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GRACE - A MULTIGROUP FAST NEUTRON SPECTRUM CODE 

Z. Szatmáry and J. Valkó 

t. Introduction 

GRACE is a multigroup fast neutron spectrum code. In writing it, the 
main emphasis has not been laid on originality but rather on using a formalism 
which is thoroughly tested and which proved to work satisfactorily in generat-
ing few-group constants for•diffusion calculations. Hence the basic algorithm 
of GRACE is a slight modification of that of the BIGG-II code [з] which in 
turn is an advanced version of the BIGG-I and BPG codes [l, 2] having MUFT as 
the common ancestor. 

Code GRACE solves the asymptotic neutron transport equation in slab, 
geometry using the Greuling-Goertzel approximation for the slowing down neut-
ron source. The code permits the use of both B^ and P.̂  approximations. In 
the multigroup structure of GRACE a thermal group has been included making an 
iteration to criticality of the slab possible. 

Group.constants as well as energy limits for. the thermal energy group 
must be specified in input. For the treatment of resonance absorption and 
fission two options are available: 

- The same formalism has been built in GRACE which is used in BIGG-II. 
based on empiric resonance integrals and Dancoff factors. In case 
of uranium metal and Up2 the formulae of Hellstrand have been 
included in the code. 

- Lattice resonance integrals for all of the resonance materials 
present in the slab investigated can be given in input separately 
for all of the groups containing resonances. In this way resonance 
groups can be treated like any other fast group. 



Another important feature of GRACE is a great simplicity of input preparation 
which has become possible by the inclusion of a subroutine /called DATAPREP/ 
doing all the lattice homogenization, calculation of resonance integrals, 
Dancoff-factors, fast advantage factors, etc. based on formulae of ref. [4j . 

Besides fuel regions, non-fuel regions such as reflectors can be 
treated by GRACE as well. For reflector regions, the source term is the 
leakage from the region previously treated and space dependence of the neut-
ron spectrum is described by an artificial energy dependent buckling as 
introduced in ref. [з] . 

The code GRACE is member of a reactor physics model. Its main results 
are group constants for few-group diffusion calculations, for one hand, and 
it uses results of other codes, for the other hand: thermal constants from 
THERMOS [7] and lattice resonance integrals from RIFFRAFF [б] when using the 
second resonance option mentioned above. 

This report describes the mathematical model on which the code" 
GRACE is based in Section II., it provides a user's manual in Section III. 
As to the physical fundamentals, only the very digit is given here and the 
reader is referred to refs. [l-5]. In order to facilitate to.look up things in 
these references, the notations established in them will be retained here. 

II. The physical model of GRACE 

GRACE is an essentially zero-dimensional code. By solving the asymp-
totic reactor equation, it calculates the neutron flux and current in a bare 
homogeneous slab. Finiteness of the slab is taken into account by introducing 
a buckling. As pointed out by Radkowsky [5] , this treatment-results in good 
few group constants in the core independently of whether it is reflected or 
not, although, near the boundary of regions of different material compoitions, 
the spectrum is space dependent. To explain this, it can be argued that, this 
space dependence affects only a small part of the core while the spectrum is 
space dependent far inside the reflector. For this reason, in contrast to the 
core, the reflector can not be characterized by a single neutron spectrum. A 
correct treatment of systems consisting of several different regions would 
be a one-dimensional finite difference algorithm which would give the neutron 
spectrum in several points of the system. But there is an alternative possibi-
lity suggested by ref. [3] to introduce some space dependence also into a 
zero-dimensional treatment.' If the buckling is allowed to depend on neutron 
energy, the attractive formalism of the asymptotic reactor theory can be 
preserved and, at the same time, the resulting equations still contain some 
aspects of space dependence. Of course, such a treatment is a synthetic one 
and its adequacy can be justified only by comparison with experiment. 
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Now for real systems, GRACE is used in the following way. The regions 
of different material composition are treated one by one. The core is taken 
first. Core regions have their own neutron source /i.e. fission/ so that they 
can be considered independently from the others. Reflector regions have their 
neutron field supplied from the neighbouring regions. Thus in reflectors, the 
source term is related to the leakege from the core or from the preceding 
reflector region. 

All these points will be cleared up in detail in the following 
sections. 

II.1. The fundamental equations 

Write the transport equation for slab geometry in the following 
form [lj : 

2-n 1 
p + rT ( u ) f d 0 j dl)Q };°(,,о, u')' ф (u',u',x) + 

6 -1 

Г + F 1 — du' f dp' v(u') TF(u') ф(р',и',х) + 

eff J _{ 

f 1 

+ I I du' j dp' E1(u',u) ф (p ' ,u' ,x) /1/ 
о -1 

where 

x is the spatial coordinate, 
u is the lethargy, 
0 is the azimuthal angle, 
p is the cosine of the angle of neutron direction and x axis, 
ф(р,и,х) is tha angular flux at space point x of neutrons of 

lethargy u and of direction cosine p , 
T E (u) is the total cross section, 

i°(po»u') is the transfer cross section for elastic scattering which 
changes the direction of a neytron of lethargy u' by an 
angle whose cosine is pQ . This angle corresponds to a 
lethargy change of (u-u') , 



- 4 -

f(u) i s fission spectrum normalized to 1, 
is the fission cross section, 

v(u) is the mean number of neutrons produced in fissions, 
caused by neutrons of lethargy u, 

^(u'ju) is the transfer cross section for inelastic scattering 
which changes the neutron lethargy fi-om u' to u, 

к is the static eigenvalue or the effective multiplication eff constant-
If a trial function of the form 

ф(11,и,х) = e i B x ф(р,и) /2/ 

is inserted in Eg. / 1 / and I J J ( J J , U ) is expanded in a series of Legendre polino-
mials as 

•(х-*) = i 1 - к м p > > ' / 3 / 
m=o 

then a straightforward calculation shows /see Ref. [Y| I that Eq. Ill can be 
rewritten in the following way: 

ET(u) i{»0 (u) = L Q ( U ) + iB ^(u) + S(u) + I(u) , /'4a/ 
» 

IT(u) h (u) ̂ (u) = LxCu) + ̂  ф0(и) . /4Ь/ 

In Eqs. /4/ ' ' 
Фо(и) = 2ir f ф(р,и) dp /5а/ 

-1 
is the neutron spectrum and 

ФхСи) = 2тг J иФ(р,и) dp = iJ(u) /5b/ 
-1 

where J и is the neutron current. Furthermore, 
. 1 

Lm(u) = 2. J фт(и') Pm(yo) I°(uo,u') dp0- 16/ 
• -1 . 

is the slowing down source by elastic scattering i.e. L (u) is the number of 
neutrons which reach lethargies between и and u+du in unit of time by 
elastic scattering collision. The physical significance of Ь^(и) is much 
harder to tell; it is connected with the anlsotropy of the slowing down 
process in the laboratory system. The slowing down source by inelastic 
scattering collisions is given by 
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I (u) = J LX(u' ,V) фс(и') du' /7/ 

i.e. l(u) has the same physical significance for inelastic scattering as 
JL, (u) for elastic scattering. S (u) is the source of neutrons produced 

by fission. Because Eq. /1/ together with all the succeeding equations is 
homogeneous, the neutron flux may be normalized in such a way that 

CO 
j v(u) ZF(u) Ф о 0 0 du = k e f f 

Consequently, in Eq. /4а/ one has 

S(u) = f(u) . 
Finally, 

h(u) = 1 

in P^ approximation while in B̂ . approximation 

\ 2 
, h ( u ) 3 

u)/ 1 - p 

/8/ 

/9/ 

/10а/ 

/10Ь/ 

where 

3 = < 
ET(u ) 

arctg 

log 

В 
ST(u) 

for real В 

1 + В/Е (u) 
1 - В/E (u) 

/Юс/ 

for imaginary В /lOd/ 

In case of reflectors, Eqs. /4/ and /10/ have a slightly modified•form which 
will be given in Section II.5. 

If one considers that iB ф-^(и) is the net leakage the physical 
significance of eq. /4а/ becomes quite simple: it is a balance equation for 
neutrons of lethargy u. 

II.2. Approximations for ^m Cu) 

The elastic scattering transfer cross section E°(y0,u) is a 
sum of analogous transfer cross sections for all isotopes present in the 
slab investigated: 
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E ° 0 v u ) - I Ek O c u ) / 1 L / 
к 

for the where (^о,и) i s t h e e l a s t ± c scattering transfer cross section 
k t h isotope. Accordingly, the elastic slowing down source Lm(u) c an be 
represented as a similar sum: 

where 

bmk(u) = 21r j фт(и') Pm(yo) Ij (yo,u') dpQ . /12Ь/ 
-1 

In the remainder of this section, one isotope will be always concerned 
and, for the sake of simplicity, its subscript k will be omitted. In later 
sections this subscript will be taken up again. 

First, the quantity 4m(.u) introduced'which vanishes at lethargies 
u < О and satisfies the equation 

Lm(u) = ф т Ы G°(u) - g u . /13/ < 4 » (u) Gjjj(u) - -

where G*Vu) is defined as m 

G m ^ " К Г l Ь'п.С^Ки'-иГ Z0(,o,u') d,Q . /14/ 

Some of the coefficients Gn can be given a simple physical significane, e.g. m 

G°(u') = 2TT J (po,u') D Y D = Es(u') /15а/ 
-1 

is the elastic scattering cross section and 

1 
GJ(U') = 2тг j E°Oo,u')(u'-u) dyj = u') / 15b/ 

-1 

where £ is the average lethargy gain per elastic scattering collision. 
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Furthermore, 

X 
G°(u') = 2тг j yo £°(P0,u') cl|J0 = ZS(u') /15с/ 

where cosOQ Is the average cosine of the scattering angle in the laboratory 
system. Note finally that qQ(u) i s identical with the usual slowing down 
density. 

For isotopes heavier than Al-27, the Fermi-age approximation is used 
in GRACE, i.e. 

qQCu) = F, Is(u) фо(и) , /16а/ 

q ^ u ) = 0 . /16Ь/ 

For isotopes not heavier than Al-27, GRACE uses the Greuling-Goertzel 
approximation. It is described in detail in refs. [lj and- [5], so that only 
the final equations are reproduced here. In this approximation, qm(u) 
satisfies the following equationsi 

% C u ) + Ло = -Ф0 Gl [l - ) , /17а/ 

dq , / dX. \ 
+ Ч - t e t- = -*i GI ^ " -asr- J illb> 

where 

G2 

m 

Comparison of Eqs. /16а/, /17а/, and /15Ь/ shows that in the Fermi-age dqQ 
approximation, the terms XQ — ^ — and dXQ/du are neglected. In GRACE, 
Eq. /17Ь/ for the anisotropic slowing down density q^(u) is used only for 
the three lightest isotopes: hydrogene, deuterium, and berillium. 

According to the approximations described in this section, the 
followina classification of isotopes will be used in later sections /cf. refs. 
[1] " W / : 

- "Fermi elements" are those for which Eqs. /16/ hold; they will be 
identified in corraon by the subscript F. 
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- Greuling-Goertzel elements" or "f-elements" are those for which 
Eqs. /17/ hold; they will be identified by the subscript f. 

- "h-elements" are those for which Eq. /17Ь/ is taken Into account; 
they will be identified by the subscript h. Note that an h-element 
is always a Greuling-Goertzel element as well. 

If an isotope is mentioned in general i.e. without reference to this classifica-
tion it will have the subscript k. The isotopes "known" by GRACE are in 
Table 1. 

II. 3. The multiqroup equations 

The final step in deriving the set of equations which is solved by 
GRACE is the introduction of the multigroup approximation. The group structure 

th 
used in GRACE can be found in Table 2. Let the lethargy limits of the j 
group be uj_i an<^ uj » lethargy width Au^ = u^ - The last 
energy group is always the thermal group. Denote its subscript by Then 

is the total number of lethargy groups as well. /The lethargy limits 
of the thermal group are not fixed in contrast to the other groups./ 

Define the following quantities: 

• J 

u. D 
4>o(u) du /19/ 

/group flux/ 

u. , 3-1 

u. 
= -i J фдоо ű\ = -i \ 'h(u) du 120/ 

UD"1 
/group current/ 

u. Э 
S. D ^ S(u) du /21/ 

V l 

u. .3 
i-l • iC.) du /22/ 

u. . J-l 

hj = h (в, ) ' /23/ 
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Д ^ will be defined later, cf. Eg. /26/./ 

The following isotope dependent quantities are to be defined for each isotope 
к present in the slab: 

= ^ok ( uj) ' / 2 4 / 

Pk j = " ^ I k ( u j ) ' 1 2 5 1 

u. .3 
= ФоС и) d u /26' 

U • i 

where stands for any type of cross section for isotope k. In the 
following, if the subscript к will be omitted from a cross section, this 
means a sum for all isotopes present: 

« J е. , 3 £ 

Furthermore, 

1 f j G l k < u ) 

^ = i i ^ r a u ' u j - l K 

u. 
1 fj GoJ>> 

u j - l k 

1 fj 

U j - 1 K 

u. 
r3 

r k j = - Щ Г ) ' • / 30 / 
3 u j - i 

u, 
f3 

2kj = -ér \ xik(u)du • i^i 3 T, 
u j - l 
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Finally, deEine the total slowing down densities by the equations: 

I 32/ qJ = I ' 

P3 = I ' /33/ 

Now integrate Eqs. /4а/ and /4b/ over the interval (uj_j/ uj) 
bearing in mind Eq. /13/ for • Then one gets that 

lT ф. = Ф. + q . , - q . -BJ. + S . + J . /34а/ 3 3 3 3 D~1 43 3 3 3 

and 

hj J3 - Jj £ > + Pj-1 - Pj + § *з / 3 4 b / 

Eq. /17а/ holds for each o£ the f-elements. Its integration gives 

Ли. 
2 3 

/35а/ 

Л similar equation can be obtained for all h-elements from Eq. /17b/ 

Au., 
2 

/ 35b/ 

If the sum of Ч^Си) f°r- a H Fermi-elements is denoted by qF(u) the sum 
of Eq. /16а/ for all Fermi-elements yields: 

gF3 - k| F ^ -Ш7 • 

In order to simplify these equations to some extent, new notations are 
introduced. If N^ denotes the nuclear density of isotope k, define 
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"kj }:кз - Nk V i ' 1 3 1 1 

^ - Mk <\j ' >38' 

Introducing the quantities defined by Eqs. /37/ to /40/ Into Eqs. /34/ to 
/36/ and rearranging terms in such a way that terms referring to group j 
stand on the left hand side and terms reierr.i ng to group / )-1/ .át. and on the 
right hand side,. one gets the following set of equations: 

Ш 1 + (£j" + Лз T])*i + <J3 - s;i + Ti " qj-i ' / 4 1 a / 

( Ли. \ л / . Ли Л 
у f j + -?1 j*EJ - wf °fj +j = (rfj - -^j'ico-i ' ' 4 i c' 

N 0. . 
Чгц = 'h )'• ~ л„. J <' 3F3 'J Ли. 

Ли.\ / Ли. 
Z, . + -тН- I p, . - N. H. . J. = ( 7. . ^ /р1 . . /41е/ l h3 2 /lhj h Ii3 3 \ 1)3 2 /11),з~1 

These are the basic multigroup equations which are actually solved by 
GRACE.Eqs. /41а/, /41Ь/ and /41d/ are to be taken only once whilfi Eqs. /41с/ 
and /41с/ as many times as there are f- and h-elements present, respectively. 
In Eq. /41а/, the term A_. íT requires some explanation. .In this equation, 
the term aoea not contain the contribution of those inelastic 
scattering collisions which do not transfer the colliding neutron to an other 
group and this is taken into account by the factor A ̂. Thus A^ ф^ gives 
the number of neutrons which are removed from group j by inelastic scattering. 
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Eqs. /41а/ to /41е/ hold for the thermal group, too, but some care 
has to be taken in applying them to the thermal group. Eqs. /41с/ to /41е/ 
are to be left out and in Eqs. /41а/ and /41Ь/, q. = pj 

•th 
= I. =0. 

'th Jth 
Similarly, in the first group pQ = qQ = I — 0. 

The solution of this set of equations is quite simple because there 
is no up-scattering in the epithermal energy range. It starts at j = 1 and 
proceeds up to j = Imagine that the solution has readied some group j. 
Then one knows q^ , p^ , and for all values of f and h, 
and Ij can be calculated from the equation: 

I I, = l EÍ, 
j'=l 3 j'j T3' /421 

where aj'j probability that a neutron scattered inelastically in 
group j' is removed to group j. It can be very simply seen that ф^ and 
Jj satisfy the following set of equations: 

aii ф: + ai2 Jj - ai3 

a21 +j + a22 Jj = a23 

/43а/ 

/ 4 ЗЬ/ 

where 

41 тЛ + A. ÉÍ + 3 j 3 I f 
ÜílVL 
r « + 

.Ли, 
2 

+ I k«F 
Nk Qkj 

Ли. /44а/ 

a12 = B /4 4b/ 

t, , = S . + I. + q_ , , + У 13 J ] 4F,3-1 £ 
Ли. I. 

rfD + 
Ли. 
2 

/44с/ 

.21 
- Ж 3 /44d I 

22 
m N. It. . h . 1 . - У N, .M. . + У — h 

3 3 i k k3 Й Ли, 
Zhj + 2 

/44е/ 

'23 I h 
Ли. 

Ли. 
«3 2 

h,j-l / 4 4f / 
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AfLoi determining Ф.. and űj from Kqs. /43/, the slowing down densities 
CJfj ' CJFj ' a n d phj C a n b e c a l c u l a t G d f r o m 1:'4S- /41с/, 141d/ and /41 e/, 
respectively. Then the solution proceeds to the next group and the whole 
procedure is repeated for it. 

The solution of .Eqs. /41/ is the heart of the code GRACE. This is 
fitted into the framework of various calculations and iterations. In the 
next two sections, these will be described. 

II.4. Core regions 

One of the main roles of GRACE is to calculate group constants for 
few-group critical!ty codes. For this purpose the best value of the buckling 
В is that at which the slab is critical. In case of core regions GRACE 
carries out an interation for finding out this value of B. Of course, this 
interation is optional. 

Prior to iteration, one must know whether a real or an imaginary 
buckling has to be searched. If the core composition is such that km > 1, 
it is sure that there is a finite slab thickness at which this given core 
composition is critical. In this case, the iteration searches a real buckling. 
If кот < 1, no cosine solution exists for the given composition and an ima-
ginary buckling has to be found. Thus, first of all, the buckling В is set 
equal to zero and Eqs. /41/ are solved, as it is described in the previous 
section. Fom the solution, k^ is calculated using Eq. /8/. кет is in itself 
an interesting quantity but in GRACE it is used only to decide whether real 
or imaginary buckling exists. In case of real B, Eq. /10с/ applies for 3 
and Eqs. /41/ hold while in case of an imaginary B, Eq. /10d/ applies for 6 
and the sign of В has to be changed to minus in Eq. /41а/. What actually 
happens in GRACE is that the sign is made negative in.the imaginary case and 
the absolute value is taken for В in Eq. /41Ь/. This change of sign may be 
proved strictly [з] but can be simply made plausible. The term BJ^ represents 
the leakage in the neutron balance. If kro > 1 , this may be positive but if 
кда < 1, there is a deficit in the neutron balance which has to be compensated 
by a net in-leakage. That is why this term is negative in the latter case. 

Once this decision has been made, the criticality search can be done. 
The user of the code is supposed to specify an initial value for B. As the 
first step of the iteration, Eqs. J41/ are solved for thip value of the buckling 
and from the solution kgff is calculated using Eq. /8/.jlf k

eff f the 
buckling В is changed until k

eff = 1 is reached. The relevant formulae 
of the iteration are those of ref . [з] . Suppose that n steps of iteration 
have been completed yielding ^ef£ n and a current J^ n> Then the new 
value B

n +i o f t h e buckling is calculated from the following equation: 
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В2.ы = П2 / 1 + 1 /45/ 
" 1 к rF log Рмт e£f,n J NI, ,п 

where P N L is the non-leakage probability given by the equation 

^ th 
v = 1 ± В | л . . /46/ NTj,n n j,n 

In this last equation, sign + stands for imaginary buckling while sign - for 
real buckling. Of course, the PNJ as given by Eq. /46/ has a real physical 
significance /as the non-leakage probability/ only for real buckling. 

This iteration proved to converge very fast in practice. 
It is stopped 

- when the inequality 

In ,, - В I • J_!2±l nL_ < E . /47/ 
lBn+ll 

is fulfilled where e. is specified in input, 
- or when the number of iterations has reached a maximum number 

/specified in input/, 
- or when В ,, and/or P.,T becomes negative in Eq. /45/. These n*rj. JMi/,n 

last two cases indicate generally that something was not well specified in 
input e.g. the initial value of the buckling is too large. The second criterion 
may be used to omit the iteration: if the maximum number of iteration is 
chosen to be 1, Eqs. /41/ will be solved only once for the В specified in 
input and, consequently, all further results of the code correspond to this 
buckling. 

II.5. Reflector regions 

As pointed out at the beginn ig of Section II. the reflector can not 
be expected to have a space-independent neutron spectrum. For this reason, 
Eqs./41/ based on the trial function in Eq. /2/ can not be used in their original 
form. Ref. [з] suggests a synthetic treatment which modifies Eqs. /41 only 
slightly and can be expected to give acceptable group constants. 

An artificial but space dependent neutron flux may be written in the 
following form: 
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ф(ц,и,х) = e" B ( u ) X ф(и,и) . /48/ 

It this trial function is inserted into Eq. /1/ then one gets instead of Eqs. 
/4/: 

ZT(u) 4>0(u) = LQ(u) + B(u) J (u) + I(u) , /49а/ 

IT(u-) h(u) J(u") = L-^u) + фо(и) 149b/ 

because, in this case, Ф-^и) is real so that ^(дО = the boundary of 
core and reflector the leakage from the core is B J

c o r e( u)« This is set equal 
to B(u) before the given reflector a core region has been inves-
tigated by the code the lethargy dependence of this leakage is known. Since in 
a reflector the fission source term b'(u) of Eq. /4а/ is zero, the leakage of 
the core normalized to unity may be denoted by S(u): 

В J fu) 
s ( u ) = —corej—_—— ^ / 5 0 / 

\ В J (u) du J core4 ' 

This is not merely a question of notation but it facilitates the formulation, 
of the equations. Now Eqs. /49а/ and /49Ь/ can be written as 

ET(u) Фо(«0 - Lo(u) + S(u) + I(u) , /51а/ 

T BCu) ф (u) 
E (u) h(u) J(u) = L-^u) + j-2 /5lb/ 

and one has the additional equation 

B(u) J(U) = S(U) . /51C/ 

If the Greuling-Goertzel and multigroup approximations are introduced 
again in Eqs. /51/ almost the same equations result as Eqs. /41/. The only 
modifications are that the buckling is group dependent and Eq. /41a/ now 
reads as 

+ z j K = sj + ia + v i • /52a/ 
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The multigroup form of Eq. /51с/ is clearly 

B. J. = S. . /52b/ 3 3 J 

As a consequence of these modifications, Eq. /43а/ does not contain 
J^ since it is missing from Eq. /52a/. One now has 

all *j = a12 / 5 3 / 

or 

ф. = — / 5 4 / 
Ъ a H 

where the coefficients a have been defined by Eqs. /44/. The second equation 
/i.e. Eg. /43b// is used to determine the group buckling B^ • From Eq. /52b/, 
Jj can be expressed as 

J. = /55/ 
3 

which inserted into Eq. /43Ь/ leads to an algebraic equation of second order 
for В .: 3 

2 Ф1 
B3 3 + Dj W23 " a22 Sj = 0 

B. 
since a 2 1 = /cf. Eq. /44d//. В.. is the positive root of Eq. /56/: 

"a23 + 
В . = — 

2 4" 1 
a23 + 3 *22 Sj 

2 
3 'j 

/57/ 

Once В^ is known, J_. can be obtained from Eq. /55/. This completes 
the solution of the set of equations consisting of Eqs. /52а/, /52Ь/, and /41Ь/ 
to /41е/. It must be added that when using the B^ approximation, OÍ22 
depends on B^ through hj as it can be seen from Eqs. /44е/, /10Ь/, • and 
/lOd/. In this case, solution of Eqs. /56/ requires a' simple iteration for all 
values of j. 

As a matter of fact, the best agreement with experimental results has 
been obtained when the P^ approximation was used for reflectors. 
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II.6. Microgroup constants 

The multigroup equations solved by GRACE contain material constants 
defined in Section II.3. They are stored in the 40 group GRACE library for 
the isotopes listed in Table 1. For cross sections which are smooth over a 
GRACE group, Eq. /26/ can be approximated as 

u. гЭ 
Á5J ) Ek ( u ) d u " Nk °kj * ' 5 8' 

Uj"l 

For groups in which cross sections are smooth these averages a^j are' stored 
in the library. 

In case of resonance materials, however, the approximation made in Eq. 
/58/ can not óé tolerated in those groups which contain resonances. For such 
resonance groups the flux weighted average in Eq. /26/ depends on the presence 
of other isotopes and of lattice effects. 

There is another energy range in which the presence of other isotopes 
and lattice structure influence the group constants of a given isotope: this 
is the thermal energy range. 

Now for isotopes having smooth cross sections in the epithermal. 
energy range, macroscopic cross sections are calculated by multiplying, the 
nuclear density of the given isotope by the microscopic group constants found 
in the GRACE library. The same applies for resonance isotopes, too, in groups 
not containing resonances. 

Resonance absorption and fission can be taken into account in GRACE 
in two different ways. 

II.6.a. RIFFRAFF type resonance treatment 

The simplest way to treat resonances is to calculate directy, for the 
given composition and lattice, the flux Ф(г»и) as a function of space and 
energy inside the elementary cell and then to form following averages: 

u, 
du dr 

V , u . . 
о = C e l 1 r1 u, /59/ 

Г -3 . 

Vcell uj-l 
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where Nk is the homogenized nuclear density of isotope k. For homogeneous 
cores, of course, space averaging disappears. / 

Averages of the type of Eq. /59/ have to be calculated by separate 
codes. For two region cylindrical cells, this can be done by the code RIFFRAFF, 
for homogeneous systems by the code KA04 [б]. If this resonance option is used 
in GRACE, averages of the absorption, fission and scattering cross sections 
as expressed by Eq. /59/ have to be provided in input for all resonance elements 
present in the system and for all of their resonance groups. Table 3. shows 
those elements which are considered in GRACE as resonance elements together 
with indication of their resonance groups. 

These input cross sections are then used in GRACE as if they would 
have been taken from the library. For both resonance and non-resonance groups, 
Eqs. /41/ apply when using this resonance option. 

II.6.b. BIGG type resonance treatment 

Another treatment of resonance absorption and fission is described in 
refs. [2j and [jj] which involves some modifications of the set of equations 
/41/ but requires a simpler input preparation. This treatment is based on 
semi-empiri.cal effective resonance integrals. The main ideas and the relevant 
formulae are the following. 

An effective resonance integral for a given resonance is defined as 
a resonance integral which multiplied by a fictitious flux or the so«called 
"switch off flux" gives the reaction .rate per absorbing atom for the given 
resonance. The expression "switch off flux" means the flux which would exist 
in the absence of the resonance. 

. Resonance integral for a GRACE microgroup can be considered as a 
resonance integral for a resonance peak, because the microgroup structure of 
GRACE is such that generally one big resonance peak and several small peaks 
fall into one microgroup. GRACE is based on the semi-empirical formulae of 
Hellstrand /cf. Section II.7./ which give single pin resonance integrals for 
the whole energy range: Rgj,. The lattice resonance integrals Rĵ  for the 
resonance energy range are obtained from the equation 

RL = a(RSP - rSP) l6°l 
H 

where R g p is the high energy contribution to the single pin value and a 
is the mutual shielding factor of the fuel pins in the lattice. This lattice 
integral R is then distributed among the different resonance groups by 
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multiplying it by a distribution 1 motion normalized to unity: 

AR. = >)>. RT /61/ 3 'j L 

where 

Jth 
l Ф. = 1 . /62/ 

j=l 3 

The fictitious flux is calculated as follows. If the resonance is 
switched off, the absorption cross section can be neglected with respect to 
thé scattering cross section rrnd then Kg. /4а/ may be written in the following 
form: 

Ф 0 0 0 = Lo(u) - BJQ(u) /6 3/ 

where subscript о at ф and J indicates that the solutions Df Eq. /63/ are the 
fictitious flux and current. At the moment.when the resonance absorption in 
group j is calculated, the flux and current for groups' 1 , 2 , /j — 1 / are 
known. For this reason, ^(u^. ^) can be calculated. An approximate expression 
for it is given in ref. [2]/: 

L ( u ) = у 1 I Zf íi_ Г e"(Uj-l"U^ d u / 6 4 / o^ 3-1 J £ l-aR j' ki Auĵ  J 
Au^ 

where 

Я,. = 
Ak - 1 

к \ A. + 1 к 

for element к with mass number A^ and summation for i starts from the 
microgroup containing the lethargy value + logo^) an<3 ends at group 
/j-1/. A heuristic interpretation of expression /64/ may be given as follows: 
^ki Ф^/Ли^ Is average scattering rate in microgroup i by element к 
and 

1 - ci. 
K Au. x 

г(из-1"и) du du' 

is the probability of transfer from group i to a lethargy in the interval 
du' at The expression /64/ sums up the contributions of all elements 
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and lethargy groups. 

' Furthermore, if there is no resonance absolution, it may be assumed 
that the flux and current, in group j nr° equal to the flux and current at 
the lethargy uj_j • i s f-urL'ier approximated by the average .current 
in microgroup Ij-11 i.e. 

J fu. > Au. . D-l 

Then Eg. /63/ may be rewritten as 

which gives the fictitious flux Ф ^ for the resonances in group j 

ф . pi 1 
0 3 • E? ^.(«iJ - В jLL-J, 

Auj-1 
/65/ 

Now, according to the definition of the effective resonance integrals, 
the absorption rate in group j is given by the equation 

(Ш0. - I Д . + o j /66/ 

In ref. [33, a better approximation is suggested for the reaction rate (RA)j 
instead of Eq. /66/. This reads as 

(RA) . = Q . ^ (I - P.) /67/ 

where Pj is the resonance escape probability for microgroup j. It is shown 
[3] that a good approximation for P^ .is 

03 
j1 

/68/ 

If reaction rates for a given isotope are needed in microgroup j, this can be 
obtained approximately from the formula 
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N, AR,Z 

к 

where superscript Z may indicate capture or fission. 

Finally, it must be noted that when integrating Eq. /4b/ for the 
:val 

type 
interval Ди^ /in order to get the multigroup equations/ averages of the 

u. 
z k j = j : i z k ( u ) J ( u ) d u / ю / 

3 U. 1 

ought to have been introduced instead of averages defined by Eq. /26/. So far 
these averages have been tacitly approximated as 

u. ü. 3 
E k j = j r J Zk(U> r ^ ) d U ^ I t i Ф0(и) du = r.k. /71/ 

3 uj-l ° 3 uj-l 

The adequacy of this approximation is proved only by practice. In order to 
remain at the same level of approximation, the best way of treating resonances 
in Eq. /4Ь/ is the approximation 

Uj 
I Nk \ °kCu) JCU> d u « 4j-i C1 - pj) ' / 7 2 / 

uj-i ' 

Now when using the.BIGG-type resonance option, Eqs". /41а/ and /41Ь/ 
are modified to 

BJ . + + A. + q. = S, + I. + q.., - q . ^ (l - P.) /73а/ 

( h3 * I \ Jj + pj = рз-1 - hj qj-i C 1 " ^ V I / 7 3 b / §* j + 

A T where Lj and contain only the contributions of smooth cross sections. 
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11.6.с. Thermal group constants 

Beside the resonance region, the other energy range in which spectrum 
variation inside a GRACE microgroup and lattice effects are important is the 
thermal energy range. These effects are not taken into account by GRACE. There-
fore, a separate code is needed calculating the same cell average as expressed 
by Eq. /59/ for the thermal energy range. This can be done e.g. by THERMOS. 
Of course, for a given value of the buckling В the fast spectrum is complete-
ly independent of the thermal group. This means that if no buckling iteration 
Icf. Section II.4./ is required and only the fast neutron spectrum needs be 
calculated the values of the thermal group constants are irrelevant. 

Thus, the following quantities are to be supplied in input: 
, if , . , M. (= cosQ ) . Note that these macroscopic 

3th 3th 4 3th Jth \ Dth ° 1 
cross sections contain the contributions of all isotopes present in the cell. 

In connection with the thermal group, a further information must be 
given in input: its energy limits. For this purpose it is enough to specify 
the value of because GRACE makes a single group from all microgroups 
numbered by j^r jth+1'' ' " ' 4 0 i n Tal:>le 2* A proper choice of can 
assure that there should be no up-scattering from the thermal group. 

It must be mentioned here that, independently from the foregoing 
equations, further thermal data are required in case of core regions.. These 
are macroscopic cell averaged thermal absorption and fission cross sections 
for each fissionable and fertile isotopes present in the cell. This informa-
tion will be needed in the calculation of spectrum indices /see Section ill,/, 

11.7. The DATAPREP subroutine 

A special subroutine is included in GRACE in order to facilitate 
input preparation. This is based on formulae of ref. [4] so that they are 
not reproduced here. The functions of subroutine DATAPREP are: 

3 
- From cell data .and material densities /which are given in g/cm / 

it calculates homogenized nuclear densities. The lattice may be 
triangular or square, the cell may be composed from a fuel rod, 
a clad surrounded by moderator. 

- It calculates a fast advantage factor which takes into account 
that at high energies the flux is peaked in the fuel rod owing to 
the fission source inside it. Cross sections of isotopes not 
lighter than Th-232 are multiplied by this factor in the highest 
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7 microgroups /cf. Table 2./. 
- Finally, subroutine DATAPREP calculates the single pin resonance 

integrals and mutual shielding factors needed by the BIGG-type 
resonance treatment /see Section II.6.b. / for the fuel temperature 
specified in input. This latter function of the subroutine is 
optional i.e. if the user has his own resonance integrals and mutual 
shielding factors he may give them in input and the code will use 
them. It should be noted that the subroutine calculatcs resonance 
data for U-235 and U-238 in the form of uranium metal or UC^J for 
the other isotopes, resonance data have to be specified by the user. 

The use of subroutine DATAPREP is optional. If it is not used /e.g. 
for reflector regions, this must always be the case/, then homogenized nuclear 
densities, the fast advantage factor, and single pin resonance integrals and 
mutual shielding factors /if there are any resonance isotopes/ have to be 
specified in input. 

III. User's manual 
III.l. Input preparation 

The input subroutine of GRACE has been'written in such a way that the 
input preparation requires only data which are always available for a reactor 
composition and necessitates a minimum of preliminary calculations to be 
carried out by hand.The overall organization of the code permits to solve any 
number of problems one after the other. The only restriction is that the first 
problem has to deal with a core region because the source for a reflector 
region is calculated using the leakage from the region previously treated. It 
should be noted that if several reflector regions follow each other the 
spectrum of their source will be identical. This is a direct consequence of 
the energy dependent buckling approximation. 

In the following, a detailed description of•the input preparation 
will be given. Input data are to be punched on paper tape. But in order to 
make understanding of the rules of input preparation easier, the expression 
"card" will be used for one record /i.e. one line/ of the paper tape. The format 
of each card will be given in FORTRAN notation. 
s t 1 card I10A8/: The problem is given a title the length of which may not 

exceed 80 characters. 
nd 2 card I4L4, 214, E4.0,I4, 2E8.4,7I4/: This card contains the most important 

control variables of the problem. 
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char. 1 to 4: Punch T /=True/ for approximation and F /=False/ 
for B^ approximation. 

char. 5 to 8: If the RIFFRAFF-type resonance treatment is used, punch T 
while fór the BIGG-type treatment punch F. 

char. 9 to 12: If T is punched the code will compute few-group constants 
also for the infinite medium spectrum. For F this is not 
done. 

N.B. In case of reflectors it is immaterial what is punched in these 
two fields. 
This field controls the output. For T , detailed slowing 
down densities will be printed out in the output for all 
elements while, for F, this will be left out. 
The value of this variable /NHOM/ controls the lattice 
homogenization /cf. Section II.7./. If it is 
the case of no ho;nogenization; 
the code does the lattice homogenization and calculates 
resonance integrals and mutual shielding factors using 
sem.i-empirical formulae; 
the code does lattice homogenization without calculating 
the resonance data. In this case, these latter must be 
supplied by the user. 

N.B. If the RIFFRAFF option in used, only О or 2 are acceptable. 
Furthermore, for reflectors а О must always be punched. . 

char.21 to 24: For a core region punch 1, for a reflector punch 4. 
char.25 to 28: For value of e mentioned in Section II.4. /Usually e = 

= 10~5/. 
char.29 to 32: The maximum number of iterations. Generally, it must be a 

positive integer. If it is -1 calculations will be done only 
for the infinite medium /in case of core regions/. 

chari 3 3 to 40s This field contains the buckling в in cm-1. This В will 
be the starting value of the buckling iteration. 

N.B. For reflector reqions this value is not used. It must not be 
zero nor negative for core regions. /The code corrects 
for such input errors./ Practice has shown that the buckling itera-
tion by Eq. 145/'may diverge if too larcje a starting В is used. 

char. 41 to 48: The fast advantage factor. 
N.B. Its value has to be specified only for core regions and only if 

NH0M=0 was punched in char. 17 to 20. 

last 
char. 13 to 16: 

char. 17 to 20: 

0: 
1: 

2 : 



- 25 -

char. 49 to 52: The number of macrogroups in the calculation of few-group 
diffusion constants. It may be any integer number between 
1 and б. 

char. 53 to 56: The highest microgroup index of the first macrogroup /cf. 
Table 2/. In other words, this specifies the lower energy 
limit of the macrogroup. 

char. 57 to 60: The highest microgroup index of the second macrogroup. 
and so on for each of the macrogroups. 

N. В, As it was pointed out in Section II.6.c. the microgroup index 
j^k of the thermal group is given in input. Now is the 
last inacrogroup boundary. Thus, strictly speaking, the defini-
tion of the last macrogroup boundary is somewhat different from 
the definition of the other ones. If one-group constants are 
needed punch nothing else than in char. 53 to 56. 

The subsequent cards depend on what was specified for NHOM. For this 
reason two cases must be distinguished: a/ when the code does homogenization 
/NHOM = 1 or 2/ and b/ when it does not / NII9M = О/. 

a/ No homogenization 
If the user supplies homogenized nuclear densities /what is 

always the case for reflectors/ the third and subsequent cards contain informa-
tion concerning the elements present in the system under investigationi The 
format of each card is: /А8, 3E8.4,I2, 2E8.4,I2/. For each element it is 
specified: 
char. 1 to 8: The identification symbol of the element which must be exactly 

the same as given in Table 1. No space should be punched in 
front of the element identification. 

n 1 л 
char. 9 to 16: Homogenized nuclear density of the element in units of 10 /cm . 
char. 17 to 24: Single pin absorption resonance integral for the total energy 

range in barn. 
char. 25 to 32: Mutual shielding factor for absorption. 
char. 33 to 34:. The index of the absorption <1/ function /cf. Eqs. /61/ and 

/62// to be used for the element. The total number of ф 
functions available for the various resonance elements is 
given in Table 3.. 

char. 35 to 42: Single pin fission resonance integral for the total energy 
range in barns. 

char. 43 to 50: Mutual shielding factor for fission. 
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char. 51 to 52: The index of the fission ф function to be used for the 
element. 

Some important remarks have, to be made concerning these element 
cards : 

- The elements must be punched in the same order as they are listed 
in Table 1. 

- The sequence of the element cards is finished by a blank card if 
this problem will be followed by other ones. If this problem is 
to be the last one punch the characters END in the first three 
positions of the finishing card and leave blank the rest of it. 

- The maximum number of elements permitted in one problem is 18. 
- The number of Greuling-Goertzel elements /cf. Section II.2./ 

may not be гего and may not exceed 8. 
- The maximum number of Fermi-elements permitted in one problem is 

10 when the RIFFRAFF resonance option is used. 
- Only resonance elements may follow the first resonance element. 

GRACE considers an element to be a resonance element if the single 
pin resonance integrals are different from zero. /If NHOM = 1 or 
2 the indices of the ф functions are used for the same purpose./ 
A fertile element is defined as a resonance element for which the 
fission resonance integral is zero. The maximum number of resonance 
elements is 7, and 4 of them may have resonance fission. 

- If the DIGG-type resonance option is used the indices of the 
ip-functions may not be zero for resonance elements. 

bI Homogenization 
If the lattice is homogenized by the code /NHOM = 1 or 2/ the third 

card contains generalities about the fuel lattice. Its format is /А8, 6E8.4/: 
3r<^ card 
char. 1 to 8: Type of the lattice. For a square lattice punch the characters 

SQUARE, for a triangular lattice punch the characters TRIANGLE. 
Nothing else is accepted, 

char. 9 to 16: Lattice pitch in cm. . 
char. 17 to 24: Radius of the fuel rod /without clad!/ in cm. 
char. 25 to 32: Thickness of the clad in cm. If there is no clad punch zero. 
char. 33 to 40: Fuel temperature in K°. 
char. 41 to 48: Moderator temperature in K°. If a zero is punched for it the 

code puts it equal to the fuel temperature. 
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char. 49 to 56: Enrichment of the fuel. If it is given in atom % punch it 
with a. positive sign while a negative sign means an 
enrichment given in w/o. Of course, if the fuel is not uránium 
or if the densities of the individual uranium isotopes are 
known for the user the fuel enrichment need to be specified. 

1.1. 
The 4 and subsequent: cards contain element data. Their format is 

/А8, 1Х,Е8.4,212.4Е8.4/. 
char. 1 to 9: The identification symbol of the element, 
char. 10 to 17: Density of the element in g/cm3. 
char. 18 to .19: Index of the ф function for absorption /see Table 3/. 
char. 20 to 21: Index of the i|> function for fission. 
char. 22 to 29: Single pin absorption resonance integral for the total 

energy range. 
char. 30 to 37: Mutual shielding factor for absorption. 
char. 38 to 45: Single pin fission resonance integral for.the total energy 

range. 
char. 46 to 53: Mutual shielding factor factor for fission. 

The following rules apply to the preparation of these elemént cards: 
- The cell homogeni.za tion may be required from the code only for 

triangular or square lattices and the use of the semi-empirical 
formulae of resonance data only for U02 or uranium metal. 

- As element identifications, the symbols listed in Table 1 may 
be used. Besides them some others are also accepted by the code. 
If the fuel is U02 punch OXIDE, if it is uranium metal punch 
METAL. If the cell contains water the symbol 1120 may be used. 
When using any of these symbols, of course, the density of the 
oxide, metal or water is given in char. 10 to 17. If NIIOM = 1 

ncl 
• was punched on the 2 card one of the symbols OXIDE or' METAL 
must be used while for NH0M = 2 their use is not compulsory. 

- If the symbols OXIDE or METAL are used they must be punched on 
th 

the • 4 card /i.e. the first element card/. Resonance data on 
this card refer to U-235. The resonance data for U-2 38 are given 
on the next card. Of course, positions 1 to 17 may be left blank 
on this card. 

- The elements present in the fuel are punched first. The sequence of 
fuel cards is finished by a card containing the symbol CLAD in the 
first five positions. After this.card follow the clad elements. 
Their sequence is finished by a card containing the symbol MODERATOR 
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in'the first, nine positions. After this card follow the moderator 
elements. Their sequence is finished by a blank card if this prob-
lem is followed by other ones while by a card containing the symbol 
END in the first three positions if this is the last problem. If 
there is no clad the sequence of fuel cards is finished by the 
symbol MODERATOR and clad is not mentioned at all. 

- Apart from the above restrictions the order of the non-resonance 
elements is arbitrary. As to resonance elements, their order must 
correspond to the order in Table 1. As a consequence of this, 
Th-232 and U-233 may not be present if the symbols OXIDE or METAL 
are used. Any non-resonance element may be mentioned several•times. 

- The maximum number of element cards is !54. /The symbols OXIDE, 
METAL, and 1120 are equivalent to 3,2, and 2 cards, respectively./ 
The same"restrictions apply to the maximum number of elements in 
the cell as in the case of no homogenization /i.e. 8 f-elements, 
lO Fermi-elements when using the RIFFRAFF-type resonance option, 
all elements: 18/. 

- An element is considered to be a resonance element if the indices 
of' the Ф functions are different from zero /the single pin 
resonance integrals are used for the same purpose if NHOM = 0/. 
For a fertile element the index of the ф function for fission 
is zero. 

- The indices of the ф functions must be given for all resonance 
t 

elements even when NHOM = 1 /i.e. when resonance integrals and 
mutual shielding factors are calculated by the code/. If NHOM = 2 
and the BIGG-type resonance option is used, all resonance data 
have to be specified for all resonance elements. 

RIFFRAFF input 

In case of the Bigg-type resonance option, all resonance data have 
been given on the element, cards but not só if the RIFFRAFF option is used. 
Therefore the blank or the "END" card finishing the sequence of the element 
card is followed by the homogenized microgroup constants for the resonance 
groups when the RIFFRAFF option is used. In connection with the element cards, 
it was explained how an element is declared to be a resonance element. 
Although resonance itegrals and ф functions are not necessary when using 
the RIFFRAFF-type resonance treatment some arbitrary non-zero value must still 
be punched for them only to indicate the resonance character of the element. 
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First RIFFRAFF card /12/: in characters 1 to 2 is punched the number of 
those elements for which RIFFRAFF input is given. This number 
must be equal to the number of resonance absorption elements. 

The next cards are to be punched for all RIFFRAFF elements. 
Identification card /A8,I3/: 
char. 1 to 8: identification symbol of the element. 
char. 9 to 11: number of resonance groups for which RIFFRAFF cross sections 

will be punched. This card is followed by the 

Resonance group cards /I3,3E12.6/ the number of which must be equal .to the 
number punched on•the identification card. 

char. 1 to 3: index of the GRACE microgroup for which homogenized cross 
sections are given on this card; 

char. 4 to 15: absorption cross section in barns; 
char. 16 to 27: fission cross section in barns; 
ihar. 28 to 39: scattering cross section in barns. 

N.B. The order of RIFFRAFF elements must be the same as that of the 
resonance elements in Table 1. For a given element, the'micro-
group having the smallest index should be punched first. Other-
wise the order of microgroups is arbitrary. 

Thermal data 

The last cards contain cross sections for the thermal group /cf. 
Section II.6.с./. They follow the RIFFRAFF cards or, when the BIGG-type 
resonance option is used, the blank or the "END" card. The format of each 
thermal card is /7Е8.4/. 

st • -1 1 Thermal card: macroscopic cross sections in cm 
char. 1 to 8: E^ 

3 th 
char. 9 to 16: E® 

H h 
char. 17 to 24: M. 3th 
char. 25 to 32: (vEF) . 

• ^th 
For reflector regions this fcard completes the input of a problem. 

In case of core regions, two more cards are punched: 
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2ntl Thermal card: 

char. .1 ho 8: contribution of the first генопапсо element to Г.ц in cm 'S 3 th 
char. 9 to 16: contribution of the second resonance element to in cm J tli 

etc. 
r~f\ F 3 Thermal card: contributions of all. resonance fission elements to I. 

2 
/not to (vX1J . !/ punched in the same way as on the 4 3 th 
2nd thermal card. /Only fissionable elements are mentioned 
on this card./ 

Ы.В. The thermal absorption and fission cross sections of any resonance 
element may not be punched to be the same because the code divides 
by their difference. 

Finally, it is noted that the input subroutines of GRACE check the 
input data in order to prevent execution errors in the course of the calcula-
tions. If mistakes are discovered in the input the' code prints out an error 
message and turns to the next problem. Of course, the code is not protected 
against all possible input errors but only the most commonly encountered ones. 

III.2. Output description 

The output of GRACE is self-explanatory for those who are familiar 
with its algorithm. Therefore, a brief summary of output results is sufficient. 

t 

First, all input data are reproduced in the output. The code does 
this before solving the slowing down equations. Thus the user has this even 
if the code finds some errors in the input data. In case of a detected input 
mistake, the code output is finished by the error message indicating the nature 
of the mistake. 

Next follow the results of the iteration. For core regions, they are 
introduced by the value of the infinite multiplication factor and, optionally, 
few-group diffusion constants, etc. /see later/ for the infinite medium 
spectrum. For each step of' the iteration the code prints out: buckling B, 
keff' PNL /46//, fractional change of B. For reflector regions, there 
is no iteration unless B^ approximation is used. Therefore only some final 
results are printed: the total number.of iterations /if any/, average value 
В of the B.'s, and 3 

max(B.j) - min(Bj) 
В 
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Then the most important results of GRACE are printed: the few-group 
diffusion constants. These are: 
Group flux: 

Фм - Л *j /uf w jeM 3 

where summation for j goes for microgroups in macrogroup M. 
Group leakage: 

V = l В J ' /75/ 
j ем J 3 

Macrogroup cross sections for absorption: 

and for fission 

I & Ф • 
, E J6H 3 3

 / 7 6 / АМ Ф М 

• i W i ' 

Of course, in case of the BIGG-type resonance treatment, the contributions 
of resonance absorption and fission in Eqs. /76/ and /77/ are taken into 
account according to Section•II.6.b. 
Diffusion constant: 

JEM 

Fission spectrum: 

Removal cross section: 

XM = I S /79/ 
jeM •> 

Q R + I R 

^RM - " Ф * /80/ 
M 

R R 
where QM and IM are the removal rates from macrogroup M by elastic and 
inelastic scattering, respectively. • 
Energy exchange matrix: 
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P _ V - M + V > M ,/81/ 
M VM M' RM' 

where 0.., .. and are removal rates from macroqroup M' to mac'ro-M -VM M M 
group M by elastic and inelastic scattering, respectively. The calculation 
of these removal rates is detailed in Appendix A. 

Finally, effective cross sections are printed out for a 1/v cross 
section: 

I 1/v. Ф . 
):l/v = jCM 3 3 / 8 2 / 

M 
where v^ is substituted in cm/sec i.e. 

1_ = 1.451.10~6 / 1 1 
v. Ди. \ 7ST7 /Е. ' 
D J • \ 3 3-1. 

/83/ 

because E is measured in EV. 

Beside macrogroup constants, GRACE prints out the following micro-
group data: фj , Jj, В^, absorption rate, production rate, leakage rate, 
total slowing down density. At the user's option, all•elementwise slowing 
down densities are printed out as well. 

For comparisons with experiments, the following integral spectral 
indices are also calculated based on fomulae of ref. [3J. 

Resonance escape probability: 

qi - 1 
- - T H - /84/ 

Fast fission factor: 

PNL 

Í£ff . / 8 5 / 

I 
vEfiss(u) d u 

F where contains contributions only from resonance fission elements, fiss J 
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, .. capture in all fertile elements Conversion ratio = ^ 

absorption in all fissile elements 

Elementwise quantities: 

fissions in the fertile element 
6fert = — fissions in all fissile elements 

r . _ epithermal fissions in the fissile element 
fiss -

thermal fissions in the fissile element 

_ epithermal captures in the fertile element pfert ~ thermal captures in the fertile element 

_ epithermal captures in the fissile element 
Pfiss - thermal captures in the fissile element' 

III.3. Machine requirements 

GRACE requires a memory capacity of 20700 words and a scratch 
magnetic tape on the ICT—1905 computer. This tape is needed because GRACE 
is an overlay program. In addition, a second magnetic tape desk is necessary 
for the cross section library. The output of the code for a problem is not 
more than 12 line printer pages. 

The running time for a problem is rarely more than 2 minutes. For 
reflectors, it is about 1 minute. 
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Table 1. 

List of GRACE elements 

1 H-l 
2 H-2 
3 BE-9 
4 B-NAT 
5 B-10 
6 C-12 
7 0-16 
8 AL-27 
9 ST. STEEL 
10 . ZIRCAL0Y 
11 - CD-NAT 
12 XE-135 
13 SM-149 
14 SM-151 
15 BI-209 
16 TH-232 
17 U-233 
18 U-235 
19 U-238 
20 PU-239 
21 PU-240-
22 PU--Í : 
23 FISSIUM 
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Table 2. 
Group structure of GRACE 

1 7,189.106 0,33003 0,33003 • 
2 5,169.106 0,65991 0,32988 
3 3,716.106 0,98994 0,33003 
4 2,671.10^ 1,32013 O,33019 
5 1,92.10^ 1,65026 O,33013 
6 1,381.10^ 1,97978 0,32952 
7 9,926.105 2,31001 0,33023 
8 8,2085.105 2,5 0,18999 
9 5 , 1 3 . Ю 5 2,97006 ' O,47006 

10 3,688.10^ 3,30008 0,33002 
11 2,652.10^ 3,62985 0,32977 
12 1,906.105 3,96016 0,34031 
13 1,37.105 4,29036 0,33020 
14 5,572.104 5,19000 0,89964 
15 2,265.104 6,09018 0,90018 
16 9,21.103 6,99005 0,89987 
17 5,5.308.103 7,5 0,50995 
18 1,522.103 8,79031 1,29031 
19 6,19.102 9,68999 O, 89968 
20 2,517.102 10,5899 0,8999 
21 1,9.102 10,8710 0,2811 
22 1,35.102 11,2128 0,3418 
23 1,1.102 11,4176 . О,2048 
24 8,2.101 ' 11,7113 0,2937 
25 Б ^ . Ю 1 11,9749 0,2636 
26 4,5.101 12,3114 0,3365 
27 З ^ . Ю 1 12,6523 0,3409 
28 2,6.101 12,8600 0,2077 
29 2.101 13,1223 0,2623 
30 1,5.101 13,4100 0,2877 
31 1,1.101 13,7202 0, З Ю 2 
32 8,0 14,0386 0,3184 
33 5,4 , 14,4317 0,3931 
34 3,15 14,9707 0,5390 
35 1,84 15,5083 0,5376 
36 IF 4 15,7816 0,2733 
37 6, 25.10~1 16,5881 0,8065 
38 4,0.10"1 17,0344 0,4463 
39 2,0.10*"1 17,7275 0,6931 
40 0 0 -
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Table 3. 

Name of element Resonance groups Number of ф . functions Name of element Resonance groups 
absorption fission 

TH—232 17 - 29 1 -

U-233 0 0 
U-235 27 - 37 8 8 
U-238 17 - 33 30 -

PU-239 0. О 
TU-240 0 -

PU-241 0 О 

APPENDIX A 
Calculation of removal rates 

J.et the limits of macrogroup M be in energy > E
M i 

lethargy < u^ and in microgroup index (зм_1 + -0 — T'ie contribu-
tion of the inelastic scattering is easy to calculate: 

хм = I I. aij I 8 6' •jen i>3M
 3 3 3 

and 

IM'-M = Л , Л aij ' 8 1 ' j e M ' i e M J J J 

if M' < M else I u ( L = О , M -+M 

The elastic contributions are written as a sum of analogous contribu-
tions from the various elements : . 

M £ к ,M 
and 

qS-lQÍ.«- /ее/ 

QM'-*M = I QM'-M I89' к 
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Now if for an element 

UM - UM-1 i ak /90/ 
th or, in other words, the к element can not scatter across macrogroup M 

then 

Qk,M = 4 k j 
/91а/ 

This is always true for the Fermi-elements; 

/9 lb/ 
M 

and for some of the f-elements. For the rest of f-elements Q^ M may be 
written as 

Qf M = I 4 A Wi ' .jeM • '3 3 3 
/91с/ 

where Wj is the probability that a neutron scattered in microgroup j gets 
an energy outside macrogroup M: 

u. u-loga^ 
w. 
3 • r ^ J u • 1 u». 3"1 M 

du' 1 - a-

1 - a. 
Ej u 1 - E./E. , M 3 ]~1 _ 
E Ли. 

3 : 
/92/ 

The terms o n t h e rigljt hand side of Eq. /89/ are calculated 
in a similar way. For Fermi-elements 

F J qej if . 3M' 

0 otherwise 

M = M' + 1 
/93а I 

For f-elements 

QÍ'.-ж = 0 if uM, - logaf < u, f - "M-l / 93b/ 



- 39 

i.e. if macrogroups M' and M are too distant for the element, while 

QM'+M - 4fjM, i f M - M' + 1 , /93С/ 

and if inequality /90/ holds for both M' and M. In all other cases 

<á**M - У. zh wJ / 9 3 d / 
3==if 

M q. 
3 an energy in macrogroup M and 

where w.. is the probability that a neutron scattered in microgroup ' j gets 

jf = max jj,,.! + l ) /94а/ 

where j* satisfies the condition 

Uj*_1 £ u M - 1 + Iogotf < Uj* 194b/ 

Finally, w^ is given similarly to Eq. /92/: 

Uj , *•* 

s-(u'-u) 
j J X » £ 

UM-1 

du' — /95а/ 1 - a. 

where 

u* = max ' UM-1 + '96a/-

and 

u"* = min ^uM u - logcxf ) /96b/ 

The integration in Eq. /95а/ can bé easily carried out and the result is 
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" Em)(f7 ~ E* if uM + logaf < u-

w*.(i-af) Ли. = / II 1 
JM-I U M ' w af ( UM + lo*af - u") + (EM-1 - em)(i 

1_ 
E. 

if и < u M + lognf < 

4 

_ I JM-1 I Е^ Ё* -af (и^ - u*) if ú < uM + logcij 

/9 5b/ 

where Ё As' the -energy coif-responding to u* i.e. 

E* = min ( e . ^ , af. E ^ ) /96с/ 
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