International Atomic Energy Agency

. .

INDC(IND)-31/GA

INTERNATIONAL NUCLEAR DATA COMMITTEE

THE MOLYBDENUM SPECTRA MO I-XLII

M.S.Z. Chaghtai and Tauheed Ahmad Department of Physics, A.M.U., Aligarh-202001, INDIA

April 1982

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

Reproduced by the IAEA in Austria April 1982

INDC(IND)-31/GA

THE MOLYBDENUM SPECTRA MO I-XLII

M.S.Z. Chaghtai and Tauheed Ahmad Department of Physics, A.M.U., Aligarh-202001, INDIA

April 1982

THE MOLYEDEHUN SPECTRA NO I-MLII

]

N 5 Z Chaghtai and Tauheed Ahmad Department of Physics, A.N.U., Aligarh-202001, INDIA

Abstract

A good amount of experimental data has poured in the last few years on the spectra of highly and very highly ionized molybdenum atoms, because of their importance in Tokamak and nuclear fusion studies. The spectra of No I-XXV, XXX-XXXIV and XL-XLII are now known in the literature, although many of them fragmentarily.

From our laboratory, significant contributions are made to No VI-XII. The existing information on transitions and energy levels is presented in this review together with level diagrams.

* Work supported by Council of Scientific and Industrial Research (CSIR) India. Dr. H. Rahimullah's assistance in the preparation of this work is acknowledged.

Introduction

Molybdenum is a hard metal with the following characteristics:

Melting point 2610 °C; boiling point 5560 °C; heat of vaporization 123 (K-cal/g-atom); heat of fusion 6.6 (K-cal/g-atom); specific heat 0.061 (cal/g/°C); thermal conductance 0.35 (cal/cm²/cm/°C/sec); electrical conductance 0.19 (microhoms)⁻¹; electronegativity 1.3 (Pauling's) covelent radius 1.30 Å; atomic radius 1.39 Å ionic radius 0.68 (+4) Å; atomic volume 9.4 (W/d); the first ionization energy 166 (K-cal/g-mole) and density 10.2 (g/ml).

It is therefore, useful in a variety of ways for different metallurgical and engineering purposes. It is found in small abundance in our sun and other stars.

Molybdenum is used, along with Tungston (W) in plasma machines, particularly in Tokamak, as container (Furth 1975, Group TFR 1974, 75, Hinnov 1976) due to its specific metallic properties. This fact enhanced the importance of spectroscopic studies of molybdenum in the form of ionized atoms in the last decade. In recent years, the prospects of achieving nuclear fusion as a great source of energy have brightened up; molybdenum is a suitable material for the pallets to be used. The international commission for fusion studies have, therefore, recommended as complete and accurate investigation of all molybdenum spectra, among others, as possible.

studies in these spectra wre started by one of us in Paris

- 2 -

(1963) continued in Lund (Sweden, 1968-69) and developed as a group activity at Aligarn since 1969 with the help of material assistance of Lund University and the theoretical calculations performed at Loss Alamos (U.S.A.).

In the present review, we describe briefly the present knowledge of various molybdenum spectra.

The First Two Spectra of Molybdenum; Mo I & Mo II

Molybdenum belongs to the 2nd transition period of elements. The spectrum of neutral molybdenum atom as described in A.Z.L. vol. 3 (hoore 1958) is based on the work of Kiess first alone, then with Harvey and finally with Trees. The ground configuration of this atom of 42 electrons is $4d^5$ 5s with 7_{3} as ground-most level. Known excited configurations include $4d^6$, $4d^5$ nl (l = 0, 1, 2 and n75), $4d^4$ 5s nl (l = 0, 1). 7500 lines of this spectrum have been recorded from 2000 to 11850 Å of which about 80% are classified.

Singly ionized molybdenum atom (No II) has naturally 41 electrons, and is, therefore, isoelectronic with neutral niobium atom(Nb I). The ground configuration of No II is $4d^5$ with ${}^6s_{5/2}$

-3-

as ground-most level; fourteen of the sixteen expected terms of $4d^5$ are found out. All the known excited configurations of the spectrum are obtained by adding one electron to the parent configuration $4d^4$. More than 2600 lines of Mo II covering the spectral region 2000 - 6000 Å are classified by Kiess.

No addition to the data reported in A.E.L. Vol. 3(Moore 1958) on MoI and MoII is known.

The Doubly Ionized Molybdenum Atom (MoIII)

A doubly ionized molybdenum atom is isoelectronic with Zr I; and contains 40 electrons. The ground configuration is $4d^{4}$ with $5D_{0}$ as ground-most level. The ion is therefore, diamagnetic (J=0).

The analysis of Mo III was started by V.R. Rao and persuade by Rico and Catalán. Rico has made important additions to the A.E.L. data in 1965. Now the stage of knowledge of this spectrum is such that the eight singlet terms are the only glaring omission from the ground configuration $4d^4$. Among the excited ones, $4d^3$ 5s, 5p are known in detail, with some information on $4d^3$ 6s. The presently known data on terms and their levels are collected in Table I and plotted to the scale in Fig. 1. The line list extends over 500-4800 Å.

The Three and Four Times Ionized Molybdenum Atom (Mo IV & Mo V)

Mo IV is isoelectronic with neutral Yttrium (YI) with 39 electrons. The A.E.L. data on this spectrum covers fragments of three configurations $4d^{3}$ ${}^{4}F_{3/2}$ is the ground state; some information exists on $4d^{2}({}^{3}F)$ 5s and $4d^{2}({}^{3}F)$ 5p ${}^{4}G$, ${}^{4}F$, ${}^{4}D$.

-4-

The work is by the Eliason and is based on 40 lines identification between 856 and 2141 Å. No additional information on this spectrum is known to us. A.E.L. data is reproduced in Table II and plotted in Fig. 2.

-5-

A four times ionized molybdenum atom (Mo V) is isoelectronic with SrI; it contains 38 electrons. This spectrum was worked out by Trawick, in 1935 (410-2160 Å) and this is completely reported in A.E.L. No additional data is yet available.

The knowledge of Mo V is far from being complete. Even the ground configuration $4d^2$ is known to the extent of triplet terms, ${}^{3}F$ and ${}^{3}P$ only. Known excited configurations are all mode up by the addition, to one 4d electron, of a 5s, 5p, 5d or 5f. Out of these 4d5d and 4d4f configurations are only partly known.

The energy level data is reproduced in Table III from A.E.L. and plotted in Fig. 3.

The Five Times Ionized Molybdenum Atom (MoVI)

This simple 1-electron Rb I-like spectrum with 4d $^{2}D_{3/2}$ as ground level was first studied by Trawick (1955) and followed by Charles (1950). A.E.L. reports therefore, sixteen classified lines of this spectrum combining seven terms in the range of 260-1595 Å. Six of these terms have been confirmed since then with small improvement in level values; only 6p ^{2}P term is revised by Romanov and Striganov (1969) who have published a detailed investigation of this spectrum. The spectral region of their investigation has been 2200 - 6800 Å, and covers large l values up to i (l = 6). Edlén applied his polarization formula to connect most of these levels with the ground term through a more accurate ionization potential value (1976,78 and private communication).

Edlén also predicted the unperturbed position of a number of unobserved levels of Mo VI and hence of the unobserved lines connected with them. We have included in Table IV all the levels that have been so far obtained in our laboratory (Singh 1977); though some of them require confirmation. All the levels are plotted in Fig. 4.

The Six Times Ionized Molybdenum Atom (MoVII)

The six times ionized molybdenum atom has KrI-like structure. In the ground state, all the sub-shells are full hence a ${}^{1}S_{0}$ level results. Most of the excited configurations are made of the addition of one nl electron to the parent $4p^{5}$ configuration, that gives rise to an inverted term ${}^{2}P_{3/2,1/2}$ only. The structure of the excited configurations shows instead of the IS situation, a marked pair coupling particularly in case of the additional electron being s; $4p^{5}$ ns obeys to what is called s j coupling and is the same thing as jj or sk in this case. Theoretical calculations predict a dominant pair-coupling also in some other cases like $4p^{5}np$, but a confused situation prevails for large 1 values of the external electron like nd. In this last case LS notation are retained as nothing better is available. The unsplitted ground term with j = 0 does not naturally combine with any other excited level except those for which J = 1. In case of the excited states discussed above, it has to be either s or d configuration that gives rise to two or three resonance transitions respectively. The observation of more than one strong transition in either case is itself a sufficient indicator to the fact that IS-coupling is not a good approximation here. In fact these resonance transitions are so strong that they stand out in dense spectra. Some resonance transitions have also been observed from the internally excited $4s4p^{6}5p^{-1}, 3P_{1}$ levels.

The structure of the next excited states in the conventional IS-coupling would have been

We will give in the Table 5 and Fig. 5 concerned notations more appropriate to the physical situation.

The first work on Mo VII was due to Charles (1950) who identified five resonance lines correctly, establishing ${}^{1,3}P_{1}$ levels of 5s, 6s and 5d ${}^{3}D_{1}$ related to the ground level. Chaghtai extended his work (1969,70) followed by Reader and Epstein (1972). This established J = 1 levels of ns (n \leq 10) and nd (n \leq 6) as given in Table 5 and plotted on Fig. 5.

In our laboratory it is attempted to identify transitions between ns and n'p(n, n' = 5-7) configurations so as to find out their complete level structure (Singh 1977). These levels are plotted in Fig. 5, although they need confirmation.

Mo VII spectrum has been studied from about 100 to 2500 Å. The Seven Times Ionized Molybdenum Atom (MoVIII)

The seven times ionized molybdenum atom is isoelectronic with the halogen Br I. There is an inverted doublet ${}^{2p}_{3/2,1/2}$ as ground term arising out of the configuration ${}^{4p^5}$. Most of the excited levels are formed of the parent configuration ${}^{4p^4}$, which consists of one inverted triplet and two singlets namely ${}^{3p}_{2,1,0}$, ${}^{1}D_2$, ${}^{1}S_1$ in order of increasing energy. The ground levels combine with nd and ns configurations only, but the internally excited 4s ${}^{4p^6} {}^{2}S_{1/2}$ level also gives strong resonance transitions that become most prominent for ionizations greater than two times. In case of ${}^{4p^4}$ ns, the structure shows pair coupling eminently, where as 4d structure could retain an 1S or IS-like character.

The first work on Mo VIII was published by Charles (1950) who reported the resonance transitions from 4s $4p^6$, $4p^44d$ and $4p^45s$ configurations. His work was revised by Chaghtai(1969,70),

followed by Ehberg et al (1972). The higner configurations namely $4p^{4}5d$, 6d and $4p^{4}$ 6s, 7s have been studied only by Chaghtai et al in our laboratory (1975), but no work has been reported on transitions between the different excited configurations yet. The observed energy levels are assembled in Table 6. and the different configurations are plotted in Fig. 6.

The study of Ko VIII covers the wavelength region 100-475 A.

The Ninth Spectre of Nolvodenum (No IX)

The study of eight times ionized molybdenum atom was initiated by Chaghtai (1969-70) but it was performed in detail only at Aligarh mainly by Ehatoon (1975,78,784,79). No IX with 34 electrons is isoelectronic with ze I. The ground configuration $4p^4$ breaks up into an inverted triplet ${}^{2}P_{2,0,1}$ and two singlets ${}^{1}D_{2}$, ${}^{1}S_{0}$. The anomalous order of levels in ${}^{2}P$ is in accordance with the Condon and Shortley theory of mixed coupling; it has been observed by Chaghtai for the first time in the spectra YVI-No XI (1975,63,70). Excited configurations studied are 4d, 5d, 6d, and 5s, 6s, 7s with the common parent terms $4p^3$ (${}^{4}z_{3/2}$, ${}^{2}D_{1/2}$ and ${}^{2}F_{1/2,3/2}$).

Internally excited levels ${}^{3}P_{0,1,2}$ and ${}^{1}P_{1}$ arising out of 4s $4p^{5}$ have been established by Reader and Acquista (1976). All the studies of No IX are based on the identification of transitions to the ground levels from 92 A-334 A.

Observed energy levels of No IX are assembled in Table 7 and plotted in Fig. 7.

The Tenth Spectra of Holybdenum (No W)

The AS I-like spectrum of No X with 32 electrons was studied for the first time at Aligarh (Rahimullah et al. 1976,78 Khatoon

-9-

1879); the ground configuration $4p^3$ of this ion splits up into $\frac{4}{2}$ (2), $\frac{2}{2}D_{2/2,5/2}$, $\frac{2}{F_{1/2,3/2}}$ and these levels combine with those of $4p^3nd$, ns. Excited configurations $4p^3nd$ have been studied for n = 4 - 6 and $4p^3$ ns for n = 5 - 7. As the structure of p^3 is $\frac{3}{F_{0,1,2}}$, $\frac{1}{D_2}$, $\frac{1}{2}$, $\frac{1}{2}$, there result, $\frac{4}{4}F$, $\frac{2}{5}F$, $\frac{2}{2}D$ and $\frac{2}{2}$ terms for each p^3ns ; all thase terms and their levels are found out for the reported $4p^3ns$ configurations. In case of $4p^3nd$, rather a large number of terms result, all of which have not been determined so far. Reader and Acquista (1981) confirmed our $4s^24p^3 - 4s^24p^25s$ analysis and added to it resonance transitions from $4s4p^4$ configuration, establishing all the eight levels.

The studies of Mo X cover the wavelength region 82-474 Å. All the observed energy levels are assembled in table 8 and plotted in Fig. 8.

The Ten Times Ionized Mclybdenum Atom (No XI)

Mo XI with 32 electrons is isoelectronic with neutral Ge and, therefore, generally exhibits a simple two-electrons spectrum with $4p^2$ as ground configuration. The detailed structure of this spectrum can be easily guessed from the above described situations and hence is not repeated.

The spectrum is studied exclusively at Aligarh by Rahimullah et al (1976,78). The knowledge of the ground configuration $4s^24p^2$ (${}^{3}F_{0,1,2}$, ${}^{1}D_2$, ${}^{2}O_0$) and the excited configurations 4p 4d and 4p5s is complete except for the ${}^{3}F_4$ level of 4p4d that does not combine with ground levels. ${}^{1}F_1$ and ${}^{2}S_1$ levels of the internally excited 4s $4p^3$ configuration are also astablished.

-10-

The data is reported in Table 9 and plotted in Fig. 9. wavelengths are comprised in the region 139-331 A.

The Evelfth prection of Holvodenum Atom (Ho XII)

The spectrum of eleven times ionized molybdenum atom is Ga I-like and is, therefore, in part a l-electron spectrum and in part a G-electron system. As the ionization involved is high, the internally excited $4s4p^2$ and $4p^3$ configurations, which belong to the same shell as the ground state $4s^24p$, descend so much that the former becomes the lower-most excited configuration and the latter one not too highly placed.

ho XII is analysed in our laboratory only (Ehatoon, 1973), except for identifications of two 4p-5d lines by Alexander et al. (1971). The ground term $4s^{2}4p^{2}P_{1/2,3/2}$ and the excited $4s^{2}4d^{2}D_{3/2,5/2}$ are firmly established. The $4s4p^{2}$ configuration is known to the extent of ${}^{4}P$, ${}^{2}S$, ${}^{2}F$ terms, which are fully determined. Other configurations and their terms, whose study is attempted are $4p^{3}$ (${}^{4}S$, ${}^{2}D$, ${}^{2}P$) and $4s^{2}5d^{2}D$, but they need to be confirmed.

The spectrum has been studied from 233 to 430 Å. The observed levels are assembled in Table 10 and plotted in Fig.10. The spectra of Mo XIII

In this spectrum, Alexander et al (1971) were the first to report five transitions; two of them permitted us to determine the 4s4p 1,3 F₁ levels with respect to the ground 4s 2 1 ₀ level; the 1 ₀- 1 F₁ transition has also been traced in lokanak emission by Hinnov (1976). Burkhalter et al. (1980) reported two resonance transitions $2d^{10}4s^2 - 3d^94s^25p$ 2 D₁, 1 F₁ and Wyart et al confirmed them (1981). The derived five levels are assembled in table 12 and plotted in Fig. 12. The few other reported lines, not useful in this respect, are given in table 20.

Fourteenth Spectrum of Nolybdenum (No XIV)

A thirteen-times ionized molybdenum atom has 29 electrons and is isoelectronic with Cu I (Z=29). The ground configuration is $3d^{10}$ 4s and except for $3d^{9}4s4p$, $3d^{4}p$, all the known excited configurations are of the type $3d^{10}$ nl. Alexander et al. (1971) were the first to record the spectrum of Mo XIV in the region 45-350 Å with a low inductance spark; they identified the strong 4s-5p, 4s-6p, 4p-5s, 4p-5d and 4d-5f transitions. In 1972, Hinnov et al. spotted the 4s-4p resonance doublet on the Princeton 5.T. Tokamak machine.

In July 1977, Curtis et al published a paper on Mo XIV (35 - 184 Å) based on Edlen's old recording. This deals with identification of 4s-7p, 4p-6s, 4p-7s, 4p-8s, 4f-5g, 4f-6g and 4d-5p transitions, along with life time determination of the states involved. Wavelength accuracy of this work is limited to ± 0.5 or ± 0.2 Å only, and the reported identification differ in case of 4d-5p, 4f-5g and 4f-6g from the paper on this spectrum by Reader et al. (1979), presumably because of the spectrum measurement difficulty that Curtis et al met with in the longer wavelength region these lines are situated in.

In view of the accurate measurement of Reader et al., we are reporting the consolidated data from their paper (Table 11, Fig. 11) and have borrowed this review of No XIV also from there. These transitions lie in the spectral region 70 - 630 Å.

-12-

Three additional papers have appeared in the last two years on No XIV transitions observed in the 50-54 Å region; they are authored by Burkhalter et al (1980), Elepisch et al (1981) and Wyart et al (1981). The transitions involved have finally been identified as $3d^{10}4s-3d^{9}4s4p$, $3d^{10}4p-3d^{9}4p^{2}$ and $3d^{10}4s-3d^{10}7p$. This has led to determine 11 levels of the configuration $3d^{9}4s4p$, 10 of $3d^{9}4p^{2}$ and 2 of $3d^{10}7p$, included in the same table.

The Spectra of No IV:

No XV is Ni I-like; the ground configuration consists of all closed subshells up to 3d, hence a ${}^{1}5_{0}$ as ground level. Most of the excited configurations will arise out of the elevation of a 3d electron to a higher level, resulting in 3d⁹nl for various possible values of n and 1. Alexander et al in their aforementioned paper reported the three transitions from the 3p⁹4p configuration (J=1) that can combine with the ground level. Two of them, namely those from ${}^{3}D_{1}$ and ${}^{1}P_{1}$ have been confirmed since then by 5chwob et al (1977) and Klapisch et al (1978). The latter authors have reported two additional (Δ J=2, Electric Quadrupole) transitions from 3d⁹4s levels. Kansfield et al (1978) also reported these lines from the DITE Tokamak.

In 1980 Burkhalter et al identified resonance transitions from $3d^94p$ and $3d^94f$; Schwitzer et al (1981) also reported them with the addition of those from $3d^95f$. Nyart et al (1981) confirmed the transitions from $3d^94p$, but Burkhalter et al and Hansfield et al both are uncertain about the identification

-13-

of the resonance transition $3d^94f^{-3}D_1$ —— Hansfield at al found it lying in the $3p^6$ - $3d^54p$ band of Mo XIX.

Derived energy levels are given in table 12 and plotted in Fig. 12.

The sixteenth Spectrum of Mclybdenum (No XVI)

This is a Co I-like ion with 27 electrons, $3p^{5}3d^{9}$ as ground configuration and ${}^{2}D_{5/2}$ as the lowest level. Edlan was the first to identify the resonance transitions $3p^{5}3d^{9}$ ${}^{2}D - 3p^{5}3d^{10}$ ${}^{2}P$ in a vacuum spark spectrum; Alexander et al (1971) measured them. Then schwob et al (1977) classified three lines as No XVI transitions $3d^{9} - 3d^{8}4p$, 4f without assigning terms and levels.

Mansfield et al in their detailed paper of 1978 identified transitions from $3d^84s$, 4p, 4f, of No XVI, confirming further Edlén's identifications. It was followed by the paper of Burkhalter et al (1980) in which they established 54 energy levels of No XVI belonging to the configurations $3p^{6}3d^{9}$, $3p^{5}3d^{10}$, $3d^84p$ and $3d^84f$. The spectrum for this study was produced in a low inductance vacuum spark and a laser generated plasma. This paper confirms earlier identifications except those concerning $3d^{8}4s$, and makes a rich contribution of its own.

The reported and derived energy levels of Ho IVI are given in table 13 and plotted in Fig. 12. The spectrum is studied in the 32-78 Å wavelength region.

The Seventeenth practrum of Holybdenum (No IVII)

This ion of molybdenum is iso-electronic with neutral

-14-

iron atom (Fe I) with 26 electrons. The ground configuration Sd⁸ has practically a 2-electron structure. By internal excitation results the interesting configuration 2p Sd⁹ with two noles; transitions between these two configuration have been studied by Bogdanovichene et al (1980) and Reader et al (1981). All the nine levels constituting the five ground terms 3 F, 3 F, 1 D, 1 G, 1 S and the 12 levels of the excited configuration have been established. Three levels of the former and two of the latter are freshly revised by the latter authors; otherwise the two lists agree within their experimental errors.

Frior to these papers, hansfield et al (1978) were the first to identify transitions in this spectrum involving the ground and the 3d⁷4p configurations. The latter one has got a complicated structure because of the three holes and one electron involved. The ground structure having been determined in the above mentioned two papers, we could determine level values of 3d⁷4p from this third paper, although it reports a lot of blended groups of lines. Levels (2 H) 3 G₂, (2 F) 3 D₁, (2 F) 3 D₃, (2 G_{9/2,3/2})₄ and (2 F_{7/2,3/2}) are the only ones that could not be resolved because they are supposed to give rise to an unresolved structure extending from 42.08 to 42.14 Å.

Energy levels of Mc XVII are given in table 14 and plotted in Fig. 14.

No WIII-XXV

In the above mentioned apeper of Burkhalter et al (1980)

-15-

is also includes four resonance transitions reportedly of No NVIII, which is a Mn I-like ion with 3p³3d⁷ as ground configuration. A group of unresolved lines is attributed to this spectrum by schwob et al also. The reported transitions do not lead to any level determination and are listed in Table 20.

Some lines of Tokamak radiation as transitions in spectra No XIX - XXV. These led as to derive the few levels of Mo XXIV and No XXV given in table 19 and transitions are assembled in table 20.

Mo XXX

The thirtigth spectrum of No is isoelectronic with Al I. The ion contains 13 electronS and will give rise to a one-electron spectrum dominantly, due to the excitation of the outer most 3p electron from the ground state. A part of the spectrum can, however, have a three-electron structure, arising out of the excitation of one 3s electron.

A number of transitions in this spectrum have been reported by Burkhalter et al (1977) and Mansfield et al (1978). Rejecting the apparently inconsistant identifications, we have derived from them the energy levels reported in table 15 ______ the three $3s3p^2$ levels have not been designated; the derived energy levels are plotted in fig. 17. The spectrum is studied in the 15-17 Å wavelength region.

-16-

No 2000

Two papers exist on the experimental observations of this lig I-like spectrum (ground state $3s^{2} l_{20}$); the first note of Eurkhalter et al (1977) was followed by a rather detailed paper by hensfield et al (1978). We tried to derive the energy levels from the transitions reportedly identified by these autnors and met with some success. Ten configurations could be worked out in part. As the reported spectrum consists of a number of unresolved structures, the term analysis involved certain. approximations. Levels of 3p3d could be reached from the ground level via 3s3d or 3p². The two sets of values thus obtained showed gross inconsistencies and this casted heavy shadow of doubt on the reported identifications. We are, therefore reproducing the reported transitions in table 20, ignoring the level structure.

No XXXII

This is Na I-like simple one electron spectrum with 3s ²51/2 ground level. Interest in this spectrum was aroused by the observation in Tokamak radiation of two Mo XXXII transitions by Hinnov (1975) and three others by 5chwob et al (1977). Eurkhalter et al (1977) came up with an analysis of this spectrum establishing 17 levels on the basis of 22 transitions observed in a laser produced plasma. Mansfield et al (1978) improved upon their measurements and added some new transitions which yielded two more levels.

We are reporting energy levels derived from the later authors' paper. (Table 16,Fig.15). The studies cover the wavelength region 10 - 177 Å.

-17-

NO XIVIII

The study of this We I-like ion (ground level $2s^{22}p^{6-1}z_{0}$) began with Aglitskii et al (1975) who reported six resonance transitions; Burkhalter et al followed them (1977 and 1978) with 10 and 17 resonance lines respectively. Aglitskii has recently (1979) improved measurement of five transitions reported by him earlier. Energy levels in table 17 are derived from the best reported measurements, the spectrum having been situated 3-6 Å.

Mo NDXIV

This Fl I-like ion (ground level $2p^{5} {}^{2}P_{3/2}$) is known through the work of Eoiko et al (1978) who identified nine $2p^{5}-2p^{4}3d$ transitions using a laser produced plasma, Burkhalter et al in their (1978) paper, quoted many times above, have also spotted out two of these transitions. Levels are given in table 18 and plotted in Fig. 17.

No XL, XLI and XLII

Lastly we must mention the paper of Turecheck and Hunze (1975) on the He I- and H I-like spectra of Mo XLI and Mo XLII, and that of Beier et al (1978) on No XL, XLI. Supposing the identifications correct, we are reporting from them 9 excited levels (Table 19) of these three spectra, observed between 0.5 and 0.7 Å. The latter paper includes predictions on a number of not yet observed transitions in No XL and XLI.

Conclusion

This survey of knowledge of the structure of various molybdenum spectra tells us, among other things, how much room there is for original studies of these spectra. Lo I and Ho II are well known and very little can be added to their understanding. Only

-18-

three configurations of the No III are known in some detail and a fourth only fragementarily. No IV is only barely known. The situation of No V is slightly better, but its study can also be thought to be in initial stages. Work is going on No VI in our laboratory.

Inowledge of resonance transitions of No VII is almost complete, but study of transitions between excited configurations has only been started in our laboratory. Complete knowledge of the structure of these configurations will be obtained only when the present studies are completed.

The structure of ns (n = 5-7) and nd (n = 4-5) configurations of No VIII-X is almost well known, though studies of transitions to the ground levels from them. The internally excited $4s4p^k$ (k = 6 \pm 5) configurations are also made known likewise. Transitions between excited configurations have to be studied to determine the structure of np, nf etc. configurations of these spectra.

The study of Mo XI and Mo XII has begun; No XIV and Mo XVI, XVII are known quite sufficiently, along with Mo XXXII, XXXIII. Sixteen other Mo spectra are known fragmentarily, namely Mo XIII, XV, XVIII-XXV, XXX, XXXI, XXXIV, XI-XLII. The rest of Mo spectra are completely unknown so far.

-19-

REFERENCES

Alexander E, Even-Zohar N, Fraankel E 2 and Gold Smith 5, (1971) J. Cpt. 200. Am. <u>61</u>, 508. Aglitskii 2 V, Boiko V A, Krokhin C.N, Pikuz 5 A and Faenov A Ya (1975) Sov. J. Quantum Electron 4, 1152. Aglitshii E V, Golts E. Ya, Levykin Yu A, Livshits A M, Mandelshlam SL, and Safronova AS, (1979) Opt. Spectrosc (USSR) <u>46</u>, 590. Boike V A, Pikuz D A, Defroneva A D and Faenov A Ya (1978) J. Phys. B. <u>11</u>, L 503. Beier R and Kunze H J (1978) Z. Phys. 235A, 347. Bogdanovichene MI, Kononov E Ya, Merkelis G V, Ramonas A A and Churilov 5 5 (1980) Opt. Spectrosc. (USSR) 49, 244. Burkhalter P G, Reader J, and Cowan R D (1977) J. Opt. Doc. Am. <u>67</u>, 1521. Burkhalter P G, Dozier C M and Nagel D J (1977) Phys. Rev. 154, 700. Burkhalter P G, Schneider R, Dozier C M and Cowan R D, (1978) Phys. Rev. <u>184</u>, 718. Burkhalter P G, Reader J and Cowan R D (1980) J. Opt. 20c. Am. 70, 912. Chaghtai M S Z, (1969) J. Opt. Soc. Am. <u>59</u>, 969. Chaghtai M S Z, (1970) Phys. Scr. 1, 31, and 104. Chaghtai M 5 Z, and Zahid Ali (1970) Ind. J. Phys. 44, 330. Chaghtai M 5 Z, (1970) Phys. 2 cr. 1, 109. Chaghtai M.S Z, Lingh S P and Khatoon S (1975), J. Phys. B. 8, 1931. Cheghtai M 5 Z, Rahimullah, and Khatoon 5 (1976) Phys. Scr. <u>14</u>, 281.

-20-

Charles 3 %, (1950) Phys. Rev. 77, 120. Curtis L J., Lindgard A., Edlen B., Martison I and Rielsen 5 E (1977) Phys. ser. <u>16</u>, 72. Edlen E. (1947) Physica 13. 545. Edlen B (1964) in Handbuch der Physik, Vol 27, (Springer, Berlin), 160. Edlen B and Chaghtai M > Z (1978) 10th EGAS Conference Munich, July 11-14, page 30. Ekberg J O, Hansen J E and Reader J (1972) J. Opt. Soc. Am. 62,1143. Furth H F, (1975) Nucl. Fusion 15, 487. Group I F.R. (1974) in Plasma Physics and Controlled nuclear fusion research Proc. 5th Intern. Conf. Tokyo. Group T F R, (1975) Nucl. Fusion 15,1053. Hinnov E, (1976), Phys. Rev. <u>144</u>, 1533. Johnson B M, Jones K W, (1980) Phys. Lett. 78A, 61. Kiess C C (1958) J. Research Nat. Bur. 5td. 60, 375. Khatoon = (1978) Ph.D. Thesis, Muslim University Aligarh, India. Khatoon 5, Chaghtai M 5 Z and Rahimullah K (1979) Phys. Scr. 19, 22. Klapisch M. Schwob J L. Finkenthal M. Fraenkel B D. Egert D. Esr-Shalom A', Breton C, De Michelis C and Mattioli M (1978) Phys. Rev. Lett. <u>41</u>, 403. Elapisch M., Mandelbeum F., Schwob J L., Bar-Shalom A and Schweitzer N (1981) Phys. Lett. 844, 177. Noore C E. (1958) Atomic Energy Level (A.E.L.) Vol. III. Mansfield M W D, Peecock H J, Smith CC , Hobby M G and Cowan R D (1978) J. Phys. B <u>11</u>, 1521.

-21-

Ranimullah H, Chaghtai H 2 2 and Nhatoon 2 (1976) Phys. bor. 14, 221. Rahimullah E (1977) Ph.D. Thesis Euslin University Aligera, India. Ranicullah M, Chaghtai M 2 Z and Khatoon 2 (1978) Phys. Scr. 18, 96. Rico F R (1954) An. Real Doc. Esp. Fisica Y. Quimica (Madrid) | A' <u>50</u>, 185. Rico F R (1965) An. Real Soc. Esp. Fisica Y. Quimica (Madrid) [A] 61, 103. Reader J, Epstein G and Ekberg J O, (1972) J. Opt. Doc. Am. 62, 273. Reader J and Acquista N, (1976) J. Opt. Doc. Am. <u>66</u>, 896. Reader J and Acquista N (1977) Phys. Rev. Lett 39, 184. Reader J. Gabriel Luther and Acquista N (1979) J. Opt. Doc. Am. 69, 144. Reader J, Acquista N (1981) J. Opt. Soc. Am. <u>71</u>, 434. Reader J and Ryebtsev A (1981) J. Opt. Soc. Am. 71, 231. Dingh S P (1977) Ph.D. Thesis, Muslim University Aligarh, India. Schwob J L, Klapisch N, Schweitzer N and Finkenthal N (1977) Phys. Lett. <u>624</u>, 85. Schweitzer N., Elepisch N., Schwob J L., Finkenthal N., Bar-Shalom A., Mandelbaum P and Fraenkel B = (1981) J. Opt. Soc. Am. 71, 219. Ture Check J J and Kunze H J (1975) Z. Phys. 273A, 111. Wyart J F, Header J and Ryabtsev A (1981) J. Opt. Doc. Am. <u>71</u>, 692.

-22-

234 Figure Castions

Fig. 1. Inergy levels of he III reproduced in author's notations. Ref. F.R. Alco (1965) An. Real Doc. Asp. Fisica Y. Juirica

(Madrid) [A] <u>61</u>, 103.

Fig. 2. Observed levels of No IV.

Fig. 3. Inergy levels of No V.

- Fig. 4. Observed energy levels of ho VI.
- Fig. 5. Energy levels of No VII: Nost of the levels are given in pair-coupling notations.
- Fig. 3. Observed levels of Ho VIII: Levels of nd and ns configurations bear different notations.
- Fig. 7. Observed energy levels of Mo IX: For nd levels, a,b and c refer to parent configurations ⁴S, ²D and ²P respectively.
- Fig. 8. No X energy levels: nd levels are represented with their parantages.

Fig. 9. No XI: Observed energy levels.

Fig. 10. Energy levels of eleven times ionized holybdenum.

Fig.11. Observed energy levels of Mo XIV.

Fig.12. Energy levels of No XIII and No XV.

Fig.13. Inergy levels of Mo XVI.

Fig.14. Energy levels of No XVII.

Fig.15. Energy levels of No XIII.

Fig.16. Energy levels of Mo 200011.

Fig.17. Energy levels of No MON and No MONIV.

Configuration	Terms	J	$E(cm^{-1})$
4d ⁴⁴	a ⁵ D	0	0.00
		1	243.10
		2	669.60
		3	1225.20
		34	1873.80
	a ³ P	0	11273.30
		1	12509.80
•		2	14357.30
	a ³ H	4	12630.31
	· ·	5	1 3201 • 34
		6	13741.54
	a ³ F	2	1 3927 • 76
		3	13947+40
		4	14295-85
	a ³ G	3	15672.25
		4	16143.15
		5	16763•13
	a ³ D	3	19390•90
		2	19783.28
· · ·		. 1	19995 • 50
	b 3p	2	30992.50
		1	32292.70
		0	32887.80

Table 1: Observed Energy Levels of Mo III.

-24-

Table 1 contd...

	ъ З _F	4	31932•50
		3	32142.80
		2	32126.50
4d ³ (⁴ F)5s	a ⁵ F	1 ·	32419.44
		2	32844.04
		3	33453•10
		,	34226.01
•		5	35130.10
4d ³ (⁴ P)5s	a ⁵ P	1	42405•50
		2	42665.90
· · · ·	~ .	3	43462.69
4a ³ (⁴ F)5s	c ³ F	2 ·	42605.84
• • •		3	43562.61
		4	44656•23
4d ³ (² G)5s	ъ ^З G	3	•
•	-	4	46557•96
•	· · · ·	5	46581.03
4d ³ (² P)5s	c ³ P	0	-
•		1	48753.45
	· · ·	. 2	49052.05
5).		-	
4d ³ (⁴ F)5p	z ⁵ G°	2	73854.05
4d ³ (⁴ F)5p	z ⁵ G°	2 3	73854•05 74725•54
4d ³ (⁴ F)5p	z ⁵ Go	- 2 3 4	73854•05 74725•54 75817•48
4d ³ (⁴ F)5p	z ⁵ g°	- 2 3 4 5	73854•05 74725•54 75817•48 77114•11
4d ³ (⁴ F)5p	z ⁵ g°	- 2 3 4 5 6	73854.05 74725.54 75817.48 77114.11 78690.21
4d ³ (⁴ F)5p	z ⁵ G° z 3 _D °	2 3 4 5 6 1	73854.05 74725.54 75817.48 77114.11 78690.21 7597 3.01
4d ³ (⁴ F)5p	z ⁵ g° z 3 _D °	- 2 3 4 5 6 1 2	73854.05 74725.54 75817.48 77114.11 78690.21 7597 3.01 76837.80

-25-

Table 1 contd..... z ⁵F° z ⁵D° z ³Fo _ع 5_Do 4a³(⁴P)5p z⁵P^o ڊ °£ <u>م.</u> 2_F ? 6s ⁵F 4a³(⁴F)6s

	77734.96
	78058.00
	78575.30
	79498.00
	80344.06
	78569.00
	78678.30
	79014.90
	79509 elth
•• •	80096.48
	79469•30
	80355.60
•	81299•90
	81521.93
	81601.80
	81867.00
	82221.00
	82772+87
	85684•30
	86+27.80
	87392-80
·	83148•70
	84545 •49
	131462.31
	1 318 26.00

Table 1 contd.....

		3	1 32294 • 79
		4	133056.00
		5	134012.30
65	, З _F	2	1 34403.00
	•	3	1 35 375 .00
		4	136470.00

a, b, c z and y are the parentages in author's notation

Configurations	Designation	J	E (cm ⁻¹)
4 <u>a</u> 3	4d ^{3 4} F	3/2	0.0
		5/2	780.C
		7/2	1759.0
		9/2	2858.6
4a ² (³ F)5s	5s ⁴ F	3/2	60893.4
		5/2	61624.1
		7/2	62705 • 3
		9/2	64042.6
4d ² (³ F)5p	· 5p ⁴ F	3/2	111756.5
		5/2	112921.0
		7/2	114619.4
		9/2	115956.7
4d ² (3F)5p	5p 4D	1/2	115790 •4
		3/2	116584.3
	•	5/2	117602+3
		7/2	1 18076 •5
Mo V(³ F2)	Limit		374180

Table 2: Observed Energy Levels of Mo IV.

-28-

ooni igu at ions	Terms	J	$E(cm^{-1})$
4d ²	З _F	2	0.00
		3	1585
)+	3359
•	3 _P	0	11165
		1	11812
		2	1 3413
+d (² D)5s	1 _D	. 2	83971
	3 _D	1	92381
		2 ·	93113
		3	94837
4d (² D)5p	1,	3	141150
•	¹ P	1	147209
	3 _D	1	148950
·		2	151212
•		3	153041
	$3_{\mathbf{F}}$	2	150346
	· ·	3	151196
		4	155033
	¹ D	2	151760
•	3 _P	0	157060
• •		1	156616
		2	157852
2-2-2-	1 _D	2	21 2620

Table 3: Observed Energy levels of Mo V

-29-

Table 3 contd.....

3 _D	3	21 3840
•	2	214671
	1	214786
1 _P	1	21 5874
З _F	2	231724
	3	234886
	4	241112
3 _F	2	236714
	3	239071
	<u>)+</u>	242104
З _G	3	243665
	4	2 ¹ +1+8 ¹ +1
	5	245830
Limit	(29)	493360
	3 _D 1 _P 3 _F 3 _F 3 _G	 ³D 2 1 1

•

Design.	J	E (cm ⁻¹)	E	n-n*	Calculated E (Edlén, 76)
4d 2D	3/2	0		1.3318	
			2583 ^T		•
	5/2	2583 ^T		1.3256	2582
5s ² s	1/2	119725 ^T		1.9870	1 19725
5p ² p .	1/2	182404 ^T		1.7434	182404
	· · ·	•	4927 ^T		
	3/2	187331 ^T		1.7216	187332
4f ² F	5/2	267038 ^C		0.2954	267036
`			407 ^C		
	7/2	267445 ^C		0.2928	267446
5d ² D	3/2	282819 ^T		1.1895	282814
	•		787^{T}	•	
	5/2	283 6 06 ^T		1.1840	283600
6s ² S	1/2	31 3803 ^T		1.9521	31 3800
6p ² P	1/2	340571 ^R		1•7077	340564
			1992 ^R		
	3/2	342563 ^R		1.6866	3+2556
5f ² F	5/2	376414		0 • 2954	
			157		
	7/2	376571		0.2933	
6a ² D	3/2	3861 66 ^R		1.1613	386158
	. •	•	387 ^R	·.	
	5/2	386553 ^R		1.1558	386545

Table 4: Observed Energy Levels of Mo VI.

-31-

.

Table 4 contd.....

5g	2 _G	7/2,9/2	395172	· .	0.0268	395113
7s	2 _{S .}	1/2	400768		1.9373	(400700) <u>+</u> 300
7p	2 _P	1/2	414850 ^R		1.6889	414846
-				1205 ^R		
		3/2	416055 ^R		1.6659	416061
7đ	2 _D	3/2	439460 ^R		1.1498	439458
	•			.228 ^R		
		5/2	439688 ^R		1.1443	439684
6f	2 _F	5/2	44 1183		0.1059	441179
				111 ^B	•	
		7/2	441294		0+1031	441294
6 g	2 _G	7/2,9/2	443738		0.0386	443710
8p	2 _P	1/2	453064		1.7716	
				91		
		3/2	453155		1.7689	-
7g	2 _G	7/2,9/2	473200 ^R		0•0459	473198
7h	2 _H	9/2,11/2	474062 ^R	۰ ۰	0.0093	474068
8g	2 _G	7/2,9/2	492377	·	0.0511	492379
8h	2 _H	9/2,11/2	493024 ^R		C.0096	493021
8 i	2 ₁	11/2,13/2	493114 ^R		0.0038	493119
Id	mit)	+p ⁶ 4d ² D3/2	$-4p^{6} {}^{1}S_{0} =$	= 55 ¹ +900 <u>+</u> 2	200 cm ⁻¹	
		<i></i>		(eva	luated by B	. Edlén)

Originally estimated by

T = Trawick

C = Charles

R = Romanov and Striganov; they report splitting of 6g and 7g levels by 2.73 and 3.07 cm⁻¹ respectively.

-32-

Configurations	Terms	J	$E (cm^{-1})$
4p ⁶	¹ s	0	0.00
4p ⁵ 4d	3 _P	1	305563
· · · ·	3 _D	1	341711
· · · · · ·	1 _P	1	417538
4p ⁵ 5s	(3/2, 1/2)	1	481294
5 1	(1/2, 1/2)	1	502930
4 P 5 d	3 _P 1D 1P	1 1 1	658992 669066 689779
4p ⁵ 6s	(3/2, 1/2)	1	710061
	(1/2, 1/2)	1	732563
4p ⁵ 6d	3 _D	. 1	795520
4p ⁵ 7s	(3/2, 1/2)	1	816413
	(1/2, 1/2)	1	839342
4p ⁵ 8s	(3/2, 1/2)	1	874998
	(1/2, 1/2)	1	898093
4p ⁵ 9s	(3/2, 1/2)	1	910830
4p ⁵ 10s	(3/2, 1/2)	· 1	934536
4s 4p ⁶ 5p	Зр	1	780390
	¹ P	1	789696

Table 5: Observed Energy Levels of Mo VII

-33.
Configurations	Terms	J	$E (cm^{-1})$	
4s ² 4p ⁵	2 _P	3/2	0.0	
		1/2	23276	
4s 4p ⁶	2 _S	1/2	233830	
$+s^2 +p^{+} +d$	$(^{3}P)^{+}D$	5/2	308699	
	" ⁴ D	3/2	309938	
•	n ¹ F	3/2	335663	
	n ⁴ F	5/2	337941	
	" ¹ P	1/2	336936	
	" ⁾	3/2	339525	
	" ¹ P	5/2	346215	
	2 _F	5/2	357811	
	2 _P	3/2	421559	
	2 _P	1/2	430969	
	2 _D	5/2	426778	
	2 _D	3/2	447876	
,	$(^{1}D)^{2}P$	3/2	348832	
	" ² P	1/2	330800	
	" 2 _D	5/2	353148	
	" 2 _D	3/2	341362	
	" ² F	5/2	371341	
	" ² S	1/2	411512	
	(¹ 5) ² D	5/2	404903	
	" 2 _D	3/2	394545	

Table 6: Observed Energy Levels of Mo VIII.

Table 6 contd	•	· ·	
4s ² 4p ⁴ 5d	$(^{3}P_{2})^{4}P$	1/2	730472
· * · ·	" }	5/2	744258
	11 ⁴ F	3/2	741552
	$({}^{3}P_{1}) {}^{4}P$	5/2	748161
	n ⁴ P	3/2	745165
	$(^{3}P_{1})^{2}F$	5/2	749531
	" ² P	3/2	750937
	$({}^{3}P_{0}) {}^{2}D$	5/2	733372
	" 2 _D	3/2	731073
	$({}^{1}D_{2}) {}^{2}S$	1/2	759112
	" ² P	3/2	761941
-	" 2 _P	1/2	770370
	" 2 _D	5/2	763015
	" 2 _D	3/2	767167
	n 2 _F	5/2	76+770
· · ·	$(^{1}s_{o})^{2}D$	5/2	800351
	" 2 _D	3/2	789781
$4s^{2} 4p^{4} 6d$	$({}^{3}P_{0})^{2}D$	5/2	890834
	n 2 _D	3/2	891999
	(³ P ₁) ⁴ P	5/2	907534
	" ⁴ P	3/2	906608
	$({}^{3}P_{1}) {}^{2}F$	5/2	909889
• • •	" ² P	3/2	9102 2 0
	$({}^{1}D_{2}) {}^{2}S$	1/2	920428
	" 2 _P	3/2	921068
	" ² D	5/2	923747

-35--35-

•••			· · ·	
(¹ D ₂) ² P	1/2	924105	,	
" ² D	3/2	927660		
(¹ 3 ₀) ² D	3/2	964373		
		<u>5s</u>	<u>6s</u>	<u>7s</u>
$({}^{3}P_{2}, 1/2)$	5/2	521461	789754	916634
	3/2	527389	791823	919154
$({}^{3}P_{0}, 1/2)$	1/2	538732	806614	928921
$(^{3}P_{1}, 1/2)$	3/2	543336	810363	932812
	1/2	548923	812274	93 <u>4</u> 364
(¹) ₂ ,1/2)	5/2	518812	825687	948129
	3/2	559813	8,25714	948153
(¹ S ₀ ,1/2)	1/2	595829	862803	982044
	 $\binom{1}{D_2} \binom{2}{P}$ $\binom{2}{D}$ $\binom{1}{3} \binom{2}{D}$ $\binom{3}{P_2}, \binom{1}{2}$ $\binom{3}{P_0}, \binom{1}{2}$ $\binom{3}{P_1}, \binom{1}{2}$ $\binom{1}{3} \binom{1}{2}, \binom{1}{2}$	$({}^{1}D_{2}) {}^{2}P = 1/2$ ${}^{2}D = 3/2$ $({}^{1}S_{0}) {}^{2}D = 3/2$ $({}^{3}P_{2}, 1/2) = 5/2$ $({}^{3}P_{0}, 1/2) = 1/2$ $({}^{3}P_{1}, 1/2) = 3/2$ $1/2$ $({}^{1}D_{2}, 1/2) = 5/2$ $3/2$ $({}^{1}S_{0}, 1/2) = 1/2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

•

-36-

		· -				·	
Designa	tion	$E (cm^{-1})$					
<u>4s² 4p⁴</u>							
3 _{P2}	н. 11	0					
3 _{Po}		16589				•	
3 _{P1}		20576					
¹ D ₂		35674					
¹ S ₀		72885					
<u>4s 4p⁵</u>	•						·
3 _{P2}		233122•9					
³ P ₁		246113.0				· ·	
. 3 _{Po}		256536.7					
¹ P ₁	•	295624.1	 				
4 ₅ ² 4 _p 3	nd	<u>4a</u>		<u>5a</u>		<u>6a</u>	
ъ ³ D ₁	•	347777		797355		987579	
ъ . ³ F2	•	3501+1+1+		800579		990382	
ъ ³ _F 3	•	353696			•	-	
ъ 3 ₆₃		362277		822534		1014603	
c ¹ D ₂		381 528		828728	· · ·	1016860	• • •
.c ³ D ₁	• • • , •	380383		825266	•	1015585	
c 3P1	-	388801		830915	:	1018148	
с 3 _{D2}		392634		-	, ·	-	
ໍີ _T 3	• .'	395360	· · · ·	-	. •	-	
c ³ F ₂		396711		-	• • • • •	. 🗕 ·	
c ³ D ₃		402590	•	839507		1024196	
c ^{.3} P ₂		405684		839713		1025122	•

Table 7: Observed Energy Levels of Mo IX (cm⁻¹)

Table 7 contd.....

-

^{δ 3} 5 ₁	416746	-	-
ъ ³ Р2	419123	840654	1033227
• ¹ F ₃	424009	845474	1031317
b ¹ P ₁	420947	843565	-
a ³ D3	431498	847507	-
ъ 3 _{Р1}	433445	848809	1040059
a ³ D ₂	441012	-	-
a ³ D ₁	447509	865366	1056382
ъ ¹ D ₂	456111	869633	1057289
^{b 1} F3	466718	-	-
c ¹ P ₁	487905	866605	1065491
			••
$4s^2$ $4p^3$ ns	<u>5s</u>	<u>6s</u>	<u>7s</u>
$\frac{4s^2}{a^{5}s_2^{0}}$ ns	<u>5s</u> 571798	<u>6s</u> 875565	<u>7s</u> 1025704
$\frac{4s^2 4p^3 ns}{a 5s_2}$	<u>55</u> 571798 582355	<u>6s</u> 875565 880842	<u>75</u> 1025704 1028743
$\frac{4 s^{2} 4 p^{3} ns}{a 5 s_{2}^{\circ}}$ $\frac{3 s_{1}^{\circ}}{b 3 D_{2}^{\circ}}$	<u>55</u> 571798 582355 601679	<u>6s</u> 8755 <i>6</i> 5 880842 905858	<u>7s</u> 1025704 1028743 1055312
$\frac{4 s^{2} 4 p^{3} ns}{a 5 s_{2}^{\circ}}$ $\frac{5 s_{2}^{\circ}}{a 3 s_{1}^{\circ}}$ $\frac{5 s_{2}^{\circ}}{b 3 D_{2}^{\circ}}$ $\frac{5 s_{2}^{\circ}}{b 3 D_{1}^{\circ}}$	<u>55</u> 571798 582355 601679 602455	<u>6s</u> 875565 880842 905858 9062 3 9	<u>Zs</u> 1025704 1028743 1055312 1055089
$\frac{4 s^2 4 p^3 ns}{a 5 s_2}$ $a 5 s_2 \circ$ $a 3 s_1 \circ$ $b 3 D_2 \circ$ $b 3 D_1 \circ$ $b 3 D_3 \circ$	<u>5s</u> 571798 582355 601679 602455 6092 35	<u>6s</u> 8755 <i>6</i> 5 880842 905858 9062 3 9 912477	<u>Zs</u> 1025704 1028743 1055312 1055089 1062162
$\begin{array}{c} 4 s^{2} 4 p^{3} ns \\ a 5 s_{2} \circ \\ a 3 s_{1} \circ \\ b 3 D_{2} \circ \\ b 3 D_{1} \circ \\ b 3 D_{3} \circ \\ b 3 D_{3} \circ \\ b 1 D_{2} \circ \end{array}$	5 <u>55</u> 571798 582355 601679 602455 609235 613394	<u>6s</u> 875565 880842 905858 9062 3 9 912477 915504	<u>7s</u> 1025704 1028743 1055312 1055089 1062162 1064357
$\begin{array}{c} 4 + s^{2} + 4p^{3} ns \\ a + 5s_{2} \circ \\ a + 3s_{1} \circ \\ b + 3p_{2} \circ \\ b + 3p_{1} \circ \\ b + 3p_{3} \circ \\ b + 3p_{3} \circ \\ b + 1p_{2} \circ \\ c + 3p_{0} \circ \end{array}$	55 571798 582355 601679 602455 609235 613394 628649	<u>6s</u> 875565 880842 905858 9062 3 9 912477 915504 933385	<u>Zs</u> 1025704 1028743 1055312 1055089 1062162 1064357 1082463
$\begin{array}{c} 4 s^{2} 4 p^{3} ns \\ a 5 s_{2} \circ \\ a 3 s_{1} \circ \\ b 3 D_{2} \circ \\ b 3 D_{1} \circ \\ b 3 D_{3} \circ \\ b 1 D_{2} \circ \\ c 3 P_{0} \circ \\ c 3 P_{1} \circ \end{array}$	55 571798 582355 601679 602455 609235 613394 628649 630391	<u>6s</u> 875565 880842 905858 9062 3 9 912477 915504 933385 934288	Zs 1025704 1028743 1055312 1055089 1062162 1064357 1082463 1083142
$\begin{array}{c} \underline{4 s^{2} 4 p^{3} ns} \\ \underline{a 5 s_{2}} \\ \underline{a 5 s_{2}} \\ \underline{a 3 s_{1}} \\ \underline{b 3 p_{2}} \\ \underline{b 3 p_{2}} \\ \underline{b 3 p_{1}} \\ \underline{b 3 p_{3}} \\ \underline{b 1 p_{2}} \\ \underline{c 3 P_{0}} \\ \underline{c 3 P_{1}} \\ \underline{c 3 P_{2}} \\ \underline{c 3 P_{2}} \end{array}$	55 571798 582355 601679 602455 609235 613394 628649 630391 644120	<u>6s</u> 875565 880842 905858 9062 3 9 912477 915504 933385 934288 947617	Zs 1025704 1028743 1055312 1055089 1062162 1064357 1082463 1083142 1097040
$\begin{array}{c} 4 + s^{2} + 4p^{3} ns \\ \hline a + 5s^{0} \\ a + 3s^{0} \\ \hline b + 3p^{0} \\ b + 3p^{0} \\ \hline b + 3p^{0} \\ b + 3p^{0} \\ \hline c + 3p^{0} \\ c + 3$	55 571798 582355 601679 602455 609235 613394 628649 630391 644120 647534	<u>6s</u> 875565 880842 905858 9062 3 9 912477 915504 933385 934288 947617 950649	Zs 1025704 1028743 1055312 1055089 1062162 1064357 1082463 1083142 1097040 1099412

a represents (⁴S) b represents (²D) c represents (²P)

•		المتكافية المستقادة المركب والمتقابل والمركبة الروام والمتكاف	والدين ويجالبه جزئر خصوب في الأمالي ويد بالألاليتين خطور		
Configurations	Ĵ	5 (cm ⁻¹)	•		
<u>45² 45³</u>	* · · · ·		یرینی و افغایر می این و م ^ر بیریند معامیر می در مرد		,
4 2	3/2	0.00			
2 _D	3/2	26836			
2 _D	5/2	35522			
2 _F	1/2	- 55313			. ,
$z_{\mathbf{F}}$	3/2	705 <u>44</u>			
<u>4s 4p⁴</u>					
<u>4</u> F	5/2	2249 39			•
	3/2	239391			
	1/2	244457	· · · · ·		
2 _D	3/2	276573	·		
	5/2	281525	· · · ·		
2,2	1/2	314504			
2 _P	3/2	318423			
· · ·	1/2	341642			
$4s^2 4p^2$ nd		<u>4c</u>	<u>50</u>	<u>60</u>	
(³ F) ⁴ D	3/2	377138	230202	1086993	
(3 _{F)} 4 _D	5/2	383475	888324	1102750	
(3P) ² F	3/2	40 42 73	-	-	
(1 _{D)} 2 ₃	7/2	408837	-	-	
(³ F) ⁴ F	5/2	416034	-	. 🛥	

Table 8. (bserved Energy Levels of No X.

.

Table 8 contd...

^ -				
(³ F) ² F	1/2	419251	895722	1109027
(³ F) ⁴ F	3/2	420327	30 52 74	1110307
(³ 7) ⁴ 7	1/2	427439	-	· · •
(³ 7) ² D	3/2	429685	907395	-
(³ F) ² D	5/2	439691	914656	1125685
(¹ D) ² D	3/2	445970	-	-
(¹ D) ² D	5/2	443827	915223	1130 675
(¹ D) ² P	1/2	452729	-	. –
(¹ D) ² F	5/2	458418	916122	1149656
(¹ _{D)} ² _P ·	3/2	462530	9299æ	1151585
(¹ D) ² 2	1/2 .	462584	934035	1159504
(¹ _{D)} ² _F	7/2	468252	934693	• •
(¹ 2) ² D	3/2	437294	929586	1166710
(¹ 5) ² D	5/2	489003	963415	1172871
$4s^2 4p^2 ns$		55	65	<u>7s</u>
4 _P	1/2	633999	989394	1160563
4 _P	3/2	654947	993292	1171183
2 _P	1/2	650981	1002 <i>5</i> 78	1173765
4-5-	5/2	6 642 58	1003528	1176768
27	3/2	33 7 948	1008269	1180003
2 _D	5/2	69 2 660	1032364	1205972
2 _D	3/2	695263	1034200	1206796
2_	1/2	722115	1065433	1233176
	×		•	

 \cdot \cdot

Configurations	Terms	J	$E(cm^{-1})$	·
$\frac{4 s^{2} + p^{2}}{4 p^{2}}$	3 _P	0	0	
	3 _P	1	17590	
	3 _P	2	27136	
	1 _D	2	54719	
·	1 ₃	0	84808	
<u>4s 4p3</u>	3 _S	1	335178	
	1 _P	. 1	362196	
<u>4s² 4p 4d</u>	3 _F	2	380832	
	3 _F	3	390018	
	1 _D	2	415602	
	3 _P	1	1+21+1+00	
	3 _P	2	430145	
	3 _P	0	435558	
	З _D	1	441686	
	3 _D	3	444196	·
	3 _D	2	445333	
	1 _F	3	475300	
	¹ P	1	482661	•
<u>4s² 4p 5s</u>	З _Р	0 r	707202	•
	З _Р	. 1	709077	
	3 _P	2	735196	•
	1 _P	1	739589	•

Table 9: Observed Energy Levels of Mo XI.

-41-

Configurations	Terms	J	$E (cm^{-1})$	•
4s ² 4p	2 _P	1/2	0.00	
		3/2	28359	
4s ² 4d	2 _D	3/2	419709	
		5/2	425986	
чs чp ² .	2 _S	1/2	306175	
	2 _P	1/2	325507	
		3/2	332029	
	⁴ P	1/2	191028	
	•••	3/2	200337	
		5/2	214482	
4p ³	⁴ s	3/2	495946	
	2 _D	3/2	527661	
		5/2	535296	
	2 _P	1/2	558108	
		3/2	573486	
4s ² 5đ	2 _D	3/2	814820	
		5/2	820489	

.

.

Table 10: Observed Energy Levels of Mo XII

	• -43-	•
Table 11. Observe	d Energy Levels of Lo XI	ν.
Designation	J	2 (cm ⁻¹)
4s ⁻² 2	1/2	0.00
4p ² F	1/2	23885
	3/2	267 532
4d ² D	3/2	649976
	5/2	85 5242
4f ² F	5/2	1033350
	7/2	1033338
5s ² s	1/2	1089691
5p ² P	1/2	1192036
	૨/2	1205254
5d ² D	2/2	1372413
	5/2	1374330
5f ² F	5/2	1540440
• •	7/2	1540574
5g ² G	7/2,9/2	1577546
65 ² 2	1/2	1579705
Sp ² F	1/2	1633615
<i>x</i>	3/2	1640046
Sf ² F	5/2	1818244
	7/2	1818317
5g ² G	7/2,3/2	1841005
7g ² 3	7/2,9/2	2000 101

· · ·

•

Table 11 contd...

.

De	signation	J	E (cm ⁻¹)
3d ⁹ 454p	(² D, ³ P) ⁴ F	1/2	1383400
	$(^{2}D, ^{3}F)^{2}F$	1/2	1898000
	$(^{2}D,^{3}F)^{4}D$	1/2	1305750
	(² D, ¹ P) ² P	1/2	1968930
	(² D, ³ P) ⁴ P	° 3/2	1861340
	$(^{2}D, ^{3}P)^{4}F$	3/2	1874940
	(² D, ³ F) ² D	3/2	1385220
2	(² D, ³ P) ² P	3/2	1895720
	(² D, ³ F) ⁴ D	3/2	1914770
	(² _D , ¹ _P) ² _P	3/2	1945620
Į	3/2,1/2) ₂ ,3/2]	3/2	1987500
3d ⁹ 4p ²	(² D, ¹ D) ² S	1/2	2143930
	$(^{2}D,^{3}P)^{2}P$.	1/2	2190700
	(² D, ¹ D) ² P	3/2	2143940 - ?
	(² D, ³ P) ² D	3/2	2158460
	$(^{2}D,^{3}P)^{4}F$	3/2	2171600
	(² D, ¹ D) ² D	3/2	2130320
	(² D, ³ P) ² F	3/2	2194330

.

ς.

		-45-				
Tarle 1	l contá					
	(² D, ³ P) ² D		5/2	· . ·	2190210	
. · ·	(² D, ¹ D) ² F	· · · ·	5/2		2208210	
•	(² D, ¹ 5) ² D		5/2		2220830	•
3d ¹⁰ 7þ	2 _P	•	1/2		1874730	,
•	2 _p		3/2		1878710	·
			•	· · ·		

.

Ion	Configuration	Ie m	5 (cr ⁻¹)
No XIII	3d ¹⁰ 45 ²	1 ₂ 0	0.00
	46 Sp	° _{F1}	1126510
	•	l _{F1}	1139110
· .	3d ⁹ 45 ² 4p	l _{Pl}	1343390
		3 _{D1}	18 67 380
Mo XV	3d ¹⁰	lg _o	0.00
	3a ⁹ 4s	3 _{D2}	1699730
		· 1 _{D2} ·	1725520
, 	3d ⁹ 4p	3 _P 1	1962480
		l _{Pl}	1982240
		з _р	2003450
14	ed ⁹ 4f	ε _{D1}	2773230
	,	l _{F1}	2827420
	3c ⁹ 5f	(3/2,7/2) ₁	3355 640
		(2/2,5/2) <u>-</u>	3394670

Table 12. Energy levels of ho HIII and ho XV.

Table 13. Energy levels of Lo IVI.

Snfiguretion	Te r m	J	ے (cm ⁻¹)
3d ⁶ 3d ⁹	2 _D	5/2	C00
	2 _D	3/2	27000
3p ⁵ 3d ¹⁰	2 _P	3/2	1318000
	2 F	1/2	1464000
Gd ⁸ 4s	(³ F ₄ ,1/2)	7/2	1849400
	(³ F3,1/2)	7/2	1870000
•	(¹ G ₄ ,1/2)	7/2	1925300
	(¹ G ₄ ,1/2)	9/2	1925700
3d ⁸ 4p	(³ F ₄ ,1/2)	7/2	2089300
	(³ F3,1/2)	5/2	2112500
	(³ F3,1/2)	7/2	211 5300
• •	(³ F ₂ ,1/2)	5/2	211 7700
	(³ F ₂ ,1/2)	3/2	2119300
	(³ F ₄ ,3/2)	7/2	2134500
	(³ F3,3/2)	3/2	-
	(³ F ₄ ,3/2)	5/2	2135000
• •	(³ F ₂ ,3/2)	1/2	-
			· ·

.

Table 13 contd...

· ·	(² 1 ₂ ,1/2)	5/2	2147500
	(³ F ₂ ,1/2)	3/2	2147500
	(³ F3,3/2)	5/2	2151900
	(³ F ₃ ,3/2)	7/2	2156500
	(³ F ₁ ,1/2)	1/2	-
	(³ F ₂ ,3/2)	7/2	21.57600
	(³ F ₂ ,3/2)	5/2	21 60 500
	(³ F ₂ ,3/2)	3/2	21 64900
	$(^{l}D_{2}, 1/2)$	5/2	218000
· · ·	(³ P ₁ ,1/2)	3/2	2172300
	(¹ 3 ₄ ,1/2)	7/2	2173000
	(³ P ₀ ,1/2)	1/2	2173400
•	(¹ D ₂ ,1/2)	3/2	2173900
	(³ P ₂ ,3/2)	5/2	2180900
	(¹ D ₂ , 3/2)	1/2	-
	(³ P ₂ ,3/2)	7/2	2183400
	(¹ D ₂ ,3/2)	3/2	2190 200
	(¹ D ₂ ,3/2)	ô/2	219 5800

.

. – **– – – –**

Table 13 contd...

3.d⁸4f ,

(³ =,3/2)	3/2	2193200
(³ F ₁ ,9/2)	5/2	2204200
(³ F ₁ ,8/2)	1/2	220 5400
(³ F ₁ ,3/2)	3/2	2208300
$(^{1}D_{2}, 3/2)$	7/2	-
(¹ G ₄ ,3/2)	5/2	2213000
(³ P ₂ ,3/2)	3/2	-
(³ P ₂ ,3/2)	1/2	2222500
(¹ 3 ₄ ,3/2)	7/2	2222600
(¹ 2 ₀ ,:1/2)	1/2	2274000
(¹ 2 ₀ ,3/2)	3/2	2308 500
(³ F ₄ ,7/2)	7/2	2941200
(3F4,7/2)	5/2	29 41 20 0
(³ F ₃ ,7/2)	5/2	29 82 20 0
(³ F ₂ ,5/2)	7/2	2976200
(³ P ₂ ,5/2)	5/2	2980300
(³ F ₂ ,7/2)	5/2	2984300
(³ P ₂ ,7/2)	7/2	299 6000

Tacle 13 contd....

	(³ 7 ₀ ,7/2)	-	7/2	2337700
	(³ F ₁ ,5/2)		5/2	3007500
·	(¹ G ₄ ,5/2)		3/2	3029300
	(^l G ₄ ,5/2)		5/2	3036800
	(³ F ₁ ,5/2)	•	7/2	2041800
	(¹ 0 ₄ ,7/2)		1/2	3045700
	$({}^{1}G_{4}, 7/2)$		3/2	3057400
	(¹ D ₂ ,5/2)		5/2	3057400
	(¹ =0,7/2)		7/2	2115300
	(¹ -0,5/2)		5/2	3118700
	(¹ 2), ² F		7/2	31221 00

-50-

		و بندی با اور با	سورا ساود برد بر درد بر در در بر بر در در ا
Configuration	Terr	Ū,	(cm ⁻¹)
3p ⁶ Sd ^S	°F	4	0.001
		3	24250
		2	27030
	З _Р	2	51000
		0	52350
•• •		<u>1</u>	70310
	l _D	2	7,79 80
•	lg	4	82420
	1 5	0	176700
		•	
3p ⁵ 3d ⁹	3 _F	4	1262860
	lD	2	1231600
	3 _F	3	1311160
	3 _D	2	1342800
	Ĵ₽ ₽	1	1352050
	3 ₇	0	13538 60
	S ^D	3	1370010
	β _D	1	1391470

Table 14. Lnergy levels of No XVII.

-51-

Table 14 contd....

3d⁷4p

 $2_{\rm F}$ 1445570 2 $2_{\rm F}$ 1471 690 2 lF 1544660 З lp 1563830 l (⁴F9/2,3/2) 2319110 4 (⁴F) ³D Э 2323420 $\begin{pmatrix} 4\\F \end{pmatrix} \quad 3_F$ 4 2340820 (²=11/2,1/2) 5 2353490 (²G7/2,1/2) 235988 3 (²39/2,3/2) 2376650 З (²_n) ³_G 4 2382180 (⁴P5/2,3/2) 2385500 З (⁴P5/2,3/2) l 2339420 (²G7/2,3/2) 2390550 З (²G7/2,3/2) 4 2392340 (²3) ³_F 2 2393350 $(\frac{4}{P_{1/2}, 3/2})$ l 2397320 з. (²D5/2,3/2)

Table 14 contd...

.

. . . .

·.

•	•	
(2) 3 _F	4	2404420
(² H11/2,3/2)	ō	2410710
(² E) ¹ 3	4	2413420
(3D) ¹ P	1	2419370
(² P1/2,3/2)	2	2424230
(² P _{1/2} ,3/2)	1	2427580
(² -19/2,3/2)	5	2435920
(² F) ³ D	1 }	2442030
(² F3/2,5/2)	3	
(² F _{5/2} ,3/2)	2	2443340
(² D _{3/2} ,3/2)	З	2451530
(² F) ¹ F	3	2471340
(² _{1D5/2} ,1/2)	3	243 <i>5</i> 30 0
(² ID _{3/2} ,3/2)	3	2517880

/

)

Table 15. Energy levels of No 1001.

•

· .

	. Configuration	29 ms	<u>s</u> (cm ⁻¹)
	3s ² 3p	2 _{P1/2}	0.00
		² F3/2	207710
	3d	·2 _{D3/2}	2080700
*		² D _{5/2}	1201900
	4s	2 ₅ 1/2	57 52000
	4â	² D _{3/2}	5379200
		² D _{5/2}	6429300
	4 f	2 _{F5/2}	6647400
		² F7/2	6740300
	35 3p ²	(E1)1/2	885350
		(E ₂) _{1/2}	1033300
	•	(33) 3/2	1154900
	مین الادر با میران <mark>ا</mark> در باری می واند خدنی این به المینی که نواد می الدول و اور این ا	میں «محمد براہ کیا کیا: جیاڑی) ہے۔ صدورے جاکرات شیروں، بربر براہ کی	

-

. • •

Caral Caracterization and the second s			
Designation	J	∑ (cm ⁻)	·····
2p ⁶ 3s ² 5	1/2	0.00	
3p ² F	1/2	533030	
	3/2	782410	
3d ² D	3/2	1525200	
	5/2	1570200	
4s ² S	1/2	5630700	
4p 2F	1/2	68 68 100	
	3/2	6 953000	
4d ² D	3/2	7230300	
	5/2	7250700	
4f ² F	5/2	7391300	
	7/2	7401700	
5p ² P	3/2	9735200	
5d ² D	3/2	9869200	•
	5/2	3878 3 00	
5f ² F	5/2	9946200	
	7/2	99 51700	

. .

Table]	lô contá		
ôf ²	2 _F	5/2	11232000
		7/2	11835000

Table 17. Energy Level of No XXXIII.

Designation	مند من محمد ا با	E (cm ⁻¹)	Remark
$\frac{2p_{5}^{2}}{\left[2p_{5}^{2}\left(^{2}F_{3/2}\right),3s\right]}$	0 1	0.000 19220000	В.
$[2p^{5}(^{2}F_{1/2}), 2s]$. 1	20080000	3
$[2p^{5}(^{2}P_{3/2}), 3d(^{2}D_{3/2})]$	1	20512000	$\mathbf{k} \sim 1$
$[2p^{5}(2p_{3/2}), 3d(2p_{5/2})]$	l	20814000	A
$[2p^{5}(2p_{1/2})]$ 3d $(2p_{3/2})]$	l.	21 59 2000	Å
$[2s2p^{6}3p(2P_{1/2})]$	1	22393000	A
[2s2p ⁶ 3p(² F _{3/2})]	l	22634000	A
$[2p^{5}(^{2}P_{3/2}), 4s]$	l	25970000	В
$\left[2p^{5}(^{2}P_{3/2}), 4d(^{2}D_{5/2})\right]$	l	2660000	B
$[2p^{5}(^{2}F_{1/2}), 4s]$	1	26740000	В
$[2p^{5}(2p_{1/2}), 4d(2p_{3/2})]$	l	27470000	В
$[2p^{5}(^{2}P_{3/2}), 5d(^{2}D_{5/2})]$	l	29240000	B
[2p ⁵ (² P _{1/2}),5d(² D _{3/2})]	l	30120000	B
$\left[2p^{5}(^{2}P_{3/2}), 6d(^{2}D_{5/2})\right]$	1	30670000	B
$ \left[2p^{5} \binom{2}{P_{3/2}}, 6d \binom{2}{D_{3/2}} \right] $ $ \left[2p^{5} \binom{2}{P_{3/2}}, 7d \binom{2}{D_{5/2}} \right] $	1 1	31450000	В
$\left[2p^{5}(2P_{1/2}), 7d(2D_{3/2})\right]$	1	32360000	

A: from Aglitskii et al (1979)

B: from Burkhalter et al (1978)

Configuration	Term	J	I (cm ⁻¹)
2p ⁵	2 _p	3/2	0.00
3p ⁴ 3d	(³ P) ² D	3/2	21978000
•	(3 _{F)} 2 _F	5/2	22045000
	(³ F) ² D	5/2	22119000
	(¹ D) ² 3	1/2	22163000
	(¹ D) ² F	5/2	22193000
	(¹ D) ² P	3/2	22193000
	(¹ _{D)} ² _D	5/2	22207000
	(¹ _{D)} ² _D	3/2	22321000
	(¹ _{D)} ² _P	1/2	22361000
•			·

Table 18. Energy levels of No IDDIV.

lon	Configuration	Terms	$E (cm^{-1})$
No JIJIV	3p ⁶ 3d	2 _D 3/2	0.00
	4 f	2 _F 5/2	4611700
Mo XXV.	3p ⁶	lso	0.00
	3p ⁵ 4d	3 _{F1}	5405400
		³ D1	5562000
No XL	ls ² 2s	2 ₃ 1/2	0.00
	1s2s(³ 2)2p	² P _{3/2}	145100000
	1s2s(¹ 2)2p	2 _P 1/2	145200000
	ls2s2p	4. P5/2	145800000
No XLI	2 1s	1 ₅₀	0.00
	ls2p	3 _{P1}	144400000
		3 _{P2}	145400000
		l _{Pl}	145300000
	2p ²		234400000
No XLII	ls	² 51/2	0.00
	2p	2 _{F3/2}	149800000
		² P1/2	-
	Зр	² Ps/2	175200000
		2 ₁ 1/2	-

- .

Table 19. Energy levels of Miscellaneous Mo spectra.

-59-

Isble 20.	Rnown Pransiticas	in Higher Ionizations	of Lo atoms.

		-60-	
lable 2:	0. Known Tr	ansitions in Higher Ionizations of he stoms.	
Ion		Transitions jjjj J-J	Rem- erk
No XIII	101.375	4045 ^C 7-4658 ^C 2 - 2-1	
	127.933	0 0 1-1 P- P - 1-1	-
•	126.675	3 _{F-} 3 ₋ - 0-1	-
No IVIII	38.7-49.0	3d ⁷ -3d ³ 4p	g.1.5
	63.544	3p ⁶ 3d ^{7 2} H-3p ⁵ 3d ⁸ (¹ G) ² F - 9/2-7/2	:
	37.144	$\frac{2}{12}$ (^{3}F) ^{2}G - 11/2-9/2	-
	37.347	2_{3} (1) 2_{F} - 7/2-5/2	-
	67.953	$2_{\rm F-}$ $(2_{\rm P})^2_{\rm D}$ - 7/2-5/2	-
No IIIX	26,0-36,9	- 22 ⁶ -22 ⁶ 4p -	<u> </u>
lio III	25.2-23.6	3 d ⁵ -30 ⁴ 4 f	<u>.</u>
No INI	24.5-25.2	36 ⁴ -32 ³ 41	g.l.
he IIII	23.5-24.1	3d ³ -3d ² 4f	g.l.
No XXIII	22.4-22.9	Sd ² -3d4f -	≝
VEICI OI	21.354	3d ² D-4f ² F - 5/2-7/2	2014-000
10 1111	11.00 } 11.03 }	283p - 385d 1/2 1/2-1/2 3/2 0-1	-
	11.28 J	383p - 385d 1/2 8/2-1/2 5/2 2-3	_
		1/2 3/2-1/2 3/2 2-2	-
	ل کان ۱۰ ک		-
	11.492	3535-355d - 1/2 3/2-1/2 3/2 1 - 2	-
N	•		

)	den ba			۰						
	14.748		۔ چن	- 65 4p		1/2	1/2-1/2	3/2	0-1	Ξ.2.
	14.95z		35	- 8p 2d		1/2	1/2-3/3	5/2	0-1	-
	14.922		35 ²	-08 4p		1/0	1/2-1/2	1/2	0-1	
	15,193		Se Sp	- 3:4d	۰.	1/2	1/2-1/2	3/2	<u>0-1</u>	-
	15.27		38 3p	- Cs 46		1/2	1/2-1/2	3/2	1-3	-
	15.30		ಡಿ ಕಿ	-394d		1/2	1/2-1/2	3/2	1-1	-
	25.22.)				• .		· · ·	•	- ",	-
	elso .		3p ²	-3p4d	,	1/2	0/2-0/2	5/2	2-2	-
	15.33		೮೬ ತಿ ಗ್ರ	- 354đ		1/2	3/2-1/2	5/2	2-2	
	15.64								2-3	
	15.69		35 2 ₀	-354d	•	1/2	3/2-1/2	3/2	2-3	
	15.70			•		·		·	2-1	
	el:	50	3p ²	-Sp4d		3/2	3/2-3/2	5/2	2-1 2-2	
	15.77 y		3p ²	-3p4d			· .		2-2	
	15.84.]									
	16.003	•	3p ²	-Sp4d		3/2	3/2-3/2	5/2	0-1	
	13.043		<u> </u>	-354d		1/2	3/2-1/2	5/2	1-2	
	13.08 7		Sp ²	-Sp4d		3/2	3/2-3/2	3/2	0-1	
	15.14	lsc .	3ಕ 3ಸ	-3942		1/2	3/2-1/2	3/2	1-2	•
	16.23 7 16.33.		3p_2	-3p4đ		3/2	3/2-1/2	5/2	2-3	
	17.3307		S23d	-354f	,	1/2	3/2-1/2	7/2	2-3	
	17.445	2s 3	C ^C bi	-3:4f	З _F		- .	•	1-2	B.
	17.500	3a 3	ed ^e D	-354f	S ¹		-		2-3	Ĥ
	17.556	343	ر ³ ۵	-3:4f	<u>.</u>				<u>4</u> ۔	. З
	17.578	3s 3	e ^e D	-3s4f	SF		-		3-3	ě
	17.871	S2 3	id ¹ D	-354f	lF				2-3	ĩ

2rble 20 centé...

lable 20 contá.

	94.71			37 ²	- ೦ <u>ಥ</u> 2ದೆ	1/2	1/2-1/2	3/2	0-1
	84,95		· ,	ರಿಕ ತಿಕ್ರ	-3s 3d	1/2	1/2-1/2	2/2	0-1
	98,52			3£ 3p	-3\$ 3d	1/2	1/2-1/2	2/2	1-2
	96.82			Sp^2	-3 <u>p</u> 3d	1/2	3/2-3/2	3/2	2-3
	97.93			2 25	-3p3đ	1/2	3/2-3/2	3/2	1-1
	98.20		.*	35 3p	- 38 3d	1/2	1/2-1/2	3/2	1_]
	100.39			3 5 3p	-3p ²	1/2	1/2-3/2	3/2	1-2
•	101.63			3p ²	-3p3d	1/2	3/2-3/2	3/2	1-2
	101.97			3p ²	- 3p3à	1/2	3/2-3/2	3/2	2-2
	103.33			3p ²	-Sp3d	3/2	3/2-3/2	5/2	2-3
	112.609 2		35	Sp ³ F	°-2s3d ^{i S} D		-		2-3
	112.65			<i>ತಿಕ</i> 3p	- 35 3d	1/2	3/2-1/2	5/2	2-3
	113.858j	•	ුදු	Sp l	-383d ¹ D		-		1-2
	113.88			35 Sp	- 3º 3d	1/2	3/2-1/2	5/2	1-2
	115.27			. 35 3p	-3s 3d	1/2	3/2-1/2	3/2	2-2
	115,53			3p ²	-3p3d	3/2	3/2-3/2	5/2	2-2
	115.9447			35 2]	13-353p ¹ F		. Car		0-1
	115.97 \$			3s ²	-3º 3p	1/2	1/2-1/2	3/2	0-1
	116.91			3p ²	-3p3d	3/2	3/2-3/2	5/ 2	0-1
	117,63		•	35 3p	-3p ²	1/2	1/2-1/2	3/2	0-1
•	117.90			3p ²	-Sp3d	3/2	3/2-3/2	3/2	2-3
	118.48	· .		3p ²	-3p3d	1/2	3/2-1/2	5/2	1-2
	118.74			3p ²	-3534	3/2	3/2-3/2	3/2	2-1
	112.96	· .		3p ²	-3p2d	1/2	3/2-1/2	5/2	2-2
	120.86			38 3 d	-3p3d	1/2	3/2-3/2	3/2	1_1
	121.07			35 3d	-3p3d	1/2	3/2-3/2	5/2	2-2
	121.20			ಜ ವಿಶ	-3p2d	1/2	3/2-1/2	5/2	2-3
	121.70			38 3d	– Cp Sđ 🖉	1/2	3/2-3/2	3/2	1 - 0
	122.26			38 Sp	-3p ²	1/2	3/2-3/2	3/2	2-2
					- '				

۰.

Ð

Β

, "Б

Table 20 contd....

	, , , , , , , , , , , , , , , , , , ,	•		• •				•	, ,	•
1-0 XXXII V	4.493		2p ⁵	² P-2p ⁴	¹ (¹ .≥) 3d ² D		-		1/2 - 3	/2
• .	136.06			<u>35</u> 3đ	-3p3d	1/2	5/2-3/2	5/2	3-4	
	133.10			38 3d	-3p3d	1/2	5/2-3/2	5/2	2-0	
;	124.09			35 3d	-Sp3d	1/2	5/2-3/2	572	3-2	
н т <u></u>	124.43	•		38 8 đ	-3p3d	1/2	3/2-3/2	3/2	2-0	
	124.13			್ಷವಿ ತಿಲ್ಲ	- 35 - 1	1/2	3/2-3/2	3/2	1-0	

- g.l::group of lines
- o: ochwob et al. (1977)
- E: Burkhalter et al (1977,80)

.

.

-68-

Levels of nd and ns configurations bear different notations.

-69-

-70-

-74-

