International Atomic Energy Agency

INDC(IND)-23/N



# INTERNATIONAL NUCLEAR DATA COMMITTEE

Systematics in  $E_2/M_1$  Multipole Mixing Ratios of  $(2^{+} - 2^{+})$  Gamma Transitions in Even-Even Nuclei

I.V.S. Rathore and B.P. Singh Department of Physics, University of Roorkee, Roorkee 247672, India

June 1978

IAEA NUCLEAR DATA SECTION, KÄRNTNER RING 11, A-1010 VIENNA

Reproduced by the IAEA in Austria June 1978 78-6021 Systematics in  $E_2/M_1$  Multipole Mixing Ratios of (2<sup>'+</sup> - 2<sup>+</sup>) Gamma Transitions in Even-Even Nuclei

I.V.S. Rathore and B.P. Singh Department of Physics, University of Roorkee, Roorkee 247672, India

June 1978

Systematics in  $E_2/M_1$  Multipole Mixing Ratios of  $(2^{+} - 2^{+})$  Gamma Transitions in Even-Even Nuclei

I.V.S. Rathore and B.P. Singh Department of Physics, University of Roorkee, Roorkee 247672, India

#### Abstract

 $A_2^{\text{Expt.}}$  and  $A_4^{\text{Expt.}}$ , the angular correlation coefficients for the cascade  $2^{*+} - 2^+ - 0^+$  for almost all the even-even nuclei have been collected and reanalysed to calculate the amplitude mixing ratios ' $\delta$ ' for  $2^{*+} - 2^+$  gamma-transitions. There are two methods for analysing the data, viz. Arns and Wiedenbeck method using  $A_2$  values or  $A_4$  values, and that of Coleman using  $A_2$  and  $A_4$  values. The phases and values which are common in both the analyses, are taken for the analysis. The plot  $\ln |\delta/E_{\gamma}|$  versus mass number (A) is given along with the values predicted by Greiner's model and that of Krane. Many systematics obtained in the values and phases of ' $\delta$ ' are presented.

E RADIOACTIVITY; Collected  $\gamma\gamma(\Theta)$ ; Analysed and deduced  $E_2/M_1$  mixing ratio with phases; Reported systematics

## 1. INTRODUCTION

Many attempts [Potnis and Rao<sup>1)</sup>, Grechukhin<sup>2)</sup>, Tamura and Yoshida<sup>3</sup>), Krane<sup>4</sup>), Greiner<sup>5</sup>), Davydov and Filippov<sup>6</sup>), Hamilton<sup>7</sup>), and Kumar<sup>8</sup>)] in the past have been made to compile  $E_2/M_1$  multipole mixing ratios ( $\Xi$  ' $\delta$ ') and relative phases. In all these attempts, the magnitude of ' $\delta$ ' has been the main consideration. Krane<sup>4</sup>) has compiled the number of cases with positive and negative phases along with their magnitudes. Krane<sup>4</sup>) has further reported that there is no correlation or any systematics in phases of ' $\delta$ '. An attempt has been made to investigate the phases of ' $\delta$ ' and also its magnitude. Another objective of the present study is to find out the systematics in the magnitudes and phases which may reveal the nuclear structure.

#### 2. PHASE CONVENTION AND DEFINITIONS

In extracting the mixing ratios from the quoted angular correlation coefficients, the sign convention of Biedenharn and Rose 9) has been followed, in which the first transition is the absorption to form an intermediate state followed by the second transition, consisting of the emission.

The angular correlation coefficients for the cascade  $I_i^{\gamma_1} - I^{\gamma_2} - I_f$  in which the initial transition is a mixture of M1 and E2, are written as:

$$A_{k} = \frac{Z(L_{1}IL_{1}I; I_{i}k) + 2\delta Z(L_{1}IL_{1}I; I_{i}k) + \delta^{2}Z(L_{1}IL_{1}I; I_{i}k)}{1 + \delta^{2}}$$

$$X Z(L_{2}IL_{2}I; I_{f}k) \qquad \dots (1)$$

where ' $\delta$ ' the amplitude mixing ratio, is defined as

 $\delta = \frac{\left\langle I \parallel L_{1}^{*} \pi_{1}^{*} \parallel I_{1} \right\rangle}{\left\langle I \parallel L_{1} \pi_{1} \parallel I_{1} \right\rangle} \dots (2)$ 

The sign convention of Biedenharn and  $\text{Rose}^{9)}$  is compared with Krane<sup>10</sup>) and Rose-Brink<sup>11</sup>) conventions for a cascade as

$$\delta (\gamma_{1})_{BR} = -\delta (\gamma_{1})_{KS}, \ \delta (\gamma_{1})_{RB} = -\delta (\gamma_{1})_{KS}$$
  
$$\delta (\gamma_{2})_{BR} = \delta (\gamma_{2})_{KS}, \ \delta (\gamma_{2})_{RB} = -\delta (\gamma_{2})_{KS}$$
 ...(3)

The mixing ratio  $\delta$  may be compared with theoretical values through the expression, as defined by Krane4)

$$\frac{\delta}{E_{\gamma}} = 0.835 \frac{\langle I || m(E2) || I_1}{\langle I || m(M1) || I_1} \rangle \dots (4)$$

where E is the gamma-ray energy in MeV. For the purpose of theoretical comparison, it is useful to define the mixing ratio

$$\Delta = \left(\frac{\delta}{0.835 \text{ E}_{\gamma}}\right) \text{ as}$$

$$\Delta = \frac{\left(\frac{\text{I} \| \text{ m}(\text{E2}) \| \text{ I}_{1}}{\sqrt{\text{I} \| \text{ m}(\text{M1}) \| \text{ I}_{1}}}\right) \dots (5)$$

where  $\Lambda$  is given in units of eb/  $\mu_{N}$ .

## 3. COMPILATION AND ANALYSIS OF THE ANCULAR CORRELATION COEFFICIENTS

The angular correlation coefficients  $(A_2 \text{ and } A_4)$  for the cascade  $2^{1+} - 2^{+} - 0^{+}$  from almost all the radioactive disintegrations as reported by — various authors are collected and are given in Table I. The details of the cascade, i.e. energies of  $\gamma_1$  and  $\gamma_2$  along with the references are also given. The analysis of the angular correlation data has been done by two methods which are as follows.

## 3.1. THE ANALYSIS OF THE MULTIPOLE MIXING RATIOS BY THE METHOD OF ARNS AND WIEDENBECK

mixing ratios as obtained by this analysis are given in Table II.

Arns and Wiedenbeck<sup>12)</sup> have suggested the method to determine the magnitude and phase of the multipole mixing ratio if one transition of gamma-gamma cascade is mixed. The theoretical plot of A<sub>2</sub> versus  $Q\left(=\frac{\delta^2}{1+\delta^2}\right)$  is done and an ellipse is obtained. The multipole mixing ratio ' $\delta$ ' is determined if the experimental value with the error cuts the curve. Such type of plot is given in Figure 1. The values of

# 3.2. ANALYSIS OF THE MULTIPOLE MIXING RATIO BY THE GRAPHICAL METHOD OF COLEMAN

Coleman<sup>13)</sup> has introduced a method for evaluating the multipole mixing ratio  $\circ \circ \circ$  from gamma-gamma directional correlation experiment if only one transition is mixed by using both A<sub>2</sub> and A<sub>4</sub> values. One plots the curve of A<sub>2</sub> versus A<sub>4</sub> for a 2<sup>-+</sup> - 2<sup>+</sup> - 0<sup>+</sup> cascade as shown in Fig. 2. This curve is labelled with the values of  $\delta^{\dagger}$  (or more conveniently with the values of the parameter  $\delta^{\dagger} = \left| \frac{\delta}{1-\delta} \right|$ 

The measured experimental values with the errors for both  $A_2$  and  $A_4$  are depicted in the plot which gives the best fit value of  $\delta^{+} \delta^{+}$  with phases, as shown in Fig. 2. The values thus obtained are given in Table II.

#### 4. MULTIPOLE MIXING RATIOS ON THE BASIS OF GREINER'S MODEL

Walter Greiner<sup>5)</sup> has reported a model to calculate the g-factors and E2/Ml multipole mixing ratios in vibrational nuclei. The basic idea of the proposed model is based on the assumption that the proton distribution in nuclei is less deformed than the neutron distribution because the pairing force acting between protons is larger than between the neutrons. Let  $G_p$  and  $G_n$  be the pairing forces for protons and neutrons respectively; Nilsson and Priorl4) have found the values for  $G_p = \frac{25}{A}$  MeV and  $G_n = \frac{18}{A}$  MeV, while

Marschalek and Rasmussen<sup>15</sup>) use  $G_p = \frac{30}{A}$  MeV and  $G_n = \frac{20}{A}$  MeV.

The average deformation  $\beta_0$  of the mass distribution is defined as NB<sub>1</sub>(n) + ZB<sub>2</sub>(p)

$$\beta_{0} = \frac{N\beta_{0}(n) + 2\beta_{0}(p)}{A} \qquad \dots (6)$$

where  $\beta_{n}(n)$  and  $\beta_{n}(p)$  are the neutron and proton deformations.

Greiner<sup>5)</sup> has given the expression for the calculation of  $\Delta (\equiv \delta / E_{\gamma})$  which is written as

$$\Delta = \frac{(1.1 \times 10^{-3}) A^{5/3} \beta_0}{f(1-2f)} \qquad \dots (7)$$

where f gives the difference in proton and neutron deformations

$$\mathbf{f} = \frac{\mathbf{N}}{\mathbf{A}} \begin{bmatrix} \frac{\beta_o(\mathbf{n})}{\beta_o(\mathbf{p})} & -1 \end{bmatrix} \qquad \dots (8)$$

The parameter f is calculated from equation (8). The root mean square deformation  $\beta_0$  for the first excited state is given by Greiner<sup>16</sup>). Putting the values of these parameters in equation (7), the value of multipole mixing ratio  $\Delta (\equiv \delta / E_{\gamma})$  is obtained. The mixing ratios for a number of nuclei have been calculated and it is found that the sign of  $\Delta$  is always positive.

#### 5. THE MAGNITUDE OF $\delta$ \*

The plot of  $\Delta (\equiv \delta / E_{\gamma})$  versus mass number A is given in Figure 3. The calculated values of  $\Delta$  on the basis of Greiner's model<sup>5</sup>, are also given in the Figure 3 and are denoted by dotted line. The plot as done by Krane<sup>4</sup>) is also given which accordingly to him indicates the trend of the measured values and shows a pronounced minimum in the vicinity of the closed shells.

In the present analysis, it is indicated that we can divide the nuclei in five groups by drawing straight lines as given in Figure 3. These straight lines are obtained by the method of least square fit<sup>16</sup>) for values for nuclei in the groups. The error is calculated by the method given in Daniel and Wood<sup>17</sup>) and indicated by the broken lines. Almost all the values of  $\Delta$  lie within the groups. In the first four groups, the values of  $\Delta$  approach to zero when the neutron numbers or proton numbers are at or around shell closure, except in the fifth group, indicating as if there is one more shell type structure. The slopes of these groups with the errors are as follows:

| Group I   | $\frac{\ln  \Delta }{A} = 0.1154 \pm 0.0262$ |
|-----------|----------------------------------------------|
| Group II  | $\frac{\ln  \Delta }{A} = 0.1554 \pm 0.0403$ |
| Group III | $\frac{\ln  \Delta }{A} = 0.1505 \pm 0.0212$ |
| Group IV  | $\frac{\ln  \Delta }{A} = 0.2070 \pm 0.0244$ |
| Group V   | $\frac{\ln  \Delta }{A} = 0.1877 \pm 0.0330$ |

#### 6. THE PHASES OF $\delta$ \*

The phases of ' $\delta$ ' are as given in the Table II and are also plotted (Figure 4). The X- and Y-axes are taken Z (atomic number) and N (neutron number) respectively. The phase (+) or (-) is given for almost all nuclei except four cases (Ge72, Se74, Mo<sup>94</sup> and Gd<sup>152</sup>). The plot clearly indicates a certain system. The line as given in Figure 4, separates positive and negative phases. For every eight protons, we find a change as indicated in the Figure. These proton numbers are at 37, 45, 53, 61, 69 and 77. There is a change at 29 but again at 31 as well. Below 29 and above 77, there is no such type of structure.

# 7. ENERGY OF 2'+ EXCITED STATES

In all these nuclei, the first excited state is  $2^+$  and second excited is not  $2^{++}$  but this lies above  $4^+$  or  $6^+$  or  $8^+$  or above  $0^+$ .  $0^+$  may lie between  $2^+$  and  $2^{++}$ , or  $4^+$  and  $2^{++}$  or between  $2^+$  and  $4^+$ . All these cases can be divided in five main groups as given in Figure 5. The decay schemes of the isotopes  $\mathrm{Sr}^{88}$ ,  $\mathrm{Ru}^{100}$ ,  $\mathrm{Ce}^{140}$ ,  $\mathrm{Sm}^{152}$ ,  $\mathrm{Gd}^{152}$ ,  $\mathrm{Gd}^{154}$  and  $\mathrm{Hf}^{174}$ , do not lie in the five groups but are different.

The following Table gives the number of cases in various categories along with (+) and (-) phases and large and small values of  $\circ \circ$ .

| Group                                        | A            | B              | C      | D      | E      |
|----------------------------------------------|--------------|----------------|--------|--------|--------|
| Number of cases                              | 33           | 11             | 6      | 2      | 4      |
| Number of cases<br>having phases             | + 12<br>- 21 | 7<br>4         | 2<br>5 | 2<br>- | 3<br>1 |
| Number of cases,<br>large values with phases | + 10<br>- 11 | 7              | 2<br>1 | -      | 2<br>1 |
| Small values with phases                     | + 2<br>- 10  | <del>-</del> 4 | -<br>4 | -      | 1      |

The almost 50 percent cases are in group A where the second excited state is  $2^{\prime+}$ . This classification may be considered on the basis of  $\beta$ - and  $\gamma$ -vibrational bands and may also help in microscopic calculations for the nuclear structure studies.

#### Acknowledgement

The authors are thankful to the Department of Atomic Energy, Government of India, for financial assistance in the form of a research project.

### References

- 1) V.R. Potnis and G.N. Rao, Nucl. Phys. <u>42</u>(1963), 620.
- 2) D.P. Grechukhin, Nucl. Phys. 40 (1963), 422.
- 3) T. Tamura and H. Yoshida, Nucl. Phys. <u>30</u> (1962), 579.
- 4) K.S. Krane, Phys. Rev. C10 (1974), 1197.
- 5) W. Greiner, Nucl. Phys. <u>80(1966)</u>, 417.
- 6) A.S. Davydov and G.F. Filippov, Nucl. Phys. <u>8</u>, (1958), 237.
- 7) J.H. Hamilton, In AngularCorrelations in Nuclear Disintegrations (edited by H. Van Krugten and B. Van Wooijen, Rotterdam, U.P., Netherlands, 1971) p. 181.
- K. Kumar, Gamma-Ray Transition Probabilities (edited by S.C. Pancholi and S.L. Gupta, Delhi University Press, 1976) Pl-31.
- 9) L.C. Biedenharn and M.E. Rose, Rev. Mod. Phys. 25 (1953), 729.
- 10) K.S. Krane and R.M. Steffen, Phys. Rev. C2 (1970), 724.
- 11) H.J. Rose and D.M. Brink, Rev. Mod. Phys. <u>39</u> (1967), 306.
- 12) R.G. Arns and M.L. Wiedenbeck, Phys. Rev. 111 (1958), 1631.
- 13) C.F. Coleman, Nucl. Phys. <u>5</u> (1958), 495.
- 14) S.G. Nilsson and O. Prior, Mat.Fys. Medd Dan.Vid.Selsk <u>32</u>, No.32 (1961).
- 15) E.R. Marschallek and J.O. Rasmussen, Nucl. Phys. 43 (1963), 438.
- 16) J.M. Eisenberg and W. Greiner, Nuclear Theory Vol. I (North-Holland Publishing Company, Amsterdam).
- 17) C. Daniel and F.S. Wood, Fitting Equations To Data (Division of John Willey and Sons. Inc. New York, 1971) p.10.

# TABLE\_I

```
Angular correlation coefficients for 2^{+} \rightarrow 2^{+} \rightarrow 0^{+} cascade
```

| Nucl-                                      | E <sub>1</sub><br>(keV) | $\frac{E}{2}$ | nw<br>(keV) | Expt.                         | Expt.                       | Reference                                      |
|--------------------------------------------|-------------------------|---------------|-------------|-------------------------------|-----------------------------|------------------------------------------------|
|                                            | (NOV)                   | (             | ( 101 )     | 6                             | т                           |                                                |
| 26 <sup>Fe</sup> 58                        | 1675                    | 810           | 865         | 0.45 <u>+</u> 0.04            | 0.08 <u>+</u> 0.09          | R.A.Fox etal,P.R.C5,<br>853 (1972).            |
| 28 <sup>Ni</sup> 30                        | 2775                    | . 1 45 4      | 1321        | -0.27+0.03                    | 0.16 <u>+</u> 0.04          | D.F.H.Start etal.,N.P.<br>A162,49 (1971).      |
| 28 <sup>Ni 60</sup><br>28 <sup>Ni 32</sup> | 2156                    | 1330          | 826         | -0.30 <u>+</u> 0.03           | 0 <b>.15<u>+</u>0.0</b> 5   | S.M.Shaforth etal,P.R.<br>149,827 (1966)       |
| 28 <sup>N1</sup> 34                        | 2301                    | 1173          | 1128        | 0.415 <u>+</u> 0.053          | 0.082 <u>+</u> 0.131        | D.M.Van Patter etal,<br>N.P.A178,355 (1972).   |
| 30 <sup>2</sup> n34                        | 1800                    | 992           | 810         | -0 <b>.200<u>+</u>0.</b> 022  | -0.020 <u>+</u> 0.032       | A.K.Sen Gupta etal.,<br>P.L.3,355 (1963).      |
| 30 <sup>2n</sup> 36                        | 1872                    | 1039          | 833         | 0.30 <u>+</u> 0.05            | 0.21 <u>+</u> 0.07          | T.Hayashi etal., J.P.S.<br>(J)27,1375 (1969).  |
| 30 <sup>Zn</sup> 38                        | 1883                    | 1077          | 806         | 0 <b>.</b> 369 <u>+</u> 0.025 | 0.234 <u>+</u> 0.034        | J.Lange etal.,P.R.C7,<br>177 (1973).           |
| 32 <sup>Ge</sup> 40                        | 1464                    | 834           | 630         | -0.002 <u>+</u> 0.009         | 0.311 <u>+</u> 0.012        | H.Chen etal.,N.P.A219,<br>365 (1974)           |
| 32 <sup>Ge74</sup>                         | 1204                    | 596           | 609         | -0.251 <u>+</u> 0.015         | 0.27 <u>+</u> 0.04          | M.C.Cambiaggio etal.,<br>Z.P.A275,183 (1975).  |
| 32 <sup>Ge</sup> <sup>76</sup> 44          | 1108                    | 563           | 5 45        | 0.14 <u>+</u> 0.04            |                             | K.C.Chung etal., P.R.<br>C2,139 (1970).        |
| 34 <sup>Se</sup> <sup>74</sup> 40          | 1270                    | 635           | 635         | 0.213 <u>+</u> 0.022          | 0 <b>.272<u>+</u>0.04</b> 4 | M.C.Cambiaggio etal.,<br>Z.P.A275, 183 (1975). |
| 34 <sup>Se</sup> 76                        | <b>1</b> 216            | 5 <b>59</b>   | 657         | -0 <b>.185<u>+</u>0.</b> 012  | 0.305 <u>+</u> 0.021        | T.Nagahara etal., J.P.S.<br>(J)34, 579 (1973). |
| 34 <sup>Se</sup> <sup>78</sup> 44          | 1306                    | 613           | 693         | 0.22 <u>+</u> 0.03            | 0.03 <u>+</u> 0.04          | R.M.Lieder etal., P.H.<br>C2, 531 (1970)       |
| $36^{\text{Kr}}_{42}^{78}$                 | 1119                    | 455           | 664         | 0.11 <u>+</u> 0.04            | 0.03 <u>+</u> 0.07          | N.E.Andernson etal.,<br>J.P.A(GB)7,1156(1974), |
| $36^{\text{Kr}^{80}_{44}}$                 | 1256                    | 616           | 639         | -0.12 <u>+</u> 0.04           | 0.21 <u>+</u> 0.07          | T.Hayashi etal.,J.P.S<br>(J)27,1375 (1969).    |
| 36 <sup>Kr</sup> 46                        | 1475                    | 777           | 698         | -0.307 <u>+</u> 0.015         | 0.239 <u>+</u> 0.010        | J.Kotch etal, N.P.103, 300 (1967).             |
| 36 <sup>Kr</sup> 48                        | 1897                    | 881           | 1016        | -0.056 <u>+</u> 0.050         | 0.426 <u>+</u> 0.089        | J.P.Roalsvig etal.,<br>P.R.138,B1378 (1965).   |

| Nucl-<br>eus                          | E <sub>1</sub>       | E <sub>2</sub> | Ťw<br>()- T  | A <sub>2</sub> <sup>Expt</sup> . | A <sup>Expt</sup> .           | Reference                                         |
|---------------------------------------|----------------------|----------------|--------------|----------------------------------|-------------------------------|---------------------------------------------------|
| 38 <sup>Sr</sup> 48                   | <u>(keV)</u><br>1854 | (ke V)<br>1077 | (KeV)<br>777 | 0.040+0.023                      | 0.017 <u>+</u> 0.037          | R.G.Arns etal, N.P.                               |
| 36 $4888$                             | 3223                 | 1836           | 1387         | 0.217+0.014                      | -0.004+0.016                  | A148,625 (1970).<br>Y.Kawase etal., N.P.          |
| 38 <sup></sup> 50<br><sub>M-</sub> 94 | 1964                 | 974            | 007          | 0.28+0.04                        | 0 22+0 011                    | A154, 127 (1970).<br>NK Aras $atal N P A112$      |
| 42 <sup>40</sup> 52                   | 1004                 | 011            | 777          | 0.2010.04                        | V. 22 <u>+</u> V.VII          | 609 (1968).                                       |
| 42 <sup>Mo</sup> 54                   | 1498                 | 778            | 720          | -0.072 <u>+</u> 0.020            | 0.056 <u>+</u> 0.036          | D.Heck etal, N.P.<br>A159, 49 (1970)              |
| 42 <sup>Mo</sup> 56                   | 1432                 | 787            | 645          | _0.147 <u>+</u> 0.020            | 0.060 <u>+</u> 0.035          | D.Heck etal, N.P.<br>A165,327 (1971)              |
| 44 <sup>Ru</sup> 56                   | 1360                 | 540            | 820          | -0.196 <u>+</u> 0.024            | 0 <b>.</b> 324 <u>+</u> 0.030 | H.Kawakanic etal,<br>J.P.S.(J)24,614 (1968)       |
| 44 <sup>Ru</sup> 58                   | 1103                 | 475            | 628          | -0.069 <u>+</u> 0.017            | 0.347 <u>+</u> 0.033          | B.Singh etal, N.P.A155,<br>90 (1970).             |
| 46 <sup>Pd</sup> 58                   | 1323                 | 556            | 767          | 0.16 <u>+</u> 0.06               | 0.02 <u>+</u> 0.04            | N.C.Singhal etal.,P.R.<br>C5, 948 (1972)          |
| 46 <sup>Pd</sup> 60                   | 1125                 | 513            | 612          | 0 <b>.1</b> 00 <u>+</u> 0.040    | 0.310 <u>+</u> 0.007          | J.Kotch etal, N.P.103, 300 (1967).                |
| 46 <sup>Pd</sup> 62                   | 1441                 | 434            | 1007         | 0.069 <u>+</u> 0.024             | 0.055 <u>+</u> 0.0 <b>33</b>  | K.Okano etal, N.P.A164,<br>545 (1971).            |
| 46 <sup>Pd64</sup>                    | 810                  | 374            | 436          | -0.220 <u>+</u> 0.037            |                               | R.L.Robinson etal,<br>N.P.A166, 141 (1971)        |
| 48 <sup>Cd</sup> 62                   | 1476                 | 658            | 818          | 0.375 <u>+</u> 0.050             | 0.180 <u>+</u> 0.050          | K.S.Krane etal,P.R.C2,<br>724 (1970)              |
| 50 <sup>Sn66</sup>                    | 2109                 | 1293           | 819          | 0.31 <u>+</u> 0.02               | 0.27 <u>+</u> 0.05 G          | .Garncia Barmudiz etal,<br>P.R.C9,1060 (1974).    |
| 52 <sup>Te</sup> 70                   | 1250                 | 564            | <b>6</b> 86  | 0.142 <u>+</u> 0.006             | 0.298 <u>+</u> 0.005          | J.Kotch etal, N.P.103, 300 (1967).                |
| 52 <sup>Te</sup> 72                   | 1325                 | 603            | 723          | 0.136 <u>+</u> 0.009             | 0.270 <u>+</u> 0.015          | K.R.Baker etal, N.P.<br>A189, 493 (1972)          |
| 52 <sup>Te126</sup>                   | 1421                 | 667            | 754          | 0.052 <u>+</u> 0.028             | 0.291 <u>+</u> 0.035          | <b>Z.W.Grabowski etal.</b><br>P.R.C3,1649 (1971). |
| 54 <sup>Xe72</sup>                    | 880                  | 389            | 491          | -0.110 <u>+</u> 0.012            | 0.341 <u>+</u> 0.030          | Z.W.Grabowski etal,<br>P.R.C3,1649 (1971),        |
| 54 <sup>Xe</sup> 74                   | 955                  | 540            | 415          | -0.18 <u>+</u> 0.01              | 0.36 <u>+</u> 0.02            | T.Hayashi etal, N.I.M<br>53,123 (1967).           |
| 54 <sup>Xe</sup> 78                   | 21297                | 667            | 630          | -0.162 <u>+</u> 0.047            | 0.363 <u>+</u> 0.092          | H.W.Taylor etal, C.J.P.<br>49,2724 (1971).        |
| 54 <sup>Xe</sup> 80                   | <sup>1</sup> 1613 ·  | 84 <b>7</b>    | 766          | 0.220+0.043                      | 0.062 <u>+</u> 0.065          | J.M.Gualda etal, N.P.<br>A234, 357 (1974)         |

| Nucl-                | $E_1$        | E <sub>2</sub><br>(keV) | n <sub>w</sub><br>(keV) | AExpt.                         | A <sup>Expt</sup> .            | Reference                                            |
|----------------------|--------------|-------------------------|-------------------------|--------------------------------|--------------------------------|------------------------------------------------------|
| 00.0                 | (ACT)        | (nor)                   | (10.)                   |                                |                                |                                                      |
| 56 <sup>Ba</sup> 76  | 1031         | 46 4                    | 5 <sup>67</sup>         | -0.177 <u>+</u> 0.032          | 0.296 <u>+</u> 0.063           | H.W.Taylor etal,C.J.P.<br>49,2724 (1971)             |
| 55 <sup>Ba</sup> 78  | 1168         | 605                     | 56 <b>3</b>             | -0.16 <u>+</u> 0.10            | 0.27 <u>+</u> 0.13             | M.Behar etal, N.P.A192,<br>218 (1972).               |
| 56 <sup>Ba</sup> 80  | 1900         | 830                     | 1065                    | 0.100 <u>+</u> 0.008           | 0.008 <u>+</u> 0.018           | <b>Z.W.Grabowski</b> etal, N.P.<br>20, 159 (1960).   |
| 56 <sup>Ba</sup> 84  | 1511         | 602                     | 908                     | 0.436 <u>+</u> 0.023           | 0.147 <u>+</u> 0.028           | L.J.Alquist etal,P.R.<br>C13, 1277 (1976).           |
| 58 <sup>Ce</sup> 82  | 2348         | <del>1</del> 597        | 752                     | -0.030 <u>+</u> 0.036          | 0.029 <u>+</u> 0.064           | R.N.Saxena etal, P.R.<br>C7, 395 (1973).             |
| 58 <sup>Ce</sup> 84  | 1436         | 641                     | 895                     | 0.417 <u>+</u> 0.034           | 0.089 <u>+</u> 0.036           | G.J.Basinger etal, P.R.<br>C11, 1755 (1975).         |
| 60 <sup>Nd</sup> 84  | 1561         | 696                     | 865                     | 0.34 <sup>+0.09</sup><br>-0.08 | 0.23 <sup>+0.03</sup><br>-0.06 | M.Behar etal, N.P.A219, 516 (1974).                  |
| 62 <sup>Sm</sup> 90  | 810          | 122                     | 688                     | -0.16 <u>+</u> 0.04            | 0.36 <u>+</u> 0.07             | C.A.Kalfas etal,J.P.A.<br>(GB)6, 247 (1973).         |
| 64 <sup>Gd</sup> 88  | 930          | 344                     | 586                     | 0.282 <u>+</u> 0.061           | 0.202 <u>+</u> 0.104           | Barrette etal, C.J.P.<br>48, 2011 (1970).            |
| 64 <sup>Ga</sup> 90  | 816          | 123                     | 693                     | -0.145 <u>+</u> 0.022          | 0 <b>.311<u>+</u>0.0</b> 40    | L.C.Whitlock etal, P.R.<br>C3, 313 (1971).           |
| 64 <sup>Gd</sup> 92  | 1129         | 89                      | 1040                    | 0.054 <u>+</u> 0.043           | 0.25 <u>+</u> 0.09             | J.H.Hamilton etal, P.R.<br>C5, 899 (1972).           |
| 64 <sup>Gd</sup> 94  | 1026         | 795                     | 946                     | 0.070 <u>+</u> 0.015           | 0.02 <u>+</u> 0.03             | F.Schima etal, N.P.63, 305 (1965).                   |
| 66 <sup>Dy</sup> 94  | 966          | 87                      | 879                     | 0.002 <u>+</u> 0.017           | 0.324 <u>+</u> 0.025           | K.S.Krane etal, N.P.A164,<br>439 (1971).             |
| 70 <sup>YD</sup> 174 | <b>1</b> 316 | 76                      | 1240                    | 0.064 <u>+</u> 0.028           | 0.032 <u>+</u> 0.046           | H.J.Prask etal, N.P.29,<br>100 (1962).               |
| 72 <sup>Hf</sup> 102 | 899          | 91                      | 808                     | -0.067 <u>+</u> 0.04           | -0.044 <u>+</u> 0.053          | H.Ejiri etal,N.P.A161,<br>449 (1971).                |
| 72 <sup>Hf</sup> 106 | 1276         | 93                      | 1183                    | -0.054 <u>+</u> 0.023          | 0.041 <u>+</u> 0.033           | P.E.Little etal, P.R.C5, 252 (1972).                 |
| 72 <sup>Hf</sup> 108 | 308          | 93                      | 215                     | 0.093 <u>+</u> 0.007           | 0.014 <u>+</u> 0.009           | S.D.Koicki etal., B.I.N.<br>S.B.Kidrich 13, 1(1962). |
|                      |              |                         |                         |                                |                                |                                                      |

| Í | Nucl-                                      | E <sub>1</sub><br>(keV) | E <sub>2</sub><br>(keV) | ĥw<br>(keV) | AExpt.                | A <sup>Expt</sup> .           | Reference                                           |
|---|--------------------------------------------|-------------------------|-------------------------|-------------|-----------------------|-------------------------------|-----------------------------------------------------|
| ŀ | 74 <sup>W</sup> 108                        | 1221                    | 100                     | 1121        | -0.127 <u>+</u> 0.011 | 0.320 <u>+</u> 0.011          | L.M.Quinonés etal.<br>N.P.A.242, 243 (1975).        |
|   | ₩ <sup>184</sup><br>74 <sup>₩</sup> 110    | 904                     | 111                     | 793         | -0.027 <u>+</u> 0.003 | 0.307 <u>+</u> 0.015          | H.J.Komer etal, P.A.C.<br>Suppl. Uppsala, May (1963 |
|   | 76 <sup>09</sup> 186                       | 767                     | 137                     | 630         | -0.001 <u>+</u> 0.052 | 0 <b>.</b> 302 <u>+</u> 0.049 | K.S.Krane etal, P.R.<br>C3,240 (1971).              |
|   | 76 <sup>0 s</sup> 188<br>76 <sup>112</sup> | 633                     | 155                     | 478         | -0.015 <u>+</u> 0.014 | 0.288 <u>+</u> 0.021          | K.S.Krane etal, P.R.C3,<br>240 (1971).              |
|   | 76 <sup>0 s</sup> 190                      | 558                     | 18 <b>7</b>             | 371         | -0.011 <u>+</u> 0.02  | 0.28 <u>+</u> 0.03            | H.Helppi etal,N.P.<br>A223, 13 (1974).              |
|   | 78 <sup>Pt</sup> 192                       | 612                     | 316                     | 296         | -0.150 <u>+</u> 0.003 | 0 <b>.3</b> 12 <u>+</u> 0.004 | H.Helppi etal, N.P.A223,<br>13 (1974).              |
| 1 | 78 <sup>Pt</sup> 194                       | 623                     | 329                     | 294         | -0.092 <u>+</u> 0.013 | 0,303 <u>+</u> 0.020          | H.A.Doubt etal.,N.P.<br>A177, 418 (1971).           |
|   | 78 <sup>Pt</sup> 196                       | 689                     | 356                     | 333         | 0.113 <u>+</u> 0.005  | 0.315 <u>+</u> 0.010          | H.A.Doubt etal, N.P.<br>A177, 418 (1971).           |
|   | 80 <sup>Hg</sup> 198<br>118                | 1049                    | 412                     | 637         | 0.10 <u>+</u> 0.01    | 0.01 <u>+</u> 0.02            | R.Berand etal,Priv.<br>Comm.April (1971).           |
|   | 80 <sup>Hg</sup> 120                       | 947                     | 368                     | 579         | 0.102 <u>+</u> 0.009  | 0.021 <u>+</u> 0.014          | Z.Hattula etal.Z.P.<br>241, 117 (1971)              |
|   | ł                                          | 1                       |                         | 1           | 1                     | 1                             |                                                     |

\* Abbreviations used for the nemes of the journals.

| P.R.: Physical Review | C.J.P.: | Canadian Journal of Physics            |
|-----------------------|---------|----------------------------------------|
| N.P.: Nuclear Physics | J.P.S.: | Journal of Physical Society<br>(Japan) |
| Z.P.: Z.Physics       | P.L.:   | Physics Letters                        |

<u>TABLE-II</u> E2/M1 multipole mixing ratios from the quoted angular correlation coefficients.

|                            | Mean           | Mean       | value (        | alue of $\delta^{b}$ |                |                        | Value of SC                         | (eh/v)         |
|----------------------------|----------------|------------|----------------|----------------------|----------------|------------------------|-------------------------------------|----------------|
| Nucleus                    | value<br>of δa | <b>Q</b> 1 | δ <sub>1</sub> | Q <sub>2</sub>       | δ <sub>2</sub> | value<br>of δ<br>taken | from the<br>literature              |                |
| 26 <sup>Fe</sup> 32        | +0.26          | 0.13       | +0.39          | 0.5                  | +1.0           | +1.0                   | +(1.0_0.20)                         | +1.385         |
| 28 <sup>Ni 58</sup>        | -1.0           | 0.465      | -0.93          | 0.885                | -2.77          | -1.0                   | -1.1 <u>+</u> 0.2                   | -0.91          |
| 28 <sup>Ni</sup> 32        | -1.0           | 0.575      | -1.16          | 0.82                 | -2.13          | -1.0                   | -1.3 <u>&lt;</u> δ <u>&lt;</u> -0.9 | -1.45          |
| 28 <sup>N 1</sup> 34       | +0.26          | 0.07       | +0.27          | 0.59                 | +1.20          | +0.27                  | Not deduced                         | +0.29          |
| 30 <sup>22n</sup> 34       | -0.66          | 0.325      | -0.69          | 0.965                | -5.25          | -0.69                  | Not deduced                         | -1.02          |
| 30 <sup>Zn</sup> 36        | +0.37          | 0,05       | +0.07          | 0.775                | +1.85          | +1.85                  | 2.0                                 | +2.66          |
| 39 <sup>Zn</sup> 38        | +0.37          | 0.035      | +0.19          | 0.675                | +1.44          | +1.44                  | +1.45 <u>+</u> 0.14                 | +2.14          |
| 32 <sup>Ge</sup> 40        | +0.47          | 0.1        | -0,33          | 0.99                 | +9.95          | +9.95                  | 10.3 <u>+</u> 1.3                   | +18.92         |
| 32 <sup>Ge</sup> 42        | -2.33          | 0.425      | -0.86          | 0.82                 | -2.13          | -2.13                  | -3.4 <u>+</u> 0.4                   | -4.19          |
| 32 <sup>Ge</sup> 44        | -0.11          | 0.02       | -0.14          | 0.925                | +3.51          | -0.14                  | -0.1 <u>+</u> 0.1                   | -0.31          |
| 34 <sup>Se</sup> 40        | +0.41          | 0.003      | -0.05          | 0.865                | +2.53          | +2.53                  | +2.6+0.2                            | +4.77          |
| 34 <sup>Se</sup> 42        | -5.67          | 0.315      | -0.68          | 0.97                 | -5.69          | -5.69                  | Not deduced                         | -10.38         |
| 34 <sup>Se</sup> 44        | -0.05          | 0.003      | -0.05          | 0.860                | +2.48          | -0.05                  | Not deduced                         | -0.08          |
| 36 <sup>Kr</sup> 42        | -0.17          | 0.03       | -0.17          | 0.945                | +4.14          | -0.17                  | Not deduced                         | -0.31          |
| $36^{\text{Kr}_{44}^{80}}$ | 42.33          | 0.21       | -0.51          | 0.995                | -14.1          | i -14 <b>.1</b> 1      | Not deduced                         | -26.47         |
| 36 <sup>Kr</sup> 46        | -1.86          | 0.62       | -1.28          | 0.77                 | -1.83          | -1.83                  | -1.65 <u>+</u> 0.15                 | -3.14          |
| 36 <sup>Kr</sup> 48        | +0.49          | 0.145      | -0.41          | 0 <b>.</b> 995       | +14.11         | +1411                  | Not deduced                         | <b>+</b> 16.64 |
| 38 <sup>Sr</sup> 48        | -0.25          | 0.07       | -0.27          | 0.98                 | +7.0           | -0.27                  | 0.05 <u>&lt;</u> Q<0.09             | -0.42          |
| 38 <sup>Sr</sup> 50        | -0.05          | 0.005      | -0.05          | 0.86                 | +2.48          | -0.05                  | -0.04 <u>+</u> 0.02                 | -0.04          |
| 42 <sup>Mo</sup> 52        | +0.39          | 0.003      | +0.05          | 8.0                  | +2.0           | +2.0                   | 2                                   | +2.41          |
| 42 <sup>Mo</sup> 54        | -0.43          | 0.16       | -0.44          | 0.997                | +18 23         | -0.44                  | -0.44 <sup>+0.04</sup><br>-0.03     | -0.73          |
| 42 <sup>Mo</sup> 56        | -0.54          | 0.25       | -0.58          | 0.97                 | -5.69          | -0.58                  | -0.58 <u>+</u> 0.05                 | -1.08          |

\* Mean value of  $\delta$ 

.

(a) From the plot of A<sub>2</sub> versus A<sub>4</sub>
(b) From the plot of A<sub>2</sub> versus Q (q)
(c) Sign convention of Biedenharn and Rose

| Nucleur             | Mean                  | Mean value of $\delta^c$ Mean Value of $\delta^c$ |       |                |                |                      |                                      |              |  |
|---------------------|-----------------------|---------------------------------------------------|-------|----------------|----------------|----------------------|--------------------------------------|--------------|--|
| Mucieus             | $of\delta^a$          | Q <sub>1</sub>                                    | δ1    | <b>Q</b> 2     | δ <sub>2</sub> | of <b>S</b><br>taken | literature                           |              |  |
| 44 <sup>Ru</sup> 56 | <b>-</b> 5 <b>.67</b> | 0.32                                              | -0.69 | 0.97           | -5.69          | -5.69                | -6 <sup>+2.5</sup><br>-1.5           | -8.31        |  |
| 44 <sup>Ru</sup> 58 | ø                     | 0.16                                              | -0.44 | 0.997          | <b>+18</b> .2  | 3 +18.23             | 60 <u>+</u> 20                       | +34.79       |  |
| 46 <sup>Pd</sup> 58 | -0.11                 | 0.01                                              | -0.10 | 0.91           | +3.18          | -0.10                | Not deduced                          | -0.16        |  |
| 46 <sup>Pd</sup> 60 | +0.44                 | 0.035                                             | -0.19 | 0.945          | +4.14          | +4.14                | +4.35 <u>+</u> 0.80                  | +8.10        |  |
| 46 <sup>Pd</sup> 62 | -0.25                 | 0.05                                              | -0.23 | 0.97           | +5.69          | -0.23                | -0.24 <u>+</u> 0.04                  | -0.27        |  |
| 46 <sup>Pd</sup> 64 |                       | 0.36                                              | -0.75 | 0.95           | -4.36          | -0.75                | -0.77 <u>+</u> 0.11                  | -2.04        |  |
| 48 <sup>Cd</sup> 62 | +0.35                 | 0.04                                              | +0.20 | 0.665          | +1.41          | +1.41                | <b>+1.</b> 20 <u>+</u> 0.15          | +2.06        |  |
| 50 <sup>Sn</sup> 66 | +0.39                 | 0.01                                              | +0.10 | 0 <b>.7</b> 55 | +1.75          | +1.75                | +1.8 <u>+</u> 0.2                    | +2.56        |  |
| 52 <sup>Te</sup> 70 | +0.44                 | 0.02                                              | -0.14 | 0.925          | +3.51          | +3.51                | +3.52 <u>+</u> 0.10                  | +6.12        |  |
| 52 <sup>Te</sup> 72 | +0.43                 | 0.02                                              | -0.14 | 0.93           | +3.64          | +3.64                | +3.3 <u>+</u> 0.2                    | +6.02        |  |
| 52 <sup>Te</sup> 74 | +0.46                 | 0.065                                             | -0.26 | 0.975          | +6.24          | +6.24                | +5.5+0.4                             | +9.90        |  |
| 54 <sup>Xe</sup> 72 | -19.0                 | 0.205                                             | -0.50 | 0.997          | -18.2          | <br>3 -18.23         | -27 <mark>*</mark> 30                | -44.46       |  |
| $54^{Xe}74$         | -5.67                 | 0.30                                              | -0.65 | 0.975          | -6.24          | -6.24                | Not deduced                          | -18.03       |  |
| 54 <sup>Xe</sup> 78 | -9.0                  | 0.275                                             | -0.62 | 0.99           | -9.95          | -9.95                | -18 <sup>+50</sup><br>- 9            | -18.91       |  |
| 54 <sup>Xe</sup> 80 | -0.05                 | 0.003                                             | -0.05 | 0.86           | +2.48          | -0.05                | -2.4 <u>+</u> 02                     | -0.08        |  |
| 56 <sup>Ba</sup> 76 | -5.67                 | 0.30                                              | -0.65 | 0.975          | -6.24          | -6.24                | -9 <mark>+7</mark>                   | -13.19       |  |
| 56 <sup>Ba</sup> 78 | -7.00                 | 0.275                                             | -0.61 | 0.99           | -9.95          | -9.95                | δ <u>≺</u> -30                       | -21.17       |  |
| 56 <sup>Ba</sup> 80 | -0.17                 | 0.035                                             | -0.19 | 0.95           | <b>+</b> 4.36  | -0.19                | -0.21 <u>&lt;</u> 8 <u>&lt;</u> -0.1 | <br> 9 –0.18 |  |
| 56 <sup>Ba</sup> 84 | +0.31                 | 0.105                                             | +0.34 | 0.54           | +1.08          | +0.34                | $+1.1^{+0.14}_{-0.10}$               | +0.45        |  |
| 58 <sup>Ce</sup> 82 | -0.43                 | 0.125                                             | -0.38 | 0.995          | +14.1          | -0.38                | -0.3+0.01                            | -0.61        |  |
| 58 <sup>Ce</sup> 84 | +0.26                 | 0.075                                             | +0.28 | 0.59           | +1.20          | +0.28                | +0.61 <u>+</u> 0.018                 | +0.37        |  |
| 60 <sup>Nd</sup> 84 | +0.37                 | 0.015                                             | +0.12 | 0.72           | +1.60          | +1.60                | +1.6 <u>+</u> 0.5                    | +2.22        |  |
| 62 <sup>Sm</sup> 90 | -9.0                  | 0.275                                             | -0.62 | 0.99           | -9.95          | -9.95                | -8_3                                 | -17.33       |  |
| 1                   | 1                     | 1                                                 | 1     | 1              | 1              | 1                    | 5                                    | 1            |  |

| 1                           | varue             | $\frac{\text{Mean value of } \delta^{\text{D}}}{\text{ralue}}$ |                        |                |        | value                | from the                          | (eb/urt) |
|-----------------------------|-------------------|----------------------------------------------------------------|------------------------|----------------|--------|----------------------|-----------------------------------|----------|
|                             | of $\delta^a$     | Q <sub>1</sub>                                                 | δ <sub>1</sub>         | Q2             | δ2     | of <b>ð</b><br>taken | literature                        |          |
| 64 <sup>Gd</sup> 88         | +0.39             | 0.003                                                          | +0.05                  | 0.8            | +2.0   | +2.0                 | 2.0 <u>+</u> 0.5                  | +4.03    |
| 64 <sup>Gd</sup> 90         | -9.0              | 0.25                                                           | <b>_</b> 0 <b>.</b> 58 | 0.99           | -9.95  | -9.95                | -11 <u>+</u> 3                    | -17.18   |
| 64 <sup>Gd</sup> 92         | +0.46             | 0.06                                                           | -0.26                  | 0.975          | +6.24  | +6.24                | 5.9 <mark>+1.4</mark>             | +7.19    |
| 64 <sup>Gd</sup> 94         | -0.17             | 0.05                                                           | -0.23                  | 0.97           | +5.69  | -0.23                | Not deduced                       | -0.29    |
| 66 <sup>Dy</sup> 94         | +0.47             | 0.1                                                            | -0.33                  | 0,99           | +9.95  | +9.95                | $+(9.7^{+2.5}_{-1.7})$            | +13.56   |
| 70 <sup>Yb</sup> 104        | -0.25             | 0.06                                                           | -0.25                  | 0.965          | +5.25  | -0.25                | -0.26 <u>+</u> 0.04               | -0.24    |
| 72 <sup>Hf</sup> 102        | -0.48             | 0.155                                                          | -0.43                  | 0.997          | +18.23 | -0.43                | 0 <u>≥</u> ð <sup>−1</sup> ≤-0.24 | -0.64    |
| 72 <sup>Hf</sup> 106        | -0.43             | 0.145                                                          | -0.41                  | 0.997          | +18.23 | -0.41                | 0.410 <sup>+0.036</sup><br>-0.035 | -0.42    |
| 72 <sup>Hf</sup> 108        | -0.17             | 0.035                                                          | -0.19                  | 0.955          | +4.61  | -0.19                | -0.20                             | -1.06    |
| 74 <sup>w</sup> 182         | -9.0              | 0.275                                                          | -0.54                  | 0.995          | -14.11 | -14.11               | -12 <sup>+2</sup>                 | -15.07   |
| 74 <sup>W184</sup>          | +0.49             | 0.12                                                           | -0.37                  | 0.995          | +14.11 | +14.11               | +15                               | +21.31   |
| 76 <sup>0s</sup> 186        | +0.47             | 0.1                                                            | -0.33                  | 0.99           | +9.95  | +9.95                | +10 <sup>+15</sup>                | +18.92   |
| 76 <sup>0s</sup> 188        | +0.47             | 0.105                                                          | -0.34                  | 0.995          | +14.11 | +14.11               | +12.3 <u>+</u> 2.8                | +35.36   |
| 6 <sup>0 s</sup> 190<br>114 | <del>+</del> 0.47 | 0.105                                                          | -0.34                  | 0 <b>.9</b> 95 | +14.11 | +14.11               | +12 <sup>+3</sup><br>-5           | +45.52   |
| 8 <sup>Pt</sup> 192         | -9.0              | 0.26                                                           | -0.59                  | 0.99           | -9.95  | -9•95                | +8.8 <u>+</u> 0.3                 | -40.28   |
| 8 <sup>Pt</sup> 194         | -39               | 0.18                                                           | -0.47                  | 0.995          | -14.11 | -14.11               | -45 <sup>+55</sup>                | -57.59   |
| /8 <sup>Pt</sup> 196        | <b>+</b> 0.44     | 0.02                                                           | -0.16                  | 0.98           | +7.00  | +7.00                | +4.3 <u>+</u> 0.2                 | +25.18   |
| 30 <sup>Hg</sup> 198        | -0.17             | 0.035                                                          | -0.19                  | 0.95           | +4.36  | -0.19                | -0.19                             | -0.36    |
| 30 <sup>Hg</sup> 120        | -0.17             | 0.035                                                          | -0.19                  | 0.95           | +4.36  | -0.19                | -0.19 <u>+</u> 0.01               | -0.39    |



Theoretical plot of A2 versus Q [=  $8^2/(1+8^2)$ , where '6' is the mixing ratio in  $(2'^+ \rightarrow 2^+)$  Y-transition and other  $(2^+ \rightarrow 0^+)$  transition is pure E2] for the spin sequence  $2'^+ \rightarrow 2^+ \rightarrow 0^+$ . This is done by the method of Arns and Wiedendeck (12). FIG. 1

-16-



-17-



Plot of  $\ln|\Delta| \equiv \delta|E_{\gamma}$ , where  $E_{\gamma}$  is the gamma-ray energy ] versus mass number (A). The solid curve indicates the trend of measured values as given by Krane 4) whereas calculations through Greiner's model 5) are represented by dotts. The straight lines obtained by the method of least square fit in order to divide in five groups are depicted by the solid lines and their errors by the broken lines.





. .

• •

• •

# FIG. 4

