INDC（JAP）5G
 （alsa EANDC（J）／5AL）
 JAERI 1162
 INDC－ 318

\author{

Evaluation of ${ }^{239} \mathrm{Pu}$ Data in the keV and

 Resolved Resonance Region

}
\qquad ．

日本原子力研究所 Japan Atomic Energy Research Inslitute

涼。

くだいい。

A：pan Atomic Bnergy Research lnstitute publishes the nonperiodical reports with the following elassfieation numbers：

1．JAEIRI 1001－bgy Rescarch reports，
2．JAERL ． $001-5099$ Surver reports and reviews，
B．JAEIRI Go01－6099 Information and Guiding looklets．
Any inguiries concerning distribution eopyright and reprim of the above rejurts should be derected to the Division of＇lechnical lnformation，Japam Atomic linergy Rescarch Institute，Tokai－mura，Naka－gua，Ibaraki－ken， Jipan

On the Evaluation of ${ }^{239} \mathrm{Pu}$ Data in the keV and Resolved Resonance Region＊

Abstract

Summary

The new evaluation for ${ }^{239} \mathrm{Pu}$ cross－sections in the keV region is described．The present evaluation gives a better interpretation to both the α－value and fission cross－ section．This evaluation confirms the applicability of the channel theory of fission．In the resolved resonance regions a fit to the cross－section is obtained suitable for use with the GENEX code．For users convenience the resonance parameters are listed．

April 1968

C Durston＊＊
FRPD，A．E．E．Winfrith

S．Katsuragi

Tokai Research Establishment， Japan Atomic Energy Research Institute

要 旨

keV 領城の ${ }^{2393 \mathrm{Pu} \text { ，断面積の評価がおこなわれた．その結果は，} \alpha \text { の値と分裂断面積をよく説明 }}$ すると考えられる。この評価の過程から，核分裂に対するチャネル理論を適用する可能性が確かめ られた・分巏域においては，共鳴パラメータの組を最近の実験にもとずいて修正した。巻末にバラ メータの表を付してある。

1968年4月
C．Durston ${ }^{* *}$
FRPD，A．E．E．Winfrih
桂 木 学
日本原子力研究所 東海研究所
原子炉工学部

[^0]JAERI 1162 Errata

page	line	as printed	to read
Title	Japanese Title ：	評価＊＊	評価＊
Title	4th from bottom	Winfrih	Winfrith
Title	foot note	This work has been done	This work was performed
1	Fig． 1 title	The effect of increasing number of fission channels	The effect of increasing the number of p－wave fission channels
2	3rd from bottom	threshould	threshold
4	Fig． 4 （b），4（c）titles	superposed	superimposed
5	heading of table 3	two vertical dividing lines missing	$E_{r}(\mathrm{eV}) \downharpoonright g_{r}$
7	Acknowledgment	Dr．B．H．Datrick	Dr．B．H．Patrick

JAERI 1162

Contents

1．Introduction 1
2．Unresolved region 1
3．Resolved resonance 4
4．Conclusion 7
目 次
1．まえがき 1
2．非分離領域の取扱い 1
3．分離項域の取扱い 4
4．むすび 7

1. Introduction

The nuclear data for ${ }^{239} \mathrm{Pu}$ plays a very important role in predicting the safety and econor of fast power reactors and its accuracy has been remarkably improved in the last few years. I gress in this field has been reviewed by Schmidt ${ }^{1 \text { (}}$ in is elaborate evaluation work.

There is, however, some evidence from time of flight experiments and from Zebra integ measurements showing that the data is still less accurate than desired. One indication is the sh of the α-curve obtained from time of flight measurements ${ }^{11)}$ and another is the measurement of value, averaged over a reactor spectrum ${ }^{3}$. The shape of the α-curve is too low in the $\mathrm{keV} / \mathrm{reg}$ and the measured α-value is rather high compared with the calculated one. As a result the S_{ch} recommended α-value is thought to be too low. The α-value affects the breeding gain, that is rate of excess production of ${ }^{239} \mathrm{Pu}$ and consequently the doubling time, though the latter quan depends on power level

Greebler's ${ }^{5 \text { 5 }}$ new evaluation is adequate for reproducing existing experimental fission crs sections; the a-values, however, are still too low. Although Greebler's a-value is $\mathbf{9 \%}$ higher in unresolved resonance region than Schmidr's value, it still gives answers which are far from measured α-value in time of flight and Zebra measurements. From the British Nuclear Data -1 standpoint $\mathrm{Hart}^{6)}$ has made an evaluation recommending a higher α-value but does not reject possibility of a lower α-value because of large uncertainties.

The purpose of this report is to select a better interpretation of the available data and reprod the a-curve and fission cross-section curve in the keV region.

2. Unresolved region

Our first objective in this region was to explain the shape of the α-curve using the char theory of fission. The earlier Diven and Hopkins experiment has been reinforced by an experim

fig. 1 The effect of increasing number of increasing fission channels

Fig. 2 The effect of increasing $\Gamma_{\text {in }}$
by de Saussure et al. ${ }^{12)}$ "giving excellent definition for the α-curve above 15 keV . However between 15 keV and the resolved region the only direct measurements of α have been two KAPL broad spectrum measurements. Previous evaluations have always tried to include these, thus giving a sharp change of slope in the region of 15 keV and have also explained this change of slope solely in terms of a sharp increase in Γ_{f} keeping the number of fission channels ν_{f} constant. We feel however that although Γ_{f} does increase it is because there are more fission channels available to the fission process, hence ν_{f} must be increased also allowing Γ_{f} to increase less rapidly. In fig. 1 the effect of ν_{j}^{\prime} is shown. Calculations are made by using parameters listed in tasle 1.

$[\underbrace{-1} \quad J$	0	" 1
$\left\langle\Gamma_{n}{ }^{0}\right\rangle \quad(\mathrm{eV})^{1 / 2}$	0.939×10^{-3}	0.334×10^{-3}
$<D>\quad \mathrm{eV}$	8.78	3.12
$\left\langle\Gamma_{r}\right\rangle_{i} \quad \mathrm{eV}$	0.0387	$0.0387 \square^{-} \because$
$\left\langle\Gamma_{f}\right\rangle$ eV	2.8	$\frac{\langle D\rangle_{J=1}}{2 \pi} /\left[1+\exp \left(-2 \pi \frac{E_{\text {kov }}-50}{150}\right)\right]$
y_{n}	1	1
ν^{\prime}	2	$1 \quad \cdots \quad \cdots$
ν_{r}	$\infty \quad 0$	$\therefore 0 \infty$

$f_{r} \quad \because \quad$ Table 1 (b) p wave resonance parameters

\cdots	0	1	$2: \because$
$\left\langle\Gamma_{n}{ }^{0}\right\rangle(\mathrm{eV})^{1 / 2}$	$2.195 \times 11_{1}{ }^{-3}$	1.56×10^{-3}	0.53×10^{-3}
$<D>\quad e V$.8.78 if	3.12	2.12
$\left\langle r_{r}\right\rangle \quad$ eV	0.0387	- 0.0387	0.0387
$\left\langle\Gamma_{f}\right\rangle^{\prime} \quad \mathrm{eV}$	0	$1.003 \sim 1.024$	0.636~0.688
ν_{n}	1 is	2	1
v_{f}	0 c	. 1	1 1
ν_{r}	$\infty \quad \because$	$\therefore \quad \infty$	∞

An alternative explanation was investigated that the inelastic levels at 7.85 keV , and 52.7 keV were responsible for the sharp increase but this was unacceptable because it gave the wrong shape to the α-curve and gave to ${ }^{\prime}$ small σ_{f}, as shown in Fig.2. At this time Sowerby ${ }^{112}$ did some calculations using the Uttley total and James fission experimental results producing a-values in the $1-10 \mathrm{keV}$ region with values greater than 1. These results together with integral experiment indications led us to regard the KAPL experiment with some suspicion. Our early calculations with parameters recommended by LyNn however went throug the KAPL points although not tying in with de Saussure. ,The effect of changing the LyNN ${ }^{\text {r }}$ recommended parameters to increase the a-value in the range $1-10 \mathrm{keV}$ was then investigated and it was found that most changes had very little effect, except for $J=1^{+}$. s-wave state. Here it was discovered that the values quoted by, Lyws? were based on s-wave resolved region analysis giving $\left\langle\Gamma_{f}\right\rangle=61 \mathrm{meV}$. A paper by AsGBaR ${ }^{83}$ indicated that $<\Gamma_{f}>$ might be as low as 37 meV and on moving the fission threshould for the $1^{+} s$-wave state from +0.15 to +0.2 the $\left\langle\Gamma_{f}\right\rangle$ was reduced from " 61 meV to 35 meV .. Our calculations with this amendment to the parameters gave a much better fit to the Sowerby α-values (see fig. 3.) and also a good

table 2 Barrier position for fission
(Barrier height $\boldsymbol{h}_{\boldsymbol{D}}=.5 \mathrm{MeV}$)

l	J	K	$E_{f}(\mathrm{MeV})$
\bigcirc	0^{+}	0	-1.5
		$\because 0$	0.0
	$1+$	1	0.20
1	1^{1-}	0	-0.9
		1	-0.45
		0.	0.6
		1	0.3
	ir	1.	-0.45
	- "	$2 \cdots$	-0.15
		0	0.6
		1	0.3

extrapolation to the de SAussure α-values. We were however reluctant to reduce the $\Gamma_{\text {, }}$ further than this (hence increase the α-value further) because of lack of evidence in the is data. The value of 0.035 eV seemed to be the lowest value that would be compatible with the resolved levels.

The method of calculation used was based on the isolated level assumption as indicater paper of Cunninghame et al? (see Table 2).

Having fitted the α-curve it only remained to check our fission cross-sections. These as pared with the Petrel daia and James fission data, and a few others (see fig.4).

Using the parameters of tase 2. derived from the previous calculations we used our GENEX system to produce a set of unresolved resonances and cross-sections on magnetic tal

Fig. 4(c) σ_{f} in the energy range to 25 keV (superposed on S MIDT' figure ${ }^{(1)}$)

Fig. 5(a) a of ${ }^{239} \mathrm{Pu}$ above 10 keV

Fig. 5(b) Calculated as of ${ }^{239} \mathrm{Pu}$ from 100 eV to 10 keV
resultaint cross-sections and a-values are shown in the appropriate figures(fig.4. and 5). If fluctuations in the GENEX tape are seen to have a magnitude similar to the Sowerby calculatio

3. Resolved resonances

The previous GENEX tape ${ }^{i 3}$ used resolved resonance data up to 52 eV , which were the parameters available at that time. Since that evaluation, a lot of experiments have been perfori Schmidt has made an evaluation of resolved resonance parameters up to 300 eV using some of t experimental results. This work has been thought reliable for the last few years. In his evalua however, the spin assignment-for each resonance is not correct, because at that time spin ass ments were made only for a few resonances.

Following the analysis of 82 Aschar's spin assignments ${ }^{8}$ seem consistent with the α-curve

Table 3 Resolved resonance parameters up to 300 eV

$E_{r}(\mathrm{eV})$	$g r$	$\begin{gathered} \Gamma_{N^{\prime}}^{0} \\ (\mathrm{meV}) \end{gathered}$	$r_{r r}(\mathrm{meV}$	$\Gamma_{\text {fr }}(\mathrm{meV})$	$E_{r}(\mathrm{cV})$	g_{r}	$\begin{gathered} \Gamma_{* r^{0}} \\ (\mathrm{meV}) \end{gathered}$	$\Gamma_{r r}(\mathrm{meV})$	$\Gamma_{f r r^{\prime}}(\mathrm{mcV})$
298.1	0.75	0.58	38.7	46.3	146.3	0.75	0.64	54.2	14.2
296.	0.5	0.27	38.7	86.7	143.2	0.5	0.92	38.7	53.4
291.8	0.5	0.41	38.7	304.	136.8	0.25	0.82	38.7	26.5
286.7	0.5	0.19	38.7	1000.	135.4	0.5	0.05	38.7	92.7
282.5	0.75	1.43	38.7	5.3	133.8	0.75	0.46	27.6	11.4
279.1	0.25	1.42	38.7	19.5	131.9	0.35	3.02	38.7	3.74
275.2	0.75	1.69	38.7	299.	127.6	0.5	0.07	38.7	215.
272.3	0.75	1.45	38.7	15.3	126.3	0.5	0.25	50.	32.2
269.2	0.5	0.52	38.7	333.	123.4	0.5	0.07	23.2	, 51.
262.2	0.5	0.23	38.7	1000.	121.3	0.5	0.38	38.7	'35.3
261.8	0.25	5.24	38.7	6320.	118.9	0.75	1.35	52.3	65.7
255.8	0.75	0.35	38.7	1000.	116.1	0.25	0.92	27.	188.
254.2	0.5	0.24	38.7	1000.	110.4	0.5	0.13	38.7	3.1
250.9	0.75	1.51	38.7	15.3	106.8	0.75	0.77	34.9	33.1
248.5	0.75	0.93	38.7	34.3	105.4	0.75	0.57	38.7	102.5
247.1	0.5	0.08	38.7	1000.	102.0	0.25	0.52	38.7	83.7
242.6	0.25	1.1	38.7	" $52.7{ }^{\text {c/ }}$	101.2	0.5	0.03	38.7	311.
238.7	0.75	0.33	38.7	68.5 \#	97.6	0.5	0.09	38.7	360.
234.0	0.25	0.89	38.7	19.7	95.5	0.25	0.28	38.7	230.
231.1	0.75	6.7	38.7	(,31 12.1	90.9	0.75	0.26	38.7	114.6
227.5	0.5	0.21	38.7	1000.	85.6	0.25	1.	38.7	216.7
694. 6	0.5	0.15	38.7	1000.	82.0 '	0.5	- 0.34	38.7	1500.
2\%2. 8	0.5	0.31	38.7	51.7	75.21	0.75	2.55	44.9	95.
219.6 .	0.5	1.07	38.7	1000.	74.31	0.75	0.38	36.6	29.5
216.3	0.75	4. 0.43	38.7	21.7	66.83	0.5	0.15	38.7	1000.
210.9	0.5	0.12	38.7	1000.	65.96	0.75	1.54	22.4	77.
207.1	0.75	0.47	38.7	11.3	63.4	0.5	0.36	38.7	13.9
203.6	0.25	3.92	38.7	- 298.	61.1	0.5	1.43	38.7	2000 -
199.2	0.75	0.63	21.6	. 125.	59.39	0.25	2.18	- 48.6	133.
196.4	0.75	0.36	$\therefore 58.5$	68.9	58.0	0.5	0.79	- 38.7	805.
195. 1	0.25	3.56	38.7	337.	57.6	0.5	1.12	38.7	546.
190.3	0.5	0.17	$\because \quad 38.7$	118.9	55.79	0.25	0.58	26.	22.
188.4	0.5	0.05	38.7	1000.	$52.6{ }^{\prime \prime}$	0.75	1.39	39.3	7.7
3) 185.1	0.5	0.51	38.7	: 1750.	50.22	0.75	0.43	41.3	11.2
183.7	0.5	0.27	38.7	1000.	49.85	0.5	0.08	59.8	750.
178.8	0.5	0.15	38.7	14.6	47.6	0.25	0.78	38.7	301.
177.1	0.75	0.29	62.2	7.0	44.5	0.75	0.95	27.8	4.2
175.8	0.5	0.24	32.9	43.9	41.4	0.75	0.94	59.2	10.7 ${ }_{\text {l }}$
170.5	0.5	0.34	38.7	1260.	35.3	0.5	0.08	38.7	4.1 ${ }^{\text {a }}$
166.9	0.75	0.45	$\therefore \quad 38.7$	$\cdots 47.7$	34.6	0.5	0.003	38.7	1000.
164.4	0.75	1.98	" 40.2	11.8	32.3	0.5	0.08	38.7	189.
160.9	0.5	0.24	38.7	508.	27.3	0.5	C. 04	38.7	2.8
157.0	0.25	2.78	38.7	704.	- 26.2	0.75	0.34	38.7	35.7
151.8 "	0.5	0.05	38.7	1000.	23.9	0.5	0.03	$\begin{array}{r}38.7 \\ \hline \quad 31\end{array}$	37.1
149.4	0.5	0.18	51.3	36.5	22.2	0.75	0.47	31.3 -	75.
148.0	0.5	0.16	38.7	9.1	17.6	0.75	0.38	39.1	46.3

Table 3 continued

$E_{r}(\mathrm{eV})$	gr	$\Gamma_{n r}{ }^{0}(\mathrm{meV})$	$\Gamma_{r r}^{\prime \prime}{ }^{\prime}(\mathrm{meV})$	$\Gamma_{\text {sr }}(\mathrm{meV})$	$\xi_{1}{ }^{*}$,	$\xi_{2}{ }^{*}$
15.5	0.75	0.2	38.7	760.5	-1.	0.
14.68	0.75	\& 0.57	38.7	31.7	0.	0.
14.28	0.5	4. 0.22	38.7	52.5	0.	0.
11.9	0.75	"C. 31	40.9	22.	0.	0.
10.93	0.75	0.550	31.5	146.7	-1.	
7.83	0.75	0.31	40.6	41.5	-0.60042	0.79685
-. 2.296	0.25	0.42	38.6	55.4	0.	0.
-1.2	0.75	$\therefore 0.771$	39.	201.	1. ${ }^{\text {a }}$	0.

* components of the unit vector representing fission interference
fission cross-section in keV region. Thus we have adopted his assignment up to 300 eV . In addition to this we have included spin assignment which were already established. In this connection the ńeutron widths determined by Schmidt should be changed. That is Γ_{n} have to be changed so as to preserved $g \Gamma_{n}{ }^{0}$. Generally Γ_{n} is very small compared with total width, so this alteration in Γ_{n} does not produce significant errors in Γ_{f} and Γ_{r} except for a few resonances. The parameters adopted (up to 300 eV) are shown in table 3. For low lying resonancés Vogt's formula is used so that parameters represerting fission interference are also listed in table 3. continued.

For fission widths Γ_{f} Schmidt's recommendation is adopted. When changes are made for the spin of each resonance, we will obtain different $\left\langle\Gamma_{S_{2}^{\prime}}^{\prime}\right\rangle$ value from Asghar's, which is slightly larger than Asghar's value, but rather smaller than Schmidt's recommendation. Because the pirpose of the present evaluation is to reproduce reliable cross-section from available experimental data, the fission
width is rather different from those obtained by nuclear physics experiments. And a slight apparent inconsistency in mean value of resolved and unresolved region is permissible (Lysn's Antwerp Paper $)^{14)}$, if the accurate shape of the cross-section and the accurate temperature depandence of this shape are expected. Thus a slight discrepancy 'in mean fission width $\left\langle\Gamma_{f^{\prime}}\right\rangle$ is acceptable to the present authors.

The calculated cross-sections from these parameters should follow the total and fission crosssection curves found in the literature. The most reliable curves at present are found in BNL's barn brok ${ }^{15)}$. Unfortunately the cross-section curves of ${ }^{239} \mathrm{Pu}$ are not satisfactory in respect of consistency between the total and fission cross-sections. The total cross-sections are thought to be more reliable than fission cross-sections. Recent σ_{t} measurements made by Sowerby and Patrick ${ }^{16)}$ at Harwell do not differ significantly except at some valleys between resonances. Thus we have chosen total crosssections as the base for the present evaluation.

A part of the total cross-section curve obtained from the parameters of table 3 was compared with σ_{t} in BNL-325. At some resonances the calculated peak was rather small, whereas widths seem adequate. By this comparison the neutron widths of these resonances have been changed so as to

TABLE 4 Improved resonance parameters

$E_{r}(\mathrm{eV})$	$\Gamma_{n r}{ }^{0}(\mathrm{meV})$	$E_{r}(\mathrm{eV})$	$\Gamma_{n r}{ }^{0}(\mathrm{meV})$
286.7	0.522	183.7	0.702
262.2	0.503	127.6	0.143
261.8	6.912	'123.4	0.084
255.8	0.644	103.0	0.665
254.2	0.457	101.2	0.04
231.1	8.978 -	97.6	0.117
227.5	0.479	95.5	1. 064
224.6	0.324	90.9	1.3
219.6	1.712	85.6	4.4
213.0	0.104*	82.0	0.85
210.9	0.156 '	75.21	5.865
207.1	0.705	63.4	0.864
195.1	3.92	. 58.0	1.106
188.4	0.138	"	0

* inserted

17. Fig. 6 Comparison of of measured and calculated
reproduce measured peak values. By a few iterations resonable parameter set are obtained: in Table 4.

It might be argued that the parameters of TABLE 3 and 4 fail to reproduce the fissic sections. For the sake of satisfaction comparisons have been made with the measured fissi sections, and significant discrepancies were not found. The fission cross-section obtained in Fig. 6.

4. Cónclusions:

The present evaluation seems satisfactory in the current circumstances. The remainin back is that some of broad resonances, presumably having large fission width, are stil especially above 300 eV . This tendency is found in Derrien's fig. 177. However, if users : ful in utilizing the present results, for example adding some background values to fissi sections, the present evaluation will be sufficient' for predicting both reaction rates and 'ten effects. The differences in the measured and calculated total cross-sections are very close in the fission cross-sections.

Acknowledgements

The authors are indebted to Dr. J.E. Lynn for his valuable suggestions to Dr. H. G. and Dir. B. H. Datrick for presenting the provisional results of their recent measuremen Miss M. H. Westcott for her calculations and graph plotting.

Reference":

1) Schmidt J. J. : KFK-120 Vol. I.
2) Adamson J. et al.: Proc. Conf. on Fast Critucal Experiments and their Analysis, Sept. 1966, AA p. 216, Zebra 6:A dilute Pu-fuelled assembly.
3) Smith R.W., Rowlands J.L. and Wardlemorth D. : Aeew-R 491 (1966).
4) Rowlands J.L. and Wardleworth D. : Proc. Conf. on Safety, Fuels and Core Design in Lari Power Reactors, p. 566, ANL-7120, Oct., 1966.
5) Greebler P. et al. : Proc. Conf. on Fast Critical Experiments and their Analysis, Sept; 1966, AN p. 66, Implication of Recent Fast Critical Experiments on Basic Fast Reactior Design Data and latonal Methods.
6) HART W. : AHSB(S) R 125 (1967) Neutron Cross-sections of ${ }^{239} \mathrm{Pu}$ in the Energy Range 1.E-101 15.0 MeV . $\quad \therefore \quad \because \quad 0 \quad 0$
7) Cunninghame J. G., Fritze K. Lynn J. E., and Webster C. B. : Nucl. Phys., 84, 49 (1966). The R Asymmetric to Symmetric Fission in Figsion of ${ }^{23 P P u}$ by Neutrons of energies from 30 keV to 14.7 A
8) Aschar M.: EANDC(UK) 70 ' S ' (1967) (Revised).
9) Sauter G.S. and Bowman C. A.: UCRL 14200.
10) LynN J.E. : Private communication.
11) Sowerby i. G. and Patrick B. H. : aERE Report, to be published:
12) De Saussure et al. : WASH 1068.
13) Story ${ }^{6}$. Internal document, A.E. E. Winfrith (1963).
14) Lywn J. E. : International Conference on the Study of nuclear structure with Neutrons, Antwerp 19-23 July (1965).
15) Stehn J. ct al. : BNL 325 Suppl. No. 2 (1965).
16) Sowerby M. G. and Patrick B. H. : Private communication.
17) Derrien H. ct al. : Paris Conference Oct. 1966, CN-23/70.
18) LA-3586 (1966) Fission Cross-section from Petrel.

[^0]: ＊This work has been done，when S．Katsuragi was in A．E．E．Winfrith on attachment from JAERI
 （＊＊FRPD，A．E．E．Winfrith，Dorchester，Dorset，ENGLAND
 σ

