NOT FOR PUBLICATION

656 (INDC (JAP) 23)L NEANDC (J) 36 L

PROGRESS REPORT

(July 1973 to June .1974 inclusive)

September 1974

Editors

S. Tanaka and A. Asami Japanese Nuclear Data Committee

Japan Atomic Energy Research Institute Tokai Research Establishment Tokai-mura, Ibaraki-ken, Japan

PROGRESS REPORT (July 1973 to June 1974 inclusive)

September 1974

Editors

S. Tanaka and A. Asami Japanese Nuclear Data Committee

Japan Atomic Energy Research Institute Tokai Research Establishment Tokai-mura, Ibaraki-ken, Japan

Editor's Note

This is a collection of reports which have been submitted to the Japanese Nuclear Data Committee at the Committee's request. The request was addressed to the following individuals who might represent or be in touch with groups doing researches related to the nuclear data of interest to the development of the nuclear energy program.

Although the editor tried not to miss any appropriate addressees, there may have been some oversight. Meanwhile, contribution of a report rested with discretion of its author. The coverage of this document, therefore, may not be uniform over the related field of research.

This edition covers a period of July 1, 1973 to June 30, 1974. The information herein contained is of a nature of "Private Communication". No data contained in this report should be quoted without author's permission.

Addressees of the request (in Alphabetical order):

- Electrotechnical Laboratory
 Tanashi Branch / 5-4-1, Mukaidai, Tanashi, Tokyo
 (E. Teranishi)
- 2) Hiroshima University Faculty of Science / 1-1-89 Higashi-senda, Hiroshima (N. Ryu)
- 3) Hitachi Ltd.

Atomic Energy Research Laboratory / Oozenji, Tama-ku, Kawasaki-shi, Kanagawa

(M. Yamamoto)

4) Japan Atomic Energy Research Institute

Tokai Research Establishment / Tokai-mura, Naka-gun, Ibaraki (H. Amano, T. Asami, T. Fuketa, J. Hirota, S. Katsuragi, H. Natsume, E. Sakai, H. Takekoshi, S. Tsujimura, K. Tsukada, K. Ueno, et al.)

5) Konan University

Faculty of Science / Okamoto, Motoyama-cho, Higashinada-ku, Kobe-shi, Hyogo

(K. Yuasa)

- 6) Kyoto University
 - a) Faculty of Science / Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto
 (J. Muto)
 - b) Keage Laboratory of Nuclear Science, Institute for Chemical Research
 / 2 Torii-cho, Awataguchi, Sakyo-ku, Kyoto
 (T. Yanabu)
 - c) Research Reactor Institute / Kumatori, Sennan-gun, Osaka
 (I. Kimura, K. Okano, . Okamoto)

I

- d) Faculty of Engineering / Yoshida Hon-cho, Sakyo-ku, Kyoto
 (H. Nishihara)
- e) Institute of Atomic Energy / Gokanocho, Uji-shi, Kyoto
 (T. Nishi)
- 7) Kyushu University
 - a) Faculty of Science / Hakozaki-cho, Higashi-ku, Fukuoka
 (A. Isoya)
 - b) Faculty of Engineering / Hakozaki-cho, Higashi-ku, Fukuoka
 (A. Katase, M. Ohta)
- Mitsubishi Atomic Power Industries Inc.
 Engineering and Development Division / Kitafukuro, Omiya-shi, Saitama (T. Iwaki)
- 9) Nagoya University

Faculty of Engineering / Furo-cho, Chigusa-ku, Nagoya

(T. Katoh)

10) Niigata University

Faculty of Science / 8050 Nino-cho, Igarashi, Niigata

(N. Mutsuro, H. Nakahara)

- Nippon Atomic Industry Group Co., Ltd.
 Nuclear Research Laboratory / 250 Suehiro-cho, Kawasaki-shi, Kanagawa
 (S. Iijima, N. Kawai)
- 12) Osaka University
 - a) Faculty of Engineering / Yamadaue, Suita-shi, Osaka
 (T. Sekiya)
 - b) Faculty of Science / 1-1, Machikaneyama, Toyonaka~shi, Osaka
 (T. Wakatsuki, M. Muraoka)
- Radiation Center of Osaka Prefecture Shinya-cho, Sakai-shi, Osaka

(H. Fukuda)

ij.

- 14) Rikkyo (St. Paul's) University
 - a) Department of Physics / 3, Ikebukuro, Toshima-ku, Tokyo
 (I. Ogawa)
 - b) Institute for Atomic Energy / 2-5-1, Nagasaka, Yokosuka-shi,
 Kanagawa
 - (M. Hattori)
- 15) Sumitomo Atomic Energy Industries, Ltd. / 2-10 Kandakaji-cho, Chiyoda-Tokyo
 - (H. Matsunobu)
- 16) The Institute of Physical and Chemical Research
 - 2-1, Hirosawa, Wako-shi, Saitama
 - (H. Kamitsubo)
- 17) Tohoku University

18)

- a) Faculty of Science / 2-1-1 Katahira-cho, Sendai-shi, Miyagi
 (S. Morita)
- b) Laboratory of Nuclear Science / 1 Tomisawa, Kanayama, Sendai-shi, Miyagi
 - (Y. Torizuka)
- Faculty of Engineering / Aza-Aoba Aramak , Sendai-shi, Miyagi
 (T. Momota)
- Tokai University Faculty of Engineering / 2-28-4 Tomigaya, Shibuya-ku, Tokyo (Y. Kuroda)
- 19) Tokyo Institute of Technology
 - a) Faculty of Science / 2-12-1 Ohokayama, Meguro-ku, Tokyo
 (Y. Oda, H. Taketani, K. Hisatake)
 - b) Research Laboratory of Nuclear Reactor / 2-12-1 Ohokayama, Meguro-ku, Tokyo

(N. Yamamuro)

- 20) Tokyo University of Education
 Faculty of Science / 3-29-1 Ohtsuka, Bunkyo-ku, Tokyo
 (J. Sanada)
- 21) University of Tokyo
 - a) Faculty of Science / 7-3-1 Hongo, Bunkyo-ku, Tokyo
 (Y. Nogami)
 - b) Institute for Nuclear Study / 3-2-1 Midori-cho, Tanashi, Tokyo
 (Y. Ishizaki, M. Sakai)
 - c) The Institute for Solid State Physics / 7-22-1 Roppongi, Minato-ku, Tokyo
 - (K. Ohno)
- 22) Waseda University

School of Science and Engineering / 4-170 Nishi-Ohkubo, Shinjuku-ku,

Tokyo

(M. Yamada)

İ۷

CONTENTS

Ι.	Japan Atomic Energy Research Institute 1
А.	Neutron Experiments-Linac 1
I-A-	-1. Transmission Measurements on Natural Uranium 1
I-A-	-2. Neutron Average Capture Cross Section Measurements on Ta, In, Ho and U 4
I-A-	-3. Transmission and Scattering Measurements in Natural Tungsten
I-A-	-4. Scattered Neutrons and Capture Gamma-rays from Thick Tungsten Samples
в.	Neutron Experiments-Van de Graaff Accelerator 7
I-B-	 Elastic and Inelastic Scattering of 18.3 MeV Neutrons from Sulphur
I-B-	2. Energy Levels of 94 Mo through (n,n' γ) Reaction
I-B-	 Study of Energy Levels of ¹²⁰Sn through the (n,n'γ) Reaction
I-B-	4. Analysis of Neutron Cross Sections Using the Coupled- Channel Theory
с.	Others
I-C-	1. Transmission of Lead-Capture γ Rays with a Tin Absorber 15
I-C-	 A Survey for Elements to be Excited by γ Rays Following Thermal Neutron Capture in Vanadium
I-C-	3. Photoexcitation of the Tin-Isotope Levels
I-C-	4. Reator-Neutron Capture Cross Section of ²⁷ Mg 18
I-C-	 Reactor-Neutron Capture Cross Section of ⁶⁵Ni and the ⁵⁸Ni(n,2n)⁵⁷Ni Reaction Cross Section for Fission Neutrons. 19
I-C-	6. Calculation of Decay Power of Fission Products 20
D.	Japanese Nuclear Data Committee 21
I-D-	 On the Modification of the Neutron Cross Section Formulas
I-D-	2. Group Constants of Fission Products
I-D-	3. Activity of the Nuclear Data Evaluation Working Group 27

I-D-4.	Evaluation of the Nuclear Data on U^{235}	29
I-D-5.	Evaluation of Fission Product Cross Sections for Fast Reactor	31
II. Куо	to University	32
A. Res	earch Reactor Institute	32
II-A-1.	Precision Neutron Total Cross Section Measurements of C, Be and O near 24 keV	32
II-A-2.	Gamma-ray Energies of Se-85 and Se-86	34
II-A-3.	Measurements of the Cross Section for the ²³¹ Pa(n,f) Reaction	36
II -A-4.	Measurements of the Cross Sections for the 232 Th(n, γ) 233 Th and 231 Pa (n, γ) 232 Pa Reactions using Maxwellian Thermal Neutrons	40
II-A-5.	Measurements and Analyses of Energy and Space Distributions of Fast Neutrons in Test Assemblies	43
II-A-6.	γ -Ray Studies in ¹⁰⁶ Pd from the Decay of ¹⁰⁶ Ru	49
B. Ins	titute of Atomic Energy	50
II-B-1.	Independent Isomer Yield of Some Sb Isotopes in Thermal-Neutron Fission of $^{233}\mathrm{U}$ and $^{235}\mathrm{U}$	50
II-B-2.	Excitation Functions for the Deuteron Induced Reactions on 64 Zn and 76 Ge	52
III. Kyu	shu University	53
Depa	artment of Nuclear Engineering	53
III-1.	Pre-Compound Decay from Fe(n,n') Reaction of 14.1 MeV Neutrons	53
III-2.	Pre-Equilibrium Proton Emission in the In(n,p) reaction at 14 MeV	56
III - 3.	A New 14 MeV Neutron Time-Of-Flight Spectrometer at the Kyushu University	57
III-4.	The Energy and Angular Distributions of Alpha Particles in the Fission of ^{252}Cf	58
III - 5.	Calculation of Radiative Capture Cross Section for 232Th	60

Vİ

•

IV. Nag	goya University	63
Dej	partment of Nuclear Engineering	63
IV-1.	Decay of ¹⁷⁰ Ho Isomers to Levels in ¹⁷⁰ Er	63
IV-2.	Decay of 154 Pm to Levels of 154 Sm	64
V. Tol	<pre>kyo Institute of Technology</pre>	65
Res	search Laboratory for Nuclear Reactors	65
V-1.	Precise Measurements of Neutron Capture Cross Section Near 24 keV	65
V-2.	Measurements of the Radiative Capture Cross Section for 15.2 MeV Neutrons	66

U 235

U 235

U 238

EVALUATION

FISS YIELD

N, GAMMA

JAE

кто

TIT

THR

2.4+4

ELEMENT S A	QUANTITY	LAB	ENERGY(EV) MIN MAX	TYPE	DOCUMENTATION REF VOL PAGE DATE	COMMENTS
BE	TOTAL XSECT	кто	2.4+4	EXPT PROG	NEANDC(J)36L 32 9/74	BLOCK+.5.903+-0.011 BARNS.LINAC-TOF
С	TOTAL XSECT	кто	2.4+4	EXPT PROG	NEANDC(J)36L 32 9/74	BLOCK+.4.684+-0.009 BARNS.LINAC-TOF
0	TOTAL XSECT	кто	2.4+4	EXPT PROG	NEANDC(J)36L 32 9/74	BLOCK+.3.736+-0.007 BARNS.LINAC-TOF
MG 027	N, GAMMA	JAE	PILE	EXPT PROG	NEANDC(J)36L 18 9/74	SEKINE+.DOUBLE CAPT.PRELIM SIG=0.15B
S	DIFF ELASTIC	JAE	1.8+7	EXPT PROG	NEANDC(J)36L 7 9/74	YAMANOUTI+.20DEG TO 155DEG.NDG
S	DIFF INELAST	JAE	1.8+7	EXPT PROG	NEANDC(J)36L 7 9/74	YAMANOUTI+.20DEG TO 155DEC.NDG
CR	N, GAMMA	TIT	1.5+7	EXPT PROG	NEANDC(J)36L 66 9/74	KITAZAWA+.2.10+-0.36 MILLI-BARNS
FE	DIFF INELAST	KYU	1.4+7	EXPT PROG	NEANDC(J)36L 53 9/74	IRIE+.E+ANG DIST IN FIG C GRIFFIN TH
FE	N, GAMMA	TIT	1.5+7	EXPT PROG	NEANDC(J)36L 66 9/74	KITAZAWA+.1.19+-0.20 MILLI-BARNS
NI 058	N2N REACTION	JAE	PILE	EXPT PROG	NEANDC(J)36L 19 9/74	SEKINE+.3.8+-0.4M1CROBARNS.
NI 065	N, GAMMA	JAE	PILE	EXPT PROG	NEANDC(J)36L 19 9/74	SEKINE+.18.6+~3.5 B
SE 085	FISS PROD GS	кто	THR	EXPT PROG	NEANDC(J)36L 34 9 /74	TAMAI+.PUBLISHED IN JIN-L 9(73) 1145
SE 086	FISS PROD GS	кто	THR	EXPT PROG	NEANDC(J)36L 34 9/74	TAMAI+.PUBLISHED IN JIN-L 9(73) 1145
NB 093	N , GAMMA	TIT	2.4+4	EXPT PROG	NEANDC(J)36L 65 9/74	YAMAMURO+.LINAC.NDG
MO 094	INELST GAMMA	JAE	1.5+6 4.0+6	EXPT PROG	NEANDC(J)36L 8 9/74	SUGIYAMA+.EXCITATION + ANG-DISTR.NDG
RU 106	FISS PROD GS	кто	NDG	EXPT PROG	NEANDC(J)36L 49 9/74	OKANO+.18 LVLS IN PD-106 DETERMINED
AG	N, GAMMA	TIT	2.4+4	EXPT PROG	NEANDC(J)36L 65 9/74	YAMAMURO+.LINAC.NDG
IN	N, GAMMA	JAE	3 3.0+4	EXPT PROG	NEANDC(J)36L 4 9/74	MIZUMOTO+.LINAC,TOF.LIQ-SCINT.NDG
IN	N, PROTON	KYU	1.4+7	EXPT PROG	NEANDC(J)36L 56 9/74	MATOBA+.INTEGRATED SIG=18.1+-5.4 MB
SN 120	INELST GAMMA	JAE	2.0+6 3.1+6	EXPT PROG	NEANDC(J)36L 9 9/74	KIKUCHI+.PUBLISHED IN NP A223(74)1
I 127	N, GAMMA	TIT	2.4+4	EXPT PROG	NEANDC(J)36L 65 9/74	YAMAMURO+.LINAC.NDG
HO 165	N, GAMMA	JAE	3 3.0+4	EXPT PROG	NEANDC(J)36L 4 9/74	MIZUMOTO+.LINAC,TOF.LIQ-SCINT.NDG
HO 165	N, GAMMA	TIT	2.4+4	EXPT PROG	NEANDC(J)36L 65 9/74	YAMAMURO+.LINAC.NDG
TA 181	N, GAMMA	JAE	3 3.0+4	EXPT PROG	NEANDC(J)36L 4 9/74	MIZUMOTO+.LINAC,TOF.L1Q-SCINT.NDG
W	N, GAMMA	JAE	0	EXPT PROG	NEANDC(J)36L 6 9/74	OHKUBO.LINAC.MULTIP-SCAT EFFECT IN W
W	ELASTIC SCAT	JAE	0	EXPT PROG	NEANDC(J)36L 6 9/74	OHKUBO.LINAC.MULTIP-SCAT EFFECT IN W
w	ELASTIC SCAT	JAE	4.0+0 2.0+3	EXPT PROG	NEANDC(J)36L 5 9/74	OHKUBO.PUBLISHED IN JAERI-M 5624
W	TOTAL XSECT	JAE	4.0+0 2.0+3	EXPT PROG	NEANDC(J)361 5 9/74	OHKUBO.PUBLISHED IN JAERI-M 5624
AU 197	N, CAMMA	TIT	2.4+4	EXPT PROG	NEANDC(J)36L 65 9/74	YAMAMURO+.LINAC.NDG
PB 204	SPECT N,GAMM	JAE	THR	EXPT PROG	NEANDC(J)36L 15 9/74	KAWARASAKI.PBLISHED IN NIMII4(74)153
PB 206	SPECT N, GAMM	JAE	THR	EXPT PROG	NEANDC(J)36L 15 9/74	KAWARASAKI.PBLISHED IN NIM114(74)153
TH 232	N, GAMMA	KTO	THR	EXPT PROG	NEANDC(J)36L 40 9/74	KOBAYASHI .ACTIV METHOD,7.35+-0.21 B
PA 231	FISSION	KTO	3.6+6 4.9+6	EXPT PROG	NEANDC(J)36L 36 9/74	KOBAYASHI+.VDG.SIGMA IN FIG.
PA 231	N, GAMMA	кто	THR	EXPT PROG	NEANDC(J)36L 40 9/74	KOBAYASHI .ACTIV METHOD,201+-6 BARNS
U	N, GAMMA	JAE	3 3.0+4	EXPT PROG	NEANDC(J)36L 4 9/74	MIZUMOTO+.LINAC,TOF.LIQ-SCINT.NDG
U	TOTAL XSECT	JAE	1.2+1 3.0+4	EXPT PROG	NEANDC(J)36L 1 9/74	NAKAJIMA+.LINAC.TOF.AT LIQ-N TEMP
U 233	FISS YIELD	кто	THR	EXPT PROG	NEANDC(J)36L 50 9/74	NISHI+.ISOMER YIELDS OF SB ISOTOPES
U 235	EVALUATION	JAE		EVAL PROG	NEANDC(J)36L 27 9/74	MATSUNOBU+.WORK IN PROGRESS.NDG

EVAL PROG

EXPT PROG

EXPT PROG

NEANDC(J)36L 27 9/74

NEANDC(J)36L 50 9/74

NEANDC(J)36L 65 9/74

MATSUNOBU.TOT, FISS SIGS.ALPHA, NU

YAMAMURO+.LINAC.NDG

NISHI+. ISOMER YIELDS OF SB ISOTOPES

CONTENTS OF THE JAPANESE PROGRESS REPORT INDC(JAP)23L (=NEANDC(J)36L), September 1974

İХ

ELEMENT S A	QUANTITY	LAB	ENERGY(EV) MIN MAX	TYPE	DOCUMENTATION REF VOL PAGE DATE	COMMENTS
PU 239	EVALUATION	JAE		EVAL PROG	NEANDC(J)36L 27 9/74	MATSUNOBU+.WORK IN PROGRESS.NDG
PU 240	EVALUATION	JAE		EVAL PROG	NEANDC(J)36L 27 9/74	MATSUNOBU+.WORK IN PROGRESS.NDG
FU 241	EVALUATION	JAE		EVAL PROG	NEANDC(J)36L 27 9/74	MATSUNOBU+.WORK IN PROGRESS.NDG
MANY	DIFF ELASTIC	JAE	1.5+6 1.4+7	EVAL PROG	NEANDC(J)36L 14 9/74	TANAKA.TBP IN JAERI-M REPORT
MANY	DIFF INELAST	JAE	1.5+6 1.4+7	EVAL PROG	NEANDC(J)36L 14 9/74	TANAKA.TBP IN JAERI-M REPORT
MANY	FRAG SPECTRA	JAE	NDG	EVAL PROG	NEANDC(J)36L 20 9/74	TASAKA+.PUBLISHED IN NSE 54(74)177
MANY	N, GAMMA	JAE	NDG	THEO PROG	NEANDC(J)36L 22 9/74	IGARASI.MODIFIED SIG FORMULA GIVN
MANY	TOT INELASTIC	JAE	NDG	THEO PROG	NEANDC(J)36L 22 9/74	IGARASI.MODIFIED SIG FORMULA GIVN
MANY	TOTAL XSECT	JAE	2.5+5 1.5+7	EVAL PROG	NEANDC(J)36L 14 9/74	TANAKA.TBP IN JAERI-M REPORT

I. Japan Atomic Energy Research Institute

A. Neutron Experiments-Linac

I-A-1. Transmission Measurements on Natural Uranium

Y. Nakajima, A. Asami, M. Mizumoto, T. Fuketa and H. Takekoshi

The total cross section of ²³⁸U has been measured by several investigators, however, the reported resonance parameters have fairly large discrepancies. The isotope ²³⁸U is important in the field of nuclear reactor technology particulary as a fuel of the fast breeder reactor, where the breeding ratio depends on the resonance parameter.

Transmission measurements on natural U were performed in the energy range between 12 eV and 30 keV at a 190 m station of the JAERI linac neutron spectrometer. Samples are all metallic slabs and their thickness are 5 mm, 3 mm and 1.5 mm, respectively. The experimental condition for each sample is sumarized in Table 1. Especially the 3 mm sample has been measured at the liquid nitrogen temperature, where the Doppler broadening is reduced and the separation of close resonances becomes more clear than at the room temperature. The shape of the background was found to depend on the thickness of the sample, so that the transmission has been measured also with black resonance samples in the neutron beam. The background values without the black resonance samples were deduced by normalizing these data to the above transmission. A part of a preliminary transmission curve of 5 mm sample, which was obtained with this method, is shown in Fig. 1. The area analysis with the Atta-Harvey program is in progress.

Sample thickness	Burst width	Channel width	Temperature
	500 ns	400 ns	Room
5 mm	125 ns	100 ns	Room
	500 ns	400 ns	Liquid N ₂
3 mm	62.5 ns	50 ns	Liquid N ₂
	500 ns	400 ns	Room
1.5 mm	125 ns	100 ns	Room

Table l.

I-A-2. Neutron Average Capture Cross section Measurements

on Ta, In, Ho and U

- M. Mizumoto, A. Asami, Y. Nakajima, Y. Kawarasaki,
- T. Fuketa and R. C. Block

Average capture cross section measurements were made on Ta, In, Ho and U samples using a 3500 1 large liquid scintillation detector at a 52 m flight path length.

The energy region covered in the measurements was from a few keV to 30 keV, the energy resolution was about 4ns/m, and the statistical uncertainty of the raw data for each sample except U was less than 2 % without including systematic and normalization errors. For the purpose of obtaining the background at 35 keV, a 4 cm Al plate was left permanentely in the neutron beam during the experiment. Two kinds of measurements were made to determine the shape of the background, one was with a Na₂CO₃ sample in the upstream of the neutron beam, the other with a Pb sample at the capturing sample position. Neutron flux was measured by a ⁶Li glass scintillation detector placed behind the capture tank, the path length of which was about 56 m.

The analysis of the data to obtain the cross section is in progress, and the cross section will be normalized to the standard cross section, which is to be measured with the Fe filterd neutron beam technique at KUR.

^{*} Visiting Professor at Research Reactor Institute, Kyoto University from Rensselaer Polytechnic Institute

I-A-3. <u>Transmission and Scattering Measurements in Natural Tungsten</u> M. Ohkubo

Transmission and scattering of natural tungsten up to 2 keV were measured with the JAERI Linac TOF facilities with the maximum resolution of 2.5ns/m, and the preliminary results were published in JAERI-M 5624.

The scattering detector at 40m station was a pair of ${}^{6}\text{Li}-{}^{7}\text{Li}$ glass scintillators of 11.1cm dia. x 0.63cm thickness. Transmitted beam through scattering samples was simultaneously measured by another ${}^{6}\text{Li}$ glass scintillator. Resonance parameters were obtained by the area analyses of transmission and scattering data for about 50 levels below 1.2 kev, and spins for ${}^{183}\text{W}$ + n were confirmed for 13 levels. Strength function for natural tungsten was obtained to be $\text{S}_{0} = (2.12 \pm 0.45)10^{-4}$ below 1.2 keV.

I-A-4. <u>Scattered Neutron and Capture Gamma-ryas from Thick Tungsten</u> <u>Samples</u>

M. Ohkubo

Scattered neutrons and capture gamma rays for tungsten plate samples of several thicknesses were measured by the detector system described previously. The scattering and capture yields for thick samples were very different from those for thin samples. The neutron trajectories in the samples were simulated by the Monte-Carlo method with assumed resonance parameters, sample thicknesses, and geometries. The calculated yield curves are in good agreement with the observed ones for samples of up to 1.9 mm thicknesses. B. Neutron Experiments-Van de Graaff Accelerator

I-B-1. Elastic and Inelastic Scattering of 18.3 MeV Neutrons from Sulphur

Y. Yamanouti and S. Tanaka

Differential cross sections in an angular region from 20° to 155° for both elastic and inelastic neutron scattering (Q=0.0 MeV and -2.24 MeV) were measured on sulphur at a neutron energy 18.2 MeV by using a multi-angle time-of-flight spectrometer.

Data analysis is now in progress.

I-B-2. Energy Levels of 94 Mo through $(n,n'\gamma)$ Reaction

Y. Sugiyama and S. Kikuchi

The energy levels of ⁹⁴Mo were studied by means of the $(n,n'\gamma)$ reaction in the energy range $1.5 \sim 4.0$ MeV. A 30 cc Ge(Li) detector was used to detect γ -rays. From the threshold energies of γ -ray production cross sections, the energies of levels were determined. The γ -ray angular distributions were measured at En = 1.9, 2.6 and 3.1 MeV. Detailed analysis is now in progress.

I-B-3. Study of Energy Levels of 120Sn through the (n,n' γ) Reaction S. Kikuchi and Y. Sugiyama

The paper on this subject is published in "Nuclear Physics A223 (1974)1". The abstract of this study is as follows:

The energy levels of ¹²⁰Sn were studied by high resolution measurements of γ -rays from the (n,n' γ) reaction in the energy range 2.0 - 3.1 MeV. Fifteen levels at 1171, 1874, 2069, 2159, 2193, 2287, 2355, 2400, 2420, 2465, 2587, 2643, 2699, 2727 and 2835 keV were determined, and the spin-parity values were examined for twelve of them. The spin assignments were made by comparing the observed γ -ray angular distributions and level excitation functions with those calculated on the basis of statistical theory, as shown in Figs. 1 and 2. The level scheme obtained is shown in Fig. 3.

The authors are greatly indebted for the use of a 120 Sn sample in the ORNL pool by the courtesy of EANDC and US AEC.

Figure captions

- Fig. 1. Angular distributions of the 925, 1184, 1229, 1249 and 412 keV γ -rays. Error bars indicate relative errors. All the curves are the angular distributions calculated with the spin values indicated. Notations J_i and J_f^{π} represent the spin of level from which γ -ray originates and the spin-parity of level to which γ -ray populates, respectively. For the 412 keV γ -ray, the shape of calculated angular distribution for 6 + 5⁻ transition is not distinguishable from that for $4 + 5^-$ transition.
- Fig. 2. Excitation functions of levels. Level energies are shown in keV. The observed excitation functions are obtained from the γ -ray production cross sections. Error bars indicate overall errors. Solid curves are excitation functions calculated with the spin-parity values indicated. A dashed curve for the 2193 + 2287 keV levels is the sum of the excitation functions of the 2193 and 2287 keV levels.
- Fig. 3. Energy levels of ¹²⁰Sn. All energies are shown in keV. The 546 keV transition indicated by a dotted line is that assigned tentatively. The transitions with energies less than 200 keV were not observed on account of the detection threshold.

Fig. 2.

I-B-4. <u>Analysis of Neutron Cross Sections Using the Coupled-</u> <u>Channel Theory</u>

Shigeya Tanaka

This work, presented at "Topical Discussions" in the 17th EANDC Meeting, Tokyo, will be published in the Proceedings with an abstract as follows:

Fast neutron total and scattering cross sections calculated with the coupled-channel theory and the spherical optical model are compared with experimental data. The optical-potential parameters used in both the calculations were obtained from comparison of calculations with scattering data for ²⁰⁹Bi.

The calculations for total cross sections were made for thirty-five nuclides from 23 Na to 239 Pu in the energy range of 0.25 to 15 MeV, and good results were obtained with the coupled-channel calculations. The comparisons of the calculations with the elastic data for about twenty nuclides were made at incident energies of 8 and 14 MeV. In general, the coupled-channel calculations at 8 MeV have given better agreements with the experimental data than the spherical optical-model calculations. At 14 MeV, differences between both the calculations were small. The analysis was also made for the elastic and inelastic scattering by several nuclei such as Fe, Ni, 120 Sn, Pu in the low energy region, and good results have been given by the coupled-channel calculations.

Thus, it is demonstrated that the coupled-channel calculations with one set of the optical parameters well reproduce the total and scattering cross sections over a wide energy and mass region.

C. Others

I-C-1. Transmission of Lead-Capture Y Rays with a Tin Absorber

Y. Kawarasaki

The paper on this subject was published in Nucl.Instr. and Methods, $\underline{114}$ (1974) 153-155 with an abstract as follows.

Transmission measurement of the thermal-neutron-capture γ rays in lead was made with a tin absorber of varied thickness for direct determination of the nuclear resonance energy in tin and for obtaining an effective nuclear absorption cross section¹⁾.

It was found that the resonance occurred at the energy of 6729.8 \pm 0.9keV γ rays from 204 Pb(n, γ). The γ -ray energy from 206 Pb(n, γ) was then measured to be 6738.1 \pm 0.9 keV. The intensity ratio of the above two lines was determined to be 0.50 \pm 0.03. The effective nuclear absorption cross section of the resonant level in 120 Sn²) was measured to be 0.48 \pm 0.05 b.

References:

- 1) N. Shikazono & Y. Kawarasaki, J.Phys. Soc. Japan 26(1969) 1319
- Y. Kawarasaki, Proc. Int. Conf. on Photonuclear Reactions and Applications (Lawrence Livermore Lab., 1973) P. 305

I-C-2. <u>A Survey for Elements to be Excitated by Y Rays Follwing</u> Thermal Neutron Capture in Vanadium.

Y. Kawarasaki

The paper on this subject was published in J. Phys. Soc. Japan $\underline{36}(1974)$ 907, whose abstract is as follows.

A surveying experiment was made in search of the photoexcitable levels in many elements using thermal neutron capture Y rays in vanadium. About 40 natural elements from Na to Bi in order of Z-number were surveyed and it was found that the following elements revealed the appreciable resonances in their scattering spectra; Ca, Ti, Nb, Mo, Cd, Sn, Sb, La, Nd, Sm, W, Hg and T1.

I-C-3. Photoexcitation of the Tin-Isotope Levels

Y. Kawarasaki

After a surveying experiment¹⁾ in search of the photoexcitable elements by neutron capture γ rays in vanadium, an experiment was undertaken succeedingly on nuclear resonance scattering from Sn. It is found to date that there are two levels excited by γ rays in V(n, γ), the energies of which are determined to be 6519 keV and 7306 keV, respectively, and that the inelastic components of the 7306-keV excitation is observed to be more than that of the 6519-keV one. In order to assign the isotopes responsible for the resonances and to derive the level parameters, the following experiment is now in progress, the measuremtnts of the angular distribution, the nuclear absorption cross section, the temperature dependence of the scattering yields, etc.

Reference:

1) Y. Kawarasaki, J. Phys.Soc. Japan 36(1974) 907

- 18 -

I-C-4. <u>Reactor-Neutron Capture Cross Section of ²⁷Mg</u> T. Sekine and H. Baba

The reactor-neutron capture cross section of 9.45 minute 27 Mg has been determined by the activation method.

Magnesium oxide powder was irradiated in the JAERI Research Reactors and the magnesium fraction was purified by anion- and cation-exchange chromatography. The yield of 28 Mg formed by double neutron capture in 26 Mg was determined by measuring the y rays emitted by the daughter, 2.3 minute 28 Al, with a Ge(Li) detector.

The preliminary experiments showed that the cross section for the neutron capture of 27 Mg was 0.15 barns which was much larger than the maximum value of 0.04 barns reported by Roy and Yaffe¹⁾.

References:

1) L. P. Roy and L. Yaffe, Can. J. Chem. 35 (1957) 176.

I-C-5. Reactor-Neutron Capture Cross Section of ⁶⁵Ni and the ⁵⁸Ni(n,2n)⁵⁷Ni Reaction Cross Section for Fission Neutrons

T. Sekine and H. Baba

The reactor-neutron capture cross section of 2.56 hour 65 Ni and the 58 Ni(n,2n) 57 Ni reaction cross section for fission neutrons have been obtained by the activation method.

The nickel metal plate or wire was irradiated in the JAERI Research Reactors. The sample was dissolved in aqua regia. The 58 Co produced by the 58 Ni(n,p) 58 Co reaction was removed by anion exchange chromatography. Yields of 66 Ni formed by double neutron capture in 64 Ni and 57 Ni formed by the 58 Ni(n,2n) 57 Ni reaction were determined by measuring the y rays with a Ge(Li) detector.

Five experiments showed that the cross section for the reactor-neutron capture of 65 Ni was $18.6^{+}3.5$ barns. The value agrees with the value of 24.3 barns given by Serement, Abu-Samra and Emmons¹⁾, but is in disagreement with the value of 60 to 70 barns reported by Pinajian²⁾.

The 58 Ni(n,2n) 57 Ni reaction cross section was 3.8 \pm 0.4 microbarns based on the value of lll millibarns for the 58 Ni(n,p) 58 Co reaction. The value is not inconsistent with the 6 and 3 microbarns reported by the earlier workers ${}^{3)}$.

References:

- V. Serment, A. Abu-Samra and A. H. Emmons, Nucl. Tech. <u>9</u> (1970) 062.
- 2) J. J. Pinajian, J. Inorg. Nucl. Chem. 31 (1969) 1241.
- 3) J. C. Roy and J. J. Hawton, ABCL-1181 (1960).

- 20 -

I-C-6. <u>Calculation of Decay Power of Fission Products</u> Kanji TASAKA and Nobuo SASAMOTO

The paper on this subject was published in Nucl. Sci. and Eng. Vol. 54, P.177-189 (1974) with an abstract as follows.

The energy release rates of fission products have been calculated by summation of the contributions of respective fission product nuclides for several fissioning nuclides and excitation energies. An attempt is made to refine the existing values of beta or gamma energy release rates at short times after fission by including information of more fission products, mainly short-lives ones. In the calculation 443 radioactive and 125 stable nuclides are considered.

The unknown unclear data for short-lives nuclides are estimated theoretically or statistically. The Q values are obtained by using the semi-empirical mass formula of Myers and Swiatecki. Beta decay constant λ of the nucleus is derived from its Q value by using the empirical correlation between λ and Q.

Feasibility of the method is evaluated through comparison of the calculated results with experiment for the thermal neutron fission of ²³⁵U. The results are in good agreement with the experimental ones for the gamma energy release rates at short times after the fission, usefulness of the estimated nuclear data is thus indicated. The calculated decay powers are in good agreement with the calorimetric measurements by Day and Cannon. The present results of decay power also agree well with the compilations by Shure and by Stehn and Clancy for the respective cooling times.
- 21 -

D. Japanese Nuclear Data Committee

The Japanese Nuclear Data Committee has three subcommittees: Subcommittees on Nuclear Data (SND), on Reactor Constants (SRC), and on Nuclear Data for Safeguards Techniques (SNDST). These Subcommittees consist of working groups which have been performing the actual productive activities. The Nuclear Data Laboratory, JAERI, takes charge of the secretariat of the JNDC.

Two new working groups were formed in June 1974: Working Group for Evaluation of Decay Heat (WGEDH) in SNDST and Working Group on Nuclear Data for Fusion Reacotors (WGNDFR) in SND, respectively. The objectives of the WGEDH are: (1) to provide basic nuclear data for calculation of decay energy, and (2) to evaluate the decay heat through comparison of calculated values with clean experimental values. Reactor safety people are requiring to receive the evaluated data whithin two years. The schedule of evaluation will try to meet with this requirement. The first meeting of WGNDFR will be held on 20th August 1974, and the activity will start with a survey work on the nuclear data required for the development of fusion reactors. A Japanese CTR nuclear data request list should be initiated by the Research Committee on Nuclear Fusion Reactor of the Atomic Energy Society of Japan and will be screened by the WGNDFR.

A Compilation Group for Japanese Evaluated Nuclear Data Library (JENDL) was also formed in June 1974. The first version of JENDL, JENDL-1, is planned to be completed in 1976. Preferential supports of the JNDC and JAERI are requisite to carrying out the above plan.

- 22 -

I-D-1. On the Modification of the Neutron Cross-Section Formulas Sin-iti Igarasi

It is well known that the neutron total cross section $O_{i,i}$, shape elastic scattering cross section $O_{i,i,s}$, and total reaction cross section $O_{i,k}$ are obtained directly from the optical model calculations. The total reaction cross section is composed of compound elastic scattering cross section $O_{i,k,c}$, inelastic scattering cross section $O_{i,n}$, neutron capture cross section $O_{n,i,j}$ and other cross sections such as fission cross section, (n,2n) reaction cross section etc. which we call here cross section of the competing process and denote as ΔO . The relation among these cross sections are described as follows;

$$\mathcal{O}_{\text{tot}} = \mathcal{O}_{\text{sl},s} + \mathcal{O}_{\text{r}} = \mathcal{O}_{\text{sl},s} + \mathcal{O}_{\text{sl},c} + \mathcal{O}_{\text{in}} + \mathcal{O}_{n,s} + \Delta \mathcal{O} \quad (1)$$

In general, however, partial cross sections $O_{al.c}$, O_{in} , $O_{n.s}$ and ΔO are not necessarily calculated by taking account of their mutuality, in the usual study of the nuclear cross sections.

In this work, we investigate the relation among those cross sections mentioned above, in the framework of the conventional statistical theory² of the nuclear cross sections, and derive modified formulas for the partial cross sections. In this short note, we present the results of our formulas for the cross sections. According to our results, the cross sections of the neutron capture and inelastic scattering for excitation of an individual level of the residual nucleus are given as follows;

$$\begin{aligned}
\mathcal{O}_{n,y}(E_n) &= \frac{\pi}{k_n^2} (1 - \alpha') \sum_{J \Pi j \ell} g^J \frac{\langle \Theta_{nj\ell}^{J \Pi} \rangle}{\langle \Theta^{J \Pi} \rangle} \left\{ \langle \Theta_{g_1}^{J \Pi} \rangle - \langle \Theta_{g_2}^{J \Pi} \rangle \\
&\times \left[\frac{\Delta \Theta_g^{J \Pi}}{\langle \Theta^{J \Pi} \rangle} S_{nj\ell;g_2}^{J \Pi} - 1 + S_{nj\ell;g_2}^{J \Pi} \right] \right\},
\end{aligned}$$
(2)

and

$$O_{n,n'}(E_n) = \frac{\pi}{k_n^2} (1-\alpha') \sum_{J\Pi j \ell j' \ell'} \mathcal{G}^J \left\{ \frac{\langle \Theta_{n j \ell}^{J\Pi} \rangle \langle \Theta_{n' j' \ell'}^{J\Pi} \rangle}{\langle \Theta^{J\Pi} \rangle} S_{n j \ell; n' j' \ell'}^{J\Pi} (1+\frac{\Delta \Theta_{\delta}^{J\Pi}}{\langle \Theta^{J\Pi} \rangle}) - \delta_{n j \ell; n' j' \ell'} \frac{1}{4} Q^{J\Pi} \langle \Theta^{J\Pi} \rangle \cdot \langle \Theta_{n j \ell}^{J\Pi} \rangle^2 \right\}, \qquad (3)$$

respectively. Here, the quantity $\langle \widehat{P}_{nj\ell}^{JI} \rangle$ is obtained by the use of neutron transmission coefficient $\langle \widehat{T}_{nj\ell}^{JI} \rangle$ which is calculated by the optical model;

$$\langle \Theta_{nj\ell}^{JII} \rangle - \frac{1}{4} Q^{JII} (\langle \Theta^{JII} \rangle) \cdot \langle \Theta_{nj\ell}^{JII} \rangle^2 = \langle T_{nj\ell}^{JII} \rangle, \qquad (4)$$

and the quantity (); is calculated by the following equation;

$$\langle \Theta_{y_i}^{JII} \rangle - \frac{1}{4} Q^{JII} \langle \Theta^{JII} \rangle \rangle \langle \Theta_{y_i}^{JII} \rangle^2 = \langle T_{y_i}^{JII} \rangle, \qquad (5)$$

where we use two kinds of gamma-ray transmission coefficients $\langle T_{y_1}^{JI} \rangle$ and $\langle T_{y_2}^{JI} \rangle^{3}$) which correspond to the gamma-ray absorption and the total gamma-ray widths respectively.

Two quantities $\Delta \Theta_{\chi}^{JT}$ and α play the important role in our cross-section formulas. They are defined as follows;

$$\Delta \Theta_{\mathfrak{s}}^{\mathfrak{I}\mathfrak{n}} = \langle \Theta_{\mathfrak{s}\mathfrak{s}}^{\mathfrak{I}\mathfrak{n}} \rangle - \langle \Theta_{\mathfrak{s}\mathfrak{s}}^{\mathfrak{I}\mathfrak{n}} \rangle , \qquad (6)$$

and

$$\alpha = \Delta O / O_R. \tag{7}$$

respectively. The quantity $\Delta \Theta_{\mathbf{y}}^{\mathbf{T}}$ corresponds to the sum of the probabilities for the neutron and gamma-ray emissions through the cascade process from the compound nuclear states above the neutron separation energy. It is easily seen that the relation given in Eq.(1) is satisfied by using our cross-section formulas Eqs.(2) and (3). Quantities $\Theta^{\mathbf{T}}$ and $S^{\mathbf{T}}_{\mathbf{y}\mathbf{f}\mathbf{f}\mathbf{c}\mathbf{c}\mathbf{c}}$ in Eqs.(2) and (3) are correction factors for the resonance interference and width-fluctuation effects, respectively. References:

1) W.Hauser and H.Feshbach : Phys. Rev. <u>88</u> 327 (1952)

3) A.M.Lane and J.E.Lynn : Nucl. Phys. 11 646 (1959)

I-D-2. Group Constants of Fission Products

Y. Kikuchi, I. Otake*, K. Tasaka, H. Nishimura, H. Hasegawa and S. Katsuragi

The preliminary version of evaluated data of the 28 important FP nuclides was published¹⁾ by JNDC FP Nuclear Data Working Group, and the group constants of 25 and 70 group structure were prepared with these data. Then they were lumped to the group constants of a pseudo FP nuclide at various burn-up stages, using the concentration as weights. Though these 28 important nuclides take more than 80% of total capture by fission products, the number of 28 is not enough to produce the lumped group constants. Therefore the data evaluated by $Cook^{2,3}$ were used supplementalily for other nuclides.

JNDC adopted the statistical model down to 100 eV, in order to avoid the discontinuity at keV region, which is observed in Cook's evaluated data. This may sound rather rough, but the standard deviation due to the statistical fluctuation is small for the lumped group constants (less than 10% for the energy group between 100 and 215 eV).

The lumped capture cross section of JNDC group constants set is about 25% larger than that of Cook's set, when collapsed to one group with the spectrum of a typical large fast reactor. Such a large uncertainty of FP group constants fairly affects the reactor design. The detailed discussion is given in Ref. 4.

Then the group constants were tested by comparing the calculated results with the experimental ones measured at STEK facility in Petten, Netherlands. The reactivity worth due to capture was calculated for 3

* Fuji Electric Co., Ltd.

samples, i.e., 2 irradiated samples (HFR-101: 60% FIMA and HFR-102: 30% FIMA) and one mock up sample (KFK-sample), with the flux and the adjoint flux of 4 STEK cores⁵⁾. The results are given in Fig. 1 as the ratio to the experimental values. The calculated values with RCN set and Cook's set are also given for comparison.

The followings can be pointed out:

1) JNDC set overestimates the reactivities by 10% for HFR-101 sample, while RCN set and Cook's set underestimates them by 10%.

The results with JNDC set agree very well with the experimental values of HFR-102, while RCN and Cook's sets give 20% of underestimation.
 The results with JNDC set and Cook's set depend on the core for KFK-sample, while the results with RCN set do not.

4) Cook's set always underestimates the reactivity.

It could be said from the above observations that the capture cross sections of Cook's set are a little too low. But it is not clear why one set gives good results for a sample and it does not for another sample, and why such a strong core dependence appears with JNDC and Cook's sets only for KFK sample. It is very difficult to say which set is the most reliable from the integral measurements of fission product mixtures, and the experiment on separated isotopes must be more helpful.

References

- JNDC: Evaluation of Fission Product Nuclear Data for Fast Reactor, JAERI-M5752, 1974
- 2) J. L. Cook: Fission Product Cross Sections, AAEC/TM-549, 1969
- Y. Kikuchi et al.: Production of FP Group Constants for Fast Reactors with Cook's Evaluated Data, JAERI-M5492, 1973
- 4) Y. Kikuchi et al.: Proceedings of International Symposium on Physics of Fast Reactors held at Tokyo, October 16-19, 1973, P649, 1973
- 5) H. Gruppelaar et al.: RCN-1 Pseudo Fission-Product Capture Group Cross Sections, RCN-205, 1974

- 27 -

I-D-3. Activity of the Nuclear Data Evaluation Working Group

H Matsunobu* and other members

The object of this group is to prepare for the evaluated nuclear data which are required for fast reactor design. This group is composed of three sub-working groups which take charge of the following tasks respectively.

1) Evaluation of the nuclear data for heavy nuclides

In this sub-working group, evaluation works of the nuclear data on 235 U, 239 Pu, and 240 Pu in the energy range from 1 keV to 15 MeV have been performed on the basis of the experimental data compiled up to date. Evaluation on 238 U was already completed last year. On 241 Pu, compilation of the experimental data has been completed, but the compiled data are very poor in quantity. The situation of the experimental data on 240 Pu is also similar to 241 Pu except fission cross section. Accordingly, evaluation of most nuclear data on 240 Pu has been performed on the basis of the similarity of the nuclear data between 238 U and 240 Pu, and using theoretical calculation, whereas the fission cross section has been evaluated on the basis of the compiled experimental data.

At present, the final reports of evaluation for each nuclide are being prepared.

2) Compilation of the resonance parameters

Compilation of the resonance parameters of 235 U, 238 U, 239 Pu, and 240 Pu has been almost completed, whereas that of 240 Pu was started later and is now in progress. All the experimental data are included in the work except the case of 235 U, where only those reported since the

* Sumitomo Atomic Energy Industries, Ltd.

NOT FOR PUBLICATION

publication of the KFK-120 are collected. The compiled parameters are mainly single level parameters even in 235 U, 239 Pu, and 240 Pu, although some of the multi-level parameters will be included in the final stage. These compiled data will be soon published together with short comments on the experimental method and analysis described in each reference.

 Compilation and analysis of the nuclear data for light and mediumheavy nuclides

Compilation works of the nuclear data on O, Na, Cr, Fe, Ni, and Ta which are indispensable for fast reactor design have been continued since last year. The compiled data are composed of new experimental data published recently.

Besides data compilation, analysis of the differential elastic scattering cross section, strength function, and polarization for Fe was done using ELIESE-3 code based on the optical model and statistical theory. This result was reported by H. Yamakoshi at the 17th EANDC topical meeting held in Tokyo, in March 1974.

I-D-4. <u>Evaluation of the Nuclear Data on</u> Hiroyuki Matsunobu*

Evaluation work of the nuclear data (σ_t , σ_f , α , and ν_p) on ²³⁵U in the energy range from 1 keV to 15 MeV has been performed as a part of evaluation works in the sub-working group of JNDC.

The total and fission cross sections were evaluated on the basis of the compiled experimental data which were described briefly in the previous progress report. The evaluated numerical values were obtained by X^2 -method using the polynomial fitting functions. The result of evaluation was reported at the Atomic Energy Society of Japan held in November 1973.

The compiled experimental data of α (ratio of capture to fission) are densely distributed in the energy range below 100 keV, and fluctuated remarkably in the range below 30 keV. This fluctuation may be caused by the effect of structure for ²³⁵U. In evaluation, it is very difficult to reproduce the fluctuation of the experimental data. Therefore, we adopted a method to obtain the average value in this energy range using the polynomial fitting function.

One of the purposes of evaluation for α is to obtain capture cross section σ_c using the evaluated α and σ_f , because the experimental data for σ_c of ²³⁵U are poor. However, there are also no experimental data for α in the energy range above 1 MeV. Accordingly, capture cross section in the energy range above 1 MeV is obtained by theoretical calculation based on the optical model and statistical theory in present evaluation.

* Sumitomo Atomic Energy Industries, Ltd.

The energy dependence of the prompt neutron number per fission v_p for ²³⁵U has been studied by many researchers, and various formulae have been presented up to date. Looking over the distribution of the compiled experimental data, three different tendencies are observed for the energy dependence of v_p . In the energy range from 40 keV to 2 MeV, the distribution of the data is dense, and the gradient of the energy dependence is most gentle. In the energy range from 2 to 7.5 MeV, considerable discrepancies between the experimental data are observed, and the gradient of the energy dependence is most steep. In the energy range from 7.5 \sim 15 MeV, although the experimental data are poor, lineality for the energy dependence is very good. In present evaluation, the energy dependence of v_p is represented by three straight lines using X^2 -method in the above-mentioned energy ranges.

The results of evaluation for α and ν will be reported at the Atomic pEnergy Society of Japan which will be held in October 1974.

- 31 -

I-D-5.

Evaluation of Fission Product Cross Sections for Fast Reactor Fission Product Nuclear Data Working Group

Evaluation of cross sections for 28 nuclides up to the end of 1973 was reported as JAERI-M Report 5752. F.P Reactor Constants Working Group have made test of these cross sections by comparing the calculated reactivity worths of lumped fission product with experimental data of Petten. Results showed that the present capture cross sections were probably overestimated by 10-20 %. Re-evaluation is under way and will finish this September. In this reevaluation the calculational method was improved by taking account of the effects of neutron width fluctuation and the interference between nuclear levels. Results will be included in JENDL/1.

Further evaluation work covering ultimately about 300 F.P nuclides is scheduled. The work will start from this fall and will continue for about 2 years.

II. Kyoto University

A. <u>Research</u> Reactor Institute

II-A-1.

Precision Neutron Total Cross Section Measurements of C, Be and O near 24 keV

R. C. Block^{*}, Y. Fujita, K. Kobayashi and T. Osaki Research Reactor Institute, Kyoto University

A full paper on this subject was submitted to the Journal of Nuclear Science and Technology.

The neutron total cross sections of Be, C and O were measured near 24 keV by making a linac-time-of-flight transmission measurements upon a neutron beam passing through a 30 cm thick iron filter. The cross sections of elemental Be, C and O were determined to be (5.903 ± 0.011) b, (4.684 ± 0.009) b and (3.736 ± 0.007) b respectively, which were tabulated in Table 1, at a mean neutron energy of 23.5 keV. These results differ by 0.5 % ~ 1.5 % from the ENDF/B-III evaluated cross sections. The Fefiltered beam method is instrinsically capable of yielding an accuracy of ~ 0.1 %, which is comparable to that achieved in precision thermal cross section measurements. Detail discriptions about samples, background, dead time correction and detecting system are also given and discussed.

^{*} Visiting Professor at Kyoto University, on sabatical leave from Rensselaer Polytechnic Institute, Troy, New York, U. S. A.

Table 1	Final	results	for	the	23.5	keV	neutron	total	cross	section	of	6 ^C ,	ц ^{Ве а}	and	8 ⁰
---------	-------	---------	-----	-----	------	-----	---------	-------	-------	---------	----	------------------	-------------------	-----	----------------

	Total	Total I	Error			Partial	Errors (%)			ENDF/B
	Cross Section (barns)	(barn)	(\$)	Counting Statistics	Sample Thickness uncertainty	Detection Efficiency Shift uncertainty	Dead Time correction uncertainty	Air Scattering correction uncertainty	BKG deter- mination uncer- tainty	Cross Section (barn)
ц ^{Ве}	5-903	0.011	0.18	0.14	0.09	< 0.05	< 0.05	< 0.01	< 0.05	5.932
6 ^C	4.684	0.009	0.20	0.18	0.05	< 0.05	< 0.05		< 0.05	4.648
8 ^{0*}	3.736	0.007	0.19	0.16	0.08	< 0.05	< 0.04	< 0.03	< 0.04	3.678
A1203-571	3-735	0.009	0.23	0.18	0.12	< 0.05	< 0.05	< 0.05	< 0.05	
$\frac{\text{S10}_2\text{-S1}}{2}$	3.738	0.012	0.32	0.30	0.08	< 0.05	< 0.05	< 0.02	< 0.05	

* Cross Section of 8^0 is the weighted average of $(Al_2^0 - 2Al)/3$ and $(Si0_2 - Si)/2$

- 34 -

II-A-2. Gamma-ray Energies of Se-85 and Se-86

T. Tamai, R. Matsushita, J. Takada and Y. Kiso*

A paper on this subject was published in INORG. NUCL. CHEM. LETTERS, 9, 1145 (1973).

Although the half-lives of short-lived selenium nuclides in fission products were reported, the gamma-ray energies of these nuclides such as ⁸⁵Se and ⁸⁶Se have not been determined. The aim of the present study is to separate rapidly selenium from the other fission elements using paper electrophoresis and to measure the unknown gamma-ray energies of the short-lived selenium nuclides and their relative intensities.

A small amount of uranyl nitrate solution was irradiated under a thermal neutron flux of 2.35×10^{13} n.cm⁻². s⁻¹ for 10 s in the pneumatic tube of the Kyoto University Reactor. As a supporting electrolyte solution, a 10^{-2} M perchloric acid solution (pH=2.2) was used. A 0.1 M solution of potassium selenite was prepared as a carrier. A 0.1 M potassium permanganate solution was used as an oxidizing agent to oxidize selenite to selenate to make the migration zone of pertechnetate ion sharp. A visible migration-front of the permanganate ion was effective as a marker for the location of the migration position of permanganate and selenate ions. A 10^{-2} M silver nitrate solution was used as a stopping agent of bromide and iodide ions whose mobilities were larger than those of selenate ions.

As a results, the energies and their relative intensities of eight gamma-rays from both Se-85 and Se-86 are given in Table I.

* Present Address: Faculty of Engineering, Hiroshima University

•

The half-lives of Se-85 and Se-86 obtained were (32.8+0.3) s and (14.3±0.5) s, respectively.

Table I

ENERGIES AND RELATIVE INTENSITIES OF GAMMA-RAYS FROM

Se-85 AND Se-86

	Se-86			Se-85	
E _x (keV)	I _δ (%)	$T_{1/2}(s)$	Ez (keV)	I ₅ (%)	$T_{1/2}(s)$
49.0	15	14.4±2	344.4	100	32.8±0.3
154.3	30	14.3±0.5	382.1	17.1	32.7±2.3
207.7	100	15.9±1.2	432.3	11.1	26.0±2.7
941.3	237	20	611.4	6.4	27.4 ± 2.3
1081.1	257	13.5	842.3	9.7	23.9±1.2
1208.3	293	19	869.0	7.1	21.9±0. 2
1340.2	188		955.4	15.9	33.8±5.1
1399.9	108	15	1427.2	5.2	39.7±3.9

- 36 -

11-A-3.

Measurements of the Cross Section for the ²³¹Pa(n,f) Reaction

Katsuhei Kobayashi and Itsuro Kimura Research Reactor Institute, Kyoto University

and

Hiroshi Gotoh and Hideyuki Yagi Japan Atomic Energy Research Institute

Although several measurements^{1)~3)} of the energy dependent cross section for the 231 Pa(n,f) reaction have been made, few measurements in the energy region more than about 3 MeV have been carried out previously.

In the present report, the cross section for the 231 Pa(n,f) reaction have been measured in the energy region from about 3.6 MeV to 4.9 MeV with a 2 MV Van de Graaff accelerator, by making use of a chamber composed of a silicon detector and an electro-deposited 231 Pa film of about 50 µg/cm². Fast neutron flux was monitored with the threshold reaction 115 In(n,n') 115m In, whose values of the cross section had been obtained by the authors⁴). The experimental method is the same as the pre-vious paper in which the cross section for the 237 Np(n,f) reaction was measured⁵⁾.

An indium foil was attached to just behind the ²³¹Pa film. Since sample distance from the mean neutron source position was about 10 mm, the neutron flux at the sample was corrected, as shown in Fig.1, by the following formula :

$$A(h, r_{2}, t_{1}) = \frac{1}{t_{1}} \int_{0}^{t_{1}} \frac{\phi_{m}\sigma}{4\pi r_{2}^{2}} l_{m} \left\{ 1 + \frac{r_{2}^{2}}{(h+t)^{2}} \right\} dt$$

$$= \frac{\phi_{m}\sigma}{4\pi r_{2}^{2} t_{1}} \int_{h}^{h+t_{1}} \left\{ l_{m}(x^{2}+r_{2}^{2}) - l_{m}x^{2} \right\} dx$$

$$= \frac{\phi_{m}\sigma}{4\pi r_{2}^{2} t_{1}} \left[(h+t_{1})l_{m} \left\{ 1 + (\frac{r_{2}}{h+t_{1}})^{2} \right\} - h l_{m} \left\{ 1 + (\frac{r_{2}}{h})^{2} \right\} \right]$$

$$+ 2 r_{2} t_{m} t_{1}^{-1} \frac{h+t_{1}}{r_{2}} - 2 r_{2} t_{m} t_{1}^{-1} \frac{h}{r_{2}} \right]$$

Our preliminary results are shown in Fig.2. Although statistical errors come up to several to 10 %, the present results seem to agree with the Drake's⁶.

References

- 1) S.M.Dubrovina and V.A.Shigin, Doklady Akad. Nauk SSSR 157 (1964) 561.
- 2) J.H.Williams, LA-150 (1944).
- 3) D.W.Muir et al., Knoxvill Conf. (1971).
- 4) K.Kobayashi, I.Kimura, H.Gotoh and H.Yagi, J. Nucl. Energy 27 (1973) 741.
- 5) K.Kobayashi, I.Kimura, H.Gotoh and H.Yagi, Annu. Rep. Res. Reactor Inst., Kyoto Univ., 6 (1973) 1.
- 6) M.K.Drake, GA-7462 (1967).

Fig. 1 Calculating geometry for neutron flux correction

Fig. 1 Calculating geometry for neutron flux correction

Fig. 2 Fission cross section for $^{231}Pa(n,f)$ reaction

II-A-4.

Measurements of the Cross Sections for the 232 Th(n, \checkmark) 233 Th and 231 Pa(n, \checkmark) 232 Pa Reactions using Maxwellian Thermal Neutrons

Katsuhei Kobayashi

Research Reactor Institute, Kyoto University

A short note on this subject was submitted to the Annu. Reports of the Research Reactor Institute, Kyoto University.

The thermal neutron cross sections for the 232 Th(n, η) 233 Th and 231 Pa(n, η) 232 Pa reactions have been measured by the activation method, by making use of the Kyoto University Reactor, KUR, where pure Maxwellian neutrons are available. Thermal neutron flux during sample irradiation was monitored with gold foils.

For the determination of the cross section for the 232 Th $(n, \gamma)^{233}$ Th reaction, 233 Pa (half life $T_{1/2}$ =27 d) into which 233 Th (half life $T_{1/2}$ =22.3 m) completely decayed out, while 232 Pa (half life $T_{1/2}$ =1.31 d) for the 231 Pa(n, $\gamma)^{232}$ Pa reaction, were measured. Produced activities of 232 Pa, 233 Pa and 198 Au were measured with a Ge(Li) counter of 2 cc, whose efficiency had been previously obtained by the standard gamma-ray sources prepared at IAEA and 198 Au whose absolute disintegration rate had been calibrated with a $4\pi\beta\gamma$ counter.

The present values of the cross sections for the 232 Th(n,%) 233 Th and 231 Pa(n,%) 232 Pa reactions became to be 7.35 ± 0.21 barns and 201 ± 6 barns, respectively. They are shown in Table 1 and Table 2, comparing the earlier results. The

present results agreed with the recommended values found in the literature within the limits of error. Cross sections measured with pure Maxwellian thermal neutrons should be preferred as a recommended value.

References

- 1) J.R.Stehn, et al., BNL-325, Suppl. 2, Vol.III (1965).
- 2) R.B.Tattersall, et al., J. Nucl. Energy 12 (1960) 32.
- 3) R.W.Stoughton and J.Halperin, Nucl. Sci. Eng., 6 (1959) 100.
- 4) P.Hubert, et al., TID-7547 (1957).
- 5) J.W.Wade, DP-207 (1957).
- 6) G.G.Myasishcheva, et al., Atomnaya Energiya 2 (1957) 22.
- 7) B.M.Aleksandrov, et al., ibid., 32 (1972) 178.
- 8) F.B.Simpson, et al., Nucl. Sci. Eng., 12 (1962) 243.
- 9) S.Bjornholm, et al., Nucl. Phys., 42 (1963) 469.
- 10) R.R.Smith, et al., Phys. Rev., 101 (1956) 1053.

Cross section (barn)	Reference
7.35 ± 0.21	Present work
7.4 ± 0.1	Stehn ⁽¹⁾
7.5 ± 0.3	Tattersall ⁽²⁾
7.45 ± 0.15	Stoughton ⁽³⁾
7.6 ± 0.16	Hubert ⁽⁴⁾
7.55 ± 0.25	Wade ⁽⁵⁾
7.31 ± 0.10	Myasischeva ⁽⁶⁾

Table 1 Cross sections for 232 Th(n, γ) 233 Th reaction to thermal neutrons

Table 2 Cross sections for 231 Pa(n, γ) 232 Pa reaction to thermal neutrons

Cross section (barn)	Reference
201 ± 6 200 ± 10 260 ± 13 200 ± 5 293 200 ± 15	Present work Stehn ⁽¹⁾ Aleksandrov ⁽⁷⁾ Simpson ⁽⁸⁾ Bjornholm ⁽⁹⁾ Smith ⁽¹⁰⁾

- 43 -

II-A-5.

Measurements and Analyses of Energy and Space Distributions of Fast Neutrons in Test Assemblies

Hiroshi Nishihara^{*}, Itsuro Kimura , Katsuhei Kobayashi , Shu A. Hayashi , Shuji Yamamoto , Satoshi Kanazawa^{*} and Masato Ando^{*}

A part of this work was presented at the International Symposium on Physics of Fast Reactors at Tokyo in October 1973 and was published in its proceeding¹⁾.

In order to assess the nuclear data or group constants of some important reactor materials, fast neutron spectra in these materials have been measured by the time of flight method using an electron linear accelerator as a pulsed neutron source and the results have been compared with the predicted ones which were obtained by theoretical calculations with several different group constants. The characteristics of the test assemblies and the methods of calculation are given in Table 1 and Table 2 respectively. A similar work on a stainless steel (SUS 304) assembly is now in preparation and will be carried out soon. Throughout the all measurements, spatial distribution of fast neutron flux and high energy photon flux around a lead photoneutron target have been measured by activation of nickel wires and gold foils and the results have been also compared with the

^{*} Department of Nuclear Engineering, Kyoto University Yoshidahonmachi, Sakyo-ku, Kyoto

predicted values.

We regard the boronated graphite assembly as a standard neutron spectrum field which can be used to calibrate detection efficiency of a neutron detector, because it has simple components, carbon and boron and very small amount of water (0.12 w/o) and the nuclear data of these components are much more accurately known than other elements. As a matter of fact, neutron spectra which have been calculated by different codes with different group constants satisfactorily agree each other.

A bank of three 12.6 cm dia. 6 Li glass scintillation counters (NE-912 + EMI 9618 R) and a boron-vaseline counter were used for neutron detection as shown in Fig.1. The detection efficiency of both detectors has been calibrated by making use of the boronated graphite assembly.

A result for the lead assembly is shown in Fig.2. It can be seen that the measured spectrum in the lead assembly (r=20 cm, μ =0) agrees with those predicted by theoretical calculations.

Table 1 Characteristics	of Test	Assemblies
-------------------------	---------	------------

Sample	Purity	Shape and size	Position and direction mainly measured
Boronated graphite	2.6 % boron in graphite	Rectangular prism 70cm x 70cm x 80cm	r=20 cm, µ=0.0
Iron	Soft steel	Rectangular prism 90cm x l m x l m	r=20 cm, μ =0.0 r=28 cm, μ =-0.7 r=28 cm, μ =+0.7 r=2, 10, 20, 40 cm, μ =1.0
Alumina	99.5 % al ₂ 0 ₃	Powder packed in a spherical vessel of 60 cm diameter	r=15 cm, µ=0.0
Thoria	99.9 % ThO ₂	Same above	r=15 cm, µ=0.0
Iron oxide	99.2 % Fe ₂ 0 ₃	Same above	r=15 cm, µ=0.0
Lead	99.9 %	Cube 70cm x 70cm x 70cm	r=20 cm, μ=0.0 r=2, 10, 20, 30 cm, μ=1.0

		· · · · · · · · · · · · · · · · · · ·
Sample	Computer code	Nuclear data
Boronated graphite	ANISN (Sn) DTF-IV (Sn)	RSIC-99 [*] JAERI-FAST ABBN
Iron	ANISN (Sn) DTF-IV (Sn) CYGNUS (Monte Carlo)	RSIC-99 JAERI-FAST J-E ^{**} ABBN KFK-120
Alumina	DTF-IV (Sn)	JAERI-FAST ABBN
Thoria	DTF-IV (Sn)	J-M ABBN
Iron oxide	DTF-IV (Sn)	J-E** ABBN
Lead	ANISN (Sn)	RSIC-99 J-Pb ABBN

Table 2 Used computer codes and nuclear data

¥ 99 group constants, DLC-2, processed at Radiation Shielding Information Center (ORNL)

*** *** Revised JAERI-FAST type 70 group constants made by Dr. Nakagawa

* * * JAERI-FAST type constants for thorium JAERI-FAST type constants for lead

* * * *

Fig.l Block diagrams of electronic circuits ;
 (a) case of using a ⁶Li glass scintillator bank
 (b) case of using a ¹⁰B-vaseline-NaI(Tl) detector

Fig.2 Fast neutron spectrum in the lead assembly

In order to investigate the structure of higher-lying excited states in ¹⁰⁶Pd, γ -rays following the decay of 30sec ¹⁰⁶Rh which is in equilibrium with the 367day fission product Ru have been investigated. Singles and coincidence spectra have been measured using 58 and 38 cc Ge(Li) detectors. Y-ray energies, relative intensities, decay scheme of Y-rays and energies of levels in $\frac{106}{Pd}$ have been determined. $\gamma-\gamma$ angular correlations have been measured using two-NaI-one-Ge(Li) system with the NaI gates set at the 512 keV and 1.05 MeV peaks. Analyses have been performed on more than 25 cascades and the following spins were assigned to the levels in ¹⁰⁶Pd: 1562.3(2), 1706.5(0), 2001.6(0), 2242.5(2), 2278.1(0), 2308.8(2*), 2439.2(2), 2500.5(2*), 2624.6(0), 2828.5(0), 2878.0(0), 2902.6(2*), 2918.0(2*), 3054.7(1*), 3083.2(0*), 3163.5(0*), 3221.5(0), 3321.1(0*), all in keV. (The error in the level energies is about 0.15 The spins marked with * are those newly determined by the present keV). Others are in agreement with the results of previous works $^{1-4)}$. work. γ -ray multipolarities of several 2+ \rightarrow 2+ transitions have also been determined.

A short note on this work appears in Annual Reports of the Research Reactor Institute, Kyoto University, vol.4(1974), and a full paper will also appear in near future.

References:

- C. M. Lederer, J. M. Hollander and I. Perlman, in Table of Isotopes, P.246, John Wiley * Sons, Inc. New York, 1967
- 2) P. V. Rao and R. W. Fink, Nucl. Phys. Al03 (1967) 385
- K. D. Strutz, H. J. Strutz and A. Flammersfeld, Z. Phys. 221 (1969) 231
- 4) F. T. Avingnone, III and J. E. Pinkerton, Phys. Rev. C7 (1973) 1238

B. Institute of Atomic Energy

II-B-1. Independent Isomer Yields of Some Sb Isotopes in Thermal-neutron Fission of ²³³U and ²³⁵U

Tomota NISHI, Ichiro FUJIWARA, and Nobutsugu IMANISHI

Independent yields of 130 Sb and 132 Sb isomers in the thermalneutron induced fission of 233 U and 235 U, and that of 128 Sb isomers for 233 U were measured by a radiochemical procedure.

A dilute solution of $UO_2(NO_3)_2$ containing 100 µg of ^{233}U or ^{235}U was irradiated in the Kyoto University Reactor for 30 sec. After the irradiation, the target solution was transferred in 10 ml of 6 M HCl containing each 10 mg of tin, antimony, tellurium, and strontium carriers.

Antimony was purified by distilling SbH_3 from a 6 M HCl solution in contact with metallic zinc-powder. SbH_3 was trapped into a 3 M HCl-Br₂ solution through a filter containing conc**ed**. NaOH solution to eliminate the tellurium contamination. Then Sb(V) was reduced to Sb(III) by addition of NH_2OHHCl , and Sb_2S_3 was precipitated by H_2S and mounted on a Millipore filter. The separation of antimony was carried out about 2 min after the end of irradiation. After the antimony separation, strontium was separated and used as a fission monitor.

After the chemical separation, γ rays emitted from the Sb samples were measured with a Ge(Li) detector.

- 50 -

The independent isomer yields were obtained by correcting the contribution to the measured activities due to the decay of precursors during the irradiation and the subsequent decay to the time of antimony separation. The results are shown in Table I.

Table I. Independent yields and isomer yield ratios of ¹²⁸Sb, ¹³⁰Sb, and ¹³²Sb. Cumulative yields of fission monitor and precursor are listed, too.

	Independent or cumulative yield (\$)					
	⁹² Sr	Sn	Sb ^m	Sb. ^g	Sb	σlow
²³³ U-128 chain	* ^a 6.6 ×	0.62* ±0.04	0.050 ±0.005	0.070 ±0.004	0.12 ±0.006	1.40 ±0.017
2 33_{U-130 chain}		0.86 [*] ±0.08	0.46 ±0.05	0.42 ±0.03	0.88 ±0.06	0.91 ±0.12
²³³ U-132 chain		0.11 ^{*D}	1.09 ±0.10	0.43 ±0.04	1.60 ±0.11	0.40 ±0.06
³⁵ U-130 chain	6. 0 ^{*a}	1.41 [*] ±0.11	0.26 ±0.05	0.26 ±0.03	0.52 ±0.06	1.0 ±0.23
235 _{U-132} chain		0.55	1.62 ±0.20	0.97 ±0.10	2.59 ±0.22	0.60 ±0.09

^a S.Katcoff, Nucleonics, 18,201(1960);

D.E.Troutner, J. Inorg. Nucl. Chem. <u>33</u>,4327(1971)

^b R.Naeumann et al. J. Inorg. Nucl. Clem. <u>34</u>,1785(1972)

- 51 -

II-B-2. Excitation Functions for the Deuteron Induced Reactions on ⁶⁴Zn and ⁷⁶Ge Tomota Nishi, Ichiro Fujiwara, Nobutsugu Imanishi,

Hiromichi Nakahara^{*}, and Hironobu Okamoto^{**} The paper on this subject was published in Bull. of the

Insti. for Chem Res. Kyoto Univ. <u>52</u>, 233 (1974) with an abstract as follows:

The excitation functions of ${}^{64}Zn(d,p){}^{65}Zn$, ${}^{64}Zn(d,n){}^{65}Ga$, ${}^{64}Zn(d,2n){}^{64}Ga$, ${}^{64}Zn(d,\alpha){}^{62}Cu$, ${}^{64}Zn(d,\alpha n){}^{61}Cu$, ${}^{76}Ge(d,p){}^{77}Ge$, ${}^{76}Ge(d,n){}^{77}As$, ${}^{76}Ge(d,2n){}^{76}As$, ${}^{76}Ge(d,\alpha){}^{74}Ga$, and ${}^{76}Ge(d,\alpha n){}^{73}Ga$ were studied with the radiochemical method. The experimental results were analyzed with the modified Peaslee theory. The ρ -values obtained by this analysis were compared with the previous works.

- * Present address; Department of Chemistry, Faculty of Science, Niigata University, Niigata.
- ** Present address; Power Reactor and Nuclear Fuel Development Corporation, Tokai Works, Tokai-mura, Ibaraki.

III. Kyushu University Department of Nuclear Engineering

III-1. Pre-Compound Decay from Fe (n,n') Reaction of 14.1 MeV <u>Neutrons</u>

- Y. Irie, M. Hyakutake, N. Koori, M. Tsuji,
- M. Matoba and M. Sonoda

Energy and angular distributions of neutrons from Fe (n,n') reaction were measured from 28° to 143° in about 10° steps at En=14.1 MeV by TOF method. The bias of the spectrometer was 1.0-1.5 MeV, the time resolution 2 ns and the flight path 1.5-1.8 m. The effect of multiple scattering to the shape of the obtained angular distributions was experimentally confirm -ed to be negligible.

Figure 1 shows the energy spectra of inelastically scattered neutrons for three laboratory angles. Figure 2 shows the comparison of the experimental energy spectrum N (En') with the compound and the pre-compound distri -butions given by Griffin's theory. It is seen that inelastic neutrons leading to low residual excitation energies below 8 MeV scatter predominantly in forward direction and show energy spectra attributed to the precompound distribution proposed by Griffin.

Fig. 1 Energy distributions of neutrons inelastically scattered from Fe. In abscissas, U is the residual excitation energy and En' the energy of scattered neutrons. The error bars indicate statistical errors only.

Fig.2. The comparison of the experimental energy spectrum N (En') with Griffin's theory. The compound distribution W_c (En') is normalized to N (En') in the high U region and the pre-compound distribution W_p (En') is normalized so that [N (En')- W_c (En')]/ W_p (En') is equal to unity in the low U region.

- 56 -

III-2. Pre-equilibrium proton emission in the In (n,p) reaction at 14 MeV

M. Matoba, J. Niidome, N. Koori, M. Hyakutake,

Y. Irie and I. Kumabe

The In (n,p) reaction has been studied at 14.1 MeV using a semiconductor detector telescope. The emitted proton spectra were obtained, which were analyzed with a statistical model and a pre-equilibrium model. The pre-equilibrium model reproduced well the emitted proton spectrum and the integrated cross section.

The integrated cross section of the In (n,p) reaction at 14.1 MeV is $18.1^+5.4$ (mb).

* Present address: Toshiba Electric Co. Ltd., Kawasaki.
III-3. <u>A new 14 MeV neutron time-of-flight spectrometer at the</u> Kyushu University

M. Matoba, M. Hyakutake, T. Tonai*, J. Niidome**,

Y. Matsumoto and N. Kimura***

The full paper on the spectrometer reported in INDC (Jap) 17 L (1973) has been published in Nuclear Instr. and Meth. 116 (1974) 405.

*	Present address:	Mitsubishi Electric Co. Ltd., Itami.
**	Present address:	Toshiba Electric Co. Ltd., Kawasaki.
***	Present address:	Kyushu Institute of Technology, Kitakyushu.

- 58 -

III-4. <u>The Energy and Angular Distributions of Alpha</u> Particles in the Fission of ²⁵²Cf^{*}

K. Tsuji, A. Katase, Y. Yoshida, T. Katayama,

F. Toyofuku and H. Yamamoto

The energy distributions of the alpha particle emitted in the fission of 252 Cf have been measured with the good angular resolution in order to investigate the dependence on the angle between the alpha particle and the light fragment. The energies of one of the fission fragments and the alpha particle and the time difference between the signals for the two particles were measured and recorded event by event. The time resolution was about 2 ns and the accidental events could be eliminated sufficiently. The light or heavy fragments were sorted by their kinetic energy.

The energy spectra were obtained at 9 angles from 65° to 105° and were well fitted by the gaussian distribution for the energy above about 13 MeV for each angle. The values of the most probable energy were found to take the minimum value of 14.0 MeV at 84° and increase rapidly with the angle on both sides of 84°. The width of the energy distributions was nearly independent of the angle and the FWHM value was about 8.6 MeV. The most probable angle of the alpha particle of the energy above 12.5 MeV with respect to the light fragment was found to be 84.3° and the FWHM value of the angular distribution was about 18°.

The energy distributions of the alpha particle were calculated by the Monte Carlo method in the three-point-charge approximation. In this calculation, the distributions of the mass ratio and the total kinetic energy were taken into consideration with the distributions of the initial emission position, initial kinetic energy and emission angle of the alpha particle. The energy spectra which were very similar to one measured at 90° were obtained for some values from 21.5 fm to 26 fm of the distance Df between two fission fragments at the emission of the alpha particle. From the comparison of the calculated distribution with the experimental one for other angles, the value of about 22 fm for Df was seen to be preferable.

* This report is the abstract of the paper (IAEA-SM-174/16) presented at the IAEA Third Symposium on the Physics and Chemistry of Fission held at Rochestser in August, 1973.

- 60 -

III-5. <u>Calculation of Radiative Capture Cross Section</u> <u>for ²³²Th</u>

Y.Kawamura, T.Ohsawa and M.Ohta

In an attempt to evaluate various types of cross sections of ²³²Th for fast neutrons, radiative capture cross section has been calculated in the energy range from 10 keV to 2.5 MeV. This report presents some preliminary results of calculations. based on the statistical model of nuclear reactions.

The cross section formula, as given by Margolis¹⁾ on the basis of Hauser-Feshbach theory²⁾, is modified by including correction factor for width fluctuations, S^{3} :

$$\mathcal{O}_{nv}(E) = \frac{\pi X^2}{2(2I+1)} \sum_{\ell} T_{\ell}(E) \sum_{J} \left[\frac{\epsilon_{s\ell}^J (2J+1) f(E,E)}{1 + \xi^J f(E,0) \sum_{i,i'} \epsilon_{si'}^J T_{i'}(E-E_i)} S \right]$$

where

$$\xi^{J} = D^{J}(B_{n})/2\pi \Gamma_{y}^{J}(B_{n})$$

$$f(E, X) = \int_{X}^{B_{n}+X} E_{y}^{3} f_{co}(B_{n}+X-E_{y}) dE_{y} / \int_{0}^{B_{n}+E} E_{y}^{3} f_{co}(B_{n}+E-E_{y}) dE_{y}$$

$$S = \left\langle \frac{\Gamma_{n} \Gamma_{y}}{\Gamma} \right\rangle \frac{\langle \Gamma \rangle}{\langle \Gamma_{n} \rangle \langle \Gamma_{y} \rangle}$$

Other notations are those commonly used. Neutron transmission coefficients are calculated using an optical potential of the form

$$V(r) = V_c f_1(r) + i W_c f_2(r) + V_{so} \left(\frac{\hbar}{m_s c}\right)^2 \frac{1}{r} \left|\frac{df_1(r)}{dr}\right| (\vec{\sigma} \cdot \vec{I})$$

$$f_1(r) = \left\{1 + \exp[(r - R_1)/a]\right\}^{-1}, \quad f_2(r) = \exp\{-[(r - R_2)/b]^2\}$$

with the parameters obtained by the use of the code $TOTAL^{4}$:

 $V_c = 41.37 \text{ MeV}$, W = 6.24 MeV, $V_{so} = 7.00 \text{ MeV}$

 $R_1 = 1.32 A^{1/3}$, $R_2 = 1.33 A^{1/3}$, a = 0.47, b = 1.0

Level density formula and its parameters are taken from ref.5, and level scheme for 232 Th reported in ref.6 is adopted here.

Calculations are performed using a code RACY-S⁷ with some modifications and by treating ξ^{J} as an adjustable parameter. The correction for width fluctuations is taken into account only up to 150 keV, since S is known to approach unity with the increase of the number of exit channels. Results are shown in the figure together with experimental data of several authors. The solid line represents the values with width fluctuation correction, the broken line those without the correction.

References:

- 1) B.Margolis, Phys. Rev. 88, 327 (1952)
- 2) W.Hauser and H.Feshbach, Phys.Rev. 87, 366 (1952)
- 3) A.M.Lane and J.E.Lynn, Proc. Phys. Soc. (London) <u>A70</u>, 557 (1957)
- S.Igarasi et al., Annual Meeting of the Atomic Energy Society, Japan, B6 (1971)
- 5) A.Gilbert and A.G.W.Cameron, Can. J. Phys. 43, 1446 (1965)
- 5) Nuclear Data Sheets, 4B, (1970)
- 7) H.Nakamura and M.Hatchya, JAERI-memo 3300 (1968)

Calculated radiative capture cross section for ²³²Th compared with experimental data taken from NEUDADA-file.

IV. Nagoya University Department of Nuclear Engineering

IV-1. Decay of ¹⁷⁰Ho Isomers to Levels in ¹⁷⁰Er Kiyoshi KAWADE, Akira HIEI, Hiroshi YAMAMOTO, Susumu AMEMIYA, and Toshio KATOH

A paper on this subject was published in J. Phys. Soc. Japan 36 (1974) 1221.

Beta- and gamma-rays in the decay of 170 Ho isomers have been studied with Ge(Li), NaI(Tl) and plastic detectors. Sources were prepared by the 170 Er(n, p) 170 Ho reaction with about 15 MeV neutrons. Fifty gamma-rays have been observed and thirty-six of them are assigned to the 170 Er level scheme including seven new levels at 1010.5, 1217.3, 1900.5, 1982.6 2039.3, 2684.8, and 3606.2 keV. The most probable spin assignments of 1[±] and 4[±] are proposed for the 43 sec and 2.8 min 170 Ho, respectively. Both Q_{β} values are 4.0 ± 0.2 MeV. The K = 0 assignment for the 2[±] state at 959.8 keV is proposed from the E2 branching ratios to the ground-state band. It is found that the relative B(E2) values from gamma-vibrational band can not be explained by a single value of the band mixing parameter z_2 .

IV-2. Decay of ¹⁵⁴Pm to Levels of ¹⁵⁴Sm

Hiroshi YAMAMOTO, Kiyoshi KAWADE, Hiroyasu FUKAYA, and Toshio KATOH

A paper on this subject was published in J. Phys. Soc. Japan 37 (1974) 10.

Decay of ¹⁵⁴Pm isomers has been studied with Ge(Li), NaI-(T1) and plastic detectors. Sources were prepared by the ¹⁵⁴Sm (n, p)¹⁵⁴Pm reaction with about 15 MeV neutrons. Seventy-five gamma-rays have been observed and 57 of them are assigned to the ¹⁵⁴Sm level scheme including four new levels at 1815.8, 1879.3, 2592.3, and 2618.8 keV. Observed Q_{β} values were 3.9 ± 0.2 MeV. Most probable spin assignments of 0[±] or 1[±] and 3[±] or 4[±] are proposed for 1.7 ± 0.2 min and 2.9 ± 0.2 min ¹⁵⁴Pm, respectively. V. Tokyo Institute of Technology Research Laboratory of Nuclear Reactor

V-1. <u>Precise Measurements of Neutron Capture Cross</u> Section Near 24 KeV.

N. Yamamuro, T. Doi, T. Hayase, Y. Fujita*

K. Kobayashi^{*} and R. C. Block^{**}

Precise measurements of 24 KeV neutron capture cross section have been carried out with the Fe-filtered beam technique using the KUR 46 MeV electron linear accelerator. A pair of C_6F_6 scintillation countor is used as a δ -ray detector at 12 m flight path. The intensity of neutron flux can be measured by the same detector by replacing capture sample with ${}^{10}B$ sample. To determine the absolute flux and the detection efficiency, 5.2 eV saturating resonance in Ag and the spectrum weighting technique are applied.

It is expected that the 24 KeV neutron capture cross sections of Nb, Ag, I, Ho, Au and 238 U are obtained within the statistical accuracy of 3~5%.

* Research Reactor Institute, Kyoto University

** Visiting Professor at Research Reactor Institute, Kyoto University from Rensselaer Polytechnic Institute

V-2. <u>Measurements of the Radiative Capture Cross</u> Section for 15.2-MeV Neutrons

H. Kitazawa, K. Sakurada and N. Yamamuro

We have constructed a plastic scintillation detector for 14-MeV neutron capture gamma rays. The detector measures the capture gamma spectrum through the detection of a pair of electrons produced in a thin lead foil. The observed cross sections were 1.19 ± 0.20 mb for natural Fe and 2.10 ± 0.36 mb for natural Cr. The observed gamma spectra were also compared with the ones predicted by the collective capture model.