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GRACE - A MULTIGROUP FAST NEUTRON SPECTRUM CODE

Z. Szatmiry and J. Valkd

L. Introduction

GRACE is a multigroup fast neutron spectrum code. In writing it, the
main emphasié has not been laid on originality but rather on using a formalism
which is thoroughly tested and which proved to work satisfactorily in generat-
ing few-group constants for-diffusion calcﬁlations. Hencé the basic algorithm
of GRACE is a slight'modification of that of the BIGG-II code [3] which in

turn is an advanced version of the BIGG-I and BPG codes @, 2] having MUFT as
the common ancestor, '

Code GRACE solves the asymptotic neutron transport.equation in slab.
geometry using the Greuling-Goertzel approximation for the slowing down neuf-
ron source. The code permits the use of both B; and Py éQproximations{ In
the multigroup structure of GRACE a thermal group has been included making an

iteration to criticality of the slab possible. -

Group.constants as well as energy limits for. the thermal.enérgy group
must be specified in input. For the treatment of resonance absorption and
fission two options are available: )

- The same formalism has been built in GRACE which is used in BIGG-II.
based on empiric resonance integrals and Dancoff factors. In case

of uranium metal and UQ, the formulae of Hellstrand have been
included in the code. '

- Lattice resonance integrals for all of the resonance materials
present .in the slab investigated can be given in input separately
for all of the groups containingyresonances. In this way resonance
groups can be treated like any other fast group.



Another important feature of GRACE is a great simplicity of input preparation
which has become possible by the inclusion of a subroutine /called DATAPREP/
doing all the lattice homogenization, calculation of resonance integrals,
pancoff-factors, fast advantage factors, etc. based on formulae of ref. [4].

Besides fuel regions, non-fuel regions such as reflectors can be
treated by GRACE as well. For reflector regions, the source term is the
leakage from the region previously treated and space dependence of the neut-
ron spectrum is described by an artificial enexgy dépendent buckling as
introduced in ref. [3] . ' ‘

The code GRACE is member of a reactor physics model. Tts main results
are group constants for few-group diffusion calculations, for one hand, and
it uses results of other codes, for the other hand: thermal constants from
THERMOS [7] and lattice resonance integrals from RIFFRAFF [6] when using the

second resonance option mentioned above.

This report describes the mathematical model on which the code
GRACE 1s based in Section II., it provides a user’s manual in Section III.
As to the physical fundamentals, only the.very digit is given here and the
reader is referred to refs: [1—5]. In oxder to facilitate to. look up things in

these references, the notations established in them will be retained here.

ITI. The physical model of GRACE

GRACE is an essentially zero-dimensional code. By solving the asymp-
totic reactor equation; it calculates the necutron flux and current in a bare
homogeneous slab. Finiteness of the slab is taken into account by introducing
a buckliﬂg. As pointed out by Radkowsky [S]  this treatment-results in good
few group constants in the core independently of whether it is reflected or
not, although, near the boundary of regions oi .different material cqmpoitions,
the spectrum is space dependent. To explain this, it can be argued that, this
space dependence affects only a small part of the core while the spectrum is
space dependent far inside the reflector. For this reason, in contrast to the
core, the réflector can not be characterized by a single neutron spectrum. A
correct treatment of systems consisting of several different regions would
be a one-dimensional finite difference algorithm which would give the neutron
spectrum in several points of the system., But there is an alternative possibi-
lity suggested by ref. [3] to introduce some space dependence alsoc into a
zero-dimensional treatment. If the buckling is all@wed to depend on neutron
energy, the attractive formalism of the asymptotic reactor theory can be
preserved and, at the same time, the resulting equations still contain some
aspects of space dependence. Of course, such a treatment is a synthetic one

-and. its adequacy can be justified only by comparison with experiment.



Now for real systems, GRACE is used in the following way. The regions
of different material composition are treated one by one. The core is taken
first. Core regions have their own neutron source /i.e. fission/ so that they
can be considered independently from the others. Reflector reglons have their
neutron field supplied from the neighbouring regions. Thus in reflectors, the
source term is related to the leakege from the core or from the preceding
reflector region. ‘

All these points will be cleared up in detail in the following
sections.

IT.1l. The fundamental equations

Write the transport equation for slab geometry in the following
Eorm [1]:

27 1 '
u BQ(ux,u,X) + ZT(u) ¢Qu'u,x) -= S de S d\JO );o(llonu').¢(-u’lu'1x) +
T .. ;.
oo 1 .
vt fz(“) S au’ [ ap’ v(u) F(ur) ¢(u,ur,x) +
eff o -1
A 1l
"1 I r . ’
+ 35 S du’l S du’ ¢ (u’,u) ¢(u'.u fx) S Y
o -1 - : :
where
X is the sgpatial coordinate,
u ~ is the iethargy,
(o] ’ is the azimuthal angle,
- ’ is the cosine of the angle of neutron direction and x -axis,

¢(p,u,x) is tha angular flux at space point x of neutrons of
lethargy u and of direction cosine n ,

g7 (u) is the total cross section,

o,u') is the transfer cross section for elastic scattering which
changes the direction of a nestron of lethargy u’ by an
angle whose cosine is’ub". This angle‘correspohds to a
- lethargy change of (u-u’),



£(u) is the fission spectrum normalized to 1,
ZF(u) is the fission cross section,
v(u) is the mean number of neutrons produced in fissions,

caused by neutrens of lethargy u,

ZI(u’,u) is the transfer cross section for inelastic scattering

which changes the neutron lethargy from u’ to u,

k £f is the static eigenvalue or the effective multiplication
e «

constant.

If a trial function of the form

TIBX 4 (4,u) R EY

¢(u,u,x) = e

is inserted in Eg. /1/ and w(u,u) is expanded in a series of Legendre polino-~

mials as

o) = 5 () By(u) /31

then a straightforward calculation shows /see Ref. Eﬁ]l that Eq. /1! can he
rewritten in the following way:

2T (u) W, (@) = L_(u) + 4B ¢y (u) + S(u) + I(u) , LY
T (a) h(u) ¥y (u) = Ly(u) + 2y () . - I4p/
In Egs. /4 1
wo(u) = 2 S P (p,u) Qu ' . [5a/
=1 . '

is the neutron spectrum and

v (u,u) du = 13 (u) I5b]

%[-—l

by (a) =
-1
where J u 'is the neutron current. Furthermore,
T . ‘ :
. . 0 . .
Lm(u) = 2n S ¢m(u') Pm(uo) z (“o’“').d“o 16/
— : L )

is the slowing downvsource by elastic scattering i.e. Lo(u) is the numbex of
neutrons which reach lethargies between ‘u and wutdu in unit of time by
elastic scattering cpllision. The‘physical significance of Ll(u)‘is much
harder to tell; it is connected with the anisotropy of the slowing down
précess in the laboratory system. The slowing down source by inelastic
'scattering collisions is given by . ' '



o

I(u) = S EI(u’,u) Yo (') du’ 171

(o]

i.e. I{u) has the same physical significance for inelastic scattering as
Lo(u) for elastic scattering. S{u) is the source of neutrons produced
by fission. Because Eq. [l/ together with all the ‘succeeding equations is

homogeneous, the neutron flux may be normalized in such a way that

S v(u) EF(u) bo(u) du =k e . /8/
fa)
Consequently, in Eg. [4a/ one has

S(u) = £(u) . Ll
Finally, '

h(u) = 1 [10a/

in Pl approximation while in Bl, approximation

2 ‘ .
h(u) = %( = ) B /10b/
’ ‘ %7 (u) 1-8 J
where
T
XB(u arctg _—Tg_—_ for real B jloc/
7 (u)
B = .
T ° T - .
L {u) log L+ B[ET(U) for imaginary B /10d/
B 1 - B/ (u) o

In case of reflectors, Egs. [4/ and /10/ have a slightly modified ' form which
will be given in Section II.S5.

If one considers that iB ¢1(u)is the net leakage the physical

significance of eq. /4a/ becomes guite simple: it is a balance equation for
neutrons of lethargy u. ’

II.2. Approximations for Ly (u)

The elastic scattering transfer cross section ZO(UO:U) is a
sum of analogous transfer cross sections for all isotopes present in the
slab investigated:



2(ugra) = ] 5% (hget) /11

where xﬁ (ﬁo,u) is the elastic scattering transfer cross section fox the

P isotope. Accordingly, the elastic slowing down source Lm(u) can be

represented as a similar sum:

L (u) = % L () | - /12a/

where
1 . )
L (u) = 27 S b (a) B (ug) IS (ugeu’) dug -  12p
-1

In the remainder of this section, one isbtope will be always concerned
and, for the sake of simplicity, its subscript k will be omitted. In later
sections this subscript will be taken up again.

First, the quantity q,(w) is introduced which vanishes at lethargies
u < 0 and satisfies the equation ’

dq (u)

-— : O — ————— )
Lo(u) = ¢ (u) G (u) | = 113/
where G;(u) is defined as
1 | | .
Gplu) = 3 S p (e, ) =u) 2% ,ut) dap, . /14]
_1 . C

Some of the coefficients ¢ can be given a simple physical significane, e.g.

ERe

. 1
Gg(u')‘= 27 _3 £© (po,u') dug = 2S(u) /lSa(

is the elastic scattering cfoss section and
1 .
1 , o i
G (u’) = 2u 3 2%ugru’)(u’-u) duC; = -£2%(u’) /15b/
-1

where £ 1is the average lethargy gain per elastic scattering collision.



Furthermore,

=

o/, o . _ —— .5 )
Gl(u ) = 2 ug I (po,u’) dy, = cos@ & (u’) /15¢c/

1
-

where cosOo is the average cosine of the scattering angle in the laboratory

system. Note finally that qo(u) is identical with the usual slowing down
density.

For isotopes heavier than Al-27, the Fermi-age approximation is used
in GRACE, 1.e.

qy(w) = & 25(u) w(m) - /16a/

q,(n) =0 . ./leI

For isctopes not heavier than Al-27, GRACE uses the Grauliing-Goertzel
approximation. It is described in detail in refs.[1] and- [5], so that only
the final equations are reproduced here. In this approximation, gqg(u)
satisfies the following eguations:

B dg dx '
o _ _ 1 _ fo)
Bl + A gm — = Vo G (1 & ) ' /17al
dq ‘ ax
__J;_ = - l — l
Q)+ g v G (1 au ) 1176/
where
2 .
A= - —5 . /18]
G
Cdmparison of Eqs, /1ga/, [17a/, and ]15b/ shows that in the Fermi-age
approximation, the.terms xo dﬁo and dxo/du are neglected. In GRACE,

Eq. /17b/ for the anisotropic slowing down density q;(u) is used only for
the three lightest isotopes: hydrogene, deuterium, and berillium.

According to the approximations described in this section, the
followina classification of isotopes will be used in later sections [cf. refs.

1] - [4]/:

- "Fermi elementé" are those for which Egs. /16/ hold; they will be
identified in common by the subscript F. ‘ ‘



- Greuling~Goertzel elements" or "f-elements" are those for which
Egs. /17/ hold; they will be identified by the subscript f.

- "h-elements" are those for which Eq. /17b/ is taken into account;
they will be identified by the subscript h. Note that an h-element
is always a Greuling-Goertzel element as well.

If an isotope is mentioned in general i.,e. without reference to this classifica-.
tion it will have the subscript k. The isotopes "known" by GRACE are in
Table 1. :

II. 3. The multigroup equations

The final step in deriving the set of équations which is solved by
GRACE is the introduction of the multigroup approximation. The group structure
used in GRACE can be found in Table 2. Let the lethargy limits of the jth
group be uj—l and uj + 1ts lethargy width Auj = uj - uj—l' The last
energy group 1is always the thermal group. Denote its subscript by jth‘ Then
Jen is the total number of lethargy groups as well. {The lethargy limits

of the thermal group are not fixed in contrast to the other groups./

Define the following quantities:

"3
¢j = S wo(u) éu : 119/ .
oy
/group flux/
.u‘
J _ _
J3 = -1 S wl(u) du [20]
uj_l
/g;oup current/
u,
J
5 = X S(u) du 121/
i-1
u.
J
Ij =S " 1{u) du [22/
: -1

h. = h(B, z'g) | 123/



T

/Zj will be defined later, cf. Eg. /26//

The following isotope dependent quantitles are to be defined for each isotope
k present in the slab:

Gy = Dok (W5) - 124/
Pry = ~day (vy) - - 125/
u.
3 . o
Ey5 =.£3 5 B (u) Y (u) qu /26/
3y,
J—

where Zk stands for any type of cross section for isotope k. In the
following, if the subscript k will be omitted from a cross section, this
means a sum for all isotopes present:

Furthermore,

u,
3 o
Gy, (u)
M3 T R S < du . l211,
s Ly (u)
j-1
u,
I 6l ()
- 1 ok
e 128/
u, "k
j-1
u,
J 1
Gy (u) :
- - 1 1k .
J u Zk(u)
-1
u,
1 ) :
T3 = Ru S g lu) du - 130/
. uj-l )
u,
1 J .
ij = .Auj S Alk(u) du‘ . /31)



_lo_

Finally, define the total slowing down densities by the equations:

- ¥ ‘ 33
Pj % k3 . / j

Now integrate Egs. /4a/ and /4b/ over the interval (uj—l' uj)
bearing in mind Eq. /13/ for L (u) . Then one gets that

- . = BJ, +‘S. + J, 34a
q j 3 | [34a/
and

T

. . s ’ B .

h, L. J. = J, L N 3 < - py, + 3 ¢, 34b

y Iy 9y i E jk Yk * Pyl T Py * 3 by /34b/

Eg. /17a/ holds for each of the f-elements. Its integration gives:
Au. : : RS S T T WY CT
] . = 'S _ _ofM 1/ of\'4-1
5 (qu + qf,j-l) + Ffj(f*fj qf,j—l) by TEg ”j.(l TS
/35af

A similar equation can be obtained for all h-elements from Egq. /17b/:

. Ay () = Aqp oy _q)
. 1h 1h\Y5-1
(Phj + Pnj-l) t Ay (Phj - ph,j—l) =gy By Iy (1 - . : Bug :

e
. NLF

/35b/

If the sum of qok(u) for all Fermi-elements is denoted by gqp(u) the sum
of Eq. /l6a/ for all Fermi-elements yields:

- - s 1
Ipy = ¢ 1y Iy fu; 1361

In order to simpliry these equations to some extent, new notations are
introduced. If N “denotes the nuclear density of isotope k, define
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S ) 37

My g ij N Myso | 137/
S M, 38

b ks T Mk "y 138/

A u,}) - A u, .

T (s ot { J) Of(—J”l) =Ng 0%, ,  [39]

9 f3 Anj £ O£j3 ,

1 w51 - )1h(uj) i 1U1(uj‘1) =N, H 40/

Wi “hj R, h "hy ° :

Introducing the quantities defined by Egs. [37] to [40/ into Egs. [34/ to
/36/ and rearranging terms in such a way that terms referring to group J
stand on the left hand side and terms rveferring to qroup /j-1/ stand on the

right hand side, one gets the following set of equations:’

1
BI. + {85+ A, 5y + =S, +T. + q. ., dla
] ( J J) 43 qJ i i qJ—l / /
-5 ¢, + (h. o you M. a. P: = P. , : ,415,
37 SRS B T S S A j j-1 .
my.\ 2 . Ati
Ifj + —il-/qu - Nf ij +j = Ifj - 3 qf.j—l , /41lc/
N, 0 .
. k 'k,
AGpy = b5 ) /a1a/
F) J yep Auj '
bu, Au,
. . - . =1z . - '! . . /
Zpy * —1 Py = My Fas 9y b 7 [Ph,q-1 0 /4le/

These are the bhasic multigroup equations which are actually solved by

GRACE. Eqgqs. [4la/, [41b/ and [/41d/ are to be taken only once while Eqs. /f4lc/
and /4le/ as many times as there ave f- and h-elements present, respectively.
In Eq. /4la/, the term A, Zf requires some explanation. In this equation,
the term Ij aoes not contain the contribution of those inelastic
scattering collisions which do not transfer the colliding neutron to an other

group ‘and this is taken into account by the Ffactor Aj. Thus Aj X; ¢j gives

the number of neutrons which are removed from ¢roup Jj by inelastic scatterin

qg.
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Eqs. /4la/ to /4le/ hold for the thermal group, too, but some care
has to be taken in applying them to the thermal group. Egs. /4lc/ to [4le/
are to be left out and in Egs. [4la/ and [41b/, d = p. =I. =0,

t

Similarly, in the first group Py = 9y = I, = O.

The solution of this set of equations is quite simple because there
is no up-scattering in the epithermal energy range. It starts at j =1 and
proceeds up to j = jth‘ Imagine that the solution has reached some group j.
Then one knows qf,j—l ' ph,j—l ¢ and qF,j—l for all va}ues of £ and h,
and Ij can be calculated from the equation:

142/

where aj'j is the probability that a neutron scattered inelastically in
group Jj’ 1s removed to group j. It can be very simply seen that ¢j and
Jj satisfy the following set of equations:

+ o,

®31 9y 12 95 = %13 /43al
P ¢j + a,, Jj = 0gq . /43b/
wherxe
A I Ng O;" N 0, .
oy, =f. + A Iy 4+ ] —m—2d —k_XJ /44a)
11 3j 3 £ ' Aua, KeF Auj ’
Cey + —t
@, =B , /44b/
M,
= __.__.__J___. °
@13 =S8y v Iyt dp 49 F ; ra 9,5-1 [44c]
Fgg + —El
- B
ay =~ 13l - Jaaa)
N, H,_.
o T _ 'h "hj ‘
%yn hj Zj % Nk‘Mkj + g IXTH ' : /d4e/
: Ty * —52 : -
2 Au, : )
= —_—d
o : . . , . » , 44f]
23 . . Ph,j3-1 N
h 7 N My rdl . , o



After determining ¢j and Jj from Egs. [43/, the slowing down densities
Agy uFJ', and pt can be calculated from lgs. [4lc/, [41d/ and /41e/,.
respectively. Then the solution proceeds tn the next group and the whole

procedure is repeated for it.

The solution of .Egs. [41l/ is the heart of the code GRACE. This is
fitted into the framework of various calculations and iterations, In the
next two sections, these will be described. '

II.4. Core regions

One of the main roles of GRACE is to calculate group constants for
few-group criticality codes. For this purpose the best value of the buckling
B is that at which the slab is critical. In case of core regions GRACE
carries out an interation for f£inding out this value of B. Of course, this
interation is optional. ‘

Prior to iteration, one must know whether a real or an imaginary
buckling has to be searched. If the core composition is such that k, > 1,
it is sure that there is a finite-slab thickness at which this given core
composition is critical. In this case, the iteration searches a real buckling.
If k, < 1, no cosine solution exists for the given composition and an ima-
ginary buckling has to be found. Thus, first of all, the buckling B is-.set
equal to zero and Egs. [41/ are solved, as it is described in the previous
section. Fom the solution, k_ 15 calculated using Eq. /8/. k_ is in itself
an interesting quantity but in GRACE it is used only to decide whether real‘
or imaginary buckling exists. In.case of ‘real B, Eq. /l0c/ applies for #
and Eqs. /4l/ hold while in case of an imaginary B, Eg. /10d/ applies for 8
and the sign of B has to be changed to minus in Eg. /4la/. What actually '
happens in GRACE is that the sign is made negative in.the imaginafy case and
the absolute value is taken for B 1in Eq. [41b/. This change of sign may be
proved strictly [3] but can be simply made plausible. The term BJJ represents
the leakage in the neutron balance. If k_ > 1 , this may be positive but if
k, < 1, there is a deficit in the neutron balance which has to be compensated
by a net in—leakagé. That is why this term is negative in the latter case.

Once this decilsion has been made, £he criticality seaxrch can be done.
The user of the code is supposed to specify an initial value for B. As the
first step of the iteration, Egs. .[41/ are solved for thig value of the buckling
and from the solution keff is calculéted using Eq. [8/. §If k fE # 1, the
buckling B is changed until keff = 1. is reached. The felevant formulae
of the iteration are those of ref. [3] Suppose that n steps of iteration
have been completed ylelding keff n and a currxent J. ,n’ Then the new
value - Bn+1 of the buckling is calculated from the Lollowing equation
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1 -% :

B2 o =n? 1+ eff,n 145/

n+l n K log P
eff,n * %9 *ni,n
‘where PnL is the non-leakage probability given by the equation

+ Jth

= - Jo. . 46

Pynon = L © By jzl 75 n 146/

In thls last eguation, sign + stands for imaginary buckling while sign - for

real buckling, Of course, the P as given by BEg. /46/ has a real physical

NL
significance [as the non-leakage probability/ only for real buckling.

This iteration proved to converge very fast in practice.
It is stopped

- when the inequality

’Bn+l - Bn)

< g . | 147
|B

n+ll )
is fulfilled where c. is specified in input,

- or when the numbei of iterations has reached a maximum numberxr
/specified in input/,

- or when Bi;l and/or becomes negative in Eq. /45/. These

p .
last two cases indicate generally tﬂgénsomething was not well specified in
input e.g. the initial value of the buckling is too large. The second critérion
may be used to omit the iteration: if the maximum number of iteration is

chosen to be 1, Egqs. 41/ will be solved ouly once for the B ‘specified in

- input and, consequently, all further results of the code correspond £o this
buékling. ‘ o .

II.5. Reflectof regions

As pointed out at the beginn .g of Section II. the veflector can not
be expected to have a spacé—independent neutron spectrum. For this reason,
Egs./41/ based on the trial function in Eq.'/2/ can not be used in their original
form. Ref. [3] suggests a Qynthetig treatment which modifies Egs. /41 only
slightly and can be expected to give acceptable group constants.

Annartificial but space dependent néutron flux may be written in the
_following form: o



¢(u,u,x) = e-B(u)x w(u,u) . /4?/

It this trial function is inserted into Egq. /1/ then one gets instead of Egs.
141

:T(u) ¥ (u) = L (u) + B(w) JQu) + I(w) , .  [49af
fTeu) hew) () = L)+ By @y 149b]

"because, 1in this case, wl(u) is real so that @l(u) = J(u). the boundary of
core and reflector the leakage from the core is BJcore(u). This is sgt equal
to B(u) Jrefl.(u)’ 1f before the given reflector a core region has been inves-

© tigated by the code the lethargy dependence of this leakage is known. Since in

a reflector the fission source term §(u) of Eq. /[4a/ is zero, the leakage of

the core normalized to unity may be denoted by S(u):

B J .(u)

s(u) = core . /s0/

5 B J_,.o(u) du
o

This is not merely a guestion of notation but it facilitates the formuiation.
of the equations. Now Eqs. [49a/ and /49b/ can be written as

TR(0) Vo(u) = Lo (a) + 5(u) + T(w) . ys1a/

: B(u) ¢ (u . . _
2T (u) h(u) JCu) = Ly(u) + ——~—7riii—z 151b/

and one has the additional equation
"B(u) g(u) = sCu) . ' /51c/
If the Greuling-Goertzel and multigroup approximations are introduced

agdin in Egs. /51/ almost the same equations result as Egs. ./41/. The only

modifications are that the buékling is group dependent and Eq. /4la/ now
reads as o '

A I : '
0+ AL z.) .+ g. =S, + I . . :
(.J 555/ % 93 755 3 T 95 /52af
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The multigroup form of Eq. /51c/ is clearly

By J5 = S5 . ' /52b/

As a consequence of these modifications, Eq. /43a/ does not contain
J. since it is missing from Eq. /52a/. One now has

j
gy by = o, /531
or
a
1

where the coefficients « have been defined by Egs. /44/. The second equation
/i.e. Eq. /43b// is used to determine the group buckling B_j . From Egq. [52b/,
Jj can be expressed as '

which inserted into Eq. /43b/ leads to an algebraic equation of second order
for B.,:
o d

$ . . '
Bj?—l—+13. - S. =0 |56/

B. i .
since «a = - ?% |cf. Eq. /444d/]/. Bj is the positive root of Eq. /56/:

!
o3
[N
w
-+
e
Q
NN
+
Wl
ol
-
4

"22

] . 157

Once Bj is known, Jj can be obtained from Eq. /55/. This completes
the solution of the set of equations consisting of Egs. /52a/, /52b/, and [41b/
to [4le/. It must be added that when using the .Bl approximation, o,,
depends on Bj through hj as it can be seen from Eqs. [44e/, /10b/,. and
{10d/. In this case, solution of Eqgs. [56/ requires a simple iteration for all
values of j.

As a matter of fact, the best agreement with experimental reéults has

been obtained when the Pl approximation was used for reflectors.
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IT.6. Microgroup constants

The multigroup equations solved by GRACE contain material constants
defined in Section II.3. They are stored in the 40 group GRACE library for
the isotopes listed in 7Table 1. For cross sections which are smooth over a

GRACE. group, Eq. /26/ can be approximated as

u
J
~ . S ' Zk(u) du = N . . . /58] -

L Auy k ij

kj
Uj_l

For groups in which cross sections are smooth these averages ckj are stored
in the library. o

In éése of resonance materials, however, the approximation made in Eq.
/Sg/ can not pe tolerated in those groups which contain resonances. For such
resonance groups the flux weighited average in Eq. /26/ depends on the presence
of other isotopes and of lattice effects.

There is another energy range in which the presence of other isotopes
and lattice structure influence the group constants of a given isotope: this
is the thermal energy range.

Now for isotopes having smooth cross sections in the epifhermal.
energy range, macroscopic cross sections are calculated by multiplying the
nuclear density of the given isotope by the microscopic group constants found
in the GRACE library. The same applies for resonance isotopes, too,.in grouﬁs
not containing resonances. ‘ »

Resonance absorption and fission can be taken intoc account in GRACE
in two different ways.

II.6.a. RIFFRAFF type resonance treatment

The simplest way to treat resonances is to calculate directy, for the
given composition and lattice, the flux ¢(£,u) as a function of space and

energy inside the elementary cell ‘and then to form following averages:

S Sj' T(zow) ¢(xou) du dr

Veell Yi-1

%y © )
K S

‘Vcell

159/

=4

u,
J .
S ¢(x,u) du dr
wy g
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where ﬁk is the homogenized nuclear density of isotope k. For homogeneous

cores, of course, space averaging disappears.
Pt

Averages of the type of Eg. /59/ have to be calculated by separate
codes. For two region cylindrical cells, this can be done by the code RIFFRAFF,
‘for homogeneous systems by the code RAO4 16]- If this resonance option is used
in GRACE, averages of the absorption, fission and scattering cross sections
as expressed by Egq. /59/ have to be provided in Input for all resonance elements
present in the system and for all of their resonance groups. Table 3. shows
those eiements which are considered in GRACE as .xasonance elements together
with indication of their resonance groups.

_ These input cross sections are then used in GRACE as if they would
have been taken from the library. For both resonance and non-resonance groups,
Egs. /41/ apply when using this resonance option.

II.6.b. BIGG type resonance treatment

Another treatment of resonance absorption and fission is described in
refs. [2] and [3] which involves some modifications of the set of equations
/41] but requires a simpler input preparation. This treatment is based on
semi~empirical effective resénance integrals. The main ideas and the relevant
formulae are the following, .

An effective resonance integral for a given resonance is defined as
a resonance integral which multiplied by a fictitious flux or the so:called
"switch off flux" gives the reaction .rate per absorbing atom for the given
resonance. The expression "switch off flux" means the £lux which would exist
in the absence of the resonance. ' ' '

- Resonance integral for a GRACE microgroup can be éohsidered aé a
resonance integral for a resonance peak, because the microgroup struchure of
GRACE 1is such that generally one big resonance peak and several small peaks
fall into one microg;qﬁp. GRACE is based on the semi-empirical formulae of
Hellstrand /cf. Section ITI.7.] which give single pin resonance integrals for
the whole eﬁergy range: RS?‘ The lattice resonance integrals Ry for the
resonance energy range are obtained from the eguation

— _pH :
Ry, = a(RSP RSP) . l6o]

where Rgp is the high energy contribution to the single pin value and o
is the mutual shielding factor of the fuel pins in the lattice. This lattice
integral RL is then distributed among the different resonance groups by



multiplying it by a distribution " inction wj normalized to unity:

’

where

The fictitious flux
‘switched of £,

the scattering cross section

the absorption

form:
25 (u)
where subscript o at ¢ and J

fictitious flux and current.
group j 1is calculated, the

ARj =;wj RL /61
Jen

Z ., =1 /62,
j=1 )

is calculated as follows. If the resonance is

cross section can be neglected with respect to
and then Eq. [4a/ may be written in the following

b, () =L (u) - BJO(u) 163/

indicates that the solutions »f Eq. /63/ are the

At the moment when the resonance absorption in
13-1/

flux and current for groups'1,2,..., are

known. For this reason, Lo(uj—l) can be calculated. An approximate expression
for it is given in ref. [2]/:

¢ —(u. -u)
1 ] i -1
Lo(uj~l) el IS el SR rre e "’ du /64 .

k k 1 i,

_ S8y

where
!

; 2

W - ( A -1 )
k Ak + 1

starts from the
microgroup containing the lethargy value (uj-l + logak) and ends at group
/3-1/. A heuristic interpretation of expression [64/ may be given as follows:

for element k with mass number Ak and summation for i

E;i <bi/Aui is the average scattering rate in microgroup i by element k
and .

—I—%—a—— J.~e-(uj_l-u) du du’
k Au '

is the probability of transfer from grouﬁ i to a lethargy in the interxrval

du’ at uyqe The expression /64/ sums up the contributions of all elements



and lethargy groups.

Furthermore, if there is no resonance absorption, it may be assumed
that the flux and current in group Jj are equal to the flux and current at

the lethargy uj_]. Jo<uj—l) is further approximated by the average current
in microgroup [j-1/ i.e.

J.
J (u_ A),g ~J-1
o\ -1 hu,
-1

Then Egq. /63/ may be rewritten as
.S
b (uj—l) ¢D(uj_l):$ Lo<uj—1> BJj—I/Auj-l
which gives the fictitious flux ¢oj for the resonances in group Jj:
1 | ~ J4-1 |
by = i [ oyey) - B jos1
i-1 - ‘

Now, according to the definition of the effective resonance integrals,

the absorption rate in group Jj is given by the equation

(ra), = E'Nk.ARkj o3 | AL

In ref. [3], a better approximation is suggested for the reaction rate (RA)j
instead of Eq. /66/. This reads as

where P. is the resonance escape probability for microgroup 3j. It is shown
[3] that a good approximation for Pj is

i .
o
P, = exp { - =N . z N, AR, . . 168/
. qj;l kK k kj ;
If reaction rates for a given isotope are needed .in microgroup j, this can be
obtained approximately from the formula
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() g = ~—E—El— (), 63/

where superscript 2 may indicate capture or fission.

Finally, it must be noted that when integrating Eq. /4b/ for the
interval Auj /in order to get the multigroup equations/ averages of the
type

J .
Zk(u) J(u) du 1710/
j-1

1

gr,o= 1

k3 T T.
J 3

o —

ought to have been introduced instead of averages defined by Eq. /26/. So far
these averages have been tacitly approximated as

Il—‘

1

.
*
Y

o

. u.'
i 3
I (u) ¥ (w) S8 au ~ X
bo(w) i
-1 Yy-1

0 Gy

Zk(u) wo(u)'du = Ekj : [71)

The adequacy of this approximation is proved only by practice. In order to
remain at the same level of approximation, the best way of treating resonances
in Eq. [4b/ is the approximation

u
J Ty )
% N, ) ok(u) J(u) du = Q-1 (l - Pj) —Eirz— . /72(
j-1 '

Now when using the BIGG-type resonance option, Eqs. /4la/ and /41b/
are modified to

a 1 '
BJ. + L.+ A, L .+ . = o+ I, + . - . - .
j ( i T8 J) b5 * 9y = Sy A B S S B (1 -2y) I73a

- B, (h. £t - N ) J.+p. = p - h., g (1 - P ) ii:l /fzb/
3% 7\ Pk M3/ 73R T Py-1 TPy T 3/ 3,7,

J ok

| T . 4
where Z? and Zj contain only the contributions of smooth cross sections.
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I1.6.c. Thermal group constants

Beside the resonance region, the other energy range in which spectrum
variation inside a GRACE microgroup and lattice ef fects are important is the
- thermal energy range. These effects are not taken into account by GRACE. There-
fore, a separate code is needed calculating the same cell average as expressed
by Eq. /59/ for the thermal energy range. This can be done e.g. by THERMOS.
Of course, for a yiven value of the buckling B the fast spectrum is conplete-
ly independént of the thermal group. This means that if no buckling iteration
|cf. Section II.4./ is required and only the fast neutron spectrum needs be

calculated the values of the thermal group constants are ixrrelevant.

Thus, the following guantities are to be supplied in ilnput:
gR , 5 Y (vEF). , M, (= 53 cos0 ) . Note that these macroscopic
Jth Jth Jth Jth th

cross sections contain the contributions of all isotopes present in the cell.

Iin connection with the thermal group, a further information must be
given in input: its energy limits. For this purpose it is enough to specify
the value of jth because GRACE makes a single group from all microgroups
nuibered by jth' jth+l,...,40 in Tabhle 2. A proper choice_of jth can
assure that there should be no up-scattering from the thermal group.

It must be mentioned here that, independent;y From the foregoing
equations, further thermal data are required in case of core regions.. These
are macroscopic cell averaged thermal absorption and fission cross sections
for each fissionable and fertile isotopes present in the cell. This informa-
tion will be needed in the calculation of spectrum indices [see Section 111./.

1I.7. The DATAPREP subroutine

A special subroutine is included in GRACE in ordei to facilitate
input preparation. This is based on formulae of ref. [4] so that they are
not reprcocduced here. The functions of subroutine DATAPREP are:

- From cell data .and material densities /which are given in g/cm3/
it calculates homogenized nuclear densities. The lattice may be
triangular or square, the cell may be composed from a fuel rod,
a clad surrounded by moderator. .

- It calculates a fast advantage factor which takes into account
that at high energies the flux is peaked in’ the fuel rod owing to
the fission source inside it. Cross sections of isotopes not
lighte; than Th-232 are multiplied by this factor in the highest
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7 microgroups [cf. Table 2./.

- Finally, subroutine DATAPREP calculates the single pin resonance
integrals and mutual shielding factors needed by the BIGG-type
resonance treatment /see Section II.6.b./ for the fuel temperature
specified in input. This latter function of the subroutine is
optional i.e. if the user has his own resonance integrals and mutual
shielding factors he may give them in input and the code will use
them. It should be noted that the subroutine calculates resonance
data for U-235 and U-238 in the form of uranium metal or UOZ; for
the other isotopes, resonance data have to be specified by the user.

The use of subroutine DATAPREP is optioﬁal. 1f it is not used /e.g.
for reflector regions, this must always be the case/, then homogenized nuclear
densities, the fast advantage factor, and single pin resonance integrals and
mutual shielding factors [if there are any resonance isotopes/ have to be
specified in input.

III. User's manual

IT1.1. Input preparaﬁion

The input subroutine of GRACE has been'written in such a way that the
input preparation requires only data which are always available for a reactor
composition and necessitates a minimum of preliminary calculations to be
carried out by hand.The overall organization of the code permits to solve any
number of problems one aftervthe other. The only restriction is that the first
problem has to deal with a core region because the source for a reflector
region is calculated using the leakage from the region previously treated. It
should be noted that if several reflector regions follow each other the-
spectrum of their source will be identical. This is a direct consequence of
the energy dependent buckling approximation.

In the following, a detailed description of-the input preparation
will be given. Input data are to be pﬁnched on paper tape. But in order to
make understanding of the rules of input preparation easier, the expression
"card" will be used for one record /i.e. one line/ of the paper tape. The format
of each card will be given in FORTRAN notation. ‘ '
15t cara /10n8/: The problem is given a title the length of which may not

exceed 80 characters.

d N ' . . .
2"9 card /414, 214, E4.0,I4, 2E8.4,714/: This card contains the most important

.control variables of the problem.



char., 1 to 4: Punch T [=True/ for Ly approximation and F [=False]/

for B1 approximation.

char. 5 to 8: If the RIFFRAFF-type resonance treatment ig used, punch T
while for the BIGG-type treatment punch F.

char. 9 to 12: If T is punched the code will compute few-group constants
also for the infinite medium spectrum. For F Lthis is not
done. '

N.B. In case of reflectors it is immaterial what is punched in these
last two fields.

char. 13 to 16: This field controls the output. For T , detailed slowing
down densities will be printed out in the output for all

elements while, for F, this will be left out.

chaxy. 17 to 20: The value of this variable /NHOM/ controls the lattice

homogenization jcf. Section I1I.7./. If it is
the case of no howogenization;

1: the code does the lattice homogeniiation and calculates
resonance integralé and mutual shielding factors using

_ semi-empirical formulae; '

2: the code does lattice homogenization without  calculating
the resonance data. In this case, these latter must be
supplied by the user,

N.B. If the RIFFRAFF option in used, only O or 2 are accéptable.

Furthermore, for reflectors a O must always be punched. .
char.2l to 24: For a core region punch 1, for a reflector punch 4.

char.25 to 28: For value of ¢ mentioned in Section ITI.4. [Usually ¢ =
-5
= 10 7 /.
char.29 to 32: The maximum number of iterations. Generally, it must be a

positive integer. If it is -1 calculations will be done only
for the infinite medium /in case of core regions/. '

char. 33 to 40: This field contains the buckling B in cm-l. This B will
be the starting value of the buckling iteration.
N.B. For reflector regions this value is not uséd. It must not be
zero noxr negative forx core regions. [The code corrects
for such input errors./ practice has shown that the buckling itera-

tion by Eg. /45/ may diverge if too 1ar&e a starting B is used.

char. 41 to 48: The fast advantage factor.

N,B. Its value has to be specified only for core regions and only if -
' NHOM=0 was punched in char. 17 to 20.
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char. 49 to 52: The number of macrogroups in the calculation of few-group
diffusion constants. It may be any integer number between
1 and 6.

char. 53 to 56: The highest microgroup index of the f[irst macrogroup /cf.
. Table 2/. In other words, this specifies the lower energy
limit of the macrcgroup.

char. 57 to 60: The highest microgroup index of the second macrogroup.

"and so on for each of the macrogroups.

N.B, As it was pointed out in Section II.6.c. the micrégroup index
Jeh is the
last macrogroup boundary. Thus, strictly speaking, the defini-

jth of the thermal group is given in input. Now

tion of the last macrogroup boundary is somewhat different from
the definition of the other ones. 1f one-group constants are

needed punch nothing else than in char. 53 to 56.

Jth

The subsequent cards depend on what was specified for NHOM. For this
reason two cases must be distinguished: a/ when the code "does homogenization
/NHOM = 1 or 2/ and b/ when it does not /NHEM = -0/.

a/ No homogenization

1f the user supplies homogenized nucléar densities /what is
always the case for reflectors/ the third and subsequent cards contain informa-
tion concerning the elements present in the system under investigation. The
format of each card is: /A8, 3E8.4,1I2, 2E8.4,12/. For each element it is .
specified: ‘ ' :

char. 1 to 8: The identification symbol of the element wﬁich must be exactly
the same as given in Table 1. No space shouid be punched in
front of the element identification.

char. 9 to 16:'Homogenized nuclear density of the element in units of 1024/cm3

char. 17 to 24: Single pin absorption resonance integral for the total energy
' range in barn. ‘

char. 25 to 32: Mutual shielding factor for absorption.

char. 33 to 34: The index of the'absorption (] function /cf. Egs. [61/ and
162/] to be used for the element. The total number of

functions available for the various resonance elements is
given in Table 3.,

ch;r. 35 to 42: Single pin fission resonance integral for the total energy
range in barns. -

char. 43 to 50: Mutual shielding factoi'for fission.



char.

cards:

51

to 52: The indey of the fission ¢ function to be used for the

element.

Some important remarks have to be made concerning these element

The elements must be punched in the same order as they are listed
in Table 1.

The sequence of the element cards is finished by a blank card if
this problem will be followed by other ones. If this problem is
to be the last one punch the characters END in the first three

positions of the finishing card and leave blank the rest of it.
The maximum number of clements permitted in one problem is 18.

The number of Greuling-Goertzel elements [cf. Section IT.2./
.may not be zero and may not exceed 8.

The maximum number of Fermi-elements pérmitted in one problem is
10 when the RIFFRAFF resonance option is used.

Only resonance elements may follow the first resonance element.
GRACE considers an element to be a rescnance element if the single
pin resonance integrals are different from zero. [If NHOM = 1 or

2 the indices of the { functions are used for the same purpose./
‘A fertile element is defined as a resonance element for which the.
fission resonance integral is zero. The maximum number of resonance
elements is 7, and 4 of them may have resohance fission.

If the BIGG-type resonance option is used the indices of the
p-functions may not be zero for resonance elements.

b/ Homogenization

If the lattice is homogenized by the code /NHOM =1 or 2/ the third

card contains generalities about the fuel lattice. Its format is [A8, 6E8.4/:

rd

3 card

char. 1 to 8: Type of the lattice. For a square lattice punch the characters

char.
char.

char.

char.

char.

SQUARE, for a triangular lattice punch the characters TRIANGLE.
Nothing else is accepted.

9 to 16: Lattice pitch in cm.

17 to 24: Radius of the fuel rod /without cladf/ in cm.

2

to 32: Thickness of the clad in cm. If there is no clad punch zero.

33 to 40: Fuel temperature in K®.

41 to 48: Moderator temperature in K°. If a zero is punched for it the

code puts it equal to the fuel temperature.



chax.

49 to

The 4t

56: Enrichment of the fuel. If it is given in atom % punch it
with a positive sign while a negatlve sign means an
enrichment given in w/o. Of course, if the fuel is nut uranium
or if the densities of the individual uranium lsotopes are
known for the user the fucl enrichment need to be specified.

b and subseguent cards contain element data. Their format is

/A8, 1X,E8.4,212,4E8.4/.

char.
char.
char.
char.

char.

char.

char.

char.

1l to

10 to:

18 to
20 to

22 to

30 to

38 to

46 to
Th

9: The identification symbol of the element.
17: Density of the element in g/cm3.
19: Index of the ¢ function for absorption [see Table 3].

21: Index of the functiqn for fission.

29: Single pin absorption resonance integral for the total

energy range.

37: Mutual shielding factor for absorption.

45: Single pin fission resonance integral for.the total energy
range,

53: Mutual shielding factor factor for fission.

e followiné rules apply to the preparation of these element cards:

The cell homogenization may be required from the code only for
triangular oxr square lattices and the use of the semi-empirical

formulae of resonance data only for uo, or uranium metal.

As element identifications, the symbols listed in Table 1 may - °
be used. Besides them some cthers are also accepted by the code.
Jf the fuel is 002 punch OXIDE, if it is uranium metal punch

METAL. If the cell contains water the symbol H20 may be used.

When using any of these symbols, of course, the density of the

oxide, metal or water is given in char. 10 to 17. If NHOM = 1
' nd

* was punched on the 2 card one of the symbols OXIDE or METAL
must be used while for NHOM = 2 their use is not compulsory.

If the symbols OXIDE or METAL are used they must be punched on
the -4th card /i.e. the first element card/. Resonance data on
this ‘card refer to U-235. The resonance data for U-238 are given

. on the next card. Of course, positions 1 to 17 may be left blank

on this ‘card.

- The elements present in the fuel are punched first. The sequence of

fuel cards is finished by 'a card containing the symbol CLAD in the
first five positions. After this.card follow the clad elements.

Their sequence is finished by a card containing the symbol MODERATOR



in the first nine positions. Afker this card follow the moderator
elements. Their séquence is €inished by a blank card if this prob-
lem is followed by other ones while by a card containing the symbol
END in the first three positions if this is the last problem. If
there is no clad the sequence of fuel cards is finished by the
symbol MODERATOR and clad is not mentioned at all.

- Apart from the above restrictions the order of the non-resonance
elements is arbitrary. As to resonance elements, their order must
correspond to the order in Table 1. As a consequence of this,
Th-232 and U-233 may not be present if the symbols OXIDE or METAL

are used. Any non-resonance element may be mentioned several:-times.

- The maximum number of element cards is 54. /The symbols OXIDE,
METAL, and H20 are equivalent to 3,2, and 2 cards, respectively./
The same restrictions apply to the maximum number of elements in
the cell as in the case of no homogenization /i.e. 8 f-elements,
10 Fermi-elements when using the RIFFRAFF~type resonance option,
all elements: 18/. ‘

~- An element is considered to be a resoﬁance element if the indices
of- the ¢ functions are different from zero [the single pin

_ resonance integrals are used for the same purposé if NHOM = 0O/.
For a fertile element the index of the Y function fqr fission
is zero.

~ The indices of the ¢ functions must be given for all resonance
elements even when NHOM = 1. /i.e. when resonance integfais and
mutual shielding factors are calculated by the code/. If NHOM = 2
and the BIGG-type resonance option is used, all resonance data
have to be specified for all resonance elements.

RIFFRAFF input

1n case of the Bigg-type resonance option, all resonance data have
been given on the element. cards but not s6 if the RIFFRAFF option is used.
Therefore the blank or the ."END" card finishing the sequence of the element
card is followed by the homogenized ﬁiérogroup constants for the resonance
groups when the RIFFRAFF option is used. In connection with the element carxds,
it was explained how an element is declared to be a resonance element.
Although resonance itegrals and ¢ functions are not neceséary when using
the RIFFRAFF-type resonance treatment some arbitrary non-zero value must still
be punched for them only to indicate the resonance character of the element.
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First RIFFRAFF card [I2/: in characters 1 to 2 is punched the number of

those elements for which RIFFRAFF input is given. This number

must be equal to the number of resonance absorption elements.
The next cards are to be punched for all RIFFRAFF elements.

ldentification caxrd /A8,I3/:

char. 1 to 8: identification symbol of the element.’

char. 9 to 11l: number of resonance groups for which RIFFRAFF cross sections
will be punched. This card is followed by the

Resonance group cards fI3,3El2.6/ the number of which must be equal .to the
number punched on-the identification card.

char. 1 to 3: index of the GRACE microgroup for which homogenized cross
sections are given on this card; ‘

char. 4 to 15: absorption cross section in barns;
char. 16 to 27: fission cross section in barns;
thar. 28 to 39: scattering cross section in barns.

N.B. The order of RIFFRAFF elements must be the same as that of the
resonance elements in Table 1. For a given element, thermicro—
group having the smallest index should be punched first. Other-
wise the order of microgroups is arbitrary.

Thermal data

The  last cards contain cross sections for the thermal group /cf. -
Section II.6.c./. They follow the RIFFRAFF cards or, when the BIGG-type

resonance option is used, the blank or the "END" card. The format of each
thermal card is /7E8.4/. ' '

lst

Thermal card: macroscopic cross sections in cm—l

char. 1 to 8: E%

Jth

char. 9 to 16: %
Jth

char. 17 to 24: M,
~ Jen

char. 25 to 32: (sz)j
: th

For reflector reglons this card completes the iﬁput of a'problem.v
' In case of core regions, two more cards are punched:
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2"d Thermal card:

char. 1 to 8: contribution of the first regonance element to X?rh in cm~1:
char. 9 to 16: contribution of the cecond resonance element to Xny in cm—l;
h
cte.
rd F

Thermal card: contributions of all resonance fission elements to th}
-h

[not to (vXF)j !/ punched in the same way as on the
' th

2nd thexrmal card. /Only fissionable elements are mentioned

on this card./

3

N.B. The thermal absorption and fission cross sections of any resonance
element may not be punched to be the same because the code divides

by their difference.

Finally, it is noted that the input subroutines of GRACE check the
input data in order to prevent execution errors in the course of the calcula-
tions. If mistakes are discovered in the input the code prints out an error
message and turns to the next prcbiem. Of ‘course, .the code is not protected

against all possible input-errors but only the most commonly encountered ones.

IIT.2. Outéut description

The output of GRACE is self-explanatory for those who are familiar
with its algorithm, Therefore, a brief summary of output results is sufficient.

First, all input data are reproduced in the output. The code does
this before solving the slbwing down equations. Thus the user has this even
if the code finds some errors in the input data., In case of a detected input
mistake, the code output is finlshed by the error message indicating the nature
of the mistake.

Next follow the results of the iteration. For core regions, they are
introduced by the value of the infinite multiplication factor and, optionally,
few~group diffusion constants, etc. /see later/ for the infinite medium
Spectrumi For each step of the iteration the code prints out: buckling B,
keff’ PNL /cf. Eq. [46//, fractional change of B. For refiector regions, there
is no iteration unless Bl approximation is used. Therefore only some final
results are printed: the total number .of iterations /if any/, average wvalue

B of the BJ s, and

_max(Ba) - min(Bj)'

B
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Then the most important results of GRACE are printed: the
diffusion constants. These are:

Group flux:

where summation for Jj goes for microgroups in macrogroup M.
Group leakage:

Yy, = ) B, J.
Moosem 33

Macrogroup cross sections for absorption:

and for fission . .

7 (vif). 4.
jEM ( )3 J
M ¢M

(vzg)

few-group

1141

1751

176/

177}

Of course, in case of the BIGG-type resonance treatment, the contributjions
of resonance absorption and fission in Egqs. [/76/ and /77/ are taken into

account according to Section-1II.6.b.

Diffﬁsion constant:

D,, = ‘u
M 3 B§ b
jeM J
Fissibntspectrum: »
Xy = L S
Mo jem 3 -
Removal cross section:
R +R
. ‘il
BM. . ¢M

where
inelastic scattering, respectively.
Energy exchange matrix: - '

178/

1791

180/

Qﬁ ‘and Iﬁ are the removal rates from macrogroup M by elastic and



- 32 -

181/

Ogrom * Tyrom

£ = i
b"l'"‘M ‘IIM' }Jle

are removal rates from macrogroup M’ to macro-

where QM’»M and IM’*M
by elastic and inelastic scattering, respectively. The calculation

group M
of these removal rates is detailed in Appendix A.
Finally, effective cross sections are printed out for a 1/v cross

section:
R ¥ A by
182/

sV
M T

where vj is substituted in cm/sec i.e.
-6
1.451.10 1 1
7ET T 7R /831
j-1

L
V. N .
3 buy 3

is measured in eVv.
macrogroup constants, GRACE prints out the following micro-

E
absorption rate, production rate;leakage rate,

because

Beside
group data: ¢j R Jj' Bj,
total slowing down density. At the user’s option, all:-elementwise slowing

down densities are printed out as well.
For comparisons with experiments, the following integral spectral

indices are also calculated based on fomulae of ref. [3]

Resonance escape probability:
184/

Fast fission factor:
K :
eff . 185/

vzgiss(g) ¢ (u) du

Ot——8} "

contains contributions only from resonance fission elements.

where ZF;
fiss
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capture in all fertile elements

Conversion ratio =
absorption in all fissile elements

Elementwise gquantities:

fissions in the fertile element

& =
fert fissions in all fissile elements
Iy _ _epithermal fissions in the fissile element
fiss thermal fissions in the fissile element
o - _epithermal captures in the fertile element
fert thermal captures in the fertile element
epithermal captures in the fissile element

p .= -
fiss thermal captures in the fissile element’

III.3. Machine requirements

GRACE requires a memory capacity of 20700 words and a scratch
magnetic tape on the ICT-1905 computer. This tape is needed because GRACE |
is an overlay program. In additibn, a second magnetic tape desk is necessary
for the cross section library. The output of the code for a problem is not
more than 12 line printer pages. ) ‘

The running time for a problem is rarely more than 2 minutes. For
reflectors, it is about 1 minute.
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Table 1.

List of GRACE elements

1 H-1

2 H-2

3 BE-9

4 B-NAT

5 B-10

6 c-12

7 8-16

8 AL-27

9 ST. STEEL
10 ZIKCALOY
11 CD-NAT
12 XE-135
13 SM~149 -
14 SM-151
15 BI-209
16 TH-232
17 U-233

- 18  y-235

19 U-238
20 PU-239
21 PU-240-
— o
23 FISSTUM
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Table 2.

Group structure of GRACE

1| 7,189.10° 0,33003 '0,33003
2] 5,169.10° 0,65991 0,32988
3| 3,716.10° 0,98994 0,33003
4| 2,671.10° 1,32013 0,33019
5| 1,92.10° 1,65026 0,33013
6| 1,381.10° 1,97978 0,32952
7| 9,926.10° 2,31001 0,33023
s| 8,2085.10° 2,5 0,18999
9| 5,13.10° 2,97006 " 0,47006
10| 3,688.10° 3,30008 0,33002
11| 2,652.10° 3,62985 0,32977
12| 1,906.10° 3,96016 0,34031
13] 1,37.10° 4,29036 0,33020
14| 5,572.10° 5,19000 0,89964
15 | 2,265.10% 6,09018 0,90018
16 | 9,21.10° 6,99005 © 0,89987
17| 5,5308.10° 7,5 0,50995
18] 1,522.10° 8,79031 1,29031
19 | '6,19.10° 9,68999 0,89968
20| 2,517.10% 10,5899 0,8999
21| 1,9.10% 10,8710 0,2811
22 | 1,35.10° 11,2128 0,3418
23] 1,1.102 11,4176 0,2048
24 | 8,2.10% 11,7113 0,2937
25 | 6,3.10° 11,9749 0,2636
26 | 4,5.10% 12,3114 0,3365
27| 3,2.10% 12,6523 0, 3409
28 | 2,6.10% 12,8600 0,2077
20 | 2.10t 13,1223 0,2623
30| 1,5.10" 13,4100 0,2877
31| 1,1.10% 13,7202 0,3102
32| 8,0 14,0386 0,3184
33| 5,4 14,4317 0,3931
34 | 3,15 14,9707 0,5390
35 | 1,84 15,5083 0,5376
36| 1,4 ‘15,7816 0,2733
37| 6,25.107% 16,5881 0,8065
38| 4,0.1071 17,0344 0,4463
39 | 2,0.107% 17,7275 0,6931
40 0o o -
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Table 3.
Name of element Resonance groups Number of ¢ .functions
absorption fission
TH~-232 17 - 29 1 -
u-233 0 6]
U-235 27 - 37 8 8 - sepeen
U-238 ' 17 - 33 30 -
PU-239 0. o
PU-240 o -
PU-241 ’ 0 0

APPENDIX A

Calculation of removal rates

let the limits of macrogroup M be in energy EM—l > K

M7 1n_
lethargy uy_p < u and in microgroup index (jM-l + l) <

M The contribu-

'i-
. M
tion of the inelastic scattering is easy to calculate:

=y L.oayy rog. ‘ 186/ -
JEM 1>3y J J :

aﬁd
aij Zj ¢ ‘ 187/

1f M' < M else I =0 .

M'-+M

The elastic contributions are written as a sum of analogous contribu-
tions from the various elements: '

"R R ‘
oy =) Q. /88/

and

.‘ ] k ' -
QMI,,,M = ])(: QM"’M . 189/
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Now if for an element

Uy = Uy 7 2 ~log my ‘ /90/
-or, in other words, the kth element can not scatter across macrogroup M
then
R B .
This is always true for the Fermi-elements:
R
= . 91b
.M 9,5, J91b/

and for some of the f-elements. For the rest of f-elements Q? M may be
14
written as .

R . .8 -
= b3 o W . 91c
Q ,m. _jéM £ "M : /91l

where s is the probability that a neutron scattered in microgroup 'j  gets
an energy outside macrogroup M:

u u-laga
3 4 f _.(u_u,)
o u ;€ -
W, o= -_— du
J Auj 1 - Oe
j-1 Uy
E.
l - EL/E,
-1 M i e
1= ag (B Au. | “f 1921
13 J:

The terms Qﬁ'»M on the right hand side of Eq. [89/ are calculated
in a similar way. For Fermi-elements

if. M

it

‘ s r o+
.qFjM, M 1

¢) otherwise

"For f-elements

QM(»M =0 » if Uyr — logag 2w, o | | [93b/



i.e. 1f macrogroups M’ and M are too distant for the element, while

£ _ ‘ = M’ .
QM'+M = quM' if M=M +1 /93c/

and if inequality /90/ holds for both M’ and M. In all other cases
Iyr .
£ _ s M :
Quram = L Ty 4y vy | - [93d]

3=3g

where w? is the probabil}ty that a neutron scaktered in microgroup  j
an energy in macrogroup M and ’

* L
jg = max (j v Iygroq t 1) 194a/

where 3% satisfies the condition

M-1 + logaf < uj* /94b/

Finally, w? is given similarly to Eq. /92/:

uj o ( . )
- '—

M _ du - € u-u )
wj - S” Auj j du 1 - o /95a/

u Uyl .
where

v = max (uj-l Uy 4t logaf) '96a/'

and

u™ = min (UM.' u - loguf‘) . ‘ /96b/

The integration'in Eq. /95a/ can bé easily carried out and the result is

gets



1 1) ' ,
Ev-1 |E- 57. o (uj u-) if u <o, + 1ogaf

/95b/

where &' kg the enexgy corresponding to u" i.e.

» : .
E =.min (Ej—l r Qg EM-l) . . /96¢c/
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