EnE comitato nazionale ricerca e sviluppo energia nucleare e energie alternative dipartimento tecnologie intersettoriali di base divisione fisica e calcolo scientifico

EVALUATION OF CM-248 NEUTRON CROSS SECTIONS
FROM $10^{-5} \mathrm{EV}$ TO 15 MeV

G, MAINO, M, ROSETTI, M, VACCARI, A, VENTURA
work performed under enea-iaea research agreement n. 2114/cF
november 1983

NDS LERA解 CGFi

EVALUATION OF ${ }^{248} \mathrm{Cm}$ NEUTRON CROSS SECTIONS FROM $10^{-5} \mathrm{eV}$ TO. 15 MeV
 G.Maino, M.Rosetti, M.Vaccari, A.Ventura

Nov. 1983

Work performed under ENEA-IAEA
research agreement n. $2114 / \mathrm{CF}$

INDC (ITY) - 10
TIB/FICS (83)4

CONTENTS

1. Introduction Pag. 1
2. General information 1
3. Resolved resonance region4
4. Unresolved resonance regio " 6
5. Thermal cross sections and resonance integrais - 7
The continuum region.................................. 6. The continuum region 8
6.1. Optical model calculations9
6.2. Statistical model calculations 9
6. Average number, $\bar{\nu}$, of neutrons per fission... 12
7. Energy spectra of emitted neutrons. 12
8. Conclusions. 13
Acknowledgments. 14
References 15
Tables 17
Figure captions. 25
Figures 26

INDC(ITY)-10

```
RIASSUNTO - Dopo una breve rassegna dei dati sperimentali
più importanti, è descritta una valutazione delle sezioni
d'urto neutroniche dell'isotopo Cm-248 nell'intervallo ener-
getico }1\mp@subsup{0}{}{-5}\mathrm{ e v - 15 MeV.
```

INDC (ITY) - 10

SUMMARY - After a short review of the most important experimental data,a Cm-248 neutron cross section evaluation in the energy range $10^{-5} \mathrm{eV}-15 \mathrm{MeV}$ is described.

1. INTRODUCTION

The neutron cross sections of heavier Curium isotopes are very important in the description of the ${ }^{252}$ Cf production chain by plutonium irradiation in high-flux reactors.

The present work describes an evaluation of ${ }^{248} \mathrm{Cm}$ neutron cross sections in the energy range $10^{-5} \mathrm{eV}-15 \mathrm{MeV}$, and supersedes a previous work /1/, limited to the resonance region.

2. GENERAL INFORMPTION

```
    This section is devoted to a concise review of the
experimental literature taken into account in the present
evaluation.
    Since measurements of }\mp@subsup{}{}{248}\textrm{Cm}\mathrm{ neutron data published up
to }1979\mathrm{ have already been discussed in ref./1/, they will
be merely quoted here, with more emphasis on the most recent
experiments.
Thus, our main sources of experimental information are listed below:
a) The fission cross section was analysed by Moore and Keyworth \(/ 2 /\) in the energy range \(20 \mathrm{eV}-3 \mathrm{MeV}\). A single-level resonance analysis, carried out between 20 and 800 eV , made it possible to identify 8 resonances
```

and assign fission widths to 3 of them, assuming an avèrage radiative width $\bar{\Gamma}_{\boldsymbol{\gamma}}=37 \mathrm{meV}$.
b) An accurate measurement of the total cross section in the range $0.5 \mathrm{eV}-3 \mathrm{KeV}$ is due to Benjamin et al./3/. The results of this experiment still constitute the corner stone of our evaluation in the resonance region. In this experiment, 47 resonances were identified and their reduced neutron widths, Γ_{n}^{0}, determined by assuming $\bar{\Gamma}_{\gamma}=26 \mathrm{meV}$. The shape analysis of the first 3 resonances made it possible to determine Γ_{n}^{0} and Γ_{γ} simultaneously. The Authors of ref./3/ computed also the resonance contribution to the thermal capture cross section and resonance integral.
c) $\quad \sigma_{n \gamma}\left(E_{n}=0.0253 \mathrm{eV}\right)$ and $I_{n \gamma}$ were measured by various Authors, with widely different results, often in strong mutual disagreement.

This is the case of the thermal capture cross section, $\sigma_{n \gamma}$, with an old experimental value of $(7.0 \pm 2.0) \mathrm{b} / 4 /$, replaced by somewhat lower figures, of the order 2-3 b in successive experiments /5/, /6/, and raised again to (10.7 ± 1.5) b by a measurement due to Gavrilov and Goncharov /7/. The values of $I_{n \gamma}$ given in /5/, /6/, /7/ are in reasonable agreement.
d) $\quad \sigma_{n f}(0.0253 \mathrm{eV})$ and $I_{n f}\left(E_{n}>0.625 \mathrm{eV}\right)$ were measured by Benjamin et al. $/ 8 /$, using ${ }^{235}$ U as a standard.
A more recent experiment, carried out by Zhuravlev et al./9/, using again ${ }^{235} \mathrm{U}$ as a reference, provided values of $\sigma_{n f}(0.0253 \mathrm{eV})$ and $I_{n f}\left(E_{n}>0.5 \mathrm{eV}\right)$ in good agreement with the results of ref./8/.
A recent review of experimental values of thermal cross sections, resonance integrals and resolved resonance parameters is due to Belanova and Kolesov /10/.
e) A recent measurement of the fission cross section in the energy range 0.3 - 5.5 MeV is due to Fomushkin et al. /11/, by means of the time-of-flight method, using a nuclear explosion as a pulsed neutron source. The fission cross section, relative to ${ }^{235} U(n, f)$ agrees well with ref./2/ up to about 2 MeV , and shows a decreasing trend above that energy, while the data of ref. $/ 2 /$ are more or less constant up to 3 MeV .
g) A very recent and accurate measurement of $\sigma_{n f}$ between 0.1 eV and 80 KeV is due to a Rensselaer - Knolls - Oak Ridge-Livermore collaboration /12/, /13/. The preliminary measurement described in ref./12/ was performed by using the Rensselaer Intense Neutron Spectrometer (RINS), consisting of a lead slowing-down spectrometer coupled to an electron linac, which produces an intense photoneutron flux in the $1 \mathrm{eV}-100 \mathrm{Kev}$ range. The target was a $27 \mu \mathrm{~g}$ deposit of highly enriched ${ }^{248} \mathrm{Cm}$. Use was made of the time-of-flight method. The fission cross section was provisionally normalized by setting

```
the low-energy half-area of the 76 eV resonance equal to that calculated from a set of resonance parameters deduced from scientific literature. A subsequent measurement, described in ref. /13/, used the same experimental facility to determine simultaneously 244-246-
248}\textrm{Cm}\mathrm{ and }\mp@subsup{}{}{235 80 KeV . The results were normalized to the ENDF/B-V \({ }^{235} U(n, f)\) cross section.
The }\mp@subsup{}{}{248}\textrm{Cm}\mathrm{ sample consisted of a }31.16 \mug deposit o
highily - enriched }\mp@subsup{}{}{248}\textrm{cm}\mathrm{ (96.89% in mass).
The experiments /12/, /13/ provide us with the first measurement of \(\sigma_{n f}\) in the \(0.1-20 \mathrm{eV}\) range, not covered by ref./2/. Moreover, the data from 20 eV to 80 KeV can be taken as more reliable than those of ref./2/ in the same range, which had been obtained using a nuclear explosion as the pulsed neutron source.
```


3. RESOLVED RESONANCE REGION

The resolved resonance region extends up to 1.3 KeV , as in our previous work; /1/, whose list of single-level Breit-Wigner parameters has been modified at a few points, to take into account new experimental results, /13/, as shown in Table I of the present work. The list still contains 37 resonances, in the range 7.3-1300 ev, plus

Abstract

a bound level at $E_{0}=-9 \mathrm{eV}$, to reproduce experimental thermal cross sections. Energies, E_{0}, neutron widths, Γ_{n}, radiative widths, Γ_{γ}, still come from ref./3/. As for the fission widths, Γ_{f}, essential changes refer to two resonances at 7.3 eV and 35 eV , for which the Authors of ref. /13/ have obtained values of 0.06 and 0.07 meV , respectively, on the basis of their fission measurements and of neutron and gamma widths taken from ref./3/. These results fill an important gap in experimental data, but, being so small, cause further difficulties in reproducing the thermal fission cross section and resonance integral. This point will be further discussed in Section 5. For resonances whose Γ_{f}^{\prime} 's are not deduced from experiment, we have retained the average value $\bar{\Gamma}_{f}=1.3 \mathrm{mev}$, suggested in ref. $114 /$, which agrees with our statistical model calculations in the KeV region.

Cross sections in the resolved resonance region are shown in fig. la-b-c-d. The calculations have been carried out by means of the CRESO code /15/, using a multilevel Breit-Wigner formalism in order to avoid the possible appearance of negative values of the interference dips in the elastic cross section.

4. UNRESOLVED RESONANCE REGION

In the energy range $1.3-10 \mathrm{KeV}$ the neutron cross sec-
tions have been calculated by means of average resonance
parameters, whose values are those deduced from the resolved
resonance set, or change slowly with energy, so as to smoothly
join the resonance region to the continuum, above 10
KeV, where cross sections have been derived from optical
and statistical model calculations. Table II lists, in
ENDF/B-IV format, the average parameters for the unresolved
region. Since there are no changes with respect to ref.
/1/, the reader is referred to our previous work for a
critical discussion. Here, we only quote the most important
parameters:
a) the average s-wave resonance spacing, $\overline{\mathrm{D}}$, keeps the value 24.5 eV estimated in /1/;
b) the s- and p-wave neutron strength functions are still $S_{0}=1.2 \times 10^{-4}$ and $S_{1}=3 \times 10^{-4}$, as in $/ 1 /$;
c) the average-radiation width for s-wave resonance is $\bar{\Gamma}_{r}\left(J^{\pi}=1 / 2^{+}\right)=27 \mathrm{meV} ;$
d) the average fission widths for s-waves ($\mathrm{J}^{\pi}=1 / 2+$) and p-waves $\left(J^{\pi}=1 / 2^{-}, 3 / 2^{-}\right)$slightly increase with neutron energy, so as to reproduce the results of HauserFeshbach calculations in the same energy range.

5. THERMAL CROSS SECTIONS AND RESONANCE INTEGRALS

```
Experimental and calculated values of thermal capture and fission cross sections are listed in Table III, the corresponding resonance integrals in Table IV.
As already mentioned in Section 2, there are serious discrepancies in the experimental capture cross sections, ranging from 2 to 10 b , while the measured fission cross sections agree within experimental errors, with a mean value 0.35 b .
If one adopts the lower limit 2 b for \(\sigma_{n \gamma}\), it is possible to reproduce it in calculations based on experimental resonances, without resorting to a bound level: such a result had already been obtained in ref. /3/. On the other hand, there is no way of reproducing \(\sigma_{n f}\). Therefore, we have preferred to keep a bound level at \(E_{0}=-9 \mathrm{eV}\), increasing its fission width from 1 meV (ref./1/) to 1.3 meV , to compensate for the smaller fission width assigned to the first resonance, at \(E_{o}=7.3 \mathrm{eV}\), for which one now has \(\Gamma_{f}=0.06 \mathrm{meV}\), value taken from ref./13/, instead of 1 meV as assumed in ref./1/. Thus, we obtain \(\sigma_{n f}(0.0253 \mathrm{eV})=0.393 \mathrm{~b}\), in good agreement with experimental values \(/ 8 /\), \(/ 9 \%\), and \(\sigma_{n y}(0.0253 \mathrm{eV})=\) 9.808 b , which agrees with the most recent datum, in ref. /7/.
As for the capture resonance integral, we obtain \(I_{n \gamma}\) \(\left(E_{n}>0.5 \mathrm{eV}\right)=270 \mathrm{~b}\), which compares well with a number of
```

```
literature values in refs. /3/, /5/, /7/. The agreement with
experiments is poorer for the fission resonance integral: in
this case, one sums these two contributions: the first, which
comes from the resonance region, is I Inf (0.5 eV < E E < < < |
KeV)=3.398 b, the second, from the continuum, is Inf
(10 KeV < E E < < 15 MeV) = 6.216 b, thus giving Inf (0.5 eV < E 
<15 MeV) = 9.614 b, to be compared with experimental values
Of the order 13 b (refs /8/ and /9/). This discrepancy could
be reduced if the fission cross section reached a high
plateau }\overline{\sigma}\mathrm{ above 15 MeV, up to e.g. 30 MeV. In this case one
could add to Inf a further contribution of the order
\sigma
data would require \overline{\sigma}=4.9 b. Therefore, the matter remains
unsolved.
```


6. THE CONTINUUM REGION

```
    In the energy range 10 KeV - 15 MeV direct and compound
nucleus contributions to various processes have been estimat-
ed through coupled-channel optical model calculations and
statistical Hauser - Feshbach calculations, respectively.
    Cross sections have been evaluated for the following
reactions: elastic, total and level inelastic, first and
second chance fission, and (n,2n). Reactions having a
threshold above 10 MeV, like (n, 3n) and (n,2nf), have been
```

```
neglected. Preequilibrium competitions to various processes
are not taken into account, because they are expected to
become important only above 15 MeV.
```

6.1. Optical model calculations

Coupled-channel calculations have been performed by means of the JUPITOR /16/ and ADAPE /17/ codes: the former in the energy range from 10 KeV to 6 MeV , the latter from 6 MeV to 15 MeV , where the adiabatic approximation, on which ref. /17/ is based, seems to be good enough. The states actually coupled in our non-adiabatic calculations are the $0_{1}+, 2_{1}+, 4_{1}+$ members of the ground-state rotational band. The parameters of our optical potential are given in Table v.

The Coupled-channel calculations give the direct contribution to elastic and inelastic scattering: total cross sections and angular distributions have been evaluated for elastic scattering and for excitation of the $2_{1}+$ level. The compound nucleus contributions to these processes have been obtained by means of Hauser-Feshbach calculations, described in the next subsection, and added to the direct contribution to elastic and inelastic scattering cross sections.

6.2. Statistical model calculations

The compound nucleus contributions to the reactions of interest in the continuum region have been evaluated by means

```
of a modified version of the HAUSER*4 code /18/.
    Three competing decay channels, neutron, gamma, and
fission, are considered; the decay of the compound nucleus
249 Cm in the three channels makes it possible to evaluate
the compound elastic, radiative capture and first-chance
fission cross sections, respectively.
    The formation of a compound nucleus }\mp@subsup{}{}{248}\textrm{Cm}\mathrm{ , via neutron
emission from }\mp@subsup{}{}{249}\textrm{cm}\mathrm{ , and its subsequent decay in neutron,
gamma and fission channels allows us to compute cross sec-
tions for ( n, 2n), (n, n'\gamma), (n, n'f), respectively, with the
assumption that these reactions can be described as two-
step compound nucleus processes, thus neglecting any non-
-equilibrium contribution.
    The decay channels of }\mp@subsup{}{}{248}\textrm{Cm}\mathrm{ and. }\mp@subsup{}{}{249}\textrm{Cm}\mathrm{ are labelled
with various parameters: energy, spin, and parity of discrete
levels and, for excitation of the continuum, level density
parameters, to which calculated cross sections are very
sensitive. Level densities are described by a back-shifted
Fermi gas formula: since such a simple expression cannot
give a realistic description of excited nuclei, its parame-
ters do not have physical meaning, but only allow us to fit
experimental cross sections.
    Moreover, the fission channel is characterized by a
two-humped fission barrier, for which one specifies height
and curvature of the two saddle points. Our choice of
barrier parameters for the compound nucleus }\mp@subsup{}{}{249}\textrm{Cm}\mathrm{ is con-
```

```
sistent with the results of the analysis of experimental
fission probabilities for odd-mass actinides in ref./19/.
The barrier parameters for the compound nucleus }\mp@subsup{}{}{248}\textrm{Cm}\mathrm{ are
in agreement with the results of ref. /20/.
    Level density parameters in the same fission channel
have been indirectly checked by reproducing the experimen-
tal fission cross section of the target nucleus }\mp@subsup{}{}{247}\textrm{Cm
/21/.
All the parameters relevant to the description of the three decay channels for both \({ }^{248} \mathrm{Cm}\) and \({ }^{249} \mathrm{Cm}\) are given in Tables VI to VIII.
The results of our calculations in the continuum region are given in graphic form: Fig. 2 shows the evaluated fission cross section, together with experimental data from refs. /2/, /11/, /13/, Fig. 3 the main evaluated cross sections in the range 10 KeV - 15 MeV . Examples of angular distributions of scattered neutrons, leaving \({ }^{248} \mathrm{Cm}\) in \(0_{1}+\), and \(2_{1}+\) states at incident neutron energies \(5,8,11,14 \mathrm{MeV}\) are given in Figs. 4a-b-c-d, respectively. Finally, Fig. 5a-b-c-d show elastic, capture, fission and total cross sections over the complete evaluation range, \(10^{-5} \mathrm{eV}-15 \mathrm{MeV}\).
```

7. AVERAGE NUMBER, $\bar{\nu}$, OF NEUTRONS PER FISSION

The procedure and results of ref./1/ have not been modified: the estimate of the average number, $\bar{\nu}$, of neutrons emitted per fission by the compound nucleus ${ }^{249} \mathrm{Cm}$ is obtained as a function of incident neutron energy by means of a semiempirical formula worked out in ref./22/, normalized to the experimental value $\bar{\nu}_{\text {th }}=3.14 \pm 0.12$, obtained in ref./23/ for thermal-neutron induced fission. The resulting function has the form:

$$
\bar{\nu}\left(E_{n}\right)=3.14+0.24 E_{n}\left(E_{n} \text { in } M e V\right)
$$

8. ENERGY SPECTRA OF EMITTED NEUTRONS
```
In describing the energy distributions of neutrons emitted in various reactions, we have made the somewhat crude hypothesis that these distributions can be represented by simple evaporative formulae. The first chance fission spectrum has been approximated by a standard Maxwellian curve:
\[
f\left(E, E^{\prime}\right)=\alpha \sqrt{E} \exp \left(-E^{\prime} / \mathcal{\vartheta}(E)\right)
\]
Here, \(E\) is the incident neutron energy, \(E\) ' the emitted neutron energy, \(\mathcal{F}(E)\) an effective temperature, in energy units, whose dependence on \(E\) has been estimated by extrapolation of data in ref. /24/.
The energy spectra for neutrons emitted in the reac-
```

```
tions (n,n'\gamma) with excitation of the continuum, (n, 2n), ( \(n, n\) 'f) are represented by evaporation formulae of the kind:
    g(E,E') = \betaE' exp(-E'/~(E))
    The effective thresholds for these three reactions have
been taken at }\mp@subsup{E}{1}{}=0.51 MeV, E E N = 6.21 MeV, E E =6.10
MeV, respectively.
    \vartheta(E) can be interpreted in these cases as the excita-
tion temperature of the residual nucleus after emission of an
E'\simeq O neutron: { has been evaluated for the residual nuclei
248}\textrm{Cm}\mathrm{ (emission of, the first neutron in (n,2n)) and }\mp@subsup{}{}{247}\textrm{Cm
(emission of the second neutron in ( }\textrm{n},2\textrm{n})\mathrm{ ) by means of the
NUDENS code /25/, which is based on a finite - temperature
Nilsson - Bardeen - Cooper - Schrieffer (NBCS) formalism.
I as a function of E is plotted in fig. 6 for all the reac-
tions considered, from their effective threshold up to 15
MeV .
```


9. CONCLUSIONS

```
\({ }^{248} \mathrm{Cm}\) neutron data may be considered satisfactory in resonance region, thanks to the measurement of total cross section in ref./3/ and of fission cross section in refs./12/, 113/. Thermal data leave us two unsolved problems, namely the discrepancies of capture cross sections (/5/, /6/, /7/) and the difficulties in reproducing the fission resonance
```

integral (/8/, /9/). The only two fission measurements in the continuum (/2/, /11/) show discrepancies above 2 MeV . New experiments in this region are, therefore, desirable and could lead to a number of modifications in our evaluated parameters.

The data obtained in the present work have been compiled and written in files according to the ENDF/B-IV format rules /26/, by means of the SYSMF system of codes /27/.

ACKNOWLEDGEMENT

We thank Prof. R.C.Block for providing us with the data of ref. /13/ before publication.

REFERENCES

```
/1/ T.Martinelli, E.Menapace, M. Motta, M.Vaccari, A.Ventu-
    ra: report CNEN - RT/FI(80)10 (1980).
/2/ M.S.Moore and G.A. Keyworth: Phys. Rev. C3, 1656 (1971)
/3/ R.W. Benjamin, C.E.Ahlfeld, J.A. Harvey, NW. Hill:
    Nucl. Sci. and Eng., 55, 440 (1974).
/4/. A.Chetam-Strode, R.E. Druschel, J.Halperin, R.J. Silva:
    progress report ORNL-3832, Oak Ridge Nat. Lab., 1 (1965)
/5/ R.E.Druschel, R.D. Baybarz, F.Halperin: progr.rep.
    ORNL-4891, Oak Ridge Nat.Lab., 23 (1973).
/6/ K.W. Mac Murdo: private communications to the Authors
    of ref./3/.
/7/ V.D. Gavrilov and V.A. Goncharov: Sov. J.At.En. 44, 274 (1978)
/8/ R.W. Benjamin, K.W. Mac Murdo, J.D. Spencer: Nucl. Sci. and Eng. 47, 203 (1972).
/9/ K.D. Zhuravlev, N.J.Kroshkin, A.P.Chetverikov: Sov. J. At. En. 39, 907 (1976).
/10/ T.S.Belanova and A.G.Kolesov: Proc. of the \(5^{\text {th }}\) Sov.Conf. on Neutron Physics, Kiev, 1980, 3, 256 (in Russian).
/11/ E.F. Fomushkin et al., Proc. of the \(5^{\text {th }}\) Sov. Conf. on Neutron Physics, KieV, I980, 3, 25 (in Russian).
/12/ H.T. Maguire Jr., C.Stopa, D.R.Harris, R.C.Block, R.E. Slovacek, R.W., Hoff, J.W.Dabbs: Trans. of the Am. Nucl. Soc. 38 , 648 (1981).
/13/ C.R.S. Stopa, H.T.Maguire Jr., D.R.Harris, R.C. Block, R.E. Slovacek, J.W.T Dabbs, R.J. Dougan, R.W. Hoff, R.W.Lougheed: Proc. of the Meeting on Advances in Reactor Physics and Core Thermal Hydraulics, Kiamesha Lake (N.Y.) 2, 1090 (1982).
/14/ M.S. Moore: Proc. of the Meeting on Transactinium Isotope Nuclear Data, Karlsruhe, 1975, IAEA - 186, 2, 161 (1976).
/15/ G.C. Panini: report CNEN-RT/FI(81) 30 (1981).
```

/16/ T.Tamura: Rev. of Mod. Phys. 37, 679 (1965).
/17/ F.Fabbri and L.Zuffi: report CNEN-RT/FI(69) 7 (1969).
/18/ F.M. Mann: report HEDL-TME 76-80, Hanford Eng. Devl. Lab. (1976).
/19/ B.B.Back, H.C.Britt, O.Hansen, B.Leroux: Phys. Rev. C10, 1948 (1974).
/20/ B.B.Back, O.Hansen, H.C.Britt, J.D. Garrett: Phys. Rev. C9, 1924 (1974).
/21/ G. Maino, E.Menapace, M.Vaccari, A.Ventura: report ENEA-RT/FIMA(82) 7 and INDC(ITY)-9 (1982).
/22/ R.J. Howerton: Nucl. Sci. and Eng. 62, 438 (1977).
/23/ K.D.Zhuravlev et al: Proc. of the $2^{\text {nd }}$ Sov. Conf. on Neutron Physics, KieV, 1973, 4, 57 (in Russian).
/24/ V.P. Kovalev and V.S. Stavinsky: Sov. J. At. En. $\underline{5}$, 166 (1958)
/25/ G.Maino, M.Vaccari, A.Ventura: Comput. Phys. Comm., 29, 375 (1983)
/26/ D.Garber et al.: report BNL-NCS-50496 (ENDF 102), Brookaven Nat. Lab. (1975).
/27/ G.C. Panini and M.Vaccari: "SYSMF system of codes", unpublished.
/28/ Present work.

TABLE I

PARAMETERS FOR THE RESOLVED RESONANCE REGION

CURIUM-248

TABLE II

AVERAGE PARAMETERS FOR THE UNRESOLVED RESONANCE REGION

CURILMM-248

NIS ISOTOPE	1	2AI =	96248.	$\triangle B N=$	1.000	$L F W=1$	NER= 2
range	2	$E_{L}=$	1300.00000	$E H=$	10000.0	LKU= 2	$L R F=1$
		SPI	0.0 A $=$	0000	$N L S=2$		

GROUP NO. 1

L-STATE 1.AWRI = $245.9410 \quad L=0$ NJS $=1$
(ES(I), I=1, 2)
1.30000E+031.00000E+04

J-STATE 1 MUF = 1
Gino
2.45000E+015.0000UE-01 1.00000E+00 2.34000E-03 2.70000E-02
(GF(I),I=1, 2)
1.20U0UE-03 1.30400E-03

UNHESOLVED FORMULA REGUIREO.INLY FISSIUN WIOTHS ARE ENERGY CEPENUENT

GROUP NO. 2

L-STATE 2 AWRI = $245.9410 \quad L=1$ NJS=2
(ES(I),I=1, 2)
$1.30000 E+031.00000 E+04$
J-STATE 1 MUF=1
D AJ GMUN GNO GG
2.45000E+015.0000UE-01 1.00000E+UU 7.35000E-032.73000E-02
(GF (I), $1=1,2$)
J-STATE 2 MUF= 1
AJ AMIJN GNO GG

$\operatorname{IGF}(I), I=1,2), 2$
G. $98000 \mathrm{~F}-04$ 9.80U00E-04

UNRESOLVEU FORMULA REGUIRED.UNLY FISSION WIUTHS ARE ENERGY DEFENOENT

Thermal cross sections

Capture (b)	Year	Ref.	Comments	
$7.2+2.0$	1965	$\|4\|$	Experimental	
$2.63+0.26$	1973	$\|5\|$	Experimental	
2.51 ± 0.26	1974	$\|3\|$	Calculated from 47 resonances	
10.7 ± 1.5	1978	$\|7\|$	Experimental	
2.47	1980	\|1]	Calculated from the resonances of $\|2\|$ and $\|3\|$	
9.81	$\begin{aligned} & 1980 \\ & 1983 \end{aligned}$	$\|1\|$	Calculated, with a bound level at $E_{0}=-9 \mathrm{eV}$	
Fission (b)	Year	Ref.	Comments	
0.34 ± 0.07	1972	$\|8\|$	Standard: ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$	
0.39 ± 0.07	1976	\|9		Standard: ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$
0.036	1980	\|1		Calculated, from the resonances of $\|2\|$ and $\|3\|$
0.393	1983	$\|28\|$	Calculated, with a bound level at $E_{0}=-9 \mathrm{eV}$	

Resonance integrals

Capture (b)	Year	Ref.	Comments	
350 ± 40	1965	$\|4\|$	Experimental	
267 ± 26.7	1973	$\|5\|$	Experimental	
$259+12$	1974	\|3		Calculated from 47 resonances
250+24	1978	$\|7\|$	Experimental	
270	1983	\| 28		Evaluated from the adopted resonances ($\mathrm{E}>0.5 \mathrm{eV}$)
Fission (b)	Year	Ref.	Comments	
13.2 ± 0.8	1972	$\|8\|$	$\begin{aligned} & \text { Standard: }{ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f}) ; \\ & \text { E }>0.625 \mathrm{eV} \end{aligned}$	
13.1 ± 1.5	1976	\|9		$\begin{aligned} & \text { Standard: }{ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f}) \text {; } \\ & \mathrm{E}>0.5 \mathrm{eV} \end{aligned}$
3.398	1983	\|28		Calculated from the adopted resonances.E> 0.5 eV
9.614	1983	\|28		Calculated, with contribution from the continuum. $\mathrm{E}>0.5 \mathrm{eV}$

DEFORMED OPTICAL MODEL POTENTIAL

$$
\begin{aligned}
& V=-(V+i W) \frac{1}{1+\exp \left[\left(r-R_{a}\right) / a\right]}-4 i W_{D} \frac{\exp \left[\left(r-R_{b}\right) / b\right]}{\left\{1+\exp \left[\left(r-R_{b}\right) / b\right]\right\}^{2}} \\
& -V_{S O} \vec{\sigma} \cdot \vec{l} \frac{*_{\pi}^{2}}{a r} \frac{\exp \left[\left(r-R_{a}\right) / a\right]}{\left\{1+\exp \left[\left(r-R_{a}\right) / a\right]\right\}^{2}} ; \text { here: } \\
& R_{a, b}=R_{a, b}^{(0)}\left(1+\beta_{2} Y_{2}^{0}\left(\theta^{\prime}\right)+\beta_{4} Y_{4}^{0}\left(\theta^{\prime}\right)\right) \quad\left(\theta^{\prime}\right. \text { refers to the body-fixed system) } \\
& \lambda_{\pi}=\lambda_{\pi} / 2 \pi \quad \text { (reduced pionic Compton wavelength) } \\
& V=47.01-0.267 E_{n}-0.00118 E_{n}^{2}(\mathrm{MeV})\left(E_{\mathrm{n}} \quad \mathrm{in} \mathrm{MeV}\right) \\
& W=0 \\
& W_{D}= \begin{cases}3.195 \mathrm{MeV} & \left(E_{\mathrm{n}} \leq 2.25 \mathrm{MeV}\right) \\
2.25+0.42 \mathrm{E}_{\mathrm{n}}(\mathrm{MeV}) & \left(E_{\mathrm{n}} \mathrm{in} \mathrm{MeV}\right)\end{cases} \\
& \nabla_{\text {SO }}=7.2 \mathrm{MeV} \\
& R_{a}^{(0)}=1.259 \mathrm{fm} ; \quad R_{b}^{(0)}=1.237 \mathrm{fm} ; \\
& a \quad=0.66 \mathrm{fm} \quad ; \quad b=0.48 \mathrm{fm} \text {; } \\
& \beta_{2}=0.246 \therefore \quad \therefore \quad \beta_{4}=0.02
\end{aligned}
$$

TABLE VI

Discrete levels and level density parameters for

 Cm-248 as decaying nucleusA) Neutron channel $\left({ }^{(C m}-248 \rightarrow \mathrm{Cm}-247+n\right) \quad|21|$

Discrete levels

$E(\mathrm{KeV})$	$\mathrm{J} \pi$
0.0	$9 / 2^{-}$
61.5	$11 / 2^{-}$
133.0	$13 / 2^{-}$
217.0	$15 / 2^{-}$
227.0	$5 / 2^{+}$
266.0	$7 / 2^{+}$
285.0	$7 / 2^{+}$
309.0	$\left(17 / 2^{-}\right)$

Continuum

$E>318 \mathrm{KeV}$, level density described by the formula:

$$
\rho(E, J)=\frac{(2 J+1)}{24 \sqrt{2} \sigma^{3}} \quad \frac{\exp (2 \sqrt{a(E-\Delta)})}{a^{1 / 4}(E-\Delta+T)} 5 / 4 \quad \exp \left[-J(J+1) / 2 \sigma^{2}\right]
$$

where [21] :

$$
\begin{aligned}
\sigma^{2} & =c T \\
\mathrm{E}-\Delta & =a T^{2}-\mathrm{T} \\
\mathrm{a} & =25.2 \mathrm{MeV}^{-1} \\
\Delta & =-0.69 \mathrm{MeV} \\
\mathrm{c} & =100 \mathrm{MeV}^{-1}
\end{aligned}
$$

B) Gamma channel $\left(\mathrm{C}_{\mathrm{m}}^{\mathrm{*}}-248 \rightarrow \mathrm{Cm}-248+\boldsymbol{\gamma}\right)$

Discrete levels

$\mathrm{E}(\mathrm{KeV})$	$\mathrm{J} \pi$
0.0	0^{+}
43.4	2^{+}
143.6	4^{+}
297.0	6^{+}
510.0	8^{+}

Table VI (continued)

Continuum
E $>510 \mathrm{KeV}$, level density formula as in the neutron channel, with parameters [21|:

$$
\begin{aligned}
& \mathrm{a}=24.5 \mathrm{MeV}^{-1} \\
& \Delta=-1.0 \mathrm{MeV}^{-1} \\
& \mathrm{c}=100 \mathrm{MeV}^{-1}
\end{aligned}
$$

C) Fission channel (C * $-248(f)$)

Transition states at the first barrier peak described by a level density formula as before, with parameters |21|:
$a=28.0 \mathrm{MeV}^{-1}$
$\Delta=-1.0 \mathrm{MeV}^{-1}$
$\mathrm{c}=98 \mathrm{MeV}^{-1}$

Table VII

Discrete levels and level density parameters for Cm-249 as decaying nucleus
A) Neutron channel $\left(\mathrm{Cm}_{\mathrm{*}}^{*}-249 \rightarrow \mathrm{Cm}-248+\mathrm{n}\right)$

Discrete levels and continuum are the same as in the gamma channel of Table VI.
B) Gamma channel $\left({ }^{*}\right.$ * $\left.{ }^{*}-249 \rightarrow \mathrm{Cm}-249+\gamma\right)$

Discrete levels

$\mathrm{E}(\mathrm{KeV})$	$\mathrm{J} \pi$
0.0	$1 / 2^{+}$
26.2	$3 / 2^{+}$
42.4	$5 / 2^{+}$
52.2	$7 / 2^{+}$
110.0	$9 / 2^{+}$
110.1	$7 / 2^{+}$
146.0	$9 / 2^{+}$
208.0	$3 / 2^{+}$
220.0	$5 / 2^{+}$
242.0	$5 / 2^{+}$
289.0	$7 / 2^{+}$

Continuum

E $>289 \mathrm{KeV}$, level density formula as in Table VI, with parameters:

$$
\begin{aligned}
\mathrm{a} & =25.2 \mathrm{MeV}^{-1} \\
\Delta & =-1.0 \mathrm{MeV}^{-1} \\
\mathrm{c} & =100 \mathrm{MeV}^{-1}
\end{aligned}
$$

C) Fission channel (${ }_{(\mathrm{Cm}}^{\mathrm{*}}$ 249 (f)) :

Transition states at the first barrier peak described by a level density formula as in Table VI, with parameters:

$$
\begin{aligned}
\mathrm{a} & =26.5 \mathrm{MeV}^{-1} \\
\Delta & =-2.05 \mathrm{MeV} \\
\mathrm{c} & =98 \mathrm{MeV}^{-1}
\end{aligned}
$$

Table VIII

Fission barrier parameters

| Fissioning nucleus: Cm -248 \|21| | | |
| :---: | :---: | :---: |
| First peak | Second peak | |
| Height, $\mathrm{E}_{\mathrm{A}}(\mathrm{MeV})$ Curvature, $\mathrm{r} \mathrm{H}_{A}(\mathrm{MeV})$ | $\mathrm{E}_{\mathrm{B}}(\mathrm{MeV})$ | \# $\omega_{B}(\mathrm{MeV})$ |
| 6.1 0.90 | 4.2 | 0.55 |
| Fissioning nucleus: Cm-249 | | |
| First peak | Second peak | |
| $\mathrm{E}_{\mathrm{A}(\mathrm{MeV})} \quad \hbar \omega_{A}(\mathrm{MeV})$ | $\mathrm{E}_{\mathrm{B}}(\mathrm{MeV})$ | ћ ${ }_{\text {B }}(\mathrm{MeV}$) |
| 5.70 .65 | 4.2 | 0.55 |

Figure Captions

1. Neutron Cross Sections in resolved resonance region:
a) total; b) elastic; c) capture; d) fission.
2. Fission cross section in the range $1 \mathrm{KeV}-15 \mathrm{MeV}$.

Continuous curve: present evaluation. Experimental data, A, ϑ : ref. /2/; 0 : ref./11/; 口: ref./13/.
3. Neutron cross sections in the continuum region ($10 \mathrm{KeV}-15 \mathrm{MeV}$).
4. Angular distributions of neutrons leaving $\mathrm{Cm}-248$ in the O_{1}^{+}and 2_{1}^{+} states: for E_{n} (incident neutron energy) $=5,8,11$, 14 MeV
5. Neutron cross sections over the complete evaluation range ($10^{-5} \mathrm{eV}-15 \mathrm{MeV}$):
a) total;
b) elastic;
c) capture;
d) fission.
6. Effective Temperature $\boldsymbol{\theta}(\mathrm{E})$ versus incident neutron energy E , relative to the energy spectra of emitted neutrons in ($n, 2 n$), (n, f), ($n, n^{\prime} f$) and ($n, n^{\prime} \gamma$) reactions.

Fig. 1a

Fig. 1b

Fig. 1c

Fig. 1d

Fig. 2

CROSS SECTIONS IN THE FAST ENERGY RANGE

Fig. 4a

Fig. 4b

Fig. 4c

Fig. 4d

Fig. 5b

Fig. 5d

N, 2 N 1.ST NEUTR.

Fig. 6a

Fig. 6b

43

N,N' FISSION

INELASTIC CONT.

Fig. 6c

