A.I. LEIPUNSKY (Principal Scientific Editor), O.D. KNACHKOVSKY, M.I. PEVZNER, S.M. FEINBERG, P.E. NENLKOVSKY, V.G. ZAGRAFOV, B.G. DUBOVSKY, D.A. KASDASHEV, A.V. MALYSHEN, M.N. NIKOLAEV, Sh.S. MIKOLAISHVILI, V.V. URLOV, Yu.Ya. STAVISSKY, S.I. SUKHORUCHKIN, G.A. TAEULEVICH, L.N. USACHEV, S.G. TSYPIN.

English translation edited by K. EKBERG and A. LOKENZ.

COHIENTS

Part I

NUCLEAR-PHYSICAL CONSTANI'S
Pare

1. Fission cross-section $25^{232} \mathrm{Th}$ for $0.6-1.3 \mathrm{MeV}$ neutrons 5
2. Fission crossmsection - . . inium- 235 in the energy region $0.8-168.6 \mathrm{eV}$ 10
3. The energy depertence if the mean kinetic energy of fission fragments 26
4. Prompt neutron and garma rays from ${ }^{252}$ Cf fission, and properties of fission ragiments from spontaneous fission of 252 Cf 34
5. The average number of secondary noutrons emitted on fission of 233 U and 235 U by neutrons with an energy up to 1 MeV 51
6. Delayed neutrons in fission of thorium-232, uranium-235 and uranium-238 75
7. Neutron cross-sections of isotopes of erbium in the $0.007-200$ eV region 85
8. Distributions of the total cross-section of Al, Ti, Cr and U for fast neutrons 93
9. Total cross-sections of some elements for fast neutrons 102
10. Radiative capture cross-sections of fast neutrons with energies of $30-170 \mathrm{keV}$ 108
11. Elastic scattering of neutrons 116
12. Inelastic scattering of neutrons 19?
13. Potential barrier penetration factors for alpha particles and Q values for (n, a) and (n, p) reactions 286
14. Yields and energy and angular dustributions of fast neutrons fron thick targets bombarded with 40 Ney alpha particles 266
15: Theory and calculation of angular distributions of reartion products 271
Part II- ${ }^{*}$
REACTOR CONSTANTS AND PARAMETERS
르를
(of original only)
15. $\hat{6}$ Group corstants for fluorine, chlorine and yttrium 280
16. Parameiers for taking acccunt of anisotropic scatlering in multi-group calculations for reactors 289
$\therefore \quad \therefore$ astje iransution matrix. 322
-…-...-n-
*/ Parts II anה III heve not been translated. Thi table of contents is given here for information only.
Page(of original only)
17. A programe for cal.oulating eetr of multi-group sonstants for hydrogen in the Pn approxjmation 333
18. Average characterictics of the resonance structure of the total cross-sections of some heavy nuclei 343
19. The sub-group methot in mul.ti-group calculations 409
20. URAN, a programe for calculating cross-sections and homogeneous resonance self-shielding coefficients in the range of resolved resonences 418
21. Consideration of remonance blocking in calculating the sodium reactivity cocfficient of a fast reactor 439
22. Comparison of calculated and experimental results on determining the square of the slowing-down length in various media 448
Part III*/
CHARACTERISTICS AND PARANETERS OF RADIATION SHIELDING
23. Efficiency of a $\mathrm{ZnS}(\mathrm{Ag})$ fast neutron counter 459
24. Activation threshold neutron detectors 452
25. Maximum permisgible density of a beta particle flux 475
26. Distribution of neutrons in thick layers of iron for various angular characteristics of an incident plane-payallel neutron bearn 481
27. Transmission of $3-$ and $15-\mathrm{KeV}$ neutrons through lithium hydride 511
28. Angular distributions of fast neutrons escaping from a water-moderated, water-cooled reactor 513
29. Parameters relating to the reflection of reactor neutrons from various media 522
30. Angular distributions of fast neutron fluxes emerging from plane shields 533
31. Distribution of fast neutron hazard functions in plane shields 535
32. Few-group calculation of the transmission of secondary radiation through reactor shielding 551

PART I

NUCIEAR-PHYSICAL CONSTANTS

FISSION CROSS-SECLION OF ${ }^{232}$ Th FOR $0.6-1.3 \mathrm{MEV}$ NEUTRONS
S.B. Ermagambetov, V.F. Kuznetsov and G.N. Smirenkin

The detector used in measuring the relative shape of the fission crose-section curve was a thin-walled. ($\sim 1 \mathrm{~mm} \mathrm{Al}$) multilayer ionization chamber into which was placed about 6 grams of thorium which had previously been carefully purified from possible uranium admixtures. The assembly of thorium oxide layers, $\sim 2 \mathrm{mg} / \mathrm{cm}^{2}$ in thickness, applied on aluminium foils (0.1 mm), was divided into two halves between which was placed the monitoring chamber containing a double layer of natural uranium. The working space of the detector, i.e. the area filled by the fissionable material, had the shape of a cylinder the diameter and height of which came to 6 cm . Because of the considerable thickness of the layers and the fact that about 30% of the fission events are not recorded, there was the risk of an undesirable sensitivity in the detector to the anisotropic angular distribution or the fission fragments, the character of which depends strongly on $\mathbb{E}[1,2]$ (see Fig. 1). Test experiments with rotation of the dotector and increase of the discriminator threshoid showed that the distortions brought about by the effect referred to are unimportant.

Measurements were carried out on FEI*/ electrostatic generators using the $T(p, n)$ reaction on solid tritium targets, the thickness of the active layer being $0.4 \mathrm{mg} / \mathrm{cm}^{2}$ (Ti). The distance from the source to the middle plane of the active part of the detector, where the monitoring chamber layer was placed, was 12 cm. . The total. energy spread $\Delta \mathbb{B}$ (the width of the neutron spectrum at the base), due to the broadening of the proton energy in the target and the final angular resolution of the detector, increases with E, from 0.07 to 0.10 MeV . In the region that interests us, that of $E_{n}=0.6-1.3 \mathrm{MeV}$ neutrons, the total energy spread amounts to 0.07 MeV .

The number of thorium fissions experimentally determinable for one monitor reading ? is proportional to the ratio of the fission cross-sections of Th and natural uranium, averaged with respect to the spectrum of neutrons that produce fissions in the corresponding layers of the fissionable materials. The error in R, calculated from the scatter of the individual measurements, does not exceed 5% in the plateau region. Below the tireshold
there predominates a statistical error which reaches 15% when $E=0.6 \mathrm{MeV}$. The final energy resolution of the experiment may be eatimated by congidering the effective neutron energe, for which σ_{f} is equal to the mean velue of the cross-section averaged over the neutron spectrum rithin the limits of Δ. The effective neutron energy for Th and U will differ slightly because of the difference in the dependence of σ_{f} over the interval ΔE and because of the way in which the fiscionable material ik arranged in the chamber relative to the neutron sourye. This was taken into consideration in ploiting the relative dependence of the fission cross-section of 232 Th ($G_{f}{ }^{\text {Lh }} \sim$ R. σ_{f}^{U}) in Fig. 1 , where the effective neutron enerey was plotted. along the abscissa. Fission cross-sections of natural uranium were found fron tine corresponding data for $23 \mathrm{Q}_{\mathrm{U}}[3,4,5,6]$ and 235 U [5].

The dependence of $\sigma_{f} \mathrm{Th} \sim$ R. $\sigma_{f} U$ on Ewas normalized through comparison with the only published data available [7]. The present experiment in the uninvestigated energy region far below the threshold, where σf is several orders of magnitude lower than the cross-section measured in [7] , was carried out partly at the cost of a lower energy resolution. It is precisely for this reason that measurements were necessary in the refion of neutron energies relatively remote from the threshold, where a comparatively slow change of $\sigma_{f}(E=1.8-2.0$ and $2.5-3.0 \mathrm{MeV})$ can be observed and the discrepancy in the energy resolution has an insignificant effect. Fig. l gives the dependence $\sigma_{f}(E)$ in millibarns, as obtained in the presont work, normalized in such a manner that in the regions of F referred to, the difference from the results of $[7]$, shown on the same Figure, are minimal. Taking into account what was stated previously, we can accept the arreement of the compared data for the entire overlapping rance of E as completely satisfactory.

In Table I we give the values of the fission cross-section for E_{n} from 0.6 to 1.3 HeV . The dependence of the fission cross-section of 232 Th on the neutron energy right up to $E=2-2.5 \mathrm{MeV}$ is irregular in character. This phenomenon is obviously due to the fact that the compound nucleus of the (n, n^{\prime}) reaciion is predominant in the decay process. In particular, the orizin of the step-like structure in the $\sigma_{f}(E)$ curve at $E=0.75$ and 1.05 MeV is definitely linked with the compotition of Γ_{n}, inasmuch as the discontinuities in σ_{f} with respect to energy coincide with the positions of the excited levels of the residual nucleus of $232 \mathrm{Th}-0.725\left(0^{+}\right)$, 0.775 (2^{+}), 0.788 (2^{+}) and 1.045 (1-), 1.095 (3-) [8]- winch can be anrived at by eaission of neutrons from the compound nucleus of 233 Th .

Table 1

Neutron onergy $\mathrm{E}_{\mathrm{n}}(\mathrm{keV})$	585	645	650	705	735	760	780	800	825	845	870	895
Fission crose-section σ_{f} (millibarns)	0,0065	0,020	0,029	0,043	0,055	0,662	0,III	0,113	0,124	0,170	0,280	0,427
Neutron energy E_{n} (keV)	915	940	960	985	1005	1035	1055	1030	1105	1100	II50	II75
$\begin{gathered} \text { Figsion cross-section } \\ \sigma_{f}(\underline{\text { millibarns }}) \end{gathered}$	0,630	0,820	1,000	I,I40	1,350	1,910	1,760	2,020	I,950	2,500	2,500	3,770
Noutron energy $\mathrm{E}_{\mathrm{n}}(\mathrm{keV})$	1200	1225	1245	1270	1295							
$\begin{aligned} & \text { Fission cross-section } \\ & \sigma_{\mathrm{f}} \text { (millibarns) } \end{aligned}$	4,830	6,260	8,070	10,300	15,500					-		

REFERENCES

[1] R.L. Henkel, i.E. Brolle, Phys. Rev. 103, 1292 (1956).
[2] R.W. Lampher :, Symposium on the Phyaics and Chemistry of Fission, Salzburg, 1905, TAEA, Sif $60 / 7$.
[3] K. Parker, A Report N 0 79/63.
[4] R.W. Lampher', Pigs. Rev. 104, 1654 (1956).
[5] D.J. Hughes, R.B. Schwartz, BNL 325 (1958).
[6] A. Hemmendinijer, Proc. 2nd Int. Conf. PUAE, Geneva, 1958, Vol. 15, p. 344 .
[7] R.L. Henkel, R.K. Smith, quoted in ref. [5].
[8] B.S. Dzelepov, L.K. Peker, V.O. Sergeev, Shemy raspada radioaktivnjh jader (Disintegration schemes of radioactive nuclei), Hoscow, izd. AM SSSR, 1963.

