INDC (JAP) 59 (also EANDC (J)/SAL) JAERI 1162 INDC-318

Evaluation of ²³⁹ Pu Data in the keV and Resolved Resonance Region

June 1968

Ħ 本原子力研究所

Japan Atomic Energy Research Institute

000001

S.

JAERI 1162

日本原子力研究所は、研究成果、調査結果の報告のため、つぎの3種の *行意義言言心、これぞれの通しテレバーを付して、不起防に公司しており ます。

1.	研究報告	まとまった研究の成果あらいはそ の一部における重要な結果の報告	JAERI 10013999
2.	調査報告	紀説、展望、紹介などを含め、研究 の成果、調査の結果をまとめたもの	JAERI 4001-5999
3.	資 料	研究成果の普及、開発状況の紹介。 施設共同利用の手引など	JAERI 6001-6999

このうち既何分については「JAERI レポートー・党」にタイトル・要特 をまとめて掲載し、また新刊レポートは「原研びぶりお」でその都度紹介 しています。これらの研究報告書に関する頒布、版権、復写のお問合せ は、11本原子力研究所找術情報部(茨城県那珂郡東海村)あてお申し越し ください。

Japan Atomic Energy Research Institute publishes the nonperiodical reports with the following classification numbers:

1. JAERI 1001-3999 Research reports,

2. JAERI 4001-5999 Survey reports and reviews,

3. JAERI 6001-6999 Information and Guiding Booklets,

Any inquiries concerning distribution copyright and reprint of the above reports should be derected to the Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, Japan

編集兼発行 日本原子力研究所
 印刷学術図書印刷株式会社

On the Evaluation of ²³⁹Pu Data in the keV and Resolved Resonance Region*

Summary

The new evaluation for ²³⁹Pu cross-sections in the keV region is described. The present evaluation gives a better interpretation to both the α -value and fission cross-section. This evaluation confirms the applicability of the channel theory of fission. In the resolved resonance regions a fit to the cross-section is obtained suitable for use with the GENEX code. For users convenience the resonance parameters are listed.

April 1968

C DURSTON** FRPD, A.E.E. Winfrith

S. KATSURAGI Tokai Research Establishment, Japan Atomic Energy Research Institute

keV 領域と分離域の 20 Pu データの評価**

· 포 | |

keV 領域の²³³Pu、断面積の評価がおこなわれた. その結果は, α の値と分裂断面積をよく説明 すると考えられる. この評価の過程から, 核分裂に対するチャネル理論を 適用する可能性が 確かめ られた. 分離域においては, 共鳴パラメータの組を最近の実験にもとずいて 修正した. 巻末にパラ メータの表を付してある.

1968年4月

C. Durston** FRPD, A.E.E. Winfrih

桂木学 日本原子力研究所東海研究所 原子炉工学部

* This work has been done, when S. KATSURAGI was in A. E. E. Winfrith on attachment from JAERI

^{**} FRPD, A.E.E. Winfrith, Dorchester, Dorset, ENGLAND

			· ·	
			9 17	<u>.</u>
			JAERI 1162 Errata	~ · · · · · · · · · · · · · · · · · · ·
	page	line	as printed	to read _Q
	Title	Japanese Title 👘	評価**	評価 * ·
	Title	4th from bottom	Winfrih	Winfrith
- Yr-	Title	foot note	This work has been done	This work was performed
	1	Fig. 1 title	The effect of increasing	The effect of increasing the
			number of fission channels	number of <u>p-wave</u> fission
				channels
	2	3rd from bottom	threshould	threshold
	4	Fig. 4 (b), 4 (c) titles	superposed	superimposed
	Ð	neading of TABLE 3	two vertical dividing	$L_r(eV) \perp g_r$
	7	Acknowledgment	Dr. B. H. Datrick	Dr. B. H. Patrick
₩ ₹		······································		
			Ω.	
				\2
		ta sta		
		•		

11

Contents

1.	Introduction			
2.	Unresolved region		22 • • • • • • • • • • • • • • • • • • •	
3.	Resolved resonance	Ř		
4.	Conclusion			

目 "次。"

۱.	まえがき
2.	非分離領域の取扱い
3.	分離領域の取扱い
4.	ひすび
	0

1. Introduction

The nuclear data for ²³⁹Pu plays a very important role in predicting the safety and econom of fast power reactors and its accuracy has been remarkably improved in the last few years. I gress in this field has been reviewed by $SCHMIDT^{D}$ in his elaborate evaluation work.

There is, however, some evidence from time of flight experiments and from Zebra integ measurements showing that the data is still less accurate than desired. One indication is the sh of the α -curve obtained from time of flight measurements¹¹) and another is the measurement of value, averaged over a reactor spectrum³). The shape of the α -curve is too low in the keV/reg and the measured α -value is rather high compared with the calculated one. As a result the Schn recommended α -value is thought to be too low. The α -value affects the breeding gain, that is rate of excess production of ²³⁹Pu and consequently the doubling time, though the latter quant depends on power level

GREEBLER'S⁵) new evaluation is adequate for reproducing existing experimental fission crossections; the α -values, however, are still too low. Although GREEBLER's α -value is 9% higher in unresolved resonance region than SCHMIDT's value, it still gives answers which are far from measured α -value in time of flight and Zebra measurements. From the British Nuclear Data standpoint HART⁶ has made an evaluation recommending a higher α -value but does not reject possibility of a lower α -value because of large uncertainties.

The purpose of this report is to select a better interpretation of the available data and reprod the α -curve and fission cross-section curve in the keV region.

2. Unresolved region

Our first objective in this region was to explain the shape of the α -curve using the char theory of fission. The earlier DIVEN and HOPKINS experiment has been reinforced by an experim

by de SAUSSURE et al.¹²⁾ giving excellent definition for the α -curve above 15 keV. However between 15 keV and the resolved region the only direct measurements of α have been two KAPL broad spectrum measurements. Previous evaluations have always tried to include these, thus giving a sharp change of slope in the region of 15 keV and have also explained this change of slope solely in terms of a sharp increase in Γ_f keeping the number of fission channels ν_f constant. We feel however that although Γ_f does increase it is because there are more fission channels available to the fission process, hence ν_f must be increased also allowing Γ_f to increase less rapidly. In Fig. 1 the effect of ν_f is shown. Calculations are made by using parameters listed in TABLE 1.

		0	φ	1
<Γ,	$_{\rm N}^{\rm 0}>~({\rm eV})^{1/2}$	0.939×10^{-3}	=====	0. 334 × 10 ⁻³
< <i>D</i>	> eV	8.78		3.12
< 17	r>eV	0. 0387		0.0387
<Γ	γ> eV	2. 8	4	$\frac{\langle D \rangle_{I=1}}{2\pi} / \left[1 + \exp\left(-2\pi \frac{\breve{E}_{kav} - 50}{150}\right) \right]$
y _R		1 .		···· · 1 ·· ·
۶W	·	· 2	*/	1 · · · · · //
ע,	ρ. 0	∞ TABLE 1(b) ¢ wave	nesonance paran	e () ©
ν _τ	£: 0	$\frac{1}{J} = \frac{1}{0}$	() resonance paran	meters
עז	<u>):</u> (۲.°> (eV	$\begin{array}{c c} & & & \\ \hline \\ \hline$	() resonance param	a 1) ∞ meters)-3 0.53×10-3
ν τ): < Γ ⁰ > (eV < D > eV	$ \begin{array}{c c} \hline \hline TABLE 1(b) & p \text{ wave} \\ \hline \hline$	1) resonance param 1.56 × 10 3.12	$\frac{2}{10^{-3}} = \frac{2}{0.53 \times 10^{-3}}$
ν _τ	$\frac{f_{\pi^0}}{\langle \Gamma_{\pi^0} \rangle} (eV)$ $\frac{\langle D \rangle}{\langle \Gamma_{r} \rangle} eV$		() resonance paran 1.56×10 3.12 0.0387	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ν _τ	$\langle \Gamma_{n}^{0} \rangle (eV)$ $\langle D \rangle eV$ $\langle \Gamma_{r} \rangle eV$ $\langle \Gamma_{f} \rangle eV$	$ \begin{array}{c} $	() resonance param 1 1.56×10 3.12 0.0387 1.003~1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ע , 	$\langle \Gamma_n^0 \rangle (eV)$ $\langle D \rangle eV$ $\langle \Gamma_f \rangle eV$ $\langle \Gamma_f \rangle eV$ ν_n	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	() resonance param 1 1.56×10 3.12 0.0387 1.003~1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ν, 	$\langle \Gamma_{n}^{0} \rangle (eV)$ $\langle D \rangle eV$ $\langle \Gamma_{r} \rangle eV$ $\langle \Gamma_{f} \rangle eV$ ν_{n} ν_{f}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i) resonance paran 1 1.56×10 3.12 0.0387 1.003~1 2 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE l(q) s wave resonance parameters

An alternative explanation was investigated that the inelastic levels at 7.85 keV, and 52.7 keV were responsible for the sharp increase but this was unacceptable because it gave the wrong shape to the α -curve and gave too small σ_f , as shown in Fig.2. At this time SowERBY¹¹⁾ did some calculations using the Uttley total and JAMES fission experimental results producing α -values in the 1-10 keV region with values greater than 1. These results together with integral experiment indications led us to regard the KAPL experiment with some suspicion. Our early calculations with parameters recommended by LYNN however went throug: the KAPL points although not tying in with de SAUSSURE. The effect of changing the LYNN⁷ recommended parameters to increase the α -value in the range 1-10 keV was then investigated and it was found that most changes had very little effect, except for $J=1^+$. s-wave state. Here it was discovered that the values quoted by LYNN⁷ were based on s-wave resolved region analysis giving $\langle \Gamma_f \rangle = 61 \text{ meV}$. A paper by ASGHAR⁵⁰ indicated that $\langle \Gamma_f \rangle$ might be as low as 37 meV and on moving the fission threshould for the 1⁺ s-wave state from +0.15 to +0.2 the $\langle \Gamma_f \rangle$ was reduced from 61 meV to 35 meV. Our calculations with this amendment to the parameters gave a much better fit to the Sowerby α -values (see Fig.3.) and also a good

extrapolation to the de SAUSSURE α -values. We were however reluctant to reduce the Γ_j further than this (hence increase the α -value further) because of lack of evidence in the $\hat{\alpha}$ data. The value of 0.035 eV seemed to be the lowest value that would be compatible with the resolved levels.

4 6 . 11

The method of calculation used was based on the isolated level assumption as indicated paper of CUNNINGHAME et al.?, (see TABLE 2).

Having fitted the α -curve it only remained to check our fission cross-sections. These as pared with the Petrel data and James fission data, and a few others (see Fig. 4).

Using the parameters of TABLE 2, derived from the previous calculations we used our GENEX system to produce a set of unresolved resonances and cross-sections on magnetic taj

 $||_{n}$

. D

resultant cross-sections and α -values are shown in the appropriate figures (Fig. 4. and 5). y fluctuations in the GENEX tape are seen to have a magnitude similar to the Sowerby calculation

. Resolved resonances

The previous GENEX tape¹³⁾ used resolved resonance data up to 52 eV, which were the parameters available at that time. Since that evaluation, a lot of experiments have been perform SCHMIDT has made an evaluation of resolved resonance parameters up to 300 eV using some of t experimental results. This work has been thought reliable for the last few years. In his evalua however, the spin assignment-for each resonance is not correct, because at that time spin assignments were made only for a few resonances.

Following the analysis of §2 Aschar's spin assignments⁸⁾ seem consistent with the α -curve

 \sim

Resolved resonances

TABLE 3 Resolved resonance par	ameters up to 300 eV
--------------------------------	----------------------

E_r (eV)	g r	Γ _π r ⁰ (meV)	r, (meV)	$\tilde{\Gamma}_{fr}$ (meV)	<i>E</i> , (eV)	g,	Γ.,° (meV)	Γ _{rr} (meV)	Γ_{fr} (meV)
298. 1 296. 291. 8 286. 7 282. 5 279. 1 272. 3 269. 2 262. 2 261. 8 255. 8 254. 2 255. 8 219. 2 238. 7 238. 7 210. 3 210. 3 210. 3 210. 3 210. 3 210. 3 210. 5 1199. 2 196. 4 195. 1 185. 7 175. 8 177. 5 166. 9 166. 9 157. 0 151. 8 148. 0 157. 0 151. 8 148. 0	$\begin{array}{c} 0.75\\ 0.5\\ 0.5\\ 0.5\\ 0.75\\ 0.5\\ 0.75\\ 0.5\\ 0.75\\ 0.5\\ 0.75\\ 0.5\\ 0.75\\ 0.5\\ 0.75\\ 0.5\\ 0.75\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.$	$\begin{array}{c} 0.58\\ 0.27\\ 0.41\\ 0.19\\ 1.43\\ 1.42\\ 1.69\\ 1.45\\ 0.52\\ 0.23\\ 5.24\\ 0.35\\ 0.24\\ 1.51\\ 0.93\\ 0.08\\ 1.1\\ 0.33\\ 0.89\\ 6.7\\ 0.21\\ 0.33\\ 1.07\\ 0.43\\ 0.15\\ 0.31\\ 1.07\\ 0.43\\ 0.15\\ 0.31\\ 1.07\\ 0.43\\ 0.15\\ 0.51\\ 0.51\\ 0.51\\ 0.27\\ 0.51\\ 0.24\\ 0.34\\ 0.45\\ 1.98\\ 0.24\\ 2.78\\ 0.05\\ 0.51\\ 0.24\\ 0.34\\ 0.45\\ 1.98\\ 0.24\\ 2.78\\ 0.05\\ 0.18\\ 0.16\\ 0$	38. 7 38. 7 38	$\begin{array}{c} 46.3\\ 86.7\\ 304\\ 1000\\ 5.3\\ 19.5\\ 299\\ 15.3\\ 333\\ 1000\\ 6320\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 15.3\\ 34.3\\ 1000\\ 1000\\ 152.7\\ 68.5\\ 19.7\\ 12.1\\ 1000\\ 1000\\ 52.7\\ 12.1\\ 1000\\ 1000\\ 155.\\ 68.9\\ 337\\ 118.9\\ 1000\\ 1750\\ 1000\\ 1750\\ 1000\\ 14.6\\ 7.0\\ 43.9\\ 1260\\ 47.7\\ 11.8\\ 508\\ 704\\ 1000\\ 36.5\\ 9.1\\ \end{array}$	$\begin{array}{c} 146.3\\ 143.2\\ 136.8\\ 135.4\\ 133.8\\ 135.4\\ 133.8\\ 131.9\\ 127.6\\ 126.3\\ 126.3\\ 123.4\\ 121.3\\ 126.3\\ 123.4\\ 121.3\\ 110.4\\ 106.8\\ 105.4\\ 103.0\\ 101.2\\ 97.6\\ 95.5\\ 90.9\\ 85.6\\ 825.21\\ 74.31\\ 66.83\\ 65.96\\ 63.4\\ 61.1\\ 59.39\\ 58.0\\ 57.6\\ 55.79\\ 52.6\\ 50.22\\ 49.85\\ 47.6\\ 44.5\\ 41.4\\ 35.3\\ 34.6\\ 32.3\\ 27.3\\ 26.2\\ 23.9\\ 22.2\\ 17.6\\ \end{array}$	$\begin{array}{c} 0.75\\ 0.55\\$	$\begin{array}{c} 0.64\\ 0.92\\ 0.82\\ 0.05\\ 0.46\\ 3.02\\ 0.07\\ 0.25\\ 0.07\\ 0.38\\ 1.35\\ 0.07\\ 0.57\\ 0.52\\ 0.03\\ 0.09\\ 0.26\\ 1.\\ 0.34\\ 2.55\\ 0.38\\ 0.15\\ 1.54\\ 0.36\\ 1.43\\ 2.18\\ 0.38\\ 0.15\\ 1.54\\ 0.36\\ 1.43\\ 2.18\\ 0.38\\ 0.03\\ 0.79\\ 1.12\\ 0.58\\ 1.39\\ 0.43\\ 0.03\\ 0.78\\ 0.95\\ 0.94\\ 0.08\\ 0.003\\ 0.08\\ 0.003\\ 0.08\\ 0.003\\ 0.08\\ 0.003\\ 0.08\\ 0.003\\ 0.08\\ 0.003\\ 0.08\\ 0.003\\ 0.03\\ 0.08\\ 0.003\\ 0.03\\$	$\begin{array}{c} 54.2\\ 38.7\\ 38.7\\ 38.7\\ 38.7\\ 38.7\\ 38.7\\ 50.\\ 23.2\\ 38.7\\ 52.3\\ 23.7\\ 38.7\\ 52.3\\ 38.7\\ $	$\begin{array}{c} 14.2\\ 53.4\\ 26.5\\ 92.7\\ 11.4\\ 3.74\\ 215.\\ 32.2\\ 51.\\ 35.3\\ 65.7\\ 188.\\ 3.1\\ 33.1\\ 102.5\\ 83.7\\ 311.\\ 360.\\ 230.\\ 114.6\\ 216.7\\ 1500.\\ 230.\\ 114.6\\ 216.7\\ 1500.\\ 230.\\ 114.6\\ 216.7\\ 1500.\\ 230.\\ 114.6\\ 216.7\\ 150.\\ 301.\\ 4.2\\ 10.7.\\ 1.2\\ 750.\\ 301.\\ 4.2\\ 10.7.\\ 1.2\\ 750.\\ 301.\\ 4.2\\ 10.7.\\ 1.2\\ 750.\\ 301.\\ 4.2\\ 10.7.\\ 1.2\\ 750.\\ 301.\\ 4.2\\ 10.7.\\ 1.2\\ 750.\\ 301.\\ 4.2\\ 10.7.\\ 1.2\\ 750.\\ 301.\\ 4.2\\ 10.7.\\ 1.2\\ 750.\\ 301.\\ 4.2\\ 10.7.\\ 1.2\\ 750.\\ 301.\\ 4.3\\ 1.2\\ 750.\\ 301.\\ 4.3\\ 1.2\\ 750.\\ 301.\\ 4.3\\ 1.2\\ 750.\\ 301.\\ 4.3\\ 1.2\\ 750.\\ 301.\\ 4.3\\ 1.2\\ 750.\\ 301.\\ 4.3\\ 1.2\\ 750.\\ 301.\\ 4.3\\ 1.2\\ 750.\\ 301.\\ 4.3\\ 1.2\\ 750.\\ 301.\\ 4.3\\ 1.2\\ 750.\\ 301.\\ 4.3\\ 1.2\\ 750.\\ 301.\\ 4.3\\ 1.2\\ 750.\\ 301.\\ 4.3\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2$
u :			0.0	TABLE 3	continued	<u>.</u>			42 6
*	E_r (eV)	gr	<u>Γ_{R7}⁰</u>	$(\text{meV}) \Gamma_{\pi} ($	$\frac{\text{meV}}{2} \frac{\Gamma_{fr}}{2}$	meV)	£1*,2	£2*	
···· ····	$ \begin{array}{r} 15.5 \\ 14.68 \\ 14.28 \\ 11.9 \\ 10.93 \\ 7.83 \\ .296 \\ - 1.2 \\ \end{array} $	0.75 0.75 0.5 0.75 0.75 0.75 0.25 0.25		.2 .57 .31 .55 0 .31 .42 .771	38.7 7 38.7 38.7 40.9 31.5 1 40.6 38.6 39. 2	$\begin{array}{c ccccc} 00.5 & -1 \\ 31.7 & 0 \\ 52.5 & 0 \\ 22. & 0 \\ 46.7 & -1 \\ 41.5 & -0 \\ 55.4 & 0 \\ 001. & 1 \end{array}$.60042	0. 0. 0. 0. 0. 0.79685 0. 0.	27 17 10 10 10 10 10 10 10 10 10 10 10 10 10

* components of the unit vector representing fission interference

fission cross-section in keV region. Thus we have adopted his assignment up to 300 eV. In addition to this we have included spin assignment which were already established. In this connection the neutron widths determined by Schmidt should be changed. That is Γ_n have to be changed so as to preserved $g\Gamma_n^0$. Generally Γ_n is very small compared with total width, so this alteration in Γ_n does not produce significant errors in Γ_f and Γ_r except for a few resonances. The parameters adopted (up to 300 eV) are shown in TABLE 3. For low lying resonances Vogr's formula is used so that parameters representing fission interference are also listed in TABLE 3. continued.

For fission widths Γ_f Schmidt's recommendation is adopted. When changes are made for the spin of each resonance, we will obtain different $<\Gamma_{f1}$ > value from Aschar's, which is slightly larger than AsgHAR's value, but rather smaller than SCHMIDT's recommendation. Because the purpose of the opresent evaluation is to reproduce reliable cross-section from available experimental data, the fission 0 . 0

ρ.

5

 \boldsymbol{n}

JAERI 1162

÷.,

width is rather different from those obtained by nuclear physics experiments. And a slight apparent inconsistency in mean value of resolved and unresolved region is permissible (Lynn's Antwerp Paper)¹⁴, if the accurate shape of the cross-section and the accurate temperature dependence of this shape are expected. Thus a slight discrepancy in mean fission width $\langle \Gamma_f \rangle$ is acceptable to the present authors.

The calculated cross-sections from these parameters should follow the total and fission crosssection curves found in the literature. The most reliable curves at present are found in BNL's barn bcok¹⁵⁾. Unfortunately the cross-section curves of ²³⁹Pu are not satisfactory in respect of consistency between the total and fission cross-sections. The total cross-sections are thought to be more reliable than fission cross-sections. Recent σ_t measurements made by SowERBY and PATRICK¹⁶⁾ at Harwell do not differ significantly except at some valleys between resonances. Thus we have chosen total crosssections as the base for the present evaluation.

A part of the total cross-section curve obtained from the parameters of TABLE 3 was compared with σ_t in BNL-325. At some resonances the calculated peak was rather small, whereas widths seem adequate. By this comparison the neutron widths of these resonances have been changed so as to

TABLE 4 Improved resonance parameters							
E_r (eV)	Γ _{nr⁰} (meV)	E_r (eV)	Γ_{nr^0} (meV)				
286.7	0.522	183.7	0.702				
262.2	0.503	127.6	0.143				
261.8	6.912	123.4	0.084				
255.8	0.644	103.0	0.665				
254.2	0.457	101.2	0.04				
231.1	8.978	97.6	0.117				
227.5	0.479	95.5	1,064				
224.6	0.324	90.9	1.3				
219.6	1.712	85.6	4.4				
213.0	0.104*	82.0	0.85				
210.9	0.156	75.21	5,865				
207 1	0.705	63 4	0.864				
105 1	3 02	58.0	1 106				
100 4	0,129		1.100				
100.4	0.130 .j		0				

JAERI 1162

4. Conclusion

reproduce measured peak values. By a few iterations resonable parameter set are obtained : in TABLE 4.

It might be argued that the parameters of TABLE 3 and 4 fail to reproduce the fissic sections. For the sake of satisfaction comparisons have been made with the measured fissive sections, and significant discrepancies were not found. The fission cross-section obtained in Fig. 6.

4. > Conclusions o

The present evaluation seems satisfactory in the current circumstances. The remainin back is that some of broad resonances, presumably having large fission width, are still especially above 300 eV. This tendency is found in DERRIEN's Fig. 117). However, if users a ful in utilizing the present results, for example adding some background values to fission sections, the present evaluation will be sufficient for predicting both reaction rates and ten effects. The differences in the measured and calculated total cross-sections are very close in the fission cross-sections.

Acknowledgements

The authors are indebted to Dr. J.E. Lynn for his valuable suggestions to Dr. H.G. and Dr. B.H. Datrick for presenting the provisional results of their recent measurement Miss M.H. Westcott for her calculations and graph plotting.

1) SCHMIDT J. J. : KFK-120 Vol. 1.

2) ADAMSON J. et al.: Proc. Conf. on Fast Critical Experiments and their Analysis, Sept. 1966, AN p. 216, Zebra 6: A dilute Pu-fuelled assembly.

ierence:

- 3) SMITH R.W., ROWLANDS J.L. and WARDLEWORTH D. ; AEEW-R 491 (1966).
- 4) ROWLANDS J.L. and WARDLEWORTH D.: Proc. Conf. on Safety, Fuels and Core Design in Larg Power Reactors, p. 566, ANL-7120, Oct., 1966.
- 5) GREEBLER P. et al.: Proc. Conf. on Fast Critical Experiments and their Analysis, Sept., 1966, AN p. 66, Implication of Recent Fast Critical Experiments on Basic Fast Reactior Design Data and latonal Methods.
- 6) HART W. : AHSB(S) R 125 (1967) Neutron Cross-sections of ²³⁹Pu in the Energy Range 1. E-10 M 15.0 MeV.

7) CUNNINGHAME J.G., FRITZE K. LYNN J.E., and WEBSTER C.B.: Nucl. Phys., 84, 49 (1966). The R Asymmetric to Symmetric Fission in Fission of ²⁰⁹Pu by Neutrons of energies from 30 keV to 14.7 M
8) ASGHAR M.: EANDC(UK) 70 'S' (1967) (Revised).

- 9) SAUTER G.S. and BOWMAN C.A. : UCRL 14200.
- ם 10) LYNN J.E.: Private communication.
 - 11) SOWERBY M. G. and PATRICK B. H. : AERE Report, to be published.
 - 12) De SAUSSURE et al. : WASH 1068.
- ... 13) STORY J.: Internal document, A.E.E. Winfrith (1963).

- 16) SOWERBY M.G. and PATRICK B.H. : Private communication.
- 17) DERRIEN H. ct al.: Paris Conference Oct. 1966, CN-23/70.
- 18) LA-3586 (1966) Fission Cross-section from Petrel.

¹⁴⁾ LYNN J.E.: International Conference on the Study of nuclear structure with Neutrons, Antwerp 19-23 July (1965).

¹⁵⁾ STEHN J. ct al.: BNL 325 Suppl. No. 2 (1965).