BINARY AND TERTIARY NEUTRON INDUCED REACTION CROSS SECTIONS
OF CHROMIUM AND IRON
S.B. Garg
Neutron Physics Division
Bhabha Atomic Research Centre
Trombay, Bombay 400085 , India

This work was performed under IAEA Research Contract 4391

BINARY AND TERTTARY NEUTRON INDUCED REACTION CROSS SECTIONS OF CHROMIUM AND IRON

S.B. Gat'g

Neutron Physics Division
Bhabha Atomic Research Centre
Trombay, Bombay 400085 , India

BINARY AND TERTIARY NEUTRON INDUCED REACTION CROSS SECTIONS
 OF CHROMIUM AND IRON

S.B. Garg
Neutron Physics Division
Bhabha Atomic Research Centre
Trombay, Bombay 400085 , India

1. Introduction

This work has been carried out under the Co-ordinated Fesearch Programme dealing with the methods for the calculation of fast neutron nuclear data for structural materials sfonsored by the International Atomic Energy Agency. The main ofinective of this frogramme is to develof and adopt nuclear models and methods for the computation of meutron induced reaction cross-sections of structural materials to be used in fission and fusion tased reactor systems.

Chromilm arrd iron are two main constituents of stainless steel which is commonly used as a structural material. In this pafer investigation has been carried out for the following hinary and tertiary reaction cross-sections of Cr-s and fe-situ
 cross-sections
(ii) Energy sfectra of the emitted meutron, proton, α-particle and σ-rays.
(iii) Angle-energy correlated doutle differential cross-sections for the secondary emitted meutrons.
(iv〉 Total froduction cross-sections for neutron, hydrogen, helium arud gamma-rays

The following three schemes of data evaluation have teen adopted to compute the atove listed cross-sections:
(a) The multistef. Hauser-Festract (MSHF〉 sctieme comprising oftical model, statistical theory, \&altach exciton model, ErintAnel model of giant difole resonances and the direct reaction model based on the distorted wave Form affroxination
(ty) The geometry dependent hytrid model (GDHM) scheme which mates use of the Weisstoff-Ewing evaporation model arat the oftical model
(c) The unified exciton model (UEM) scheme based on the master equation afyroach which employs Erint-Axel model for the computation of radiative capture cross-sections. Inverse crosssections are evaluated with the aprofriate oftical model potential farameters for meutron, proton and alfra-particle.

Several computer codes dealing with the atove stated mödels have tuen suitaty modified to worl on the intiorese computer. These model codes include GNASH/1/, SCATE/z/, ELIESE3/Z/, DWIICK4/4/, ALICE/85/300 /E/, and GFAPE Fackage /6/.

Eased on the "SPET' method the derived neutron ofitical model Fotential Farameters of Prince /7/ have heen selected for Cr-G alrd of Strohmaier et al $/ E /$ for fe-5t.

Potential parameters for protons and alpha-particles have teen taken from Mari $/ G /$ and Strohmaier et al resfectively.

Deformation farameters for the various discrete levels of Fe-st have been talken from Mani for the computation of direct level excitation cross-sections. The other relevent infut data for Fe-5t is contained in the paper /10/ presented at the first CEP meeting held at Eologna.

In the reaction decay chain of cr-so, the various muclides involved are CR-53, Cr-52, CR-51, CR-50, V-5i, V-51, V-50, V-4ヲ, Ti-S1, Ti-50, Ti-4 $9, T i-4 E, T i-47, S C-4 E, S C-47, S C-4 E, C a-45$ and C:a-44.

The discrete energy levels for all these ruclides together with the gamma decay kranching ratios have keen taken from the literature. In the continum energy region, level densities have teen calculated with the Giltert-Cameron /il/ formulations with the pairing energy corrections talken from cook et al /12/. The GDHM and LIEM schemes calculate level densities of comfosite and residual muclides hased on the hack stifted fermi gas model.

The single farticle level density farameter used in the MSHF and LIEM schemes is taken as $A / 1$, A foeing the mass no. of the concerned nuclide. In the GDHM scheme the single farticle level densities are defined as

$$
\begin{aligned}
G_{n}= & N / 20\left[\frac{E_{f}+E_{11}+E}{}\right]^{1 / 2} \\
& \frac{20}{E_{f}}\left[\frac{E_{f}+E_{F}+E}{1 / 2}\right]^{E_{f}}
\end{aligned}
$$

where E_{f} is the fermi-energy and \in is the chaninel energy. The other symbols have their usual meanings.

E. Fiesults

A turief summary of results given tuelow and contained in Figs. 1 to $1 t$ is thased on the MSHF scheme:
(i) cr-E2
(a) Fig. 1 compares the calculated and the measured. secoridary neutron emission spectrum at 14.1 MeV of incident neutron energy. The emission spectra of the 1 st and secome neutron are also showne The interaction matri\% constant k derived from this analysis is $200 \mathrm{MeV}^{3}$ which is kept fixed throughout the entire energy range.
(b) Calculated and measured (n, alpha) cross-sections are deficted ir fig. 2. The agreement is reasonatily good indicating that the alfha-particle poteritial farameters emfloyed in this study are reasonably good. Since the measurements do not exist
throughout the entire energy range，the extrafolation of these data may be taken as satisfactory．
（c）Calculated arid measured（n，pi）cross－sections are shown in
Fig．S．Some deviations are noted but in general the predictive cafatility of the model may we taken as reasonakly good．
（d）Computed ard measured（n，Zn）cross－sections are given in Fig．4．Agreement is quite good．
 and（n，zny cross－sections．The measured data for（h，inf）（in，fir） and（n，alpha）cross－sections are almost mon－existent，these consistent calculations serve to rrovide these data for afolications．
（f）Total production cross－sections for meutron，protori，alfha－ Farticle and gammarrays are strown in Fig．\Leftrightarrow Helium is considered to be a catalyst for fropagating swelling and radiation damage in stainless steel under high fluence mentron irradiation．These consistently evaluated data may serve to estimate the froduction of helium iri such systems．Data for reutrons，protons and gamma－rays are helpful in the design of stields．

《g〉 Fig． 7 and E depict a comparisont tetween the measumed and calculated arigle－energy correlated doutele differeritial cross－ sections as a function of energy of the secondary emitted heutron at $E 0^{\circ}$ and 120° oftained with the incident neution energy of 14.1 MeV．The calculations have heen carried out with the geometry dependent hytrid model．The areement is quite good for the low energy emitted neutrons，however some deviations are noted for the relatively high energy heutrons which are emiteted in the hon－ compoumd huclear mectianisms．
（ti）The gamma－ray sfectrum is stomh inf fig．G．In the low energy region，resonant thehaviour is seen due to the presence of discrete levels．
（ii）Fe－Ge
The detafled discussion appeats in ref．／ 10 ／．［iily a few of
the salient results oftained sutuequently are described in the following：
（a）With the single level density parameter taten as $A / 1, ~$ ，the K－parameter of the averaged interaction matrix constant obtained is 400 MeV ．This new value does not affreciatily alter the cross－section data computed and reforted earlier．
（b）With the gamma－ray competition talen correctly into account， it is roted that the radiative capture cross－section in the MeV energy region is low of the order of a few millitarns．It is also noted that with this low radiative cafture cross－section the magnitude of（n，nf ）cross－section is affected afrireciatily from 5% to 80% while the other tertiary reaction cross－sections do not record any significant change．
（c）Direct level excitation cross－sections calculated with the distorted wave Eorn afッroximation are given in Fig．10．
（d）Figs． $11,12,13$ and 14 show the calculated and measured angle－energy correlated double differential cross－sections for
the emission of secondary neutrons at 14.1 MeV and 1 B Mev at $4 ⿷^{\circ}$ ， E． 0° and 120° it is observed that at 14.1 MeV the calculated results at 45° ard eo are within the measured uncertainties of the data．Deviations are，however，moted in the emission of high energetic secondary reutrons at 1 G MeV of incident meutron ener－ gy．These deviations may not tem mot of consequence in fission and fusion based reactor systems since very few meutrons will be in the energy range extending beyond 15 Mev．
（e）Calculated energy spectrum of emitted proton at 1.9 MeV of incident neutron energy is shown in Fig． 15 along with the exfe－ rimerital data．The agreement is satisfactory considering uncer－ tainty involved in the froton fotential．
$\langle f\rangle \quad$ The calculated gamma－ray spectrum is shown in fig． $1 \in$ at 14．1 MeV．The resonant hehaviour is again noted for the low energy gamma－rays．

〈ti〉 Tatrle 1 lists the various types of cross－sections calculated at 14．E MeV and 2s． 7 MeV ．This is to facilitate intercomparjson of the data calculated with other evaluation schemes．

TAELE
SIJMMARY OF FE－SG NEUTRON CROSS－SECTIDNS INUESTIGATED IINDER THE IAEA RESEAFCH CO～OFDINATED PRQGFAMME WITH MLILTISTEP HAIISEF：FES－ HEACH STATISTICAL THEORY AND PEE－EGUILIBFIIM EXCITIN MODEL

ENERGY ${ }^{\circ}$	14．6 MEV	25.7 MEV	
TOTAL	2507.4	2316.2	
ELASTIC	1164.3	1223.2	
REACTION	1342.8	1093.2	
N，NX	1154.0	742．t	
$N, P X$	147.1	274.5	
$N, A X$	d0． 5	75．5	
N，G	0.95	$0 . E<$	
N，NG	$4 \leqslant 0.7$	50.0	
N，2NG	E00．5	430.3	
N，3NG	－－－－－－	80.2	
N，NPG	72.2	144．1	
N，NAG	0.6	27.0	
$N, ~ P G$	108．	$7 \cdot 8$	
N，PNG	$3 \mathrm{E} \cdot 6$	200.7	
N，2PG	－－－－－	3.0	
N，PAG	－－－－－	1.2	
N，P2NG	－－－－－	27.2	
N，PNPG	－－－－－－	3.4	
N，AG	40．6．	75．5	
N，N EM	1793．0	1621．0	
N，P EM	219.3	436.0	
N，A EM	41．2	103．	
N，GEM	2210.0	$26 E 2 \cdot 0$	
NOTE ：Th	TIONS ARE G ESENTS GAMM	MILLI－EAFN	FEPFEESENTS

4．Intercomfarison of MSHF，GDHM and LIEM Schemes of Data Evalua－ tion

It is well known that koth the geanetry dependent hymid model and the unjfied exritan model schemes da not account for angular．momentum and parity conservation explicitly and thus the discrete levels of the composite and residual muclides are not used in the evaluations．These schemes，thus，sannot he used for the computation of level excitation cross－sections．Eut these schemes are relatively simply from the computational considerea tions and are hormally utilized in an energy region where the मre－eduilitrium decay mectanism mafes significant contritution to a given reaction．For mentrons，these models are generally employed at 10 MeV and atove of incident energy．

An intercomparison of the three data evaluation schemes j．e． MSHF，GDHM and IIEM schemes is brought out in Figs． 17 to 20 where the different types of data are depicted for fe－se and cr－5z in the energy range $14 . \epsilon \mathrm{MeV}$ to 24 MeV ．The following salient points may te noted from these figures ：
（i）The three data evaluation schemes fredict total heatron
 another．GDHM sctieme teing the simplest one withfewer free adjustarle model farameters may be used at neutron incident energy of 14 MeV and atove for fuick cross－section estimates for the atove noted reactions．

〈ii〉 The charged farticle emission cross－section data predicted ry the three schemes differ，sometimes ty factors．The estimates given hy the MSHF scheme are，however，closer to the experimental data．

References

1．P．G．Young and E．D．Arthur，GNASH－A Preequilitrium Statisti－ cal Nuclear Model Code for Calculation of Cross－Sections and Emission Spectra，Feport LA－6． 947 〈1777）

2．G．Eexsillan，SCAT2－Br Programe de Modele Gptique Spheri－ que，Feport CEA－N－2こ27（17玉1）

3．S．Igarasi，Progran ELIESE－S；Program for Calculation of the Nuclear Cross－Sections Ky Hsing Local and Noñ－Local Gifical Mo－ dels and Statistical Model，Feport JAEFI－122d（1772）

4．P．D．Fuhte，Description of the DWBA Cone DWHCt，SME／10S－z （17日4）

E．M．Elann，Code ALICE／BE／／SOO，Feport IUCID－2Oteg（19E4）
G．H．Gruffelaar and J．M．Akkermans，The GFAPE Code system for The Calculation of Precompound Arud Compound Nurdear Fieactions， Feport ECN－164（17ES）

7．A Prince，Nuclear Data for Sciénce and Tectrology，Finturaf Conf．， 574 （1952）

E．E．Strohmaier et al，Paper Presented at the IAEA Advisory Group Meeting on Nuclear Data for Fiadiation Damage Assessment amd Fielated Safety Aepects，Viemma（1于E1）
Э. G.S. Mani, Nucl. Phys. Aje5, 2es (1977)
10. S.B. Siarg and F.P. Anamd, Neutron Jinduced Feaction Crosesections of Fe-st in the Energy Fange 1 to 0 Mov, Paper Preseri-

12. J.L. Cook et al., Alust. J. Prys. 20, 477 (1967)

FIG. 1 : NEUTRON EMISSION SPECTRUM OF CR-52 AT 14.1 MEV

fig2 n.alpha cross-sections of cr-s2

FIG4 N. 2 N CROSS-GLC:TIONS OF CR-S2

FIG. 6 N-EM., P-EM., ALPHA-EM., AND GAMMA-EM. CROSS-SECTION OF Cr-52

FIG. 7 : DOUBLE DIFF. CROSS-SECTION OF CR-52 AT 14.1 MEV ANGLE $=60$ DEG.

FIG. 8.:DOUBLE DIFF. CROSS-SECTION OF CR-F2 AT 14.1 MEV ANGLE $=120$ DEG.

FIG. 9 : ENERGY SPECTRUM OF EMITTED GAMMA-RAYS IN CR-S2

PIG. 10 :DIRECT INELASTIC EXCITATION FUNCTIONS OF FE:-56

FIf. $1 /:$ dOUBLE DIFF. CROSS-SECTION OF FE-56 AT 14.1 MEV ANGLE: 45 DEG.

FIG. 12: DOUBLE DIFF. CROSS-SECTION OF FE:-56 AT 14.I MEV ANGLEa60 DEG.

FIG. 13: DOUBLE DIFF. CROSS-SECTION OF FE:-56 AT 18.0 MEV

FIG. 14: DOUBLE DIFF. CROSS-SECTION OF FE-56 AT 18.0 MEV

FIG. 15 ENERGY SFECTRUM OF EMITTED FROTONS AT 15.0 MEV

FIG. 16 : ENERGY SPECTRUM OF EMITTED GAMMA-RAYS IN FE-56

FIG. 17: (NTER-COMPARISON OF NEUTRON EMISSION AND (N. 2N)

FIG. 18:
INTER-COMPARIGON OF NEUTRON EMISSION AND (N, 2N) CROSS-SECTIO
Of FE--56 WITH MSHF.gDHM. ANO UEM SCHEMES

FIG. 19': inter-comparison of proton and alpha emission cross-stctions of chesi hith mshf, gdhm. and vem schemes

FIG. 20: inter-comparison of froioh and alpha emission cross-stctions
foshih hShf, golim, ano UEM schemes

