3 18 63 9237 3 102 U238G 238U(N,G)239U 9237 3 102 64 9346 3 18 NP237F 237NP(N,F) FP 9346 3 18 65 9437 3 18 PU239F 239PU(N,F) FP 9437 3 18 66 9543 3 18 AM241F 241AM(N,F) FP 9543 3 18	60	9040	3	102	TH232G	232TH(N,G)233TH	9040	3	102
62 9237 3 18 U238F 238U(N,F) PP 9237 3 18 63 9237 3 102 U238G 238U(N,G)239U 9237 3 102 64 9346 3 18 NP237F 237NP(N,F) PP 9346 3 18 65 9437 3 18 PU239F 239PU(N,F) PP 9437 3 18 66 9543 3 18 AM241F 241AM(N,F) PP 9543 3 18	61	9228	3	18	U235F	235U(N,F) FP	9228	3	18
63 9237 3 102 U238G 238U(N,G)239U 9237 3 102 64 9346 3 18 NP237F 237NP(N,F) FP 9346 3 18 65 9437 3 18 PU239F 239PU(N,F) FP 9437 3 18 66 9543 3 18 AM241F 241AM(N,F) FP 9543 3 18	62	9237	3	18	U238F	238U(N,F) FP	9237	3	18
04 9340 3 18 NP23/F 23/NP(N,F) FP 9346 3 18 65 9437 3 18 PU239F 239PU(N,F) FP 9437 3 18 66 9543 3 18 AM241F 241 AM(N,F) FP 9543 2 19	63	9237	3	102	U238G	238U(N,G)239U	9237	3	102
00 3437 3 10 FU233F 233FU(N,F)FF 9437 3 18 66 9543 3 18 AM241F 241AM/NE\ED 0572 2 49	64	9346	3	18	NP237F		9346	3	18
	C0 20	9437 9543	ა 2	10	ΔM241F	239FU(Ν,Γ) FP 241ΔM(N F) FP	9437 Q512	3	18

COVER REACTIONS

	Group cross sec. data*		Reaction	Reaction	Point c	ross	sec. data	
No	Mat	MF	МТ	code		Mat	MF	MT
1	500	3	1	В	B-COVER	500	3	1
2	4800	3	1	CD	CD-COVER	4800	3	1
3	6400	3	1	GD	GD-COVER	6400	3	1

DAMAGE CHARACTERIZATION REACTIONS

	Group cross sec. data*		Reaction	Reaction	Point cross sec. data		
No	Mat	MF	MT	Code		Mat MF MT	
1	1400	3	900	SIODP	SI-DPA_ASTM	NOT AVAILABLE	
2	2400	3	900	CR0DP	CR-DPA	NOT AVAILABLE	
3	2600	3	900	FE0ASDP	FE-DPA_ASTM	NOT AVAILABLE	
4	2600	3	901	FE0EWDP	ST-DPA_EWGRD	NOT AVAILABLE	
5	2800	3	900	NIODP	NI-DPA	NOT AVAILABLE	
6	3100	3	900	GA_ASDP	GA_AS-DPA	NOT AVAILABLE	

Table 10. Threshold energies of cross section and of uncertainty data in the fileIRDF-2002.

Reaction code	Threshold energies	Original threshold	Corrected
	of the cross sections	energies of the	threshold energies
	(eV)	uncertainties	of the uncertainties
		(eV)	(eV)
F192	1.090E+07	1.099E+07	1.090E+07
NA232	1.290E+07	1.296E+07	1.290E+07
MG24P	4.900E+06	4.600E+06	4.900E+06
AL27P	1.800E+06	1.896E+06	1.800E+06
AL27A	5.000E+06	5.000E+06	*
P31P	1.200E+06	1.200E+06	*
S32P	9.200E+05	9.200E+05	*
TI462	1.340E+07	1.348E+07	1.340E+07
TI46P	1.600E+06	1.619E+06	1.600E+06
TI47P	6.900E+06	6.900E+06	*
TI47NP	8.400E+06	8.414E+06	8.400E+06
TI48P	3.200E+06	3.279E+06	3.200E+06
TI48NP	9.400E+06	9.414E+06	9.400E+06
TI49NP	9.300E+06	9.138E+06	9.300E+06
V51A	2.000E+06	2.099E+06	2.000E+06
CR522	1.220E+06	1.220E+06	*
FE542	1.360E+07	1.363E+07	1.360E+07
FE54P	6.900E+05	5.000E+05	6.900E+05
FE54A	2.500E+06	2.500E+06	*
FE56P	2.900E+06	2.966E+06	2.900E+06
CO592	1.060E+07	1.060E+07	*
CO59A	3.200E+05	3.340E+05	3.200E+05
NI582	1.240E+07	1.241E+07	1.240E+07
NI58P	1.000E+05	5.000E+05	1.000E+05
NI60P	2.700E+06	2.076E+06	2.700E+06
CU632	1.100E+07	1.103E+07	1.100E+07
CU63A	2.200E+06	2.250E+06	2.200E+06
CU652	1.000E+07	1.000E+07	*
ZN64P	2.100E+05	5.000E+05	2.100E+05
AS752	1.030E+07	1.038E+07	1.030E+07
Y892	1.160E+07	1.161E+07	1.160E+07
ZR902	1.210E+07	1.212E+07	1.210E+07
NB93N	3.000E+04	1.000E+05	3.000E+04
NB932	8.900E+06	9.000E+06	8.900E+06
RH103N	4.000E+04	4.014E+04	4.000E+04
IN115N	3.200E+05	3.392E+05	3.200E+05
IN1152	9.300E+06	1.000E+07	9.300E+07
I1272	9.200E+06	9.465E+06	9.200E+06
PR1412	9.400E+06	9.465E+06	9.400E+06
TM1692	8.100E+06	8.100E+06	*
AU1972	8.100E+06	8.100E+06	*
HG199N	5.250E+05	5.337E+05	5.250E+05
PB204N	2.100E+06	2.197E+06	2.100E+06
TH232F	5.000E+05	5.000E+05	*

* No correction had to be applied

Table 11. Some integral characteristics of the newly generated group cross section datain IRDF-2002

	Activation and fission reactions											
					Cross section at	Resonance	Cross section					
					2200 m/s	integral	averaged over					
No.	MAT	MF	MT	Reaction code	(2)	(2)	the Watt fiss. (2)					
1	225	2	105	LICT	(m)	(m)	spectrum (m)					
1	325	3	105	LI61	9.420E-26	4.265E-26	3.23/E-29					
2	525	3	10/	BIOA	3.843E-25	1./31E-25	4.5/4E-29					
3	925	3	16	F192	0.000E+00	0.000E+00	5.855E-34					
4	1125	3	102	NA232	0.000E+00	0.000E+00	2.570E-34					
5	1125	2	102	NA23G	5.285E-29	3.1/1E-29	2.780E-32					
0	1225	2	103	MG24P	0.000E+00	0.000E+00	1.4/3E-31					
/ 0	1325	2	105	AL27P	0.000E+00	0.000E+00	5.979E-31					
0	1525	2	107	AL2/A D21D	0.000E+00	0.000E+00	0.800E-32					
9	1625	2	103	S22D	0.000E+00	1 202E 24	2.763E-30					
10	2126	2	103	SC45G	2 722E 27	1.203E-34	5 125E 21					
11	2120	3	16	TI462	2.732E-27	1.19/E-2/	3 350E 34					
12	2225	3	103	Т1402	0.000E+00	0.000E+00	1 118E 30					
13	2223	3	103	ТІ401 ТІ47Р	0.000E+00	3 216E 32	1.118E-30					
14	2228	3	231	TI471 TI47ND	0.000E+00	0.000E+00	6 380E 34					
15	2220	3	103	TI4710	0.000E+00	0.000E+00	2 878E-32					
17	2231	3	231	TI48NP	0.000E+00	0.000E+00	1 264E-34					
18	2231	3	231	TI49NP	0.000E+00	0.000E+00	7.657E-35					
10	2234	3	107	V51A	0.000E+00	0.000E+00	2 231E-33					
20	2431	3	16	CR522	0.000E+00	0.000E+00	3 193E-33					
20	2525	3	102	MN55G	1 342E-27	1 180E-27	2 941E-31					
22	2625	3	16	FE542	0.000E+00	0.000E+00	9 138E-35					
23	2625	3	103	FE54P	0.000E+00	3 332E-33	7 880E-30					
24	2625	3	107	FE54A	0.000E+00	0 000E+00	8 122E-32					
25	2631	3	103	FE56P	0.000E+00	0.000E+00	1.053E-31					
26	2637	3	102	FE58G	1.302E-28	1.369E-28	1.854E-31					
27	2725	3	16	CO592	0.000E+00	0.000E+00	1.719E-32					
28	2725	3	102	CO59G	3.720E-27	7.603E-27	5.043E-31					
29	2725	3	107	CO59A	0.000E+00	3.367E-37	1.498E-32					
30	2825	3	16	NI582	0.000E+00	0.000E+00	2.946E-34					
31	2825	3	103	NI58P	0.000E+00	1.939E-32	1.055E-29					
32	2831	3	103	NI60P	0.000E+00	0.000E+00	1.867E-31					
33	2925	3	16	CU632	0.000E+00	0.000E+00	7.609E-33					
34	2925	3	102	CU63G	4.474E-28	4.955E-28	1.072E-30					
35	2925	3	107	CU63A	0.000E+00	0.000E+00	5.128E-32					
36	2931	3	16	CU652	0.000E+00	0.000E+00	2.894E-32					
37	3025	3	103	ZN64P	0.000E+00	7.740E-33	3.775E-30					
38	3325	3	16	AS752	0.000E+00	0.000E+00	2.561E-32					
39	3925	3	16	Y892	0.000E+00	0.000E+00	1.255E-32					
40	4025	3	16	ZR902	0.000E+00	0.000E+00	7.536E-33					
41	4125	3	102	NB93G	1.156E-28	9.907E-28	2.761E-30					
42	4125	3	291	NB93N	0.000E+00	3.251E-30	1.410E-29					
43	4125	3	292	NB932	0.000E+00	0.000E+00	3.838E-32					
44	4525	3	51	RH103N	0.000E+00	4.087E-29	7.061E-29					

Activation and fission reactions (continued)									
					Cross section at	Resonance	Cross section		
					2200 m/s	integral	averaged over		
No	MAT	MF	MT	Reaction code	(2)	(2)	the Watt fiss. (2)		
	1701				(m ⁻)	(m ⁻)	spectrum (m ⁻)		
45	4731	3	293	AG109G	4.214E-28	6.858E-27	9.756E-31		
46	4931	3	291	IN115N	0.000E+00	2.112E-30	1.848E-29		
47	4931	3	292	IN1152	0.000E+00	0.000E+00	7.535E-32		
48	4931	3	293	IN115G	1.665E-26	2.591E-25	1.260E-29		
49	5325	3	16	I1272	0.000E+00	0.000E+00	1.044E-31		
50	5728	3	102	LA139G	8.895E-28	1.193E-27	6.819E-31		
51	5925	3	16	PR1412	0.000E+00	0.000E+00	9.328E-32		
52	6925	3	16	TM1692	0.000E+00	0.000E+00	3.458E-31		
53	7328	3	102	TA181G	2.069E-27	6.591E-26	8.728E-30		
54	7443	3	102	W186G	3.793E-27	4.794E-26	3.292E-30		
55	7925	3	16	AU1972	0.000E+00	0.000E+00	3.112E-31		
56	7925	3	102	AU197G	9.880E-27	1.566E-25	7.762E-30		
57	8034	3	51	HG199N	0.000E+00	2.206E-30	2.354E-29		
58	8225	3	71	PB204N	0.000E+00	0.000E+00	1.744E-30		
59	9040	3	18	TH232F	0.000E+00	2.437E-32	7.374E-30		
60	9040	3	102	TH232G	7.412E-28	8.564E-27	9.313E-30		
61	9228	3	18	U235F	5.862E-26	2.719E-26	1.216E-28		
62	9237	3	18	U238F	1.183E-33	6.370E-31	3.036E-29		
63	9237	3	102	U238G	2.720E-28	2.773E-26	7.083E-30		
64	9346	3	18	NP237F	2.154E-30	1.586E-28	1.337E-28		
65	9437	3	18	PU239F	7 478E-26	2 974E-26	1 796E-28		
66	9543	3	18	AM241F	3 025E-28	7 832E-28	1 362E-28		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					,			
	L		I	Cover m	aterials				
					Cross section at	Resonance	Cross section		
					2200 m/s	integral	averaged over		
No	MAT	MF	MT	Reaction code	(m^2)	(m^2)	the Watt fiss. (m^2)		
1	500	2	1	DOTO	(III) 7.657E 26	(111)			
1	4900	2	1	CDOTO	7.037E-20	4.042E-20	2.402E-20		
2	4800	2	1	CDOTO	2.437E-23	1.733E-20	4.384E-28		
3	6400	3	1	GD010	4.901E-24	5.728E-20	0.703E-28		
			Radia	tion damage (DPA) cross sec	tions			
				(Cross section at	Resonance	Cross section		
					2200 m/s	integral	averaged over		
No	MAT	MF	MT	Reaction code	2	2	the Watt fiss.		
					(m ²)	(m ²)	spectrum (m ²)		
1	1400	3	900	SI0DP	9.841E-30	1.413E-26	9.880E-27		
2	2400	3	900	CR0DP	0.000E+00	9.420E-26	9.613E-26		
3	2800	3	900	NI0DP	0.000E+00	1.176E-25	8.586E-26		
4	2600	3	900	FE0ASDP	1.009E-27	8.646E-26	8.478E-26		
5	2600	3	901	FE0EWDP	9.629E-28	8.512E-26	8.404E-26		
6	3100	3	900	GA_ASDP	1.245E-26	2.512E-26	6.873E-29		

Figure 1. Neutron spectrum MTR – in two different representations – used in the calculations ([19]).

7. CHAPTERS WRITTEN FOR TECDOC ON IRDF-2002

Various chapters have been written for the IAEA-TECDOC on IRDF-2002 (in preparation). These chapters will appear in the TECDOC, and therefore are not produced in this document.

Nuclear Data Section e-mail: services@iaeand.iaea.org International Atomic Energy Agency fax: (43-1) 26007 telephone: (43-1) 2600-21710 P.O. Box 100 A-1400 Vienna Austria Online: TELNET or FTP: iaeand.iaea.org IAEANDS for interactive Nuclear Data Information System username: usernames: ANONYMOUS for FTP file transfer; FENDL2 for FTP file transfer of FENDL-2.0; RIPL for FTP file transfer of RIPL. NDSONL for FTP access to files sent to NDIS "open" area. Web: http://www-nds.iaea.org