COMITATO NAZIONALE ENERGIA NUCLEARE dipartimento ricerca tecnologica di base ed avanzata
frogress report on nuclear data activities IN ItALY
for the period from January to December 1980

RELAZIONE TECNICA INTERNA
RIT/FIS/LDN(81) 10
NEAildC(E) 222
INDC(ITY) - $6 / \mathrm{G}$

PPOGRESS REPORT ON NUCLEAR DATA ACTIVITIES

IN ITALY
for the period from January to December 1980

Compiled by

C. Coceva and E. Menapace

COMITATO NAZIONALE ENERGIA NUCLEARE,
Bologna, Italy

RIT/FIS/LDN(81)10
NEAIIDC(E) 222
$\operatorname{INDC}(I T Y)-6 / G$

CONTENTS

1. C.N.E.N. - DIVISIONE DI FISICA - LABORATORIO DATI NUCLEARI Via Mazzini, 2 - 40138 BOLOGNA, Italy page
2. C.N.E.N. - DIVISIONE DI FISICA - LABORATORIO FISICA SPERImentale dei reattori - Via Mazzini, 2-40138 bologna, Italy37
3. C.N.E.N. - divisione di fisica - laboratorio fisica e calcolo DEI REATTCRI - CSN, CASACCIA, Roma, Italy " 40
4. ISTITUTO DI FISICA DELL'UNIVERSITA' DI BARI - ISTITUTO NAZIONALE DI fisica nucleare - sezione di bari -

- Via Amendola, 173-70126 BARI, Italy

5. ISTITUTO DI FISICA DELL'UNIVERSITA' - ISTITUTO HAZIONALE DI fisica nucleare - sezione di bologna - Via Irnerio, 46 40126 BOLOGNA, Italy47
6. IStituto nazionale di fisica nucleare - sezione di firenze istituto di fisica dell'universita' - Largo e. Fermi, 2 FIRENZE, Italy 49
7. ISTITUTO DI FISICA DELL 'UNIVERSITA' DI GENOVA - ISTITUTO NAZIONALE DI FISICA NUCLEARE - SEZIONE DI gENOVA Viale Benedetto XV, 5-16132 GENOVA, Italy " 54
8. ISTITUTO DI FISICA DELL'UNIVERSITA' DI NAPOLI - ISTITUTO nazionale di fisica nucleare - sezione di napoli -

Via A. Tari, 3-80138 NAPOLI, Italy 56
$1.1 \quad{ }^{100}$ Ru and ${ }^{102}$ Ru Spectroscopy by weans of Low-Energy y-Zays Erou Rescnance Mixuzon Ciptuse
C. COCEVA, P. GIACOB3E, G. VIILONE ()

The ojsemation of the low-erexsy geman-rays following aeutzon cepture $i=s$ s-rave rescnances of the isotopes ${ }^{39}$ Ru and ${ }^{101}$ Ru supplied information on The low-Excitation level spectra of the compound auclei ${ }^{100}$ au and ${ }^{102}$ nu, and in particular on tỉe spin of these Ievels. The weriod is cescibed in reia); it is desed on the measurement of the reletive population prouajility of a given low-iying level by gamna sascades starting from neutron capture in reso nant states of different spin. Such a probability depends on the spins of the initial and fiaal states. The measurement is in general possible for s-raves rescnances only. Proviaed the target is A-odd, s-wave neutrons incuce resonances of two spins. The ratio of the population probability for the two spins is a ưantity incependent of the detection efinciency and consecuently a measurable furction of the spin of the popuiated level.

The effectiveness of the method is actually limited to Z-even Eargets for several reasons. These conditions are satisfied iy the two Ruthenium isotopes.

Gama spectra were measured for five ${ }^{99}$ Ris and seven ${ }^{101}$ Ru zesonances haviag energies below 200 eV . The resonance spin assignaents given in the litazature, which are a fundanental inforantion for apolying the method, are Euliy cominmed by our spectra. Experineatal details are contained in tie 1979 Labcratory Activicy Sumazy Report, Some difiiculties were net with in normalizing gama peaks to the corresponding resonances cepture areas, mainly because of the urreliabiiity of pile-up corractions. we got out of these Gifficulties by a cumbersome procedure winch possibly introduced a oias in tine measured population ratios, but did not cancel or eistort the spin effect.

Fig. 1 shows a tentative plot of the measured population ratio of the oiservable peaks vs. tine spin of the state for both isotopes.

The peak allocation into coherent decay schemes given in Tab. I and IT is fully consistant with the indication of Fig. I. It results also to be in

[^0]```
Gverall agzeement with the zain results of the proceding spectucseco:.al
work on these nuciei. The dara allured in some cases giving narrowe=
liaics to the spin range found in the literature or to assign the spin
```



```
spin value was previously reported.
 Eigg. 2 and 3 give the resulting decay scheges, for 100 Nu and ' }\mp@subsup{}{}{102}\textrm{Ru}
:espectiveiy.
 A paper conrainiag the complere results of the experiment and some
consicerations on the character of the axcitation schemes is in press.
```

a) C. Coceva, P. Giacobbe, F. Corvi and M. Stefanon, Method of spin assignent of 3ound Levels populated by ( $\quad, y$ ) Reactions, Nuci. Ehys. A218 (1974) 61.


Fig. 1 - Tentative plot of the measured population ratios of the observable peaks vs. the spin of the state for Ru-100 and Ru-102.


| $\begin{gathered} E_{X} \\ (\mathrm{KeV}) \end{gathered}$ | $\underset{(\mathrm{KeV})}{\mathrm{E}_{\mathrm{Y}}}$ | $\begin{gathered} \varepsilon_{f} \\ (\mathrm{kev}) \end{gathered}$ | R | * | $1 \times$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & \text { Previous } \\ & \text { works } \end{aligned}$ | $\begin{aligned} & \text { Present } \\ & \text { work } \end{aligned}$ |
| 530.6 | 539.6 | 0 | 1.29:0.01 | 1.29:0.01 | $2^{+9, b}$ | 2 |
| 1130.4 | 590.8 | 539.6 | 0.56: 0.02 | $0.40 \cdot 0.02$ |  | 0 |
| 1726.6 | 681.0 | 539.6 | $2.40 \times 0.07$ | 2.44:0.07 | $\mathrm{a}^{+8, b}$ | 4 |
| 136.3 | 1262.3 | $50.6$ | $\begin{array}{ll} 1.12 \\ 1.00 & 0.10 \\ 0.00 \end{array}$ | 1.04:0.06 | $2^{\text {a }}$ 8, ${ }^{\text {a }}$ | 2 |
| 1741.9 | 1802.3 | 539.6 | $0.16:$¢ <br> 0.008 <br> 0.16 | $0.16:{ }_{0}^{0.16} 0.16$ | $0^{+*}$ | 0 |
| 1865.3 | $\begin{aligned} & 1865.3 \\ & 1355.9 \\ & 73.9 \end{aligned}$ | $\begin{array}{r} 599 \\ 539.6 \\ 1130.4 \end{array}$ | $\begin{aligned} & 0.95=0.20 \\ & 0.47=0.06 \\ & 0.51=0.04 \end{aligned}$ | 0.90:0.03 | $1.2^{+*}$ | 1.2 |
| 1881.4 | 1341.9 654.7 <br> 519.1 | $\begin{gathered} 539.6 \\ \left.\begin{array}{c} 1220.6 \\ 13662.6 \end{array}\right) \end{gathered}$ |  | $1.65: 0.07$ | $2^{+}, 3^{+a}\left(3^{+}\right)^{n}$ | 3 |
| 2063.0 | 15134 | 539.6 | 9.31-0.20 | 0.51-0.20 | $0^{+}{ }^{+}$ | 0 |
| 2062.9 |  | $\begin{array}{r} 539.6 \\ 1226.6 \\ 1366.3 \end{array}$ | $\begin{aligned} & 2.971 .29 \\ & 2.74 \\ & 2.020 .27 \\ & 2.0 .57 \end{aligned}$ | 2.40:0.24 | $\left(3^{*} 4^{+}\right)^{\text {b }}$ | 4 |
| 2075.9 | 819.3 | 1226.6 | 13: $6^{10}$ | $13:{ }_{6}^{10}$ | $6^{+6}$ | 6 |
| 2099.3 | $\begin{array}{r} 1559.7 \\ 736.5 \end{array}$ | $\begin{array}{r} 539.6 \\ 1362.3 \end{array}$ | $\begin{aligned} & 0.66 \\ & 0.59 \\ & 0.0 .0 .15 \end{aligned}$ | 0.62:0.10 | $1,2^{-6}$ | 0.1 |
| 2167.0 | 1627.4 | 539.6 | 1.65:0.21 | 1.65:0.21 | $1 \mathrm{r}^{-9} \mathrm{z}^{\text {- }}$ | 3 |
| 2241.1 | 1707.5 | 599.6 | 0.1.1 +0.06 | 0.41 : 0.106 | $1.2{ }^{\text {* }}$ | , |
| + 2351.5 | - ${ }^{-19119.9}$ | 595.6 1226.6 | $1.30: 80.36$ | 1.42 0.0 .28 | - | 3 |
| + 2413.5 | -1873.9 | 539.6 | 1.01:0.75 | 1.01:0.25 | - | (1). 2 |
| 2469.4 | 1807.1 | 1362.3 | 1.01:0.19 | 1.01:0.19 | $2^{-0}$ | 2 |
| 2521.4 | 1300.8 | 1226.6 | $5.3: 1.6$ | $5.3: 1.6$ | (5) ${ }^{\circ}$ | 5 |
| 2570.3 | $-1208.0$ <br> - 403.3 | $\begin{aligned} & 1.362 .3 \\ & 2167.0 \end{aligned}$ | $\begin{aligned} & 1.36: 0.39 \\ & 1.46: 0.19 \end{aligned}$ | 1.45:0.17 | $2.3{ }^{\text {c }}$ | 3. |
| 2592.2 | $\begin{aligned} & 1365.3 \\ & 710.0 \\ & :(425.8) \\ & =\left(\begin{array}{l} 120 \end{array}\right) \end{aligned}$ |  | $\begin{gathered} 2.54: 0.70 \\ 2.63: 0.28 \\ 2.21 \\ 8.0 .62 \end{gathered}$ | 2.55 + 0.16 | $2.3,4{ }^{\text {c }}$ | 4 |
| 2741.9 | - 1521.3 | 1226.6 | $2.9 \div 1.6$ | $2.9: 1.6$ | - | 4 |
| - Deritns (1969) : p-decay <br> b - Lederer (1971) : ${ }^{9 P_{\text {Mo }}(0.207)}$ <br> c- Rlmoul (1974) : resonence neutron capture |  |  |  |  |  |  |
| ${ }^{1}$ proposes new <br> - nev allocstio | level <br> on. |  |  |  |  |  |


| $\underset{(\mathrm{K} \times \mathrm{V})}{\mathrm{E}_{\mathrm{k}}}$ | $\underset{\text { (kev) }}{I_{r}}$ | $\begin{gathered} \mathbf{f}_{\mathbf{f}} \\ (\mathrm{kev}) \end{gathered}$ | R | 1 | $1 \times$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & \text { Pievious } \\ & \text { worts } \end{aligned}$ | $\begin{aligned} & \text { Present } \\ & \hline \text { mert } \end{aligned}$ |
| 475.1 | 475.1 | 0 | $1.20: 0.02$ | $1.20: 0.02$ | $2^{+}$abcte | 2 |
| 943.8 | 968.7 | 415.1 | 0.81 00.10 | 0.81:0.10 | $0^{+6000}$ | 0 |
| 1113.0 | $\begin{array}{r} 1103.2 \\ 622.9 \end{array}$ | $\begin{aligned} & 0 \\ & 475.1 \end{aligned}$ | $\begin{aligned} & 1.07: 0.04 \\ & 1.3: 0.10 \end{aligned}$ | 1.09:0.06 | $2^{+}$abcte | 2 |
| 1176.3 | 631.2 | 415.1 | 2.11:0.11 | 2.17:0.11 | ${ }^{+}$abce | 4 |
| 1521.1 | 1046.7 418.' 415.3 |  | $\begin{aligned} & 1.45: 0.16 \\ & 1.47 \\ & 1.47: 0.15 \\ & \hline 0 \end{aligned}$ | $1.46 \cdot 0.11$ | $3^{\text {ab }} 3^{\text {c }}$ | 3 |
| 1580.6 | 1580.2 <br> 1105.6 <br> 636.8 | 975.1 943.1 |  | 1.07,0.06 | $\begin{array}{ll} (1,2)^{\mathrm{b}} \\ \left(1,2^{\circ}\right)^{\circ} & 2^{+0} \end{array}$ | 2 |
| 1799.6 | 1933.9 $\stackrel{5}{69.6}$ 692.2 | $\begin{aligned} & 455.1 \\ & \begin{array}{l} 413.1 \\ 1106.0 \end{array} \end{aligned}$ | $\begin{aligned} & 2.54: 0.54 \\ & 2.41: 0.71 \\ & 2.39: 10.40 \end{aligned}$ | 2.42:0.18 | $(1.3 .4)^{\text {b }}\left(44^{+}\right)^{\text {c }}$ | 4 |
| 1836.4 | 1361.3 | 475.1 | $0.81=0.10$ | 0.81:0.10 | $\mathrm{o}^{+3}{ }^{\text {acd }}$ | 0.1 |
| 1813.1 | 765.0 | 1106.3 | 5.5 +1.9 | 5.5 : 1.9 | $6^{4}$ ce | 6 |
| 2037.1 | $\begin{gathered} 1567.1 \\ \hline 56.4 \\ \hline 50 \end{gathered}$ | $\begin{array}{r} 475.1 \\ 1560.6 \end{array}$ | $\begin{array}{l:l} 0.12: 0.10 \\ 0.93 & 0.26 \end{array}$ | $0.15: 0.10$ | $2^{\text {a }}$ ac | 0.1 |
| 2043.6 | 1568.5 940.5 <br> $\because 940.5$ | $\begin{aligned} & 475.1 \\ & \begin{array}{c} 4103 \\ 15030.6 \end{array} \end{aligned}$ | $\begin{gathered} 1.56 \\ 1.60 .00 \\ 1.64 \\ 1.0 .30 \\ \hline 0.37 \end{gathered}$ | 1.62 0.26 | 2, ${ }^{\prime}$ | ${ }^{3}$ |
| 2219.3 | $\begin{gathered} 1113.0 \\ 69.5 \end{gathered}$ | $\begin{aligned} & 1106.3 \\ & 1521.7 \end{aligned}$ | $\begin{array}{c:c} 2.11 \\ 2.92 \end{array}$ | 2.71 0.53 | $3^{\circ} .55^{4}$ | 4.5 |
| 2261.2 | $\begin{gathered} 158.2 \\ 7178.5 \\ 6 \in B .7 \end{gathered}$ | $\begin{array}{r} 100.0 \\ 1521.0 \\ 5609.6 \end{array}$ | $\begin{aligned} & 1.06,0.33 \\ & 1.01 \\ & 1.23 \\ & 1.20 .25 \\ & 1.0 .20 \end{aligned}$ | 1.1310 .14 | $\begin{aligned} & (1,2)^{b} \\ & \left(1^{2}, 2^{+}\right)^{c} \end{aligned} 2^{+1}$ | 2 |
| 2303.5 | - 1197.2 | 11 nc .3 | 2.33 + 0.80 | 2.83:0.80 | (2) ${ }^{\text {c }}$ | 4.5 |
| 2378.8 | 1264.5 | 1106.3 | $6.8 \pm 1.2$ | $6.8: 1.2$ | $\left(5^{\circ}\right)^{e}$ | 6 |
| 2592.0 | - $51 n .4$ | 2043.6 | 2.16:0.35 | 2.15 10.15 | - | 4 |
| - . | (1361) | A-decay |  |  |  |  |
| - | (1969) | a-decay |  |  |  |  |
| c- | (1569) | P-dicay |  |  |  |  |
| $d$ - D | - 1998) | ${ }^{\text {a }}$-decay |  |  | $\because$ |  |
| e - | 亿为) | 1004 cr ( n , |  |  |  |  |
| 1 - R | (1974) | resonerce | capture |  |  |  |

### 1.2 Statistical P=operties of Neutron Resonances

M. STEEAMON and P. GIACOBBE

Diagonalizarion of random matrices was performed in order to see how fast the classical statistical properties of the Gaussian Orthogonal

Ensemble are reacted by increasing the standard deviation of non diagonal matrix elements of simetric matrices.

The main question is whether in raal physical cases one is more likaly to ojserve deviations from GOE behaviour oí level energies or of reaction widths. We found converient to work with GOE subspaces of the fuli N-dimensional space, winch are allowed to interact by randon Gaussian matrix elements. The zodel random matrices are then a secquence of diagonal blocks from GOE linked by =andom matrix elements $x_{i j}=x_{j i}$ with given standard deviation $\sigma_{x}$.
This kind of model has the advantage that it has a physical meaning and allows good statistical accuracy in testing eigenvector components, thanks to the possibiaity to exploit =otationai symetry in the sucspaces. Letting the standard deviation of the coupling metrix eiements vary from 0 to 1 , we move From a situation in wich there is a superposition of independent sets of eigenvalues of GOE matrices to the case in which a unique set of eigenvalues of a GOE matrix of larger dimension exists. The initial situation corresponds to che case iu which there is a symetry in the haniltonian a subdivision of the full space in subspace labelled by differert vaiues of some quantum numbers; the symetry can then be gradually broken by residual random interaction. The full GOE case, with no privileged transformations, is reached for $\sigma_{x}=1$.

As expected, the $\Delta_{3}$ Mehta-Dyson statistic appiied to linearized eigenvalue seçuences (i.e. unfolded for secular density varia亡ion), rapidly approaches the GOE limit as the interaction increases (Fig. 1). Furthermore, it is noticeable that even if the interaction is suificiently low to lead to an expected $\Delta_{3}$ sensibly larger than the $G O E$ value, it happers that a considerable fraction of cases have $\Delta_{3}$ in accordance with GOE, due to the large statistical EIuctuations. This fact is in accordance with what we observed in the analysis of experimental sequences of neutron resonances in connection with missed or spurious levels ${ }^{\text {a }}$, and makes the obtaining of information on actual interactions from statistical properties of level energies still more hopeless. A detailed study of the behaviour of $\Delta_{3}$ with increasing $N$ requires diagonalisation of very large matrices and good statistical accuracy. Calculations ara still in progress.

As far as amplitudes are concerned it appears that also for weak coupling the diaviations Erom the Porter-Thomas law for individual iidihs are zot very large except quite near to $z \in r 0$ and it would be difiicult to detect them in real experizents (Eig. 1).
An interasting resuit concens the sum of widths over a particular subspace, i.e. the quantity

$$
s_{\lambda}=\sum_{i}^{\pi}\left|<\dot{p}_{i}\right| \psi_{\lambda}>\left.\right|^{2}
$$

where $o_{i}, i=1,2 \ldots n$ ai=e the basis vectors of the first subspace and $\psi_{\lambda}, \lambda=1,2 \ldots . . N$ are the eigenvectors. Obviously $S_{\lambda}$ will be 1 or 0 for zero coupling ( $\sigma_{x}=0$ ) asd will have approximately a $x_{v}^{2}$ distribution with $\nu=n$ and average $a / N$ for $\sigma_{x}=1$. In che case of weak, con-zero interactions it happens that the distribution of $S_{\lambda}$ may simulate a $x_{v}^{2}$ with low $v$ value and even the Porter-Thomas law ( $v=1$ ).
In chis case the strengti $S_{\lambda}$ over the full subspace behaves as if it were a single vector componear in GOE. Mcre effort is rec̣uired to get the asymitotic behaviour for very large matrices and to understant the pinysical implications of the present results.
a) C. Coceva and M. Stefanon, Nucl. Phys. A315 (1979) 1.
C. Coceva and M. Siefanon, Proc. Int. Conf. on the Intaractions of Neutrons with Nuclei, Lowell 1976, CONF-760715-22, p. 1456.


Fig. 1 - Number of degrees of freedom $v$ of squared amplitudes and Mehta-Dyson $\Delta_{3}$ statistic in the case of model matrices $80 \times 80$ consisting of four $20 \times 20$ GOE blocks coupled with random watrix elements of standard deviation $\sigma$.
1.3 Youtron Capture $\gamma$-rays in Rasolved ${ }^{173} \mathrm{YB}$ Resonances
C. COCEDA and M. STEEANON

This work is within a co-operation with Dak Ricge Mational Labolstories. It consists in the stucy of a measurement of neutron capture $\gamma$-rays in resolved zesonances of ${ }^{17} 3_{\text {Yo performed }}$ at Cak Ridge Electron Linear Accelerator (OREIA). The importance of this experiment is twofold: first because sensibie positive correlations were found in this aucleus between zeutron widths and partiai radiation widths a), second because it should be possible in principle to obserfe aiso in this nucleus the same effect recently discovered in $\left.{ }^{177} \mathrm{Hf} b, r\right)$ suggesting that in deformed nuclei collective features could be present also in compound nucleus rescnances. In the measurement, spectra are obtained for 50 resonances up to a neutron energy of 530 ev. The analysis of low energy radiation allows so assigne the spin of the resonances and to nomalize the resuits to obtain absolute intensity for primary radiation. The absolute inten sity values are analyzed with statistical tecniques ; preliminary resuits show that the correlation previously observed between neutron widths and partial $\gamma$-widths is not statistiaaily si.gai三icant. at low neutron energy, partial widths seem to exibit a systematic k-dependence as observed in ${ }^{177}$ Hf. A more detailed study is necessery to extend the analysis to higher neutron energy. The work is in progress.
a) S.F. Kughabghab, in Nuclear Structure Study with Neutrons, Plenum Press 1974, p. 167.
b) M. Stefanon and F. Corvi, Nucl. Shys. A281, 240 (1977).
C) P. Giacobobe, M. Stefanon, Proc. Int. Conf. on Selected Iopics in Nucl. Structure, Dubna 1976 and CNEN RT/FI(81)4.
1.5 Slow-neutron interaction with moderators studied with a puised neutron source
c. COCEVA, C. LABANTI

Possibilities have been studied of performing experimental checks of theoretical calculations about the scattering kernels of neutrons near thermal equilibrim in moderating matarials. Tine method was considered of measuring the time behaviour of the neutron flux leaking out from moderators having different geometical dimensions, bondarded with a pulsed neutron source.

The neutron are obtained from the direct beam of the linear accelevator by means of bremsstranlung radiation on a thick Berillium terget.

Several neutron detectors have been tried, with the requirement of being insensitive to the strong gama background. A detector consisting of activated $2 n S$ scintillator mixed with ${ }^{6}$ Li was found satisfactory.


The effect of the ganma flash on the photomultiplier itself was found very disturbing. To avoid this difíiculty, an experimental set up has been studied, with the multiplier phototube heavily shielded, removed from the scintillator Such a set up minimizes also the disturbing effect of anterials surrounding the moderator. Yeasu=ements have been planned, first using $\mathrm{H}_{2} \mathrm{O}$ at room temperature as zoderator, in cylindrical geometry.

### 1.6 Isobaric analog state excitation in proton radiative capture

 F. FABBRI, R. GUIDOTTI( $\left.{ }^{( }\right)$, F. SAPORETTI The direc=-semidirect model for proton radiative capture so far formulated is unable to describe the observed ( $p, \gamma$ ) excitation functions in the energy region where the isobaric analog resonances are located. To remove this difficulty, an extension oi the model to include eapture proceeding via isobaric analog state (IAS) excitacion is proposed in rei./a/. The calculated results are compared with the measuzed $90^{\circ}$ excitation curve of the ${ }^{208}{ }^{2} \mathrm{p}\left(\mathrm{p}, \mathrm{Y}_{1}\right)^{209} 3 i$ reartion, and satisfactory agreement is achieved (see Fig. 1). The model seems to provide a useful tool for study of the striking effects arising frem IAS excitation.Some additional IAR effects on the $90^{\circ}$ differential cross section when the incident proton is "polarized" are also analysed by the model in ref. /b/.
1.7 Asymetry effects in ( $p, Y$ ) reactions through isobaric Enalog states F. FABBRI, R. GUIDOTTI( ${ }^{-}$), F. SAPORETTI

The extended direct-semidirect model /a/is appied in ref./c/ to investigate the asymuetry ooserved in the $\gamma$-ray angular distributions from the ${ }^{209} \mathrm{~Pb}(p, \gamma)$ reaction. The model proves to be successful in providing a detailed description of the measured effects (see Fig: 2).

[^1]

Fig. 1. Comparison between the measured and calculated $90^{\circ}$ cross sections For the ${ }^{208} \mathrm{~Pb}\left(p, Y_{1}\right)^{209} \mathrm{Bi}$ reaction. Dashed curve: El. (direct + semidirect via GDS) + E2 (direct + isoscalar and isovector semidirect) capture processes only. Continuous curve: El-E2+EI (semidirect via IAS) capture processas. The location of the single-neutron resonances involved in the reaction is indicated by arrows.


Eig. 2. Comparison between the asymmetry factor predicted by the model For proton capture to the $\operatorname{lh}_{g / 2}$ and $2 f_{7 / 2}$ single-proton final states in ${ }^{209}$ Ei and the experimental points for the ${ }^{208} \mathrm{~Pb}\left(p, \gamma_{0} Y_{1} Y_{2}\right)$ reaction.
The configurations of the single-neutron analog resonances involved in the caiculations are indicated by arrows.
a) F. SAPORETTI and R. GUIDOTTI, "Isobaric analog state excitation in proten radiative capture", Nucl. Phys. A346 (1980) 449.
b) F. SAPORETTI and R. GUIDOTTI, "Collective Ml excitation effects on photon angular distributions from the ${ }^{1+0} \mathrm{Ce}\left(\mathrm{n}, \gamma_{0}\right)$ : reactions", contr. to Third Int. Symposiun Nuclear Physics, Berkeley, August 24-30, 1980, pag. 213 and on Neutron capture Gama-Ray Spectrometry, ed. ミ. Chrien and R. Rane, Plenum Press (1980), pag. 741.
c) F. SAPORETII and R. GUIDOTTI, "Asymetry effects in (p,Y) reactions through isobaric analog states", Phys. Lett. 90B (1980) 29.
1.8 Reaction mechanisms for nuclear rediative capture F. FABBRI, G. LONGO

The development and refirement of models to throw light on nuclear structure and nucleon radiative capture mechanisms in the 5-20 MeV energy range has been continued in two directions:
a) Study by means of the diract-semicirect model of the interference between radiations of different multipolarities (see, e.g., ref. ( ${ }^{a}$ )).
b) Investigation of the Eorms and strengths of optical potential: and particle-vibration couplings more adequate to satisfactorily reproduce experimental data in the energy range considered.

[^2]
### 1.9 Nuclear models

G. REFFO, F. FABBRI

The master equation approach (a) for preequilibrium has been reformulated with the irclusion of angular momenta conservation (b).

Pairing and shell corrections as well as spin distribution of particle hole level density are under investigation (C).

Nucl.ear model codes
G. REFFO, F. FA3BRI

Freequilibrium reaction mechanism with angular momenta consarvation and spin dependent particle hole level density heve been introduced into our computer code chain for multiple emissions.

The fission competition with width fluctuation correction was introduced into our code chain.

### 1.11 Cross sestion evaluation

G. REFFO, F. FABBRI

Theoretical estimates of $\sigma_{T}, \sigma_{e l}, \sigma_{n, n^{\prime}}, \sigma_{n, \gamma}$, isomeric ratios, $\gamma$-ray spectra, $\gamma$-ray multiplicities were carried out based on statistical and generalized optical models for ${ }^{241}$ Am ( ${ }^{( }$) and ${ }^{163} \mathrm{Rh}$, ${ }^{93} \mathrm{Nb},{ }^{181} \mathrm{Ta},{ }^{199_{\mathrm{Au}}}\left(^{e}\right.$ ). (See figs. 1-3) .
(a) J.M. Akkermans, H. Gruppelarar, G. Reffo: Phys. Rev. C. Vol. 22 p. 73 (1980).
(b) G.Reifo: to be published.
(c) G. Reffo, M. Eerwan: in progress:
(d) K. Wisshak, F. Käppeler, G. Reffo, F. Fabbri: submicred to Nuc1. Sci. Eng.
(e) G. Refifo, F. Fabbri, K. Wisshak, F. Käppeler: to be submitted to Nucl. Sci. Eng.


Fig. 1 - Cumulative number of levels as a function of excitation energy .



Fig. 3 - Am-241 Inomeric ratio
1.12 3locking effect at Einite temperature for deformed nuelei. V. BENZI, G. MAINO, E. MENAPACE, A. VENTURA .

 the unblocised (dasied line) Iormalisin. Ground-atate 5בp parameters for the anoiocked solution: $\Delta_{y}=U_{0}=0.393 \mathrm{MoV}, A_{8}=0.765 \mathrm{MteV}$.


 andiocied (dashed line) tormalism. Ground-state grop paranetera ior the anblociked solution as in fig. 3.

 livel and in the anbiocked (dinshed line) formalism. Fround.etnto anp paramnters for the anbiocxed soiution an in tg. J.
1.13 : Eartree-Fock-Bogolinbov calculations at finite temperature. M. GIROD $\left.{ }^{( }\right)$, A. TENIJRA .

Nuclear level denṡミy calculations for spinerical (Sn-116) and deformed nuclei (Gd-i56) were performed at Bruyeres-le-Châtel by means of a finite tempezature Hartree-Fock-Bogoliubov formalism, using the Dl $\in f=$ fective interaction of Gogny . Preliminary results indicate that scme improvements are necessary in the formalism, in order to obtain a more compressed single particle specirum around the Fermi energy . The problem has been shortly discussed in $/ b /$.
1.14: Low energy spectra of actinide nuclei.
G. MAINO, T. MARTINEIII, E. IFNAPACE, A. VENTURA

An analysis of. low lying collective states of Tranim isotopes has been undertaken in the frame of the Interacting Boson Model. To this end, computer codes provided by 0 . Scholten (University of Groningen) have been modified and utilized. ?reliminary results have been obtained. The activity will continue in 1981 and will je devoted to the model parametrisation in the actinide region and to the estimata of low-energy spectra wien data are lacking or incomplete, for application to the calculations of actinide and fission product cross sections and emitted spectra.
1.15 Multilevel formalis표 for resolved resonance cross sections. T.MARTINELII, E. MENAPACE, M. MOTTA.

The temperature dependence of resolved resonance cross-sections for Pu-241 has been calculated. Reich-Moore parameters of ref. (i) have been transformed into Rapur-Peierls equivalent ones for Doppler broadening through usual $\Psi$ and $X$ functions. The energy dependence of transformation parameters has been investigated for next application. The work has been performed
( ${ }^{\circ}$ ) C.E.A., Bruyères-le-Chêtel
(i) J.Blors, H.Derrien, Journal de Physique 37(1976)659.
in cooperation witin $N$. Davicovitci (Reactor Theory and Calenlation IEDcEatozy of CNEM-Casaccia Cent=e) .
1.16 Eescrance statiscical araiysis Eor gean parameter estiante.
C.BONLAZZZ, E. MENAPACE, M.MOTRA ,M. VACCARI .

The stafistical analysis of Cm isotopes ( $-242,-244,-245,-246$, -247, -248) was performed.

For Dobs and $S_{0}$ estimates different methods were used, such as linear statistics, Missing Level Estimator (by Moore and Regworth) and Maximm Iikeiibood analysis on reduced neutron widths by means of CAVE code ( author M. Stefaron) . The resulting $D_{\text {obs }}$ as a Eunction of the lower energy limit (tire shold $\Gamma_{n s}^{0}$, above wich $\Gamma_{0}^{0}$ are considered in the analysis, is show, e.g. for Cm-242 target, in. fig. $1 .$. Analogously the likelinood EincEion has been considered ( X-2 distributions with differert degrees of freedom $V$ ) for average. $\Gamma_{f}$ and effective $v_{f}$ astimate . These results inave been utilised for statistical model caleulations directed to cross-section evaluation.


Eig. 1
1.17 Fission cross-sections. .
G. MAINO, E. :IENAPACE, A.VENTURA

First and second chance contributions to the tctal fission cross section have been calculated through the vode EAUSER-5 (by F.M. Mann-HEDL) for C $=-242,-243,-245,-246,-247,-248$.
The results for the last three isotopes are presented in the Eigures of the evaluation section. For second cinance Eission calcularions, experimental fission probabiliry data by H.C. Britt and collaborators (IASL, private comunication) have been properly approximated by our theorerical estimates.
In acidition, recent data for fission cross section by F.Käppeler (KFR, private communication) for $C$ ( -244 inave been reprocuced in a consistent way with the parameter systemetics.

The results are partly presented in / d, e, f/, partiy in nextcoming pubblications.
a) G. MAINO, E. MENAPACE, A. VENTURA, "Blocking effect at finite temperature for deformed nuclei", Nuovo Cimento 57A.(1980) 427.
b) M. GIROD, A. VENTURA, "Problems in Hartree-Fock calculations of nucléar level densities", in From Collective States to Oua=ks in Nuclei, Bclogna, Noverber 25-28, 1980, contributed papers, p. 24.
c) M. VACCARI, "Tables of neutron resonance parameters and multigroup cross-sections for Pd-105, Nd-143, Sm-149, Sm-151 (1979 evaluation)", CNEN Report, RT/FI(80)1, 1980.
d) T. MARTINELII, E. MENAPACE, M. MOTTA, M. VACCART, A. VENTURA, "Evaluation of $C$ C-246 neutron cross sections in the respnance region", CNEN Report, RT/EI(80)7, 1980.
c) T. Martineili, e. menapace, m. Motta, m. Vaccari, "Eveluation of CII-247 neutron cross sections in the rescnance region", Proceedings of the Second Technical Meeting on the Nuclear Transmutation of Actinides", Ispra, April 21-24, 1980, pag. 171-190.
f) T. MARTINEILI, E. MENAPACE, M. MOTTA, M. VACCARI, A. VENTURA, "Evaluation of Cm-248 neutron cross sections in the resonance region", CNEN Report, RT/FI(80)10, 1980.

### 1.18 Evaluation of actinide neutron data

G. MAINO, T.MARTINELII, E.MENAPACE, M. MOTIA, M.VACCARI, A. VENTURA .

### 1.18.1 $C=246, C$ - $247, C$ - -248 neutron data evaluation.

Neutron Cross sections for Cm-246,247,248 were evaluated in the resonance region; up to $E_{n}=10 \mathrm{KeV}$, in the frame of an IAEA coordinate researci program .

The results are described in / d, e, f/ .
The resolved resonance characteristics of these isotopes are summarized in the following Table .

Table I. Resolved rasonance region


Evaluated resonance parameters for Cm-246 are listed in Table II ; Table III and IV show the adopted parameters for Cill 247 and Cm-248 respectively.

Table II.

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

Table IIT.



| 5：PRIMT OF ihe renaliep fini cemoras |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\text { 3. } 52.820 \varepsilon+46$ | $\begin{gathered} \text { 1. averee }-3 \theta \\ \text { की } \end{gathered}$ | $\begin{aligned} & \text { 3. aganaE-AA } \\ & \text { Live } \end{aligned}$ |  L2F | Jhataenta |  |
|  | $=\underset{a P}{=2995-\rightarrow 3}$ | $\text { i. } \partial \theta \rightarrow \theta A \varepsilon \rightarrow \theta \theta$ |  | $\text { A. Anging } x=\theta$ |  |
|  2HR！ | $\text { 9. : } 2 \theta \rightarrow \theta \in-t-1$ |  |  |  |  |
| $\therefore \begin{gathered} =5 \sec 1 \varepsilon-12 \\ E R . \end{gathered}$ | d. dev่ |  © | צ |  |  |
|  | 3．дя998¢－ד9 | ＜．こes998 | 1． $599998 \sim 2$ |  |  |
| 7．22798E二み日 |  | 2－6ご575－32 | 1．1757ご～23 | 2．ラコロย日と－ヵ2 | 1．ЈЗ |
|  |  | S．1642：E－32 | 1．95E3 1E．．．2 | 3．2yロタのE－ 2 |  |
| 3． 5 5948E－31 |  | 6．439ESE－${ }^{\text {2 }}$ | 1．17 1 SEE－32 |  |  |
| 7． $5: 9095-41$ | 5．2urere－al | 1．2573：5－34 |  |  |  |
|  | ธ．avgere－31 | 1．758：86－74 | 1．69218E－79 |  |  |
| $1.1350 ⿴ E-92$ |  | 2．38279E－4Z | 1．54998E－43 |  |  |
|  | 3．aqezaE－39 | 3．15－62E－72 | 6．2＜عajc－aj | 2．डДロロAE－ら2 |  |
|  | S．वegare－${ }^{\text {a }}$ | 4．J8E36こ－42 | 1．ちこところごー32 | 2．＞د¢9日E－32 |  |
| 2． $5379 * E-42$ | 5．trecrachat | f． 2 2891E－42 | 5．27534E－ 2 |  | 1．Ј2サッロヒーゴ |
| 3．2：3४もE－32 | 5．『0¢才日E－コ1 | 9．38780E－72 | 2．5ご9日E -32 | 2.5 dनด日E－－2 | 1．J ¢ ¢iber－dj |
| 5．3ヶ63vE－サ2 | ¢．вявеве－ 9 | 1．289くJE－※1 | 9． J ¢JaE $\rightarrow 2$ | 2．¢ヵヲ9日を -32 | 9．38凶られE－32 |
| 4． $15798 \varepsilon-42$ | 5．dathae－39 | フ．フミミ2ラと－れ2 | 6． 395 EJE -12 |  |  |
|  |  | －J2828E－H1 | 7．352esz－⿹2 |  | 1．Ј380日e－ 5 |
|  | 5．дขөя日E－89 | 3．59889E－42 | 9．558998－73 |  |  |
| －－cisfue－iz | S．dөef6E－ЭT | $6.1136=\Sigma \sim 1$ |  |  | 1．jisupae -3 |
| 5．дड̇eue $\rightarrow 2$ |  |  | 7．38985E－72 |  |  |
| 5．679以НE－92 |  | 1．36575E－41 | 1． $29375 E-41$ |  | 1．Јヵөнウє－ヵコ |
| i．．3ababe -+2 |  | 5． $523785-92$ | 5． $57375 \mathrm{c}-82$ | 2．idenne－92 | 1．Јаня日E－3 |
| 5－才大⿹丁口¢ $\rightarrow 2$ | 5．3889日E－ヵ1 | 2．Jヵ－91E－ 1 | 2．3こ99－E－大9 |  |  |
| － $2.21 \sin E \rightarrow 42$ |  | 1．186こ5を－91 | 9．132ssE－t2 | $2.53994 \mathrm{HE-G2}$ | 1．Јコөнй－7コ |
| 7．今jónge－ 2 2 |  | 9．33237E－32 | 5．142J7E－さ2 |  | 1．Јコッツ9E－－3コ |
| －1．iエ9948＊92 |  | S．19717E－ay | $6.9: 617 E \sim 4$ | 2．sannte－H2 | 1．ЈЈ9n6e－T3 |
| 3．37：मinE－E2 | －．ддชe日E－サ1 | 1．2E387E－74 | 9．82979E－32 | こう可HRE－H2 |  |
| 2． 3 36入НE $\rightarrow 2$ ！ |  |  | 1．गs $35-$ E－${ }^{\text {a }}$ |  |  |
|  |  | 1．2827aE－34 | 1．2こ973E－31 |  |  |
| 1．刀ヵ－こuricork |  | 2．177：2E－引， | 1．YE6SEE $\rightarrow 1$ | 2．ذவひらサく－ウ2 |  |
| 1． 1 ロこうac－43 3 |  | 2．-5 こ23E－34 | 2．192ESE－H1 |  |  |
|  | 9．дйugbe－d9 | 3．Es519E－99 | 3．282int－ 41 |  |  |
| 䛺7ロE $\rightarrow 33$ | 3－35080E－31 | －． $298875-72$ | 3．678875－32 |  | 1－3aかん⿹E－aj |
| 25－2uE $\rightarrow$－ 2 | 1．वй9¢日E－$\rightarrow 1$ | 2．97237E－d4 | 2．59985－49 |  | －zirnume－ij |
|  | 5． $3 \rightarrow$ PbAE－$\rightarrow 1$ | 2．3E9くアEーが |  | こ．ityGue $-{ }^{\text {a }}$ | 1． 3 2090e -43 |
|  |  | 8．11551E－32 | S．3a3s1E－42 |  | 1． $5 ¢ \pm$ dine－4J |

The following table $V$ contains the adopted values of the average parameters in tise unresolved resonance region ：

Table $V$ ．Average parameters for the unresolved region

| Isotope | ${ }^{248} \mathrm{Cm}$ | ${ }^{247} \mathrm{Cm}$ | ${ }^{248} \mathrm{CI}$ |
| :---: | :---: | :---: | :---: |
| $\overline{\mathrm{D}}(\mathrm{eV})$ | 21.3 | 1.2 | 24.5 |
| $\mathrm{~S}_{0}\left(\times 10^{4}\right)$ | 0.77 | 1.0 | 1.2 |
| $\mathrm{~S}_{1}\left(\times 10^{4}\right)$ | 2.6 | 1.8 | 3.0 |
| $\bar{\Gamma}_{\gamma}(\operatorname{meV})$ | 33 | 35 | 27 |

In the continuun region, only fission cross sections were measured: Figs. i,ii,ii̇ sinow a comparison of experimental dara and calculated values for $C_{\square}-246, C_{\text {I }}-247, C_{m}-248$ respecrively. The evaluation of zeucron cross sections and related data for these isotopes, up to $E_{n}=15 \mathrm{ileV}$ will be completed in near future. A sile in ENDF/B-4 format containing neutron resonance paramecers will be distributed in 1981 througn the IAEA ( INDL-A, Bologaa Evaluations).


Fig.i

- M.s. Moere \& G.A. Kyworth : Pays. ReV. © , 165a (1971)


Fig.ii
$\Delta: E . \overline{=}$ 万musn<in et at.
Sor. Nut ings. iE, it (1973)


### 1.18.2 $C-242, C m-243, C \pi-245$ neutron data evaluation.

In the Erame of the official CNEN-CEA agreement for fast reactors , preliminary evaluations of meutron cross sections for Cm-24, 243, 245 have been performed over the complete range of intarast for thermal and fast reactors (from $10^{-5}$ to 15 i KeV ). About this preliminary evaluarion in ENDF/B-4 format, including neutron angular distributions and energy distributions of emitted neutrons, the critical intercomparison with ENDF/B-V and JENDL is underway, with respect both to the adopted procedures and to the reference experimental data taking into account discrepancies among 2j-group libraries from these sources .
Final data will be discussed in the next Progress Report and in proper publications. Anticipations for the adofted resonance parameters can be.found in the Eollowing Table I, II, III .

Table I.



|  |  |  |  |
| :---: | :---: | :---: | :---: |
| 271 | PBM |  |  |
| $9.52 \div 50 E+04$ |  |  LRU |  L．2F |
|  | ーロロア | リ999E－ら9 |  |
| 521 | AP |  | MLS ME |
|  |  |  |  |
| AdRI | 9月 | － | $\bigcirc$ S－MRS MRS |
| 2． $429536+42$ |  |  |  |
|  | 日 ${ }^{\text {d }}$ | GY | E MFT |
|  | －9794E＋Hッ |  |  |
|  | 3． 5 － $94-\varepsilon+49$ | 1．52913：2E－ 4 |  |
| 1．З35йE－39 | 3．5月らリ45－9日 | 2． 23 PGBE－94 |  |
|  | 3．5919－E－79 |  |  |
|  | 3．डенดтEーッВ | 2．19日9日E－93 |  |
|  |  | 1．19989E－94 |  |
| 7．530908－39 | 3．5アР 1 15－98 | 1．9439日E－93 |  |
| 3． 5.50 H НE－3日 | 3．SHP日イEーE日 | 5．33ら日可E－ 4 |  |
|  | Ј．537日1E－39 |  |  |
| 1．－153日E 1． 1 |  | 4．习习903E－34 |  |
| 1．13－29E＋ 31 | 3．5013日18－9以 | 9． 2 ¢9909E－74 |  |
| 1． $358996+91$ | 5．39504E－318 | 5．¢4， |  |
|  | 3．S¢ßウ1E－ラの | 3．4．3日99E－34 |  |
|  |  | 1．289ヶ9E－33 |  |
|  | 3．5ロッらロ5＋3日 |  |  |
|  | 3．इ丂ウウウE－̇タ | 2．53579E－i3 |  |
| 2． $28 \leq 3$ ¢ $5+31$ |  | 5．S．3アコ1E－35 |  |
|  |  | 7．51625こーが |  |
|  |  | 5．98232E－34 |  |
| 2．3 $290 \mathrm{E}-\dot{4}$ |  | 3．くら2ら25－以う |  |
| 3．17100E＋34 |  | 4．95s＜25－34 |  |
| 3．29¢のウを－ッチ |  | 3．57595E－34 |  |
| 3． $453995-$－ 9 |  | 2．295715－34 |  |
|  | 3．S月НらロE－3日 | 7．53227E－9．3 |  |
| 3．5こ295E－41 |  | 1．ᄃ¢294E－ק3 |  |
|  |  | 5．53215 －$^{\text {－}}$－ 4 |  |
|  | 3．59ロけのを－3ロ | 4．43325E－コJ |  |
| ¢．24．5ヶ゙ロE－テ1 |  |  |  |
| 6．31ツらけ上－ラ4 |  | 1．732175－33 |  |
| 4． 5 579НE－91 |  | 2．519こく巨－93 |  |
| $4.37 \leq 965+31$ |  | 5．33Jき2ธ－96 | く．39以9らE－32 3．739505－31－2．29＜395－92 |
|  | 3．50Н9日E + －99 | 3．5さららさEーツ3 |  |
| 6．ड2uvite＋31 | 3．S09093E－3日 | 5．3552＜E－33 |  |
| 5．54：3पロE－31 | 3．53959E－39 | 1．7984 5 E－93 |  |
|  | 3． $539895+79$ | 5．25199E－34 | 4．习ดคร日E－32－1．57279E－．32 1．9：272E－31 |
| 5． $35.5005-69$ |  | 1．235く3E－32 |  |
| 5． $5.5 .308-0.1$ |  | Ј． $3253<5-3<$ |  |
| 5．Sごミ39E－34 | コ．ミうの日のE＊ロ日 | 1：ラ3535E－3コ |  |
| 5．з 5＜．j6e－0． 1 |  | 1． 3 S5525－32 |  |
| 5．j？ | 3．33ロらリヒ＋サリ |  |  |

1.19 Evaluation of neutron data for structural materials.
e. menapace, m. Motta, g.C. panivi .

An "ad boc" evaluation for Fe-56 has been undertaken for comparison with the results from integral measurements in RB-2 coupled F-T facility, ootained by P.dzzoni CNEN, Physics Division and collaborators in the frame of CNEN-CEA Agreement for Fast Reacters, ref. ( $a, b$ ).
With respect to $\operatorname{END} / B-I V$, more recent measurements from ORNL (ref.(c)) and CBNM (ref.(d)) have been included in the new file after intercomparison of the data . Computer codes were developed for this purpose.
Total capture averaged over the $R B-2$ spectrum from the new file is $15 \%$ lower than the one from ENDF/B-IV, in agreement with the indication from the integral data (that is partly due to the more correct calculation of the self-shielding due to the extension of the resonance region). The work on the new file has been performed in cooperation also with A. Gandini and N.Davidowidch (CNEN Cesaccia Center), who calculated sensitivity coeificients with respect to the parameter variation.

Fo the next year an analogous evaluation in the frame of the same cooperations is planned for Cr isotopes, for which even stronger discrepancies exists between calculated capure from ENDF/B-IV and the experimental integral value.
(a) P.AZZONI,A.SALOMONI -CNEN ; P.L.CHIODI,C.GIUIIANI,R.MARVASIAGIP NUCLEARE : " Measurements of structural Material to U-235 Fission-Rate Ratios in Intermediate and Fast Spectra", IAEA-SM-244/64, pag. 147.
(b) P.Azzoni, V.Benzi,A.Salomoni- CNEA; P.L.Chiodi, C.Giuliani, R.Marvasi-AGIP Nucleare; S.Guardiai.S.Tassan-CCR Euratom Ispra: "Measurements of Structural Material Capture ro U-235 FissionRate Ratios in an Intermediate Spectrum Assembly", NSE 76 (1980) 70.
(c) F.G.Perey et al. "Recent Results for Ni-58 and Fe-56 at ORELA", Proc.Spec.Meet. on Neurron Data of Struct.Mater.for Fast Reactors, Geel 1977, p. 530.
(d) A.Brusegan et al.:"Neutron Capture cross section measurements of Fe-56", Froc.Int.Conf.Nucl.Cross.Sect.for Techn., Knoxwille 1980., p. 613 .
1.20 Nuclear Data Library
G.C. PANINI, M. VACCARI

The service for supplying nuclear dara on request from internal and external users continued in 1980 as well as the work of assistance to other groups in the field of Nuclear Data.

A collaboration was established with the Realth Physics Laboratory in Bologna for the theoretical estimates of track etcining detector efficiency for neutron iluxes, by supplying nuclear data for $H, C$, $\mathrm{N}, \mathrm{O}, \mathrm{B}$.

An important effort was made for the closing of the "Specialists' Meeting on Neutron Cross Sections of Fission Product Nuclei", held in Bologna on December 12-14, 1979; the conclusive report was published in June /a/.

The "BC" plotting system for general graphical purposes was written in Fortran IV /b/. The system of routines is now available co all CNEN isers on the IBM 370/168 installation and is widespreadiy used as a stancard package. The package was used in writing a plotting code for noise analysis on request from LFSR. Some examples of graphs obtained by means of the system are given in fig. $1,2,3$.

The new ENDF/B-V format and the difierences with ENDF/B-IV were studied and the program CONV5TO4 for a comrersion from ENDF/3-V to ENDF/B-IV format of the main sections was written. The report will be published in 1981.

The system of codes SYSMF to generate a Nuclear Data File in ENDF/B format starting from "raw" evaluated data was largely modified in order to treat actinide evaluations in progress. The system was intensively used for Cm-242, 243, 245 neutron data preliminazy evaluations for the Superphoenix Project in the frame of CEA/CNEN agreement and proved to be a very useful tool.

A revision of the codes for the selection and plotting of NEUDADA experimental data was necessary to obtain information for Curium evaluations.

The ENDF/B-V management codes CMECXER5 and RIGEL5 were implemented on the IBM $370 / 168$ installation and are now in production.

As far as the file management was concerned, a new organization of files on tapes and disks was adopted in order to have more protection from accidents.

As usual, new experimental or evaluated data, mainly obtained through the NEA Data Bank, were incorporated in the laboratory files.

The following data were acouired during 1980:
a) Neutron resomance data of $\mathrm{Cm}-246, \mathrm{Cm}-247, \mathrm{Cm}-248$ evaluations performed in Bologna in the framework of IAEA research agrement for the "European file".
b) 25 ENDF/B-V material on the "Dosymetry tape" No. 531. Tape was checked, as well as all ENDF/B-V tapes received in 1979 , by the CTECRERS code.
c) The Activation Cross Section Library "ACTL" from Iivermore Laboratory. At present it conteins data fcr 255 materials, many of which are generally not included in other Libraries. The format and content was studied and codes wrintten to use the data.
d) Experimental data and prarameters for $A g$ and $\mathrm{Nb}-93$ in EXFOR EOrnat.
e) A preliminary version of complete neutron cross section evaluations for, G-m $242, \mathrm{Cm}-243, \mathrm{Cm}-245$ in ENDF/B Format. As above said, these data were originated in Bologna.
a) C. COCEVA, G.C. FANINI, Editors , " Proceedings of the Specialists' Meeting on Neutron Cross Sections of Fission Product Nuclei", Bologna, December 12-14, 1979. NEANDC(E)209"L" (1980) and CNEN Report RIT/FIS/LDN(80)1.
b) G.C. PANLNI, "Il sistema grafico BC - guida per l'utente", CNEN Report RT/EDP(80)6 and RIT/FIS/LDN(80)3.


Fig. 1 . Example of plotting by the " $B C$ " system.



### 1.21 Multigroup cross sections

G.C. PANINI, M. VACCARI

In this framework, activity has been performed in the field of both multigroup code implementation and data library production.

A version of the FOURACES code has been implemented at CEA during a stage at Cadarache.

The ROLAIDS ( ${ }^{a}$ ) code for the accurate treatment of resonance overlapping in the AMPX-II modular system ( ${ }^{b}$ ) has been corzected in several fatal errors due to the EORTRAN compiier in use at CNEN, which is quite differant from the one in use at ORNL. The code is now running both as part of the AMPX-II system and stand-alone. Work has been done with the aim of using AMPX-II for calculating $1 / \Sigma_{t}$ weighted library for the Montecarlo Code KIM ( ${ }^{c}$ ); being the results not satisfactory, the strategy has been discarded for the present time.

The MINX ( ${ }^{\text {d }}$ ) code for multigroup cross section and Bondarenko factor calculations is also running: it has been extansively used for sensitivity tests on a modified ENDF/B-IV iron taking into account new resonance data originated at ORNL and Geel. The code is operative within the CNEN computing facilities.

A system of routines in form of run-time callable library has been implemented for the manipulation and averaging of the ENDF/B forшatted data.

The system is based upon the 3NL package SLAVE3 ( ${ }^{e}$ ).
The following calculations have been carried out in the field of multigroup cross sections from the users:

1) Si and Ce (all isotopes) for Montecarlo calculations (KIM code);
2) Br isotopes in Carnaval scheme for $R B-2$ calculations;
3) Several rave earth isotopes on the 620-group SAND-2 scheme; for CESNEF (Milano);
4) Ta and $\operatorname{se-9}$ for KIM code;
5) Several transactinide isotopes for burn-up calculations in the Carnaval scheme;
6) Structural and activation materials in Carnaval scheme for pEC calculations;
7) Cm-242, 243, 245 of Bciogna praliminary evaluations in the Carnaval scheme; same isotopes from ENDE/B-IV and V for comparison. Work will continue in 1981.

All the computations have been carried out using the FOURACES code, followed, in the case of Montecario data, by the PROKIM code.
(a) R.M. Westfall: "ROLAIDS-AMPX module for treating resonance shielding in multiregion geometries", Sect. 9.11 of ref. (b).
(b) N.M. Green et al.: "AMPX-II. A modular code system for generating coupled multigroup neutron-gema cross-section libraries from ENDF/B", ORNL/TM-3706 (1978).
(c) E. Cupini et al.: "KIM - A two-dimensional Monteca=lo program for thermal reactors", CNEN Report RT/FIMA(80)2 (1980).
(d) C.R. Weisbin et al.: "MIX - A multigroup intarpretation of auclear x-sections from ENDF/B', LA-6486-MS (1976).
(e) "ENDF-110 - Description of the ENDF/B processing codes and retrieval subroutines" 0. Czer ed., BNL-50300 (1971).
2. C.N.E.N. - DIVISIONE DI FISICA - LABORATORIO FISICA SPERIMENTALE DEI REATTORI - Via Mazzini, 2-40138 BOLOGNA, Italy
2.1 Measurements of Structural Material Capture to U-235 Fission Rate Ratios in Fast Spectra
P. AZZONI, A. SALOMONI, C. PETRELLA G. BRIGHENTI ${ }^{(*)}, \mathrm{C} \cdot$ GIULIANI $^{(*)}$, R. MARVASI ${ }^{(*)}$

In order to contribute to improving knowledge on capture cross sections of $\mathrm{Fe}, \mathrm{Cr}, \mathrm{Ni}$ and Stainless Steel, an experimental program was undertaken by CNEN utilizing the RB2 Reactor at the AGIP Nucleare Montecuccolino Laboratories.

To obtain the integral capture cross sections of the structural materials the "Null Reactivity Technique" was used.

By means of that, the structural material capture to U-235 fission rate ratios were evaluated and then compared with the theoretical results. The measurements were carried out in a fast spectrum, in order to increase the neutron captures in the $1 \mathrm{keV}-1 \mathrm{MeV}$ energy range, where the uncertainties in the structural material capture cross sections are large. By means of the "Null Reactivity Technique" one works in an infinite medium of near unit $K$ and, consequently, the experimental results are more ready compared with theory. To achieve this the asymptotic spectrum of the radium was yielded in the central Test Zone of the Reactor. The difficulties related to heterogeneity effects were reduced by using quasi homogeneous media made up of materials in the form of microspheres ( $\simeq 1 \mathrm{~mm}$ diameter) and the influence of the leakage was greatly reduced by flattening the neutron flux in the central Test Zone.
Flux-measurements were carried out by means of the "Proton-recoil method" and threshold detectors at the center and in the midplane of the reactor. A general good agreement has been obtained between calculated and experimental results.

The comparison between experimental and theoretical values of $R_{\infty}^{s}=\bar{\sigma}_{c}^{s} / \sigma_{f}^{5}$ shows a systematic trend of ENDF/B-IV calculated data to
(*) AGIP NUCLEARE Nuclear Laboratories, Montecuccolino, Bologna, Italy
greatly overestimate the experimental "Null Reactivity" results
(Table 1). On the contrary, the CARNVAL IV calculated results shows a systematic trend to underestimate the experimental results of some per cent (Table 1).
P. Azzoni et al., "Esperienze Integrali Veloci nel Reattore RB-2/TV di Montecuccolino (gennaio-dicembre 1980)", RIT/FIS(81)3.

TABLE 1 - Experimental values of $\mathrm{R}_{\infty}^{\mathrm{s}}=\left(\bar{\sigma}_{\mathrm{c}^{\mathrm{s}}} / \mathrm{\sigma}_{\mathrm{f}} \mathrm{U}^{5}\right)$ and comparison with the calculated ones.
The errors shown take into account the experinental uncertainties only.

|  | $M C^{2} \pi / C I T A T I O N+$ |  |  | $M C^{2} \pi / D O T{ }^{++}$ |  |  | hetaire/citation ${ }^{+}$ |  |  | HETAIRE/ DOT ${ }^{+*}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SPER | calc | $\frac{c-s}{c} \%$ |
| Fe 6 | $3.571 \pm 4.0 \%$ | 4.670 | 23.5 | $3.497 \pm 4.0 \%$ | 4.671 | 25.1 | $2.988 \pm 4.0 \%$ | 2.955 | -1.1 | $2.988 \pm 4.0 \%$ | 2.959 | -1.0 |
| F. 8 | $3.666 \pm 4.5 \%$ | 4.533 | 19.1 | $3.588+4.5 \%$ | 4.535 | 20.9 | $3.200 \pm 4.5 \%$ | 2.831 | -13.0 | $3.213 \pm 4.5 \%$ | 2.836 | -13.3 |
| $C{ }^{6}$ | 4. $902 \pm 3.0 \%$ | 8.129 | 39.7 | 4.856 $\pm 3.0 \%$ | 8.129 | 40.3 | $4.811 \pm 3.0 \%$ | 4.496 | $-7.0$ | $4.808 \pm 3.0 \%$ | 4.502 | $-6.8$ |
| SS 6 | B. $220 \pm 3.0 \%$ | 9.778 | 15.9 | $8.210 \pm 3.0 \%$ | 9.771 | 16.0 | $7.733 \pm 3.0 \%$ | 7.620 | -1.5 | $7.791 \pm 3.0 \%$ | 7.627 | -2.2 |
| $N_{i} 6$ | 10.673+3.0\% | 11.540 | 7.5 | 10.715 + 3.0\% | 11.556 | 7.3 | 10.870 $3.0 \%$ | 9.650 | - 12.6 | 10.918 $53.0 \%$ | 9.674 | -12.9 |

+2 D - Diffusion Code
$++2 D-S_{n}$ Transport Code

### 3.1 Uncertainty Evaluation in Nuclear Data

M. PETILLI

The trial of giving some contribute to the needs of nuclear data uncertainties, strongly required for reactor dosimetry purpose, has been the object of development of two codes GIADA and TASHI.

The program GIADA can generate a file of point energy cross sections, with their variance-covariance matrix, startiag by differential cross section measurements.
The first application has been done for the $\mathrm{Mg}^{24}$ activation cross section.

The TASHI code represents the next step in this evaluation because it can calculate multigroup cross sections and their uncertainties, using, as input, data files in the form obtained by GIADA.

The code TASHI, in its first version, gives the multigroup cross sections by using, as a weighting function, a flat flux in each group. In a 100 groups subdivision of the energy range $10^{-5} \mathrm{eV}-18 \mathrm{MeV}$, a good agreement has been found with results from previous calculations, by D.E. Cullen (private communication).

For a 15 group structure in the same energy range, some discrepancies were found.

A new version of TASHI is in program assuming a $1 / E$ flux spectrum in the calculations, in order to reduce this discrepancy, as it partially depends on the choice of the weighting function.
4. ISTITUTO DI FISICA DELLUNIVERSITA' DI BARI - ISTITUTO NAZIONALE DI FISICA NUCLEARE - SEZIONE DI EARI -
Via Amendola 173 - 70126 Beri (Italy)
4.1 Differential cross section and spin-flip probability data in $14-45 \mathrm{meV}$ proton scattering from ${ }^{12} \mathrm{C},{ }^{24} \mathrm{lig}$, ${ }^{28}{ }_{\text {Si and }}{ }^{32} \mathrm{~S}$ (ref. /a/)
R. DE LEO, G. D'ERASMO, E.M. FIORE, S. MICHELETTI ${ }^{(0)}$, A. PANTALEO AND M. PIGNANELII ${ }^{(0)}$

The measurements of differential cross sections and spin-flip probabilities in the scattering of 14-45 MeV have been undertaken to study the virtual excitation of gient resonances. The data have been collected at the Milan AVF Cyclotron.

### 4.2 Proton elastic scattering on light nuclei

I. Energy dependence (ref. /b/)
R. DE LEO, G. D'ERASMO, J.I. ESCUDIE ${ }^{(+)}$, E. FABRICI ${ }^{(0)}$, S. MICHELETTI ${ }^{(0)}$, A. PANTALEO, M. PIGNANELLI ${ }^{(0)}$, F.G. RESMINI ${ }^{(0)}$ AND A. TARRATS $\left.{ }^{( }{ }^{( }\right)$

Differential cross sections for proton elastic scattering by ${ }^{15} \mathrm{~N},{ }^{18} \mathrm{O},{ }^{24} \mathrm{Hg}$, and ${ }^{40} \mathrm{Ar}$ were measured at several proton energies between 14 and 44 MeV . Previous data on ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O},{ }^{24} \mathrm{mg},{ }^{28} \mathrm{Si}$, and ${ }^{40} \mathrm{Ca}$ have also been considered. Evidence has been found for a strong enhancement in proton emission at backward angles for scattering by spherical nuclei at incident energies higher than 26 MeV .

A phase-shift analysis of all the differential cross sections showed that the partial waves involved are those near grazing. Optical-model fits of good quality have been obtained for collective nuclei, while for spherical nuclei the cross sections at backward angles are not reproduced. The disagreement is not substantially modified when nonstandard radial dependences are given to the optical potential.
4.3 II. Nuclear structure effects (ref. / / ) R. DE LEO, G. D'ERASMO, E. FABRICI ${ }^{(0)}$, S. MICHEIETTI ${ }^{(0)}$ A. PANTAIEC, M. PIGNANELII ${ }^{(0)}$, AND F.G. RESMINI ${ }^{(0)}$ Differential cross sections for proton scattering on 61 nuclei with mass numbers between 9 and 70 were measured at 35.2 MeV incident energy. To extend previous measurements further data were collected at 29.7 MeV on 10 nuclei. From a detailed inspection of the data a definite correlation emerges between the elastic and inelastic cross section values at backward angles and the quadrupole deformation parameters $\beta_{2}$. Nuclear structure effects are also evident at forward angles at the filling of the $1 p$ shell. A set of mass dependent optical-model perameters which produces acceptable fits at forward angles was derived. The imaginary part was found to contain terms connected with the above structure effects. The results of this and of a coupled-channels analysis are discussed.

### 4.4 Energy dependence of optical-model parameters for the $\mathrm{p}+{ }^{32} \mathrm{~S}$ system between 15 and 35 MeV (ref. $/ \mathrm{d} /$ ) R. DE LEO, G. D'ERASMO, E.M. FIORE, G. GUARINO, S. MICHELETTI ${ }^{(0)}$ AND A. PANTALEO <br> Cross sections for proton scattering to the ground and to the $2^{+}, 2.23 \mathrm{MeV}$ states of ${ }^{32} \mathrm{~S}$ have been measured at $18.24,20.37,23.24,26.55$ and 29.64 MeV incident energies. The experimental data and those found in the literature at $17.5,30.3$ and 35.2 MeV have been analysed in the framework of macroscopic coupled-channel calculations. A set of energy averaged optical-model parameters with fixed geometries and depths linearly dependent on the energy is deduced.

4.5 $\quad 13.9 \mathrm{MeV}$ neutron spin-flip in ${ }^{32} \mathrm{~S}^{+}(2.23 \mathrm{MeV})$ excitation (ref. /e/)
R. DE LEO, G.D'ERASIAO, E.M. FIORE, A. PANTALEO AND G. PASQUARIEIJO ${ }^{(\Sigma)}$

The spin-flip probability for 13.9 MeV neutron inelastic scattering to the $2^{+}(2.23 \mathrm{meV})$ level of ${ }^{32}$ S has been determined by measuring the neutron time-offlight spectrum in coincidence with the de-excitation $\gamma$ radiation emitted perpendicularly to the reaction plane. A comparison has been made between neutron and proton spin-flip probabilities at nearby incident energies.
4.6 Neutron end proton spin-flip probability comparison
in T=0 nuclei (ref./f/)
R. DE LEO, G. D'ERASMO, E.M. FIORE AND A.PANTALEO

The spin-flip probability(SFP) in the scattering of
21.2 MeV protons from the $2^{+}(2.23 \mathrm{MeV})$ level of ${ }^{32} \mathrm{~S}$
is presented together coupled-channel calculations
in the framework of the symmetric rotational model. Neutron and proton induced SFP on symmetric $T=0$ nuclei are compared at equivalent energies.
4.7 Proton excitation of ${ }^{24} \mathrm{Mg},{ }^{26}{ }_{\mathrm{Mg}}$, and ${ }^{32} \mathrm{~S} \quad \gamma$-bands $(\mathrm{ref}, / \mathrm{g} /$ ) R.DE LEO, G. D'ERASMO, M.N. HARAKEH ${ }^{(-)}$, S. MICHELETTI ${ }^{(0)}$,
A. PANTALEO, AND M. PIENANELLI ${ }^{(0)}$

Differential cross sections for proton scattering to the first three levels of the ground-state $\left(O_{1}^{+}, 2_{1}^{+}, 4_{l}^{+}\right)$ and $\gamma$-bands $\left(2_{2}^{+}, 3_{2}^{+}, 4_{2}^{+}\right)$of ${ }^{32} S$ have been measured at $E_{D}=20.37 \mathrm{HeV}$. These data, together with similar ones on $27^{2}, 26_{\mathrm{Mg}}$ available in literature, have been analyzed by means of coupled channel calculations in which-a- $\Delta l=4$ vibration, accounting for a direct excitation of the $4_{2}^{+}$ state, is added to the asymmetric rotor model. Satisfac tory fits have been obtained for all the transitions considered except the $3_{2}^{+}$cross sections; these remain unreproduced even if the direct spin-flip mechanism is considered. The importance of the missing contribution in the excitation of the $3_{2}^{+}$levels is estimed for the three nuclei considered.
4.8 Excitation of the isoscalar E2 resonance in ${ }^{12} \mathrm{C}$ by proton inelastic scattering (ref. /h/) G. D'ERASMO, I. IORI ${ }^{(0)}$, S. BICHELETTI ${ }^{(0)}$, AND a. pantaleo

Proton inelastic excitation spectra of ${ }^{12} \mathrm{C}$ have been measured imposing a coincidence with elpha decay to ${ }^{8} \mathrm{Be}_{\mathrm{g} . \mathrm{s} .}$ and ${ }^{8} \mathrm{Be}_{2.9 \mathrm{MeV}}$. In plane angular correlations have been obtained for the main structures in the spectra. Comparison with DWBA correlation functions permits a $2^{+}$assignement for all the groups in the 20-30 MeV excitation range. The percentage of the E2-EWSR exhausted in the same range is about $20 \%$ and in agreement with that derived from alpha inelastic scattering.

```
(0) Istituto di Fisica dell'Universita and INFN-S`zione
 di Mileno- Mileno (Italy)
(+)}\mathrm{ Departement de Physique Nucltaire, CEN Saclay (France)
(x) Laboratori Nazionali INFN, Frascati (Italy)
(-)}\mathrm{ Eermfysisch Versneller Instituut, Groningen (The
 Netherlands)
```

/a/R. De Leo et al. Report INFN/BE-80/3
/b/E. Fabrici et al. Phys. Rev. C2l (1980) 830
/c/ E. Febrici et al. Phys. Rev. C21 (1980) 844
/d/R. De Leo et al. Il Nuovo Cimento 59A (1980) 101
/e/ R. De Leo et al. Phys. Rev. C22 (1980) 337
/f/R. De Leo et al. Lett. Nuovo Cimento 28 (1980) 161
/g/R. De Leo et al. Phys. Rev. C, in print
/h/ G. D'Erasmo et al. Z. fur Physik, in print

### 5.1 Blocking Measurements of Nuclear Decay Times

> E. FUSCHINI, F. MALAGUTI, A. UGUZZONI, E. VERONDINI

Carrying on the programe of measuring the lifetimes of several isolated resonances in the ${ }^{27} \mathrm{Al}(\mathrm{p}, \alpha){ }^{24} \mathrm{Mg}$ reaction, during 1980 the lifetime of the $632-k e V$ resonance was measured by means of the blocking method in Al single-crystals. A 250 nA proton beam from the 2-MeV Van de Graaf generator was impinging on a 2 mm thick Al singlecrystal whose axes $\langle 110\rangle$ and $\langle 110\rangle$ were directed at 87 and 177 degrees respectively to the beam. The corresponding blocking dips were similtaneously recorded by LR-115 type I Kodak plastic detectors 6 m thick covered by 3 伹 Mylar foils to suppress $\alpha$-particles coming from lower-energy resonances. Seven measurements with seven different single-crystals have been performed for a total $0,25 \overline{\mathrm{C}}$ proton charge.

To extract the lifetime of the compound system from the measured blocking dips, the procedure of Ref. 1 was followed, obtaining

$$
\tau=120 \pm 20 \mathrm{as}
$$

hence the width of the 12.195 MeV level of ${ }^{28} \mathrm{Si}$ is found to be

$$
\Gamma=5.3^{+0.9} \mathrm{eV}
$$

This result is in good. agreenent with other blocking measurement (2) but lower than thatdeducible from resonance reaction yields ${ }^{(3)}$.

The meaning of such discrepancy which was not found in previcus stuaies of shorter lifetimes ${ }^{(1,4)}$ will be further investigated by exten= ding. measurements to the long-lived 505 KeV resonance.

1) F. Malaguti, A. Uguzzoni and E. Verondini, Phys. Rev. C 19, 1606 (1979)
2) H. Nakayama, M. Ishii, K. Hisataka, F.Fuyimoto and K. Komaki, Nuc1. Phys. A 208, 545 (1973).
3) R.P. Sharma, J.U. Andersen and K.O. Nielsen, Nucl. Phys. A 204, 371 (1973)
4) P.M. Endt and C. Van der Leun, Nucl. Phys. A 310, 1 (1979)
5) E. Fuschini; F. Malaguti, A. Uguzzoni and E. Verondini Phys., Rev. C 21, 1646 (1980).
6. ISTITUTO NAZIONALE OI FISICA NUCLEARE - SEZIONE DI FIRENZE ISTITUTO DI FISICA DELL' UNIVERSITA' - Largo E.Fermi 2 FIRENZE (Italy)
6.1 Decay properties of ${ }^{85}$ Rb
T.F.FAZZINI, P.R. MAURENZIG, G. POGGI, N. TACCETTI

With respect to the previous report /a/, further DSAM runs and accurate relative intensity measurements allowed a better understanding of the decay mode of the first $1 / 2^{-}$level: the lifetime we obtained from DSAM measurements for the $1 / 2^{-}-3 / 2^{-}$transition is $60 \pm 20 \mathrm{ps}$, while a value of $450 \pm 120$ ps was reported in literature / $/ \mathrm{F}$; this value was obtained from Coulomb excitation measurements and from the branching ratio ( $4.5 \%$ ) for the decay $1 / 2^{-}-g . s$. with respect to the $1 / 2^{-}-3 / 2^{-}$. New Coulomb excitetion measurements have been performed confirming the known value $\left(B(E 2) 4=.0016 \pm .0002 e^{2} b^{2}\right)$ while for the branching ratio we obtained $.5 \pm .2 \%$; therefore a lifetime of $50 \pm 20 \mathrm{ps}$ is obtained, in agreement with the value obtained from DSAM measurements.
/a' T.F. Fazzini, P.R.Maurenzig, G.Poggi, N.Taccetti, NEANDC(E)212 Vol. 7 (1980) p. 42.
/b/ P.D. Bond, G.J. Kumbarrtzki, Nucl. Phys. A205, 239 (1977)
6.2 Level scheme of ${ }^{100} \mathrm{Rh}_{\mathrm{h}}$
A.M. BIZZETI - SONA, P. BLASI, P.A. MANDO'

Prompt $\gamma$ rays following the ${ }^{100} R u(p, n)^{100}$ Rh reaction have been studied in order to determine the excited leveis of ${ }^{100} \mathrm{Rh}$ and their decay properties. Gamma excitation functions heve been measured in the energy range $E_{p}=4.5-5.5 \mathrm{MeV}$ and $\gamma-\gamma$ coincidence measurements have been performed at $E_{P}=6 \mathrm{MeV}$. All measurements have been made with the 7.5 M Van de Graaff accelerator of the Laboratori Nazionali di Legnaro. From our results the level scheme shown in figure is obtained.
6.3 Level structure of ${ }^{49} \mathrm{Ti}$ up to $E_{x}=5.5 \mathrm{MeV}$
P.A. MANDO', G. POGGI, P. SONA, N.TACCETTI

In the previous report /a/details on the experimental methods and analysis were described and preliminary results were presented. Further measurements using the ${ }^{49} \mathrm{Ti}\left(p, p^{\prime} \gamma\right)$ reaction made it possible to define the level scheme presented in figure. Lifetime or lifetime limits are determined for 15 levels by Coulomb excitation or by DSAM. The final results concerning the DSAM are summarized in the Table. These results will soon be published/b/.
/a/ P.A.Mandi, G.Poggi, P.Sona, N.Taccetti, NEANDC(E) 212 Vol. 7 (1980) p. 39.
/b/ P.A.Mandò, G.Poggi,P.Sona and N.Taccetti, "Gamma decay and lifetimes of excited levels in ${ }^{49}$ Ti" - to be published in Phys. Rev. C.


| Level <br> energy <br> (keV) | $\begin{aligned} & \gamma-=a y \\ & \text { enezgy } \\ & (k e v) \end{aligned}$ | $E(\tau)$ | $\stackrel{\underset{(D S A M}{\boldsymbol{\tau}})}{\text { ( }}$ |
| :---: | :---: | :---: | :---: |
| 1382 | 1382 | .002 $\pm .026$ | $>4000$ |
| 1542 | 1542 | $.100 \stackrel{\square}{-} .022$ | 1070 -240 |
| 1586 | 1586 | . $072 \div .044$ | 1520 +2700 |
| 162.3 | 1623 | $.756 \pm .024$ | $51 \div 8$ |
| 1723 | 341 | -. $023 \pm .186$ | $>500$ |
| 1762 | 1762 | $.748 \pm .039$ | $52^{+12}$ |
| 2261 | $\left\{\begin{array}{l}2261 \\ 638 \\ 499\end{array}\right.$ | $.680 \pm .124$ $.615 \pm .071$ $.534 \pm .175$ | $85+24$ |
| 2471 | $\left\{\begin{array}{r}2471 \\ 848 \\ 709\end{array}\right.$ | $.633 \pm .086$ $.685 \pm .158$ $.652 \pm .135$ | 75 <br> -25 <br> -20 |
| 2504 | 1122 | -. $210 \pm .220$ | $>400$ |
| 2506 | 964 | $-.160 \pm .280$ | $>300$ |
| 2517 | 1136 | . $080 \pm .077$ | $>600$ |
| 2664 | $\left\{\begin{array}{r}1282 \\ 902\end{array}\right.$ | $.191-.145$ $.240 \div .290$ | $>310$ |
| 2720 | 1178 | . 627 亡. 100 | ع2 $2_{-29}$ |
| 2981. | 1357 | $.392 \pm .111$. | $185 \div 115$ |
| 3043 | $\left\{\begin{array}{l}3043 \\ 1500 \\ 1419\end{array}\right.$ | $.885 \pm .132$ $.649 \pm .181$ $.868 \pm .195$ | + 34 -21 -20 |

## 7. ISTITUTO DI FISICA DELL 'UNIVERSITA' DI GENOVA - ISTITUTO NAZIONALE DI FISICA NUCLEARE - SEZIONE DI GENOVA - Viale Benedetto XV, 5 16132 GENOVA, Italy

7.1 Radiative Proton Capture above the G.D.R. in $C^{i 2}$
P. CORVISIERO, G. RICCO, M. SANZONE, A. ZUCCHIATTI



Fig. 2. - a) Differential cross-section for the ${ }^{u} \mathrm{~B}\left(\mathrm{p}, \mathrm{y}_{\mathrm{o}}\right)^{22} \mathrm{C}$ reaction at $\theta_{\text {lab }}=90^{\circ}$. b) Differential cross-section for the ${ }^{11} \mathrm{~B}\left(\mathrm{p}, \gamma_{2}\right)^{31} \mathrm{C}^{4}$ reaction at $\theta_{\text {lab }}=90^{\circ}$. - ref. ( ${ }^{\prime}$ ), $\Delta$ ref. ( $\left.{ }^{( }\right)$, $\times$present work
8. ISTITUTO DI FISICA DELL'UNIVERSITA' DI NAPOLI ISTITUTO NAZIONALE DI FISICA NUCLEARE -SEZIONE DI NAPOLIVia A. Tari $\mathrm{n}^{\circ} 3-80138$ NAPOLI (Italy) -
8.1 Direct Proton Capture on ${ }^{40} \mathrm{Ca}$
A. BRONDI, P.CUZZOCREA, G.LA RANA, R.MORO, F.TERRASI ${ }^{(+)}$

The study of the proton direct capture on ${ }^{40}$ Ca for extracting spectroscopic factors for the ground and first excited states in ${ }^{41} \mathrm{Sc}$ is in progress.
Excitation functions for the ${ }^{40} \mathrm{Ca}(\mathrm{p}, \gamma){ }^{41} \mathrm{Sc}$ capture reaction have been measured in the proton energy range $1.8-3.1 \mathrm{MeV}$. Measurements have been performed at the 4 MV Dynamitron Tandem accelerator of the University of Bochum using proton beam currents up to $50 \mu \mathrm{~A}$.
Direct capture to the ground state and first excited state in ${ }^{41}$ Sc has been observed and preliminary analysis of the spectra shows that relative values of the observed yields are in agreement with cross sections calculated using a simple square well model.
$(+)$ - in collaboration with B. Gonsior, N: Notthoff and E. Kabuss- Institut für Experimentalphysik der Ruhr-UniversitatBochum.

Lifetime measurement for the level at 1701 keV in ${ }^{18} \mathrm{~F}$
A.BRONDI, P.CUZZOCREA, A.D'ONOFRIO, R.MORO, M.ROMANO,F.TERRASI

The Doppler-shift attenuation method by the inverse reaction ${ }^{3} \mathrm{He}\left({ }^{16} \mathrm{O}, \mathrm{pr}\right){ }^{18} \mathrm{~F}$, for producing high-velocity recoiling nuclei which are showed down in alluminum: and tantalum, has been used for measuring the lifetime of the 1701 keV level in ${ }^{18} \mathrm{~F}$. The oxigen beam of 15.18 and 21 MeV energy was produced by the Tandem accelerator of the University of Naples. The analysis of the $\gamma$-ray lineshape of 660 keV line deexciting the level at 1701 keV with the stopping power data of Northcliffe and Schilling yields the following results: $1.41 \pm 0.28 \mathrm{ps}$ and $1.07 \pm 0.14 \mathrm{ps}$ for the backings tantalum and alluminim. respectively.
8.3 Cluster induced pre-equilibrium reactions
R.BONETTI', L.COLLI-MILAZZOㅇ, A.DE ROSA, G.INGLIMA, E.PERILLO, V.RUSSO, M.SANDOLI

The study of the pre-compound emission has been continued by measuring angular distributions and excitation functions of the protons exciting some low-lying states in the ${ }^{25} \mathrm{Mg}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{27} \mathrm{Al}$ and ${ }^{27} \mathrm{Al}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{29}$ Si reactions in the ${ }^{3}$ He energy range between 9 and 14 MeV . For the second reaction also the emitted total proton spectrum was measured at 13 MeV incident energy.
${ }^{\circ}$ Istituto di Scienze Fisiche Università di Milano
INFN Sezione di Milano

The results have been compared with the quantum-mechanical description for the pre-compound emission recently developed by Feshbach. This theory predicts the existence of two independent processes relative to two different kinds of statistical approximations.
The first(statistical multistep compourd emission: SMCE) must be applied when all the excited particles in the intermediate nucleus are boand, while the second one (statistical multistep direct emission: SMDE) describes the emission of particles when at least one particle is excited to unbound levels.
The shape of the angular distributions would allow evidentia ting the presence of these two different mechanisms as the SMCE angular distribution is expected to be symmetrical to $90^{\circ}$, while the SMDE one should be forward peaked. The angular distributions of the ${ }^{25} \mathrm{Mg}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{27} \mathrm{Al}$ show the effect of interference in the entrance channel and the proton spectra show the presence of fluctuations in the SMCE. The excitation functions of the ${ }^{27} \mathrm{Al}\left({ }^{3} \ddot{\mathrm{He}}, \mathrm{p}\right){ }^{29}$ Si reaction show the presence of statistical fluctuations in the multistep compound emission. The coeherence energies are of the order of 250 keV clearly different from that of the evaporation emission $|1||2|$.
|1| A.De Rosa, G.Inglima, E.Perillo, M.Sandoli, R.Bonetti, L.Colli-Milazzo and F. Shahin: Phys. Rev. C, 21 (1980)816.
$|2|$ A.De Rosa, G.Inglima, V.Russo, M.Sandoli: Nuovo Cimento 58A(1980) 254.
$111.9$


[^0]:    ( ${ }^{\circ}$ ) Istituto di Fisica dell'Üniversità di Bologna

[^1]:    ( $)$ Facoltà di Ingegnería dell'Jniversità di Bologna.

[^2]:    (a) G. Lengo and F. Fabbri; "Angular distributions in photonucleon and nucleon radjative capture reactions", Phys. Lett. 84B (1979) 285.

