PROGRESS REPORT

(August 1969 to June 1970 inclusive)

August 1970
edited by
T. Momota
aided by
T. Fuketa and K. Okamoto

Japanese Nuclear Data Committee

Japan Atomic Energy Research Institute
Tokai Research Establishment
Tokai-mura, Ibaraki-ken, Japan

PROGRESS REPORT

(August 1969 to June 1970 inclusive)

August 1970
edited by
T. Momota
aided by
T. Fuketa and K. Okamoto

Japanese Nuclear Data Committee

Japan Atomic Energy Research Institute
Tokai Research Establishment
Tokai-mura, Ibaraki-ken, Japan

Editor's Note.

This is a collection of reports which have been submitted to the Japanese Nuclear Data Committee at the Committee's request. The request was addressed to the following individuals who might represent or be in touch with groups doing researches related to the nuclear data of interest to the development of the nuclear energy program.

Although the editor tried not to miss any appropriate addressees, there might have been some oversight. Meanwhile, contribution of a report rested with discretion of its author. The coverage of this document, therefore, might not be uniform over the related field of research.

This edition covers a period of August l, 1969 to June 30, 1970. The informations herein contained are of a nature of "Private Communication." They should not be quoted without author's permission.

Addressees of the request (in Alphabetical order):

1) Electrotechnical Laboratory

Tanashi Branch / 1059 Tanashi, Tokyo
(E. Teranishi)
2) Hiroshima University

Faculty of Science / 1-l. 89 Higashisenda, Hiroshima
(N. Ryu)
3) Hitachi Ltd.

Central Laboratory / Oozenji, Kawasaki-shi, Kanagawa
(H. Yamamoto, M. Yamamoto)
4) Japan Atomic Energy Research Institute

Tokai Research Establishment/ Tokai-mura, Naka-gun, Ibaraki
(H. Amano, T. Asami, J. Hirota, T. Ishimori, S. Katsuragi, H. Natsume,
K. Nishimura, E. Sakai, H. Takekoshi, K. Tsukada, K. Ueno, et al.)
5) Konan University

Faculty of Science / Okamoto, Motoyama-cho, Higashinada-ku, Kobe (K. Yuasa)
6) Kyoto University
a) Faculty of Science / Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto (J. Muto)
b) Keage Laboratory of Nuclear Science, Institute for Chemical Research / 2 Torii-cho Awataguchi, Sakyo-ku, Kyoto (T. Yanabu)
c) Research Reactor Institute/Kumatori, Sennan-gun, Osaka (T. Shibata, K. Okano)
7) Kyushu University
a) Faculty of Science / Hakozaki-cho, Fukuoka (A. Isoya)
b) Faculty of Engineering / Hakozaki-cho, Fukuoka (M. Sonoda)
8) Mitsubishi Atomic Power Industries Inc.

Engineering and Development Division / Kitafukuro, Omiya-shi, Saitama (T. Iwaki)
9) Nagoya University

Faculty of Engineering / Furo-cho Chigusa-ku, Nagoya (T. Katoh)
10) Niigata University

Faculty of Science / 8050 Nino-cho, Igarashi, Niigata
(N. Mutsuro)
11) Osaka University
a) Faculty of Engineering / Yamadaue, Suita-shi, Osaka (T. Sekiya, T. Nishigori)
b) Faculty of Science / 1-1, Machikaneyama, Toyonaka-shi, Osaka (T. Wakatsuki, S. Yamabe, M. Muraoka)
12) Radiation Center of Osaka Prefecture

Shinya-cho, Sakai-shi, Osaka
(T. Azuma)
13) Rikkyo (St. Paul's) University
a) Department of Physics / 3, Ikebukuro, Toshima-ku, Tokyo (I. Ogawa, S. Shirato)
b) Institute for Atomic Energy / Sajima, Yokosuka-shi, Kanagawa (M. Hattori)
14) The Institute of Physical and Chemical Research

Yamato-machi, Kitaadachi-gun, Saitama
(K. Matsuda)

15) Tohoku University

a) Faculty of Science / 75 Katahira-cho, Sendai-shi, Miyagi (S, Morita)
b) Laboratory of Nuclear Science / 1 Tomisawa, Kanayama, Sendai-shi, Miyagi (M. Kimura)
16) Tokai University

Faculty of Engineering / 2-28-4 Tomigaya, Shibuya-ku, Tokyo (Y. Kuroda)
17). Tokyo Institute of Technology
a) Faculty of Science / 2-12-1 Ohokayama, Meguro-ku, Tokyo (Y. Oda, H. Taketani)
b) Research Laboratory of Nuclear Reactor / 2-12-1 Ohokayama (N. Yamamuro)
18) Tokyo University of Education

Faculty of Science / 3-29-1 Ohtsuka, Bunkyo-ku, Tokyo (J. Sanada, K. Katori)
19) University of Tokyo
a) Faculty of Science / 7-3-1 Hongo, Bunkyo-ku, Tokyo (Y. Nogami)
b) Institute for Nuclear Study / 3-2-1 Midori-cho, Tanashi, Tokyo (Y. Saji, Y. Ishizaki)
c) College of General Education / 865 Komaba, Meguro-ku, Tokyo (T. Terasawa)
d) The Institute for Solid State Physics / 7-22-1 Roppongi, Minato-ku, Tokyo (S. Kobayashi)

CONTENTS

I. Japan Atomic Energy Research Institute, Tokai
A. Neutron Experiments - Reactor

1. Dependence of the ${ }^{152^{2}}$ Eu Activation Ratio on Neutron
Energy ... 1
2. The Cross Section of ${ }^{15 l_{E u}\left(n_{t h}, \boldsymbol{\alpha}\right)^{148}}{ }^{\operatorname{Pm} \text { Reaction }2} 2$
B. Neutron Experiments - Linac
3. Neutron Resonance of ${ }^{59}$ Co at 132 eV 3
4. ${ }^{208} \mathrm{~Pb}(r, n)$ Reaction near Threshold 4
5. Low Energy Neutron Scattering Cross Section of ${ }^{6}$ Li 6
C. Neutron Experiments - Van de Graaff Accelerator
6. Elastic and Inelastic Neutron Scattering Cross Sections
of 207 Pb ... 7
7. Scattering of 1.5 to 3.6 MeV Neutrons by $L a$ and Pr. . 7
8. Elastic and Inelastic Scattering of Neutrons in 20 MeV
Region ...

9. Neutron Scattering Cross Sections of Iron 9
10. Width Fluctuation and Resonance Interference Effects in Neutron Scattering Cross Sections of Aluminum, Copper and Zinc12
11. Fast Neutron Scattering from Al, Si, S and Zn 13
D. Others
12. Deviations from the Statistical Distributions of Neutron Resonance Levels of Intermediate and Heavy Nuclei 15
13. Thermal Neutron Scattering from Simple Liquids 16
14. Average Level Spacings and the Nuclear Level Density Parameter 17
15. Half-lives of Some Fission Product Nuclides 18
16. Direct Measurement of Nuclear Reaction Times by the Use of the Blocking Effect in Single Crystals 19
E. Japanese Nuclear Data Committee
17. Evaluation of the Total Neutron Cross Section of Carbon up to 2 MeV 20
18. Fast Neutron Capture Cross Sections of Cr, Fe, Ni and Mo. 21
19. Analysis of Neutron Inelastic Scattering by 238_{U} 22
20. GRAPH - A Computer Program for Plotting of Experimental Data in NEUDADA's Output Tape 23
21. Other Works on Review and Evaluation in JNDC 24
22. An Area-Analysis Program for Neutron Resonances based on the Atta-Harvey Code 25
II. Kyoto University, Research Reactor Institute
23. Measurements of Average Cross Sections for Some Threshold Reactions to the Neutrons with the Fission-type Reactor Spectrum 26
24. Measurement of Average Cross Section for the ${ }^{232} \mathrm{Th}(\mathrm{n}, \mathrm{f})$ Reaction for the Fission-type Reactor Spectrum 37
25. The Measurement and the Calcul₹tion of Neutron Spectra in Iron Assemblies 42
26. Measurements of Neutron Spectra in Light Water 45
27. The Age of Fission Neutrons to Indium Resonance in Water and Polyethylene 48
III. Kyushu University, Department of Nuclear Engineering
28. (n, n) and (n, n^{\prime}) Reactions of Bi^{209} Induced by 14.1 MeV Neutrons 50
29. Fission of U and $T h$ by Gamma Rays from 200 MeV to 1150 MeV . 503. Photo-Fission Cross Sections of the Medium-Mass Nuclei54
IV. Osaka University, Department of Nuclear Engineering
l. Quasiclassical Approximation for Slow Neutron Scattering 56
V. Rikkyo (St. Paul's) University, Department of Physics
30. Differential Cross Section for Neutron-Proton Scattering at 14.1 MeV 58
31. Differential Cross Section for the $D(n, p) 2 n$ Reaction at 14.1 MeV 58
VI. Tohoku University, Laboratory of Nuclear Science
32. Neutron Debye-Scherrer Diffraction Works Using a Linear Electron Accelerator 60
33. Neutron Debye-Scherrer Diffraction Works Using a Linear Electron Accelerator. (II) 62
34. Scattering Kernel for BeO 64
VII. Tokyo Institute of Technology
Research Laboratory of Nuclear Reactor
35. Measurement and Pole Diagram Analysis of the $D(n, p) 2 n$ Reaction Cross Section at 14.5 MeV 66
36. Thick-Sample Neutron Transmission Measurements of the 229 eV Resonance in 65 Cu 70
37. Measurement of Thermal and Resonance Capture in Sodium 71
VIII. University of Tokyo
38. College of General Education
1-1. Analysis of the ${ }^{58} \mathrm{Ni}(\mathrm{n}, \mathrm{p}){ }^{58}$ Co Reactions Leading to Parent Analogues of Collective States 73
39. The Institute for Solid State Physics
2-1. Depolarization in Elastic Scattering of 1.36 MeV Polarized Neutrons 75

CONTENTS OF THE JAPANESE PROGRESS REPORT INDC(JAP)9E (=EANDC(J)I9L), August 1970

$\begin{aligned} & \text { ELEMENT } \\ & S_{\mathrm{A}} \end{aligned}$		QUANTITY	TYPE	ENERGY			DOCUMENTATION		LAB	COMMENTS	
		Min			MAX	REF VOL PAGE	date				
H	001		diff Elastic	EXPT-PROG	1.4	7		EANDC(J) 19L, 58	8/70	YOK	TANAKA+.DIFFSIG AT 8 ANGA.PUB IN JPJ
H	002	N, PROTON	EXPT-PROG	1.4	7		EANDC(J) 191,58	8/70	YOK	KOORI+. DIFFSIG AT 9 ANGS.FIG GIVN	
H	002	N, PROTON	EXPT-PROG	1.5	7		EANDC(J)19L,66	8/70	TIT	ARAI.E-P ANG-DIST IIi break-up, figs	
LI	006	SCATTERING	EXPT-PROG	1.0	3	1.14	EANDC (J) 19L, 6	8/70	Har	ASAMI + . NDG	
C		TOTAL XSECT	REVW-PROG	0		2.06	EANDC(J)19L, 20	8/70	JaE	NISHIMURA + . NDG	
NA	023	RESON PaRams	EXPT-PROG	2.9	2		EANDC(J)19L,71	8/70	RP1	YAMAMURO+. WG $=0.47 \mathrm{PMO} 0.045 \mathrm{EV}$ TBP	
NA	023	n, GAMma	EXPT-PROG	THR		2.0-1	EANDC(J)19L,71	8/70	RPI	Yamamuro 0 .0.50PM0.03B AT THR FIG GIV	
AL		Tirmlscatlaiv	EXPT-PROG				EANDC(J)19L,60	8/70	TOH	/KIMURA+. TOF, POWDER DIFFR.-180dEGC	
AL	027	diff elastic	EXPT-PROG	4.56	6	8.06	EANDC(J)19L, 13	8/70	JAE	TANAKA+.VDG 30T0150DEG.OPTMDL.NDG	
AL	027	diff elastic	EXTH-PROG	4.8	6	8.06	EANDC(J) 19L, 12	8/70	JAE	TSUKADA + . OPTMDL+MOLDAUER CALC NDG	
AL	027	DIfF Elastic	EXPT-PROG	1.46	6		EANDC(J)19L, 75	8/70	ISS	KATORI+. DEPOLARIZATION,FIGS GIVN	
AL	027	DIFF InELAST	EXPT-PROG	4.5	6	8.06	EANDC(J)19L, 13	8/70	JaE	TANAKA+. H-F, COUPLED-CHANNEL TH.NDG	
AL	027	DIFF inelast	EXTH-PROG	4.8	6	8.06	EANDC(J) 19L, 12	8/70	JAE	TSUKADA+. OPTMDL+MOLDAUER CALC NDG	
SI		DIFF Elastic	EXPT-PROG	4.56	6	8.06	EANDC(J) 19L, 13	8/70	JaE	TANAKA+.VDG 30TO150DEG.OPTMDL.NDG	
SI		DIFF INELAST	EXPT-PROG	4.56	6	8.06	EANDC(J) 19L, 13	8/70	JAE	TANAKA+.H-F, COUPLED-CHANNEL TH.NDG	
Sl	028	N, PROOTON	EXPT-PROG	Plle			EANDC(J)19L,26	8/70	KTO	KIMURA+ . MEAN S=4.90PMO. $32 \mathrm{MILLI}-\mathrm{B}$	
Sl	029	V, PROTON	EXPT-PROG	PILE			EANDC(J) 19L,26	8/70	KTO	KIMURA+ . MEAN S $=2.98 \mathrm{PMO} 0.17 \mathrm{MILLI}-\mathrm{B}$	
SI	030	N, ALPHA	EXPT-PROG	PILE			EANDC (J) 19L,26	8/70	KTO	KIMURA. MEAN S $=0.130 \mathrm{PMO} 0.020 \mathrm{MI}$ LLI - B	
S		DIFF ELASTIC	EXPT-PROG	4.56	6	8.06	EANDC (J)19L, 13	8/70	JAE	TANAKA+.VDG 30T0150DEG.OPTMDL.NDG	
S		diff inelast	EXPT-PROG	4.56	6	8.06	$\operatorname{EANDC}(\mathrm{J}) \mathrm{I} 9 \mathrm{~L}, 13$	8/70	JAE	TANAKA+.H-F, COUPLED-CHANNEL TH.NDG	
v	051	N, ALPHA	EXPT-PROG	PILE			$\operatorname{EANDC}(\mathrm{J}) 19 \mathrm{~L}, 26$	8/70	KTO	KIMURA + MEAN S $=0.0217$ PM0.0015MELLI-B	
CR		N, GAMMA	THEO-PROG	1.04	4	2.07	EANDC (J) 19L, 21	8/70	JAE	NISHIMURA+. COMPUTER CALC, NDG	
FE		DIFF ELASTIC	EXPT-PROG	1.46	6	2.26	EANDC(J)19L, 9	8/70	JAE	TOMITA + . LEGENDRE COEF (L=0TOG) IN FIG	
FE		INELST GAMMA	EXPT-PROG	1.46	6	2.26	EANDC(J)19L, 9	8/70	JaE	TOMITA+.LEGENDRE COEF (L=0TO4) IN FIG	
FE		, , GAMMA	THEO-PROG	1.04	4	2.07	EANDC (J) 19L, 21	8/70	JAE	NISHIMURA+. COMPUTER CALC, NDG	
FE	056	DIFF INELAST	EXPT-PROG	1.46	6	2.26	EANDC(J) 19L, 9	8/70	JAE	TOMITA+. LEGENDRE COEF (L=0T04) IN FIG	
CO	059	RESON PARAMS	EXPT-PROG	8.0-1		3.03	EANDC (J) 19L, 3	8/70	JAE	NAKAJIMA+.RES PAPS. PUB IN NST 7 (70)	
CO	059	DIff ElaStic	EXPT-PROG	1.46	6		EANDC(J)19L, 75	8/70	JSS	Katorit. DEPOLARIZATION,FIGS GIVN	
NI		DIFF ELASTIC	EXPT-PROG	1.46			EANDC(J)19L, 75	8/70	ISS	KATORI + . DEPOLARIZATION,FIGS GIVN	
NI		N, GAMMA	ThiEO-PROG	1.0	4	2.07	EANDC (J)19L,2I	8/70	JAE	NISHIMURA+. COMPUTER CALC, NDG	
NI	058	N, PROTON	THEO-PROG	1.57			$\operatorname{EANDC}(\mathrm{J}) 19 \mathrm{~L}, 73$	8/70	TOK	OBU+. ANALOGUE STATE RES.PUB IN PTP43	
Cu		DIff ELASTIC	EXTH-PROG	1.76	6	2.26	EANDC(J)19L, 12	8/70	JaE	TSUKADA+. OPTMDL+MOLDAUER CALC NDG	

$\begin{aligned} & \text { ELEMENT } \end{aligned}$		QUANTITY	TYPE	ENERGY		DOCUMENTATION	LAB	COMMENTS	
		MIN		MAX	REF VOL Page date				
Cu			diff elastic	EXPT-PROG	1.46		EANDC(J) $19 \mathrm{~L}, 758 / 70$	ISS	KATORI +. DEPOLARIZATION,FIGS GIVN
Cu		DIFF INELAST	EXTH-PROG	1.76	2.26	EANDC(J) $19 \mathrm{~L}, 758 / 70$	JaE	TSUKADA+.OPTMDL+MOLDAUER CALC NDG	
Cu		PHOTO-FISSN	EXPT-PROG	2.58	1.09	EANDC(J) 19L,54 8/70	KYU	Kataset.SIG in Fig	
Cu	065	RESON PARAMS	EXPT-PROG	2.32		EANDC(J)19L,70 8/70	RPI		
2N		DIFF ELASTIC	EXPT-PROG	4.56	8.06	EANDC(J)19L, 13 8/70	JaE	TANAKA+.VDG $30 T 0150 D E G . O P T M D L . N D G$	
2N		diff Elastic	EXTH-PROG	1.76	8.06	EANDC(J)19L, 12 8/70	JaE	TSUKADA+. OPTMDL+MOLDAUER CALC NDG	
2N		DIFF INELAST	EXTH-PROG	1.76	8.06	EANDC(J)19L, 13 8/70	JAE	TANAKA. H-F, COUPLED-CHANNEL TH.NDG	
ZN	064	N, PROTON	EXPT-PROG	PILE		EANDC(J)19L,26 8/70	кT0	KIMURA+.MEAN S=35.5PM2.8 MILLI - ${ }^{\text {a }}$	
GE		PHOTO-FISSN	EXPT-PROG	2.58	1.09	EANDC(J)19L,54 8/70	KYU	Katase+.SIG in fig	
NB	093	N2N XSECTION	EXPT-PROGQ	PILE		EANDC(J)19L,26 8/70	KTO	KIMURA+. MEAN S=0.432PM0.033 MB.ISOM	
MO		N, GAMMA	THEO-PROG	1.04	2.07	EANDC(J)19L, $218 / 70$	JAE	NISHIMURA+. COMPUTER CALC, NDG	
MO	092	N, PROTON	EXPT-PROG	PILE		EANDC(J)19L, 26 8/70	KTO	KIMURA + MEAN S $=6.00 \mathrm{PMO} .45 \mathrm{MB}$, ISOM	
AG		PHOTO-F1SSN	EXPT-PROG	2.58	1.09	EANDC(J) 19L,54 8/70	KYU	KATASE+.SIG IN FIG	
IN		PHOTO-FISSN	EXPT-PROG	2.58	1.09	EANDC(J) 19L,54 8/70	KYU	KATASE+.SIG IN FIG	
SN		PHOTO-FISSN	EXPT-PROG	2.58	1.09	EANDC(J) 19L,54 8/70	KYU	KATASE+.SIG IN FIG	
SB		PHOTO-FISSN	EXPT-PROG	2.58	1.09	EANDC(J)19L,54 8/70	KYU	KATASE+.SIG IN FIG	
TE		PHOTO-FISSN	EXPT-PROG	2.58	1.09	EANDC(J) 19L,54 8/70	KYU	Katase + . SIG in fig	
CS	133	INELST GAMMA	EXPT-PROG	5.05	9.65	EANDC(J) 19L. 8 8/70	JAE	KIKUCHI . ANGDIST OF CFD C THEORY	
LA		DIFF ElASTIC	EXPT-PROG	1.56	3.66	EANDC(J) 19L, 7 8/70	JAE	TANAKA+.MEASURED IN SOOKEV STEP.NDG	
LA		DIFF INELAST	EXPT-PROG	1.56	3.66	EANDC(J) 19L, $78 / 70$	JaE	TANAKA + MEASURED IN 500KEV STEP.NDG	
PR	141	diff elastic	EXPT-PROG	1.56	3.66	$\operatorname{EANDC}(\mathrm{J}) 19 \mathrm{~L}, 78 / 70$	JAE	TANAKA + MEASURED IN S00KEV STEP. NDG	
PR	141	DIFF INELAST	EXPT-PROG	1.56	3.66	EANDC(J) 19L, 7 8/70	JaE	TANAKA+.MEASURED IN 500kEV STEP.NDG	
SM		PHOTO-FISSN	EXPT-PROG	2.58	1.09	EANDC(J) 19L, 54 8/70	KYu	Katase +.SIG in Fig	
EU	151	N, ALPHA	EXPT-PROG	PILE		EANDC(J)19L, $28 / 70$	JAE	OKAMOTO+.S FROM 5.4D+48D PM-148.NDG	
EU	152	N, GAMMA	EXPT-PROG	2.5-2	3.40	EANDC(J)19L, 1 8/70	JaE	ASAMI+.GE(LI), ISOM RATIO	
Ho	165	PHOTO-FISSN	EXPT-PROG	2.58	1.09	EANDC(J)19L, 54 8/70	KYu	Katase + .SIG IN FIG	
AU	197	PHOTO-FISSN	EXPT-PROG	2.58	1.09	EANDC(J) 19L, 54 8/70	KYu	KATASE+.SIG IN FIG	
TI	046	N, PROTON	EXPT-PROG	PILE		EANDC(J)19L, 26 8/70	KTO	KIMURA+.MEAN S=11.2PM0.63 MILLI-B	
TI	047	N, PROTON	EXPT-PROG	PILE		EANDC(J)19L, 26 8/70	KTO	KIMURA + . MEAN $\mathrm{S}=19$. OPMI . 2 MILLI -B	
TI	048	N, PROTON	EXPT-PROG	Pile		$\operatorname{EANDC}(J) 19 \mathrm{~L}, 26$ 8/70	KTO	KIMURA + .MEAN S $=0.294$ PMO.025 MILLI-B	

$\begin{aligned} & \text { ELEMENT } \\ & \mathrm{S} \quad \mathrm{~A} \end{aligned}$	QUANTITY	TYPE	ENERGY		documentation		LAB	COMMENTS
			MIN	MAX	REF VOL PAGE	date		
PB 204	TOT INELASTC	EXPT-PROG	PILE		EANDC(J) 19L, 26	8/70	KT0	KIMURA+ . MEAN S $=18.9 \mathrm{PM} 2.0 \mathrm{MB}$, ISOM
PB 204	N2N XSECTION	EXPT-PROG	PILE		EANDC(J) 19L, 26	8/70	кто	KIMURA + MEAN $\mathrm{S}=1.90 \mathrm{PMO} 0.18 \mathrm{MILLI}-\mathrm{B}$
PB 207	dIff ELASTIC	EXPT-PROG	1.56	3.56	EANDC(J) 19L, 7	8/70	JaE	TOMITA+.EXCIT FUNC AT 125 DEG.NDG
PB 207	DIFF INELAST	EXPT-PROG	1.56	3.56	EANDC(J)19L, 7	8/70	JAE	TOMITA+, EXCIT FUNC AT 125 DEG.NDG
PB 208	GAMMA N	EXPT-PROG		1.07	EANDC(J)19L, 4	8/70	JAE	NAKAJIMA+.N-SPECTR GIVN
BI 209	diff elastic	EXPT-PROG	1.47		EANDC(J)19L, 50	8/70	KYu	MATOBA+. TOF, 20 TO 160 DEGS. NDG
BI 209	diff INELAST	EXPT-PROG	1.47		EANDC(J) 19L, 50	8/70	KYU	MATOBA+. TOF , 2.6,4.2,5.7MEV LVLS.NDG
TH 232	FISSION	EXPT-PROG	PILE		EANDC(J) 19L, 37	8/70	кто	KOBAYASHI +. AVG SIG=67PM7 MILLI-B
TH 232	FISS YIELD	EXPT-PROG	PILE		EANDC(J) 19L, 37	8/70	KT0	KOBAYASHI+. 5 NUCLIDES REL TO BA-140
TH 232	PHOTO-FISSN	EXPT-PROG	2.08	1.29	EANDC(J) 19L, 50	8/70	KYU	SONODA+, SIG IN FIGS
U	PHOTO-FISSN	EXPT-PROG	2.08	1.29	EANDC(J) $19 \mathrm{~L}, 50$	8/70	KYU	SONODA+.SIG IN FIGS
U 238	DIFF INELAST	THEO-PROG	5.04	1.57	EANDC(J) 19L, 22	8/70	JAE	IGARASI +. H-F AND OPTMDL,NDG
MANY	RESON PARAMS	EXPT-PROG			$\operatorname{EANDC}(\mathrm{J}) 19 \mathrm{~L}, 15$	8/70	JaE	IDENO+. CORRELATION ANAL OF RES-SPACE
MANY	THRMLSCATLAN	THEO-PROG	COLD		$\operatorname{EANDC}(\mathrm{J}) 19 \mathrm{~L}, 16$	8/70	JaE	/ NAKAHARA.CAL FOR MONOATOM-LIO METAL
MANY	THRMLSCATLAW	THEO-PROG	COLD		EANDC(J)19L,56	8/70	OSA	NISHIGORI.FORMAL TH.PUB IN PTP $45 \mathrm{NOO6}$
MANY	LVL dEN LAW	REVW-PROG	PILE		$\operatorname{EANDC}(\mathrm{J}) 19 \mathrm{~L}, 17$	8/70	JAE	BABA+.PUBLISHED IN JAERI-1183+ERRATA
H2O	THRMLSCATLAK	EXPT-PROG	THR		$\operatorname{EANDC}(\mathrm{J}) 19 \mathrm{~L} .45$	8/70	кт0	/FUJITA+.N-PSPECTR C GD,CD, B POISONS
NBD	THRMLSCATLAW	EXPT-PROG	THR		EANDC(J) 19L,62	8/70	TOH	/KIMNRA + . TOF, POWDER DIFFR.NDG
TAD	THRMLSCATLAW	EXPT-PROG	THR		EANDC(J)19L,62	8/70	TOH	/KIMURA+.TOF, POWDER DIFFR.NDG
TIO	THRMLSCATLAW	EXPT-PROG	THR		EANDC(J) 19L, 62	8/70	TOH	/KIMURA + . TOF , POWDER DIFFR.NDG
SRFED	THRMLSCATLAW	EXPT-PROG	THR		EANDC (J) 19L,62	8/70	TOH	/KIMURA +. TOF , POWDER DIFFR.SR2FE205

I. Japan Atomic Energy Research Institute

A. Neutron Experiments - Reactor

I-A-1. Dependence of the ${ }^{152}$ Eu Activation Ratio on Neutron Energy

T. Asami and Y. Ohno

The activation ratio of ${ }^{152 m} \operatorname{Eu}(9.3 \mathrm{hr})$ to ${ }^{152_{\mathrm{E}}(12 \mathrm{y})}$ produced by the ${ }^{151}{ }_{E u}(\mathrm{n}, r)^{152_{\mathrm{Eu}}},{ }^{152 m^{E u}}$ reaction was investigated mainly at the neutron resonances.

Europium enriched to 92.12% was used and the normalization of neutron flux was made with gold sample. The irradiations were made with monochromatic neutrons from a crystal spectrometer at energies of $0.0253,0.080$, $0.321,0.461,1.055$ and 3.361 eV . The gamma-ray spectra from the irradiated samples were measured with a $G e(L i)$ detector and the decays of four gamma rays were followed.

Detailed analyses of the data are now in progress.

$$
\text { I-A-2. The Cross Section of }{ }^{\left.151_{\mathrm{Eu}\left(n_{n}\right.}, \boldsymbol{\alpha}\right)^{148} \mathrm{Pm}_{\mathrm{Pm} \text { Reaction }}} \text { K. Okamoto, and H. Umezawa }
$$

The cross section of ($n, \boldsymbol{\alpha}$) reaction of ${ }^{151}$ Eu induced by pile neutrons was determined by a radiochemical method. Samples of ${ }^{151}$ Eu-oxide were irradiated by the JRR-2 for about 300 hours with $10^{13} \mathrm{n} / \mathrm{cm}^{2}$, sec of neutron flux and promethium was extracted from the irradiated sample by cation exchange technique with 2-methyllactate solution. A cobalt wire was always irradiated with the europium sanple to measure the neutron flux. Radioactivities of $5.4-$ day ${ }^{148} 8_{\mathrm{Pm}}(1-)$ and $42-$ day ${ }^{148 \mathrm{~m}_{\mathrm{Pm}}(6-)}$ were measured with a proportional counter and a $\mathrm{Ge}(\mathrm{Li})$ detector connected to a multichannel pulse height analyzer. The final analysis of the experimental data is in progress.

B. Neutron Experiments - Linac

I-B-1. Neutron Resonance of ${ }^{59}$ Co at 132 eV
Y. Nakajima, M. Ohkubo, A. Asami, and T. Fuketa

A full paper on this subject was published in the Journal of Nuclear Science and Technology 7 (1970) 7-12 with an abstract as follows:

Neutron transmission measurements on ${ }^{59}$ Co have been made for neutron energies from 0.8 eV to 3 keV using the time-of-flight spectrometer of a linear accelerator at the Japan Atomic Energy Research Institute. The maximum time resolution was $10 \mathrm{nsec} / \mathrm{m}$. Resonance parameters of the $132-\mathrm{eV}$ resonance of ${ }^{59}$ Co were determined from the neutron transmissions of several samples of different thicknesses by the thick-thin method, using an area analysis method based on the Breit-Wigner single-level formula.

The following results were obtained, $\mathbf{E}_{0}=132.0 \pm 0.5 \mathrm{eV}, \quad \Gamma=6.0 \pm$ $0.2 \mathrm{eV}, \quad \Gamma_{\mathrm{n}}=5.15 \pm 0.06 \mathrm{eV}$ and $\mathrm{J}=4$. The value of the potential scattering radius, obtained from the transmission of the thickest sample, was $R^{\prime}=5.3 \pm 0.5 \mathrm{fm}$.

I-B-2. ${ }^{208} \mathrm{~Pb}(r, n)$ Reaction near Threshold
Y. Nakajima, R. Bergère*, M. Mizumoto, and T. Fuketa

The following is an epitome of the paper presented at 1970 Spring Sectional Meeting of the Physical Society of Japan.

Photoneutron spectra of the ${ }^{208} \mathrm{~Pb}(r, n)$ reaction have been measured with the time-of-flight spectrometer ${ }^{\text {l }}$) at the JAERI accelerator. The experimental conditions are the following:

Electron energy: 10.5 MeV , Electron pulse width: 150 ns ,
Channel width: 62.5 ns , Flight path length: 50 m ,
Detector: ${ }^{6}$ Li glass scintillator.
The spectra were measured at 85° and 130° to the direction of photon.
First, the photoneutron spectra of ${ }^{208} \mathrm{~Pb}(\gamma, n)$ reaction had been measured by Bertozzi et al. ${ }^{2}$) up to 2 MeV neutron energy. Then, they have been recently greatly improved up to 350 keV neutron energy by Bowman et al. ${ }^{3}$. As is seen in the Table, our data are in good agreement with these data.

[^0]Multipole assignments of the absorbed photon will be made in the favourable resonances.

Recent measurements in Saclay of ${ }^{208} \mathrm{~Pb}(r, n)$ cross section seem to show some intermediate structure near the threshold ${ }^{4}$. Our high resolution data are compared with the data of Saclay and preliminary results and discussion are presented.

Table 1. Resonance Energy

Present Data	Bertozzi et al.	Bowman et al.
91.5 keV		89.7 keV
		98.3
130		114.7
		128.7
168		139.5
182		156.0
257		166.8
301	324	181.3
317		256.7
333		299
430		318.7
460		
546		
615		

References:

1) A. Asami et al.: JAERI 1138 (1967).
2) W. Bertozzi et al.: Phys. Letters, 6, (1963) 108.
3) C.D. Bowman et al.: Phys. Rev. Letters, 23 (1969) 796.
4) R. Bergère: Private communication.

I-B-3. Low Energy Neutron Scattering Cross Section of ${ }^{6} \mathrm{Li}^{+}$
A. Assmi and M. C. Moxon*

A full paper on this work, which was outlined in the previous report (EANDC (J) 13L. P. 6), was presented at the IAEA Conference on Nuclear Data for Reactors held at Helsinki in June 1970, and to be publisned in the proceedings of the conference. (paper number CN-26/25)
$+\quad$ The measurements were made at A.E.R.E., Harwell.

* A.E.R.E., Harwell, Didcot, Berks., U.K.

C. Neutron Experiments - Van de Graaff Accelerator

I-C-l. Elastic and Inelastic Neutron Scattering Cross Sections of ${ }^{207} \mathrm{~Pb}$

Y. Tomita, S. Tanaka and M. Maruyama

Neutron scattering experiment on ${ }^{207} \mathrm{~Pb}$ is in progress. So far, excitation functions has been measured at 125° and at neutron energies between 1.5 and 3.5 MeV .

I-C-2. Scattering of 1.5 to 3.6 MeV Neutrons by $L a$ and Pr
S. Tanaka, Y. Tomita and S. Kikuchi

Measurement of the differential cross sections for elastic and inelastic scattering of neutrons from lanthanum and praseodymium has been completed at neutron energies of 1.50 to 3.57 MeV in $500-\mathrm{keV}$ steps, and the analysis of the results is now in progress.

I-C-3. Elastic and Inelastic Scattering of Neutrons in 20 MeV Region

Preliminary time-of-flight experiments to get information on neutron background and shielding in 20 MeV region by using the $T(d, n)^{4} \mathrm{He}$ reaction have been completed. A design of a multi-angle detector system is now in progress. The system consists of four detectors placed at different scattering angles in steps of 10°. The detectors are rotatable around a scatterer with the maximum flight paths of 8 m .

I-C-4. Energy Levels of ${ }^{133}$ Cs Excited by Means of ($n, n^{\prime} r$) Reaction Shiroh Kikuchi

The low-lying]evels of ${ }^{133}$ Cs have been investigated by using the ${ }^{133} \mathrm{C}_{\mathrm{S}}\left(\mathrm{n}, \mathrm{n}^{\prime} r\right)$ reaction in the neutron energy range of $0.50 \sim 0.96 \mathrm{MeV}$. Four levels above 600 keV were ascertained from threshold information of the excitation functions of the samma rays, and a preliminary report has been publisher ${ }^{\text {l }}$.

In order to study the spins and parities of these levels, the angular distributions of the gamma rays were measured and compared with the theoretical prediction based on the Satchler theory ${ }^{2)}$. Further exanination of the spin and parity assignments was carried out by comparing the observed excitation functions with those calculated on the basis of the Moldauer formalism 3).

Detailed analyses are now under progress.

References:

1) S. Kikuchi, Y. Yamanouti and K. Nishimura, J. Phys. Sos. Japan 28 (1970) 1089.
2) G. R. Satchler, Phys. Rev. 94 (1954) 1304, ibid. 104 (1956) 1198, ibid. ll1 (1958) 1747.
3) P. A. Moldauer, Phys. Rev. 123 (1961) 968, ibid. 129 (1963) 754, Rev. Mod. Phys. 36 (1964) 1079.

I-C-5. Neutron Scattering Cross Sections of Iron

Y. Tomita, K. Tsukada and M. Maruyama

A full paper on this subject was reported in IAEA 2nd International Conference on Nuclear Data for Reactors, Helsinki, 17 June, 1970, CN-26/29, and will be published in Proceedings of the conference. The following is its abstract:

The differential cross sections of elastic and inelastic scattering and the angular distributions of gamma-rays associated with decay of the first excited state were measured for iron by the time-of-flight method. The measurement was made in the energy range $1.43-2.15 \mathrm{MeV}$ in steps of about 40 keV and at thirteen lab angles between 30° and 146°. Energy spread of the incident neutrons was about 50 keV FWHM. Gamma-rays were observed by the neutron detector. Absolute values of the ($n, n^{\prime} \gamma$) cross sections were normalized to the $\left(n, n^{\prime}\right)$ cross sections. The measured cross sections were corrected for the effect of flux attenuation and multiple scattering and for source-to-sample geometrical effect by the Monte Carlo Method.

The angular distributions in the centre-of-mass system were fitted with Legendre polynomials of the form

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{4 \pi} \sum_{l=0}^{L} \mathrm{~B}_{l} \mathrm{P}_{l}(\cos \theta)
$$

where L was taken as 6 for elastic scattering and 4 for inelastic scattering and gamma-rays. These coefficients are shown in Fig. 1 for elastic scattering, in Fig. 2 for inelastic scattering and in Fig. 3 for gamma-rays as functions of incident neutron energies. Uncertainties shown in the figures include only those due to statistics in the measurement and in the Monte Carlo calculations. The largest uncertainties not included would be those in the detector efficiency, which was determined by the use of the known
cross sections of the ${ }^{3} \mathrm{H}(\mathrm{p}, \mathrm{n})^{3} \mathrm{He}$ and ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})^{7} \mathrm{Be}$ reactions. These uncertainties may amount to 5% or more. Strong structures are seen in the coefficients of $l=1$ to 3 for elastic scattering at about 1.6 MeV and 2.05 MeV. They also appear to lesser degrees in the coefficients of $l=0$ for elastic scattering, $l=0$ and 2 for inelastic scattering and $l=0,2$ and 4 for gamma-rays. The widths of the humps are about 200 MeV , which are of the same magnitude as were observed ${ }^{1)}$ 2)3) for the structures at lower energies. It is of much interest whether or not each of the observed structures can be attributed to a single partial wave and be regarded as an intermediate resonance. The analysis on this point is in progress.

Fig. 1 Legendre expansion coefficients for the differential elastic scattering cross sections of Fe .

Fig. 2 Legendre expansion coefficients for the differential inelastic scattering cross sections of ${ }^{56} \mathrm{Fe}$.

Fig. 3 Legendre expansion coefficients for the angular distributions of gamma-rays from the first excited state of Fe .

References:

1) J. E. Monahan and A. J. Elwyn, Phys. Rev. Lett. 20 (1968) 1119; A. J. Elwyn and J. E. Monahan, Nucl. Phys. Al23 (1969) 33.
2) J. Cabe, K. Laurat, P. Yvon and G. Bardolle, Nucl. Phys. Al02 (1967) 92.
3) E. Barnard, J. A. M. De Villiers, C. A. Engelbrecht, D. Reitmann and A. B. Smith, Nucl. Phys. Al18 (1968) 321.

I-C-6. Width Fluctuation and Resonance Interference Effects in Neutron Scattering Cross Sections of Aluminum, Copper and Zinc
 K. Tsukada, Y. Tomita, S. Tanaka and M. Maruyama

A full paper on this subject was reported in IAEA 2nd International Conference on Nuclear Data for Reactors, Helsinki, 17 June, 1970, CN-26/30 and will be published in Proceedings of the conference with an abstract as follows:

Neutron scattering cross sections of aluminum, copper and zinc have been analyzed in the energy region of 1 to 8 MeV by means of the optical and statistical models, the width fluctuation effect and the resonance interference effect being taken into account. Data of the cross sections used in the analysis include those at $4.81,5.96,7.03$ and 8.03 MeV for aluminum, at 1.71 and 2.24 MeV for copper and at $1.71,2.24,4.48,5.92$, 6.97 and 7.99 MeV for zinc which were measured in our laboratory, and data available in BNL-400 and CCDN. Best fit sets of optical-model parameters are searched for the angular distributions of elastic scattering, the inelastic scattering cross sections and the total cross sections at each energy. By using a computer code "STAX2", calculations on the basis of Hauser-Feshbach's formulation and Moldauer's formulation are performed. In the latter formulation, the calculations are carried out with the maximum and zero values of Moldauer's parameter Q. Difference in fitting among the three calculations appears in backward angles in a limited energy region. Systematic energy variations of the optical-model parameters are seen more or less in the region lower than 4 MeV for all cases. In the region higher than 4 MeV , where the Moldauer effect is to be ineffective, the energy variations are not so pronounced. Judging from these two, the calculation with the maximum value of Q is considered to be best among the three calcu-

EANDC (J) 19 L
lations to reproduce the measured data, though fluctuations in the cross sections and simple forms of the angular distributions in the lower energy region make the choice ambiguous.

I-C-7. Fast Neutron Scattering from Al, Si, S and Zn
S. Tanaka, K. Tsukada, M. Maruyama and Y. Tomita

A full paper on this subject was reported in IAEA 2nd International Conference on Nuclear Data for Reactors, Helsinki, 17 June, 1970, CN-26/31 and will be published in Proceedings of the conference with an abstract as follows:

Differential cross sections for elastic and inelastic neutron scattering have been measured for natural samples of $A l, S i, S$ and $Z n$ at incident energies from 4.5 to 8 MeV in about $1-\mathrm{MeV}$ steps. Scattered neutrons were observed at angles from 30° to 150° in 10° steps with a Mobley bunching system of the JAERI 5.5 MV Van de Graaff accelerator and a time-of-flight spectrometer. The absolute differential cross-section scale was fixed with reference to the $n-p$ scattering cross section. The data were corrected for flux attenuation, multiple scattering in the samples and source-to-sample angular spread of neutron energy using a Monte Carlo computer code.

The differential cross sections were analysed using the optical model for the elastic scattering, the statistical theory for the compound processes, and the coupled-channels and DWBA theories for the direct inelastic scattering. The optical potential parameters were obtained by fitting the sum of the shape-elastic and compound-elastic scattering cross sections to the measured elastic data. The inelastic data for low-lying levels are compared with the combined predictions by the Hauser-Feshbach and coupled-channels
(or DWBA) calculations. The comparison shows a good agreement for ${ }^{27}$ Al and ${ }^{32}$ S. For the first states in Zn even isotopes, the direct processes are predominant in the energy region higher than 5.9 MeV .

D. Others

I-D-1. Deriations from the Statistical Distributions of Neutron
Resonance Levels of Intermediate and Heavy Nuclei
K. Ideno and M. Ohkubo

A paper on this subject was reported in JAERI-Memo 4072 (unpublished) (1970) .

Correlation analysis between spacings of arbitrary pairs of neutron resonance levels in individual nuclei is described. It is found that the observed neutron resonance levels of intermediate and heavy nuclei show simple correlations in the level positions. There appear very frequently pairs of levels separated at particular spacings and the observed levels are also preferentially distributed from each other at periodical positions with particular periods. For example, in the observed resonances of ${ }^{240} \mathrm{Pu}{ }^{1)}$ the level positions are found to be strongly correlated with a period of $213 \pm 1 \mathrm{eV}$ in the energy region from zero to 2000 eV and al so from 3600 to 5000 eV . It is show that these regular behaviours in the occurrences of neutron resonances are very rarely expected for a statistical ensemble of levels. For the observed resonances of ${ }^{123} \mathrm{Sb}^{2}$), the distribution of the relative level positions with respect to neutron zero energy is discussed.

References:

1) W. Kolar and K. H. Böckhoff, J. Nucl. Enerzy 22 (1968) 299.
2) G. V. Muradyan, Yu. V. Adamchuk, Soviet J. Nucl. Phys. $\underline{8}$ (1969) 495.

I-D-2. Thermal Neutron Scattering from Simple Liquids

Y. Nakahara

A paper on this subject was submitted to Journal of Nuclear Science and Technology (Tokyo) with an abstract as follows:

A new phenomenological method is proposed to calculate double differential scattering cross sections for thermal neutron scattering from simple monoatomic liquid metals such as liquid sodium.

A general expression for coherent part of the cross section has been obtained from a system of classical Vlasov equations for fully ionized ions and electrons interacting with each other through Coulomb or effective potentials. It is shown that the fine structure seen in the reduced scattering law for liquid sodium measured by Randolph can be explained successfully with our method.

Quantum effects of electrons have been estimated by applying the Balescu equation to electrons and are found not to be as important as in solid metals.

Comparison between our ion-electron model and Nelkin - Ranganathan's neutral atom model shows that the explicit consideration of charges of ions and the existence of conduction electrons gives an excellent improvement.

The gross structure of the reduced scattering law is determined by incoherent scattering. The incoherent part of the scattering law has been calculated combining the effective width model and the harmonic lattice model.

The reduced scattering law is given by the combination of the coherent and incoherent parts. The calculated reduced scattering law for liquid sodium shows an excellent qualitative and quantitative agreements with experimental values, except for energy transfers comparable to the energy of thermal motions of ions in liquid sodium.

I-D-3. Average Level Spacings and the Nuclear Level Density Parameter H. Baba and S. Baba

A paper on this subject was published as JAERI-1183*.
The average level spacing \underline{D}_{0} was computed with neutron resonance capture data summarized in BNL-325, and compared with those given by several authors. The values thus fixed with reliability were plotted versus the neutron number to see the systematic behavior of \underline{D}_{0}. The less reliable or ambiguous group of the D_{0}^{1} s was then fixed by taking the systematics into consideration. It was also decided from the systematics that the error involved in the ${ }_{0}^{1}$ s would be at most of the order of a factor two.

The level density parameter a was calculated with the fixed value of the level spacing \underline{D}_{0}. The effect of an alternative choice of the level density formula or the moment of inertia on a was discussed and its dependence on the nuclear radius parameter was studied as well.

[^1]I-D-4. Ha.lf-lives of Some Fission Product Nuclides
S. Baba, H. Baba and H. Natsume

A paper on this subject was submitted to the J. Inorg, and Nuclear Chem. In the course of a radiochemical study of the proton-induced fission of ${ }^{238}{ }_{\mathrm{U}}$, a large number of fission product nuclides with medium half-lives were repeatedly separated and their yields were determined by measuring the radioactivities. Their half-lives were then determined with good precision as well as their intensities in the process of least squares fitting analysis of the β-decay curves. Resulting half-lives are summarized in Table 1.

Table 1

Nuclide	Half-life
${ }^{72} 2_{\mathrm{Zn}}$	$46.6 \pm 0.2 \mathrm{~h}$
${ }^{86} \mathrm{Rb}$	$18.61 \pm 0.04 \mathrm{~d}$
${ }^{89} \mathrm{Sr}$	$50.55 \pm 0.09 \mathrm{~d}$
91_{Y}	$58.51 \pm 0.06 \mathrm{~d}$
${ }^{99} \mathrm{Mo}$	$66.5 \pm 0.2 \mathrm{~h}$
112_{Pd}	$20.12 \pm 0.06 \mathrm{~h}$
${ }^{115} \mathrm{Cd}$	$53.38 \pm 0.04 \mathrm{~h}$
$115 \mathrm{~m}_{\mathrm{Cd}}$	$44.8 \pm 0.3 \mathrm{~d}$
$129 \mathrm{~m}_{\mathrm{Te}}$	$33.52 \pm 0.12 \mathrm{~d}$
136_{Cs}	$13.00 \pm 0.02 \mathrm{~d}$
140_{Ba}	$12.789 \pm 0.006 \mathrm{~d}$
141_{Ce}	$32.6 \pm 0.2 \mathrm{~d}$
143_{Pr}	$13.57 \pm 0.02 \mathrm{~d}$
147_{Nd}	$10.98 \pm 0.01 \mathrm{~d}$
149_{Pm}	$53.08 \pm 0.11 \mathrm{~h}$
153 Sm	$46.44 \pm 0.08 \mathrm{~h}$
156_{Eu}	$15.17 \pm 0.03 \mathrm{~d}$
161_{Tb}	$6.90 \pm 0.02 \mathrm{~d}$

* The observed value is somewhat smaller than reported values. This is likely due to the coexistence of the shorterlived isotope, ${ }^{109} \mathrm{Pd}(13.5 \mathrm{~h})$, which could not be resolved in the least squares fitting analysis.

I-D-5. Direct Measurement of Nuclear Reaction Times by the Use of the

 Blocking Effect in Single CrystalsM. Maruyama, K. Tsukada, K. Ozawa, F. Fujimoto ${ }^{*}$, K. Komaki*,
M. Mannami ${ }^{* *}$ and T. Sakurai ${ }^{* *}$

A full paper reporting the results on the ${ }^{28} \mathrm{Si}\left(\mathrm{p}, \mathrm{p}^{\prime}\right),{ }^{70_{G e}}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ and $72_{G e}\left(p, p^{\prime}\right)$ reactions, which were outlined in the previous report (INDC (JAP) 4E p.10), was published in Nuclear Physics Al45 (1970) 581.

The measurement of reaction times of the ${ }^{63,65} \mathrm{Cu}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{63,65} \mathrm{cu}^{*}$ (1st and 2nd excited states) reactions has been performed using the same method and the analysis of the observed data is now in progress.

[^2]
E. Japanese Nuclear Data Committee

I-E-I. Evaluation of the Total Neutron Cross Section of Carbon up to 2 MeV
K. Nishimura, S. Igaraski, T. Fuketa and S. Tanaka

A treatment of least-squares method has been applied to the evaluation of carbon total neutron cross section in the energy region 1 eV to 2 MeV . The number of total cross-section data, which were available from CCDN and collected from other published reports, amount to almost 2,200 points. A fourth order polynomial is adopted as an empirical formula for these crosssection data. Two different methods for the assignment of weight have been tried in the least-squares fit, i.e., equal weight and weight of inverse square of error. The results indicate that the difference in the crosssection values obtained with the two different weight assignments does not exceed 1% in the entire energy region. The numerical data are classified into two groups of experimental data sets, one obtained by the time-offlight (TOF) and the other by the direct-current-beam (DCB) method. In order to find out systematic trend depending on the different methods of measurements, the least-squares fits with the equal weight and the weight of inverse square of error are applied to TOF and DCB data, separately. Systematic deviations of about 3.5% for the equal weight and about 2.5% for the weight of inverse square of error, are found in the cross section at 350 keV between TOF and DCB data. The cross-section curve obtained by the weight of inverse square of error is compared with those of ENDF/B, KFK 750 and UK data file.

I-E-2. Fast Neutron Capture Cross Sections of $\mathrm{Cr}, \mathrm{Fe}, \mathrm{Ni}$ and Mo
K. Nishimura, T. Asami, S. Igarasi, M. Hatchya* and H. Nakamura**

In the keV-energy region, neutron radiative capture cross sections for such reactor materials as $\mathrm{Cr}, \mathrm{Fe}, \mathrm{Ni}$ and Mo have been measured by a number of authors. A variety of standard cross sections used in different groups of measurements makes a systematic comparison among their results difficult. In the present work, the $A u(n, r)$ cross section measured by Poenitz et al. is adopted as a common standard cross section. By multiplying the normalization factors to the each (n, r) cross section in different groups of measurements, the renormalized (n, r) cross sections for Cr, Fe, Ni and Mo have been obtained. By the use of the results of the systematic study of level density parameter a and strength function $1 / \xi^{0}$, statistical model calculations have been performed up to about 10 MeV . The competition with neutron inelastic scattering is taken into account in the statistical model calculations. Collective and direct model calculations have been performed above several MeV region. Calculations are made by the use of a computer code RACY. The results of calculations from 10 keV to 20 MeV are adjusted to the renormalized (n, r) cross sections for Cr , Fe , Ni and Mo, and are compared with the curves of ENDF/B, KFK 750 and UK data.

A full paper will be published in the proceedings of the IAEA International Conference on Nuclear Data for Reactors (Helsinki, 1970). The number assigned to this paper is $\mathrm{CN}-26 / 28$.

[^3]I-E-3. Analysis of Neutron Inelastic Scattering by 238_{U}

Total and partial inelastic scattering cross sections of ${ }^{238}$ are investigated in the range of neutron energy from 50 keV to 15 MeV . Optical model and Hauser-Feshbach's formula are mainly used in the energy range from 50 keV to 1.5 MeV and evaporation model is used above 1.5 MeV . Values and trends of optical potential parameters and level density parameters are searched for by fitting the calculated values of the inelastic scattering cross sections and the emitted neutron spectra to the experimental data. Spin and parity for each discrete level of ${ }^{238}$ U are tentatively determined, after surveying experimental and theoretical information, and comparing results of calculations with experimental data for excitation functions. Effects of competitive processes, such as $(n, r),(n, f)$, etc. are taken into account in the calculations. Above 1.5 MeV , the inelastic scattering cross sections are obtained by using Hauser-Feshbach's model which includes contribution from continuous state of the target nucleus, and by using calculated cross section for compound formation and experimental data for $(n, f),(n, 2 n),(n, 3 n)$ and (n, r) cross sections. The inelastic scattering cross section obtained in this work is comparable to that presented in KFK-120.

A full paper will be published in the proceedings of the IAEA International Conference on Nuclear Data for Reactors (Helsinki, 1970). The number assigned to this paper is $\mathrm{CN}-26 / 27$.

[^4]I-E-4. GRAPH - A Computer Program for Plotting of Experimental Data in NEUDADA's Output Tape -

S. Igarasi and T. Nakagawa

This is a program, which is written in FORTRAN IV language, in order to plot the experimental data. Input-data for this program are arranged In transmission format. The transmission format is one of the output format from NEUDADA system. A computer to be used for this program is IBM $360 / 75$ or FACOM 230-60 and a plotter is CALCOMP plotter. Using the computer program GRAPH, one can obtain several types of graphs for experimental data or any other numerical data, if they are arranged in the transmission format. An example of output graphs is shown below. Manual of GRAPH will be published in JAERI-memo.

I-E-5. Other Works on Review and Evaluation in JNDC
S. Igarasi, S. Iijima, K. Nishimura and other members of JNDC

1) Works on review and evaluation of cross section of $235 \mathrm{U},{ }^{238} \mathrm{U},{ }^{239} \mathrm{Pu}$, ${ }^{240} \mathrm{Pu},{ }^{241} \mathrm{Pu}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Ni}, \mathrm{Na}$ and ${ }^{16} \mathrm{O}$ had started last year. Experimental data for $\sigma_{t}, \sigma_{c}, \sigma_{f}, \sigma_{e l}, \sigma_{\text {inel }}$ and ν of ${ }^{235}{ }_{\mathrm{U}},{ }^{238}{ }_{\mathrm{U}},{ }^{239} \mathrm{Pu},{ }^{240_{\mathrm{Pu}}}$ and ${ }^{241} \mathrm{Pu}$, and those for $\sigma_{\text {el }}$ and $\sigma_{\text {in }}$ of $\mathrm{Cr}, \mathrm{Ni}, \mathrm{Fe}, \mathrm{Na}$ and ${ }^{16} \mathrm{O}_{\mathrm{O}}$ have been collected from published reports, and NEUDADA or SCISRS files, in the energy range from $\mathrm{l} k \mathrm{kV}$ to 20 MeV . These collected data are recompiled in the form of tables and graphs. The review and evaluation works are now in progress.
2) Review and evaluation works of fission product data (level scheme, decay constants, fission yields, cross sections, etc.) have started recently。 Fission yield data will cover for fissions from ${ }^{235} \mathrm{U},{ }^{238} \mathrm{U},{ }^{239} \mathrm{Pu}$. Cross sections will be estimated in the energy region from 100 eV to 10 MeV for about 18 nuclides ($Z=32 \sim 67$) with long life-time.

I-E-6. An Area-Analysis Program for Neutron Resonances based on the Atta-Harvey Code
A. Tachibana*, T. Iwaki**, E. Kimura, A. Asami, Y. Nakajima, and T. Fuketa

A report on this subject was published in JAERI-memo 3728 (1969) with an abstract as follows:

Modification of the Atta-Harvey Area-Analysis Code was made with regard to the calculation of the neutron width consistent with the total width and to the evaluation of the error of computed value of neutron width in addition to the minor change of the program. Instruction for the use of the program and the program list are given.

* The Japan Atomic Power Company.
** Mitsubishi Atomic Power Industries, Inc.

II. Kyoto University Research Reactor Institute

II-1. Measurements of Average Cross Sections for Some Threshold
Reactions to the Neutrons with the Fission-type Reactor Spectrum
I. Kimura, K. Kobayashi and T. Shibata

A paper on this subject was submitted to the Journal of Nuclear Science and Technology. (A part of this work was reported in the previous report: EANDC (J) $13 \mathrm{~L}, \mathrm{p} .23$ (1959)).

Threshold reactions play an important role in the points of (1) measurement of fast neuiron flux and spectrum, (2) evaluation of radiation damage in reactor materials and (3) scheduling fuel cycles.

In order to evaluate the reaction rate of some threshold reactions for any purpose, not only the energy dependent cross sections for the reactions, but aiso the energy spectrum of fast neutrons, should be known as precisely as possible. However, there have $\epsilon x i s t e d$ quite poor data or remarkable discrepancies among data of the fission-spectrum-averaged cross sections for most of threshold reactions, much less of the energy dependent cross sections.

Several experimental workers have measured average cross sections by
 measured them averaged over some reactor spectra 7) 18). However, these cross section data are lacking in generality, unless the neutron spectrum is close to that of fission neutrons, because the expression of the energy spectrum of fission neutrons has become a subject rf discussion recently 4)19) 2l)。

In the present work, the fast neutron spectrum in the core of the Kyoto University Reactor, KUR, which is a light-water-moderated reactor, has been
experimentally and theoreticelly shown to be almost same as that of fission neutrons, as depicted in Figs. $1 \sim 3^{22)} \sim 24$). Furthermore, this fact was reexamined by comparing the reaction rates of some threshold reactions for the neutrons in the core and for ones from the surface of a fission plate which was made of 90% enriched uranium. Thereafter, the average cross sections for the ${ }^{46} \mathrm{Ti}_{\mathrm{Ti}}(\mathrm{n}, \mathrm{p})^{46} \mathrm{Sc},{ }^{47_{\mathrm{Ti}}(\mathrm{n}, \mathrm{p})}{ }^{47} \mathrm{Sc},{ }^{48}{ }_{\mathrm{Ti}}(\mathrm{n}, \mathrm{p}){ }^{48} \mathrm{Sc},{ }^{28}{ }_{\mathrm{Si}}$
 $92_{\mathrm{Mo}}(\mathrm{n}, \mathrm{p})^{92 \mathrm{~m}_{\mathrm{Nb}}},{ }^{93} \mathrm{Nb}(\mathrm{n}, 2 \mathrm{n}){ }^{92 \mathrm{~m}_{\mathrm{Nb}}},{ }^{204} \mathrm{~Pb}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{204 \mathrm{~m}_{\mathrm{Pb}} \text { and }{ }^{204} \mathrm{~Pb}(\mathrm{n}, 2 \mathrm{n})^{203} \mathrm{~Pb}}$ reactions have been measured.

Fig. 1 Integral flux of fast neutrons in the core of KUR above effective threshold energy, measured with threshold reactions shown in Table 1 : ${ }^{103} \mathrm{Rh}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{103} \mathrm{Rh},{ }^{58} \mathrm{Ni}(\mathrm{n}, \mathrm{p})^{58} \mathrm{Co},{ }^{27} \mathrm{Al}(\mathrm{n}, \mathrm{p})^{27} \mathrm{Mg}$, ${ }^{24} \mathrm{Mg}(\mathrm{n}, \mathrm{p})^{24} \mathrm{Na},{ }^{56} \mathrm{Fe}(\mathrm{n}, \mathrm{p})^{56} \mathrm{Mn}$ and ${ }^{27} \mathrm{Al}(\mathrm{n}, \alpha)^{24} \mathrm{Na}$.

Fig. 2 Fast neutron spectrum in the core of KUR obtained by the associated Laguerre expansion method, 000 spectral analysis by ${ }^{103} \mathrm{Rh}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{103 m_{\mathrm{Rh}}},{ }^{115} \operatorname{In}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{115 m} \mathrm{In}$, ${ }^{58} \mathrm{Ni}(\mathrm{n}, \mathrm{p}){ }^{58} \mathrm{Co},{ }^{27} \mathrm{Al}(\mathrm{n}, \mathrm{p}){ }^{27} \mathrm{Mg},{ }^{24} \mathrm{Mg}(\mathrm{n}, \mathrm{p}){ }^{24} \mathrm{Na},{ }^{56} \mathrm{Fe}(\mathrm{n}, \mathrm{p}){ }^{56} \mathrm{Mn}$ and ${ }^{27} \mathrm{Al}(\mathrm{n}, \boldsymbol{\alpha})^{24} \mathrm{Na}$.

Fig. 3 Fast neutron spectrum in the core of KUR obtained by :

The sample foils were irradiated in the core of KUR, where the fast neutron spectrum had been found out to be close to that of fission neutrons. The fast neutron flux of $\phi_{\text {fast }} \approx 10^{12} \mathrm{n} / \mathrm{cm}^{2} / \mathrm{sec}$ during irradiation of samples was monitored wi th the ${ }^{58} \mathrm{Ni}(\mathrm{n}, \mathrm{p}){ }^{58} \mathrm{Co},{ }^{24} \mathrm{Mg}(\mathrm{n}, \mathrm{p})^{24} \mathrm{Na}$ and ${ }^{27} \mathrm{Al}(\mathrm{n}, \boldsymbol{\alpha})$ ${ }^{24} \mathrm{Na}$ reactions whose average cross sections were $104,1.4$ and 0.63 mb , respectively ${ }^{24)}$. The flux values obtained with these monitors agreed with each other within 2% in each of the present measurement.

Detail specifications of samples are summarized in Table l. Induced activities of sample foils were measured with the Ge(Li) counter, of which detection efficiency had been previously calibrated by comparing with IAEA standard gamma sources. The values of average cross sections in this work have been obtained from the photopeak-counts of each gamma-ray spectrum. The results of the present measurements are shown in Tables $2 \sim 13$. In these data, the error was estimated to be one standard deviation of the errors which came from monitor-counting, statistical error and the total systematic error taken to be 5%.

Making use of the fission plate, the average cross sections for the ${ }^{46} \mathrm{Ti}(\mathrm{n}, \mathrm{p})^{46} \mathrm{Sc},{ }^{47} \mathrm{Ti}(\mathrm{n}, \mathrm{p})^{47} \mathrm{Sc},{ }^{48} \mathrm{Ti}(\mathrm{n}, \mathrm{p})^{48} \mathrm{Sc},{ }^{64} \mathrm{Zn}_{\mathrm{m}}(\mathrm{n}, \mathrm{p})^{64} \mathrm{Cu},{ }^{92_{\mathrm{Mo}}(\mathrm{n}, \mathrm{p})}{ }^{92 \mathrm{~m}} \mathrm{Nb}$ and ${ }^{93} \mathrm{Nb}(n, 2 n)^{92 m_{\mathrm{Nb}}}$ reactions have been al so measured. These results are tabulated in Table 14. The values of the cross sections for these reactions obtained with the fission plate agree with those obtained in the core of KUR in an experimental error.

Other cross sections will be obtained by making use of this fast neutron field with the fission-type-reactor spectrum in the core of KUR in future。

Table 1 Characteristics of sample foils used for average cross section measurement

isotope abundance	reaction	half life	measured energy	foil specification
7.93\%	${ }^{46} \mathrm{Ti}(\mathrm{n}, \mathrm{p})^{46} \mathrm{Sc}$	34 d	$0.89,1.12 \mathrm{MeV} r$-ray	$\begin{aligned} & 1 / 2 " \text { dia. } 0.01 " \text { thick } \\ & 99.73 \% \text { pure } \end{aligned}$
7.28 \%	${ }^{47} \mathrm{Ti}(\mathrm{n}, \mathrm{p})^{47} \mathrm{Sc}$	3.43 d	0.16 MeV r-ray	$\begin{aligned} & 1 / 2 " \text { dia. } 0.01 " \text { thick } \\ & 99.73 \% \text { pure } \\ & \hline \end{aligned}$
73.94%	${ }^{48} \mathrm{P}_{\mathrm{Ti}}(\mathrm{n}, \mathrm{p})^{48} \mathrm{Sc}$	44 h	$\underset{\substack{0.98, r_{\text {ray }}}}{ }$	$\text { l/2" dia. } 0.01 \text { " thick }$ $99.73 \% \text { pure }$
92.18\%	${ }^{28}$ Si $(\mathrm{n}, \mathrm{p})^{28}{ }_{\text {Al }}$	2.3 m	$1.78 \mathrm{MeV} \quad r$-ray	```8mm X 8 mm X 0.2 mm sliced from p-type crystal```
4.71 \%	${ }^{29} \mathrm{Si}(\mathrm{n}, \mathrm{p}){ }^{29}{ }_{\mathrm{Al}}$	6.6 m	$1.28 \mathrm{MeV} \quad r$-ray	$\begin{aligned} & 8 \mathrm{~mm} \times 8 \mathrm{~mm} \times 0.2 \mathrm{~mm} \\ & \text { sliced from p-type crystal } \end{aligned}$
3.14%	${ }^{30} \mathrm{Si}(\underline{n}, \alpha)^{27}{ }_{\mathrm{Mg}}$	9.5 m	$0.84 \mathrm{MeV} \quad r$-ray	$\begin{aligned} & 8 \mathrm{~mm} \times 8 \mathrm{~mm} \times 0.2 \mathrm{~mm} \\ & \text { siiced from p-type crystal } \\ & \hline \end{aligned}$
99.75\%	${ }^{51} \mathrm{~V}(\mathrm{n}, \boldsymbol{\alpha})^{48} \mathrm{Sc}$	44 h	$\begin{aligned} & 0.98,1.04,1.314 \mathrm{MeV} \\ & \gamma \text {-ray } \end{aligned}$	$\begin{aligned} & 1 / 2^{\prime \prime} \text { dia. } 0.003^{\prime \prime} \text { thick } \\ & 99.72 \% \text { pure } \end{aligned}$
48.89%	${ }^{64} \mathrm{Zn}(\mathrm{n}, \mathrm{p})^{64} \mathrm{Cu}$	12.8 h	$1.34 \mathrm{MeV} \quad r$-ray	8 mm dia. 0.01 mm thick 99.9% pure
15.86%	${ }^{92}{ }_{\mathrm{Mo}}(\mathrm{n}, \mathrm{p})^{92 \mathrm{~m}_{\mathrm{Nb}}}$	10.2 d	0.934 MeV r-ray	l/2" dia. 0.003" thick 99.92\% pure
100%	${ }^{93} \mathrm{Nb}(\mathrm{n}, 2 \mathrm{n})^{92 \mathrm{~m}} \mathrm{Nb}$	10.2 d	0.934 MeV r-ray	$\begin{aligned} & 1 / 2^{11} \text { dia. } 0.005^{\prime \prime} \text { thick } \\ & 99.84 \% \text { pure } \end{aligned}$
1.4\%	${ }^{204} 4 \mathrm{~Pb}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{204 \mathrm{~m}_{\mathrm{Pb}}}$	66.9 m	$\begin{array}{lll} 0.375, & 0.899, & 0.912 \\ \mathrm{MeV}, r_{\text {-ray }} \end{array}$	10 mm X 10 mm X 1 mm 99.9% pure
1.4\%	${ }^{204} \mathrm{~Pb}(\mathrm{n}, 2 \mathrm{n})^{203} \mathrm{~Pb}$	52.1 h	0.279 MeV r -ray	10 mm X 10 mm X 1 mm 99.9\% pure

Table 2 Comparison of fission-average cross sections for the ${ }^{46} T i(n, p)^{46} \mathrm{Sc}$ reaction.

Cross section (mb)	Reference	
11.2 ± 0.63	Present	(reactor)
8.2	Mellish ${ }^{8}$)	(reactor)
8.0	Roy ${ }^{9}$)	(preferred)
10	Dirham ${ }^{11}$)	(reactor)
11.1	Comera ${ }^{\text {l2 }}$)	(reactor)
17 ± 3	Niese ${ }^{13}$)	(reactor)
9.0 ± 0.1	Hogg ${ }^{14}$	(reactor)
12.8 ± 0.6	Boldeman ${ }^{3}$)	(converter)
12.6 ± 0.4	Köhler ${ }^{\text {15 }}$	(reactor)
10.2 ± 0.4	Bresesti 5)	(converter)

Table 3 Comparison of fission-average cross sections for the ${ }^{47} \mathrm{Ti}(n, p)^{47}$ Sc reaction.

Cross section (mb)	Reference	
19.0 ± 1.2	Present	(reactor)
0.42	Mellish 8)	(reactor)
18	Durham ${ }^{11}$)	(reactor)
18 ± 3	Niese ${ }^{13}$)	(reactor)
15 ± 0.6	Hogg ${ }^{14}$)	(reactor)
22 ± 1.5	Boldeman ${ }^{3}$)	(converter)
13.2 ± 1.0	Köhler ${ }^{15 \text {) }}$	(reactor)

Table 4 Comparison of fission-average cross sections for the ${ }^{48} \mathrm{Ti}(n, p){ }^{48} \mathrm{Sc}$ reaction

Cross section (mb)	Reference	
$0.29 \pm \pm .02_{5}$	Present	(reactor)
0.15	Mellish 8)	(reactor)
0.53	Durham $^{11)}$	(reactor)
0.44 ± 0.08	Niese $^{13)}$	(reactor)
0.25 ± 0.01	Hogg $^{14)}$	(reactor)
0.21 ± 0.016	Boldeman $^{3)}$	(converter)
3.3 ± 0.2	Köhler	

Table 5 Comparison of fission-average cross sections for the ${ }^{28} \mathrm{Si}(\mathrm{n}, \mathrm{p})^{28} \mathrm{Al}$ reaction

Cross section (mb)	Reference	
$4.9_{0} \pm 0.3_{2}$	Present	(reactor)
4.0	Roy 9)	(preferred)

Table 6 Comparison of fission-average cross sections for the ${ }^{29} \mathrm{Si}(\mathrm{n}, \mathrm{p})^{29} \mathrm{Al}$ reaction

Cross section (mb)	Reference	
$2.9_{8} \pm 0.1_{7}$	Present \quad (reactor)	
2.7	Roy 9)	(preferred)

Table 7 Comparison of fission-average cross sections for the ${ }^{30} \mathrm{Si}(\mathrm{n}, \boldsymbol{\alpha})^{27} \mathrm{Mg}$ reaction

Cross section (mb)	Reference	
0.130 ± 0.02	Present	(reactor)
0.15 ± 0.02	Niese 13)	(reactor)

Table 8 Comparison of fission-average cross sections for the ${ }^{5 l} \mathrm{~V}(\mathrm{n}, \boldsymbol{\alpha})^{48}$ Sc reaction

Cross section (mb)	Reference	
$0.021_{7} \pm 0.001_{5}$	Present	(reactor)
0.08	Hughes 1	
0.016	(converter)	
0.035	Saeland 7	
(reactor)		

Table 9 Comparison of fission-average cross sections for the ${ }^{64} \mathrm{Zn}(\mathrm{n}, \mathrm{p})^{64} \mathrm{Cu}$ reaction

Cross section (mb)	Reference	
$35 .{ }_{5} \pm 2 \cdot 8$	Present	(reactor)
44	Mellish ${ }^{8}$)	(reactor)
39	Roy 9)	(preferred)
28	Passell ${ }^{10}$)	(reactor)
31	Durham ${ }^{11}$)	(reactor)
27 ± 1.6	Boldeman ${ }^{3}$	(converter)
26.9 ± 1.2	Rau ${ }^{17}$)	(reactor)

Table 10 Comparison of fission-average cross sections for the ${ }^{92^{M}}(n, p)^{92 m_{N b}}$ reaction

Cross section (mb)	Reference	
$6.0_{0} \pm 0.4_{3}$	Present	(reactor)
1.3	Mellish $^{8)}$	(reactor)
2.6	Roy $\left.^{9}\right)^{14}$	(preferred)
6.0	Hogg 14	(reactor)
6.2 ± 0.4	Boldeman $^{3)}$	(converter)
6.74 ± 0.27	Rau 17	(reactor)
5.75 ± 0.25	Bresesti 5)	(converter)

Table 11 Comparison of fission-average cross sections for the ${ }^{93}{ }_{\mathrm{Nb}}(\mathrm{n}, 2 \mathrm{n})^{92 m_{\mathrm{Nb}}}$ reaction

Cross section (mb)	Reference	
$0.43_{2} \pm 0.03_{3}$	Present	(reactor)
0.33	Fabry $^{16)}$	(reactor)

Table 12 Comparison of fission-average cross sections for the ${ }^{204} \mathrm{~Pb}\left(\mathrm{n}, \mathrm{n}^{1}\right)^{204 \mathrm{~m}^{2}} \mathrm{~Pb}$ reaction

Cross section (mb)	Reference	
18.9 ± 2.0	Present	(reactor)
22	Durnam 11)	(reactor)
15.3 ± 0.7	Köhler $^{18)}$	(reactor)

Table 13 Comparison of fission-average cross sections for the ${ }^{204} \mathrm{~Pb}(n, 2 n)^{203} \mathrm{~Pb}$ reaction

${ }^{1.9} 9_{0} \pm 0.1_{8}$	Present	(reactor)
3.3	Roy 9)	(preferred)
5.0	Durham 11)	(reactor)

Table 14 Comparison of average cross section values obtained in the core of $K U R$ and on the fission plate

reaction	average cross section (mb)	
	KUR core	fission plate
${ }^{46} \mathrm{Ti}(\mathrm{n}, \mathrm{p}){ }^{46} \mathrm{Sc}$	$11.2 \pm 0.6_{3}$	10.8 ± 0.61
${ }^{47} 7_{T i}(\mathrm{n}, \mathrm{p})^{47} \mathrm{Sc}$	19.0 ± 1.2	17.3 ± 0.90
${ }^{48} \mathrm{Ti}^{(n, p)}{ }^{48} \mathrm{Sc}$	$0.294 \pm 0.02_{5}$	$0.27_{2} \pm 0.05_{2}$
${ }^{64} \mathrm{Zn}(\mathrm{n}, \mathrm{p})^{64} \mathrm{Cu}$	$35.5{ }_{5}{ }^{\text {¢ }}$ 8	37.4 ± 3.0
$92_{\mathrm{Mo}}(\mathrm{n}, \mathrm{p})^{92 \mathrm{~m}_{\mathrm{Nb}}}$	$6.0_{0} \pm 0.4_{3}$	6.04 ± 0.45
${ }^{93} \mathrm{Nb}(\mathrm{n}, 2 \mathrm{n})^{92 \mathrm{~m}_{\mathrm{Nb}}}$	$0.43_{2} \pm 0.03_{3}$	$0.40_{2} \pm 0.03_{4}$

References:

1) Hughes, D.J., "Pile Neutron Research",p.96, Addison-Wesley Publishing Co., 1953.
2) Depuydt, H. and de Hevergnies, M.N., J. Nucl. Energy A/B 16 (1962) 447.
3) Boldeman, S.W., J. Nucl. Energy A/B 18 (1964) 417:
4) Fabry, A., Nukleonik 10 (1967) 280.
5) Bresesti, A.M., Bresesti, M. and Rydin, R.A., Nucl. Sci. Eng. 29 (1967) 7.
6) Grundl, J.A., Nucl. Sci. Eng. 30 (1967) 39.
7) Saeland, E., Lykaas, M. and Samsahl, K., Jener Report (1954) 23.
8) Mellish, C.E., AERE-R/2630 (1958).
9) Roy, J.C. and Hawton, J.J., AECL-1181 (1960).
10) Passell, T.O. and Heath, R.L., Nucl. Sci. Eng. 12 (1961) 308.
11) Durham, R.W., Navalker, M.P. and Ricci,E., AECL-1434 (1962).
12) Comera, J., Interner CEA-Report, DPE-SPE, Note E-87 (1963).
13) Niese, S., Morzek, P. and Herold, C., Kernenergie 6 (1963) 37.
14) Hogg, C.H. and Weber, L.D., ASTM Special Tech. Publ. No. 341 (1963).
15) Kohler, W., Nukleonik 8 (1966) 9.
16) Fabry, A., Proc. Conference on Radiation Measurements in Nuclear Power, at Berkeley, 1966.
17) Rau, G., Nukleonik 2 (1967) 228.
18) Kohler, W. and Knopf, K., Nukleonik 10 (1967) 181.
19) Grundl, J.A., Nucl. Sci. Eng. 31 (1968) 191.
20) McElroy, W.N., Berg, S. Crockett, T.B. and Tuttle, R.J., Nucl. Sci. Eng. 36 (1969) 15.
21) McElroy, W.N., Nucl. Sci. Eng. 36 (1969). 109.
22) Kimura, I., Kobayashi, K. and Shibata, T., Ann. Reports, Research Reactor Institute, Kyoto University, 1 (1967/68) 95.
23) Kanda, K., Nanjo, T., Kobayashi, K., Nakagome, Y. and Kumura, I., Ann. Reports, Research Reactor Institute, Kyoto University, 2 (1969) 18.
24) Kimura, I., Kobayashi, K. and Shibata, T., KURRI-TR-61 (1969).

II-2. Meas:urement of Average Cross Section for the ${ }^{232} \operatorname{Th}(n, f)$ Reaction for the Fission-type Reactor Spectrum

K. Kobayashi and I. Kimura

A paper on this subject was published in Annual Reports of the Research Reactor Institute, Kyoto University ${ }^{1}$).

The fast neutron spectrum in the core of the Kyoto University Reactor was measured with several methods, and the results proved to be close to the fission neutron spectrum ${ }^{2)} \sim 5$). The average cross section for the $232_{\operatorname{Th}}(n, f)$ reaction has been measured in the field of this quasi-fission spectrum.

The thorium sample was a foil of 99.95% pure, $1 / 2$ inch in diameter and 0.004 inch thick. This was irradiated in the field of the fast neutron flux about $10^{12} \mathrm{n} / \mathrm{cm}^{2} / \mathrm{sec}$ for 30 minutes, and its induced activities were directly measured with a planer-type $G e(L i)$ counter. In order to monitor the fast neutron flux during the foil irradiation, the ${ }^{58} \mathrm{Ni}_{\mathrm{N}}(\mathrm{n}, \mathrm{p})^{58} \mathrm{Co},{ }^{24} \mathrm{Mg}(\mathrm{n}, \mathrm{p})^{24} \mathrm{Na}$ and ${ }^{27} \mathrm{Al}(\mathrm{n}, \boldsymbol{\alpha})^{24} \mathrm{Na}$ reactions were used. In the present work, the relative fission yields for five nuclides, ${ }^{140} \mathrm{Ba},{ }^{135} \mathrm{Xe},{ }^{132} \mathrm{C}_{\mathrm{s}},{ }^{95} \mathrm{Zr}$ and ${ }^{91} \mathrm{Sr}$, were obtained and the normalized values of them to the value of ${ }^{140}$ Ba preferred by Bresesti et al.5) agreed with the earlier data considerably, as shown in Table l and Fig. 1. From these results, the average cross section for the ${ }^{232} \operatorname{Th}(n, f)$ reaction has become to be $67 \pm 7 \mathrm{mb}$, and has been shown in Table 2, comparing with measured and calculated values.

References:

1) Kobayashi, K. and Kumura, I., Ann. Repts. Research Reactor Institute, Kyoto University, 2 (1970) 84.
2) Kimura, I., Kobayashi, K. and Shibata, T., Ann. Repts. Research Reactor Institute, Kyoto University, 1 (1967/1968) 95.
3) Kanda, K., Nanjyo, T., Kobayashi, K., Nakagome, Y. and Kimura, I., Ann. Repts. Research Reactor Institute, Kyoto University, 2 (1969) 18.
4) Kimura, I., Kobayashi, K.,Shibata, T., KURRI-TR-61 (1969).
5) Kimura, I., Hayashi, Shu A., Kobayashi, K., Ishihara, S. and Shibata, T., KURRI-TR-67 (1969).
6) Bresesti, M., Burei, G., Ferrari, P. and Moretto, L., J. Imorg. Nucl. Chem. Vol. 29 (1967) 1189.
7) Iyer, R.H., Mathews, C.K., Ravindran, N., Rengan, K., Singh, D.V., Ramaniah, M.V. and Sharma, H.D., J. Inorg. Nucl. Chem. Vol. 25 (1963) 465.
8) Katcoff, S., Nucleonics Vol. 18, No. ll-Novenber (1960) 201.
9) Zysin, Yu. A., Lbov, A.A. and Sel'chenkov, L.I., "Fission Product Yields and their Mass Distribution" Authorized Translation from the Russian, Consultants Bureau, New York, 1964.
10) Watt, B.E., Phys. Rev. 87 (1952) 1037.
11) Cranberg, L., Frye, G., Nereson, No and Rosen, L., Phys. Rev. 103 (1956) 662.
12) Leachman, R.B., Proc. Int. Conf. on Peaceful Uses of Atomic Energy, Geneva, Vol. II (1956) 193.
13) McElroy, W.N., Nucl. Sci. Eng. 36 (1969) 109.
14) Bresesti, M., Del Turco, A.M., Ostidich, A., Rota, A. and Segre, G., Proc. of a Symposium, Harwell, 1962 "Neutron Dosimetry" Vol. I, p. 27 (1963).
15) Beckurts, K.H. and Wirtz, K., "Neutron Physics" Springer-Verlag, 1964.
16) Fabry, A., Proc. Conference on Radiation Measurements in Nuclear Power at Berkeley, 1966.
17) Stehn, J.R., Goldberg, M.D., Wiener-Chasman, R., Mughabghab, S.F., Magurno, B.A. and May, V.M., BNL- 325 Second Edition, Supplement No. 2 (1965).

Fig. 1 Mass yields for the fission of ${ }^{232}$ Th by reactor neutrons, \ddagger Present work (normalized to 7.64% at ${ }^{140} \mathrm{Ba}$) ,
\times Yu. A. Zysin et al., 9)
\triangle S. Katcoff, ${ }^{8)}$
O R.H. Iyer et al., 7)
口 M. Bresesti et al. 6) (preferred value)

* the value preferred by M. Bresesti et al. ${ }^{\text {6) }}$

Table 1 Comparison of the fission yields for the $232_{\mathrm{Th}}(\mathrm{n}, \mathrm{f})$ reaction measured in the present work and reported in the literatures 29)~32).

Nuclide	Present work	Preferred Value by Bresesti et al. ${ }^{6}$)	Iyer et al. ${ }^{\text {7 }}$	Katcoff ${ }^{8}$)	Zysin et al. ${ }^{\text {9) }}$
$140{ }_{\text {Ba }}$	7.64 \%	7.64 \%	$8.50 \pm 0.23 \%$	6.2\%	$6.2 \pm 2.0 \%$
${ }^{135}$ Xe	$3.9 \pm 0.9^{*}$	- -	- -	- -	- -
${ }^{132} \mathrm{CS}$	$2.5 \pm 0.3^{*}$	- -	-	$2.4\left({ }^{132} \mathrm{Te}\right)$	$2.4 \pm 0.7\left({ }^{132} \mathrm{Te}\right)$
${ }^{95} \mathrm{Zr}$	$5.0 \pm 0.5^{*}$	- -	5.15 ± 0.31	- -	-
${ }^{91}$ Sr	$6.6 \pm 1.0^{*}$	-	6.80 ± 0.55	7.2	6.4 ± 0.7

* Normalized to preferred value of ${ }^{140}$ Ba by Bresesti et al. 6)

Table 2 Fission-average cross section for the ${ }^{232} \mathrm{Th}(\mathrm{n}, \mathrm{f})$ reaction

average cross section (mb)		reference
67 ± 6	Present data	measured in the core of KUR
71.6 *	Present calculation	from the fission spectrum shown by Watt ${ }^{10 \text {) }}$
70.9*	$\begin{aligned} & \text { Present } \\ & \text { calculation } \end{aligned}$	from the fission spectrum shown by Cranberg ${ }^{11)}$
68.6*	Present calculation	from the fission spectrum shown by Leachman ${ }^{12 \text {) }}$
85.0*	Present calculation	from the SAND-II spectrum developed by McElroy ${ }^{13 \text {) }}$
71.9	Earlier data	Bresesti et al. ${ }^{14 \text {) }}$
28	Earlier data	Beckurts and Wirtz ${ }^{\text {15 }}$
69	Earlier data	Fabry ${ }^{16 \text {) }}$

* In the present calculation, the energy dependent cross section for the ${ }^{232} 2_{\mathrm{Tn}}(\mathrm{n}, \mathrm{f})$ reaction is cited from the reference (17).

II-3. The Measurement and the Calculation of Neutron Spectra in Iron
Assemblies
I. Kimura, H. Sekimoto, H. Nishihara*, Keisuke Kobayashi*, Shu A. Hayashi*

Katsuhei Kobayashi*, M. Hayashi*, S. Yamamoto* and T. Shibata*

This paper was published in Annual Reports of Research Reactor Institute, Kyoto University ${ }^{1}$).

The energy spectra of fast neutrons in two iron assemblies (90 cm X 90 cm X 100 cm and $50 \mathrm{~cm} \times 50 \mathrm{~cm} \times 50 \mathrm{~cm}$) have been measured by the time-of-flight method with an electron linear accelerator at the Research Reactor Institute, Kyoto University. The block diagram of the measurement is shown in Fig. 1. The experimental results have been compared with the theoretical spectra calculated by a one dimensional Sn code, with three different cross section data, the YOM set ${ }^{2}$, the ABBN set ${ }^{3}$) and the KFK library ${ }^{4}$). The results are depicted in Fig. 2. It has been found that: (1) the YOM set gives the gross shape of neutron spectra most properly, (2) the KFK library gives the better information about the fine structure of spectra, (3) for this case, however, the agreement is not satisfactory enough, especially around 1 MeV . From the last fact, a doubt about the total cross section in the KFK library in this energy range may arise.

References:

1) I. Kimura, H. Sekimoto, H. Nishihara, K. Kobayashi, Shu A. Hayashi, K. Kobayashi, M. Hayashi, S. Yamamoto and T. Shibata, Ann. Repts. Research Reactor Institute, Kyoto University, 2 (1970) 58.

[^5]2) S. Yiftah, D. Okrent and P.A. Moldauer, Fast Reactor Cross Sections, Pergamon Press, 1960.
3) I.I. Bondarenko (ed.), Group Constant for Nuclear Reactor Calculations, Consultant Bureau, 1964.
4) J.J. Schmidt, KFK-120, 1962.

Fig. 1 Block diagram to measure neutron spectra in iron assemblies by neutron time-of-flight method at KURRI.

Fig. 2 Comparison of the experimental and theoretical neutron spectra in the iron assemblies.

II-4. Measurements of Neutron Spectra in Light Water Y. Fujita, O. Aizawa* and M. Fujino**

Measurements of steady state energy spectra of thermal neutrons in light water poisoned with $1 / v$ or non $-1 / v$ absorber have been made with an electron linear accelerator facility at Kyoto University Research Reactor Institute and time-of-flight techniques. Boron, cadmium and gadolinium were used as absorbers.

Measured spectra are compared with calculated spectra obtained by using free-gas, Nelkin and Haywood models for neutron scattering. They are shown in Figs. 1, 2 and 3. Absorption cross sections of gadolinium and cadmium are taken from Westcott-representations and the evaluated values in ENDF/B. The difference between them in the case of gadolinium has little influence on the spectrum predictions. Ratio of experimental to calculated spectrum is shown in Fig. 4.

Details have been published on Reference 1).

References:

1) Y. Fujita, 0. Aizawa and M. Fujino, Annual Report of Research Reactor Institute, Kyoto University, Vol. 3 (1970) 121-129.

[^6]

Fig. 1 Thermal neutron spectra in gadolinium-poisoned light water.

Fig. 2 Thermal neutron spectra in cadnium-poisoned light water.

Fig. 3 Thermal neutron spectra in boron-poisoned light water.

Fig. 4 Ratio of experimental to calculated spectrum using Westcott-value and the evaluated in ENDF/B for the absorption cross sections of gadolinium. Scattering kernel used is Haywood model.

II-5. The Age of Fission Neutrons to Indium Resonance in Water and Polye thylene
K. Kanda, M. Hayashi, H. Nakagawa and T. Shibata

A paper on this subject was published in Ann. Repts of Res. Reactor Inst. Kyoto Univ. Vol. 3 (1970) 93. The abstract and some results are as follows.

The age of fission neutrons to indium resonance energy was measured in two materials, water and polyethylene, using a fission plate of 27 cm in diameter combined with the KUR heavy water thermal column.

In the experiment the infinite plane detector method was employed, where the age is half of the second moment of the slowing-down flux distribution at the 1.46 eV resonance of indium.

The calculation of the age was done with Greuling-Goertzel and Selengut-Goertzel approximations. In both materials the former approximation was in good agreement with the experimental values, while the latter gave considerably larger values.

Results of the calculated and measured ages				
Medium	Atomic density of hydrogen mol/cm3	Calculated		Measured
Water	6.670×10^{22}	$26.87 \mathrm{~cm}^{2}$	$33.31 \mathrm{~cm}^{2}$	$26.53 \pm 0.69 \mathrm{om}^{2}$
Polyethylene	8.286×10^{22}	$20.10 \mathrm{~cm}^{2}$	$23.85 \mathrm{~cm}^{2}$	$20.15 \pm 0.66 \mathrm{~cm}^{2}$

100 cm
Schematic drawing of the experimental facilities

III. Kyushu University Depertment of Nuclear Engineering

III-l. (n, n) and (n, n^{\prime}) Reactions Bi^{209} Induced by 14.1 MeV Neutrons
M. Matoba, H. Tawara, M. Hyakutake, Y. Wakuta, A. Katase and M. Sonoda

Elastic and inelastic scattering cross sections of 14.1 MeV neutrons have been measured for Bi^{209} at laboratory angles between 20° and 160° in 5° or 10° step using associated-particle time-of-flight technique reported previously ${ }^{1}$. Overall time resolution is 1.2 nsec for direct neutrons with a neutron detector biased at 3 MeV .

Angular distributions for elastic scattering and inelastic scattering from 2.6, 4.2, and 5.7 MeV state of Bi^{209} were obtained. Corrections for multiple scattering and angular resolution were made. Analyses by Optical model and DWBA method are now in progress.

Reference:

1) M. Matoba et al. $\operatorname{EANDC}(\mathrm{J}) 13 \mathrm{~L}$ (1969) P. 33.

III-2. Fission of U and Th by Gamma Rays From 200 MeV to 1150 MeV
M. Sonoda, A. Katase, Y. Wakuta, H. Tawara and M. Hyakutake

We have been making studies ${ }^{1)}$ of the photofission for U and $T h$ above the photomeson production threshold with surface barrier semiconductor detectors.

The total cross sections per equivalent quanta are shown in Fig. 1 and Fig. 2 for U and Th respectively. We have carried out the analyses of the results based on an assumption that the pion creation and reabsorption
within the target nucleus are the dominant cause of the photofission. The results are shown in Fig. 3 and Fig. 4 together with those obtained by other workers ${ }^{2)}$. The shaded area in Fig. 3 shows a range of uncertainty of the deduced photofission cross sections due to the error of smoothing procedure of the experimental yield curve. From Fig. 4 it is clearly seen that the assumption made above certainly explains the characteristic behaviour of the photofission above the meson photoproduction threshold. The obtained fissility values are given in the following table.

	f	Energy Range (MeV)
U	$0.85 \sim 1.0$	$200 \sim 500$
Th	$0.34 \sim 0.47$	$200 \sim 500$

Fig. 1 Photofission cross section per equivalent quanta for U as a function of maximum bremsstrahlung energy.

Fig. 2 Photofission cross section per equivalent quanta for Th as a function of maximum bremsstrahlung energy.

Fig. 3 Photofission cross section vs. photon energy.

Fig. 4 Photofission cross section vs. photon energy and photoproduction cross section of pions corrected with fermi motion.

References:

1) M. Sonoda, A. Katase, Y. Wakuta, M. Seki, A. Yoshimura, T. Akiyoshi, I. Fujita and S. Yamawaki: Genshikaku Kenkyu.

Circular in Japanese $\underline{9}$ (1964) 491. and 10 (1966) 542.
Y. Wakuta, M. Sonoda, A. Katase, H. Tawara and M. Hyakutake: J. Phys. Soc. Japan 26 (1969) 851.
2) J.A. Jungerman and H.M. Steiner: Phys. Rev. 106 (1957) 585. T.M. Methasiri and S.A.E. Johanson: Lund 7005 (1970).
H.G.De. Carvalho, G. Cortini, E. Del. Giudice, G. Pontenza, R. Rinzivillo and G. Ghigo: Nuovo Cimento 32 (1964) 1717.
C.E. Roos and U.Z. Peterson: Phys. Rev. 124 (1961) 1610.
E.V. Minarik and U.A. Novikov: Soviet Physics-JETP 5 (1957) 253.

III-3. Photo- Fission Cross Sections of the Medium-Mass Nuclei
A. Katase, M. Matoba, Y. Kanda, M. Chijiya, M. Sonoda,
Y. Wakuta, H. Tawara and M. Hyakutake

The photo-fission cross sections of $\mathrm{Ho}, \mathrm{Sm}, \mathrm{Te}, \mathrm{Sb}, \mathrm{Sn}, \mathrm{In}, \mathrm{Ag}, \mathrm{Ge}$, Cu and Au were measured for the energies of $1000,600,450$ and $250 \mathrm{MeV} .{ }^{1}$) The polycarbonate foil was used as fission detector which was pressed on a target film evaporated on a polycarbonate backing.

After etching, detector foils were scanned by microscope. Fission tracks were easily discriminated from the background, which were increased with the maximum photon energy. Sandwitch foils were scanned to ascertain the correctness of the discrimination of the fission events. The tracks, which had the corresponding collinear tracks in the paired foils respectively, were found to be counted as fission tracks.

The number of target nuclei was obtained from the weight of the target. The obtained cross sections for the equivalent quanta are plotted in Fig. l. The scannings for $G e$ and $C u$ and the analysis are in progress.

Reference:

1) A. Katase et al. $\operatorname{EANDC}(J) A L$ (1969) p. 34 .

Fig. 1 Photofission cross section per equivalent quanta vs. maximum bremsstrahlung energy.

IV. Osaka University Depertment of Nuclear Engineering

IV-l. Quasiclassical Approximation for Slow Neutron Scattering
T. Nishigori

The detail of the present note was published in Prog. Theor. Phys. 43 (1970), No. 6.

With the aid of a new method 0° the short-collision-time expansion and the well-defined quasiclassical prescription proposed in a previous paper, ${ }^{\text {l }}$ the following quasiclassical formula for the differential incoherent scattering cross section is derived.

$$
\begin{align*}
\frac{\mathrm{d}^{2} \sigma_{\mathrm{inc}}}{\mathrm{~d} \Omega \mathrm{~d} \varepsilon_{\mathrm{f}}}= & \mathrm{a}_{\mathrm{inc}}^{2} \frac{\mathrm{P}_{\mathrm{f}}}{\mathrm{P}_{\mathrm{i}}} \mathrm{e}^{\varepsilon / / \mathrm{kT}} \frac{\exp \left(-\mathrm{P}^{2} \lambda_{0}^{\mathrm{c}}\right)}{\sqrt{2 \mathrm{P}^{2} \lambda_{2}^{\mathrm{c}}}}\left[\varphi(\mathrm{x})-\frac{1}{\mathrm{P}^{2} \lambda_{2}^{\mathrm{c}}} \frac{\lambda_{4}^{\mathrm{c}}}{4 \lambda_{2}^{\mathrm{c}}} \varphi^{(4)}(\mathrm{x})\right. \\
& +\frac{1}{\left(\mathrm{P}^{2} \lambda_{2}^{\mathrm{c}}\right)^{2}}\left\{\frac{1}{8} \frac{\lambda_{\mathrm{B}}^{\mathrm{c}}}{\lambda_{2}^{c}} \varphi^{(6)}(\mathrm{x})+\frac{1}{32}\left(\frac{\lambda_{4}^{\mathrm{c}}}{\lambda_{2}^{\mathrm{c}}} \varphi^{(8)}(\mathrm{x})\right\}\right] \tag{1}
\end{align*}
$$

with

$$
\begin{equation*}
x=\frac{\varepsilon}{\sqrt{2 P^{2} \lambda_{2}^{c}}} \quad \text { and } \quad \varphi^{(2 n)}(x)=\frac{d^{2 n}}{d x^{2 n}} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \tag{2}
\end{equation*}
$$

where $\boldsymbol{\varepsilon}=\boldsymbol{\varepsilon}_{\mathrm{i}}-\varepsilon_{\mathrm{f}}$ and $\overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{P}}_{\mathrm{i}}-\overrightarrow{\mathrm{P}}_{\mathrm{f}}$ are the energy and momentum lost by the neutron, respectively, and $\lambda_{2 n}^{c}\left(p^{2}\right)$ are the cumulants associated with the classical symmetric scattering function。

The expansion (1) is complementary to the expansion in powers of p^{2} presented in the previous paper, or to the usual phonon-type expansions.

The quasiclassical formula (1) satisfies the condition of detailed balance and a sum rule, and has the correct limit of weak binding of the target system.

For a system of molecules, the short time limit of (l) just coincides
with the result of the Krieger-Nelkin approximation. 2) In order to see the effectiveness of the correction terms in (l) to the Krieger-Nelkin approximation, a numerical calculation was made for HCl gas at $348^{\circ} \mathrm{K}$, and compared with the Krieger-Nelkin calculation and the exact quantum mechanical calculation by Lurie. 3) The correction terms are seen to be quite effective for smaller scattering angle and in the vicinity of the quasielastic peak for any scattering angle, where the Krieger-Nelkin approximation is particularly inaccurate. The result is shown in Fig. 1 for the scattering angle of 20°.

References:

I) T. Nishigori and S. Sunakawa, Prog. Theor. Phys. 4l (1969), 619。
2) T. J. Krieger and M. S. Nelkin, Phys. Rev. IO6 (1957), 290.
3) N. A. Lurie, J. Chem. Phys. 46 (1967), 352.

Fig. 1

V. Rikkyo (St. Paul's) University. Department of Physics

V-l. Differential Cross Section for Neutron-Proton Scattering at l4.1 MeV
M. Tanaka, N. Koori and S. Shirato

The $n-p$ differential cross sections at 14.1 MeV were measured with a counter-telescope at 8 setting angles; $\theta_{0}=0^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}, 59^{\circ}$, 64°. The results of the differential cross section in the C.M. system are $58.6 \pm 1.0,56.9 \pm 0.9,56.0 \pm 1.0,54.7 \pm 1.0,53.4 \pm 1.0,53.2 \pm 1.1$, 51.1 ± 1.3 and $51.5 \pm 1.4 \mathrm{mb} / \mathrm{sr}$ at, respectively, $172.0^{\circ}, 159.2^{\circ}, 139.8^{\circ}$, $120.1^{\circ}, 100.3^{\circ}, 80.4^{\circ}, 62.5^{\circ}$ and 52.5° of the mean neutron-scattering angle $\left(\theta_{\boldsymbol{n}}\right)$ in the C.M. system. A least squares fit of the data gives the C.M. differential cross section: $\quad \sigma\left(\boldsymbol{\theta}_{\mathbf{n}}\right)=52.9\left(1-0.0639 \cos \boldsymbol{\theta}_{\mathrm{n}}+\right.$ $0.0288 \cos ^{2} \boldsymbol{\theta}_{\mathrm{n}}$) $\mathrm{mb} / \mathrm{sr}$, which is clearly asymmetric about 90°. The ratio of the cross sections a.t 180° and 90° is 1.093 ± 0.022, and the total cross section is $671 \pm 10 \mathrm{mb}$. The present results are in good agreement with the theoretical results based on the one-pion-exchange potentials.

The details of this work and the results have been published in J. Phys. Soc. Japan, 28 (1970) 11.

V-2. Differential Cross Section for the $D(n, p) 2 n$ Reaction at 14.1 MeV
N. Koori and S. Skirato

The breakup proton energy spectra from the $D(n, p) 2 n$ reaction at 14.1 $\mathrm{M} \in \mathrm{V}$ have been measured with a counter-telescope at $0^{\circ}, 7^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}$, $35^{\circ}, 40^{\circ}, 50^{\circ}, 60^{\circ}$. The renarkable n-n final-state enhancement peaks were found in the spectra observed at the forward lab angles. Corrections for
degraded neutrons and comparisons with various theoretical works are in progress. Typical examples of the uncorrected results are shown in Tig. 1. Values of the cross section seem to be in good agreement with he results of our previous work ${ }^{\text {l }}$) using a somewhat different electronic ircuit system.

Fig. 1

1) S. Si irato and N. Koori: Nuclear Phys. Al20 (1968) 387.

VI. Tohoku University Laboratory of Nuclear Science

VI-l. Neutron Debye-Scherrer Diffraction Works Using a Linear
Electron Accelerator
M. Kimura, M. Sugawara, M. Oyamada, Y. Yamada, S. Tomiyoshi*,
T. Suzuki ${ }^{*}$, N. Watanabe ${ }^{* *}$, and S. Takeda**

A paper on this subject was published in Nuclear Instruments and Methods 71 (1969) 102. The abstract and a typical figure are as follows.

Neutron diffraction patterns were obtained by the time-of-flight method using Tohoku Linac for the case of powdered samples as well as for single crystals. Thermal neutron beams of $35-50 \mu \mathrm{sec}$ pulse width were obtained by poisoned water moderator. Powder patterms of Al at different temperatures have shown many lines of high indices, which enabled to calculate the Debye temperature with considerable accuracy. Several other powdered samples including Si, ZnO were also examined. Magnetic peaks of $\boldsymbol{\alpha}-\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{CaFe}_{2} \mathrm{O}_{4}$ were identified.

Count collecting time of 2 or 3 h was enough to reach the reliability R to the level of a several percent. High index lines appeared very conspicuously, in contrast to the reactor-chopper results.

The fwhm of the diffraction lines was $2.0-1.5 \%$ in case the scattering angle 2θ was 90°. It depended on the energy of diffracting neutrons, becoming smaller for neutrons of wavelength shorter than $1 \AA$, that is for higher index lines.

[^7]
Fig. Debye patterns for Al powder

VI-2. Neutron Debye-Scherrer Diffraction Works using a Linear
Electron Accelerator. (II)
M. Kimura, N. Watanabe, M. Oyamada, Y. Yamada, S. Tomiyoshi*,
T. Suzuki ${ }^{*}$, M. Hirabayashi ${ }^{*}$, H. Asano ${ }^{*}$, S. Takeda ${ }^{* *}$, F. Takahashi ${ }^{* *}$,
D. Watanabe ${ }^{* * *}$, 0. Terasaki ${ }^{* * *}$, and Y. Ishikawa ${ }^{* * *}$

The following is an abstract of the papers published in Research Report of Laboratory of Nuclear Sciences, Tohoku University, Vol.2, No.l, June 1969, P.81-96; Vol.2, No.2, Dec., 1969 P.89-118; and Vol. 3 No.l (to be published).

Further measurements of neutron Debye Scherrer patterns for various powdered samples were performed using the same facility with some improvements. Various magnetic materials were investigated. Patterns for $\mathrm{Sr}_{2} \mathrm{Fe}_{2} \mathrm{O}_{5}$ were reproduced in Fig. 1. Doublet (021 and 120), Triplet (101, 040, 130) peaks were resolved which were impossible by convertional spectrometer. From the patterns, the spin direction of the magnetic atoms were concluded. $\mathrm{TaD}_{0.72}$ and $\mathrm{NbD}_{0.89}$ were measured as the examples of metallic hydride structure analysis. Many doublets which were not resolved by the usual spectrometer (Somenkov; Soviet Physics-Solid Stete 10, No.5, 1968) were resolved and it was shown that the structural analysis is possible with the sample of $20-30 \mathrm{cc}$ and with the counting tiine of several hours (Fig. 2). Debye temperatures of $\operatorname{TiOx}(0.8<x<1.2)$ were calculated from the intensity ratios of various diffraction lines of the powdered TiOx samples.

[^8]

Fig. 1

Fig. 2

VI-3. Scattering Kernel for Be0
N. Watanabe, M. Kimura, F. Takahashi, M. Oyamada, Y. Yamada, and
S. Tomiyoshi*

The following is an abstract of the paper published in Research Report of Laboratory of Nuclear Sciences, Tohoku University, Vol.2, No.2, Dec., 1969, p.100-105.

To examine the scattering kermel in the BeO , measurements of timedependent spectra of thermal neutrons in small beryllium oxide assemblies $\left(B^{2}=0.065 \mathrm{~cm}^{-2}\right.$ and $\left.B^{2}=0.079 \mathrm{~cm}^{-2}\right)$ were made using the time-of-flight crystal spectrometer with electron linear accelerator pulsed neatron source.

Numerical calculations of time-dependent spectra were also made using various scattering kernels. The peaks of the spectra, especially the second Bragg peak within the experimental time, were fairly sensitive to the Debye temperature or to the phonon frequency distribution used. In fig. l, calculated spectra using Placzek kernel are compared to the experimental results for $B^{2}=0.079 \mathrm{~cm}^{-2}$. It will be observed that if the inelastic scattering cross section is calculated using the first term of Placzek expansion with Debye temperature of $1050^{\circ} \mathrm{K}$, the agreement between the calculated and experimental are fairly good. Pryor and Sabine measured the total cross section of $5 \AA$ neutrons for the temperature between $100^{\circ} \mathrm{K}$ $2000^{\circ} \mathrm{K}^{\text {l }}$. The cross section calculated using Placzek kernel with Debye temperature of $1050^{\circ} \mathrm{K}$ was found to be very close to their measurement. Further test were made using various phonon frequency distributions. The frequency distribution measured by Sinclair ${ }^{2)}$ turned out to be inconsistent with our measurements and the distribution calculated by Borgonovi ${ }^{3}$) gave very good agreement with our data.

[^9]

Fig. 1 Time-dependent spectra in the center of DeO ($B^{2}=0.079$ cm^{-2}). The dot-dushed line, the solid line and the dushed line show the calculated spectra using Placzek kernel with Debye temperature of $1200^{\circ} \mathrm{K}, 1050^{\circ} \mathrm{K}, 950^{\circ} \mathrm{K}$ respectively.

References:

1) Pryor A.W. and Sabine T.M., J. Nucl. Materials 14 (1964) 275-281.
2) Sinclair R.iN., Proceedings of the Symposium on Inelastic Scattering of Neutrons in Solids and Liquids, Vienna, (1963) p.199.
3) Boegonovi G., GA-8758 (1968).

VII. Tokyo Institute of Technology Research Laboratory of Nuclear Reactor

VII-1. Measurement and Pole Diagram Analysis of the $D(n, p) 2 n$ Reaction Cross Section at 14.5 MeV

E. Arai

For the theoretical interpretation of the continuous neutron spectra of the $D(n, p) 2 n$ reaction, Chernukhin et al. 1) introduced the pole approximation method into the calculation of the reaction cross sections. Although there exist some discrepancies, especially at high neutron energies, between the theoretical predictions and the very careful measurements by Brülmann et al. ${ }^{2)}$, we may conclude that the experimental results support the theoretical treatment of the reaction mechanism. However, the effect of the final-state interaction was not clearly observed in the neutron spectrum, because the measurement of the neutron spectrum without coincident proton or neutron detection made it impossible to distinguish between the $n-n$ and $n-p$ final-state interactions. ${ }^{1}$)

It was the aim of the present work to improve this point, for which the cross section of the $D(n, p) 2 n$ reaction was measured as a function of not only neutron energy and neutron emission angle, but also of proton energy.

A cascade type accelerator at 350 kV generated 14.5 MeV neutrons by means of the $T(d, n) \boldsymbol{\alpha}$ reaction. From the associated $\boldsymbol{\alpha}$-particles the energy distribution of inelastically scattered neutrons was determined by means of the time-of-flight method. A liquid scintillator (NE230) set at the center of a goniometer served as the proton detector and as the scattering sample as well. Its main constituent is $C_{6} D_{6}(D: H 72: 1)$ and it has a
large enough active volume of $50 \mathrm{~mm} \oint \mathrm{x} 30 \mathrm{~mm}$ to cover the neutron cone at a distance of 23 cm from the tritium target. A photomultiplier (56 AVP) coupled with the scintillator gave the pulseheight signal for the proton energy and a timing signal. The former signal was fed to y-axis input of the 4096-channel pulseheight analyser. The timing signals from the scatterer and from the $\boldsymbol{\alpha}$-detector were sent to a fast coincidence unit, of which the output signal stopped the time-to-pulseheight converter. A plastic scintillator with a diameter of 175 mm and a thickness of 25 mm detected the scattered neutrons and generated start signals for the TAC. The neutron flight path was 174 cm long and the time resolution of the whole system was 2.0 ns . The output of the TAC was fed to the x-input of the 4096-channel analyser used as a two-dimensional analyser with 32 channels for the x-axis and 128 channels for the y-axis. The detection efficiency of the neutron detector, which was essential to calculate cross sections, was determined by replacing the scattering sample with a normal benzene scintillator (NE231), and the well known proton cross section was used as a standard.

The reaction cross sections were measured at four neutron emission angles in the $10^{\circ}-40^{\circ}$ region. Fig. 1 - 4 show the experimental results. The pole approximation method was applied to interprete the measured cross sections. Chernukhin's derivation of the reaction cross section ${ }^{1}$) was developed for the calculation of the reaction cross sections as a function of energies of emitted neutrons and protons and of neutron emission angle. A FORTRAN programme was written for a HITAC 5020 E and the theoretical values were calculated. The solid curves in Figs. show those theoretical result. If we take into account the finite resolution of the proton and neutron energy measurements, we obtain the dotted curves. A reasonable agreement between the observed and calculated cross sections was obtained 3)

Fig. 1 Inelastic neutron cross sections of deuterons as a function of proton energy, E_{p}, inelastic neutron energy, E_{n}, and emission angle, $\theta_{\mathrm{n}}=10^{\circ}$ (lab.).

Fig. 2 Inelastic neutron cross sections of deuterons at $\boldsymbol{\theta}_{\mathrm{n}}=20^{\circ}$ (lab.)

Fig. 3 Inelastic neutron cross sections of deuterons at $\theta_{\mathrm{n}}=30^{\circ}$ (lab.)

Fig. 4 Inelastic neutron cross sections of deuterons at $\boldsymbol{\theta}_{\mathrm{n}}=40^{\circ}$ (lab.)

References:

1) Yu. I. Chernukhin and R. S. Shuvalov, Soviet Journal of Nuclear Physics 4 (1967) 197.
2) M. Brüllmann, H. Jung, D. Meier and P. Marmier, Physics Letters 25B (1967) 269, and Nuclear Physics All7 (1968) 419.
3) E. Arai, to be published in Zeitschrift für Physik.

VII-2. Thick-Sample Neutron Transmission Measurements of the 229 eV
Resonance in ${ }^{65} \mathrm{Cu}^{+}$

N. Yamamuro and R. C. Block*

Thick-Sample neutron transmission measurements were carried out upon copper to determine the orbital angular momentum of the 229 eV resonance in ${ }^{65} \mathrm{Cu}$. Characteristic s-wave resonance-potential interference was observed in the transmission data, and together with reported capture spectra results ${ }^{1}$), leads to a J^{π} of 2^{-}for this resonance. A neutron width of (15 ± 1.5) meV is obtained from this measurement.

References:

l) W. E. Stein, B. W. Thomas and E. R. Rae, Bull. Am. Phys. Soc., Series II 14 (1969) 513.

[^10]VII-3. $\frac{\text { Measurement of Thermal and Resonance Capture in Sodium } \dagger}{\text { N. Yamamuro, R. W. Hockenbury }}{ }^{*}$, R. H. Wolfe ${ }^{* *}$ and R. C. Block* ${ }^{*}$

A paper on this subject was submitted to the Nuclear Science and Engineering.

Neutron capture measurements upon sodium have been carried out over thermal energies and at energies near the 2.85 KeV resonance. The resonance energy measurements were carried out using the 1.25 meter diameter capture detector. The thermal capture measurements were carried out by cycling the thick sodium sample, a 'black' cadmium sample, and compensating aluminum foils into the capture detector with an automatic sample changer controlled by an on-line computer.

The data were reduced to capture yields and multiple scattering corrections were applied using the Monte Carlo code. The radiation widths deduced from the resonance measurements are listed in Table I. The low energy capture cross section is plotted in Fig. 1, along with a least squares fit to the data. A thermal value of (0.50 ± 0.03) barn is obtained for this measurement.

[^11]Table I

Radiation Width of the 2.85 KeV Resonance in Sodium

Na Thickness (atoms/barm)	Γ_{γ} (eV)
1.79×10^{-3}	
3.42×10^{-3}	$0.55 \pm 0.04^{*}$
5.99×10^{-3}	$0.47 \pm 0.03^{*}$
9.20×10^{-3}	$0.44 \pm 0.025^{*}$
$0.0 .47 \pm 0.025^{*}$	

* Statistical error only.
** Includes a $\pm 9 \%$ estimated systematic error.

Fig. 1 Capture cross section of sodium from 0.025 to 0.200 eV .

VIII. University of Tokyo

VIII-1. Institute of Physics, College of General Education

M. Obu and T. Terasawa

The proton energy spectra for the reaction ${ }^{58} \mathrm{Ni}(\mathrm{n}, \mathrm{p})^{58} \mathrm{Co}$ at $\mathrm{E}_{\mathrm{n}}=14.8$ MeV show two strong peaks at $\mathrm{E}_{\mathrm{p}}=11.5$ and 14.5 MeV at forward angles. ${ }^{1}$) The experimental data on these peaks were analyzed by assuming that they corresponded to the (n, p) reactions leading to the parent analogue states P of the $E 1$ and $M 1$ giant resonance states C of ${ }^{58}{ }_{N i}$. The parent analogue states P were obtained by using the relation $|P\rangle \propto T_{+}|C\rangle$ from the $E l$ and M1 giant resonance states C, which were treated in the particle-hole framework. Calculations were performed for the Q values and the differential cross sections of the (n, p) reactions leading to these parent analogue states.

The estimated Q values were -5.0 and 0.1 MeV , which were in reasonable agreement with the experimental values -3.3 and -0.3 MeV , respectively. Figs. 1 and 2 show the calculated angular distributions with the experimental ones. The strengths of the isospin and spin-isospin dependent parts of the effective two body interaction between the incident and the target nucleons were adjusted to yield the observed values of the differential cross sections around the first peak. The strengths $\left|V_{\tau}\right|$ and $\left|v_{\sigma \tau}\right|$ were estimated to be $20 \sim 30 \mathrm{MeV}$ for Yukawa interaction with range of 1 fm . These values are consistent with those ${ }^{2)}$ deduced from other experimental data.

One of the interesting results of the present analysis is the following: The peak with $Q=-5.0 \mathrm{MeV}$ corresponds to the parent analogue of an El state which is rather weakly excited in the photo-nuclear reaction. For the (n, p) reaction leading to the parent analogue of the main peak of the El giant resonance, the Q value is estimated to be $\sim-9 \mathrm{MeV}$. In the experiment ${ }^{1}$) mentioned above, the strong peak with $Q \sim-9 \mathrm{MeV}$ was not observed because of the large background of the compourd nuclear reaction cross section. It would be possible, however, to observe such strong peak in the experiment at higher neutron energy.

A full paper on this subject was published in Prog. Theor. Phys. 43 (1970) 1231.

References:

1) R. N. Glover and K. H. Purser, Nucl. Phys. 24 (1961) 431.
2) G. R. Satchler, Nucl. Phys. A95 (1967) 1. Anderson, Bloom, Wong, Hornyak and Madsen, Phys. Rev. 177 (1969) 1416.

Fig. 1

Fig. 2

VIII-2. Institute for Solid State Physics

VIII-2-1. $\frac{\text { Depolarization in Elastic Scattering of } 1.36-\mathrm{MeV} \text { Polarized }}{\frac{\text { Neutrons }}{\text { K. Katori }}{ }^{*} \text {, T. Nagata*, A. Uchida and S. Kobayashi }}$

There has been considerable experimental and theoretical interests in the effect of a target-spin dependent interaction on nuclear reactions. One of the direct measurements is the transmission of polarized neutrons through a polarized target $\left.\left({ }^{165} \mathrm{Ho},{ }^{59} \mathrm{Co}\right)^{1}\right)$. The results show the upper limit of the spin-spin interaction in the optical potential is one MeV . Another method is the measurement of the depolarization of polarized nucleons scattered from a non-zero spin target. In elastic scattering of nucleons from a non-zero spin target, Bohr theorem ${ }^{2)}$ allows the spin flip. Then, the depolarization parameter $D(\theta)$ deviates from unity only when there exists a spin-spin interaction between a projectile and a target nucleus in direct reactions. A few experiments have been performed 3). They showed no detectable deviation of $D(\theta)$ from unity.

The work reported here consists of a triple scattering experiment. An angular dependence of $\mathrm{D}(\theta)$ for ${ }^{27} \mathrm{Al}\left(\mathrm{I}=5 / 2^{+-}\right),{ }^{59} \mathrm{Co}\left(7 / 2^{-}\right), \mathrm{Ni}\left(\mathrm{O}^{+}\right)$, $63,65 \mathrm{Cu}\left(3 / 2^{-}\right)$and ${ }^{209} \mathrm{Bi}\left(9 / 2^{-}\right)$has been studied at $\mathrm{E}_{\mathrm{n}}=1.4 \mathrm{MeV}$ at the laboratory angles $\theta_{2}=30^{\circ}, 38^{\circ}, 80^{\circ}, 120^{\circ}$ and 150°. Neutron polarization was measured by a liquid helium, time-of-flight, scintillation polarimeter with a spin precession solenoid. Experimental method and procedure are given elsewhere ${ }^{4}$).

[^12]The results are shown in Fig. 1~4. The departire of $D(\boldsymbol{\theta})$ from unity for $\mathrm{Al}, \mathrm{Co}, \mathrm{Cu}$ and Bi was observed particularly at the backward angles, but not observed for Ni. This fact shows that the spin flip of incident neutrons takes place along the normal to the scattering plane in the elastic scattering process for non-zero spin targets.

From the experimental point of view, it is convenient to choose zaxis along the normal to the reaction plane. In elastic and inelastic scattering of the spin one half projectile, the observables suck as the

Fig. 1

Fig. 3

Fig. 2

Fig. 4
cross section, polarization and depolarization respectively are described in this co-ordinate frame by

$$
\begin{aligned}
& \sigma(\theta)=\frac{1}{2}\left(\sigma_{++}+\sigma_{+-}+\sigma_{-+}+\sigma_{--}\right) \\
& \mathbf{P}(\theta)=\frac{\sigma_{++}-\sigma_{--}-\sigma_{+-}+\sigma_{-+}}{\sigma_{++}+\sigma_{+-}+\sigma_{-+}+\sigma_{--}} \\
& \text {and } \quad \mathrm{D}(\boldsymbol{\theta})=\frac{\sigma_{++}+\sigma_{--}-\sigma_{+-}-\sigma_{-+}}{\sigma_{++}+\sigma_{+-}+\sigma_{-+}+\sigma_{--}}
\end{aligned} \quad .
$$

σ_{+-}denotes the partial cross section for initially spin-up and finally spin-down states with respect to the z-axis. It is easily shown that the depolarization parameter is related to the spin flip probability as $D(\boldsymbol{\theta})$ $=1-2 S(\theta)^{4}$.

To interpret these experimental results, compound nucleus reaction process as well as the direct reaction process was considered to contribute to the cross section at this energy. The differential cross section $\sigma(\theta)$ are assumed to be described by incoherent sum: $\sigma(\theta)=\sigma(\theta)^{\text {se }}$
 calculated with the optical model, which includes the spin-spin interaction in the form $-V_{I \sigma} f(r) \vec{I} \cdot \vec{\sigma}$. 5). The optical potential parameters were taken from the work of Perey and Buck ${ }^{6}$). The compound nucleus cross section $\sigma(e)^{\text {ce }}$ was calculated with the Hauser-Feshbach theory ${ }^{7}$) which includes relevant inelastic scattering channels ${ }^{8}$. In Fig. 5, 6 are shown calculated curves of depolarization $D^{\text {se }}$ and partial cross sections $\sigma^{\text {se }}$.

In order to investigate how the spin flip proceeds through the compound nucleus reaction process, the depolarization parameter is represented by

[^13]

Fig. 6
the cross section as follows:

$$
\mathrm{D}(\boldsymbol{\theta})=\frac{\sigma_{++}^{\mathrm{se}}+\sigma_{++}^{\mathrm{ce}}+\sigma_{--}^{\mathrm{se}}+\sigma_{--}^{\mathrm{ce}}-2\left(\sigma_{+}^{\mathrm{se}}+\sigma_{+-}^{\mathrm{ce}}\right)}{\sigma_{++}^{\mathrm{se}}+\sigma_{++}^{\mathrm{ce}}+\sigma_{--}^{\mathrm{se}}+\sigma_{--}^{\mathrm{ce}}+2\left(\sigma_{+-}^{\mathrm{se}}+\sigma_{+-}^{\mathrm{ce}}\right)}=\frac{\sigma^{\mathrm{se}}(\boldsymbol{\theta})}{\sigma^{\mathrm{se}}(\boldsymbol{\theta})+\sigma^{\mathrm{ce}}(\boldsymbol{\theta})} \mathrm{D}^{\mathrm{se}}+\frac{\sigma_{++}^{\mathrm{ce}}-\sigma_{+-}^{\mathrm{ce}}}{\sigma^{\mathrm{se}}(\boldsymbol{\theta})+\sigma^{\mathrm{ce}}(\boldsymbol{\theta})}
$$

In Fig. I~ 4 full lines show the first term where $D^{\text {se }}$ is unity. Calculations of the second term is now in progress. At $\mathrm{E}_{\mathrm{n}}=1.36 \mathrm{MeV}$, it appears that almost spin flip proceeds through the compound nucleus reaction process.

References:
I) R. Wagner et al.,Phys. Rev. 139 ('65) B29.
T. R. Fisher et al., Phys Rev. 157 ('67) 1149.
T. R. Fisher et al.,Nucl. Phys. Al30 ('69) 609.
S. Kobayashi et al.,J. Phys. Soc. Japan 22 ('67) 368.
S. Kobayashi et al., Progr. Theor. Phys. 40 ('68) 1451.
K. Nagamine et al.,Nucl. Phys. A145 ('70) 203.
2) A. Bohr, Nucl. Phys. 10 ('59) 486
3) L. S. Schaller et al., Proc. 2nd Inter Sympo. on Polarization Phenomena of Nucleons ed. P. Huber and H. Schopper (Karlsruhe, 1966)
p. 314.
L. Rosen et al., Phys. Rev. 121 ('61) 1423.
C. J. Batty et al.,Nucl. Phys. Al43 ('73) 151.
R. Beurtey et al.,Private communication.
4) K. Katori et al.,J. Phys. Soc. Japan 28 ('70) 1116.
5) A. P. Stamp, Phys. Rev. 153 ('67) 1052.
6) F. Perey and B. Buck,Nucl. Phys. 32 ('62) 353.
7) W. Hauser and H. Feshbach, Phys. Rev. 87 ('52) 366.
8) Computer Calculations were performed by the ELIESE-II Code. We are greatly indebted'for it to Dr. S. Igarashi.

[^0]: * C.E.N. de Saclay, France

[^1]: * Errata: Table 2, the last line, ${ }^{244} 6^{C m} 148$ should be replaced by ${ }_{96}^{245} \mathrm{Cm}_{149}, 5 / 2^{+}$by $0^{+}, 6.720$ by $5.696,1.27$ by $0.77,20_{-18}^{+6}$ by 20 ± 6, $23.06_{-0.51}^{+4.78}$ by $28.90_{-0.60}^{+0.84}$, and $23.40_{-0.51}^{+4.78}$ by $29.29_{-0.84}^{+0.81}$.

[^2]: * Institute of Physics, College of General Education, University of Tokyo, Tokyo.
 ** Department of Physics, Kyoto University, Kyoto.

[^3]: * Mitsui Shipbuilding \& Engineering Co., Ltd.
 ** Fuji Electric Co., Ltd.

[^4]: * Fuji Electric Co., Ltd.
 ** Nippon Atomic Industry Group Co., Ltd.

[^5]: * Department of Nuclear Engineering, Kyoto University.

[^6]: * Research Laboratory of Nuclear Reactor, Tokyo Institute of Technology
 ** Department of Nuclear Engineering, Faculty of Engineering, Osaka Univ. Present address: Central Research Laboratory, Hitachi Ltd.

[^7]: * Research Institute for Iron, Steel and other Metals, Tohoku University.
 ** Faculty of Engineering, Tohoku University.

[^8]: * Research Institute for Iron, Steel and Other Metals, Tohoku University.
 ** Facalty of Engineering, Tohoku University.
 *** Department of Phisics, Faculty of Science, Tohoku University.

[^9]: * Institute for Iron, Steel and Other Metals, Tohoku University.

[^10]: \dagger The measurements were made at Department of Nuclear Science, Rensselaer Polytechnic Institute, Troy, N.Y.

 * Rensselaer Polytechnic Institute.

[^11]: \dagger The measurements were made at Department of Nuclear Science, Rensselaer Polytechnic Institute, Troy, N.Y.

 * Rensselaer Polytechnic Institute
 ** Siena College

[^12]: * Present address: Department of Physics, Tokyo University of Education.
 ** Present address: Kyoto University.

[^13]: * In elastic scattering, $\sigma_{+-}=\sigma_{-+}$because of the time reversal invariant.

