

USSR STATE COMMITTEE ON THE UTILIZATION OF ATOMIC ENERGY

,

.

BULLETIN

OF THE INFORMATION CENTRE ON NUCLEAR DATA

No. 3

000158

•

EDITORIAL BOARD

A.I. LEIPUNSKY (Principal Scientific Editor), O.D. KAZACHKOVSKY, M.I. PEVZNER, S.M. FEINBERG, P.E. NEMIROVSKY, V.C. ZAGRAFOV, B.G. DUBOVSKY, D.A. KARDASHEV, A.V. MALYSHEV, M.N. NIKOLAEV, Sh.S. NIKOLAISHVILI, V.V. ORLOV, YU.Ya. STAVISSKY, S.I. SUKHORUCHKIN, G.A. TABULEVICH, L.N. USACHEV, S.G. TSYPIN.

English translation edited by K. EKBERG and A. LORENZ.

CONTENTS

<u>Part I</u>

NUCLEAR-PHYSICAL CONSTANTS

		Page
		(original and translation)
1.	Fission cross-section of ²³² Th for 0.6-1.3 MeV neutrons	5
2.	Fission cross-section of _canium-235 in the energy region 0.8-168.6 eV	. 10
3•	The energy deperdence of the mean kinetic energy of fission fragments	26
4.	Prompt neutron and gamma rays from 252 Cf fission, and properties of fission ragments from spontaneous fission of 252 Cf	1 34
5.	The average number of secondary neutrons emitted on fiss of $233U$ and $235U$ by neutrons with an energy up to 1 MeV	sion 51
6.	Delayed neutrons in fission of thorium-232, uranium-235 and uranium-238	75
7.	Neutron cross-sections of isotopes of erbium in the . 0.007-200 eV region	85
8.	Distributions of the total cross-section of Al, Ti, Cr and U for fast neutrons	93
9•	Total cross-sections of some elements for fast neutrons	102
10.	Radiative capture cross-sections of fast neutrons with energies of 30-170 keV	108
11.	Elastic scattering of neutrons	116
12.	Inelastic scattering of neutrons	152
13.	Potential barrier penetration factors for alpha particle and Q values for (n, a) and (n, p) reactions	226
14.	Yields and energy and angular distributions of fast neutrons from thick targets bombarded with 40 MeV alpha particles	266
15.	Theory and calculation of angular distributions of reaction products	271
	*/	

Part II*

.

REACTOR CONSTANTS AND PARAMETERS

	\cdot	Pase	
	(of	° original	only)
1.	26-group constants for fluorine, chlorine and yttrium	280	
2.	Parameters for taking account of anisotropic scattering		
	in multi-group calculations for reactors	289	
2.	J'astic transition matrix	312	
		•	

*/ Parts II and III have not been translated. The table of contents is given here for information only.

		Page	
•••	(of o	riginal	only)
4.	A programme for calculating sets of multi-group constants for hydrogen in the Pn approximation	333	
5.	Average characteristics of the resonance structure of the total cross-sections of some heavy nuclei	343	
6.	The sub-group method in multi-group calculations	[′] 409	
7.	URAN, a programme for calculating cross-sections and homogeneous resonance self-shielding coefficients in the range of resolved resonances	418	
8.	Consideration of resonance blocking in calculating the sodium reactivity coefficient of a fast reactor	439	
9.	Comparison of calculated and experimental results on determining the square of the slowing-down length in various media	448	,
	Part III*/		
	CHARACTERISTICS AND PARAMETERS OF RADIATION SHIELDING		
1.	Efficiency of a ZnS(Ag) fast neutron counter	459	
2.	Activation threshold neutron detectors	462	
3.	Maximum permissible density of a beta particle flux	475	
4.	Distribution of neutrons in thick layers of iron for various angular characteristics of an incident plane-paralle neutron beam	481	
5.	Transmission of 3- and 15-MeV neutrons through lithium hydride	511	
6.	Angular distributions of fast neutrons escaping from a water-moderated, water-cooled reactor	513	
7•	Parameters relating to the reflection of reactor neutrons from various media	522	
8.	Angular distributions of fast neutron fluxes emerging from plane shields	533	
9•	Distribution of fast neutron hazard functions in plane shields	535	
10 .	Few-group calculation of the transmission of secondary radiation through reactor shielding	551	

PART I

NUCLEAR-PHYSICAL CONSTANTS

FISSION CROSS-SECTION OF 232Th FOR 0.6-1.3 MeV NEUTRONS

S.B. Ermagambetov, V.F. Kuznetsov and G.N. Smirenkin

The detector used in measuring the relative shape of the fission cross-section curve was a thin-walled (~1 mm Al) multilayer ionization chamber into which was placed about 6 grams of thorium which had previously been carefully purified from possible uranium admixtures. The assembly of thorium oxide layers, ~2 mg/cm² in thickness, applied on aluminium foils (0.1 mm), was divided into two halves between which was placed the monitoring chamber containing a double layer of natural uranium. The working space of the detector, i.e. the area filled by the fissionable material, had the shape of a cylinder the diameter and height of which came to 6 cm. Because of the considerable thickness of the layers and the fact that about 30% of the fission events are not recorded, there was the risk of an undesirable sensitivity in the detector to the anisotropic angular distribution of the fission fragments, the character of which depends strongly on E $\begin{bmatrix} 1,2 \end{bmatrix}$ (see Fig. 1). Test experiments with rotation of the detector and increase of the discriminator threshold showed that the distortions brought about by the effect referred to are unimportant.

Measurements were carried out on $\text{FEI}^{*/}$ electrostatic generators using the T(p,n) reaction on solid tritium targets, the thickness of the active layer being 0.4 mg/cm² (Ti). The distance from the source to the middle plane of the active part of the detector, where the monitoring chamber layer was placed, was 12 cm. The total energy spread ΔE (the width of the neutron spectrum at the base), due to the broadening of the proton energy in the target and the final angular resolution of the detector, increases with E, from 0.07 to 0.10 MeV. In the region that interests us, that of $E_n = 0.6-1.3$ MeV neutrons, the total energy spread amounts to 0.07 MeV.

The number of thorium fissions experimentally determinable for one monitor reading R is proportional to the ratio of the fission cross-sections of Th and natural uranium, averaged with respect to the spectrum of neutrons that produce fissions in the corresponding layers of the fissionable materials. The error in R, calculated from the scatter of the individual measurements, does not exceed 5% in the plateau region. Below the threshold there predominates a statistical error which reaches 15% when E = 0.6 MeV. The final energy resolution of the experiment may be estimated by considering the effective neutron energy, for which σ_f is equal to the mean value of the cross-section averaged over the neutron spectrum within the limits of ΔE . The effective neutron energy for Th and U will differ slightly because of the difference in the dependence of σ_f over the interval ΔE and because of the way in which the fissionable material is arranged in the chamber relative to the neutron source. This was taken into consideration in plotting the relative dependence of the fission cross-section of 2^{32} Th (σ_f Th ~ R. σ_f ^U) in Fig. 1, where the effective neutron energy was plotted along the abscissa. Fission cross-sections of natural uranium were found from the corresponding data for 2^{32} U [3,4,5,6] and 2^{35} U [5].

The dependence of $\sigma_f^{\text{Th}} \sim \text{R.}\sigma_f^{U}$ on E was normalized through comparison with the only published data available [7]. The present experiment in the uninvestigated energy region far below the threshold, where σ_f is several orders of magnitude lower than the cross-section measured in [7], was carried out partly at the cost of a lower energy resolution. It is precisely for this reason that measurements were necessary in the region of neutron energies relatively remote from the threshold, where a comparatively slow change of σ_f (E = 1.8-2.0 and 2.5-3.0 MeV) can be observed and the discrepancy in the energy resolution has an insignificant effect. Fig. 1 gives the dependence σ_f (E) in millibarns, as obtained in the present work, normalized in such a manner that in the regions of E referred to, the difference from the results of [7], shown on the same Figure, are minimal. Taking into account what was stated previously, we can accept the agreement of the compared data for the entire overlapping range of E as completely satisfactory.

In Table 1 we give the values of the fission cross-section for E_n from 0.6 to 1.3 MeV. The dependence of the fission cross-section of 232Th on the neutron energy right up to E = 2-2.5 MeV is irregular in character. This phenomenon is obviously due to the fact that the compound nucleus of the (n,n') reaction is predominant in the decay process. In particular, the origin of the step-like structure in the σ_f (E) curve at E = 0.75 and 1.05 MeV is definitely linked with the competition of Γ_n , inasmuch as the discontinuities in σ_f with respect to energy coincide with the positions of the excited levels of the residual nucleus of 232Th - 0.725 (0⁺), 0.775 (2⁺), 0.788 (2⁺) and 1.045 (1⁻), 1.095 (3⁻) $\begin{bmatrix} 8 \\ 2 \end{bmatrix}$ - which can be arrived at by emission of neutrons from the compound nucleus of 233Th.

Neutron energy En (keV)	585	645	650	705	735	760	780	800		845	870	895
Fission cross-section ^o f (millibarns)	0,0065	0,020	0,029	0,043	0,055	0,082	0,111	0,113	0,124	0,176	0,280	0,427
Neutron energy E _n (keV)	915	940	960	\$8 5	1005	1035	1055	1030	1105	1130	1150	I175
Figgion cross-section ^o f (millibarns)	0,680	0,820	1,000	I,I40	I,350	1,910	I,760	2,020	I,950	2,500	2,500	3,770
Neutron energy E _n (keV)	1200	1225	1245	1270	1295							
Fission cross-section σ_{f} (millibarns)	4,830	6,260	8,070	10, 300	15,300			·····				

.

•

•

.

٠

REFERENCES

- [1] R.L. Henkel, J.E. Brolle, Phys. Rev. 103, 1292 (1956).
- [2] R.W. Lampher:, Symposium on the Physics and Chemistry of Fission, Salzburg, 1905, IAEA, SH-60/7.
- [3] K. Parker, A RE Report N 0 79/63.
- [4] R.W. Lamphere, Phys. Rev. 104, 1654 (1956).
- [5] D.J. Hughes, R.B. Schwartz, BNL 325 (1958).
- [6] A. Hemmendinger, Proc. 2nd Int. Conf. PUAE, Geneva, 1958, Vol. 15, p. 344.
- [7] R.L. Henkel, R.K. Smith, quoted in ref. [5].
- [8] B.S. Dzelepov, L.K. Peker, V.O. Sergeev, Shemy raspada radioaktivnyh jader (Disintegration schemes of radioactive nuclei), Moscow, izd. AN SSSR, 1963.