

GOVERNMENT OF INDIA

ATOMIC ENERGY COMMISSION

VAN DE GRAAFF LABORATORY PROGRESS REPORT
Compiled by
T. P. David
Nuclear Physics Drision

BHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA

1970
B.A.R.C.-459

GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION

VAR DB GRAAFF LA BORATOKY PROGRESS REPORT
Comp1led by
T. P. David
Nuclear Physice Divieion

BHABHA ATOMIC RESEARCH CENTRE bOUPAY, INDIA

1970

GONTHNTS

Page No

Introduotion 1
Accelerator operation 2
Researoh Experimente 8
Instrumen tation 31
Indian Nuclear Data Group 32

INTRODUCTION

Ikife report summarises the operation and utilization of the 5.5 MeV Van de Graaff Accelerator at Trombay during the period 1at July 1968 to 31st December 1969. The ncoelerator was availnble for research from February 1962 and has now completed 8 years of opeiation. Fron the end of 1964 it has been working on a round-the~clock 7 day week schedule.

Towarde the end of 1968 it became increaeingly clear that amooth operation of the machine at higher energiee would not be posaible without replacement of the accelerating tube which had developed cracks on a lerge number of glass sections. The accelerator was shit down for major maintanance work in April 1969 ani the accelera: n g tube wag replaced. A 5-port bew ewitching magnet which was fabricated in the laboratory was inetalied. Jther major maintenance work completed during this period are detailed In the report.

After the reasgemoly of the accelerator in June 1969 the machine wae calibrated and atable operation of the machine was achieved up to the rated energy of 5.5 MeV . The machine oparation efficiency has improved consideraily after the overhaul.

Brief accounts of research woris carried out with tha accelerator during the period unaer review are aumaribed in this report.

I. Analyeie of machine operation

1) July 1968 - March i 369

Machine operated fnr - 3600 hrs .
Reeearch utiliartion - 2790 nrs.
2) April 1969 - May 1969

The accelerator was ued for major maintenance woris Inetallation of the nsw accelerating tube Installation of a 5-port ewitching mapnet
3) June 1969 - September 1969

The machine was conditioned to 5.5 MeV and alignment and teftirg of 5 port ewitching maget was carried out. Inatallation of beam extension tubee with quadrupole foouring lenses, vacuum eystems, and beam deflectors was completed. Tre ehaft of the bottan belt drive pulley was rametalled ana machined durlng thie period and new bearinge were fitted. The accelerator was operated for a total of 1200 houra durfag tnie period. The accerlator was used for 48 houre for researoh experiments.

4) Octoher 1969	December	1969
Machine operation	1667 hre.	
Resesrch utilieqtion	$1434 \mathrm{hrs}$.	

II. Major Hork done during the April-May'69 shut down period:

1) Aocelerstor gupport oolump

All 12 support column seotions were dismantled. It was noticed that the glass mounting blooks and the locating etud plates flized to the top and bottom of the column sections had ahifted from the original positione. This caused a tilt. observed earller, over the entire eupport column. One of the seotione had also developed a crack on a metal weld and mas replesed by a new onlum seotion.

Each colum section was diemantied and the glese mountIng blocks and stud piates were refixed with vinyl in the proper poaitione with the help of epecial jlge fabrioated for the purpose. The oolumn aections were then reasembled with shlma wherever necessary to ensure horizoatal and vertical alignment durtig the sesembly of the column seotione.
2) Accelerating end differential pumping tubee

Both the sections of the nev accelerating tube were ooupled and ingtalled in position. The differential pumping tube was cleaned and ingtalled. Three glase sectione of the differential tube ware found to have devaloped large oracks and have been eleotricasly shorted along with the corresponding eectione on the accelerating tube to aroid further damego. The tube heare were then mounted and ooupled and the focueing slectrude was aligned.

3) Column resistors

All the column resistore were removed and tested. These wers graded as per their measured values and installod in the column assembiy.
4) Gharging Bolt

The charging belt was replaood as the old one was worn out.
5) Corona absembly

Recurrent trouble from the oorons aseembly due to rusting and consequent loss of insulation was atopped by nickel plating the mounting plate.
6) Beam tube日

All extengion tubes, gate valves, control and beam limiting elite and the analy日ing chamber were rewoved, oleaned, teated and reaseambled.
7) Belt drive

The coupling and drive ghaft of the belt drive pulley was found to have worn out. The shaft has been re-metaliled,machined and fitted with new bearinge. The ooupiling blocke wore fitted with new bushinge as was found neceseary. The pulley was fired back, ooupled and aligned with the drive motor.
8) Miscellaneoun gocelerator componente

All other componente such as column apringe, control drive syatem, terminal asesmbly, charging gyatem, gas supply aygem and unite in the control console were cleaned and teated.

9) Gae Compreabor

Tnie unit dereloned a leak through the ehaft while in operation, The ehaft rings were removed, ground and fitted back.
10) Ga9 Dryer

The preheater and heatere embedied in the adsorber drums nad been a frequent source of trouhle. Nichroin heater wire hae been wound on formera fabricatad in the laboratory and fitted in viace of the original neatere. Thege have since besn giving eatiafactory gervice.
11) $90^{\circ} 30$ Analys inf darnet

The mater couling tunee soldered on to either side of the ooll formere nat developer leaks at a number of places. The coile were removed alcne with the pole pieces. The coll former plates ware rem.jved and the water cooling tubee wera replaced $\quad y$ ne:v copper tuber. The colle were then taped afreeh and installed in poeition. The beam analyetrg charaber wns vacum tested anil inetriled in the poie exp. Jabe extentions were then connected up and the mapnet was levelled and alifned.

```
III. Ion Surice
```

Ion sourcee uged wtin tie accelerator are fabricated in the lavoratory as has been repurted earlier ${ }^{1)}$. Such aolirco ascembilee nave been in dee since 1965. Sources, using a modifled degign for the canale are in use since April 1968, and are giving very satiffactory gervice. It should be mentioned here that one silch iun source assembly has given a record

[^0]gervice of 2532 houre.

Components for a versatile ion souroe teat bench to enable a comprehensive study of the laboratory aseembled ion sources are under fabrication. A suitable focusing system and bending magnet asgembly have been incorporated in this set up so that a mass ansalysis of the total beam output from the source bottle can also be carried out.

IV. Five-Port Beam Switching Magnet

The five port beam awitching magnot constructed in this laboratory earlier ${ }^{1)}$ with beam porte at $-45^{\circ},-25^{\circ}, 0,+25^{\circ}$ and $+45^{\circ}$ wae ingtalled along with ite aseociated power suppliea and controls in May 1969. All the beam porta have been provided with ourrent otabilizer glite and are conneoted through a selector switch to the auxiliary ooil supply. Two 2" diffusion pumps have been installed on the switching chamber section. Quadrupale focusing lense ${ }^{2}$) have been provided in all beam porte. These bave been found to be extreaely useful for focusing the beam on to targets which are generally 6 to 8 meters away from the sccelerator control sifte. The magnet has been in use since the experiments etarted on the various porte.

The performance of the magnet has been very eatiofactory and the magoet power supply has been found to be very atable. The feed back control gyetem ueing the ingulated beam defining

[^1]sifte in conjunction with the auxiliary coil and power supply has been very ueeful and hae eliminated the need to adjuet the ewitohing magnet ourrent frequenthy during the course of an exper inent. A Eohematio diagram of the experimental eet up after the ingtallation of the 5-port beam ewitohing magnet 10 ehown in Pig. 1.

RESEARCH EXPERTMENTS

1. Spacing of Claes II Levels in the Figeion on ${ }^{240} \mathrm{Pu}$

- D.K. Sood and N. Sarma - A modified correlation analybie of high resolution figeion cross sections is sugfested which would yield more reliable eatimatea of the spacing, $D_{I I}$ of the clase Ii levels. Subsequent analysia of the reaction ${ }^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$ Eives the value of $\mathrm{D}_{I I}$ as $225 \pm 25 \mathrm{eV}$ for the nucleue ${ }^{240} \mathrm{Pu}$.

Published in Phys. Lett. 20B (1963)523.
2. Analysis of the ${ }^{6} \mathrm{Li}(\mathrm{D}, \mathrm{pd})^{4} \mathrm{He}$ Reaction - A. K. Jain, N. Sarma and B. Banerjee* - A fully antisymmetrised ciustermodel wave function for ${ }^{6} \mathrm{Li}$ is uged for calculating the matrix element of the regction ${ }^{6} \mathrm{Li}(\mathrm{p}, \mathrm{pd})^{4}$ ife. The ralculations are carried out in plane-wave impulse approximation and the effect of the various terms arising from antisymmetrisation is discussed.

Publiehed in Il Nuovo Cimento Vo2. LXII 3, N.2.(1969).
3. Distorted wave Analyeis of Deuteron Knockout From ${ }^{6}{ }_{\text {Li }}$ - A. K. Jain, N. Germa and B. Banarjee - The ${ }^{6} \mathrm{Li}(\mathrm{p}, \mathrm{pd})^{4} \mathrm{He}$ reaction has been analyaed using the clueter model for ${ }^{6}$ Li. The antieymmetrisation of the target wave function and the

[^2]diatortion of the incident and outgoing waves have been included. It ie shom that the intercluster wave function given by the usual cluster modele is inadequate and muet be modified to have the correct asymptotic behaviour to reproduce the experimental p-d angular correlation. the inclusion of distortione is shown to be eseential for obtaining the correct value of the differential croas section.

To be publisheả ir Nucl. Phyo.
4. Study of the Low-Iying Levele of 27 ifg by Anfular Correlation Measuremente in the Reaction $\left.26_{\text {ifíd }} \mathrm{py}\right)^{27} \mathrm{Mg}$ - iu. A. Eswaran, ii. Temail and N.I. Pagoowansi - Proton-Gamma ray angulai correlation meagurements have been made in the reaction ${ }^{26} \operatorname{Mg}(d, p y)^{27}{ }^{3} g$ uaing a deuteron bem from the accelerator. The protons from the reaction were detected in a semiconductor annular detector with ite axis at 180° to the beam and the gamme rays, in coincidence with the eelected groups of prots ne, were detected in a 12.7 cm dia. $x 15.2 \mathrm{~cm}$ long NaI(Tl) scintillation detector at seven anglea between 0° and 90° in stepe of 15°. Such angular correlation data were recorded using a faet-blow coincidence arrangement of resolving time $2 \boldsymbol{T}=50$ ne in conjunction with one 20 channel and one 400 channel pulse-height analyser.

Angular correlation data have been obtained corresponding to proton groupe feeding the $0.934,1.69$ and 1.94 MeV
excited etates in ${ }^{27} \mathbf{M g}$ and the de-excitation gamma raye, from theee etatea. The data have been analysed by writing a computer programme S IMCOR for the $O D C-3600$ computer ueing an analyeis procedure which is independent of any aseumption regarding reaction meohanism. From this analyeis epin aseignmente of $3 / 2,5 / 2$ and $5 / 2$ have been made for the $0.984,1.69$ and 1.94 meV levels. The multipole mixdig ratios of the trangitione $1.94 \rightarrow 0.984 \mathrm{MeV}$ and $1.69 \rightarrow 0 \mathrm{MeV}$ have been determined as well as the branching ratios of the levels at 1.69 and 1.94 MeV . Publiehed in the 'Physical Review Vol. 185(1969)1458.
5. Isobaric Analogue States in ${ }^{73} \mathrm{AB}$ - M. G. Betigeri,
C. M. Lamba, D. K. Sood, N. S. Thampi and N. Sarma - Statea have been observed in the compound nucieus ${ }^{73}$ Ael through the study of el astic scattering of protons on ${ }^{72} \mathrm{Ge}$ which are the isobaric analogues of the firgt five low lying levels of ${ }^{73}$ ge. Two of these being $1=4$ transitione are not observed in the present etudy because of the l ow barrier tranamiseion. l-values have been aseigned to the states from analyele of the differential crose sections. The realtis aro compared with available evidence from other experimente on ${ }^{73}$ Ge. Published in Nucl. Phys. A 133 (1969)465.
6. Measurement of the Total ${ }^{48} \mathrm{Ca}(\mathrm{p}, n)^{43}$ Sc Heaction Crose Section Around the Isobaric Analog Stutee A $E_{p}=1.976$ MeV - K. K. Sekharan and M. K. Wehta - The total (p,n) crose section for the reaction ${ }^{48} \mathrm{Ca}(\mathrm{p}, \mathrm{n})^{48}$ Sc has been measured using a calibrated 4 it neutron counter in the bombarding energy range 1.90 to 2.05 MeV . The cross eection was meazured in etepe of 0.6 ZeV , the overall resolution belng 1.8 KeV for 2 MeV protong. The results are snow in the accomparying figure 2.

These resinances represent the aplitting of the known 18obaric analog of the ground atate of ${ }^{49} \mathrm{Ca}^{1,2,3)}$. The res)nances numbered $1-7$ were aleo observed by G.Chilosi et al ${ }^{4}$) in the ${ }^{48} \mathrm{Ca}(\mathrm{p}, \mathrm{n})^{48} \mathrm{Sc}$ experime nt. The resonance energies in the present work agree with their valuee within \pm ? KeV.

The total wiathe, Γ of rescnances numbered 3, 4 and 5 have been determined. Because of the limitations imposed oy the 1.8 KeV resolution only upper limite could be fixed for the other resonances. The proton partial widths, Γ_{p} and the neutron partial width Γ_{n} for these resonances were calculated from the maximum crose eection, $\sigma_{\text {max }}$ at the resonances and the total widths uaing the Breit - Wigner aingle levol express10n. The probable error in the crose sections is $\pm 15 \% \mathrm{mainly}$ due to the error in the efficiency (12%) of the 4π neutron counter and the error in the target thicknese measurement ($8 ; \%$). The accompanying table lists the relevant quantities determined in thie experiment.

$\begin{aligned} & \text { C.M. } \\ & \text { Eres }^{\text {res }} \\ & \pm 2 \mathrm{KeV} \end{aligned}$	$\begin{array}{r} \text { C.M. } \\ \sigma \max \\ \pm 15 \% \end{array}$	$\begin{gathered} \stackrel{H}{J} \pi \\ (\text { ref. } 3) \end{gathered}$	$\begin{aligned} & \Gamma \\ & \mathrm{KeV} \end{aligned}$	Γ_{KeV}	$\begin{aligned} & \Gamma_{n} \\ & K e r \end{aligned}$
1.910	30	$\left(3 / 2^{-}\right)$	1	-	-
1.9?0	55	$3 / 2^{-}$	1	1	-
1.925	91	$\left(3 / 2^{-}\right)$	2.5さ.6	$2.41 \pm .8$.09
1.936	93	$3 / 2^{-}$	$3.4 \pm .6$	$3.28 \pm .8$. 12
1.944	42	(3/2-)	$2.4 \pm .6$	$2.36 \pm .7$. 04
1.952	26	$\left(3 / 2^{-}\right)$	1	--	-
1.957	12		1	-	-
1.971	28		1	1	-

The maximum crose aection for the resonandes 3 and 4 are $91 \pm 14 \mathrm{mb}$ respeotively, while the corresponding val uee reported in Chiloai et al are 60 ± 16 and $50 \pm 8 \mathrm{mb}$. The regonances numbered $B, 9$ and 10 are aleo not observed in the previous work. The higher cross sections and the presence of the extra resonances may be due to the faot that in tnis experiment the total neutron yield nas been measured while in the previous experiment the yield of only the $780 \mathrm{KeV} \gamma$-rays, Which accompany the emiasion of neutrons leading to the fifth excited etate at 1402 KaV in ${ }^{48}$ Sc was measured. The error on the partial widthe in this experiment vary from 23% to 29%, tne error on the total widtn Γ, being the major contribution. If Identification ia made betwe en the resonances 3, 4 and 5 m ith
the resnonarices at $1964 \pm 2,1975 \pm 2$ and $1982 \pm 2 \mathrm{KeV}$ observed by Vingiani et al in the ${ }^{48} \mathrm{Ca}(p, p)^{48} \mathrm{Ca}$ experiment, the totsl widthe, as well as partial wirths Γ phave large diaggreement. The resmarice at $E_{p}=1.982$ inev hat been reporter to be a combination of tioo resonances by Willijelmet al ${ }^{3)}$. Ine agreement betwoen the experimental date obtained by this group and the present work is good. The difference in the proton partial widthe may be due to the use of ainele level iormula in the present work.

The apetroscopic factor for the resonance 4 can be
 where \lceil ep is the theoretical aingl. proton width evaluated by Jonee et al. We get a value of $S_{p p}=1.09 \pm 0.26$ which agrees within experimental error with the factor $S_{d p}=1.03$ for the present level 1.\%. the ground gtate of ${ }^{49}$ Ca determined fiom stripping experiment.

1) K. W. Jones, J. ב. Schiffer, L. i. Lee, Jr., A. i.arinov and J. L. .eerner, Phÿe. hev. 145 (1966)984
2) G.B. Vingiani, G. Chilosi and iv. Jruyretayn, Phys. Letters 26B (1363)285
3) P. Kilnfelm, G.A. Keywurth, T. B. Browne, W.?. Beres, R. Divadeenam, H.W. Newaon and E.G. Ailpucn Pnys. Rev. 177 (1969)1553
4) G. Chilosi, R.A. Kicci and G.3. Vingiani Phy日, Rev. Let ters 20 (1968) 159.
7. Total Crose-Section Weasurement in the ${ }^{37} \mathrm{Cl}(\mathrm{D}, \mathrm{D})^{37} \mathrm{Ar}$ Reaction - S. K. Gupta, S. S. Kerekatte and A. S. Divatia - The (p, n) reaction on ${ }^{37}$ Cl target was invertigated to identify the isobaric analog resonances in the nucleus ${ }^{38} \mathrm{Ar}$ corresponding to the parent nucleus 38 Ar . Below the threshold of thi e reaction the analoge of ${ }^{38} \mathrm{Cl}$ (1) and ${ }^{38} \mathrm{Cl}$ (2) (we denote the nth excited atate of ${ }^{38} \mathrm{Cl}$ as $\left.{ }^{38} \mathrm{C} 1(n)\right)$ have been observed in ${ }^{37} \mathrm{Cl}\left(\mathrm{p}, \alpha_{0}\right)^{34} \mathrm{~S}$ reaction ${ }^{1)}$. As $\Gamma / D<1$ for $T<$ states at this excitation of the compound nucleus, many solit components of the analoge have been observed. In the enerfy range $E_{p}=1.64-2.50$, scanned by us, the analoge of ${ }^{38} \mathrm{Cl}(3-8)$ are expected.

A natural $\mathrm{NaCl}\left(24.76 \%{ }^{37} \mathrm{Cl}\right.$) target, $\sim 7.6 \mathrm{KeV}$ thick for 1.7 MeV protone was used. A 4π-geometry neutron counter was used to measure the yield of the reaction. The data was taken in 2 KeV steps and was reproducible. The absolute orose section was obtained using the absolute meaeurement of Johnson et $a 1^{2)}$ in the same reaction. The absolute crose section has an error $\pm 15 \%$. The measured excitation funation ie ehown in Fig. 3.

The Coulomb displacement energy for ${ }^{38_{\mathrm{Ci}}}-{ }^{38} \mathrm{Ar}$ pair was assumed to be 6.405 MeV . The excitation energies of the analog states were oalculated uad ng this val ue. As may be seen from fig. 3, there ie an indication of two brard structures enveloping many narrow reaonances. A very clear identification

Of analog etatee is therafore not posable. For a crude analyela we derive an expreesion for the energy integrated cross reaction uaing the expresaing given by Johneon et al ${ }^{3}$) beged on the work of Robeon et al ${ }^{4}$. An approximete expression for the energy integrated oross section is

$$
\sigma_{p m}^{I}(r s)=\int_{-\infty}^{\infty} \sigma_{p=\infty}^{\infty}\left(\text { mes } d E=\text { coritanL }\left[(2 J+1) s_{m}\right] P_{p}\right.
$$

where J is the opin of the resonance, S_{n} is the epectroacoplc factor obtained from the (α, p) reaction and P_{p} is the peaetration factor. Ueing the (α, p) data the relative values of $\sigma_{p} I$ were calculated. The calculated positione and itengities have been plotted in Fig. 3. We find thot

In the range 1.925 MeV to 2.150 MeV tnree resonances 4,5 and 6 are exjected to ocrur and in the range $2.150 \mathrm{KeV}-2.387$ on ly resonance ${ }^{4)} 8$ is expected. If we aseumed that there is no nonresonant contribution, we get using expression(1) $\frac{2}{\square} \sigma I_{(i)}$ $\int_{\sigma} I_{(4)}=0.96$. This is in good agreement with the' experimental value. Further measuremente are necessary to drav definite conclusions

1) B. Bosnjakovic,J.A.Von Best, J. Boummeester, Nucl. Phye. Ag4 (1967)625
2) C.H. Johnson, A.Galoneky and J.P. Ulrich, Phve.Rev. 109 (1953)243
3) C.H. Johnson,R.I. Kernell and S. Ramavataram, Nucl. Phye. 107 (1968)21
4) D. Robson,J.D. Fox, P. P1chard and C.F: Moore, Phys. Letters 18 (1965)86
5) J. Rapaport and W. T. Buechner, Nuel. Phye. 83 (1966)30.
8. Elastic Scattering of Protons of ${ }^{66} \mathrm{zn}$ - M. G. Betigeri,
C. M. Lambs, D. K. Sood, N. S. Thampi and N. Sarma - Excitation functione of elastically ecattered protons from ${ }^{66} \mathrm{Zn}$ wes studied in the energy range of $2.660-4.1 \mathrm{MeV}$ in stepe of 5 KeV . Regonances in the compaund nucleus ${ }^{67}$ Ga have been observed at energiee correspond ing to 2.909, 3.009, 3.200, 3.800 am 3.943 MeV which are analoguee of the low lying gtates in ${ }^{67}$ 2n nucleue namely $93,184,390928$ and 1142 KeV exoftation. The analogue of the ground etate which is an $1=3$ transition and the 602 KeV excited state which is an $1=4$ tranaltion as known from (d, p) studies are not excited in the present atudy due to low barrier tranemiseion. The shapes of the resonances at 3 angles namely $90^{\circ}, 125^{\circ}$ and 165° indicate that all the resonances have $1=1$ ghape.
9. Nilason Model Interpretation of the Low-lying levele of ${ }^{27}{ }^{2 g}$ - M.A. Eswaran - With a view to compare the properties of the low-lying excited states of ${ }^{27} \mathrm{Mg}$ (see article No.4) with the predictione based on the single-particle collective model of Nilsson ${ }^{1)}$, the oalculations have been made for the oranchIng ratioe of the levels and multipole mixing ratios of the gamma ray tranaitions, as a function of the deformation parameter for both prolate and oblate aasignmente for ${ }^{27}$ Mg. According to prolate aseignment the firgt excited etate at $0.984\left(3 / 2^{+}\right)$is the second member of the ground etate rotational band based on the orbit $9\left(1 / 2^{+}\right)$of Nilsson, where aa
the oblate ageignment for ${ }^{27} \mathrm{Mg}$ will leave this 0.994 NeV atate as the head of $K=3 / 2^{+}$band, based on the orbit $8\left(3 / 2^{+}\right)$.

The experimentally observed val ues for the branching ratios of the levele 1.69 and 1.94 MeV and the multipole mixing ratios of the transitions $1.94 \rightarrow 0.984 \mathrm{MeV}$ and the $0.984 \rightarrow 0 \mathrm{MeV}$ have been compared with the above model calculations. There comparions, ae well as the comparizon of the value of the decoupling parameter required to fit the energy sequence of the various choices for the memberg of the $K=1 / 2$ ground state rotational bend,with the model calculations, gupport the prolate aseignment to ${ }^{27} \mathrm{Mg}$ corresponding to $\eta=+2(\delta=0.15)$ with the choice of levels at $0,0.984$ and 1.94 HeV ag membere of the ground gtate rotational band baeed on orbit 9. On thie basis the 1.69 MeV $\left(5 / 2^{+}\right)$eqate ie conjectured to be the core excited etate, corresponding to a vacancy in the orbit $5\left(5 / 2^{+}\right)$, due to excitation of a neutron from orbit 5 to orbit 9.

1) S. G. Nilgson, Kgl. Danske, Videnehab, Nat-Fys. Medd. 29 No. 16(1955).
2) The Reaction $\left.{ }^{26} \operatorname{Mg}^{3}{ }^{3} \mathrm{He}, \mathrm{D}\right)^{28} \mathrm{Al}$ - M.A. Eswaran, it. Iemail, and N.L. Ragoowanei - Jaing an enriched isotopic target of ${ }^{26} \mathrm{Mg}$ and 4.25 MeV beam of ${ }^{3}$ He particiee, proton groups feeding $י \rho$ to the fifth excited etate in ${ }^{28} \mathrm{Al}$ have be en observes in the reaction ${ }^{26}{ }_{M S}\left({ }^{3} \mathrm{He}, \mathrm{D}\right){ }^{23_{\mathrm{Al}}}$, usi ng a 600 μ thick semiconductor detector at 0° to the beam. Thie reaction has not been repar ted till now in the publiened iiterature. It is proposed to continue the studies on thie reaction with 9 view to obtain information on the low lying states of ${ }^{28} \mathrm{Al}$ by coincidence observation of prot cne and the de-excitation gama rays.
11. Angular Dietribution of Gamma-Raye from ${ }^{59} \mathrm{Co}(\mathrm{p}, \mathrm{ny}){ }^{59} \mathrm{Ni}$ and $\left.{ }^{51} \mathrm{~V}(\mathrm{p}, \mathrm{ar})\right)^{51} \mathrm{Cr}$ Reactions - B. Lal ${ }^{*}$ and Baldev Sahai ${ }^{*}$ - The study of angular distribution of gamme-rays from the ($\rho, n \downarrow$) reactions at low bombarding energies gielde valuable information about the level spine and multipole mixing ratios of the gamma transitione, if the conditione are suitable for the validity of compound nuclear (CN) etatistical model. Comparison of experimental dietribution with the predictions of the Hauser-Feshbach-Satchler formaliem of the ON statistical model as modified by Sheldon ${ }^{1)}$ by taking into account the effect of spin-orbit interactions enables one to extract electromagnetio decay properties of the low-lying atatea in the residual nucleus.

We have studied the ${ }^{59} \mathrm{Co}(\mathrm{p}, n \downarrow)^{59} \mathrm{Ni}$ and ${ }^{51} \mathrm{~V}(\mathrm{p}, \mathrm{n}-1){ }^{51} \mathrm{Cr}$ reactions. The Q values for these reactions are-1.856 and - 1.531 MeV respectively. The negative Q values of these reactions allow suc cessive levels in the residual nuclei to be populated near threshold by su itably varying the bombarding energy.

The targeta of ${ }^{59}$ Co and ${ }^{51}$ v were prepared by vacumevaporation of chemically pure elemente (purity better than 99.9;) on gold foile. Target thackneses of about $800 \mu \mathrm{~g} / \mathrm{cm}^{2}$ were achieved by thie method.

The target was kept at an angle of 45° with respect to the beam direction and angular distributiona were taken from

[^3]0° to 90° in steps of 15°. The corrections due to the absorption in the target backing and target holder were made by takIng angular distribution of gamma rays of comparable energies from radioactive sources under identical conditions.

In addition to the angular dietribution of gamma-rays; excitation functions of gamm-rays from these two reactions were also taken using a 30 c.c. Ge(Li) detector kept at an angle of 90° with respect to the beam direction. The excitation functiong were taken with the aim to eneure that the Yield increases monotonically justifying the application of the CN atatistical model. Bach angular diatrioution has been averaged over two incident energies separated by 50 KeV to reduce the effect of level density fluctuatione.

Fig. 4 and 5 show the excitation function of gamma-raya from the two reactions reapectively. The excitation functione show a reasonably mooth variation with energy.

Values of the Legendre polynomial coefficients obtained by fitting the angular dietribution data to the expreseion.

$$
W(\theta)=1+a_{2} P_{2}(\cos \theta)+a_{4} P_{4}(\cos \theta)
$$

are given below

Reaction	E, ($(6 \mathrm{~V})$	A_{2}	a_{4}
${ }^{51} v(p, n \gamma)$	748	$=0.154 \pm 0.080$	0.044 ± 0.0906
*	1170	-0.0625 ± 0.0782	0.0363 ± 0.0931
${ }^{59} \mathrm{Co}(\mathrm{p}, \mathrm{n} \gamma)$	340	-0.0024 ± 0.0786	0.109 ± 0.0964
"	47θ	0.039 ± 0.134	0.125 ± 0.170

Theoretical calculations are in progrese. A computer program Hauser - Feshbach Model ${ }^{2)}$ has been modified to extract multipole mixing ratios.

1) E. Sneldon, Hev. Hod. Phys. 35 (1963)795; E.Sheldon and D.N. Van Palter, Rev. Mod. Phys. 38(1966)143.
2) Z.V.K. Iyengar, B. Lal and S.K. Gupta, Nucl. Phyo. A103 (1967)592.
12. Excitation Punction for ${ }^{75} \mathrm{AB}(\mathrm{p}, \mathrm{n} \mid)^{75}$ Se Reaction - Baldev Sahai *, B. Lal", K.V.K. Iyengar", PrJ. Bhalerao and M.V. Vaze - A $30 \mathrm{cc} \mathrm{Ge}(\mathrm{LL})$ detector has been used for tne measurement of the yield of gaman raye of energies upto 1450 KeV from a thick target of ${ }^{75} \mathrm{Ag}$. The $\&$ value of this reaction is - 1.65 KeV . The excitation function was taken from $E_{p}=1.5$ to $E_{p}=4.0 \mathrm{MeV}$ using a TMC 400 channel analyzer. Low energy gamma raye were aleo studied separately by expanding the spectrum so ae to cover the energy scale upto 550 keV within 400 channele. It is proposed to study gamma-gamma coincidences to establish the levels in ${ }^{75}$ Se about which there is not gnough published intormation.
13. Lifetime of the 287 KeV level in ${ }^{75}$ Se - Baldev Sahai", B. Lal", P.J. Bhalerao and U.Y. Vaze - $2 d 7 \mathrm{KeV}$ etate 18 the second excited etate in ${ }^{75} \mathrm{Se}$. This atate can be populated eitner by position decay of ${ }^{75} \mathrm{Br}$ or by (p, n) reaction above sbout 2 MeV incident proton energy. Half of this etate was

[^4]found to be less than 2 nanoseconde by Labkowicz and Marmier ${ }^{1}$) and 1 ns by Tubbs ${ }^{2}$). Howevor, a meaeurement by Richter ${ }^{3}$) et ai gave the half life as 30 ne as measured by a puleed beam Van de Graat'f accelerator where the start-stop pulses were the 287 KeV gamma ray and tne pulsed beam itself. To clear up this controversy a measurement of the lifetime of this state was carried out at $E_{p}=2.70 \mathrm{MoV}$. It is round that the lifetime as measured by taking coincidences between the cascade gamma rays or energy 141 KeV and 287 KeV is about $35 \pm 5 \mathrm{n} . \mathrm{s}$. which seems to be in better agreement with Richter et al ratner than the other measurements. The difficulties arise mainly because of interference by gamma rays of comparable energies excited in ${ }^{75}$ As itself. Counting etatistice was rather poor. It ie proposed to improve the counting etatiatice of this experiment to give a more precise value.
14. Determination of Widtn and Resonance Energy of the 7.01 MeV Level in ${ }^{10} B$ and Comparizon fine Experimentally observed Spin witn Intermediate coupling calculations - M. Bals!:riehnan. M. K. Ifehta and A.S, Divatia - The resonance energy and width of the reconance around 7 MeV excitation in ${ }^{10} \mathrm{~B}$ was determined more accurately by ehape fitting of the elastic acattering crosesection of alphas on ${ }^{6} \mathrm{~L}$. Since the level was broad, it was not eaey to read the reaonance energy accurately from the phase change in the interference shapee, The channel radius
was not very sensitive to the shapes and so we have chosen $\gamma_{0}=1.3$ for ${ }^{4} \mathrm{He}$ and $\gamma=01.7$ for ${ }^{6} \mathrm{~L} 1$, which gave a channel radius of 5 fermi. Fig. 6 shows the shapes calculated for two angles of 90° and $141^{\circ} \mathrm{cm} . c o r r e s p o n d i n g ~ t o ~ t h r e e ~ p o s e i b l e ~ r e-~$ sonance energies, keeping the width Γ constant, after averaging over target thickness. From the relative ehifte in the regonen ce pattern, it can be seen that the resonance energy $E=4.250$ agrees better, than the other twa cases. Fig. 7 shows the variation in level width Γ for resonance ene ry of 4.250 MeV . From the shapes at the two anglea of 90° and $141^{\circ} \mathrm{cm} .$, it can be seen that the width lies betwaen the two values of 52.4 KeV and 130 KeV and more near to the 130 KeV value. After various trial values a value of $110 \pm 15 \mathrm{KeV}$ was fixed for this level. In all thege calculations we have used the epin parity ageignment ${ }^{1)}$ of 2^{+}.

From the large elagtic alpha cnannel width it can be sald that thie level is most likely a $T=i$ state.

Fig. 8 ghows a comparison of the recent intermediate couple calculations avalable in ${ }^{10} B$, for normal parity state with the 2^{+}level analysed in this study. From the two calculations one by Amit and $\mathrm{Katz}^{2)}$ and the other by Cohen and Kurath ${ }^{3)}$. it can be eaid that buth these calculations do not ahow a $\left(2^{+}, 0\right)$ atate around 7 MeV , though Cohan and Kurath calculation show better agreement with experiment. Since there are no unaccounted levele in ${ }^{10}$ a up to 10 heV in Kurath's calculations for a ($2^{+}, 0$) level, it ie quite unlikely that thie
level belong to the 1 p shell, if this epin, parity and 180日pin aseignment is correct. Then the moet probable configuration seame to be $1 \mathrm{~S}^{4} \mathrm{ip}^{4}(\mathrm{~S}, \mathrm{~d})$.

1) M. Balskriehnsn, M.K. Mehta and A.S. Iqvatia, Procir Nypleta Phys, and Solid State Phys. Symp.India
2) D. Amit and A. Katz, Nucl. Phys. 58(1964)388
3) S. Cohen and D. Kurath, Nucl. Phys. 73 (1965)1.
15. The Reaction ${ }^{19} F(d, \alpha)^{17} 0$ - K.G. Betigeri, C.M. Lamba,
D.K. Sood, N. S. Thampi and N. Sarma - In the incident deuteron energy range, $2.0-5.2$ ixeV, the excitation functione for the α - groups correaponding to the lowest three states in ${ }^{17} 0$ in the reaction ${ }^{19} F(d, \alpha)^{17} O$ and for the elaetic otattering of deuterone on ${ }^{19} \mathrm{~F}$ have been atudied. The excitation functions indicate tne preaence of wide structures. The angular distributione on and off the reeonancee have been measured. Examination of the correlation functions and the analgeis of the angular dietribution in terme of Legendre polynomiale indicate a high direct reaction component. The reaulte are diecuesed in terme of the intermediate etructure model of Ievmo.

To be publiehed in Energia Nucleare
16. Neutron Induosd Reaction - M.G. Betigeri, C.M. Lamba, D.K. Sood, N.S. Thempi and N. Sarma - A counter telescope to
diecriminate between the oharged particles i.e. protons and deuterone, from neutron induced reactions has been eet up. The reaction ${ }^{19} F(n, d)$ has been studied. The angular distribution indicates an $1=0$ transition leading to the ground state of ${ }^{18} 0$. The neutron rilux was measured by counting the associated α - particles in the reaction $D(t, n)^{4} \mathrm{He}$. The absolute crose section at $\theta_{\text {lab }}=0^{\circ}$ agrees with earlier meapured valuea. The angular distribution has been fitted by DIFBA theory. The computer code Druck was used with the CDC 3600.

Thia work was done at the Cagcade Generator, T.I.F.R., Bombay. Reported at the Nucl. Phye. \& Solid State Phys. Symposium, India (1969).
17. Angular Anieotropy of Figeion Fragments in the Neutron Induced Fiesion of ${ }^{235}$ U - D. i4. Nadkarni and S. S. Kapoor Recent studiee of the angular dietribution of fission fragmente in the fisetion of heavy nuclei following direct reactions have indicated some evidence for a rather large pairing energy gap in the tranaition etate spectra of even-even fissioning nuclei. In the present work the trangition state nucleus ${ }^{236} \mathrm{U}$ has been investigated by measuring the angular distributions of fiesion fragmente in the fission of ${ }^{235}$ U induced by mono-energetio neutrons of 20 different neutron energies ranging from 0.1 to 3.1 HeV. The measurements were made with a eet-up consieting of three semiconductor detectore which recorded the energy speotra
of fiesion Iragments emitted at the average angles of $0^{\circ}, 45^{\circ}$ and 90° with respect to the incident neutron direction. The relative solid angles of detection for the three detectors were experimentaliy determined ueing isotropic fragment dietributions in the asee of thermal neution induced fiseion or ${ }^{235}$ \%. For each neutron energy the angular anisotropy was obtained by a least aquares fit to the meaeured angular distributione taking into acoount the angular resolution effecta due to the finite size of the target and detectore. The parameter K_{0}^{2} of the assumed Gaussian diatribution of the c-states at the transition atate nucleus was then determined for each peutron bombarding erergy using the theoretioal expression for the angular anisotropy which includes the effecte of target apin and nuclear detormation. The average orbital angular momenta of the fissioning nucleus for different bombarding energies were evaluated using optical model neutron transmisaion coefficients. The obeerved variation of K_{o}^{2} with excitation energy chows a steep increase in the value of $\mathrm{K}_{\mathrm{o}}^{2}$ at an excitation energy of $2.0 \pm .1 \mathrm{MeV}$ above the fiseion threshold. This increase in the value of K_{0}^{2} has been interpreted as the onset of two quasi-partiole excitations of the highly deformed transition atate nucleus, ${ }^{236} \mathrm{O}$. At exaitation onergies below the two quasi-particle excitation low values of K_{0}^{2} are expected, whereas fairly high valuea of K_{0}^{2} vere obe erved in the present work. This auggeste that the statistioal assumption of a Gauesian dietribution of K-atates below
the two quasi-particle excitation energy may not be valid becance only a restricted number of vibrational K-states are available.

Submitted to the TAEA Sympoaium osi Phys.and Chemistry of Fieaion - Vienna, 28 July - 18 Auguet 1969.
18. On the Constante of Charged Particle Identifier - S.K. Gupta - Two methods to calculate the constante F and E_{0} for the charged particle identifiers using the relationship,product $P=\Delta E\left(E+F \Delta E+E_{0}\right)$ have been described. Such constante have been calculated for silicon detectors. The extensions to other detectors have been pointed out. The limitations of the methode in practical cases have been discussed. A method to set the constants in the actual mulliplier circuite has also been discuesed.

Reported at the Nucl.Phys, and Solid State Phys.Symposium India (1969).
19. Monte Cario Calculations of Gamma Ray Response Characteriatice of Cylindrical Ge(Li) Detectors - B. Lal * and K.V.K. Iyengar* - Monte Carlo calculations have been made to compute the full enerey peak efficiencies and the double escape peak efficienciee for right circular cylindrical $G e(L i) d e-$ tectore for point gamma-ray sources. The full energy peak efficiencies are calculated in the gamm-ray enerpy range from

[^5]100 KeV to 2.5 MeV and the double escape peak officiencies are calculated in the range from 1.7 MeV to 4.0 MeV All calculations have been made for source to detector dietance of 5 cm . Various detector bizes have been considered with surface area varying from $2.5 \mathrm{~cm}^{2}$ to $8.0 \mathrm{~cm}^{2}$ and the thickneas varylng from 2.0 to 10.0 wnt. The resulta are compared With the calculations of earlier workers and aleo with eome of the experimental investigations. A code "iAONTCARL" has been developed for tnis purpose in FORTRAN language for the CDC 3600 computar. The eame code can be used to calculate the response function of the detector to gamma-rays. One Euch calculation has been made for monoenergetic gamma-rays and comparee very well with the exper1mental resulte.
20. Differential Equation for Logerithmic Derivative and Ite Application - S.K. Gupta - Using a simple transformation the radial Schrodinger equation has teen traneformed into a first order differential equation of the Riccati type. This equation offere poseibilities for simplifying calculations. It has been used to derive recursion relatione for different l-values and to calculate an asymptotic solution for the Coulomb potential. The equation can also be applied to calculate the transmission coefficiente and the elastiv scattering croge-section using the optical potential.

Abstract of a paper submitted st the Nucl.Phye, and Solid Strite Phys. Symposium, India, 1969.
21. Mospbauer Effect Studioe Following Coulomb Exoitation - J.K. Srivaetavz*, R.P. Sharma* and K.G. Prasad - Mosabauor effect measurements were carried out on the 14.4 KoV etate of ${ }^{57} \mathrm{Fe}$, populated in the Coulomb excitation by 4 KeV alpha particles. The 14.4 KeV gamma ray was detected in coincidence with 122 KeV gamma ray to reduce the general back ground in the low energy region. A alnusoidal drive with a etainlese steel absorber (enriched in ${ }^{57} \mathrm{Fe}$) was used to record the Mosebsuer apectrum (Fig.9) It ie clear frori Fig. 9 that euch studies can be carried out in favourable crses. In addition to Coulomb excitation, other reactions can aleo be used. Purther work in the direction is beinf, planned.
22. Perturbed Angular Correlation Following Coulomb Excitaion - A.P. Agnihotri, h.G. Devare", S.H. Devare", M.C. Jobhi ${ }^{*}$ and P.N. Tandon"-Previous preliminary meaguremente on the Coulomb excitation of target nuclei ($p t, A u$) in Iron medium (alloys, PtFe_{3}) were reinvestigated with $\mathrm{Ge}(\mathrm{Li})$ detector. Similar measuremente on the rare-earth isotopes depoeited ($\approx 100 / \mu \mathrm{gm} / \mathrm{cm}^{2}$ thick) on Fe foll were also made. Typical epectra are ehown in tome Figs. 10 and 19.

It was decided to make the perturbed angular distribution of Coulomb excited gamma ray a from ${ }^{194} \mathrm{Pt}$ and ${ }^{196} \mathrm{Pt}$. A thick target of PtFe_{3} was fixed between pole tipe of a polariaing electro-magnet. In order to avoid heating during the

[^6]bombardment, the target was oooled by liquid nitrogen (cold finger tip arrangement). The α-particle beam spot on the target was adjusted to coincide, within $1 / 2 \mathrm{~mm}$, with the centre of the angular correlation table by eet or collimatore. The centring was checked by glacing a redioactive source at the position of the target. The gama rays were viewed by four NaI(T1) detector systems placed at different anglee with reepect to the direction of the incident beam.

The intensity of the particle beam on the target was monitored by a surface barrier detector placed at a fixed angle. The gama ray spectra from the four detectore were recorded in the four subg=oups of a multi-channel analyzer. Angular diatribution was measured. To etudy the perturbation, the polarising magnetic field, which was perpendicular to the plane of detectors, was applied and measurements were recorded for both directione of the field. Several aimilar cycles of meacuremente were made, These meacuremente indicated perturbation of the angilar distribution due to internal magnetic field acting on the Coulomb excited nuclei. However, the magnitude of the observed effect could not be estimated accurately due to the poor energy reeolution of the detectors. It is planned, in tne next attempt, to use improved tecnnique, Ge(Li) detector and back-ecattered particle- γ coincidences.
23. Study of the Thermolumineacence Behaviour of Solide under

Atomic Dieplacemente - J. M. Luthra" - The machine was used for irradiating cryatals in vacuum with H^{+}and He^{+}ions. For that purpose the required target chamber was designed and fabricated. A few eamplea of eingle crystals of MgO , CaCO_{3} and BaSO_{4} were irradiated with H^{+}and He^{+}ions (2-4 MeV energy) for different doses. The current pas kept low to avoid thermal annealing. The main aim of auch irradiation is to introduce atomic displacements in the crystals and to study the role played by them on the thermoluminescence behaviour of solide. It has been observed that the particle irradiation of theee cryatals induces thermolumineacence peake in their glow curves which is not induced by ionising radiatione.

[^7]
INSTRUMENTATION

1. A Target Chamber for Cnarged Particle Capture Reactione

- M. Iemail and M. A. Eewaran - A thin-walled target ohamber with proviaion to mount water-cocled targets on metallic backing, has been designed and has been fabricated in the divisional workehop. This cnamber, made of 5 cm diameter, 0.8 mm thick stainless steel tube, is particularly suitable for the uge with the 30 cc Ge(Li) gamma ray detector in charged particle capture gama ray atudies.

2. A Nancsecond Time-ta-Amplitude Converter System for Neutron Time-of-Flight Studies - N. L. Ragoowanei and M. A. Eewaran - A time-to-amplitude converter eyatem for nanosecond region, for neutron-gamma ray coincidence studies in nuclear reactione has been constructed to enable neutron time-of-flight studies using the associated gamma ray to give the starting signal. This time-to-amplitude canverter, associated with a fast-slow coincidence system, is based on-circuitry published in reference ${ }^{1)}$. The linearity of the time-to-amplitude converter has been checked in the range 5 to 150 nanoseconde ueing a pair of scintiliation counters and a ${ }^{60}$ Co gamma ray radioactive eource.
1) R.B. Tomlinson and R.L. Brown. IEEE Transactions on Nuclear Science (1964)p.28.

INDIAN NUCLEAR DATA GROUP

H. Balkriehnan (Secretary), H.G. Devare", A. S. Divatia (Convener), S.S. Kapoor, D. N. Kundu**, V. O. Deniz, B. P. Rastogi and N.S. Satya Murthy.

1. Progreas Report on Nuclear Data activity - a report entitled "Progrese Report on Nuclear Data Activities in India V^{n} wae complled and publiehed as a B.A.R.C. Report (BARC-401).
2. Participetion in CINDA activity was continued by sending the relevant data \ln CINDA forms to IAEA.
3. Three more entries were sent to DASTAR (Data Storage and Retrieval Syetem).
4. ENEA Computer Programme Library

In connection with computer programme IIbrary, eight programe abstracte were eent to the computer program library of the European Nuclear Energy Agency. Theee abstracta are to be included in the compilation of the computer programme abstracts published by ENEA.

A few programmes on magnetic tapes which were requested, were received from ENEA for use in India.

* Tata Inetitute of Fundamental Research, Bombay
** Sahe Ingtitute of Nuclear Phyelce, Calcutta

5. Measurement of Crose-Sections

1) ${ }^{48} \mathrm{Ca}(p, n)^{48} \mathrm{Sc}$ Reaction

The abeviute to tal crose section for the reaction ${ }^{48} \mathrm{Ca}(\mathrm{p}, \mathrm{n})^{48} \mathrm{Sc}$ has be en determined in the bombarding energy range 1.90 to 2.05 MeV in 0.6 KeV stepe. The total widthe and partial proton and neutron widthe of the resonances have been obtal ned.
11) ${ }^{37} \mathrm{Cl}(\mathrm{n}, \mathrm{n})^{37}$ Ar Reaction

The crose section of the ${ }^{37} \mathrm{C} 1(\mathrm{p}, \mathrm{n})^{37} \mathrm{Ar}$ reaction has been measured in 2 KeV steps at proton energies ranging from 1.64 MeV to 2.50 MeV .

Two meetinge of the INDG were held during the period.

F1G. 4

FIG. 5

\square L

[^0]: 1) Van de Greaff Laboratory Progreee Report T.P. David AEET-254 (1966)6.
[^1]: 1) Van de Graaff Laboratory Progrees Report - T.P. David BABC-364 (1968)7
 2) Van de Graaff Laboratory Pr grebs Report - T.P. David AEET-214 (1965)8.
[^2]: * Tata Institute of Fundamental Reaearch, Bombay

[^3]: *Tata Institute of Fundamental Reaerrch, Bombay.

[^4]: * Tata Institute of Fundamental Research, Bombay.

[^5]: * Tatz Institute of Fundamental Research, Bombay.

[^6]: * Tata Institute of Fundamental Research, Bombay

[^7]: * Chemistry Division

