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I -1. Models Based on Multichannel R-Matrix Theory

for Evaluating Light Element Reactions

D. C. Dodder, G. M. Hale, Ro A. Nisley, K. Witte, and P. G. Young

Los Alamos Scientific Laboratory, University of California

Los Alamos, New Mexico 87544

Abstract

Multichannel R-matrix theory has been used as a basis for

models for analysis and evaluation of light nuclear systems.

These models have the characteristic that data predictions can be

made utilizing information derived from other reactions related

to the one of primary interest. Several examples are given where

such an approach is valid and appropriate.

* Work performed under the auspices of the United States Atomic

Energy Commission.
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Models Based on Multichannel R-Matrix Theory

for Evaluating Light Element Reactions

D. C. Dodder, G. M. Hale, R. A. Nisley, K. Witte, and P. G. Young

As has no doubt been emphasized in the other papers in this symposium,

the reason for using models in data evaluations is to try to make use of

more information than is just contained in the measurements under con-

sideration. This additional information ranges all the way from knowledge

of the general laws of nature to results of explicit measurements closely

related to those being evaluated. In the same way models range, in their

philosophy, from little more than mathematical parameterizations of data

to detailed and realistic constructs clearly based on our knowledge of

physics. We would like to show that the R-matrix formalism of Wigner and

Eisenbud offers a framework for embodying a number of different model

concepts in nuclear data evaluation.

The R-matrix theory is a general formalism that is really a method

of description that insures compatability with fundamental physical laws.

Invariance principles such as unitarity and conservation of total angular

momentum are maintained, and in addition it can be shown that its content

is closely related to requirements of causality. Within this framework

it is an economical and appropriate description for many observed

phenomena. In its most general form it is already a model in the sense

that it does insist on compliance with the general laws involved in its

derivation; on the other hand much more model-like behavior can be imposed

by constraining the values of its parameters in appropriate ways. We

shall give a number of examples of this.

- 2 -
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Even an outline of the derivation of E-raatrix theory is beyond the

scope of this report. Some idea of its structure however is essential

to understanding our point of view. The entire observational content

of collision processes is contained in the so-called collision matrix

(S-matrix). This matrix, relying on the superposition principle of

quantum mechanics, essentially gives the outgoing amplitudes of a

collision in terms of the incoming ones. At this descriptive level of

procedure certain general symmetry principles are directly reflected in

the structure of the collision matrix. The conservation of particles is

imposed by having the matrix unitary. Time reversal invariance is equivalent

to having the matrix symmetric in a suitable representation. And finally

conservation of total angular momentum and parity means that the matrix

can be so chosen as to reduce to a series of disconnected submatrices

along the diagonal, each submatrix referring to a state of given J and

parity and each submatrix being individually unitary and symmetric.

It is evident that already a description of scattering and reaction pro-

cesses at this level demands relationships between the different processes

and that the requirement of consistency is a valuable aid to data evaluation.

The energy dependence of the collision matrix elements is, however,

quite complicated, and depends on the external Coulomb and centrifugal

barriers as well as the nuclear forces. This is seen even in the simple

case of a single isolated energy level, where the cross section for a

transition from state i to state f is given by:

r r
iffi

 CE - E r )
2 + ̂ + rf)<
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Here the widths F. and F have factors (the so-called penetration

factors) which are often strongly energy dependent, and the resonant

energy Er is also in general energy dependent. The R-matrix formalism

deals with this situation by dividing the configuration space in each

channel into an inner and an outer region, the inner region being that

where the strong interaction predominates, and the outer that where only

the Coulomb force exists, and where the main effect of the centrifugal

barrier is felt. The R-matrix itself is a relationship between the

values and derivatives of the wave functions at the boundary between

the two regions. The theory shows that the R-matrix must, under very

general assumptions about the nature of the interaction in the inner

region, have the form

J J

X E? -E
A

where J, s, I have their usual meanings, a is the channel label, E is the

CM. energy, E, are the eigenvalues of the Hamiltonian operator in the interior

region with a certain set of boundary conditions on the logarithmic derivatives

of the wave functions, and the y, ., the reduced width amplitudes, are

essentially the values of the wave functions on the boundaries. The

collision matrix can be expressed in terms of the R-matrix but we shall

not give the expression here. We usually let the computing machine do

this rather tedious work. The point is that the rather simple form of the

R-matrix allows model-like behavior to be used in parameterization of the

nuclear data. And the main reason this is appropriate is that the values of

radii in the different channels which are the boundaries between the inner

- 4 -
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and outer regions, correspond in a real way to the actual nuclear radii

in the different configurations. This means that the physically occurring

cutoff in I values is naturally accounted for in R-matrix calculations

through the dependence of the phase shifts on the penetration factors.

In the employment of the R-matrix approach as a model it is clear

that it will be macroscopic like the optical model, rather than micro-

scopic like the shell model. Its usefulness is indicated by a few general

observations. The levels and widths occurring in the general R-matrix

expression can be made to correspond to real energy levels of physical

systems and frequently relatively few suffice to entirely describe a

given (J, parity) state. Furthermore, symmetries of the internal

Hamiltonian can be applied directly to the R-matrix. In cases where

the internal interaction is dominated by nuclear forces, for instance,

it is appropriate to impose constraints reflecting parity conservation and

charge symmetry or charge independence (isospin conservation) on the

R-matrix parameters.

The application of such an R-matrix model to the elastic scattering

of nucleons from He has been highly successful. Almost all available

measurements for p-a and n-ct scattering at lab energies in the 0-20 MeV

range were analyzed simultaneously, with R-matrix parameters in the two

systems related by a simple model of the charge symmetry. Specifically,

for common boundary conditions imposed at the same channel radius, the

reduced width amplitudes for a given level were constrained to be equal

(Y^ = Y^ ), and the level energies were constrained to differ by a Coulomb

- 5 -
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"shift" £E (E, = E + AE) that was taken to be the same for all levels.

In addition to the known p-wave levels, distant-level contributions were

represented in each state by single pole terms. Partial waves having

SL > 3 were neglected. Thus constrained and truncated, the combined R-

matrix analysis required 15 free parameters, just one parameter (&E)

more than the number needed to analyze either p-ot or n-a scattering

separately.

Figure 1 shows the resulting least squares fit (solid line)* to a segment

of the n-a total cross section over the 1.25 MeV resonance (the dotted curve

is ENDF/B III). Figures 2-\ show representative fits to the n-a differential

cross sections, while Figs. 5 and 6 show representative fits to the n-a

analyzing powers (or polarizations) over the energy range considered.

On Fig. 7 is given a sampling of the fits to the p-a differential cross

sections, and Fig. 8 shows fits to various p-a polarization measurements.

Note that the top two curves in the right column of Fig. 8 represent

x' x'

measurements (K , K ) of outgoing proton polarization with a polarized

proton beam incident. In general, the p-a experiments were more numerous

and more precise than the n-a experiments, and we feel that even this

simple charge-symmetric model has imposed better accuracy on the predicted

n-a observables than can be attained in most present n-a measurements.

Interestingly, the parameters which fit the data indicated that an

even more stringent model might have been imposed. The channel radius

preferred a value (2.9 f.) close to that expected from the nuclear sizes.

The reduced widths of the two p-wave levels became, for the first time

* The solid line represents the R-matrix fit on this and all succeeding
figures.
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in such an analysis, approximately equal to each other and to the single-

particle width. The phenomenologically determined Coulomb energy shift

(AE = 1.58 MeV) agreed well with calculations using realistic He charge

densities. It is pleasing that the parameters moved naturally toward

values characteristic of a very simple mechanism for the elastic

h
scattering of nucleons from He, namely, single-particle scattering from

a simple potential.

The invariance under charge symmetry shown by the nucleon- He

systems is a manifestation of the more general principle of isospin con-

servation, and that invariance in the internal region can be applied to

the R-matrix parameters. An example is found in the l+-nucleon systems.

The p- He and n-T elastic scatterings occur only in the T = 1 state, while

among the pairs of the system of p-T, n- He, and d-D, the d-D channel is

only in the T = 0 state while the other two are in both the T = 0 and T = 1

states. By using R-matrix levels of pure isospin states, and constraining

the reduced widths in the various channels to being appropriate Clebsch-Gordan

fractions of the isospin widths, it is possible to guarantee exact charge

independence in the internal region, while still predicting the isospin

mixing in the external region which is caused by the different Coulomb

potentials in the different channels. The differences in Coulomb energy

among the Z = 1, Z = 2, and Z = 3 systems are still expected to be accounted

for mainly by a shift in the E 's. Our current analysis is using the T = 1
A

3 h
parameters from the p- He system in the He compound system, but eventually
all three systems will be analyzed simultaneously.

- 7 -
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Although the major concern of evaluation work has been with cross

sections for neutron-induced reactions, we feel it is essential in these

analyses to include data of various types and from all important re-

actions that bear on the compound system in which the neutron-induced

reactions occur. Primarily through unitarity, data from other reactions

determine the model parameters more accurately, which in turn generate

more reliable predictions of the neutron cross sections of interest. The

analysis we are doing of reactions in the B system among the channels

10 7 7

n- B, a- Li(g.s.), and a-'Li*(.U78), is a case in point. The large spin

of B (spin 3) introduces many scattering amplitudes into the problem

even for low partial waves, so that including data from a variety of

sources is important.

Examples of the types of data we are fitting in our analysis at low

energies (E ^_1 MeV) are given in the next few figures. Figure

9 shows the fit to the total neutron cross section for B (again, the

dotted curve is ENDF III), while Fig. 10 displays the fits to integrated

B(n,ot )'Li and B(n,a )'Li* cross sections. As you can see in the

bottom part of this figure, there are severe disagreements among the

experiments, particularly above 100 keV. Fits to the B(n,n) B

differential cross section and polarization measurements of Lane are

shown at two energies on Fig. 11. The experimental values (̂ ) shown

for the polarizations (on the right) may not be accurate, since they

were generated from Legendre coefficients, but the change of sign in

the polarization is significant, indicating the presence of a p-wave

- 8 -
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resonance in this energy region (at « U50 keV). Figure 12 shows

examples of the fits to B(n,a ) differential cross sections obtained

7 10
by detailed balance from the recent Li(a,n) B measurements of Van der

Zwaan and Geiger. And the last figure in this sequence (Fig. 13) shows

1 7
representative fits to the Li(a,a) Li differential cross section measure-

7 7
ments of Cusson. These fits, as well as those to the Li(ot,a)'Li*

integrated cross section (not shown) indicate that levels with large

widths in the a-channels are as yet unidentified in the B system.

Although these fits for the neutron-induced reactions on B represent

the most comprehensive analysis effort made thus far at low energies

in this system, we feel that the accuracy of the curves is still limited

by insufficient data and incomplete knowledge of the level structure

of X1B.

As in the case of B, the cross sections for neutron-induced reactions

on Li are important in applications, and particularly in neutron measure-

7

ments. Our analysis of reactions in the Li system gains additional

information from including ct-T scattering measurements along with data

from the Li(n,n) Li and Li(n,a)T reactions. Figure Ik gives examples

of the types of T(a,ct)T data that are being fit. The upper left-hand part

of the figure indicates that the only existing low-energy differential cross

section data, even when renormalized, may be seriously in error at back

angles. The curve below that is representative of the generally excellent

fit obtained to the angular distributions of Ivanovich, Young and Ohlsen

at medium energies. Data on the upper right-hand curve are taken from

- 9 -
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excitation functions measured by Spiger and Tombrello at an energy close

to the 5/2- resonance above the n- Li threshold. Below that is shown

an example of the fit to double-scattering experiments that measure the

outgoing triton polarization.

Attention is focused in the next two figures on the region of the

important 5/2- resonance near E = 250 keV, mentioned earlier. Figure 15

shows for Li(n,n) elastic scattering the integrated cross section across

the resonance, and (normalized) angular distribution and polarization

approximately at resonance. Notice that the fit lies above the experimental

points in the peak of the integrated cross section. On Fig. l6 are shown

the total neutron cross section for Li (top), and the Li(n,a)T integrated

cross section across the resonance, along with the Li(n,a)T differential

cross section approximately at resonance. Although it is difficult to

tell from the figure, the calculated total cross section peaks at the

currently accepted value (~-11.0 barns), while the calculated peak (n,a)

cross section lies above that of the recent-measurements of Coates, Fort,

and Poenitz (~3.0 barns). If one believes the total cross section is

best determined, then either or both of the observed integrated cross

sections is wrong. There are those who feel strongly that the recent

measurements of the (n,a) cross section are correct, and that only

the (n,n) cross section is too low. Our analysis including the T(a,a)T

data in this region indicates that both integrated cross sections are too

low. It is an important question, since the Li(n,ct) cross section is often

used as a "standard". Unfortunately, the Spiger and Tombrello data

-10-
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are not. of sufficient quality firmly to resolve the question, but ve feel

that accurate charged particle measurements in this region might be more

useful in resolving these discrepant observations relative to the (n,a)

cross section than another direct measurement.

The examples we have so far given are all actually demonstrations

of the detail obtainable with these models in realistic data evaluations.

¥e should mention also an example where the work is of a more exploratory

nature, where we are trying at first to gain an understanding of the

physics involved. The 5 nucleon systems p-ot and d- He and n-ot + d-T

afford this example. The systems are quantitatively understood at

energies up through the famous 3/2+ resonance that occurs in each at a

few hundred keV deuteron energies. Above this energy the systems become

very complicated, with the scatterings and reactions dominated by a whole

series of overlapping resonances mainly in the even parity states of

various spin arrangements which have their spatial configuration mainly

in the X. = 2 state between the deuteron and the 3-nucleon particle.

The R-matrix formalism is an almost ideal mode of description of this

situation, and we have succeeded in fitting a rather formidable collection

of experimental results in a rather satisfactory fashion.

In the Li system, for instance, there have been 39 different types

3 ^of observables measured for the reactions among d- He and p- He. These

include, in addition to the usual differential cross sections and

polarizations, measurements made with both first- and second-rank polarized

deuteron beams incident on He, and with polarized proton beams incident

k
on He. In some of the experiments, the polarization of the outgoing

-11-
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particle has been measured. (Examples of tnese "polarization transfers"

have already been shown for He(p,p) He on Fig. 8.) In others, both

polarized and unpolarized deutron beams have been scattered from polarized

He targets.

All these various types of measurements have been included in our

3 k
analyses of the d- He, p- He system. The next two figures show examples

of fits to a selection of these, taken from an analysis that extends to

E, = h MeV. The first of these displays the four independent analyzing

tensors (l first-rank, 3 second-rank) measured by Koenig, et al. for

TIe(d,d) He at k MeV. The second figure gives examples of the fits to

measurements made at various energies for He(d,p) He with both polarized

beams and polarized targets.

The examples we have given demonstrate the versatility of the R-

matrix approach to data analysis and evaluation. The chief theoretical

limitation, which we have not dwelt upon, is the restriction to two-body

final states. This can only be avoided at present in those cases where

the multi-body final states can be mocked up by quasi- two-body states.

We are indeed using this method in the five nuclear system where we take

into account the final state p + He* as an approximation for the whole

3
spectrum of p + n + He and p + p + T breakup channels. A practical

limitation of the approach, is, of course, that computers are only so

large, and there definitely are limits to the number of channels, Jl-values

and levels we can consider. This limits the work in its present form

to the light nuclei. And finally, just because the method of description

-12-
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is so comprehensive, it is necessary to have a comprehensive data base

before the analysis can be successful. This means many experiments of

various kinds must be done over a significant range of energies. This is

the price we pay for the checks on consistency and physical reasonableness,

and it is perhaps not a disadvantage in the long run, because it never

hurts really to know what's going on.
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DISCUSSION

S. W. CIERJACKS: Do you think that discrepancies in the Li(n,a)

peak cross section can be explained in terms of theory? I personally

still doubt that the mentioned new U.S. measurements, giving a higher

peak cross section, are correct. I rather trust the bulk of earlier

measurements with a lower peak cross section.

4
H.T. MOTZ: More detailed information, such as for He + t, could

well permit theoretical insight concerning the Li(n,a) cross section.

I would like to see reliable, direct observations as well. But if they

are not consistent with other measurements as dependable theoretical

analysis might indicate, then lack of confidence would be appropriate.

The sensitivity of various quantities on one another is crucial for such

conclusions. This sensitivity is not yet determined. I have not yet

formed an opinion of the most recent (Friesenhahn) results which indicate

very high ( ̂  3.7b) peak Li(n,a) cross sections.

S. W. CIERJACKS: Have the authors included in their R matrix fit

of the Li(n,a) peak cross section other resonances, in particular those

below neutron binding?

H. T. MOTZ: Levels in Li-7 that were included are:

Energy J
keV

0 3/2~

477 l/2~

4633 7/2"

6680 5/2~

7467 5/2~

(also broad, distant level contributions in all states above 20 MeV) .

The neutron binding in Li-7 is 7251 keV.

R. C. BLOCK: I was delighted to see the RPI He total neutron cross

section data of Goulding et al. fit so nicely by the R-matrix theory from

0-3 MeV. Do you have the higher energy fit with you?

ft

H. T. MOTZ: (No. I am not sure that such a fit has yet been made.)

These fits have been made. (See the following two figures.)

ft

The comment was changed to the above following one after the meeting.

The data were not available at the meeting, but are attached.
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R, C. BLOCK: Do you feel there is a need for precise (1/2 ̂  1%) total

neutron cross section data from 0.5 ^ 20 MeV for the light nuclei to aid

in these fits?

H. T. MOTZ: I am sure they would be helpful, but probably not as

much as other observations would be, for example, the authors believe that
4 6

further He + t data would be crucial to the n + Li problem. In the case
of B, an accurate total cross section would be very valuable.
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1-2. A study on the hierarchy model of nuclear reactions

Yasuhiro Kitazoe and Tamotsu Sekiya

Department of Nuclear Engineering, Osaka University,

Suita-shi, Osaka, Japan

We would like to discuss the applications of the hierarchy

model of nuclear reactions. Here, the hierarchy model means

that the compound nucleus states are formed after several

steps, at least, one step of the reaction. In this paper,

this model is applied to the analysis of the observed cross

235
sections of U and some other elements. Neglecting the

exchange scattering effect, we get the following expressions

for the total neutron cross section of U;

and

ftTB
where

(E-e,)|v<»» ...

=r r ^ ^ ^^ » (4)
* ( e H ) 4 j ^

CE -
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Equation(1) describes explicitly a hierarchy of the transi-

tion from the intermediate reaction states X into the com-

pound nucleus states X . As is seen from this equation, the
s

intermediate reaction states have two kinds of widths. One

is the escape width r for direct decay into the open channels.

The other is the decay width y into the compound nucleus

states. The latter width ym
 i s characterized by the strength
2

of the direct coupling I V I between the intermediate reso-
• m s

nance states and the compound nucleus states. Equation(1)

thus is a resonance formula which describes the fine structure

of the resonance cross section.

On the other hand, equation(2) is the cross section

formula averaged over an energy interval which is larger than

the average level spacing of the compound nucleus eigenvalues
E but is smaller than that of the simple mechanism eigen-
s

values E • When the energy interval I is suitable, the aver-

age transition quantities <6 > and < Y m
> in eqs. (6) and (7)

become almost constant within the level spacing of the eigen-

values E . Thus, we understand that the average cross sec-

m

tion formula(2) is substantially reduced to a resonance formu-

la of the well-known dispersion type. This formula is an

interesting and useful tool to study the existence of the

intermediate resonances, since it is sufficient for us to

investigate whether the formula can satisfactorily reproduce

an observed cross section averaged over a suitable energy

interval.

We have applied the formula(2) to the evaluation of the
235

total neutron cross section of U at low energies. The
observed resonances in this cross section are fully resolved
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at low energies( E < 60 ev ) and the cross section fluctuates

rapidly with energy variance. By a detailed investigation,

we find that the cross section consists of different sized

resonances and that a few satellite resonances are usually

located in the neighborhood of each large sized resonance,

as seen from curve A in Fig.l. When this cross section is

averaged over the energy interval AE = 2.0 ev, curve B is

obtained ( here we have the relation I = AE /fi* ). By this

average procedure, only the resonance peaks 4, 7, 10 and 14

have clearly been retained but the remainder has almost

completely disappeared. We tried to reproduce curve B by

using the formula (2) ( see curve C in Fig.l ). As is evident

from Fig.l, curve C is in good agreement with curve B. The

obtained resonance parameters are listed in Table 1. Then,

the hierarchy model explains the reaction mechanism of the

present cross section as follows; at an early stage of the

reaction, we first have the simple mechanism states which

correspond to the resonance peaks 4, 7, 10, 12 and 14 in Fig.l.

Next, in the middle stage of the reaction, further interact-

ions among nucleons of the system produce the more complicated

mechanism states which correspond to the resonance peaks 3,

5, 6, 8, 11, and 13 in Fig.l. We examined whether the

formula(2) is applicable to the full energy range ( E = 0 ^

60 ev ) of the resolved resonances. From Fig.2, we see that

the result of the evaluation is satisfactory from a qualitative

view point.

Let us investigate in more detail a hierarchy of the

reaction mechanism. Fig.3 shows a typical example of two
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resonances at low energies. We suppose that the peaks 1

and 2 correspond to the simple mechanism state X and

the complicated mechanism state X , respectively. Then,
s

equation(1) is applicable to the present example. In

this simplest case we have

where

(6 -£,)* + R V#

. (11)C 1 ̂  1

Here the parameters r , E and I are obtained by applyingr me ' m m 1 rr 2 ?

Eq.(9) to the average cross section( curve D in Fig.3 ) given

by averaging the experimental data( <6 > in Eq.(9) can be

neglected). Curve B is given using Eq.(8) and curve A by

using the R-matrix theory approximated by

There is a remarkable difference of the functional form

between Eqs.(8) and (9). In the R-matrix theory we regard

the resonance energies E,=51.25 eV and E =52.23 eV as the true

eigenvalues of the compound system. On the other hand, in the

hierarchy model the above two energies are not the true eigen-

values but they represent only apparent resonant peaks. The
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experiment is interpreted as follows; when the compound

nucleus state X is formed by the interaction V,-, the
s J. ̂

original simple mechanism resonance ( curve E in Fig.3)is

influenced by the occurence of the state X , so that the
s

position of this resonance peak is shifted from E =51.60
m

eV to E = 51.25 and then the position of the other peak

is also shifted from E =51.88 eV to E =52.23 eV, since
s s

the state X is also influenced by the existence of thes

state X . We here emphasize that the experiment can be

explained by a different formalism from that of the R-

matrix theory having extensively been used. We also

emphasize that the observed cross section in Fig.l can be

reproduced in a similar way to that mentioned above.

The point is that the cross section may consist of reso-

nances with the states of different complexities.

We have applied the hierarchy model to the case of

the unresolved energy region. The observed cross section

in this energy region is naturally averaged over because of

the rough energy resolusion and the Doppler effect. In this

situation, agreement between curves B and C in Fig.l pre-

dicts that the hierarchy model formula(2) will reproduce

the observed cross section at higher energies. We know that

the energy resolution AE and the Doppler width AE have the
K. iJ

2)
following energy dependences :

$• %
A E R : x 276 x /0 N B (13)

and

AED d 0.02 3 / f f , (14)
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where E and N are in eV and ns/m, respectively. When we put

2 2 1/2

E = 200 eV and N = 25 ns/m, we get AE=(AE^ + AEj ' =1.95 eV.

This value of AE is about equal to the energy interval used

to curve B in Fig.1. This fact states that the situation of

curve B in Fig.l will roughly correspond to the observed total

cross section in the neiborhood of E = 200 eV, provided that

the average level spacing is assumed to be constant. To see

this more explicitly, we evaluated the average cross section

by using the formula(2). As is clear from the solid line of

Fig.4, the evaluation reproduces well the observed cross

section. Table 3 explains the relation between the average

resonance parameters and the energy intervals in the resolved

energy region ( E < 60 eV ). On the other hand, Table 4 shows

the energy dependence of the average resonance parameters in

the unresolved energy region( E=0^300 eV ). The average

resonance parameters in Tables 3 and 4 ensure the above-men-

tioned prediction that the observed cross section in the neigh-

borhood of E = 200 eV will correspond to the cross section

averaged over the energy interval AE=2.0 eV.

It is found from Tables 3 and 4 that the ratio of the

average resonance parameters, <r >/<D >, remains constant
me m

though < r m c
> and <D > change fairly with the increasing AE

and E. This can easily be proved by using (15). Let us

consider two different energy intervals AE, and AE_ over

which the collision matrix U is averaged. We suppose that

each energy interval AE.(i=l,2) extracts a set of intermediatestates,{%«;}• These two sets have different complexities

from each other. Then we have
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(15)
- - • « * - * - m4 fc - b m i +<** ,>+ i i . V | / 2 <*

and
(16)

Further averages over the above two kinds of the intermediate

resonances should give a same average of U__ denoted by <<u >>

^ J -«u^^>-ii5

from which we obtain

fm.cz> _ <L I W J C ^ ( 1 8 )

This fact makes it possible to evaluate the average cross

section at the higher energies (E > 30 0 eV). This result is

shown by the solid line of Fig.5.

The optical model

This .model is the simplest case of the hierarchy model.

In this case, the energy interval over which the collision

matrix is: to be averaged becomes the largest and the

states X represent the single particle states of the inci-

dent particle. On the other hand, the states X include

all the possible reaction states. The optical model regards

these reactions as an absorption by the average procedure.

There are many experimental facts where the optical poten-

tial is considered to have the mass and energy dependences.
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A typical example comes from the collective excitation

process of the deformed nucleus. This means that the

collective excitation states in some mass region are

strongly coupled to the initital state. As an another

example, we have studied the contribution of the exchange

scattering. At low energies where the compound nucleus

are easily formed, there will be a large possibility with

which neutrons different from the incident one are emitted

from the compound nucleus. The s-wave strength function

is given by

r°
E - E m + i LJm + i LJm

where F m comes from the channel couplings among different

neutrons and can be approximated as follows :

1 m

Consequently the imaginary part of the optical potential is

modified as

= LI - Affl 7 m m (21)
m V. E " tm- ; -f- LJm'

Here it is very interesting that the form of this poten-

tial is similar to that employed by Dr.Newstead and Dr.

4)
Delaroche. In Eq.(21), N is the number of the target

neutron and F represents the strength of the exchange scat-

tering through the compound nucleus formation. We calucu-

lated E , r and F by using the square-well potentials
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and tried to reproduce the observed strength functions for

several elements of recent interest(here the surface thick-

ness of the real potential was taken into account by using

the diffuse-edge factor f of E.Vogt ). Then we get

where

U
flm "" / - Slfj2b

Zb

Zb cos l> \*
(22)

(23)

( m 7L + MWA 3, (24)

The quantity & in (22) is a spectroscopic factor and E^ is

the energy of a target neutron bound by the square-well

potential VL.

a bc
be

und neutron to
xchanged for

incident neutron

Figures 6,1, 8 and 9 show the results of the evaluation

and the parameters used are listed in table 6. The thin line

and the dotted line are given by the usual optical model and

the isospin model, respectively. The thick full line is given

by the exchange scattering model. The rapid varience of the

strength function with mass number comes from the change of

the depth parameter E,. This parameter roughly estimates
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the location in the target nucleus of the neutron to be

exchanged for the incident neutron. If we have the

surface absorption, the value of this parameter is equal

to the neutron binding energy of the target. Thus, this

value increases with the volume absorption. From table

6, we see that a large part of the isotopes Sn 5 Q, Xe,.

and Ba 5 g can well explained by using the binding energies.

Figure 10 and table 7 give the result of the more kinds

of the isotopes. Here we did not try to evaluate the

strength functions in the mass region ( A > 140 ), since

we neglected in this task the effect of the nuclear deforma-

tion. This inclusion will be discussed elsewhere.
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Table 1 : The resonance parameter! o l Fig. 1

Res. No.

1
2

3
4
5

6
7
8

9

10

11
12
13

El

14.02
14.51

15.42
16.10
16.67

18.02
19.28
20.05

20.61
21.06

22.93
23.61
24.26

0.3099
0.2309

0.2006
0.1863
0.1877

0.3752
0.1933
0.3491

0.2413
0.1772

0.2235
0.2625
0.2871

9.480
5.332

8.938
13.65
6.728

12.13
80.13
3.437

4.848

36.85

12.35
28.89
14.0

16.05

19.3

20.95

23.6

>m

2.148

1.45

1.4

2.2

'me

34.45

M.21

39.02

71.98

14 25.55 0.3731 20.77

In Table 1, the parameters Ex, F^ and T^c° were obtained by using the
R-matrix formula 0 2 } ana" the parameters. Em , lm and rmc° were ob-
tained by using the present formula C«&5* The E^, F^ , Em and lm are in
eV. rXc° = 2 g rXc E-"* and Fm<? = 2%rmc E-"> are in (eV)"*x10».

Tabl»3: The resonance parameters o l Fig. 1

1

2

3

4

5

6

7

8

9

1 0

1 1

201.4

205.0

208.3

212.5

215.0

218.4

222.2

225.6

233.1

235.1

242.7

In Table 1, the
formula 1 2 } .

2.163

1.092

1.604

2.586

1.839

1.383

1.923

4.523

3.871

2.173

2.110

parameter]

where E_ i

1 3 8

2 8 .

5 4 .

5 5 .

1 0 2

3 0 .

1 3 8

218

2 1 3

3 6 .

188

and I.

. 1

35

91

85

. 2

65

. 9

. 2

. 6

94

. 8

1 2

1 3

14

1 5

16

17

18

19

20

21

22

247.4

250.3

254.9

258.9

263.3

268.5

272.3

274.7

278.9

282.1

291.6

2.437

1.6B9

3.420

1.593

2.083

3.0B7

3.447

1.289

2.089

2.236

4.004

lm and l*mc were obtained by
„ are in eV while f-^ is in [eVl

7 5 .

6 2 .

177

2 4 .

2 0 8

137

1 8 2

5 9 .

1 1 3

1 1 3

2 4 2

9 3

52

. 3

64

. 7

. 1

. 5

95

. 8

. 0

. 0

using the

"> x 10-4.

Table4: The relation between the average resonance parameters and the
energy intervals AE averaged over in the energy region (E = 0 < 60 eV)

a E <V

0.0 0.272

2.0 2.09

3.0 2.78

20.1

71.3

72.1

0.B82

2.8

3.0

22. B

25.5

24.0

Tabl«S: The energy dependence of the average resonance parameters

E < I n > <ric> < Dm>

30

70

1 1 0

1 5 0

2 0 0

2 5 0

2 7 0

0.272

0.516

0.91

1.19

1.78

2.43

2.69

20.1

25.4

36.9

57.0

73.2

118.9

128.8

0 .

1 .

1 .

2 .

3 .

4 .

S .

8 8 2

1 3

54

14

0

44

0

22.8

22.4

24.0

26.6

24.4

26.8

25.8

In Tables 2 and 3, the parameters E, AE, <!_> and <D_> are in eV while
<r*mc> is in (eV)»*xl0-*.

Table 2 : The resonance parameters in the present formula and those in

the R-matrix formula

The presenr formula The R-matrix formula

E

E

AE

= 51.6
= 51.88
= 4.0

rm

»m

= 0.52
= 0.4
= 3.2

P ° —
me ~

IV 1 =
73.05
0.22

EX = 51.25 rx

= 52.23 r t

= 0.4019 TXc'

= 0.5314 jy>

= 39.34
= 30.57

The rx<?, and /1
/ iC° and rmc° are in

and the other parameters are in eV.

O*. The is in (eVJ*

i •

C M C R f i V ( k « V I

Fig.Sm- The total neutron cross section in the energy region (E =
— 300 ~ 10s eV). The solid points are the experimental data. Curve A is
given by using Eq. (2.15) and the parameters, a c = 9.097 fermi, <r° ,n c>/
<Dffi> = 2.47 x lOr* (eV)'1/T. On the other hand, curve B is given by using
the formula <oT> = 4 n/fc»V{2 / + 1) slns i, + yWinVk1 T (2 / + 1) S, V,

cos 2 i>i, and the parameters of reference 2, ac = 9.65 fermi, So =
= 1.02xl0-» (eV)-1/s, S, = 2.0x10-* (eV)-"4 , where Vt and ty are the pene-
tration factor and the scattering phase shift, respectively
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Usual model

Isosp in model

Exchange model

Fixed Parameters

VQ=53.0

f=2.172

V0=53.0

f=2.172

V0=53.0

f=2.172

Mev

Mev

Mev

WQ=4.

V =30

WQ=4.

VT=56

0 Mev

.0 Mev

0 Mev

. 0 Mev

triable

w 0 w

Parameters

1

d

A

Sn 112
114

115

116

117

118

119

120
122

124

Te 122
123

124

125

126
128

130

Xe 128
129

131

132

134

Ba 134
135

136

137
138

W0

9.3

12.8

23.1

22.8

W l

44.9

62.8

115.5

115.5

0.735

0.490

0.361

0.200

E d
10.802
10.320
7.534
9.566
8.500
9.3273
8 . 5
9.1044
11.5
11.2

11.0
13.5
10.8
9 .9
9.1093
9.7
11.7

9.614
12.0
11.4
8.9361
8.535

9.4644
6.9752
9.1071
6.9021
8.6115

Binding Energy

10.802
10.320
7.534
9.566
6.9425
9.3273
6.485
9.1044
8.8047
8.493

9.790
6.9299
9.4238
6.5849
9.1093
8.772
8.413

9.614
6.905
6.6056
8.9361
8.535

9.4644
6.9752
9.1071
6.9021
6.6115

Table 7

Ca

T i

Cr

Ni

S e

A

40

42

43

44

46

47

48

49

50

50

52

53

54

58

60

61

62

64

74

76

77

78

80

82

J>

0.249

0.249

0.279

0 . 0

0 . 0

E d

1 5 .

1 1 .

7 .

1 1 .

1 3 .

1 3 .

1 4 .

1 1 .

1 0 .

1 2 .

1 4 .

1 6 .

1 6 .

634

4727

9326

1361

1961

0

0

5

9480

940

3

0

0

Binding Energy

15.634

11.4727

7.9326

11.1361

13.1961

8.8751

11.6281

8.1434

10.9480

12.940

12.0407

7.9405

9.7202

S r

H o

Ru

Cd

I O

A

84

86

87

88

92

94

95

96

97

98

100

99

1 0 0

1 0 1

102

104

1 1 1

1 1 2

1 1 3

114

0 . 0

0.447

1.48

0.806

E d

12.692

18.67

9.375

9.1542

6.8161

8.6424

18.3

9.468

9.6335

11.80

9.2161

9.912

6.9768

11.40

10.54

14.04

Binding Energy

12.692

9.6722

7.3751

9.1542

6.8161

8.6424

8.301

7.468

9.6335

6.805

9.2161

8.912

6.9768

9.397

6.5398

9.0410
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DISCUSSION

A. MICHAUDON: I would like to mention that the fluctuations of the
235

local average values of the total cross section for heavy nuclei ( U

for example) can be explained in terms of the fluctuations of the widths

and spacings of the resonances. It is not necessary to take into account

the effect of intermediate states whose influence has never been proved

in such cases. Why do you need to postulate the existence of intermediate
235

states to explain the behavior of the total cross section of U?

Y. KITAZOE: Our theory does not stand on the nuclear fluctuation

concept. We consider that what should be compared with this theory is

only the reaction theories of Wigner and Eisenbud, Kapur and Peierls and

so on, but not the others. We would like to stress that the hierarchy

model describes not only the average cross sections but also the fine

structures. We can show practically that the formula(1) reproduces well
235

the observed fine structure of the U total neutron cross section as

well as the R-matrix formula. As is seen from equation(l), the number of

the parameters used is the same as that in the R-matrix theory. The main

feature of equation(1) is that when it is averaged over a suitable energy

interval, the obtained formula is substantially reduced to a dispersion

type formula with the E which are almost equal to the peak energies of

the really obtained quasi-resonances. On the other hand, the R-matrix

formula does not give such an explicit description. The formula(2) repro-

duced well both the averaged cross section in the resolved region and the

observed cross section in the unresolved region.

In this work, for simplicity, we decomposed the reaction states of

the system into the two kinds of complexities. Therefore, if necessary,

more kinds of them must be considered. The present two kinds of the

reaction states have only their relative meaning of complexity. Therefore,

there may be the cases where the states X are considerably complicated in

comparison with the single-particle states of the incident particle. This

means that if the states X are the single-particle states, the states X

may be the doorway states of the two-particle one-hole type, if the states

X consist of the two-particle one-hole states, the states X may be the
m v s J

hallway states, and so on. Any way, the former must be more simpler than

the latter.

The hierarchy model formula is considered to be applied to many cases

of the other elements. A typical example of them is demonstarated in

Fig.(A).
-49-
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1-3. Effects of Nuclear Deformations on Neutron Total Cross Sections

Ch. LAGRANGE

Service de Physique Nucleaire
Centre d'Etudes de Bruyeres-le-CMtel

B.P n° 61
92120 Montrouge - France

Several different experiments have recently reported total cross

sections for deformed nuclei which have not been properly described by calcula-

tions using spherical optical models.

Glasgow and Foster [l] used the non-local potential of PEREY and

BUCK [2j to represent their extensive measurements of total cross sections, but

divergences between calculations and measurements reach 19 % for the deformed

nuclei. SHAMJ, et al [3] studied deformation effects explicitly in the Sm isoto-

pes, which range from spherical Sm to strongly deformed Sm. They found

pronounced differences between the cross sections for Sm and Sm, and also

between the cross sections for Sm and Sm. These measured differences are

expressed as ratios to the Sm cross section in figs la and lb, respectively.

The structure of these differences as a function of incident neutron energy

cannot be reproduced with a spherical optical potential, even with a calculation

in which the diffusivity of the potential has been strongly increased to appro-

ximate the effects of deformation [3] • The study presented here has been

undertaken with the goal of seeing to what degree the systematic effects of

nuclear deformations could be represented within the framework of coupled

channel calculations. The coupled channel code JUPITOR 1 of TAMURA [UJ has been

modified and used for these tests.
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The potential used has the usual form, reported often in reference to

nuclear scattering :

(1)

where -f ("-;a;

The parameter fip fixes the size of the quadrupole deformation, the

only deformation envisaged here.

The effects of this deformation have been extensively studied over

the. range of energies from 2 MeV to 20 MeV, and reported in the form :

f E ^hok^i)/^kob^z-") • Studies have been completed for the

following nuclei : ̂ °V, 1°2W, and the even isotopes of Sm with A = l W to 15k,

Two sets of potential parameters have been considered in this study :

a) The set 1, in table 1, used by G. PALLA I 5] in her demonstration

of deformation effects in neutron elastic scattering at small angles. Her cal-
orjfl 232

dilations were for scattering from U and Th at 1^,7 MeV incident energy.

"b) The set 2, also in table 1, which we have developed to fit the

following experimental data for U : MS"and "ft."wave strength functions,

potential elastic scattering cross sections, and total cross sections measu-

red by CABE, et al j6j between 200 keV and 6 MeV incident energy. This set of

parameters is slightly different from the most recently determined one which is

given in ref.

RESUME OF RESULTS

l) The nuclear deformation induces into the function p(En) an oscil-

latory behaviour, oscillating about the value 1, For a given nucleus, the

regions in energy where the effects are either a minimum, that is, the ratio

f - 1 , or a maximum, are- well defined and practically independent of parameters
. . 238

or detailed model assumptions. For U one can see in fig. 2 that minima occur

near k.2 and 8.3 MeV and maxima occur near 6.5 and 13.5 MeV. To be more specific

about parameter dependence, the minima and maxima are essentially independent

of : the deformation itself, whether one uses potential parameter sets 1 or 2,

and the number of collective states coupled to the ground state. In contrast,

the positions of minimum effects are rather sensitive to whether one uses real
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or complex coupling between the different channels. Depending upon the choice

of real or complex coupling, the other parameters of the calculation must "be

ajusted to produce the same results for both types of coupling. The amplitudes

of the oscillations of a are themselves particularly sensitive to the defor-

mation parameter

2) When the mass of the target nucleus is considerably diminished,

the same behaviour of the function P(En) is obtained, but with a displacement
2^82^8

of the whole pattern to lower energies. Figure 2c compares results for U

and l 8 2W.

3) The oscillatory behaviour of P (En) is readily demonstrated also

for calculations assuming a vibrational nucleus, just as already discussed for

rotational nuclei. Nonetheless the corresponding stuctures of o are different,

as demonstrated in fig. Id. There the results are shown for the rotational
15^ lU8

nucleus Sm and for Sm, assumed vibrational.

k) The structure obtained in the recent measurements of SHAMJ, et al [3j

is well reproduced by the present calculations, as shown in fig. 1 . Examination

of these results shows the sensitivity of this structure to small differences

in deformation or nuclear size ; it changes character noticably between the

close neighbours Sm and Sm. In spite of this sensitivity, the calculations

do not seem to permit us to decide whether Sm should be treated as a rotatio-

nal or vibrational nucleus, for the purposes of these calculations.

We thank M. McEllistrem and J. Salvy for their encouragements in this

study and for very useful discussions.
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Figure Captions

Fig. 1

Variations of total erpss section differences ©s & function of incident
15k 150

neutron energy. The relative differences are shown for Bm end Sm in part

(a) and for Sm and Sm in part Ob), The ©jsperimenial data have teen taken

from ref. [3] . The curves are the results of ealeul&tions with different hypo-
150

theses about the collective character of ~ gs# Hie potential parameters are

set 1 of table 1 ; channels coupled are 0 +, 2* ', COfflplex coupling has been used

between channels.

Fig. 2

Variation in energy of total cross section ratios. The ratio is that

of the cross section for the indicated value of /&g divided by that for ^ 2
 =

The potential parameters are from table 1 : get 1 for a, c, dj set 2 for b.

(a.) • • -U =• complex coupling between channels ; solid curve - coupled

channels, including 0 +, 2* ; dashed curve - adiabatic approxima-

tion.

(b) U - channels coupled : 0 +, 2 + j solid curve : complex coupling

between channels ; dashed curve ; real coupling.

(e) Comparison for U and W - channels coupled : 0 +, 2 + - complex

coupling

(d) Comparison between the rotational nucleus ^ Sm and the vibratio-

nal nucleus - Sm - channels coupled : 0 +, 2 + - complex coupling

between channels.
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1-4. "Evaluation of Neutron-Nucleus Cross Sections

in Heavy Nuclei with a Coupled Channel Model

in the Range of Energy from 10 keV to 20

Ch. LAGRANGE

Service de Physique ITucleaire

Centre d'Etudes de Bruyeres-le-Chatel

B.P. n° 61 - 92120 Kontrouge - France

The existence of permanent' deformations in heavy nuclei

makes it necessary to account for the direct excitation of

rotational levels explicitly. This can be done using the optical

model with coupled channels. In order to exploit this approach

in a practical way for the purposes of evaluation, we have deve-

loped a code based on JUPITOR 1 of TAMURA fi] . The code developed

here is more complete and also more rapid than JUPITOR. The speed

has been improved by the utilization of a method of numerical

integration called "modified Numerov" as set forth by RAYNAL [2].

This modification of the numerical integration method permits us

to adopt a radial mesh much larger than that employed in the

Stormer method used initially. The code thus modified has been

used to search for a unioue and physically coherent parameter

sot which would cover the range of incident energies from 10 keV

to 20 MeVf and notably for nuclei with masses 232^A<242. Ve

calculate not only the total cross sections and the direct scatte-

ring cross sections but also the compound nucleus formation cross

sections,or the neutron transmission coefficients necessary for

evaluations with the statistical model. Aa test nuclei we have
238 232

chosen U and, to a lesser decree, " Th. We require that we

have sat inf.netory fits, in the order of decreasing importance,

to the following experimental results :

-58-



J A E R I - M 5 9 8 4

1. The strength functions described as S^ and Ŝ  , and the potential

cross section at low energies as well as the total cross section

from 10 keV to 1 MeV .

2. The total cross section from 1 MeV to 20 MeV .

3. The different angular distributions for "elastic" scattering in the

range of energy from 2 MeV to 15 MeV . At these energies it is

almost impossible to distinguish between the elastic and the inelas-

tic scattering to the first excited states . We will compare the

experimental results to calculationed values obtained by summing

differential scattering to the included nuclear states with energies

less than 400 keV .

This order of importance follows from the order of decreasing influ-

ence of the parameters of the model on the calculated values . We require

a satisfactory overall agreement with all of the data, and refuse to search

for alterations of the parameterization which would give better agreement

with particular data sets . Thus, for example, we have not implemented an

automatic parameter search to fit elastic scattering angular distributions .

Among the parameters of the model only those which describe the

quadrupole (^2) or hexadecapole ($4) deformations and the radius of the

nuclear potential vary from one nucleus to another . We have noted that at

low energies the total parameterization was very sensitive to the choice

of deformation parameters . For this reason, and because of the large

experimental errors associated with measurements of deformation para-

meters issuing from a common model calculation of the nuclei which we

have studied . The nuclear model used was based on the Nilsson model

modified by the methods of Strutinsky as described by Moller [3] . Some

of the do formation parameters obtained in this fashion are the following :

2 32
Th : /3 , = 0.206 , / 3 = 0.086

238 4

U : /3 = 0.216 , /) = 0.067
242

Pu : ftz = 0.239 , /i = 0.058

The parameterization obtained has the following characteristics :

a) A Coupled Channel model with the base states 0 , 2 , 4 up to an energy

of 10 MeV . At higher energies, to reduce the extensive calculation time,

the adiabatic approximation has been used .
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b) Real Potential : V_ = 47. 5 - 0. 3 E , a = 0.62 f ,
rC n K.

c) Imaginary Potential (surface absorption with a Woods-Saxon derivative

form factor) :

E2.7 + 0.4 E

a = 0.58 f , r _ = 1.26 f
D oD

n

n

10 MeV
10 MeV

d) Spin-Orbit Potential :

V =7 .50 MeV , a = 0. 62 f
so so

r = 1.24 f (Thomas form) .
so

e) The coupling between channels is taken to be real and the value of the

imaginary potential is the same for all channels .

The potential at very low energies was determined by simultaneous

adjustment of calculated values of the strength functions S~ and Ŝ  and of the

potential scattering cross section to the measured values of these quantities .

The variation of these parameters with neutron energy has been determined

to reproduce the total cross section in the energy range from 10 keV to 10 MeV.

Following this, the theoretical-experimental comparison for the angu-

lar distributions of "elastic" scattering has permitted us to judge the well-

determined paramaterization . In the energy range from 10 to 20 MeV, where

the results are much less sensitive to model parameters, we have based our

choices on the total cross sections and especially on the angular distributions

for elastic scattering . These have been measured by HUDSON [ 4 J at 15

MeV and by GUZHOVSKII [5j at 15. 2 MeV .

We present now some results and comments :

1 . Strength functions and potential cross sections .

Our calculated values at 10 keV can be compared to the experi-

mental results obtained by VAN'KOV et al [6] for 38U and by RIBON [7]

for Th :

2 3 8 u

2 3 2 T h

Theoretical

Expe r imental

Theoretical

Experimental

SQ x 104

0.949

0. 96 + 0. 07

1. 004

0.87 + 0.10

Sx x 104

2. 134

2. 2 + 0. 3

1. 719

S1 = 1. 5 + 0.4

O-pot. (barns)

10.73

1 0 . 7 + 0 . 3

11.23

11. 7 + 0.24

-60-



J A E R I - M 5 9 8 4

238

2. Total cross sections from 10 keV to 1 MeV for U .

We have found that a good preliminary fit to the potential cross

section at 10 keV was necessary to obtain a good adjustment of the total

cross section at low energies with a simple paramaterization .In fig. la

the calculated total cross sections are compared to measurements of CABE

et al. [8] . In the range of energies from 30 keVto 1 MeV the calculated

values are very near those of the recent evaluation of A. B. SMITH |_9 J ,

deviating from them by 1 - 2 % . On the other hand, in the range of energy

10 - 30 keV the calculated total cross section deviates nearby 5 % from the

experimental results ; we find here again a characteristic fault of the model .

3. Total cross sections from 1 to 20 MeV.

We compare the results of our calculations to the measurements

of GOUL.DING et al. [lo] and BOWEN et a l . [ l l ] in figs. 1 b and 2 . Our

values compare favorably to the experimental evaluation of SMITH ^9] the

largest deviations being in the region of 18 to 20 MeV, where we have values

3 % above those recommended by SMITH .

238 232

4. Angular Distribution for "Elastic" Scattering by U and Th .

Figures 3 to 6 show the comparison of calculated and measured

angular distributions . The calculations include elastic scattering and ine-

lastic scattering to the first excited levels of the ground state band (The

first three nuclear states when the coupling is 0 , 2 , 4 , or the first

four nuclear states when we apply the adiabatic approximation) . The only

parameter adjustment for this data has been to adjust W to match the mea-

sured distributions near 15 MeV .

Since there has been no systematic re-determination of parameters, the

examination of these results permits one to judge the parameterization

adopted . The different measurements reproduced here have been taken

from references [ 12J to [19] • The good overall agreement between theory

and experiment developed here is the result of the method of parameterization

explained above .

In conclusion, the parameterization obtained proves itself useful for

extrapolations over a range quite extended in energy and in target nuclei .

This has been exploited in a systematic fashion for a group of even isotopes

of Uranium, for A = 232 to 240, and for Plutonium, with A = 238 to 242 . In

the framework of a first theoretical evaluation we have judged it sufficient
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in the case of odd nuclei to interpolate the results furnished by this model

from the two neighboring even isotopes .
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1-5. Calculation of (n, n1 0 ) cross sections from 2 to 7 MeV

neutron energy for light nuclei

B. DUCHEMIN

Service de Physique Nucleaire
Centre d'Etudes de Bruyeres-le-ChStel

B.P n° 61
92120 Montrouge - France

Cross sections for the production of deexcitation y rays

following inelastic neutron scattering have been calculated for Si,

Cr and Ni isotopes from threshold to 7.0 MeV incident neutron energy.

The statistical model fl~! with width fluctuation corrections [2] was

used, taking into account only the Q = 0 correction. The optical model

used is of the form

with $(*•)= ( ̂  + each, FC-t-R Vail" 1 R * ̂  A ^

and

The parameters were chosen from recent work on inelastic neutron

scattering. These calculations do not include (n,p), (n, oi ) or direct

interaction contributions,, A calculation done "by Kellie and al [3]

shows that at 9 MeV excitation energy the influence of (n,p) and (nf =< )

channels is only 2 ̂  of the cross-section in Fe« Perey and Kinney i 4]

show that at 7 MeV the direct interaction contributes only 5 °/° to the
56

Y - ray cross-section in Pe.

We compare in figure 1 only the most significant calculatio-

nal results with recent experimental results from our laboratory [51
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28
for the transitions E y = 1,779 MeV in Si and Ey = 1.352 MeV in Ni8

a) Silicon

The optical parameters and the adopted level scheme were

taken respectively from Holmqvist and al [6] and Tucker and al [7] • The

l,779keVV ray comes from the transition 1,779 keV(2+)^>0(0+) in 2 8Si.

b) Nickel

The optical model parameters were taken from a study of ine-

lastic neutron scattering on Fe by Rolard and al [8J and they are

as follows :

rou = row = 1»24 fm a = 0.66 fm b = 0.48 fm

U xx 49.02 - 0.33 E MeV ¥ = 10*46 MeV -Us0 = 8 MeV

The adopted level scheme was taken from Tucker and al [9] . The 1.332 MeV

y-ray intensity is composed of two transitions, the 1,332 keV(2 )->0(0 )

transition in 60Ni(26.23$) and the 2,775keV(2+)^" l,454keV(2+) transition

in 58Ni (67.88 $). This last transition contributes 26 % to the total

strength. No account has been taken of the levels of excitation energy

greater than 4 MeV, but it does not appear that inclusion of these

levels would alter the calculated results appreciably.

In the excitation energy range considered here the width

fluctuation corrections are necessary to get a satisfactory comparaison

between experiment and theory for nickel and silicon and also for other

cases not reported here. As can be seen from nickel results shown in

fig. 1 the two calculations will eventually coincide at sufficiently

high energies.

These calculations were done with the code ERMATJD which is
* -1

a synthesis of HELENE |10j, which computes the statistical cross-sections

for y rays following inelastic scattering, and the optical model code

MAUD [ll] , both written for spin l/2 particles only»

Similar results were obtained for the 1434 keV y-ray transition
52

to the ground state in Cr.
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1-6 . Statistical Model Evaluation of Neutron-Induced Fission

and Capture Cross Sections of Heavy Nuclei for Energies

in the Range 3 keV to 1 MeV

P. THOMET

Service de Physique Nucleaire

Centre d1 Etudes de Bruyeres-le-ChStel

B.Pn0 61

92120 Montrouge - France

The purpose of this paper is to present a method which has been

used for evaluation of fission and capture cross sections induced by neutrons

with energies from 3 keV to 1 MeV on a set of heavy nuclei . The first appli-

of t
240

236
cation of this method has been to the following even-even nuclei : U , Pu

and Pu

In the energy range studied , experimental fission cross sections

are relatively well known (Fig. 2) . However, there are few experimental

values for radiative capture (Fig. 3) .

For the determination of a set of fission, capture, and also inelastic

scattering cross sections, we proceeded as foliows . Fission channel charac-

teristics (energy, spin and parity) are found by fitting fission cross sections

calculated within the framework of the statistical model to the known experi-

mental values . We can then calculate, within the same model, the cross

sections for the other decay modes of the compound nucleus : radiative

capture, elastic and inelastic scattering . Moreover, this calculation can be

extended to low energies where the fission cross section is not always known .

It also allows interpolation between various measured values .

The derivation of such a set of cross sections is made through the

combined use of several models :
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- optical model potentials in coupled-channel equations Ql} ^ o r t^ i e calculation

of neutron transmission coefficients and direct inelastic scattering .

- the statistical model to treat the competition between the various modes

of decay of the compound nucleus .

- the double-humped fission barrier for the calculation of fission probabilities

The parameters of these models are obtained by filting various expe-

rimental data . In this paper we concentrate mainly on the general method

which is used to determine the properties of the fission channels by fitting

appropriately chosen fission data .

The differential and total fission cross sections which are used in the

calculations are given by the following expressions :

C , ) ( , ) \ i (Q)\ ( l)

r ( £ } = L I . <J(JTT,E) BCjKn.e) (2)

in which :

C- {&/£) is the differential fission cross section at incident neutron energy

E for the emission of fission fragments at angle Q ,

& (£) is the total fission cross section at incident neutron energy E ,

0* CtHM g) is the cross section for the formation of the compound nucleus

at energy E and with quantum numbers J , TT and t"7 ,

&(Jt*n',£) is the fission branching ratio including a fluctuation correction f2j

d J (0) is the usual reduced rotational function .

The experimental fission data which are used to fix parameters are

the following :

- the fission cross section <T,(E)

- the angular distribution^J[^B)/vi('\o/B) of the fission fragments

- the anisotropy ag s VII<>,£)/Vl($&,£)

Moreover the anisotropy of the fragments emitted in photofission is also used

to determine the imaginary part of the fission potential as will be discussed

below .

- 7 2 -
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The fission potential used in the calculation of the fission probabilities

is sketched in Fig. 1 .

The real part is a two-humped barrier, as obtained with the Strutinsky*s

prescription . The various parameters of the barrier can be determined from

the analysis of various types of fission phenomena : fission isomerism, vibra-

tional resonances, intermediate structure in subthreshold fission cross sec-

tions , near threshold fission cross sections . . . . [3,4, 5°J

In the second well, moderate damping is taken into account by intro-

ducing a parabolic imaginary part in the fission potential . The maximum

value W is adjusted to reproduce the observed anisotropy of the fission

fragments emitted in photofission of Th, U ., Pu and Pu induced

by photons having energy s^ between 5 and 6 MeV . For such even-even nuclei

one then obtains :

W = a (E ̂  - ETT - 2 )
Y l l (3)

with a = 0. 08 + 0. 04 for E y > E + 2 MeV

and a = 0 for E r 4 E + 2 MeV

Further examination indicates that the above values of W need to be increased
m 238

by a quantity b for odd nuclei . In the case of the target nuclei Pu and

Pu , b has been set equal to 0. 1 MeV 14 | . In the case of the target U,

where the fission occurs much below the threshold, both parameters a and b

were adjusted directly to the fission cross-sections measured between 24 keV

and 500 keV .

In the first well, full damping is assumed .

The main difficulty, when trying to predict such fission cross sections

lies in the fact that the fission channels are very poorly known. Therefore,

one has to make crude assumptions about them . In fitting the data using the

least- squared method, the following parameters are adjusted :

- Height of the fission barrier for the exit channels which are considered in

the calculations . For each "K, J , ff " channel the shape of the barrier

remains unchanged but the height is adjusted to a value which is determined

by fitting the data .
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- The effective number of fission channels . This parameter is adjusted to

take into account the effect of other channels, having the same K, J , 7T

quantum numbers, but situated higher in energy .

We present as an illustration of the use of the method results on the

fission and capture cross sections (<T- and OL respectively) for U, Pu
240

and Pu . The fission data used for the determination of the parameters

are o; [6J to (_9J and a 1 7 , 10, 111 in the energy regions where they are

known . The results obtained for the fission and capture cross sections are

shown in Fig. 2 and 3"respectively . This method is particularly useful to

obtain values of CT. and OL in energy regions where no data are available

and also for nuclei for which measurements are very difficult if not impos-

sible .
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Definition of the various parameters used to

characterize the double-humped fission barrier
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1-7. Evaluation of Che (n, x n) and (n, x nf) cross sections for

Heavy Nuclei with the Statistical Model

J. JARY

Service de Physique Nucleaire

Centre d'Etudes de Bruyeres-le-Chatel

B.P n° 61

92120 Ifontrouge - France

This paper presents a method which has been used to calculate the

(n,xn) and (n,xnf) cross sections for heavy nuclei having mass numbers

232 < A < 239 and for incident neutron energies from 2 MeV to 15 MeV.

In the calculations, it is assumed that in the (n,xn) process, the in-

cident neutron is captured by the target nucleus A to form a compound

nucleus (A + 1) which then deexcites by the evaporation of x neutrons,

(x > 1), without fission, according to the lavs of conventional statis-

tical models. For the nuclei and the excitation energies which are con-

sidered, fission can also compete with neutron and y~ray emission. It

is therefore necessary to consider also the (n,x'nf) process in which

the compound nucleus (A + 1) deexcites by the evaporation of x' neutrons

followed by fission.

The cross section for the (n,xn) process, which is illustrated in

fig. 1, is given below :

/ \ — /tr \ f r / \1 D / "\

In this expression :

~^"A +J (E ) *-s t n e cross section for the formation of the compound nucleus

(A+l) at incident neutron energy E . The excitation energy of the compound

nucleus is then E.
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- T and T are the neutron width and the total, width respectively for
n T

the compound nucleus (A+l) at excitation energy E.

- P (E,x) is the relative probability that the compound nucleus (A+l)

at excitation energy E emits x neutrons, without fission.

The expression for P.., (E,x) is obtained by conventional theory

of neutron evaporation and then reads :

In this expression :

- e is the center~of-mass kinetic energy of the nuclear system (A+l)

after the evaporation of one neutron.

* is the cross section for the formation of the compound
r

nucleus (A+l) at the energy £..
~ P. (E,) is the level density in the residual nucleus A at excitation
^A 1

energy E. = E - S. - e..

- S. , S9 ... S are the neutron separation energies for the nuclei

(A+l), A, ... (A-x+1) respectively.

is the ratio of the neutron width to the total width, for

the residual nucleus A, at excitation energy E .

- P (E., x-1) is similar to the expression P . (E,x) but for the resi-

dual nucleus A at excitation energy E. and for the emission of (x-J)

neutrons.

The values of P.., (E,x), P. (E., x-1)... are then deduced one from the

other through a series of equations of the type (2).

The cross section for the (n.x'nf) process, which is also illustrated in

fig. 1 is given below :

All the terns used in equation (3) have the same meaning as those used
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in equation (2) except for PA+. (E,x'nf) which represents the relative

probability that the compound nucleus (A+l) at excitation energy E emits

x' neutrons and then fissions. The expression for P (E,x'nf) is very
A^ 1

similar to that for P (E.x'n).
A • 1

In order to calculate the various expressions (1), (2) and (3) it

is necessary to know the following quantities :

1°) the cross section for the formation of the compound nucleus

(A+l) as a function of energy. This cross section is calculated with

an optical model code described elsewherefl].

2°) the partial widths T , T , T for the nuclei (A+l), A, etc...

and excitation energies reached through the various modes of decay.

The neutron width T is obtained from the neutron penetrability

calculated with the optical model code mentioned above [l]. The level

density which is needed to extract the neutron width is obtained from

the Fermi gas model approximation using tabulated values of the level

density parameter a_ [2J.

The y-ray width r is obtained assuming that the radiation is of

the electric dipole type, normalised to r values for slow neutron reso-

nances when they are known.

At excitation energy E , well above the fission barrier height Bf

in the compound nucleus A, the fission width T is obtained from the

following expression :

where :

- P. (E ) is the level density at energy E , as defined above.

- £ (e) is the level density at energy e and at saddle point deformation

for which the Fermi level density parameter is af instead of a. In this

work, the parameter a. is adjusted to fit the plateaus of the known fis-

sion cross sections. A better fit to the data is obtained if a., rather

than being constant, is assumed to have an energy dependence of the form

af - a + § (5)
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At excitation energy close to B_, the fission width is determined from

the penetrability of the fission barrier, supposed to have a single-hum-

ped parabolic shape.

Application of the method to the calculation of (n,xn) and (n,xnf) cross

C 2 3 6 TT 2 3 7 T T A 238 T T

sections for U, U and U.
The parameterization of the optical model is described elsewhere^!]

235 238
The fission cross sections of U and U, recently evaluated by

236
Sowerbyf3"] , and the fission cross section of U£4], have been used to

determine the other parameters needed in the calculations.
239 238

The fission widths of U and U have been obtained by fitting
238

the first-chance and second-chance fission plateaus of the U cross

section.
237

The fission width of U has been determined in the same manner
23fi

from the first plateau of the fission cross section of U.

A similar fit to the first-chance and second-chance fission cross
ooc ?3fi 9^S

sections of U gives the fission widths of U and U respectively.

With the parameters thus obtained, it has been possible to calculate :

1°) fission cross sections in energy ranges where no data are available ;

for example, for U between 6 "TeV and 14 "eV and for U between

1 MeV and 15 MeV (fig. 2). i« yxi 9̂fl
2°) (n,2n) and (n,3n) cross sections for U, J U, U (fig. 3) from

threshold up to 15 MeV.
238

f̂ or U, pood agreement is observed between the result of our cal-

culations and the experimental data[5}. Note that the calculations are

not fitted to such data.

For U and U, theoretical results are obtained where no data

are available.

These results show that the statistical and the optical model

together with an appropriate fitting procedure to known fission cross

sections can be used for the calculation of (n,xn) and (n,xnf) cross

sections of heavy nuclei.
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DISCUSSION

240
R. C. BLOCK: The RPI Pu(n,Y) measurements also produced a fission

cross section in the 10 ̂  30 keV region (with poorer accuracy than the

capture data). The fission cross section appeared high relative to the

sparse data (then available) from 100 keV on up. How does your extra-
240

polated Pu(n,f) cross section below ^ 100 keV compare with the RPI

data?

A. MICHAUDON: I am afraid that Dr. Thomet who carried out the

calculations did not include the RPI data because he was not aware of its

existence. Have these data been published?

O O Q

S. TANAKA: In your talk for U, what value of the coupling parameter

did you use? In my analysis, I had to used a little smaller value than the

value taken from other bibliography.

A. MICHAUDON: Dr. Lagrange found necessary to use complex values of

the coupling parameter, but the actual values are not given in his paper;

we would be glad to mail you this information if you are interested in.

-82-



JAERI-M 5984

1-8. SOME REMARKS ON THE USE OF NUCLEAR MODELS IN THE

EVALUATION WORK

V. Benzi, F. Fabbri and G. Reffo

CNEN, Centro di Calcolo, Bologna, Italy

ABSTRACT

At present, a large number of optical and statistical nuclear model codes

having different degree of sophistication is available.

The effects of some approximations on the calculated data are

briefly discussed from the point of view of the evaluation work.

INTRODUCTION

Nuclear models are frequently used in the field of neutron data

evaluation in order to:

i) make sophisticated fits of consistent data;

ii) make a definite choice among inconsistent data;

iii) fill gaps among loose data;

iv) predict cross-sections for which no data at all exist.

In the first kind of application, there are no special problems,

except the usual ones connected with the selection of a best-fit crite-

rion.

In the remaining applications, however, a number of problems

arise, the most important ones being the physical suitability of the

model adopted and the determination of the numerical values of the para_

meters involved.

In solving these two problems, we have to face a dilemma. In

fact, in order to achieve better physical adequacy, we are inclined to

add more and more details to the models. These details, in turn, in-

volve more and more parameters, whose iftdetermination introduces a large

degree of uncertainty in the result of the calculations.

Thus, a high degree of theoretical reliability in a model might

imply a low degree of reliability in the numerical results.

As a provocative example, let us consider the case of the optical

model. In its primitive form, the optical potential was
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V+iW if r<R

0 otherwise
(1)

so that only three parameters, viz. V , W and the nuclear radius con-
1/3

stant r (R=r A ) were required, at the beginning, in order to per-

form numerical calculations.

At present, one of the suggested forms for the optical potential

is the following

-U(r) = [ v c ^ p ] o o c 1 1 1

(2)

(l-?)g2(r,R2,a2)}
m c

TT

which contains 18 parameters if one assumes

R.= r.A1/3
+ C.

1 1 l

The number of parameters further increases if the energy depen-

dence and the deformation of the potential are taken into account.

Obviously, a potential like (1) cannot very accurately reproduce

a given set of experimental data, whereas the use of a potential like

(2) enables us to reproduce nearly everything in the smallest details,

especially if the various parameters are allowed to vary wildly.

However, good taste (and the worst vulgarities like the cost of

the computer time) oblige us to adopt a potential depending on a small

number of adjustable parameters, and make a reasonable compromise between

physical adequacy and drastic approximations.

The purpose of this paper is to examine, to some extent, the ef-

fects of these compromises on the results given by the optical and the

statistical models which are by far the most frequently used in evalua-

tion work.
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I. THE OPTICAL MODEL

A very large number of experimental data have been analyzed by

various authors in order to produce a "recommended" set of a few (five

to six) parameters to be used in connection with some selected form of

the optical potential.

From these analyses, it is usually found that the central part

of the optical potential ranges between 45-=-55 MeV at low ('vl MeV) energy,

decreasing smoothly as the energy increases.
1/3

The radii are of the order of (1.15*1.3O)A fm, whereas the dif-

fusenesses are of the order of O.4vO.7 fm, both for the real and the

imaginary part of the potential.

The magnitude of the imaginary part is of a few MeV, and is as-

sumed to be constant or smoothly increasing with the energy. The spin-

-orbit also results as a rather shallow potential, of the order of a

few MeV.

The use of the optical model, together with a recommended set of

a reasonable number of parameters, enables us to evaluate total and elas_

tic cross-sections which are satisfactory in a large number of cases.

For example, about three years ago Glasgow and Foster |l| compared

a large set of experimental neutron total cross-sections with the corre-

sponding optical model cross-sections calculated by using a non-local

potential depending on seven parameters. The adopted potential and para-

meters were those recommended by Perey and Buck |2[ fifteen years ago on

the basis of an analysis of the elastic scattering angular distributions

of Pb at 7 and at 14.5 MeV. It is worth noting that the parameters of

a non-local optical potential are usually assumed to be energy-indepen_

dent, because the non-locality to a large extent replaces the energy de-

pendence required by a local potential.

In the comparison carried out by Glasgow and Foster, 78 elements

and 14 separate isotopes were considered, spanning the energy range

2.25vl5 MeV.

For 68 elements or nuclei with A>45 an average deviation smaller

than 3% was found in 60% of cases; whereas, such a deviation was between

4% and 17% in the remaining 40% of cases. The biggest discrepancies were

always found in the case of hard deformed nuclei.

The foregoing example shows that an optical potential depending

on a reasonable number of parameters can be used with confidence in eval-
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uating cross-sections in the continuum, provided the nucleus considered

is not a very deformed one.

Unfortunately, a number of nuclei of major interest for nuclear

reactors are strongly deformed. This is the case, for instance, of U

and Pu isotopes, Th-232, Na-23, etc.. For these cases, one has to

modify the parameters considerably if the deformation is not explicitly

taken into account. On the other hand, if one assumes that the spheri-

cal optical potential represents the limit of the deformed one, for 3=0

(the 6 being the deformation parameter), the same set of parameters

might be used in principle, provided the deformation is taken into ac-

count correctly.

However, there are some aspects of non-spherical potential calcu-

lations which make the adoption "sic et simpliciter" of the parameters

inferred from analyses of spherical nuclei rather questionable. We will

examine here some of these aspects.

u

To solve the appropriate Schrodinger equation with a deformed po-

tential, two different kinds of numerical approximations are frequently

used. In the first kind of approximation the potential is expanded into

powers of |3 up to the first order. The second kind of approximation

assumes a Legendre polynomial expansion of the potential (in general up

to £=4). Now, there may be rather large differences in the results,

depending on the approximation adopted.

As an example, fig. 1 shows the results of calculations of the to-

tal cross-section of Gd-156 in the MeV energy range.

Curve (a) was calculated assuming a deformation parameter 3=0.35

and strong coupling of the first excited 2 level. The potential was

expanded in Legendre polynomials up to £=4 . Curve (b) was obtained by

using the same parameters of curve (a) , but the potential was expanded

in power series of B to the first order. It can be seen that there is

a systematic difference between the two curves of ^10*15 per cent. The

total cross-section calculated by assuming 3=0 (spherical potential)

is also shown in order to demonstrate the importance of the deformation

effect.

Quite large differences are also found for the shape-elastic angu

lar distribution, as shown in fig. 2.

Another aspect to be considered when the nucleus is a deformed

one, concerns the imaginary part of the optical potential. One of the
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effects of the nuclear deformation is the damping of the diffraction

pattern of the shape-elastic angular distribution. The same effect can

be obtained, qualitatively, by using a spherical potential with a large

value for the absorption potential W . Since a rather large number of

nuclei are more or less deformed, systematic analyses based on a spheri-

cal potential might result in a W-value which is too high for deformed

potential calculations.

In addition, the magnitude of the theoretical cross-sections given

by the generalized optical model strongly depends on the coupling scheme

used in each particular calculation.

Therefore, the value of W to be adopted also depends greatly on

the coupling scheme assumed. As an example, in fig. 3 the calculated

angular distribution for direct inelastic scattering of 1 MeV neutrons

by the first 2 excited state of Gd-156 at 0.09 MeV is shown. All the

curves were calculated using the same set of parameters. Curve (a) was

obtained by assuming that only the first 2 excited state channel is

strongly coupled with the elastic channel. Curve (b) was calculated under

the hypothesis that the second (4 ) excited state is also strongly coupled.

Curve (c) was calculated in adiabatic approximation, taking into account

the coupling of all the excited levels belonging to the fundamental rota-

tional band. It can be seen that there is a rather sensitive dependence

of the results on the coupling scheme assumed.

Further difficulties arise as a consequence of the so-called

"geometrical W.b ambiguity", b being the diffuseness of the imaginary

potential. An example of the effects of such an ambiguity is given in

fig. 4. The curve labelled (a) shows the theoretical angular distribu-

tion of the inelastic cross-section for 1 MeV neutrons scattered by the

first 2 excited level of Gd-156 via compound nucleus. The parameters

adopted in the calculations were those of Agee and Rosen f 3 J , with

W=5.75 MeV and b=0.70 fm. The dots superimposed on the curve represent

the results of a calculation carried out using the same parameters, but

with W=8.05 MeV and b=0.5 fm. In both cases one has W.b=4.O25 MeV.fm,

and the results are identical up to the third significant figure.

The angular distribution for direct inelastic scattering, however,

differs markedly in magnitude in the two cases, as can be seen in fig. 4

itself.

Another parameter which may change drastically when deformation

effects are taken into account is the depth of the spin-orbit potential
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V . The correlation between 8 and V has been discussed by
so so

Thompson et al. |4| who found a lower value of V than in a spheri-
SO

cal potential calculations when the deformation is taken into account.

This correlation mainly depends on the fact that the nuclear deformation

effects predominate near the nuclear surface where the phenomenological

spin-orbit potential also produces major effects.

From the above considerations, it can be concluded that three

parameters at least (i.e. W , b and V ) have to be varied when changing
s o

from spherical to non-spherical optical model calculations. Thus, the

prediction of an unknown cross-section obtained by using "standard"

spherical optical model parameters and deformed potentials must be treated

with caution, the goodness of the results being strongly influenced by the

various approximations adopted in performing the generalised optical model

calculations.

II. THE STATISTICAL MODEL

In the time scale of nuclear theories, the statistical model is

an extremely old concept. It was first developed by Bethe |5| , who in

1937 derived the following formula for the average reaction cross-section

where, s and I are the spins of the projectile and the target, respec^

tively, and the brackets indicate an average over many resonances. The

D is the average spacing of the levels with angular momentum J in the

energy region considered.

By introducing the transmission coefficients T , eq.. 3 can be

expressed in the well-known Hauser-Feshbach form |6| . For elastic and

inelastic scattering of neutrons one has

n,(E,E') = T ? g ? n STo(E) Z — \— (4)

The T 's can be calculated on the basis of a given nuclear model,
J6
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If the optical model is adopted, formula (4) can take on a more

complicated form, depending on the particular potential adopted (e.g.

deformed, with spin-orbit part, e t c . ) .

Some channel transmission coefficients cannot be easily obtained

by starting from an optical potential. This is the case of radiative

capture and fission channels, for which other semi-empirical tools must

be developed to estimate the corresponding transmission coefficients.

The extension of the Hauser-Feshbach formula to the case of

capture and fission was made by Margolis |7| ; the formula is

2 tJ. (2J+1)T (J,E)

(E) = ** Z TU,E) Z —^ - = (5)2(2I+1) n J 4
In the derivation of eq.(3) , (4) and (5) it has been assumed that

the average ratio <T V , / T > could be replaced by the ratio of averages
J J J C C

(<T > <r ,>/ <T >). This is not true in general because the various widths

are not constant but fluctuate from level to level. Therefore, the above

mentioned equations have to be corrected by a factor F given by

F = < r V t / rJ> / [<rj><rjt>/<rj>] (6)

The function F depends on the nature of the frequency distribu-

tion functions which represent the statistical distribution of various

widths.

About ten years ago the Hauser-Feshbach formula was re-examined

by Moldauer |8| , |9| , in the more general framework of the statistical

theory of R-matrix. One of the results of such a re-examination was that

the transmission coefficients T should be replaced by the quantity

ec-|-[i-(i-QcTc)*] (7)

where Q is a parameter with range 0<Q <2 .

Having briefly recalled the main features of the statistical model,

we will examine in the following section the influence on the numerical

results of some of the approximations currently adopted for calculating

the various quantities which appear in the formulae.
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Let us consider the case of radiative capture cross-section cal-

culation first.

A. Radiative capture. To begin with, let us consider the Margolis'

formula.

The radiative capture cross-section is obtained from formula (5)

by taking

T (J,E) = T (J,E)
L 3.

I T ,(J,E) = T (J,E)
r1 ~ Y

The absorption term T (J,E) refers to the capture of the neu-

tron with no particle re-emission, whereas T (J,E) refers to

all the exit channels in which the compound nucleus initially

emits a y-ray. The usual link between transmission coefficients

and strength-functions

<r (J,E)>
T (J,E) = 2TT —-2fS (8)
Y' D(J,E)

is assumed, so that we must know T (E) , <r (J,E)> , <r (J,E)>

and D(J,E) in order to perform the calculations.

The simplest way to calculate T (E) is to assume that the nucle_

us behaves like a black absorbing sphere of radius P , so that

only incoming waves, like ty ^ exp (-iKr) for s-neutrons, are

allowed inside the nucleus.

If this model is adopted, the parameters required by the calcula-

tions of the T !s are the radius R and the neutron wave number

K inside the nucleus.

A more sophisticated approach is based on the "cloudy crystal ball"

or optical model. In this case what we need to know are the para-

meters appearing in the optical potential. Fig. (5) shows a com-

parison of 1-127 capture cross-sections calculated according to

the two models. All the parameters, except T , were kept the

same for both calculations; the optical potential adopted was a
13 -1

5-parameter Saxon-Wood one, whereas a value of K=10 cm was

assumed for the black nucleus calculations.

The differences in cross-sections are of the order of 10vl5%

everywhere, in spite of the fact that the T differs by a factor
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1.5*2 below 100 KeV.

The explanation of this fact is quite easy. If, for simplicity's

sake, we assume no inelastic scattering, then the contribution of

the l-th partial cross-section to the total cross-section is

given by

[T (E).r1/[T.(E).D+27Tr1 (9)

where T/v2uT /D . If we express the energies in eV one has,

4 - 3 — 2
very roughly, T ̂ E .10 , D^IO and 2vT ̂ 1 • Thus, for

E>10 eV , we can neglect the term 2-rrT in eq. 9 , and the T 's
— a x.

cancel out.

The above argument shows that capture cross-section greatly depends

on the ratio r /D rather than on the particular optical potential

adopted in order to calculate the transmission coefficients. For

this reason it seems worth considering here some of the various

recipes usually adopted in order to estimate such a ratio.

As far as the calculation of r is concerned, the simplest
Y»a

approach is represented by the well-known "Weisskopf estimate" which

gives
B +E Br

^ d e /

n

e3p (B -e)de
o n
(

o n

XE o

(10)

B and E being the neutron binding and kinetic energy, respective^

ly, and p the nuclear level density of levels with J=0 of the

(compound) nucleus considered. The parameter X takes the values

[o for r
Y

for r
a

In deriving formula (10) a (2J+1) level density dependence on J

has been assumed, so that r is J-independent.
Y »a

A more sophisticated formula is given by the so-called "Brink-

-Axel" estimate |lO|,|ll| which for an arbitrary J-dependence gives
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B +E

r (B +E;J)=
Y,av n

XE

j _,p f(B +E-e);Jflde/[3(TTfic)2p(B +E;J)']
[j-lp n ' n

(11)

where, a (e) is the photo-absorption cross-section of the

(compound) nucleus considered. Formula (11) gives, in principle,

the absolute values of T , whereas formula (10) is usually
Y »a

normalised at V (B ) .
y,a n

Formulae (10) and (11) can be improved, in order to take the tran-

sitions to the resolved levels into greater account. For example,

for the "Brink-Axel" estimates, one has

(

K J+lK J+l / 2
= \i J.J' < 5J I,J. (V E- Ei ) aY(Bn+E-E.)/[3(irftc) P (B^EjJ,*

B +E-E
J+l

e a (e) I j tp(Bn+E-e;J')de/[3 0r-ncrp(Bn+E;J)]
|J-l|

(11')

where the S's take into account the spin and parity selection rules

and E is the energy at which the first level of unknown charac-

teristics is assumed to be found.

In order to have an idea of the effects of the various approxima-

tions on the numerical results, we have carried out a number of

calculations in some significant cases. Let us consider first the

Weisskopf estimate. In Table I, columns labelled (1) through (4)

show the calculated ratios

R (E) = r (B +E)/r (B )
Y,a Y,a n Y,av n'

for the (compound) nucleus Nb-94 . Index (L) means that the Lang-Le

Couter level density formula|12| has been adopted in (10) , whereas

index (C) means that the composite Cameron formula |l3| has been

used together with the improved formula, like (II1) , for the

resolved levels. As one can see, there are no significant differ-

ences in the results, in spite of the fact that the use of Cameron's

formula should imply in principle a J-dependence.

Columns (5) to (8) show some results obtained for Sn-118 , using
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the Cameron level density formula together with formula (11),

(values below R ) and (11T), (values below R ) . Again,
Y,a y »a

there are no significant differences in the results, in spite of

the fact that resolved levels are known up to 2.77 MeV.

Similar results were obtained for a large variety of nuclei, lead-

ing to the conclusion that the calculated behaviour of the F 's
i » a

is rather insensitive to the assumed level density formula and

J-dependence.

Let us now consider the "Brink-Axel" estimate. As far as the

dependence on the level density formula is concerned, a large

number of numerical calculations lead to the same conclusions as

above. In some cases, however, significant differences can be

found, as shown in Table II for Se-78,where numerical values in mV
of the F and T obtained by means of formulae (11) and (11')

Y,a Y,a

respectively are given. In addition, if the results of such an

estimate are compared with those given by the Weisskopf formula, as

shown in fig. 6 for Nb-94, strong differences are found above a few

hundred KeV. These differences are mainly due to the fact that the

Weisskopf estimate does not take into account the giant resonance

phenomenon. All the conclusions reached so far for the T 's ,
_ Y,a

apply to the energy dependence of the ratio T /D .
Y>a

As far as the absolute value at neutron binding energy of such a ratio

is concerned, the main difficulty is connected with the evaluation of

the average level spacing D for those nuclei for which a sufficient

number of low energy resonances was not yet measured. Present theorej^

ical models for calculating nuclear level spacings are still unable to

give agreements with a large class of observed D-values better than

a factor ̂  2T3 . A cursory examination of formula (3) shows that an

uncertainty of the same order of magnitude has to be expected in the

calculated cross-sections whenever empirical D-values do not exist.

We should now say a few words concerning the correction factor F

given by formula (6) . As an example, in fig. (7), the effects of

this correction for 1-127 are shown. It can be seen that the

corrections may be quite important for neutron energies up to some

hundred kiloelectronvolts.

If one assumes a one-degree chi-square distribution for the neutron

widths and a 6-function for T , one has
Y

-93-



J A E R I - M 5 9 8 4

. f exp(-T J i r . x)dx
F = (£ T ,) = 1 = (12)

C C c J (l+2xTJir) n (l+2xTJ*)o c c " c

where index c" refers to all channels except those leading to

radiation emission.

The numerical calculation of formula (12) is rather cumbersome.

The following approximate formula was suggested by Cameron |14|

)

with

M =

The differences between the numerical results given by formulae

(12) and (13) are usually small. Inaccurate results, however,

can be obtained with both formulae if the upper limit of the

numerical integration is not carefully selected. In order to

overcome this difficulty, it is useful to transform formula (12)

as follows

max
)]}f(y)dy

(121)

with

max -» c»
 L c max

(14)
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Formula (12') can be easily integrated by using the Gauss method.

A similar transformation can be performed in order to integrate

formula (13). The result is formally identical to (12T) if one

puts

[f <y>r V [uof/i*) a/y-D] yp £j

(141)

Numerical results obtained by means of the various formulae, are

shown in Table III for the case 1-127 , (J7T,£=2+,O).

In order to conclude these remarks on the numerical calculation

of the neutron capture cross-sections, it can be pointed out that

the use of Moldauer's ©p (see formula (7)) instead of the conven-

tional T., does not in practice change the results.

This is due to the rather weak dependence of the results on the

T.t as explained above.

B. Inelastic scattering. The conclusions reached so far about the

dependence of the cross-section on T 's are no longer valid in the

case of inelastic scattering cross-sections. Because of the strong

influence of the T 's , the calculated cross-sections will be, in

general, rather sensitive to the adopted optical potential. In

particular, if a local spherical potential is used, the energy de-

pendence of the central and imaginary depths should be accurately

known.

In fact, one should remember that the various T fs refers to the

inverse process so that, near the thresholds, the transmission

coefficients have to be calculated for very low neutron energies.

Thus, recommended sets of parameters obtained from systematic analy_

ses carried out in the several MeV energy range cannot be used with

confidence in this kind of calculations.

To give an example, fig. 8 shows the energy dependence of the cen-

tral and imaginary part of an optical potential obtained for Cu-63

by means of an analysis of the total, differential-elastic and to-

tal non-elastic experimental cross-sections (full line curves).

As one can see, above 3.5 MeV the central part of the potential

shows a linear dependence on the neutron energy E , whereas the
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imaginary part is constant. However, below 3.5 MeV a quite dif-

ferent behaviour has to be adopted if one wants to obtain good

fits for the inelastic scattering cross-sections of the first and

second excited levels (see fig. 8 C) and D ) , full line curves).

In fact, the extrapolation to zero of the results obtained for the

potentials above 3.5 MeV (dashed lines in the figure) gives very

bad results, as one can see in fig. 8 C) and D) (dashed lines).

As in the case of neutron capture, calculated inelastic scattering

cross-sections are considerably influenced by the statistical

fluctuation correction factor.

Table IV shows some numerical results obtained by means of the

"Cerbero" code |l5| at 3 MeV for Sn-118. As one can see, the cal-

culated cross-sections are lowered or raised depending on whether

the fluctuation factor is used or not. The discrepancies between

the two cases are partially reduced if Moldauer's formula is

adopted (see Table IV, column C)).

Similar calculations carried out for a large number of nuclei, led

to the conclusions that discrepancies of the order of 15-30% among

the calculated results are usually found, depending on the partic-

ular formalism adopted.

CONCLUSIONS

From the above cursory examination, it seems that the following

conclusions may be drawn:

i) Optical model calculations for spherical or quasi-spherical nuclei

based on recommended parameters are reasonably reliable for total

neutron cross-section evaluations above ̂  2 MeV.

ii) The same conclusion cannot be applied for strongly deformed nuclei,

for which consistent sets of recommended parameters have not yet

been obtained.

iii) Coupled-channel calculated cross-sections for direct processes

could have at present a very large degree of uncertainty. The same

could be true also for compound inelastic cross-sections if the behav-

iour of the optical potential parameters at low energies is not well known,

iv) For- a given set of basic parameters, calculated compound nucleus capture,

elastic and inelastic scattering cross-sections can easily differ by

^ 30%, as a consequence of the particular degree of sophistication

adopted in the model.
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Because of the accuracy usually required by reactor physicists,

the above conclusions do not appear to be too optimistic as far as the

usefulness of nuclear models as an evaluation tool is concerned. In a

number of cases, however, uncertainties of ^ 20*30% could be accepted,

but experimental data are lacking or too scarce. Because of the cost

and/or the time required in order to perform the measurements, nuclear

model calculations can be useful in these cases, taking into account that,

for the wise man, a bird in the hand is worth two in the bush.
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EXAMPLES OF NUMERICAL CALCULATIONS OF R =T" (Bn+E) / I" a<Bn) IN THE FRAMEWORK
OF THE "WEISSKOPF ESTIMATE".

p

(MeV)

0
0.001
0.01
0.1
0.5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(1)

VL)

1.00
1.00
1.00
1.02
1.13
1.28
1.57
1.90
2.27
2.68
3.10
3.55
4.00
4.50
5.10
5.70
6.32
7.02
7.60
8.26

<N b

(2)

VC)

1.00
1.00
1.00
1.03
1.13
1.27
1.57
1.90
2.27
2.66
3.08
3.53
4.02
4.54
5.08
5.65
6.26
6.90
7.55
8.24

- 94 >

(3)

Ra(L)

1.00
1.00
1.00
1.02
1.13
1.22
1.24
1.03
0.78
0.54
0.35
0.23
0.14
0.087
0.054
0.033
0.020
0.012
0.007
0.004

(4)
Ra(C)

1.00
1.00
1.00
1.03
1.13
1.23
1.23
1.03
0.77
0.53
0.35
0.22
0.14
0.084
0.051
0.031
0.019
0.011
0.007
0.004

(5)

R,(C>

1.00
1.00
1.00
1.02
1.13
1.26
1.57
1.90
2.27
2.66
3.08
3.53
4.02
4.54
5.10
5.66
6.27
6.92
7.56
8.29

< Sn

(6)

R*(C)

1.00
l.OO
1.00
1.02
1.13
1.27
1.57
1.90
2.26
2.66
3.09
3.54
4.04
4.55
5.12
5.68
6.30
6.95
7.61
8.33

- 118 >

(7)
Ra(C)

1.00
1.00
1.00
1.02
1.12
1.20
1.11
0.84
0.55
0.34
0.20
0.11
0.06
0.033
0.018
0.098
0.0053
0.0029
0.0016
0.0010

(8)

Rjo

1.00
1.00
1.00
1.02
1.12
1.20
1.12
0.84
0.55
0.34
0.20
0.11
0.06
0.033
0.018
0.0098
0.0053
0.0029
0.0016
0.0010

TABLE II : EXAMPLES OF NUMERICAL CALCULATIONS OF ry,a(Bn+E;J) FOR ?e-78
(BRINK-AXEL ESTIMATE).

E
(MeV)

0
0.001
0.01
0.1
0.5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(JMT)

182
182
182
187
208
237
307
382
491
607
742
894
1069
1266
1488
1737
2015
2324
2666
3043

<A->
180
180
181
185
206
235
304
388
487
602
736
888
1061
1258
1480
1728
2005
2313
2654
3030

it« -

241
241
241
243
255
276
333
409
503
616
747
898
1071
1268
1489
1738
2017
2326
2668
3045

285
285
285
285
289
302
348
417
507
616
744
893
1064
1260
1481
1729
2006
2314
2655
3032

182
182
182
187
208
236
283
300
287
256
217
180
148
]21
99
81
66
51
37
23

180
180
181
185
206
234
280
297
284
252
215
179
146
119
98
80
64
50
36
23

241
241
241
243
255
274
308
318
299
264
223
184
149
122
99
81
66
51
37
23

285
285
285
285
289
300
324
327
304
265
222
182
148
120
98
80
64
50
36
23
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TABLE I I I FLUCTUATION FACTORS F FOR 1-127 (J*.e=2+,0)

ACCORDING TO VARIOUS APPROXIMATIONS.

ELab

0.001
0.01
0.03
0.05
0.07
0.10
0.30
0.50
0.70
1.00

"EXACT"

FORMULA(12)

(SIMPSON)

0.6787
0.7296
0.7483
0.7609
0.7728
0.7690
0.8098
0.8449
0.8807
0.9175

"EXACT"

FORMULA(12'

(GAUSS)

0.6843
0.7313
0.7585
0.7685
0.7728
0.7722
0.8104
0.8449
0.8807
0.9175

"CAMERON"

) FORMULA(13)

(SIMPSON)

0.6787
0.7296
0.7478
0.7609
0.7671
0.7691
0.8647
0.9414
0.9711
0.9864

"CAMERON"

FORMULA d/|')

(GAUSS)

0.6843
0.7313
0.7581
0.7685
0.7671
0.7724
0.8676
0.9416
0.9711
0.9864

TABLE IV : INELASTIC SCATTERING CALCULATIONS
FOR Sn-118 AT 3 MeV.

LEVEL

FUND.
1°
2°
3°
4°
5°
6°
7°
8°
go

10°
11°
12°

<

(a)
H.F.

241
486
278
97
108
94

215
196
77
61
2

21
37

cWmb)
(b)
H.F.
(WFC)

536
386
229
74
98
80
177
162
71
47
2

20
35

>

(c)
MOLD.

434
420
246
82
101
85
190
174
73
52
2

21
36
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FIGURE CAPTIONS

Fig. 1 : Theoretical total cross-sections of Gd-156 calculated with
the same set of parameters, but assuming different approxi
mations for the optical potential representation.

Fig. 2 : Theoretical shape-elastic cross-sections of Gd-156 at 4 MeV
corresponding to the various cases of fig. 1.

Fig. 3 : Theoretical direct inelastic scattering angular distribu-
tions for Gd-156 at 1 MeV, according to different channel
coupling schemes.

Fig. 4 : An example of the effects of the "geometrical W.b ambiguity"
on the calculation of the inelastic scattering cross-sections.

Fig. 5 : Theoretical neutron capture cross-section of 1-127 according
to the "black nucleus" and the "cloudy crystal ball" model.

Fig. 6 : A comparison of the energy dependence of radiative (curve a)
and capture widths (curve b) calculated according to Brink-
-Axel and Weisskopf.

Fig. 7 : An example of the effects of the width fluctuation correction
factor on the theoretical radiative capture cross-section of
1-127.

Fig. 8 : An example of the effects of the optical potential parameters
on calculated inelastic scattering cross-sections of Cu-63.
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Fig. 5
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II-l. On the Calculation Methods

of the Neutron Capture Cross Sections

by

S. Igarasi, A. Mori* and K. Harada

Japan Atomic Energy Research Institute

Tokai-mura, Naka-gun, Ibaraki-ken

Some remarks on the nuclear model calculations of the neutron capture

cross sections are presented, on the basis of the optical model, statistical

model and coupled channel calculation model. Calculation methods on the

statistical model are discussed to obtain the total, elastic, inelastic

scattering and capture cross sections consistently. The cross-section formulae

with the level-width fluctuation and resonance interference are modified in

order to conserve the sum of the partial cross sections. Example are shown

on the cross sections of U-238. Effects of the competing process, that is

the fission cross section, are also discussed.

* Tokyo Institute of Technology
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1. Introduction

There have been many kinds of the nuclear models available for the neutron

cross-section calculations, in the energy region above resonance. The optical

ng
2,3)

model is used to obtain the total cross section, shape elastic scattering

cross section and total reaction cross section, and the statistical model

is applied to the neutron capture, inelastic and compound elastic scattering

cross-section calculations. Besides, we often use the direct and collective

interaction models for the high energy neutron cross-section calculations.

However, in the usual study of the nuclear physics, they are not necessarily

used by taking account of their mutuality.

An aim of this work is to make the sum of partial cross sections equal the

total cross section obtained from the optical model calculations, even if the

partial cross sections are obtained by using different kinds of the nuclear

model calculations. For the purpose of obtaining this equality, we have tried .

to modify the conventional neutron cross-section formulae in the framework of

the statistical model calculations, from the view point of the neutron cross-

section evaluation.

In section 2, conventional cross-section formulae will be reexamined from

the view point of the above mentioned equality of the cross sections. Discussions

will be given about the contributions of the competing processes, such as fission

and (n,2n) reaction. In section 3, modified neutron cross-section formulae

will be derived by taking account of the contributions from cascading process

and the competing process. Correction factors of the resonance level-width

fluctuation ' ' ' and of the repulsion effect ' will be introduced in our

modified formulae of the cross sections. In this report, we will treat the

cascading process in an approximate way. In section 4, we will show an example

of the numerical calculation for U-238 cross section, and discuss the contribu-

tions of the resonance level-width fluctuation and resonance interference. In

this report, we will try to unify the calculation methods of the neutron cross

sections, in the framework of the statistical model calculation. Though this

is a preliminary trial, it may be expected to develop a comprehensive and

convenient method for nuclear cross-section calculations.

2. Conventional Cross-Section Formulae

Total cross section is one of the most characteristic quantities in the

neutron induced reaction. It can be measured independently of partial neutron
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cross sections whose sum must be equal to the total cross section. The similar

situation holds in the theory. The total cross section can be obtained by the

optical model calculation which provides shape elastic scattering cross section

and total reaction cross section (formation cross section of the compound nucleus

+ direct reaction cross sections);

CTR =
(2.1)

whereAij is the cross section of the competing process mentioned in the previous

section. In general, partial cross sections Q*p - , Q ^ , » O^t V anc* ^ 0 *

in Eq.(2.1) are obtained by using the statistical model, direct and/or collective

interaction models, and are not necessarily calculated by taking account of

their mutuality, in the usual study of the nuclear physics.

From the view point of the neutron cross-section evaluation, it is desirable

that the relation described in Eq.(2.1) is strictly satisfied in the nuclear

model calculations. The neutron capture cross section, for instance, is calculated
3)

by using the following formula ,

/

2)

in the framework of the conventional Hauser-Feshbach theory . In Eq.(2.2),

a character "o" upon the neutron transmission coefficient I and the total

transmission coefficient J *" ' indicates the quantities obtained by the optical

model calculations. Two kinds of the gamma-ray transmission coefficients are
ON

defined as follows ,

and

(2.4)
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respectively, and the total transmission coefficient I includes only

T = A L,' + U (2-5)

Descriptions of the normalization coefficient V^o , profile function +,

and level density function 3r.C"0") will be given in later section.

Two quantities "T* and "T correspond to the gamma-ray transition

to the states below the neutron separation energy and to all the states available

for the gamma-ray energy. We define a quantity which represents the difference

between these two quantities;

(2.6)

This corresponds also to the sum of the neutron and gamma-ray emissions through

the cascading process from the compound nuclear states above the neutron separation

energy. If this quantity A\ is not zero, the relation given in Eq.(2.1)

is not satisfied formally, even in the energy region where 4 0 " does not con-

tribute. It is easily seen by looking at the formula for inelastic and compound

elastic scattering cross sections;

(2.7)

Summation of all the exit channels is not equal to the total reaction cross section;

(2.8)

L in a

proper way for satisfying the equality mentioned in Eq.(2.1). In the next section,

we will discuss this problem.

if Zi |y =p \J . Therefore, we must treat the quantity 4 L
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Moreover, we must consider the treatment of the competing process. In

general, the cross section A(j is able to include every partial cross section

which we cannot calculate by our cross-section formulae. One of these partial

cross sections may be the direct capture cross section , for instance. The

total reaction cross section Q ^ should include this partial cross section

whose transmission coefficients are not included in our cross-section formulae,

Eqs.(2.2) and (2.7). We assume here that the transmission coefficients for the

competing process are proportional to the ratio;

d —
and the total transmission coefficient with ( J , \\ ) is redefined as follows,

-r-Jir
This modified total transmission coefficient takes the place of j in Eqs.(2.2)

and (2.7). Thus, we are able to calculate the cross section including the

contribution of the competing process.

We mentioned above that the partial cross section A\J may be composed

of every available partial cross section, if there is no contradiction among

them. For practical purposes, some of them are the experimental data and the

others may be the calculated values obtained by an appropriate nuclear model

calculation. For example, we consider the direct capture cross section which is
9)

calculated by using the coupled channel theory . If we obtain the neutron

transmission coefficients in Eqs.(2.2) and (2.7) by the use of the spherical

optical model, our calculations would comprise some inconsistent components.

From the view point of the consistent nuclear model calculations, it is desirable

to carry out the calculations on the basis of the same fundamental nuclear model.

Though the generalized optical model ' is very efficient for investigations

of the nuclear physics, there are many problems to be solved in order to make use

of the model effectively to the cross-section evaluation work. In this report,

the spherical optical model is used as the basic model, but the essential points

of our discussion will not be changed even in the case of the generalized optical

model.
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3. Modified Cross-Section Formulae

In the previous section, we mentioned that the sum of the partial cross

sections is not equal to the total reaction cross section, in the framework of

the conventional cross-section formulae. In this section, we derive the modified

cross-section formulae, which take the place of Eqs.(2.2) and (2.7), by taking

account of the quantity A~X> given in Eq.(2.6). This quantity corresponds

to the sum of the neutron and gamma-ray emission through the cascading process

from the compound nuclear states above the neutron separation energy. The

contribution of the cascading process to each exit channel should be estimated

by using population probability ' ' of the intermediate states generated

by the cascading process. In this report, however, we try to formulate this

contribution in an approximate way.

We assume here that the contribution of the cascading process to each exit

channel is proportional to the branching ratio;

and

(3.2)

Here, the denominators in Eqs.(3.1) and (3.2) are the original total transmission

coefficients, but not the modified quantities, because the cross section A\J

is already given and the quantity A~"[v should be distributed among the

neutron and gamma-ray channels. Using Eqs.(3.1) and (3.2), modified transmission

coefficients are given for the neutron and gamma-ray channels respectively,

as follows;

T""
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and

<T"> =

It is easily seen that the relation given in Eq.(2.1) is satisfied by taking the

modified quantities "J1* > T w a n d T™ » instead of the original

quantities "f** , ~fjj*t, » and f ™ in E<ls' < 2" 2 ) and <2-7>> respectively.
Therefore, the cross-section formulae should be given as follows,

2 '5)
£—i O / ~T-JH \

3IJI \ I /
and

respectively, in the framework of the Hauser-Feshbach theory without resonance

level—width fluctuation correction.

It may be believed that the properties of the resonance level-width

fluctuation are not altered by the cascading process. Besides, the cross

section A O " i s already given independently of the resonance level-width

fluctuation correction. Therefore, the energy averages of the resonance

contribution can be written for the neutron and gamma-ray channels as follows,

and

(3.7)

(3.8)
/ T " 3 1 ) l x »»l
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respectively, where the correction factors of the resonance level-width

fluctuation r»\ are calculated by using the original quantities only.

Derivation of Eq.(3.8) is carried out by the use of an important relation for

the transmission coefficients;

X<tn>(i-Sl.)-o
This relation is rewritten for the original quantities and for the modified

quantities as follows,

> \ ( 3 1 0 )

respectively, where ^ is a quantity for the gamma-ray channel which should

be expressed by the use of the modified quantities, and is given as follows,

(3.12)

Our treatments mentioned above can be applied to the Moldauer theory ' ,

whose transmission coefficients are given by the following equations,

for the neutron channel, and
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for the gamma-ray channel, respectively. A quantity CJ represents the

resonance interference effect ' and is a function of the total transmission

coefficient given by the following formula

.31?
The quantity ^ I is replaced by a new quantity,

(3.16)

and the cross-section formulae are represented as follows,

gJ

(3.17)

and

3 1

(3.18)

respectively. Explicit representation of the correction factors of the resonance

level-width fluctuation is described as the following integral forms,

<^™ =\*t (3.19)
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for gamma-ray, and

for neutron, respectively.

In this section, we derived our modified cross-section formulae, Eqs.(3.17)

and (3.18), for the neutron capture, inelastic and compound elastic scattering.

Using Eqs.(3.9), (3.13), (3.14) and (3.15), it is easily seen that the relation

in Eq.(2.1) is satisfied by these cross-section formulae. In the next section,

we will confirm this result with numerical calculations.

4. Example of Numerical Calculation

In Table 1, we show an example of the numerical calculations for U-238,

5 (Sum) is provided for the sum of the partial cross sections O ^ V >

and A C ) > and column 7 is for the total cross section obtained with

the optical model calculation. Numerical values in col. 6 must be equal to the

values in col. 7. Results show that the equality is apparently satisfied.
13)

In this calculation, we adopted Kanda's evaluated values for the cross

section A Q ~ > which is the fission cross section in this case. In this

Table, we show the results for two examples. One is the calculation with the

resonance level-width fluctuation correction and resonance interference effect,

and the other is the calculation without the resonance interference effect.

The results of the former are shown in the upper line for each energy block,

and the results of the latter are in the lower line. The differences between

these two are due to the resonance interference effect, and are small in the

low energy region. In both cases, we normalized the neutron capture cross

section to the value, 0.637 barns, at 10 keV, with the width of 5%. Therefore,

these differences depend also on the difference of the normalization coefficient,

(J , used in Eqs.(2.3) and (2.4). Precise comparison should be performed

with the same normalization coefficient, but we do not discuss this problem in

this report. The coefficient C\ is given by using the observed gamma-ray

width and level spacing;

(4.1)
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where

23 il 27tT;obs,
4. -2(21+1) W

-p3TI -p.
It is also possible to use the theoretical values of | ̂  and Ujff ,

instead of the experimental data. In the calculation mentioned above, we

did not use these data, but normalized the cross section directly.

As for the profile function J\(£y) used in Eqs.(2.3) and (2.4), there

are two available types; Brink-Axel type ' and Lane-Lynn type . In thi

calculation, we adopted the Brink-Axel type tentatively;

fyea — .̂ Tt. -• ._ (4.3)

with tfc =13.6 and J» =6.0. In the evaluation or analysis of the

nuclear data, choice of the profile function as well as the values of the

parameters should be carried out after careful investigations about their

effects. In our preliminary investigation, there are little differences

between the cross-section values with the Brink-Axel type and with the Lane-

Lynn type.

In our calculation, we used the level density function of Gilbert-Cameron

type. For the compound nucleus, we used the function without spin cut-off
8)factor. Therefore, the level width of the gamma-ray channel is independent

of the spin and parity of the compound nuclear state. The values of the

parameters were taken from Gilbert-Cameron's recommendation, and the neutron

separation energy was adopted from the table compiled by Wapstra and Gove

For overlapping levels of the residual nucleus, we used the level density

function with the spin cut-off factor as well as the distribution function of

the parity which is defined as follows,
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where (Sl-ĵ  stands for the fraction of the discrete levels with parity 7C ,

and the parameters £ and ^ are given by the use of a joint energy £ x ,

at which the gas model and constant temperature model of the level density join

smoothly, and an energy P above which the levels are assumed to be over-

lapping;

T* t T , T \ / •*
(4.5)

and

(4.6)

In Fig. 1, we show several kinds of the partial cross sections of U-238.

The neutron capture cross section reveals two humps around 300 keV and 1.0 MeV.

The former is due to the p-wave neutron capture and the latter is caused by

the competition between the transmission coefficients for the gamma-ray and

the inelastic neutron channels. The gamma-ray transmission coefficient increases

rapidly above about 500 keV, and the transmission coefficients for the inelastic

neutron channels, especially for the overlapping levels of the residual nucleus,

become very large above about 1.0 MeV. Being due to this competition, the

neutron capture cross section decreases with increasing the neutron incident

energy, in the framework of the statistical model calculation. In general,

the contribution of the direct and/or collective capture processes play

a dominant role in the energy region above such energy as 1.0 MeV in this

example. We tried to estimate the direct capture cross section for single

particle El transition by using the adiabatic approximation of the coupled
9)

channel calculation ;

where J & and j \ ~ are spin and K-quantum number of the bound state respectively,

and
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According to our preliminary calculation, the partial cross section for each

single particle state was too small to be desired.

Finally, we show a comparison of the neutron capture cross sections obtained

by the use of the Hauser-Feshbach's formulae, Eqs.(3.5) and (3.6), and Moldauer's

formulae, Eqs.(3.17) and (3.18). In Fig. 2, we show two curves of the neutron

capture cross section normalized at 10 keV. The curve with the Hauser-Feshbach's

formulae reveals a rapid fall from several ten keV to hundred keV. This rapid

fall is reduced in the curve of the Moldauer's formulae. The curve of the latter

is apparently larger than the curve of the former, above about 50 keV. However,

if we use the same coefficient £ mentioned in Eq.(4.1) for both curves,

the situation of the two curves is upset. This is due to the effect of the

level-width fluctuation, which moderates not only the variation but also the

value of the neutron capture cross section.

5. Concluding Remarks

We derived the neutron cross-section formulae, by which we obtain the

several partial cross section whose sum is equal to the total cross section

calculated with the spherical optical model. The formulae are very useful for

1neutron cross-section evaluation work. Two quantities

an important role in our cross-section formulae which represent the effects

of the cascading and competing processes respectively. These two, however,

are treated only approximately in our formulae presented in this report. It

is necessary to look for the methods to obtain them reasonably, for the cross-

section calculations. In particular, theoretical treatment of Aft" is needed

in order to improve our present nuclear model calculations. One possibility

is to use the generalized optical model and to unify the statistical, direct

and collective model calculations.
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Table and Figure Caption

Table 1. Cross sections of U-238. "Sum" in col. 6 means the sum of O u V >

fV« , Q-. and 4 0 " • Values in col. 6 must be equal to the

values in col. 7, which are the values of the total cross section

calculated with the optical model.

Fig. 1. Partial cross sections of U-238. Cross sections of s-wave and p-wave

neutron capture are also exhibited.

Fig. 2. Comparison of the neutron capture cross section obtained with Eqs.(3.5)

and (3.17).
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Table 1

1 keV

lOkeV

lOOkeV

800 keV

1 MeV

2 MeV

0-n,r(b)
2.551 1
2.5668

0.66142
0.66388
0.18283
0.18353
0.1 5408
0.15274
0.16573
0.16231
0.060607
0.073002

Oil (b)
24.929
24.913
15.705
15.703
1 1.273
1 1.281
5.5616
5.7028
5.0192
5.1714
4.3605
4.4079

0|B (b )

0.38436
0.37473
1.5820
1.4422
1.8546
1.7058
2.2546
2.1948

ACT(b)

0.003

0.022

0.528

Sum
27.4801
27.4798
16.3664
16.3669
11.8402
11.8393
7.30068
7.30074
7.06153
7.06151
7.20371
7.20370

tftot. opt.
27.480

//

16.367
//

11.840
//

7.3007
//

7.0615
//

7.2037

1 st line : with fluctuation 8t interference.
2nd line • with fluctuation but without interference
Normalization at 10 keV , (Tn,r = 0.637 ± 5 %
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DISCUSSION

H. E. JACKSON, JR.: How sensitive are your results to the use of the

Brink Axel relationship for the transition strength?

S. IGARASI: I haven't investigated it in detail yet. As far as the

cross-section calculation in the low energy region is concerned, there

may be scarcely any difference between Brink-Axel form and Lane-Lynn form

of the profile function.
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II-2 . STATUS OF PREDICTIONS OF PHOTON STRENGTH FUNCTIONS

BY GIANT DIPOLE RESONANCE AND VALENCE MODELS"'

H. E. Jackson
Argonne National Laboratory, Argonne, Illinois 60439

The data available on the strength of radiative transitions from highly-

excited states in the threshold region are reviewed for nuclei from mass 50 to

250. Photon strength functions for El and Ml radiation resulting from measure-

ments of threshold photoneutron spectra, individual neutron spectra, and average

capture spectra are summarized. To date neither the single particle nor the

giant dipole model has given an accurate description of <F(Ei)>/D. However,

the precision of data on the magnitude and energy dependence of <T7(E1)>/P has

improved and systematic trends are emerging. Evidence for the importance of

single particle effects in the mass region A~90 are discussed briefly. Data

parameterized in terms of the giant dipole prediction appears to be the most

satisfactory basis for describing the systematics of <F(Ei)>/D in calculating

and evaluating gamma-ray spectra and production cross sections. Data for the
181reaction Ta(n,xv) are discussed. Use of the giant dipole model results in a

major improvement in the comparison of calculated and measured spectra.

*
Work performed under the auspices of the U. S. Atomic Energy Commission.
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I. Introduction,

The purpose of this paper is to review our present knowledge of

the strength of radiative transitions of highly-excited states in the threshold

region. The topic is one which has been actively investigated in neutron and

photonuclear physics for several decades. It is testimony to the difficulty

in obtaining and interpreting accurate experimental estimates that even now

our ideas are still in the formative stage. "We will compare the growing body

of data for dipole transitions which have been accumulated for a wide range

of nuclei with the predictions of various simple models of radiative transitions.

Our discussion will be restricted to the mass region, 50-250 where as a first

approximation we can rely on the statistical model of highly excited states for

a description of the properties of individual resonances. Under these assumptions

individual radiation widths should be distributed according to the Porter-Thomas

distribution. Resonance energies and spacings should be governed by well

established laws such as the Wigner distribution. Variations in local averages

of resonance in transition strength should be consistent with the random

fluctuations in level density and width characteristic of these distributions.

Under these conditions it is convenient to discuss the transition strength in

terms of the photon strength functions for the various multipole types of

transitions. For our discussion we define the strength function for multipole Mp

as the dimensionless ratio of the average width to the mean spacing of states of

the appropriate spin and parity: S(Mp) = < T . > / D. (*)

We expect the radiative strength corresponding to possible individual nuclear

configuration to be spread over excitation regions large compared to the level

spacing. In this case, any nuclear structure effects if important should manifest
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themselves in variations in the strength function with energy and the mass.

II. Single Particle Model.

The simplest and most widely used estimate of the photon strength

function comes from the single-particle estimate of radiative transitions due

to Weisskopf. In this calculation a one-nucleon transition between bound

single particle states is assumed. All wave functions are assumed to be constant

within the nuclear radius and zero outside. The resulting estimates are

. ( E l ) > /D = 6 . 8 x i O " 8 A 2 / V / D o

(2)

j,(E2)>/D = 4 .9x 10 A ' E / D

where D is customarily assumed to be a single particle spacing. The intro-

duction of this level spacing has never been put on a sound theoretical basis,

and over the years D has been treated as an empirical parameter which is

adjusted to give the best fit to available data.

However, the single particle estimate for El can be more firmly

established by using the connection between the strength function and the cor-

responding photon absorption cross section:

2 2
( cr ) = 2TT K g ( r .)/D . (3)

a Y1

For El radiation, the absorption cross section can be constrained to satisfy

the classical dipole sum rule:
oe
/ cra ' dE = . 060 NZ/A MeV barns . ( 4 )

0

It is reasonable in view of our knowledge of the systematics of the El giant

dipole resonance to assume that the upper limit of the integration is approximately

40 MeV. Using the mass and energy dependence indicated by the Weisskopf

expression in evaluating the sum rule leads to the relation:

= 8.8 X1O"9E3 A 2 / 3
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for a nucleus with A=160. This expression should be reasonable zeroth

approximation to the El strength function.

Fig. l i s a comparison of this single particle prediction with the

data available on <T .(El)>/ D. These data include results

from measurements of average capture spectra, resonance capture spectra,

and threshold photoneutron spectra. In compiling this data we required that

the number of resonances studied in any measurement be sufficient to suppress

the uncertainty imposed on the data by Porter-Thomas fluctuations. For this

reason there are fewer data points than have been included in earlier

compilations. The quantity plotted is actually the photon strength function

divided by the energy and mass dependence of the single particle estimate.

The solid line is the prediction based on the dipole sum rule. Clearly the

latter predicts values much too large. If we arbitrarily decrease the single

particle estimate by a factor of 3. 5 we obtain the dotted curve which is in

crude agreement with the data.. However, the discrepencies for the lighter

nuclei and the arbitrary character of the best normalization suggest that a

more refined model is necessary.

III. Giant Dipole Resonance,

OvF knowledge of the systematics of the giant dipole resonance

tell us that the single particle model with its uniform distribution of dipole

strength is c ompletely unrealistic. The situation is described in Fig. 2 for

a nucleus of mass « 190. Here the single particle dipole matrix element

is compared with the value implied by the empirically established Lorentzian

approximation to the giant dipole resonance. The natural refinement first

2 3
suggested by Brink and implemented by Axel was to use the systematics of
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the giant dipole resonance in heavy nuclei to predict the strength function in-

the threshold region. Two assumptionsare necessary. First, it is assumed

that the dipole strength in the threshold region can be described by the low

energy tail of the giant dipole resonance. This tail is then parameterized in

terms of the classical Lorentzian shape that is used to fit the main part of the

dipole resonance in the damped-harmonic oscillator model. The second

assumption pertains to the relationship between radiative transitions in photon

and neutron induced reactions. In (n, y) reactions transitions to a range of

final states occur while in the (y, n) reaction the transition always corresponds

to the inverse of the (n, y) ground state transition. The relationship between

photon strength functions for these two reactions is not evident. The usual

assumption is the Brink Hypothesis, namely that each excited state has

built on it the same giant dipole resonance as the ground state. This then

establishes the equality of the strength functions as observed in the inverse

reactions. This is indicated schematically in Fig. 3.

Following these assumptions Axel has used parameterization of

the giant dipole resonance that is applicable to a wide range of nuclei to develop

a relationship for the photon strength function expected to be accurate in the

threshold region:

( r )/D = 6.1 X 10"15 E5 A 8 / 3 . (6)

yO Y

E i s in MeV.

In Fig. 4 we have presented a summary comparison of El

photon strength functions parameterized in terms of the giant dipole model

with the predictions of Axel. The solid line is his prediction. The results

are very interesting. As in the case of the single particle model the overall
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agreement is poor. In the mass region between between 150 and 250 the

giant dipole model badly overestimates the El strength. Perhaps we

should not be surprised at this since only the order of 1% of the total El

strength as given by the classical dipole sum rule is expected to occur

below the threshold region. The Brink-Axel treatment may simply not be

capable of describing such detail.

IV. Nuclear Structure Effects.

At the moment the best strength function estimate appears to be

the "retarded" single particle value. This suggests that the radiative

strength be attributed to some residual single particle strength in the

4
threshold region. This possibility has been extensively discussed by Lynn

in developing his "Valence" approximation of radiative transitions. He observes

that the giant dipole resonance is customarily attributed to the residual inter-

action between an excited core nucleon and the nucleons remaining in a closed

shell. This interaction raises the energy of the shell-model excitation of the

core nucleons to the giant resonance region. However, the effect should not

be nearly as great for valence nucleons in partially filled shells. Consequently

the energies of valence transitions should be much lower than those

in the giant dipole resonance. Considerable support for this picture is found

in the recent results from resonance-capture studies of the Brookhaven group

in the mass region A = 90 to 100 where such valence effects are expected

to be particularly strong.

A prime candidate for investigation of the valence model is the

91
nucleus Zr which can be viewed as a single valence nucleon outside a

90 91
spherical Zr core, as shown in Fig. 5. The ground state of Zr can be

- 1 2 4 -



J A E R I - M 5 9 8 4

approximated by a pure 6.5/Z orbital, which can be connected by an El

transition to unbound p3/Z resonances. In the valence model, the transition

would be between the 3p3/2 and 2d5/2 single particle states. Using the

threshold photoneutron technique at Argonne we have investigated the El

strength for this nucleus. Because of the high level density we were able to

resolve the structure only within 225 keV of threshold, and over such a small

region of excitation we were not able to demonstrate the existence of any

3/2
intermediate structure. However, the 35 observed p resonances

represent a large enough sample for the study of the statistical properties

of individual radiation widths. For these widths, using the valence approximation

Lynn has established the relationship given in Fig. 5. The reduced width

2 2
factors, y and y measure the fractions of the appropriate single-particle

W LJL
91states contained in the resonance and ground states of Zr respectively.

As this equation indicates, the presence of a significant valence component

in the mode of excitation will give rise to a correlation between T „ and

2

y . This picture is strongly supported by the photoneutron data. The usual

statistical analysis gives a value of the correlation coefficient,between the

radiation width and neutron width, p = 0. 59. The correlation is clearly

evident in the observed statistical distribution. The analysis of the individual

widths was pursued under the assumption that the individual transition

amplitudes are a sum of a valence term and a compound nucleus term.

F + b (7 )
=v vo + by.

cmpnd nuc. \
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The results of this analysis are that the mean -width for the valence component

2 2
of I"1 , b Y =90 meV out of an average total width of 150 meV. Using

Lynn's approximation and the observed neutron widths we obtain an identical

2 2
b v , , = 90 meV. Such good agreement is probably fortuitous but

predicted

the results do indicate that valence transitions account for a major portion of

the El transition amplitude near threshold.

However, to date, the importance of such single particle effects

has been clearly established only for nuclei with A ~ 90 — 100 near the

3p peak in the neutron p-wave strength function. Such effects are also

expected to be important in the mass regions A ~40—65 and A ~j40 —180

where the neutron interaction is dominated by the 3s and 4s peaks in the

neutron strength function. Thus far, the evidence for valence effects in

these regions is conflicting.

V. Energy Dependence of < r (El) > / D

One might hope to gain further insight into the behavior of the

strength functions by studying their energy dependence. An extensive body

of information, particularly results from measurements from average capture

spectra has been accumulated. A representative case is shown in

8
Fig. 6 where the capture gamma-ray widths for Gd isotopes are compared

with the giant dipole resonance. The solid curve was calculated from the

measured parameters for the giant dipole resonance, but the vertical scale

has been adjusted to give the best fit with the data. The relative energy

dependence is in good agreement with the prediction based on the giant resonance

parameters, and clearly conflicts with the prediction of the single particle model.

This agreement is typical of a wide range of nuclei and is a compeling reason
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for not abandoning the Brink-Axel model in spite of its consistent overestimates

of absolute values of ( T (El)/D).

The other aspect of the energy dependence which should be noted

in this context is the evidence for a relatively localized but very dramatic

variation in (P .(El)/D) in the mass region Au-Pb. Bartholomew and co-workers

in a recent review report results of an extensive analysis of a wide range of

data which establish that there is a sharp break in (T (El))/D for nuclei in this
vi

mass range at about E =5 MeV. Below this energy it appears that Ei

transitions are severely inhibited.

Thus we find ourselves in something of a quandry as to

how best to describe the electric dipole strength function. While the

Brink-Axel model best describes the energy dependence, a somewhat

retarded single particle estimate gives the more reasonable variation with

atomic mass and better absolute values. I would suggest for the moment that

we continue to rely on the giant dipole model. The accuracy of the data on

El strength functions continues to improve. When existing data is parameterized

in terms of this prediction, as in Fig. 4, the suggestion of a trend begins" to

emerge. Perhaps eventually the El strength function will be described

satisfactorily in terms of a modified Brink-Axel model. In the meantime,

the model does offer a convenient parameterization into which to cast the

experimental data for use in the prediction and evaluation of gamma-ray

production cross sections.
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VI. Mi Transitions.

9
Previous estimates of the magnetic dipole strength function

have been made by using Eq. 6 together with the observed ratio of the

average widths for El and Ml transitions. Consequently the observation of

structure in the El strength function or deviations from the Brink-Axel

estimate, Eq. 2, will affect our estimates of the magnetic dipole strength

function. If we restrict ourselves to measurements which establish

absolute values, the information is indeed fragmentary. The results are

shown in Fig. 7. For the most part the data are consistent with the earlier

9
suggestion of Bollinger that the photon strength function be approximated by

_3
ig X 10 . This is roughly 10 to 20 times the single particle value. Strong

evidence for enhancement above this value exists for the Pb isotopes, as a

result of both electron scattering and photoneutron measurements . For

207
Pb the strength observed in the excitation region 7 — 8 MeV in the threshold

photoneutron measurements are consistent with the existence of the giant Ml

resonance resulting from the collective contributions of spin-flip transitions

between the i.o/o a n d Sl/Z n e u t r o n o r b i t s a n d between the h and

h . proton orbits. There is also evidence for strong Ml transitions in
9/2

the Ruthenium isotopes from recent resonance capture results of Chrien and

co-workers and evidence for an inhibition of Mi transitions in the Au-Ta

region (see Fig. 7). However with the exception of the Pb isotopes, it

has not been possible to establish a relationship between nuclear structure

and observed values of the Mi strength function nor to justify the background

_3
value 18 X 10 , which characterizes many nuclei. A major objective of

future work should be a systematic study of Mi strength over the periodic

table and a search for significant departures from this background value.
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181 ,
VII. Gamma Ray Production in Ta (n,xv).

I would like to finish by discussing briefly the application of data

on photon strength functions to calculations of the gamma-ray production cross

sections of 1 8 i Ta. It is clear from our discussion that for the present we

must rely on the normalization and energy dependence of the photon strength function

as measured for the same or neighboring nuclei in evaluating or predicting

gamma-ray production cross sections. Fortunately measurements of

13
average resonance capture have been made for Ta. Representative results

5
are shown in Fig. 8 . The E energy dependence characteristic of the

Brink-Axel model shown by the solid curves, is in accord with the spectra.

Unfortunately, to date, evaluations of gamma-ray production

14
cross sections have been based on simple empirical evaporation models

whose relationship to more basic nuclear parameters remains obscure.

7
However Bartholomew and co-workers studied the implications of fast

181
neutron gamma-ray production spectrum for Ta with regard to the photon

strength function. Although it was not their intention, the analysis of such

spectra in light of other more direct measurements of ( F(E1))/D was

already in a sense a data evaluation. They followed a fitting procedure which

utilizes a dependence of level density on excitation energy adjusted to agree

with values of the level spacing determined empirically just above the pairing

gap <~2 MeV) and at threshold. A best fit to the data is obtained by

varying the functional dependence of ( T(El))/D. Their results for 0.7 MeV

neutrons are shown in Fig. 9 where it is compared with the calculated tail of

the giant dipole resonance. The agreement with Brink-Axel hypothesis in this
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case is excellent. However, the energy dependence E < 2 MeV must be

excluded in,their spectrum fitting procedure.

The statistical model evaporation codes under development by

15
Gardner and co-workers represent a much more ambitious attempt to

calculate and evaluate gamma-ray production results. These routines

calculate complete gamma-ray spectra as well as production cross sections.

One of the principal difficulties to date has been that the calculated spectra do

181
not show enough high energy gamma rays. Fig. 10 shows in the case of Ta

the effect of replacing the usual Weisskopf estimate for El radiation by the

Brink-Axel values. In addition, variations were made in the level density

formula used. In this calculation, the full range of photon energies were fit.

Although the results are still not satisfactory, the higher power energy dependence

of the Brink-Axel model definitely does improve the fit into the experimental

data. This work is in a continuing state of development, and I believe we can

expect further improvement as our knowledge of the photon strength functions

evolves and is applied to these calculations.
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FIGURE CAPTIONS

Fig. 1 Average Values of El reduced widths. The solid line is the prediction

based on a normalization according to the dipole sum rule. The dotted

line represents an arbitrary normalization.

Fig. 2: Comparison of the square of the electric-dipole matrix element cal-

culated from the single-particle estimate, dashed line, and an assumed

Lorentz shape for the giant dipole resonance, solid curve (see reference

Fig. 3 Schematic representation of the Brink hypothesis. In the lower section

the heavy horizontal arrows indicate the magnitude of the photon strength

function, S;.

Fig. 4 Average Values of the El transition strength. The solid curve is the

prediction of the relationship due to Axel (ref. 3) given in eq. 6.

91
Fig. 5 Schematic of the Valence Model of E 1 transitions for Zr.

Fig. 6 Relationship of the giant dipole resonance to the El widths (ref. 8).

Fig. 7 Average Values of Ml reduced widths. The solid line is the empirical

approximation suggested by Bollinger, (ref.9 ).

Fig. 8 Energy dependence of the average intensities of transitions to individual
182

states in Ta. The dashed lines indicate the expected magnitude of

Porter-Thomas fluctuations.

Fig. 9 El reduced strength function for Ta according to Earle, Lane, and

Bartholomew (ref. 7). The dotted curve represents the tail of the

giant dipole resonance.

Fig. 10 Calculated gamma-ray energy spectrum produced by 1 MeV neutrons
181

on Ta, according to Gardner (ref. 15). Experimental data are

indicated by open circles.
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DISCUSSION

R. E. CHRIEN: There has been considerable evidence for enhanced E-l

transition strength in the A=90 region. We have studied p-wave neutron

capture and subsequent Y-decay in isotopes of Mo 92, 94, 96, 98 where the

d5/2 shell is filling. These nuclides show strong E-l strengths, considerably

greater than predicted by either valence or giant dipole resonance models.

Clearly the Brink hypothesis can only explain the photon strength function

in some average sense. Considerable structure in photon strength is

superposed on this giant resonance tail.
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II-3 Calculation of the Collective Radiative

Capture Cross Sections for 5-20 MeV Neutrons

Hideo Kitazawa and Nobuhiro Yamamuro

Research Laboratory for Nuclear Reactors, Tokyo Institute

of Technology, 0-okayama, Meguroku, Tokyo, Japan

Abstract: A volume type particle-vibration coupling Hamiltonian

in the collective radiative capture of fast neutrons is described

in terms of the collective variables for density vibration. This

Hamiltonian is compared with the ones of the surface and volume

types, respectively given by Clement et al. and Longo and

Saporetti. The closed neutron shell nuclei Ca, Sr, Ce and

Pb are chosen for calculation of the capture cross section and

capture y -ray spectrum. The excitation curves for 5-20 MeV

neutrons are calculated with these three Hamiltonians. Moreover

the partial cross section for radiative capture to each neutron
209single particle state of Pb is obtained for 5-20 MeV neutrons,

and the capture y -ray spectra in Ca, Sr and Ce for l4-MeV

neutrons. Consequently it is concluded that in the giant dipole

resonance energy region the profile of the capture T -ray spectrum

for the transitions to low lying states of a residual nucleus and

the capture y -ray yield and fairly well estimated by the collec-

tive capture model, using the volume coupling Hamiltonian and the

reasonable isospin potential depth 90-130 MeV, with the exception
40of the rather small one for Ca. With the surface coupling

Hamiltonian, however, a similar agreement between theory and

experiment is obtained only when a much larger value than the

experimentally predicted one is taken for the isospin potential

depth.
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1. Introduction

The radiative capture reactions by fast neutrons are inter-

esting sources of information on the structure of the highly

excited nuclear system. These reaction cross sections are

indispensable nuclear data for design of a nuclear fusion reactor,

Moreover, in the field of fast nuclear reactor technology there

is the practical need for estimation of the y -ray heating in the

blanket of reactors. In this case it is necessary to obtain

knowledge of the cross section and the y -ray spectrum for the

radiative neutron capture reaction, in the same manner as for

fission and for inelastic scattering.

The radiative capture of low energy neutrons mainly takes

place through the formation of a statistical compound nucleus.

However, the statistical theory is unsatisfactory for understand-

ing the mechanism of the radiative capture of neutrons with

energies greater than about 5 MeV. The discrepancy between the

theoretical and experimental results, generally speaking, is

remarkable in the radiative capture reaction of l4-MeV neutrons

by heavy nuclei. Lane and LynnCl] suggested that the radiative

capture of l4-MeV neutrons by heavy nuclei is dominated by a

direct capture process. But, the calculation with this model

gave a (p,r) reaction cross section below 20 MeV that is too

small by one order of magnitude C2J . To improve the situation a

semi-direct and a collective capture model were proposed by

BrownC33 and Clement et al. C4] , respectively. The radiative
o op.

capture cross section for 14-MeV neutrons of Pb has been

calculated by these models [53 • The calculated cross section was

smaller by a factor of 3 to k than the observed one. As a result

it was considered that this discrepancy for the semi-direct

capture model is due to the approximation in the schematic model

and that the discrepancy for the collective capture model is due

to the inadequacy of the particle-vibration coupling Hamiltonian

of the surface type. On the other hand Longo and Saporetti[6]

found an agreement between theory and experiment, using a volume

coupling Hamiltonian.

In the present paper we give a volume type particle-vibra-

tion coupling Hamiltonian which is described in terms of the
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collective variables for density vibration in the nuclear

hydrodynamic model. This Hamiltonian is compared with the ones

given by Clement et al. and Longo and Saporetti. Moreover the

validity of the collective capture model is investigated for the

radiative neutron capture reaction. The depth of the isospin

dependent part of an optical potential, that is the strength of

particle-vibration coupling, is also predicted from analyses of
4(3 88^ l4C> ^ 208_

the capture r -ray spectra for Ca, Sr, Ce and Pb.
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2. Theoretical foundation

In the case of the target spin 0 we calculate the radiative

neutron captui'e cross section and capture r -ray spectrum by means

of the direct and collective capture models <> The direct capture

process is an electric dipole radiative transition of an incident

nucleon from its free state in the nucleon potential field to an

unfilled single particle bound state of a target nucleus. In

the collective capture process the incident nucleon and the

target nucleus interact to give an intermediate state, in which

the former is in a single particle bound state, while the latter

is excited to its giant electric dipole state. The target

nucleus then decays by an electric dipole radiation,, The sche-

matic interpretation for these processes is given in Fig. 1.

The matrix element of an electric dipole transition for the

radiative capture process is given by

< v - r |
IX I I

•l±i±

where qr : , qr . , and m- ~ are the initial, intermediate and
X XIT^ I

final state wave functions, E R and /"L are the giant dipole
resonance energy of a target nucleus and its width, £t . and

-̂ -iJi
e . . are the initial and final state energies of an incidentf J f n t
neutron, and e and e are the incident neutron and target parts

of an electric dipole operator. The particle-vibration coupling

Hamiltonian H' couples the incident nucleon to the giant electric

dipole state of the target nucleus. The first and second terms

describe the direct and collective capture processes, respectively.

Clement et al.C43 have shown that the effective particle-

vibration coupling Hamiltonian for the dipole mode which leaves

the charge of the incident particle unchanged is given by

with
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h(r) =<^l^(r)|0>

(4)

P = 2±. ^ 5(r-r±), (5)

•where A, N and Z are the mass, neutron and proton numbers of the

target nucleus, P is the strength of the isospin dependent two

body force between the incident particle and the target nucleons,

r and r. are the position vectors of the incident particle and

the target nucleons, TJ is the separation vector of the centroids

of the neutron and proton systems, and r is the z-component of

the isospin of an incident nucleon. The vectors 0>and 1> are

the ground and giant dipole states of the target nucleus, and

a. are the collective coordinates. The function h(r) is the

radial form factor of the coupling Hamiltonian and normalized as

Jh(r)r3dr = 1. (6)

Using Eq, (2), Clement et al.C43 have introduced the particle-

vibration coupling Hamiltonian of the surface type, hereafter

referred to as "S", as follows:

" •

where v.. is the strength of particle vibration coupling and f (r)

is the distribution function of the nucleon density. The coupl-

ing strength is related to the isospin dependent part of an

optical potential, which is given by

where r and T are the incident nucleon and target isospins.

Here, we introduce a coupling Hamiltonian with a form factor

of the volume type. In the hydrodynamic picture[7 3 the proton

and neutron densities are given by
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(9)

P n

p n v '

where/' and p =(N/z)p are the proton and neutron equiliblium

densities, and 8 is the fluctuating part of the density,, The

fluctuating density for a dipole mode is given by

,
with 1^=2.0815/1*, where F^ is the normalization constant

j-. (iĉ r) is the spherical Bessel function, ICp. is the wave number

for the vibration of a dipole mode, R is the nuclear radius in

fm, and a, are the collective coordinates.

In Eq. (5)j we approximate the nucleon density operator by

the local isovector density

P = Pp -/>n • (13)

Consequently the radial form factor is given by

h(r) = FDPJ1(kDr)s(r), (ik)

where r ̂  R

S(r) =
l. 0 r > R

From Eqs. (2), (6) and (l4), the volume coupling Hamiltonian,

hereafter referred to as "V-l", is given by

V-. NZ r. 57
( ) ( ) ( )

with K=9,93l/R.

The dipole operatorsC43 are given by

-142-



JAERI-M 5984

e
t , 3-1 NZ
lft = const. + e(—)^ —

where e« is the effective charge (-Ze/kfor a neutron, Ne/A for a

proton)o The sum-rule for the dipole operator[8] in the case

when the transitions are concentrated in one state is given by

V
z

20 > = ̂ 7 -TZrd + 0.8x), (18)
NZ 2M

where x is the exchange force factor and taken to be 0.5«

On the other hand Longo and Saporetti[ 6 ~) proposed the volume

coupling Hamiltonian, hereafter referred to as "V-2", as follows:

,3.4- n r.a .
H' = (—)2 v -rf(r) — — * , (19)

k* 1 A<^> | | J

2
where < r > is the mean square distance of the nucleon's centre-

of-mass from the nucleus' centre-of-mass. They calculated the

matrix element between the ground and giant dipole states by

using the non-energy weighted sum-rule

< 0 | a
2 | 0 > = a -A.<r 2>, (20)

where a is the reduction factor which takes into account the

ground state correlation and estimated from the isospin splitting

of the giant dipole resonance. In the next section we investi-

gate on the validity of these coupling Hamiltonians S, V-l and

V-2.
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3. Calculations and discussions

LLO ft& T ZiO 2Oft

The closed neutron shell nuclei Ca, Sr, Ce and Pb

are chosen for calculation of the capture cross section and

capture y -ray spectrum. The neutron single particle states in

these nuclei are clear so that they are suitable for investigating

the validity of the collective capture model. The initial state

wave function is obtained with the optical potential

U(r) = -Vf(r)-iWg(r)-Vsoh(r)U.<7), (2l)

where ,

f(r) =
>

g(r) = -to-^r I 1 + exp(-~^-) |

h(r) = -£ -̂
1

R = r,- A

The potential parameters V, ¥, V , a, b and rQ are taken from

the work of Rosen et al.£9]. The final state wave function is

obtained with the nucleon potential of the Wood-Saxon type

V(r) = -Vn/jf(r) - Vsoh(r)U.«), (22)

where n, l and j are the quantum numbers of a neutron single

particle state. The radial dependence of the functions f(r) and

h(r) are taken to be the same as in the optical potential U(r).

The depth of the central part of the nucleon potential is adjusted

to give the observed value of the binding energy for the particu-

lar single particle state. The spin-orbit coupling potential is

determined to give the experimentally obtained energy splitting

of the centre of gravity of the neutron single particle levels

j=£-l/2 and j=^+l/2.

The giant dipole resonance energy and its width for the target

nuclei are taken from the experiments of photo-nuclear reactions
l4l

and listed in Table 1. The resonance parameters of Pr
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are used for Ce. The reduction factors et for Sr, Ce and

Pb are taken from the evaluation by LeonardiCll] and the one

ko
for Ca is calculated with the pure harmonic oscillator model.

3.1 2°8Pb(n,r)2°9Pb reaction

The radiative capture cross sections of Pb for 5-20 MeV

neutrons are calculated with three Hamiltonians V-l, V-2 and S.

The spin-orbit coupling potential depth is determined from the

energy splitting of the g-state. This value is taken to be 5>9

MeV for all final state wave functions. The characteristics of
209

the neutron single particle states of Pb are taken from the
OAQ

study of the (d,p) reaction of PbCl2D0 The spectroscopic

factors of all states except for the J-i r/p state are assumed 1.0,

The one for the j1_/„ state is taken to be 0.6.

The total and partial radiative capture cross sections are

shown in Figs. 2-6. The solid, dashed and dot-dashed curves are

calculated with the Hamiltonians V-l, V-2 and S, respectively.

The calculated cross sections are compared with the observed

ones[13,143 for 7-15 MeV neutrons. The isospin potential depth

is so determined that the total capture cross section calculated

for higher energy neutrons than the resonance energy agrees with

the observed one. The quantities v.. are obtained to be 130 MeV

for V-l, 110 MeV for V-2, and 240 MeV for S. It is not clear

which radial form factor is the most suitable. However, the

isospin potential depth obtained with the volume coupling

Hamiltonian, V-l or V-2, is consistent with the one predicted by

Greenlees and PyleC153. It seems that the disagreement between

the calculated and observed cross sections for 7-9 MeV neutrons

should be removed by taking a contribution of the statistical

process to this reaction into consideration.

3.2 lZ*°Ce(n,r)lIaCe reaction

The spin-orbit coupling potential depth is determined from

the energy splitting of the p-state to be 10.3 MeV» The charac-
l4l

teristics of the neutron single particle states of Ce are

taken from the study of the (d,p) reaction of CeCl63. The
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spectroscopic factors of all states are assumed to be 1,0, The

energy of the f ;. state is calculated with the potential depth

determined for the f7/2 state. Although the i ,„ state is not

identified by the (d,p) experiment, it is included in the calcu-

lation; the state is probable in the experiment and expected by

the shell model. The energy of the state is taken from the work

of Rigaud et al.[l73.

The capture 7 -ray spectrum for Ce with l4-MeV neutrons

and the excitation curve are shown in Figs. 7-8, The isospin

potential depth is so determined that the observed capture 7 -ray

spectrumC173 for the transitions to low lying states of Ce

agree with the one predicted by the theory. The quantities v

are obtained to be 100 MeV for V-l, 90 MeV for V-2, and 190 MeV

for S. A disagreement between theory and experiment is remark-

able for the lower energy 7 -ray spectrum. As reasons of this

disagreement, there are three posibilities; firstly that is due

to the contribution of the inelastic scattering 7 -rays resulted

in the energy broadening of 7 -rays in a detector, secondly due

to the contribution of other reaction mechanisms, and finally

due to neglecting the highly excited single particle states.

o o on
3,3 Sr(n,r) ?Sr reaction

The spin-orbit coupling potential depth is determined from

the splitting of the d-state to be 5-9 MeV. The characteristics
89of the neutron single particle states of Sr are taken from the

Q Q

study of the (d,p) reaction of Sr[l8] and from the study of

the (p,p) and (p,p') reactions of Sr[19]. The spectroscopic

factors of all states are assumed to be 1.00 The h. ,„ state

is included in the calculation, though this state is not observed

by the (d,p) reaction, as it is expected by the shell model.

The energy of the state is taken from the work of Rigaud et al <,
on

[201„ The capture r-ray spectrum for Sr with 14-MeV neutrons

and the excitation curve are shown in Figs„ 9-10, The isospin

potential depths are 110 MeV for V-l, 100 MeV for V-2, and 250

MeV for S.
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3.4 Ca(n,r) Ca reaction

The spin-orbit coupling potential depth is determined, from

the splitting of the p-state to be 7«5 MeVo The characteristics
klof the neutron single particle states of Ca are taken from the

study of the (d,p) reaction of Ca[21]. The energy of the f ,„

state nearly agrees with the value predicted by using the energy

splitting between the Pq/p a n d Pi/o states and by assuming the

f_ /2 - f./„ splitting to be proportional to (2.£.+l)C223 . Since

this state is difficult to observe by (d,p) experiments, it is

probable that some weak f. /„ states are missedC21] , The spectro-

scopic factor of the f_y. state is therefore assumed to be 1.0,

even though it is observed to be 0.5. The gQ/p state is not

clearly observed by the experiment. However, this state is

expected by the experiment or by the shell model.

The capture r -ray spectrum for Ca with l4-MeV neutrons and

the excitation curve are shown in Figs. 11-12. The isospin

potential depths are obtained to be kO MeV for V-l, 35 MeV for

V-2, and 80 MeV for S. A disagreement between theory and experi-

ment is remarkable for higher excitation than about 3 MeV in
kl

Ca. From a preliminary calculation we obtained a result that

this situation was fairly improved by including a contribution

of the statistical process.
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k. Concluding remarks

ho 88The depth of the isospin dependent potential for Ca, Sr,

Ce and Pb has been obtained from the analysis of radiative

neutron capture reactions by the collective capture model. The

results are shown in Table 2. These quantities obtained with the

volume coupling Hamiltonian are in the range of 90-130 MeV,
kO

except for the rather small one for Ca, and consistent with

the values derived from different analyses. Consequently it is

concluded that in the giant dipole resonance energy region the

profile of the capture r -ray spectrum for the transitions to low

lying states of a residual nucleus and the capture T -ray yield

are fairly well estimated by the collective capture model and

with the volume coupling Hamiltonian, V-l or V-2. However,

higher resolution measurements of capture T-ray spectra are

necessary for the detailed check of the radial dependence of the

coupling Hamiltonian.
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Table captions

Table 1 Giant dipole resonance parameters and reduction factors

used in calculations.

Table 2 Depth, of the isospin dependent part of an optical

potential obtained with three Hamiltonians V-l, V-2

and S •

Figure captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Schematic interpretation for the direct and collective

capture processes. The quantum numbers n, I and j

characterize the single particle state of a captured

neutron.

Total cross section for the Pb(n,r) Pb reaction.

Experimental points of the closed circle are taken from

the work of Bergqvist et al.[l33. These points are

obtained by the spectrum method, that is by integrating

r-rays with energies higher than the incident neutron

energy. Experimental points of the open circle are

taken from the work of Csikai et al„Cl43 and obtained

with the activation method. The solid, dashed and dot-

dashed curves are calculated with the Hamiltonians V-l,

V-2 and S, respectively.

Total cross section for the y -ray transition to the
20Q

g9/2 ground state of Pb. Experimental points are

taken from the work of Bergqvist et al.[133. The solid,

dashed and dot-dashed curves are calculated with the

Hamiltonians V-l, V-2 and S, respectively.

Total cross section for the r -ray transition to the
209i-. /„ state of Pb. Experimental points are taken

from the work of Bergqvist et al.Cl3]. The solid,

dashed and dot-dashed curves are calculated with the

Hamiltonians V-l, V-2 and S, respectively.

Total cross section for the r -ray transitions to the
209x-.t./r) and d^/p states of Pb. Experimental points

are taken from the work of Bergqvist et al.[13].
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The solid, dashed and dot-dashed curves are calculated

with the Hamiltonians V-l, V-2 and S, respectively.

Fig. 6 Total cross section for the 7 -ray transitions to the
209

g /_ and d /_ states of Pb. Experimental points are

taken from the work of Bergqvist et al.Cl3^. The solid,

dashed and dot-dashed curves are calculated with the

Hamiltonians V-l, V-2 and S, respectively.

Fig. 7 Spectrum of7 -rays from the radiative capture of lh.O6-
i4o

MeV neutrons by Ce. Experimental points are taken

from the work of Rigaud et al.[l73. The solid, dashed

and dot-dahsed curves are calculated with the Hamiltonians

V-l, V-2 and S, respectively. The arrows indicate the

centres of gravity of neutron single particle levels in
141

Ce. Gauss distribution with FWHM=2 MeV is used as

the response function of a 7 -ray detector.

Fig. 8 Total cross section for the Ce(n,r ) Ce reaction.

An experimental point is taken from the work of Rigaud

et al.[17]o The solid, dashed and dot-dashed curves are

calculated with the Hamiltonians V-l, V-2 and S,

respectively.

Fig. 9 Spectrum of 7 -rays from the radiative capture of lk.06-

MeV neutrons by Sr. Experimental points are taken

from the work of Rigaud et al.[2C0<, The solid, dashed

and dot-dashed curves are calculated with the Hamiltonians

V-l, V-2 and S, respectively. The arrows indicate the
centres of gravity of neutron single particle levels in
89

Sr. Gauss distribution with FWHM=2 MeV is used as

the response function of a ?--ray detector.

Fig. 10 Total cross section for the Sr(n,r ) Sr reaction.

An experimental point is taken from the work of Rigaud

et al.[- 2CM . The solid, dashed and dot-dashed curves

are calculated with the Hamiltonians V-l, V-2 and S,

respectively.

Fig. 11 Spectrum of 7 -rays from the radiative capture of l4-MeV
4oneutrons by Ca. Experimental points are taken from

the work of Cvelbar and HudoklinC23]. The solid,

dashed and dot-dashed curves are calculated with the

Hamiltonians V-l, V-2 and S, respectively. The arrows
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indicate the centres of gravity of neutron single

particle levels in Ca. Gauss distribution with

FWHM=2 MeV is used as the response function of a r-ray

detector.
^0 / \ 4l

Fig. 12 Total cross section for the Ca(n,^) Ca reaction.

The solid, dashed and dot-dashed curves are calculated

with the Hamiltonians V-l, V-2 and S, respectively.
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Table 1

^°Ca
88Sr

l 4 0Ce

208pfc

%
(MeV)

19-8

16.7

15.4

13.6

(MeV)

4.50

4.20

3.90

3.78

a

0.50

0.35

0.27

0o24

Table 2

4°Ca
88Sr

l 4 0Ce

208pb

V-1

4o

110

100

130

vx (MeV)

V-2

35

100

90

110

s

80

250

190

240

Direct

Collective

OvvJ j cz> \

Iiutiai

Fig. 1
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DISCUSSION

R. E. CHRIEN: Does your calculation include the interference between

collective and direct reaction mechanisms?

H. KITAZAWA: Yes.
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III-l. Optical Model Analysis for Fe

Hisao Yamakoshi

Ship Research Institute, Ministry of Transport, Japan

1. Introduction

Among optical potentials ever proposed, one may regard

Engelbrecht-Fiedeldy* s optical potential as a potential being

applicable to more wider energy range than the Perey-Buck
(2)

potential. (Hereafter, "E-F potential" will be referred to

as abbreviation of Engelbrecht-Fiedeldy potential.) The E-P

potential is based essentially on the non-local theory.

The energy dependence of well depth parameters in the E-F

potential is so determined as to give the consistent results

with those obtained by Moldauer's local potential at low energy

limit (zero energy), and to explain the behaviour of total cross

section in high energy region (30 150 MeV) very well.

Consequently, the E-F potential is supposedly applicable to

analyses of total cross section and elastic scattering cross

section over a wide energy range. As is shown in Table 1,

this widness is characteristic to the E-F potential.

The E-F potential, however, still seems to be inadequate for

explaining experimental data on polarization and angular

distribution of elastic scattering of neutrons. It may be

possible to say from Fig. 1 that Rosen s potential and
, (5)

Becchetti-Greenlees s potential are superior to the E-F

potential in explaining whole behaviour of experimental data

on polarization for Fe at 24 MeV. From Fig. 2 for angular
56

distribution of elastic scattering of neutrons from Fe at

All calculated curves fluctuate so violently around 25

degrees that detail of fluctuation is omitted in Fig. 1
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14.5 MeV, it may be also possible to say that at large

scattering angle the E-F potential yields an angular distribution

fluctuating too much around experimental data- The inadequacy

suggests that there is a room for improving the E-F potential.

In improving the situation, value of the radius parameter in the

spin-orbit term of the E-F potential can be chosen independently

of that in the volume term.

This recipe leads to new set of parameters plausible for

explaining experimental data on angular distribution of elastic

scatteting and polarization for Fe, without harming applicability

to the experimental data on neutron strength functions, total and

elastic scattering cross section so much.

2. Potential Parameters

The E-F potential can be expressed as follows:

VCr) = -CVo+iW*)^ Cr)-i¥sf2Cr)-VsoCt/mnc) (1/r) df-, /dr

where

f.j '.r) * C1+exp(Cr-Ro)/a-j ))-1,

Co

f2Cr) = (4 expC(r-Rs)/a2))/(1+exp((r-Rs)/a2))2,
-4 9

Yo = 46-0.25E (MeV), W% = 0.125E-4X10 X E (MeV),

Ws = 14-0.2E (MeV), Yso =0.7 (MeV),

a-, = 0.62 (fm), a2 = 0.5 (fm),
- 1/3 _ 1/3

Ro = roA or Ro = rv+roA ,

Rs = rsA or Rso * rs+roA ,

ro = 1.317 (fm) or rv = 0.6 (fm),

rs = 1.447 (fm) or rs = 1.1 (fm), . ro = 1.16 (fm)

In the present study, expression of the spin-orbit term is

altered into the following expression;
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• C1/r> |d f 3 /d r |* C3^)

where

f3 Cr) = C1+expCCr-Rso)/a3)) ,

Rso = "rsoA or Rso = rso+roA ,

According to preliminary parameter study, one can explain

behaviour of experimental polarization data for Fe very well

by choosing appropriate values for following parameters;

"rso, &2 > Vso, "rs and ro

By taking account of results of preliminary parameter study and

of values given by various authors, following range of values

seems to be plausibble:

U317 > rso >. 0.9, 1 . 0 > ^ >0.1,

7 > Vso > 5, K447.> ~rs 1 1.332

1.317 > "ro > 1.254,

3« Calculated Results

3-A. Polarization of Scattered Neutrons at 24 MeV.

As a result of analysis at 24 MeV, it turned out that neutron

polarization depends mainly on parameters "rso and ap. As is

shown in Figo 3. the peak of calculated curve around. 30 degrees

decreases once as the value of the parameter rso decreases but

again increases slowly. Judging from comparison of calculated

curves with experimental results, desirable value of a 2 is

expected to be around 1.0.

Pig 4. shows that the valley around 50 degrees becomes

shallower and the peak around 60 degrees becomes lower as the

value of the parameter a decreases. Figures 5-1 to 5-3 shows
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how changes the shape of polarization curve with changing the

parameters Vso, ro and rso. In general spealing, (1) the

peak around 60 degrees becomes lower with the value of Vso

decreases, (2) smaller value of ro makes the peaks around 30

degrees and 60 degrees higher, and the valley around 50 degrees

shallower besides being shifted towards larger angles, and O )

as the value of rs decreases, the peaks around 30 degrees and

60 degrees become lower and the latter is shifted towards

larger angle.

Taking account of above mentioned behaviour, it can be said

that preferable parameter set is expected to be in the following

regxon:

i , , ^ 1 . 0 7 , Vso~6 ,

1.254 ^ r o <, 1.286, 1 . 3 3 2 ^ rs iLi .390.

3-B Neutron Strength Functions

Calculated neutron strength functions are shown in Table 2

together with used values of parameters. Strength functions

ST T are calculated by the relation:
JJ , O

SL ,J= U - U - T ^ j ^ / U - V ^ ^

where the quantity T̂  j is calculated by computor code ELLIESE-III

The quantity VT is calculated by the following expression in terms

of nuclear radius R multiplied by wave number K of incident

neutron ; KR.

VT = PT(KR)/KR
L L C8), C9)

where P is penetrabili ty for L-wave neutrons, and

R = (1 .23A(/<^ +0.8) fm,
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]/ - 3
K = 2.19685CA/A+1) E^Cev) 10 ,

Po = 1 ,
2 2

P. = CKE) /C1+1.KE) ) ,
4 2 4

P2 = (.KR) A9+3CKR) +CKR) ),

Strength funtion averaged over J is calculated by the relation:

<ST> = <.L*ST T . /2+CL+D'ST T.1/2)/t2L+1).
I1 L,L-1 JJ,JJ+I

As can "be seen from Table 2, calculated S-wave strength

function So is independent of values of parameters in the

spin-orbit term, while calculated P-wave strength function S-.

depends on values of parameters in spin-orbit term as well as in

volume and surface terms.

Experimental value of S-wave neutron strength function for
56 - 4 ( 1 0 >

Pe is 4X10 . Comparing this experimental data with

the calculated value of S-wave strength function in Table 2,

one can obtain following parameter region in which preferable

parameter set for S-wave strength function may be found:

0 . 5 ^ a a ^ 0 . 7 , 1.254^ ro <- 1.317,

1.390-<- rs <_1.447.
56

Experimental value of P-wave strength funtion for Pe is
-5 (11)

about 1X10 . By comparing the experimental data on P-wave

strength function with calculated value in Table 2, one can

obtain following parameter region in which desireble parameter

set for the P-wave strength function may be found:

0.5^- a 2 ^ 0.7, r o ^ 1

On assumption that desirable parameter set for the P-wave

strength function should be also found in the parameter region
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for the S-wave strength function.

3-C. Angular Distributions of Elastic Scattering

By comparison of calculated angular distribution with
U 2 ) U5)56

experiment for Fe at 14.5 MeV, it can be said that value of

parameter a z must be about 0.7 (.See Pig. 6-1 6-3). These

figures seem to show that the choice of 0.7 for the parameter

a is rather independent of any combination of values of

parameters ro, rs and Vso.

Prom Pig. 7 and Pig. 8, it can be said that preferable

parameter set (.for explaining angular distribution of elastic

scattering at 14.5 MeV) is expected to be in the following

rigion:

1.332-S-rs -<-1.390.

As is shown in Pig. 7, angular distribution of elastic

scattering at 14.5 MeV is insensitive to the choice of the

value for the parameter Vso. Since the value 6 is chosen for

the parameter Vso as preferable value in explaining experimental

polarization data at 24 MeV, one may also fix here the value 6

for the parameter Vso.

Pig. 9 shows angular distribution at 7.55 MeV.

Prom figures 7, 8 and 9, one can expect that preferable parameter

set in explaining the angular distributions of elastic

scattering is :

rsocr 1.317, rs ^ 1 .332,
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3-D Total and Elastic Scattering Cross Sections

The calculated total and reaction cross sections at 14.5

MeY are given in Table 3 together with used values of the

parameters. In Table 4, the calculated total and elastic

scattering cross sections at 7.55 MeV are given. The calculated

total elastic and inelastic scattering cross sections at 1.5 MeV

are tabulated in Table 5.
U 6 )

At 14.5 MeV, experimental value by Kinney and Gwin is 2.6
56

y0.05 b for total cross section of Fe. Therfore, according

to Table 3, preferable parameter set is expected to be in the

following region:

rso£^1.07, a 2 ^ 0.7, roc^1.317,

1.332^- rs •£-1.390, 5 ^ V s o < 6 .

At 7.55 MeV, experimental value of 3.5+0.04 b is reported for

total cross section by Kinney and Gwin. According to Table 4,

preferable parameter set is expected to be in the following region;

rso 1.07, a2 0.7, ro 1.317,

1.390 rs 1.447, 6 Vso 7.
C17)

If Foster's data of 3.3 b is adopted in stead of Kinney and

Gwin's data, preferable parameter set is expected to be in the

following region:

rso = 1.07, a 2 — 0 . 7 , 1.286 ̂  ro -̂  1 .31 7,

1.332 <- rs ̂  1.447, 5

As to elastic scattering cross section at 7.55 MeV,
U 8 )

experimental value of 1.8+0.1 b is reported by Holmqvist.

Table 4 suggests that if the Holmqvist's data is taken into

account, one should use more larger value to the parameter
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a2 than the value of 0.7.

As to total cross section at 1.5 MeV, available experimental

data are those obtained by Carlson and Cerbone, Smith and Jones.

These experimental data have fluctuation around the energy 1.5

MeV. Each author s experimental data is averaged over energy

region from 1.0 MeV to 2.0 MeV to obtain averaged total cross

section at 1.5 MeV. As an averaged value, (. 3.3+0.1)b may be

deduced as total cross section at 1.5 MeV. Assuming the value

0.7 for a 2 and the value 1.07 for rso, one can expect that

preferable parameter set is in the following region:

1.286<. ro £ 1.317, 1 .390 <. rs ̂  1 .447,

6 <_ Vso <- 7.

As to elastic scattering cross section at 1.5 MeV,
, C22)

experimental cross section is deduced from G-ilboy s data at 3.0

MeV, 2.0 MeV and 1.0 MeV. Elastic scattering cross section at

these energy points are (.2.0+0,05) b, <.2.24+0.05)b, (.2.02+0.05)b

respectively. Prom these data, experimental cross section at

1.5 MeV is deduced to be C2.12+0.11)b. The error of 0.11 b

seems to be too large to select appropriate parameter set from

Table 5. If experimental error is assumed to be 0.05 b, the

value of the parameter rs should be smaller than 1.447 fm

obtained by E-P in the case of ro = 1.317 and a2 = 0.7.

In the case of ro 1.286, value of parameter rs should be

smaller than 1.390. In the case of ro 1.254, value of

parameter rs could be equall to 1.332 at most. This tendency

of the parameter rs seems to be contradicting with that found

for other quantities. Thus, in this paticular case of elastic
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scattering cross section at 1.5 MeV, the value 0.5 seems to be

more plausible for the parameter a , so far as it concerns with

comparison between, calculation and experiment.

3-E. Excitation Functions for Inelastic Scattering of Neutrons

Inelastic scattering cross section for the first excited

level of Fe at 0.845 MeV by 1.5 MeV neutron is also tabulated

in Table 5. In Fig. 10-1 and 10-2, excitation functions of

inelastic scattering calculated for the first and second excited
C22) — 1 2 5 )

levels are compared with experimental data. In these figures,

calculated results with the E-F potential and with the most

preferable parameter set are shown by broken lines and broken

lines with dots, respectively. Here, the most preferable

parameter set is as follows:

ro = 1.254, rs = 1.390, Vso = 6,

a o =0.7, ~rso = 1 .07.

3-F. Cn,p),(n,oQ and Cn,2n) Reaction Cross Sections at 14.5 MeV

The (.n,p) ,(n,o<) and (n,2n) reaction cross sections through

compound process are calculated at 14.5 MeV with the compound

nucleus formation cross section or in Table 3. The cross

section aQn,x) is expressed as

cKn,x)/or = Fx/SFi,
i

where funtion Fi are given by

Fi = kgimi EaiCE)WiCUi)dE,

W(U) = C exp(2/aU).

In the above expressions, quantities aiCE), gi and mi
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are the inverse reaction cress sections, statistical weight

factor determined "by spin of emitted particle i and the

reduced masa, respectively. The quantity Wi(Ui) is the level

density of the residual nucleus at excitation energy Ui given by

Ui = En+Q(n,i)-E.

where En is the incident energy in center of mass system and

Q(n,i) is the Q-value for the (n,i) reaction. The upper

limit of the integration is the maximum energy available to

the emitted particle i and is given by

Emax = En+Q(n,i).

In performing the integration, energy dependence cf the

crosti section oi(E) for charged particle emission is assumed

C26)

to be:

ci(E) = aod-Bi/E) for E>Bi,

= 0 for E <Bi.

while for neutron emission, variation of the cross section

oi(E) with energy is ignored. The quantity Bi in the above

expression is effective coulomb barrier and is given by
Bi = ki Vi,

(27)
where ki i s a coefficient varying with atomic number Z, and Vi

is expressed as follows:
1/3

Vi = 1.019CZ-D/CA +1) (MeV), for i = p ,

= 2.038(Z-2)/((A-3)1 /3+4 ) (MeV), for i = oC.
(26)

Integration gives following expressions for csoss sections;

a(n,p)/ar = IpeDP/T/0+I e
P

Dp = Q(n,p)+<5T-5R-Bp,

Ip = 1-C1+E /T) e~EinP
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Emp = En+Q(n,p)-Bp,

a(n,o()/cjr = 2IKe /(1+Ipe p ) ,

D* = Q(n, )+<5T-
<5R-B0,,

Ioc = 1-(1+EmK/T)e""
Emoc/T,

Emoc = En+Q(n,cx)-Boc,

a(n,2n)/ar = (1-(1+(En-Sn)/T) e ^ )/(1+Ipe P ) ,

where Sn is neutron seperation energy of target nucleus.

Using following values to various quantities in above

expressions:
(27)

En = 14.244 (MeV), Kp = 0.647,
(28) (27)

Q(n,p) = -2.9191 (MeV), K = 0.881,
(28)

Q(n, ) = 0.3220 (MeV), 5™ = 1.54+1.27 (MeV) for (n,p)
(29)

Sn = 11.2027 (MeV), <5R = 0 (MeV) reaction

T = 1.5833 (MeV), 6m = 1.54+1.27 (MeV) for (n,oQ >
T I (30)

(5R = 1 .35+1.30 (MeV) reaction J

one obtains following results for branching rations:

aCn,p)/ar = 0.09385, a(n,oC) /ar = 0.01381,

a(n,2n)/ar = 0.51729.
Kinney has reported that experimental value of total

cross section for Pe at 14.5 MeV is 2.6+0.05 b. As to

experimental value of (n,p) reaction cross section for ]?e at

14.5 MeV, Kanda and Nakashima have deduced it to be 106+12 mb

by evaluation of existing experimental data.

Experimental value of elastic scattering cross section has

been reported by Coon et ax. for natural iron at 14 MeV to

be 1.14+0.06 b. From behaviour of elastic scattering cross

section for iron around 14 MeV, one may expect quite the same

value at 14.5 MeV. As to experimental value of (n,2n) reaction
56 C 320

cross section for Fe, Ashby et al. have reported fne value
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0.5+0.04 b at 14 MeV. Judging the behaviour of (n,2n) reaction

cross section for isotopes of Al and Cu, a more larger value is

expected at 14.5 MeV.

By using obtained branching ratios and or in Table 3, one

can calculate tn,p), (.n,o<) and tn,2n) reaction cross sections at

14.5 MeV.
3

Considering that values of (n,r), (.n,d) ,(n,t) and Cn, He)

reaction cross sections are negligibly small at 14.5 MeV, one can

estimate inelastic scattering cross section ain by following

approximation;

ain ̂ a t o t - o e l - a(n,p) - aCn,oc) - aCn,2n).

As to elastic scattering cross section, experimental value of

1.14+0.06 b seems to be fairly small in comparison with calculated

result by using the E-F potential. This experimental

value is in good agreement with those values for smaller value

of ro in Table 3. Experimental value of 106+12 mb for Cn,p)

reaction cross section corresponds to value of or ranging from

1257 mb to 1002 mb. On taking account of this range of the

cross section, one can see from Table 3 that preferable value of

a is found to be in a region from 0.3 to 0.5.

The E-F potential yields following results:

atot = 2.6183 b., ael = 1.3171 b., atn,p) = 0.1221 b.,

aCn,oO = 13.8 mb., a(n,2n) = 673.1 mb., ain = 492.2 mb..

while, one of preferable parameter sets:

ro = 1.286, rs = 1.390, "rso = 1.07,

Vso = 6 , a = 0.7.
2

gives following results:

atot = 2.5337 b., ael = 1.1844 b., aCn,p) = 0.1226 b.,

a(n,oQ = 18.6 mb., a(n,2n) = 698.0 mb., ain = 472.4 mb..
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By comparing these results for the two parameter sets with

experimental values, it can be said, that the latter parameter

set yields fairly good agreement with experimental results and

that one can use the parameter set in stead of the E-F set.

4. Discussion

From comparison "between experiment and calculation for

angular distribution of elastic scattering at 14.5 MeV, the

value 0.7 seems to be more suitable for the parameter a^,

although the value 0.5 has been used in the E-F potential.

This is also supported by S-wave strength function and total

cross section. Experimental data on polarization at 24 MeV

seems to insist on some value at most 0.5. But assignment of

the value 0.7 is possible by choosing values of other parameters

properly.
(8)

So far as one uses penetrabilities for square well potential,

experimental P-wave strength function requires quite a large

value for channel radius parameter, as large as 20 percent more

than 1.25 fm.

Elastic scattering cross section measured by Goon et a l . at

14 MeV seems to be rather small. From experimental data

at 14 MeV and 14.5 MeV for oCn,p) and cKn,2n) preferable parameter

region cannot be found except the parameter a^. This is due to

large experimental error for these cross sections.

As a final conclusion, the most preferable parameter set for
56

Fe is determined to be

rso = 1.07, rs = 1.390, ro = 1.286,

ap= 0.7, V s o = 6 .

on balance of contradicting requirements to parameter set deduced
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from experimental data except for that on inelastic scattering.

The cross section of total inelastic scattering at 14 MeV

has been reported as 1113+149 mb by Fujita et al. while the

present calculation gives 470/^490 mb. However, it seems to

be not clear whether the experimental value includes contributions

not only from inelastic scattering but also from Cn,2n) reaction.

If the experimental value is considered to be the cross section

for neutron emission, present calculation seems to give rather

consistent result.
56

As to calculated excitation curves on Pe, it seems that

the most preferable parameter set explains experimental data

fairly well as a whole, although there is a tendency of slight

over estimation of excitation function in low energy region from

0.845 to about 2.0 MeV. This tendency may be relieved by

taking account of the Moldauer effect.
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Knftelfcrecht - Piedeldy Type with following parameters:
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Fig. 1 Percent Polarization at 24 MeV

In case of F.ngelbrecht-Fiedeldy' s parameter set

r s 0 = 1.317 ?0 = 1.447. 7s = 1.317 1̂ = 7

»2 = ° '5

56E1 X , 57KaGV, 5 8 C O * , 58An (

»o°L
1.0 0.6 0-2

Fig. 2 Differential Elastic Scattering Cross Section at 14.5 MeV
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Fig. 3 r s 0 Dependence of Percent Polarization

80

at r s 0 = 1.317

Fig. 4 a 2 Dependence of Percent Polarization
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Table 1 Comparison of Potentials and Potential Parameters
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Applicable Energy

Optical Parameter

Volume Part

Vo (MeV)

U0 (MeV)

ro (Fermi)
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table 2-1 Strength Functions Estimated at 10 eV
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Table 2-2 Strength Functions Estimated at 10 eV
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Table 3, Total, Elastic and Reaction Cross Sections at 14.5 MeV ( in mb )
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1.144X103

2.575x103

1.299xl03

1.276xlO3

2,640xl03

1.258X103

1.382x103

2.808xl03

1.276xl03

1.532xlO3

-H CO t ^
CO f l -O O

2.568xlOJ

1.728x103
or 0.840xl03

2.5O9xlO3

1.379x103

1.131xl03

2.512xlO3

1.251xl03

1.26 lxlO3

2.652xlO3

1.J97X103

1.365xl03

2.712XKT

1.206xl03

1.506xl03

Jt 2.580X103

Je l 1.716xl03

Jr 0.846X103

2.554X103

1.397X1O3

1.147xl03

2,565xl03

1.289xlO3

1.277X103

2.630xl03

1.248X103

lo382xl03

2.799xlO3

1.267xlO3

1.533xl03

o

o t 2.577X103

a e l 1.728xlO3

ar 0.849xl03

2.503X103

1.368x103
1.135xl03

2.504X103

1.241xlO3

1.263xlO3

2.553X103

1.187xl03

l,366x!03

2.704X103

1.198X103

1.5O6xlO3

m
O

o t 2.323xl03

1.430xlO3

or O.893xlO3

at 2.150xl03

2.387xlO3 2.449X103

1.286X103 1.209X103

1.102X103 1.241«">3

2.284xl03 2.360xl03

a e l 1.377xlO3 1.2O2xlO3 1.140xl03

ar 0.773X103 1.082xl03 1.220xl03

2.534X103

1.184xl03

1.349xlO3

2.452X103

1.126xl03

l,326x!03

2.718xl03

1.216xlO3

1.502xl03

2.644xlO3

1.167xlO3

1.447xlO3
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0
- H
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a2 = 0.1

2.350xl03

ae l1.486xl03

°r

at

O.864xlO3

2.206xl03

a e l1.420xl03

°r

a t

° e l

°r

°t
a e l

Or

a t

0.786xl03

2.371X103

1.452X103

0,919xl03

2.223 xlO3

1.417xlO3

0.806X103

2.293X103

o e l1.458xl03

°r

°t
a e l

0.835xl03

2.130X103

1.378X103

O.752xlO3

Table 3 (

a2 = 0.3

2.353xl03

1.250xl03

1.103xl03

2.241X103

1.159xlO3

1.082X103

2.407xl03

1.288X103

1.119X103

2.310X103

1.206X103

1.104X103

2.334X103

1.248X103

1.085xl03

2.215xl03

1.155X103

1.060xl03

continued )

*2 = ° '5

2.357X103

1.145xlO3

1.230xl03

2.274X103

1.070xl03

1.203X103

2.453xl03

1.204X103

1.249xlO3

2.368X103

1.137xl03

1.231xlO3

2.370xl03

1.150X103

1.220xl03

20264xl03

1.072X103

1.191X103

a2 = 0.7

2.437X103

1.107xl03

1.330X103

2.343X103

1.043xl03

1.300X103

2.531X103

1.178X103

1.353xl03

2.452xlO3

1.122X103

1.331X103

2.438X103

1.113xlO3

1.325xl03

2.340X103

1.046X103

1.293X103

a2 = 1.0

2.602xl03

1.132xlO3

1.470X103

2.518X103

1.079xl03

1.439X103

2.713xlO3

1.210X103

1.503xl03

2.642xlO3

1.163X103

1.479xl03

2.606X103

1.138X103

1.468X103

2.519xl03

1.083xl03

1.436xl03
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vso r*0

Table 4» Total and Elastic Cross Sections at 7,55 MeV ( in barns)

a2=0.1

3.967

2.871

a2=0.3

3.759

2.506

a2=0.5

3.613

2.232

a2=0.7

3.558

2.071

a2»1.0

3.611

1.965

t - t^

to *>- 0
7
0 o t 4.031

a e l 2.895

3.801

2.518

3.642

2.235

3.578

2.069

3.625

1.962

r. ^ o a t 3 « 9 6 6

CO t O © — •) QCT

3.759

2.497

3.618

2.224

3.564

2.063

3.618

1.960

*. "" °. apl 2.818

3.511

2.478

3.591

2.215

3.549

2.059

3.610

1.958

to co « o o 2.865
3.694

2.488

3.539

2.196

3.474

2.012

3.510

1.885

t~- N o
-H to r-
to co >o o

at 3.940

2.953

3.656

2.499

3.493

2.189

3.419

1.983

3.435

1.830

t-
to

O

CO
o at 3.820

a e l 2.825

3.646

2.468

3.515

2.186

3.462

2.007

3.505

1.883

1.
31

1.
28

6
1.

25
4

1.
28

6
1.

25
4

1.
28

6
1.

25
4

28
6

1.
33

1.
39

0
1.

39
0

1.
33

2
1.

33
2

1.
39

0
1.

39
0

3
3

2

V) tO
CVJ to

1.
07

0
1.

07
0

1.
07

0
1.

07
0

1.
07

0
1.

07
0

1.
07

0
1.

07
0

,0
70

"t
ael

a e l

CTel

CTel

a e l

a t
CTel

a t
CTel

a t
a e l

2.906

3.698

2.848

3.547

2.553

3.547

2.849

3.434

2.568

3.553

2.783

3.444

2.513

3.698

2.921

3.545

2.617

3.605

2.476

3.526

2.348

3.355

2.192

3.392

2.307

3.230

2.145

3.454

2.325

3.307

2.178

3.462

2.332

3.275

2.161

3.467

2.177

3.398

2.087

3.240

1.964

3.285

2.040

3.118

1.902

3.365

2.076

3.219

1.957

3.319

2.053

3.140

1.911

3.406

1.976

3.353

1.931

3.221

1.839

3.250

1.871

3.100

1.764

3.338

1.925

3.211

1.834

3.267

1.880

3.112

1.771

3.430

1.826

3.416

1.829

3.316

1.767

3.311

1.756

3.192

1.683

3.410

1.826

3.312

1.764

3.318

1.761

3.198

1.687
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Table 5-1 Total , Elastic and Inelastic Cross Sections at 1.5 MeV (in barns)

CO M"

r-
r-t
CO

CO

CO

I- O

CO CO vO

co

a2 = 0.1

a t 3.9942

oei 2.9980

a i n 0.5416

at 4.2174

CO

oo

00
CM
CO
CO

o

•

1
.0

7
0

o
o
•

o

*

1
.0

7
0

1
.0

7
0

o

0

1
.0

7
0

1
.0

7
0

o
o

CTel

a i n

o t

° e l

a t

°el

" in

°t
a e l

° in

°t

I"'
« t

aifl

a t

° e l

< în

a t
a e l
ain

°t

CTin

a t

a i n

3.1736

0.5849

4.2645

3.1961

0.6272

4.2548

3.1730

0.6720

4.4360

3.4743

0.5309

4.4881

3.5505

0.4885

4.3868

3.4151

0.5818

4.4280

3.4783

0.5435

4.2888

2.9564

0.8337

4.7804

3.5863

0.5503

4.7834

3.5265

0.7887

a2 = 0.3

3.3989

2.1957

0.7172

3.4747

2.2381

0.7376

3.5086

2.2532

0.7538

3.5371

2.2652

0.7687

3.5532

2.2497

0.7840

3.6941

2.3178

0.8189

3.5821

2.2616

0o8003

3.7238

2.3290

0.8375

3.6700

2.2720

0.8270

3.6143

2.2811

0.7588

3.8355

2.3268

0.8806

a2 = 0.5

3.2823

2.1296

0.6745

3.3206

2.1492

0.6842

3.3340

2..1547

0.6907

3.3448

2.1590

0.6963

3.3388

2.0924

0.7347

3.4451

2.0793

0.8035

3.3522

2.0982

0.7411

3.4615

2.0866

0.8109

3.4208

2.1474

0.7433

3.4387

2.2116

0.7030

3.5057

2.0962

0.8202

a2 = 0.7

3.3554

2.2002

0.6633

3.3778

2.2118

0.6685

3.3827

2.2135

0.6714

3.3866

2.2148

0.6739

3.3540

2.1154

0.7107

3.3952

2.0493

0.7800

3.3499

2.1178

0.7129

3.4032

2.0534

0.7830

3.4047

2.1808

0.7035

3.4457

2.2587

0.6752

3.4314

2.0830

0.7762

a2 = 1.0

3.6911

2.4446

0.7086

3.7025

2.4513

0.7107

3.7029

2.4509

0.7115

3.7038

2.4508

0.7125

3.5964

2.3161

0.7288

3.5543

2.2027

0.7717

3.5976

2.3168

B.7294

3.5564

2.2044

0.7721

3.6194

2.3668

0.7106

3.6476

2.4299

0.6876

3.5655

2.2397

0.7533
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O M
11 II*

O O
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ro v>

oo

o

« Ot 4.8458

^ o e l 3.6 927

2 o i n 0.4702

c t 4.5845

o e l 3.1561

ain 0.8721

o t 4.8260

a e l 3.6116

a. 0.5510
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oo

t 4.3638

3.2147
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Table 5-/(continued)

a2 = 0.3 a2 = 0.5

3.6583

2.2597

0.7789

3.7305

2.3015

0.8440

3.6452

2.2937

0.7682

3.5749

2.2849

0.8612

3.4424

2.1086

0.7586

3.4418

2.1565

0.7507

3.4537

2.2177

0.7083

2.3765

2.0825

0.8114

a2 = 0.7

3.4191

2.1263

0.7337

3.4142

2.1852

0.7070

3.4533

2.2623

0.6777

3.4184

2.0767

0.7723

"2 = 1

3.5704

2.2881

0.7230

3.6226

2.3686

0.7117

3.6506

2.4316

0.6882

3.5614

2.3373

0.7523

. 0
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DISCUSSION

P. RIBON: The problem of uniqueness of parameters is a very frequent

problem in nuclear data evaluation. In the conclusions of your abstract,

you expose that you obtained several parameters sets providing satisfactory

explanation of experimental data. Can you comment about the origin of

these different sets, and how it would be possible to select the best one.

H. YAMAKOSHI: Prior to answer the question, the following may be

mentioned in order to note on criteria imposed on calculated nuclear data

to check if a given set of parameter values is plausible or not. The

criteria in this study consists of experimental data for following items:

Angle dependence of percent polarization at 24 MeV, total and elastic cross

sections at 14.5 MeV, 7.55 MeV and 1.5 MeV, angle dependence of elastic

differential cross section at 14.5 MeV, 7.55 MeV and 1.5 MeV, neutron

strength functions for s-wave and p-wave and excitation curves for

inelastic neutron scattering up to third level.

Now, cause of existence of several plausible parameter sets can be

ascribed to following two reasons. (A) Experimental data for each item

has uncertainty in its value because of experimental error. (B) For

monotonic change in value of a parameter arbitrarily chosen in parameter

space, experimental data in some items persist that value of the parameter

in certain range can explain experiments well, while experimental data in

another group of items persist that value of the parameter in quite other

range can explain experimental data well. This sort of inconsistency is

one of the causes of the possibility of existence of several plausible

parameter sets.

As a significant example, just take a_ dependence. In accordance with

increase of a« value from 0.1 to 1.0, calculated s-wave strength function

has a tendency of decreasing from value far larger than experimental value

to value smaller than experimental value. This situation suggests that

possible a~ value lies between 0.5 and 0.7, while comparison between calcu-

lated and experimental data for angular distribution of differential elastic

scattering at 14.5 MeV suggests that possible a? value is between 0.7 and

1.0. Similar discussion for total cross section at 7.55 MeV yields that

possible a_ value is between 0.3 to 0.5, while for total cross section

at 14.5 MeV, possible a_ value is between 0.7 and 1.0. Besides, p-wave

strength function suggests that possible a? value is between 0.1 and 0.5.
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As a whole, judging from experimental error for each item, it is

possible to say that the most plausible value of a_ is around 0.5. One

cannot also beat the case that the most plausible value of a~ is around

0.7. One confronts to similar situations for other parameters.

Thus, it is possible to say that there are several recommendable

parameter sets for Fe calculation in addition to the set shown in the

text. The most plausible parameter set should be chosen from more global

view point. That is, the most plausible parameter set should explain

experimental data on the average over medium weight nucleus region. Even

if a parameter set explains experimental data for Fe, it is not always

true that the parameter set can explain experimental data for other nucleus

well.
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III-2. OPTICAL MODEL CALCULATIONS

AT

RENSSELAER POLYTECHNIC INSTITUTE*

Jose' M. Sierra and Paul J. Turinsky#

Department of Nuclear Engineering

Rensselaer Polytechnic Institute

Troy, New York, USA 12181

ABSTRACT

Experimental evidence of deep minima in the p-wave neutron

strength function about mass numbers 55 and 160 has been studied

via optical model calculation. By employing a spherical optical

model with an angular momentum dependent (JL) imaginary potential

strength \\j\f ), a global optical model parameter set has been

determined which accurately predicts the s and p-wave neutron

strength functions and potential scattering radius over mass num-

bers 40-240. Extension of the angular momentum dependent optical

potential to coupled-channel calculations treating 0 -2 collective

state coupling, improved the agreement between prediction and ex-

perimental data. The valuesW^ =|2MeV andW = l.5MeV̂ employed in the

calculations indicate that p-wave neutrons effectively interact

less weakly than s-wave neutrons with the target nucleus.

* Research supported by the USAEC under Contract AT(ll-l)-3058.

#Present Address: Senior Engineer, Westinghouse Electric Corporation
Nuclear Center, Box 355
Pittsburgh, Pennsylvania, USA 15230
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I . INTRODUCTION

High resolution neutron interaction experiments have made availab]

n-wave neutron strength function (Sf) values, in addition to refined

s-wave neutron strength function ( S o ) and potential scattering radii

( R ; values, as a function of mass number (A;. Experiments conducted
(l_j

at the RPI Linear Accelerator Laboratory and other facilities re-

vealed strong minima in O^ , where at A=55 and 160 values of ^ H X I O
-5

and -'N-iXlO were observed, respectively.

This new data on 5?^ hr s regenerated an interest in the ability

of optical model calculations to simultaneously accurately predict ^

S, and R versus mass number A from 40 to 240. Previous work per-
(2) (3) (4-5-)

formed by P§rey-Buck, Moldauer, and by others on obtaining a

global optical model parameter set was biased towards simultaneous

fits to $ 0 and rs versus A, since scarce data existed on o^ values.

With interesting S^data available, we have attempted to obtain a

global optical model parameter set with as few additional free para-

meters that also accurately predicts *~>. versus A, in addition to $ o

and K .

II. ANGULAR ?;efr;£NTtIM IN-:)£lJaI-j:)iiKT U>T1CAL MOLJiiL

Restricting our discussion to low energy neutron interactions,

the basis of optical model calculations is that the interaction of

the incident neutron and target nucleus can be modeled by a complex

central potential, hence, the optical model SchrodingerTs equation

becomes
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where

Physically the real potential accounts for shape elastic scattering;

whereas, the imaginary potential accounts for excitations of the target

nucleus which would generally remove the incident neutron from its

entrance channel and lead to resonance behavior. Hence, the magnitude

of Vj- (In./ can be internreted as the entrance channel removal inter-

action strength exerted between the incident neutron and the target nucleus.

Noting the simplicity of the Hamiltonian operator in Eq.

the incident neutron.rs wave function xtT^is easily numerically deter-

mined. We have employed the ABACUS II computer-code for the numerical

determination of \itf~J . Once having determined this wave function,

the energy averaged neutron total, shape elastic and removal cross

sections can be computed. Alternately, the neutron strength function

and potential scattering radius values can be evaluated, where as

usual, we define the angular momentum dependent (y.) strength

function by
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and notential scattering radii by

( 3 ;

f?' = lira / < ^ 7 ^ ( 4>

with

(5)
...statistical spin factor,

...neutron penetration factor

for x-waves,

... neutron wave number,

... channel radius,

... average neutron total width for

angular momentum x. and total

momentum J,

... average resonance spacing for

total momentum J,

... shape elastic neutron cross section
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It is recognized that the potential scattering radii can be associated

with hard snhere elastic scattering interaction; whereas, the strength

function indicates the target nucleus strength to enter into resonance

reactions with either s or p-v/ave incident neutrons.

Having defined SQ t S*and R and indicated they can be obtained

from the model systems wave function, j.(f) »we now consider the con-

struction of the optical potential, V ^ ) P ( M ( / . As usual, we express

VQp (I'">J as the sum of the potential well and spin-orbit real

terms plus an imaginary term, hence

The real form functiont T , has generally been" chosen to reflect the

target nucleus nucleon density via the Saxon-iVood1 s form

-1 (?;

which we have also employed.
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By contrast, several imaginary form functions, Q , have been em-
u

ployed in the past, in particular Moldauer employed a shifted Gausian

form given by

on 1 P /r-R-M37

and Perey-Buck, ourselves and others have used the ^axon-Wood1s

derivative form

(9;

where r\ = )f̂  H . It will be noted that the only quantum number

dependence of the chosen optical potential is contained in the spin-

orbit potential via {VSSLJ . Theoretical calculations do indicate

considerably more quantum number dependence, but to minimize the

number of unknown optical parameters to be determined there is a

strong incentive to ignore this fact. We refer to the proposed poten-

tial as the angular momentum independent spherical optical potential,

Having specified the angular momentum independent optical model

form, we ha.vQ attempted to determine a global optical model parameter

set which simultaneously predicts values of ̂ , ^ , a n d R over the

mass number range A=40-240 consistent with experimental values. We

were particularly interested in predicting the recently observed

deep; minima i n 5 ^ about A=55 and 160, Table I presents the optical

parameter set we thus determired and contrasts our set to optical

parameter sets proposed by Ferey-Buck and Moldauer.
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J.

It should be recalled that both of the previous works were primarily

concerned with predicting 0 0 and K , since little data on o* was

then available. In Figures (1-3.) values of O 0 » O< , and K versus

mass number A are presented respectively, as calculated by Perey-Buck,

Moldauer and our work and experimentally determined. Moldauer pre-

dicts O Q very accurately; whereas, our work underpredicts the O 0

minima due to our heavy bias on accurately predicting S i . Figure (2;

reveals that indeed we have improved unon former works in predicting £

versus A, particularly in the deep *3. .minima. It is quite surprising

that Moldauer's work predicted the deep S ^ rainima about A=55 before

any strong supporting experimental evidence. Finally, Figure (3;

clearly illustrates the trouble we encountered in accurately pre-

dict ing K in' conjunction with ̂ ?o and O ^ . '.Vith considerable effort

expended on obtaining a global optical parameter set that simultaneously

predicts o0 , *S* , and R versus A and the poor results indicated in

Figures (1-3.), we concluded that the employed angular momentum in-

dependent spherical optical model was inadequate.

III. ANGULAR .VĈ -HMTTM \)EPENDJ£rT OPTICAL JMODHL

Concluding that an angular momentum dependent spherical optical

model was required, we have attempted to construct such a model ivith

a minimum of additional unknown optical • oaraineters. ''ith b-ound state

calculations indicating only a iveak dej^endence jjother than S]:.in-orbit

forcej of the real potential, MJWJ^ U o n t n e ho'ind state pariicle anf-

ular momentum, we chose to place the LO^al angular noi-ientun dependence

of the optical potential on the imaginary term,
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To minimize the additional number of optical parameters introduced,

angular momentum dependence was restricted to the potential strength,

hence

Vr tin; — ~n w ĉr (10;

(7-8;

Theoretical derivations of the ontical potential indicate ang-

ular momentum dependence, but liitle information exists to support

the form we have assumed.

The pronosed angular momentum dependent snherical optical potential

was then employed to obtain an associated set of global optical para-

meters which would simultaneously predict S"o , 'S* , and f\ from A=40-240.

Table II presents the values we obtained, and contrasts them (Table I) to opt-

ical parameter values obtained fcy Perey-Buck andMoldauep. it; i s noted that

our real potential employs a smaller diffusness length, Ccpe , implying

a sharper nucleon surface. In contrast to previous work which has

chosen to restrict Q^^Ct-Op > w e have chosen CL&^QT^ • l'lie imaginary

potential sha^e emnloyed by i'oldauer and our work were found very similar,

even though different imaginary form functions, (3 , were employed.
V

Most interestingly, we determined W=15ri1eVand \V ~ i#5 rlsv . The

ontimum value of \A/ to employ was found not very uniquely specified,

but all acceptable values of\Jv were considerably smaller than \A/ . : '̂s

conclude from the large magni^rde of \\fj /"\A/ ) that s-wave neutrons

effectively interact with the target nucleus nuch S:.ror.f:er than p-v:ave

neutrons.A theoretical derivation of the optical potential in a (2

paticle-i-hole; basis is underway to determine whether a simple mech-

anism for this behavior can be identified.
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Values of S o , ^ ^ , and j\ versus mass number A are presented

in Figures(4-6) using the angular momentum dependent spherical

optical model. The simultaneous fit to these three quantities is

very accurate over a majority of the mass number range. As illustrated,

calculations using the ABACUS Ilcomputer code were performed at three

different neutron energies, revealing thecare that should be exercised

in interpreting the adequacy of the fit in the energy sensitive strength

function peaks. For certain mass number ranges where either $ 0 or o*

reach maxima or minima, agreement between prediction and data is less

(2)

adequate. Following the work of Perey-Buokv 'we attributed this disa-

greement to be due to the presence of low lying collective target nucleus

states which could easily be excited by the incident neutron. With

our spherical optical model not modeling such collective state excit-

ations, we extended our angular momentum dependent optical model to

coupled-channel calculations anticipating improved agreement in pre-

dicted and measured S o » ^ ^ » and R values.

Briefly reviewing the basis of coupled-channel calculations and

employing Lhe notation of Tamura . the coupled-channel model Schrodinger

equation is given by

en;
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where I denotes the incident neutron coordinates and C the collective

target nucleus coordinates. Now the collective target nucleus wave

function, Q/T" M satisfies the Hamiltonian

Js C12;

for intrinsic momentum jw and projection P1h for energy state Tl . The

solution of the collective state Ha.miltonian equation is well known for

vibrator and rotator states and tot ally specified by the excitation

energy, U/w , and deformation parameter, p> , associated with each state.

VJ
Thus by expanding the total j-y;-tem wave function, j^ , in the coll-

ective state basis, &q. (11) can be numerically solved from

which energy averaged cross sections, ̂ >6 , ̂?j_ , and R values can be
(9)

determined. The JUPJ.TER computer code Was used for these calculations.

We recognize that *S^ , *S* , and R values are not only sensitive

to the optical parameter set employed, but also the parameters specifying

the collective states. In our calculations, the collective state

parameters are not free to choose but set to values determined in fitting

other data (electromagnetic transition strengths, etc.).

Restricting our coupled-channel calculations to O * 2 , target

nucleus collective states, uo , *SA , and R were computed employing

the angular momentum dependent optical parameter set previously given

in Table II. The excellent results are presented in Figures (4-6).

Both the vibrator srate splitting of the *5 0 peak about A=150 and

minima filling about A=100 and 240 are accurately predicted.
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Figure (5) illustrates the excellent prediction of the deep S- minima^

where the presence of vibrator states is noted to fill the O* minima

about A=160 which does not contradict the existing data. Of particular

interest is the *S. peak about A=100. Contradicting experimental evidence

as to whether this ^>. peak is split has once again appeared. Both

our spherical and collective optical model calculations do predict split-

ting. To help understand the mechanism of this splitting, in Figure (7;

the P^and P '^ strength functions are nresented as calculated by the

spherical and collective angular momentum dependent optical model.

The spherical optical nodel results indicate that the split S,, peaks

u or p /oC

states, hence caused by the spin-orbit force. However, when the presence

of collective states is modeled via coupled-channel calculations, no

such unique identification is Possible. Finally, the scarce data on

the potential scattering radii is seen in Figure (6; to be accurately

fitted via coupled-channel calculations employing the angular momentum

dependent optical model.

Having demonstrated that a -set of global optical parameters exists

for the proposed angular momentum dependent optical model that accurately

predicts *SO , *S. , and i\ from A=40-240, we have employed this model

to also compute the energy averaged total neutron cross section. Indeed

from a practical viewpoint, we are most interested in obtaining a model

that accurately predicts cross sections for use in reactor Physics

calculations. Figure (8; contrasts predictions of the total neutron

cross section energy averaged about 100 keV; obtained by Jrerey-Buck and

our work for bo^h the spherical and collective models. Our work predicts

considerably more structure than Perey-^uck s work, which the data

weakly supports.
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Both models fail to correctly predict the total cross section peak

about A=150, caused by the split S o peak. To study the energy

sensitivity of our model, the energy averaged total neutron cross

section was calculated and contrasted to experimental data in Figure (9

at 30, 100and 300 keV. As in the previous figure, the data has con-

siderable scatter but does indicate the expected trend of increased

total cross section peaks with decreasing neutron energy due to single

^article binding. The previously discussed total cross section peak

about A=150 is noted to be quite energy sensitive in our calculations,

hence difficult to accurately predict. Scatter of data does not enable

us to make a firm statement as to che adequacy of our angular momentum

optical model in computing the energy averaged total neutron cross sec -

lion, but we can conclude that general trends are adequately predicted.

IV CONCLUSION

Our work has indicated that an angular momentum (JL) dependent

ontical model employing a global optical parameter set is required to

simultaneously and accurately predict ^ , ^ i » and R versus mass

numbers A=40-240. We have chosen the angular momentum dependence of th<

optical model to be totally contained in the strength of the imaginary

potential, W pother than snin orbit forcel . Extending this model

to coupled-channel calculations, the fine structure of ^ , <S * and

R have been accurately predicted. The large magnitude of ( W V

obtained in this work indicates that s-wave neutrons effectively intera

much sironger than -vwave neutrons with the target nucleus, i'heoretica
(8)

calculations employing a (2 particle-1 hole-* basis are in progress to

possibly determine the mechanism of this interaction strength phenomina
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FIGURE CAPTIONS:

Figure (1)

Figure (2)

Figure (3;

Figure (4;

Figure (5)

Figure (6;

Figure (7;

Figure (8)

Figure (Q-»

The s-\vave neutron strength function as calculated by
the angular momentum independent spherical optical model

The p-v:ave neutron strength function as calculated by
the angular momentum independent spherical optical model.

The potential scaitering radius as calculated by the
angular momentum independent spherical optical model.

The s-wave neutron strength function as calculated by
both the angular momentum dependent spherical and col-
lective state optical model.

The p-vvave neutron strength function as calculated by
both the angular momentum dependent spherical and col-
lective state optical model.

The potential scattering radius as calculated by both
the angular momentum d pendent spherical and collective
state optical model.

*The p * and P neutron strength functions as calculated
by both the angular momentum dependent spherical and
collective state optical model.

The energy averaged total neutron cross section at 100
keV as calculated by both an angular women turn independent
(^erey-Buck^ and dependent (Ri-IJ spherical and collect-
ive state optical model.

The energy averaged uotal neucron cross section at 30, ±QQ
and 300 keV as calculated by both the angular momentum
dependent spherical and collective state • .pf-ical model.

TABLE CAPTIONS

Table (I)

Table (IT;

The angular momentum independent optical parameter sets
employed by Ferey-^uck, Moldauer, and ourselves used to
obtain results shown in Figures (1-3).

The angular momentum dependent optical parameter set we
employed to obtain results shown in Figures (4-9;.
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DISCUSSION

P. RIBON: By increasing slightly the number of adjusted parameters,

you have been able to improve the fit to data that you have considered;

but do you know which are the consequences for other data such as polarization?

R. BLOCK: No, we do not as yet. As I mentioned in this talk, this

study had a limited objective of fitting S_, S and R' data. No comparisons

have been made with polarization data.
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III-3. Analysis of Neutron Cross Sections

Using the Coupled-Channel Theory

Shigeya TANAKA

Japan Atomic Energy Research Institute

Tokai-mura, Naka-gun, Ibaraki-ken

Abstract: Fast neutron total arid scatteringcross sections calculated with

the coupled-channel theory and the spherical optical model are compared

with experimental data. The optical-potential parameters used in both

the calculations were obtained from comparison of calculations with scat-

tering data for 2 0 9Bi.

The calculations for total cross sections were made for thirty-five
23 239

nuclides from Na to Pu in the energy range of 0,25 to 15 MeV, and

good results were obtained with the coupled-channel calculations. The

comparisons of the calculations with the elastic data for about twenty

nuclides were made at incident energies of 8 and 14 MeV. In general, the

coupled-channel calculations at 8 MeV have given better agreements with

the experimental data than the spherical optical-model calculations. At

14 MeV, differences between both the calculations were small. The analysis

was also made for the elastic and inelastic scattering by several nuclei
120

such as Fe, Ni, Sn, Pu in the low energy region, and good results

have been given by the coupled-channel calculations.

Thus, it is demonstrated that the coupled-channel calculations with

one set of the optical parameters well reproduce the total and scattering

cross sections over a wide energy and mass region.

1. Introduction

So far many authors have made optical-model analyses for neutron cross

sections and proposed optical potentials which well reproduce the neutron

cross sections for a wide energy and mass region. Almost all of those analy-

ses were based on the spherical optical model. Accordingly, those authors

did not make predictions or analyses of cross sections for largely deformed

nuclei,jn which couplings between the states in the ground band are strong.

Cross sections for vibrational nuclei, in which couplings between the ground

states and the excited states are of medium strength, have usually been cal-

culated in the framework of the spherical optical model, assuming that the

effect of couplings on the cross sections is negligible. This assumption,
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however, is not always true. Therefore, it will be worthwhile to make a

systematic analysis for nutron ctross sections over a wide energy and mass

region under a condition that the coupling effect is always taken into ac-

count in the calculations.

This report aims at a presentation of an optical potential for coupled-

channel calculations, which well reproduces neutron cross sections over a

wide energy and mass region.
2")

We have already reported ' that the angular distributions of elastic
139 141neutrons for rare-earth nuclei such as La, Pr, Gd, Fr calculated with

the coupled-channel theory fit the experimental data better than those cal-

culated with the spherical optical model. Potential parameters used in those

calculations were obtained from the comparison of the spherical optical-

model calculations with experimental values for neutron scattering by ~Bi.
209The present analysis also starts from the comparison with the Bi.data.

2. Optical Potential

In the coupled-channel calculation the following potential was used:

V(r,9,<j,) = - V- 1 4iW exp[(r-R)/b]
l+exp[(r-R)/a] {l+exp[(r-R/b]}

so 77 ar {l+exp[(r-R0)/a]}2 >

where

R = R {i +X$^Y
1n(B^} f o r rotational,

R = R'O{1 +£a Y (9,40},
a, = 6, " — (b +i (-) n3 ) for vibrational.

The potential parameters were obtained according to the following pro-

cedure:

(1) By using the spherical optical model, the depth parameters V and W were

searched so that the calculated results were fitted to the elastic data for
209

Bi, and the energy dependence of V and W was obtained; while other optical

parameters were fixed to some reasonable values. Open circles in Fig, 1 show

the values thus obtained. In this figure it is seen that the energy dependence

of V is obviously represented by a straight line. The energy dependence of W
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is not so clear. In the present analysis, however, we adopted W=2.55jTT .

Cros
207r
Crosses are values of Tomita et al. * which were obtained from analysis of

Pb data. These values support the present curve for W.

(2) In order to make the potential applicable to a wide mass region, charge

symmetry term 24(N-Z)/A was accounted for V. Charge symmetry term for W

was not considered in the present analysis, because of its unccertainty in

the strength.
4)

(3) The value of coupling parameter taken from published bibliography or

other papers (ref. a,e-K i-n Table 1 and 2) were used in the coupled-channel

calculations.

All the calculated results, i.e. both the coupled-channel and the

spherical optical-model calculations, shown hereafter are based on an optical

potential with the parameter values thus adopted; i.e.

V = 51.85 - 0.33E- 24(N-Z)/A (MeV), a = 0.65 (fm),

W = 2.55,/E (MeV), b = 0.48 (fm),

V = 7.0 (MeV),

so '
RQ = TQA 1 3 , rQ= 1.25 (fm).

In the present analysis, the coupled-channel calculations were carried

out with complex coupling using the code JUPITOR-1 ^ and the rest of cal-

culations using the codes STAX2 -1 and ELIESE3 ^.

Table 1 shows coupling modes, etc. used in the coupled-channel calcu-

lations. In the column of the coupling mode,"rot!" stands for rotational,"vibr."

for vibrational andriW.C." for weak coupling. Brackets mean average with res-

pect to isotopes. Most nuclides were treated as vibrational. The weak coupl-
27 55

ing model was applied to odd nuclei such as Al, Mn, etc., although this

application is not appropriate. Calculated results for these nuclei will be

shown by dash-dot curves in the figures shown hereafter. Table 2 also shows

the coupling modes, etc. for heavier nuclei.

3. Analysis for the Total Cross Sections
81Foster and Glasgow have measured the total cross sections for a num-

239
ber of nuclei ranging from H to Pu in the energy range of 2.5 to 15 MeV.

23 239
Of those data, typical thirty-five nuclei from Na to Pu were chosen in
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the present analysis. In order to extend the energy range downwards, the

data in the energy range from 0.25 to 2.5 MeV were cited from BNL 325 and
91 ~its Supplements . In the following figures from Fig. 2 to Fig. 5, the

former data are represented by thick crooked curves and the latter by dashed

thick curves. Thin solid and dash-dot curves represent the coupled-channel

calculations, and thin dashed curves the spherical optical-model calculations.
23

Fig. 2 shows the total cross sections from Na to Ni. Large differences

between the two kinds of calculations are seen in the low energy region, the

region below about 3 MeV, and in almost all cases, the results of coupled-

channel calculations give values closer to the experimental data than the

spherical ones.

Fig. 3 shows the cross sections for heavier nuclei from Cu to In, The

same as the case of Fig. 2 may be said of the fitness. In Fig. 4, agreement

of the coup led-channel calculations with the eperimental data is f&iry good
139 141

for Sn, Sb, La and Pr even in the low energy region of 1 to 3 MeV,

For the total cross sections of largely deformed nuclei such as Gd, Fr, Hf,

Ta, W, there appear large differences between the two kinds of curves not

only in the low energy region but also in the energy region of 5 to 12 MeV,

and, as may be expected, the solid curves give far better agreement with

the data than the dashed curves.

The cross sections for actinide nuclei are shown in Fig. 5. For these

nuclei, agreement between the coupled-channel calculations and the experi-

mental data is not always good. In the energy region higher than 7 MeV, good

agreement was obtained, but in the lower energy region the coupled-channel

calculation does not reproduce the experimental maxima and minima. However,

this is very much improved by using smaller values of the deformation para-

meters than those in Table 2.'For example, the solid curve for plutonium was

calculated using 3=0.28, but by changing this value to 0.22, as Benzi et
101

al. J used in Helsinki Conf., good fit to the experimental data.is obtained.
The smaller values of the deformation parameters are supported by the recent

Coulomb excitation experiment done by Bermis, Jr. et al. ^ They reported
238 240

$~=0.223 and 0.233 for Pu and Pu, respectively, which were calculated

on the basis of a deformed Woods-Saxon potential model. As will be shown

afterwards, the same thing may be said of angular distributions of the elas-

tic scattering.

4. Scattering Cross Sections at 8 and 14 MeV

Measurement of the elastic scattering cross sections has been made
12")

extensively at 8 MeV by Holmqvist and Wiedling and at 14 MeV by various
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experimenters. On the other hand, analysis at such energies is rather straight-

forward, because contribution of the compound elastic is negligible.

The analysis at 8 MeV is shown in Figs. 6 - 8 . Circles are data of Holm-

qvist and Wiedling , crosses JAERI data , and triangles Kentucky data .

Solid and dash-dot curves represent the coupled-channel calculations. The

curves shown by dash-dot denote such that the weak coupling model was used

in the calculation, notwithstanding that the application of this model is not

appropriate. Dashed curves represent the spherical optical-model calculations.

From Figs. 6 and 7 we can see that, if the couplings are appropriately taken

into account, the coupled-channel calculation results in good fit to the

experimental data. For example, we see in Fig. 7 that the solid curves for

Ni, Cu and Zn rather well fit to the data, whereas the dash-dot curves for

Co and As do not.
1 Q1

In the case of rotational nuclei such as Hf, Ta in Fig. 8, agreement

of the solid curves with the data are not so good at backward angles, though

fairy good agreement is obtained at the rest of angles. A little smaller

value of g? within its ambiguity might improve the fitness, as it is the
239

case for Pu. This case will be shown later.

Fig. .9 shows the elastic cross sections at 14 MeV. Comparisons with the

experimental data ^ are made for many nuclei, but the differences between the

two kinds of calculations are too small to select which calculation gives

better fitting to the experimental data.

5. Analysis for Several Nuclei in Low Energy Region

We have seen in the figures of the total cross sections that there are

large differences between the coupled-channel and the spherical optical-

model calculations in the low energy region, i.e. the region lower than 3 or

4 MeV. Therefore, the analysis of the scattering cross sections in this energy

region will be of more interest. In this region we have to take the compound

process into account and must be careful about fluctuation of the cross sec-

tions. The analysis in this energy region has been made for several nuclei

such as Fe, Ni, Zi

in the following.

120such as Fe, Ni, Zn, Sn, Gd, Pu, etc. Results of some of them are mentioned

Fig. 10 shows the analysis for iron. Closed circles are JAERI data .

The compound elastic scattering was calculated by using the Moldauer theory ,

in which seven excited levels up to 3.12 MeV in Fe were taken into account,

and the results were added to bbth the calculations. As may be expected, both
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the calculations lead to considerably different values each other, and the

coupled-channel calculations show very good agreement with the experimental

data. In the figure of inelastic scattering for the 0.85 MeV level, the dashed

curves represent Moldauer calculation, and solid curves Moldauer calculation

plus the coupled-channel calculation. The solid curves well agree with the

data at the higher energies, but at the lower three energies they show large

deviations from the data. Intermediate structures with width of 0.2
18")

however, have been reported at 1.6 and 2.05 MeV . The measurement was made

with an energy spread of 0.09 MeV. Therefore, the deviations at 1.71 and

2.01 MeV are consistent with the presence of the intermediate structures.

The deviation at 1.37 MeV may also be due to fluctuation of the cross section.

In case the spherical optical model was used in the analysis, what para-

meter values would be obtained? Circles and triangles in Fig. 11 are the

values of V and W, respectively, searched with the spherical optical model
tso as to be fitted to the solid curves in Fig, 10 (a), i.e. to the values
A.

calculated with the coupled-channel theory. In the calculation, rQ was
changed to 1.25 fm to improve the fitness. Therefore, the circles in the

2
figure approximately satisfy the rule of Vr_ = const. A remarkable feature

is the large values of W. They scatter in a region from 8 to 11 MeV. They

lead to somewhat larger values of the compound inelastic cross sections than

the original values of W do.

Fig. 12 shows the scattering cross sections of nickel. Closed circles

are JAERI data .̂ The compound cross sections were estimated by taking into

ajbount six excited levels assumed in a "nucleus" averaged with respect to
58Ni and Ni in the Moldauer calculation. Both the elastic and inelastic

results calculated by taking into account the coupling between the ground

and first 2+ levels show far better agreement than the case without the

coupling.
120

Fig. 13 shows the scattering cross sections of Sn. Closed circles

are JAERI data -1. Twenty-one excited levels up to an excitation energy

3,07 MeV were "taken into account in the Moldauer calculation. As may be

expected, the effect of the coupling on the elastic and inelastic cross

sections is not large, but still the results with the coupling show better

agreement with the elastic and first 2 inelastic data.
239

Fig. 14 shows the elastic cross sections of Pu. The experimental
191 20")

data shown by circles are of Koppola and Knitter . Argonne data are
shown by triangles. The experimental values contain the inelastic cross sec-
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tions for low-lying levels. Accordingly, the solid lines also contain the

contribution of the direct inelastic scattering from the three lowest-lying

levels. As mentioned in the discussion for the total cross section of plu-

tonium, the deformation parameter 32
 w a s taken to be 0.22. Agreement with

the experimental data is fairy good. The value of $-=0.28, which is close to
238 240 41

the values for Pu and Pu in a bibliography J , resulted only in a poor

agreement with the data. The same thing may be said of the analysis for

gadolinium (the result is not shown here). The value of B2 taken from the

bibliography ^ is 0.34, but 32=0.30 or a little smaller value gave better

results.

For a largely deformed nucleus one has to change the value of r̂ ., if

the volume of nuclear matter is to be held constant. For example, r. for a

nucleus of a prolate deformation with 3 =0.30 should be changed from 1.25

to 1.24, where 1.25 is for the spherical nucleus, and a nucleus with 6^=0.34,

r should be changed to 1.23. We considered these changes for the analysis

of Gd, Pu, etc., and the changes of the r« values showed a little improve-

ment for the fitness. Use of the smaller values of 82 was, however, still

needed to obtain good agreement.

6. Conclusion

In conclusion, the coupled-channel calculations using the one set of the

optical parameters well reproduce the total and scattering cross sections

over a fairy wide energy and mass region, except for extremely low energy region

and extremely light nuclei. For largely deformed nuclei, use of a little small-

er values of deformation parameter, which are consistent with the values

obtained from a recent Coulomb excitation experiment , gives good fit to

the experimental data.
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Figure captions

Fig. 1. Energy dependence of the potential depths. Open circles and

crosses are the values obtained from parameter search using

209D. , . 2) , 207n, , . 3) . . ,
Bi data and Pb data , respectively.

Fig. 2. Comparison between the experimental and calculated total cross

Fig. 5. sections. Thick solid curves are the data of Foster and

Glasgow and thick dotted curves are the data cited from BNL

91325 and its Supplements . Thin solid and dash-dot curves

represent the coupled-channel calculations, and thin dashed

curves the spherical optical-model calculations.

Fig. 6. Comparison between the experimental and calculated cross

Fig. 8. sections for elastic scattering at 8 MeV. Circles are the

data of Holmqvist and Wiedling , crosses JAERI data ,

14")and triangles Kentucky data • . Solid and dash-dot curves

represent the coupled-channel calculations, and dashed, curves

the spherical optical-model calculations.

Fig. 9. Comparison between the experimental and calculated scattering

cross sections at 14 MeV. The experimental data are shown

by various symbols. Solid curves represent the coupled-channel

calculations and dashed curves the spherical optical-model

calculations.

Fig. 10. Comparison between the experimental and calculated cross sections

for elastic (a) and inelastic (b) scattering by iron. Closed

circles are JAERI data .̂ Solid and dashed curves for the

elastic scattering are cross sections calculated with the coupled-

channel theory and the spherical optical model, respectively.

The compound elastic cross sections were added to both the cal-

culated results. The dashed curves for the inelastic scattering
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are those calculated with the Moldauer theory. The solid

curves represent the summed values of the coupled-channel and

the Moldauer calculations.

56
Fig. 11. Energy dependence of the potential depths for Fe. Circles

and triangles are the values searched with the spherical

optical model so as to be fitted to the values calculated with

the coupled-channel theory.

Fig. 12. Comparison between the experimental and calculated cross sections

for elastic (a) and inelastic (b) scattering by nickel. Points

and curves have the same meaning as in Fig. 10.

Fig. 13. Comparison between the experimental and calculated cross sections

120
for elastic (a) and inelastic (b) scattering by Sn. Points

and curves have the same meaning as in Fig. 10.

Fig. 14. Comparison between the experimental and calculated cross sections

239
for elastic scattering by Pu. Open and closed circles are

the data of Koppola and Knitter \ and triangles Argonne data .

Solid curves represent the coupled-channel calculations and

dashed curves the spherical optical-model calculations.
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Table 1 Table 2

23Na

2TA«

Si

S

Ca

5V
5 2Cr

55Mn

Fe

^Co

Ni

Cu

Zn

7SAs

Sr

93Nb

Mo

103Rh

Coupling mode

23Na rot.

28 trial
( S i+p) W.C. rot.

28Si ro t .

3 2 S vibr.

40Ca vibr. trial

52Cr vibr.

56 W.C. vibr.
( Fe + ph) f r i a |

Fe vibr.

f°IMi+ph) W.C. vibr.

/ 58.60,, A .,
\ N i / vibr.
/(62Ni+p) W.C. vibr.\
V 'N i+p ) W.C. vibr. /
/ 64,66.68 \
\ Zn/vibr.

(74Ge + p)W.C.vibr.

88Sr W.C.vibr.

(92Zr+p)W.C.vibr.

( 92.94.96,00^^.^

(IO2Ru + p)W.C. vibr.

Coupled states

3/2 + - 5/2+- 7/2+

5/Z+— (1/2+~ 9/2+)

0 + - 2 +

-t- +
0 — 2

0 — 3

0"* — 2 — 3~

5 / f - (I/2~" 9/2~)

0 + — 2+—• 3~

7/2- (3/2 -11/2)

0+ — 2 +

3/2- 11/2 ~ 7/2 ]
VZ - 0/2 ~7/2" )

0+ - 2 +

3/2-H/2 -7/2")

0 + - 2 +

9/2+-(5/2"~13/2+)

0 + - 2*

1/2 - (3/2 , 5/2")

0.45a>

0.40

0.40

0.37

0.23

0.23

0.23

0.211

0.194

0193
0.192

0.23

0.290

0.140

0.11

0.153

0.264

o,ob)

O32CI

O.,7dl

O.2o"

Cd

In

Sn

Sb

139.
T_a

141
Pr

Gd

Er

Hf

18Va

182w
) 9 7Au

2 0 9Bi

2 3 2 Th

2 %

238u

Pu

Coupling mode

{ Cd.even^ vibr.

("6Sn + ph) W.C. vibr.

;II2~124_ \ .,
{ Sn.even^vibr.

ft;;j}wcvfcr.
(<38Ba + p) W.C. vibr.

140
( Ce + p) W.C. vibr.

(Gd.even) rot.

(Er.even) rot.

{Hf, even) rot.

181
Ta rot.

W rot.

(198Hg+ph) W.C. vibr.

( ^Pb+p ) W.C. vibr.

Th rot.

^ U rot.

238
U rot.

Pu rot.

Coupled states

0+-2+

9/2" - (5/2+~iy2
+)

+ +
0 - 2

5/$ - (1/2h~ 9/2+)
7/2+ - (3/2+~ 11/2*)

7/Z ~ (3/2~tV2
+)

5/2 - ( 1/?~9/2+)

0
+ - 2

+ - 4
+ - 6 +

0
+ - 2

+ - 4
+ - 6 +

0 + - 2 + - 4 +

7/21"- 9/2*-1l/2+-l3^+-15^

0+ _ 2 + _ 4 +_ 6 +

V2+ - ( 1/2+~ 7/2+)

9 / 2 " - (3/2~~15/2~)

o t _ 2 + - 4+_ 6+

7/2"- 9/2'-1t/2~-!3/2"-15/2

0 + - 2 + - 4 + - S+

l^+- 3 ^ - 5/2'- 7/2t 9/2
+

^ 2

0.19

0.113

0.113

0.112
0.118

0.120

0.104

0.34

0.34

0.27

f l
0.26

0.25

O.IO99'

0.267

0.27 N

0.277

0.28

o.ioh)

209
0 from Bi data

207
x from Pb data

14 16

E ( MeV)
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DISCUSSION

K. NISHIMURA: Your coupled-channel calculation does not show the

good fit for actinide nuclei. Do you have any specific reason for it?

S. TANAKA: By using a little smaller value than that taken from

other bibliography for coupling parameter, the present potential can well

reproduce the experimental data. For example, the value was changed from

0.28 to 0.22 so that the coupled-channel calculations gave good fit to

the experimental data, Dr. Harada commented that the value 0.22 is not

unreasonable.

S. W. CIERJACKS: Have you applied the coupled channel method to the

interpretation of cross sections above 15 MeV? At Karlsruhe we have observed

in the analysis of total neutron cross sections quite severe deviations

of experiments from theory. These are normally explained in terms of

onset of volume absorption. Can this be accounted for in the coupled

channel model by inclusion of a volume absorption term or perhaps by

changing the coupling strength systematically with increasing energy?

S. TANAKA: I have only few experiences on the application of the

coupled-channel model in the energy range above 15 MeV. Once I tried
209

parameter search for Bi elastic data at 24 MeV, and had to include a

volume absorption term in the potential, I remember. I don't think that

the large differences between the coupled-channel calculations and the

experimental data above 15 MeV can be accounted for by the coupled-channel

calculations using my parameter values.

R. C. BLOCK: Have you calculated the strength functions with your

potential?

S. TANAKA: Not yet calculated. So I don't insist that the present

parameter set is applicable to the very low energy region.

- 2 2 9 -



JAEBI-M 5984

111 - 4 . OPTICAL MODEL ANALYSIS OF NEUTRON CROSS SECTIONS

AND STRENGTH FUNCTIONS

C M . Newstead
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and

Institut fur Angewandte Kernphysik

Kernforschungszentrum Karlsruhe

and
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ABSTRACT

Current problems met in the attempt to interpret fast neutron total

cross sections with spherical and coupled channels optical model calcula-

tions are: discussed. The energy dependence of the real and imaginary po-

cential strengths is considered and progress in fitting neutron total

cross sections over a wide energy range is discussed. Fluctuations in the

strength of the imaginary potential are investigated in terms of the

s-and p-wave neutron strength function. The role of strength function sys-

tematics in aiding study of the optical potential is developed. The impli-

cations of energy and mass dependences of the optical potential for neutro:n

data predictions are outlined.
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INTRODUCTION

The optical model has been remarkably successful in describing

a variety of nuclear reactions encompassing a wide energy range. In recent

years a number of global potentials have been proposed each of which has

particular merits in describing the gross features of particular sets of

reactions. To assess the validity of the several forms of the optical

model and the various potentials for the actual evaluation of nuclear data

one is concerned not with a global description but rather with the extent

of the departure from it. By comparison of the optical model predictions

with accurately measured cross sections we can hope to learn in what way

and perhaps even why the potentials depart from their global trends. In an

attempt to investigate these variations we have: 1) compared the predic-

tions of the model with neutron total cross sections over a wide energy

range to study the energy dependence of the optical potential strength and

2) considered the accuracy of the model in predicting s- and p-wave neutron

strength functions for a number of nuclei to both obtain information con-

cerning the strength of the potential at low energy and its variation with

mass number. It is hoped that this and similar studies may serve as some

guide to evaluators faced with the problem of choosing a potential suitable

for a particular mass and energy range.

TOTAL CROSS SECTION ANALYSIS

Theoretically the total neutron cross section constitutes a remarkable

and constantly varying mixture of elastic and inelastic partial cross sec-

tions . From an experimental standpoint the total cross section can be mea-

sured absolutely with high precision. Thus analysis of the variation of the

total cross section with energy provides a useful tool for study of the

optical potential.

In what follows we present the results of a series of total cross sec-

tion measurements carried out at the Karlsruhe cyclotron and their analysis

in terms of the spherical non-local optical model potential of Perey and

Buck. We then attempt to understand the observed departures from this global

description in terms of simple physical considerations.
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Total neutron cross sections for a variety of spherical and vibra-

tional nuclei ranging from calcium to bismuth were measured with a nomi-

nal resolution of 0.04 nsec/m in the energy range 0.5 to 40 MeV with the

fast neutron time-of-flight spectrometer of the Karlsruhe isochronous

cyclotron. For the present study these high resolution results were avera-

ged with a sliding energy width of 500 keV. The resulting average cross

sections are plotted in figure 1 and compared to the predictions of the

spherical non-local optical model of Perey and Buck . We note that below

3 MeV and above approximately 20 MeV the agreement between theory and ex-

periment rapidly deteriorates.

In a previous investigation carried out with moderate energy resolution
2)

in the energy range 2.5 to 15 MeV, Foster and Glasgow measured the neutron

total cross section of a number of nuclei ranging from hydrogen to pluto-

nium. Comparing their data with the predictions of the spherical non-local

potential of Perey and Buck they found better than 3 % agreement for the

46 spherical or vibrational nuclei included in their study as illustrated

in figure 2 for the case of various If , shell nuclei while agreement was

only within 17 % for the 19 deformed nuclei considered in their study as

illustrated in figure 3 for various lh , and 2f , shell nuclei.

This latter result is clearly to be expected and serves to illustrate

the utility of coupled channels calculations for rotational nuclei. The for-

mer result was considered an additional triumph for the Perey-Buck model.

It certainly must be regarded as an achievement since the potential was

originally derived from fitting only the elastic angular distribution for 7

and 14.5 MeV neutrons on lead although the resulting potential was then

compared to angular distributions and reaction cross sections for a number

of nuclei at 4.1, 7- 14.5 and 24 MeV and found to give an adequate descrip-

tion. The remarkable success of this simple potential is most probably

due to its non-locality or put another way to the fact that the local repre-

sentation has a built-in energy dependence.

The present study demonstrates that the Perey-Buck potential is inade-

quate to describe the upper and lower regions of the extended energy range.

We note that above 20 MeV an increase in the strength of the imaginary po-

tential would yield better agreement. While this is partly a matter of ener-

- 2 3 2 -



JAERI-M 5984

gy dependence of the surface peaked absorption it is primarily due

to the onset of volume absorption. The Perey-Buck potential does not

include a volume absorption term. While this is perfectly justified

at the energies considered in their analysis because of the inhibiting

effects of the Pauli principle which dictates surface absorption at low

energy, it becomes increasingly inadequate at the higher energies consi-

dered here. Of course we cannot uniquely determine the ratio of surface

to volume absorption and its variation with energy from our total cross

section analysis but rather can only infer the need to increase the strength

of the imaginary term.

It would appear that agreement between prediction and measurement

could be obtained below 3 MeV by reducing the strength of the surface

peaked absorption. This is reasonably theoretically since there are less

channels available for excitation at low energy.Thus in the simplest

possible terms the imaginary potential may be thought of as being given

by the product of an average interaction matrix element and the density

of states available for interaction. When this density is low so is the

imaginary potential strength.

Recently evidence for the reduction of the imaginary potential

strength at low neutron energy has been forthcoming from several different

sources. In the latter part of this paper evidence from neutron strength

function analysis will be given. Evidence is also available from analysis

of both neutron scattering and the (p,n) interaction on lead.

Fu and Perey have carried out an extensive analysis of elastic

and inelastic reactions for the lead isotopes. They find it necessary to

reduce the strength of the surface peaked absorption at low energy to

correctly describe inelastic scattering while preserving agreement for

elastic scattering. Fu and Perey employ the strengths V = 47.0 - 0.25 E MeV
n

and W = 3.5 + 0.43 E eV. This is to be compared with the equivalent lo-

cal representation of the non-local potential of Perey-Buck which has been

determined by Hodgson and Wilmore to be given by W = 47.01 - 0.267 E
2 n

- 0.00118 E MeV and W = 9.52 - 0.053 E MeV. We note that these two
n n

parameterizations of the energy dependence agree well in the vicinity of

14 MeV where the Perey-Buck analysis was predominately biased by the experi-
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mental results.

Smith and co-workers have found both positive and negative ener-

gy dependent coefficients for the imaginary strength depending on the

nuclei being analyzed. This may in part be due to compensation for the

use of the spherical model to describe deformed or highly vibrational

nuclei.

Additional evidence for the reduction of imaginary strength at low

energy comes from the study of the total proton decay of isobaric analogue

states near threshold. Hoffmann and Coker have suggested that the sharp

drop in the (p,n) p excitation function near threshold can be described

by such a reduction. It should be noted, however, that there are a number

of difficulties in both the measurement and interpretation of these exci-

tation functions.

The energy dependence of the central or isospin independent optical

potential (V and W ) is intimately connected with the energy dependence

of the isospin dependent optical potential or so-called Lane potential

(V1 and W ). The energy dependence of the complex Lane potential as obtained

from analysis of (n,n), (p,p), and (p,n) reactions from a few MeV up to

100 MeV has been previously discussed . This analysis tends to support

Rook's theoretical calculations for the energy dependence of V and V
o 1

carried out using the Bruckner - Bethe G-matrix and the reference spectrum

method of Bethe.

Isospin effects may be of importance when the optical potential is

used to evaluate cross sections for chains of isotopes. Perhaps the best

way to determine the strength and energy dependence of the complex Lane

potential is the comparison of proton and neutron scattering at a number of

different energies. The role of isospin in increasing absorption for pro-

tons as a function of increasing asymmetry (and decreasing it in the same

manner for neutrons) is illustrated in figure 4 and provides the signature

of the isospin component.

Unfortunately neutron angular distributions of quality comparable with

their proton counterparts are not generally available because of the experi-
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mental difficulties involved in such measurements. To further our study

of isospin strengths a series of high resolution differential excitation

functions at ten different angles are currently planned for measurement

at the Karlsruhe cyclotron to complement the total cross section work. It

is recognized that the study of chains of separated isotopes will be of

particular value here.

STRENGTH FUNCTION ANALYSIS

Nuclear data requirements for reactors tend to be concerned with the

lower neutron energy region (if one excludes fusion and material damage

requirements) while our knowledge of the optical potential tends to be

based on measurements and calculations carried out in large measure at higher

energies. In this respect study of neutron strength function systematics

are particularly valuable since the strength function is intimately related

to the strength of the optical potential at low energy. Since the strength

function is measured for particular waves one also is spared some of the

ambiguity inherent in averaging over many partial waves as is necessary at

higher energies.

In recent years improvements in time-of-flight spectrometry and

strength function analysis techniques have greatly increased our knowledge

of accurate strength function values. In particular use of cyclotron based

high resolution fast neutron spectrometers has permitted us to obtain
9)

strength functions for light nuclei and higher partial waves while the

employment of the"sharp spike capture technique" by Block and co-workers

at RPI has led to the measurement of strength functions in deep minima.

In addition the average analysis technique as developed at Harwell and
12)

Saclay has led to the accurate determination of s-, p- and d-wave strength

functions by the sampling of a large number of resonances and elimination

of the necessity of individual resonance parity assignment.

Analysis of these new results by coupled channel optical model cal-

culations has led to several interesting conclusions. It has been found

that the deep s- and p-wave strength function minima can be simultaneously

described by the same optical potential . The results of the calculation
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are given in table 1 and figure 5 where comparison is made with the

experimental values. The important point here is that the strength

of the surface peaked absorption must be reduced in comparison to the

value normally employed for higher energy scattering. It will be recog-

nized that this tends to substantiate the conclusion reached in the

total cross section discussion given above. It is interesting in this

respect to compare the strength function predictions of the Perey-Buck

spherical non-local potential with strength function measurements. This

comparison is given in figure 6. We note that the Perey-Buck predictions

tend to be larger than the measured values in the minima and smaller than

experiments in the maxima. This is consistent with our supposition that

the Perey-Buck imaginary strength (W = 9.5MeV) is too strong for the low

energy region. (Note that in the maxima reduction of W results in increase of

S .) We note that the imaginary strengths given in table 1 are considerab-
o
ly less than 9.5 MeV.

14)
Sometime ago Moldauer proposed an optical potential which gave

good agreement with the s-wave neutron strength functions for the mass

100 region and also provided a good description of neutron scattering

near 1 MeV. In a series of investigations Smith and co-workers have

verified the utility of the Moldauer potential for the description of

low energy neutron interactions. The essential characteristics of the Mol-

dauer potential are the reduction in width of the surface peaked absorption

and the translation of the location of the absorptive band by a small

amount outside the nuclear half-way radius. One can regard this as a way

of reducing the imaginary potential strength rather than having any deeper

physical significance associated with diffusejiess or polarization of the

nuclear matter distributions. Such an interpretation would be consistent

with the interpretation of our study. It should be mentioned that the RPI

group has proposed an explanation of the deep strength function minima

based upon the optical potential being different for s- and p-waves. While

this is acceptable theoretically it would not appear to substantiate the

trend found in the total cross section analysis.
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It does seem that particularly at low energy (because of the avail-

ability of states argument) the optical potential fluctuates with mass

number as can be seen from table 1. In extensive scattering studies carried

out at 8 MeV Holmqvist and Wiedling have also found fluctuations in

the strength of the potential as illustrated in figure 7.

Thus it is clear that evaluators must give some thought to the varia-

tion of the strength of the potential when attempting to make accurate

assessments of neutron cross sections. Clearly at the lower energies in-

volved in most nuclear data evaluations nuclear structure effects play an

important role in modulating the global optical potential.
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FIGURE CAPTIONS

Fig. 1 Karlsruhe neutron total cross sections versus energy for nuclei
40 209

ranging from Ca to Bi compared to predictions of Perey-Buck

spherical non-local optical model.

Fig. 2 Battelle neutron total cross sections versus energy for various
44

lf_/0 nuclei (with the exception of Ca) compared to predictions
' 2)

of Perey-Buck spherical non-local optical model

Fig. 3 Battelle neutron total cross sections versus energy for various

lh . and 2f . nuclei compared t
9/2 V/2

spherical non-local optical model

lh . and 2f . nuclei compared to predictions of Perey-Buck
9/2 V/2 2\

Fig. 4 Contrast between neutron and proton imaginary potentials versus

asymmetry e when the optical potential has an isospin dependent

strength W . A similar effect occurs for the isospin dependent

real potential.

Fig. 5 Comparison between experimental and theoretical values of the

s- and p-wave neutron strength functions versus mass number. The

solid curves are the Buck and Perey collective model predictions

while the symbols + indicate the coupled channels calculations of

the present study whose parameters are given in table 1.

Fig. 6 S-wave neutron strength functions predicted by the Perey-Buck

spherical non-local optical model compared to experimental values.

This comparison suggests that the Perey-Buck imaginary potential

strength should be reduced at low neutron energy. I t i s understood

that the spherical model is inadequate to describe the sp l i t t ing of

the 4 S size resonance.

Fig. 7 Optical model parameters (strength and geometry) versus mass number as

obtained from a study of 8 MeV neutron e las t ic scat ter ing. The open

circles are the resul t of a five parameter analysis. The solid circles

are the resul t of a two parameter (U and W) analysis with the other

parameters held fixed at average values.
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Table 1 Comparison of theoretical and experimental results for the s- and

p-Wave strength functions

TARGET W
t h t h exp. exp.

3 5 ci
3 7C1
3 9K
4°Ca

5o
C3T

52Ĉr
5 4Cr
8 9 y
9 3 Nb
98M

Mo
lo°Mo
1O3RH
1 3 5 B a
1 3 7 B a
1 3 9 L a

1 4 1 P r
1 6 5 H o
2 o 9 B i

51.o4

48.38

48. oo

53.5o

51.11

5 c 40

49.6o

48.97

49.15

48.42

47.9o

48.91

47.59

47.22

47.3o

47.81

47.5

46.5

o , 9

o . 9

2.5

1.5

1.12

0 . 8

O.44

3 .6

1.35

6.2

4.o

3.3

4.o

1.82

2.12

4.oo

3.oo

1.5

0 . 0

0 . 0

0.0
82=0.00

8 =o.36
o.22

O . 1 7

O . 1 7

0 . 0

0.0

0.I68

'o.253

O.264

O.15O

O.13O

0.13o

o.l lo

o.3o
6_=o.oo
83=0.20

O.15

O.13

o.41

2.16

1.94

2.o6

O.89

o.44

O.15

O.77

o.74

o.4o

l.ol

o.5o

o.71

1.73

1.82

o.5o

1.15

2.o7

2.4o

o.31

O.27

O.15

o.o76

3.92

5.18

7.21

4.43

5.o6

I.60

O.84

O.83

1.61

o.29

o.o8-o.o7

o.l2*o.o9

o.37*o.23

2.se+l'2°
-o.58

2.18*o.75
2.1o*l.o5

1.79*l.o3
..+O.27

°'39-o.l24.
O.17-O.O6

o.42*o.25

o.55*o.3o
. +o.o5

°-4o-o.o8
l.o * o.3
O.33+O.17

_ +O.26o.7o , .-O.14

. .+O.472.o4
—0. Jb

1.66*0.24

o.65 *-O.17

1.65*o.55

2.87*1.06

2.71*o.82
,,.+0.12

O. Zb --0.06

0.264*0.152

o.o53-o.o23

o.o42*o.o24
A A + 2 - °
4 ' 4 -1.2
5.16*o.24

6.8 * o.5

4 ' 6 - o*4
5-°7-o!29

_ +o.3o.7o ,—0. z

1.63*o.25

Oc+o-o9
°-25-o.o5

Geometry set for all calculations: r = 1.25 f, a = o.65 f, b = o.47 f. Potentials

strengths in MeV. SQ and o _
in units of 10
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DISCUSSION

R. C. BLOCK: At RPI, Turinsky et al. showed that a "simple" (i.e.

non j£-dependent imaginary potentials) optical model could produce deep

S and S minima. However, when attempting to fit R', the "simple"

potential did not work. Thus, to fit S , S and R1 requires more than

a "simple" potential can you comment on the Karlsruhe work with

regard to fitting R1?

S. W. CIERJACKS: It is, of course, possible to adjust the parameters

of simple optical potentials to fit the deep S and S minima. The crucial

problem is, however, whether you can simultaneously reproduce minima,

maxima and the widths of size resonances for the strength functions with

one consistent potential. That this is possible, has been demoenstrated

to some extent by the work of Newstead and collaborators. I am not aware

of investigations to fit potential scattering radii, R', additionally.
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IV-1. Evaluation of Neutron Elastic and

Inelastic Scattering of Cr and Ni

Isotopes Using Coupled-Channel Calculations

by

A. Prince and M. R. Bhat
National Neutron Cross Section Center

Brookhaven National Laboratory
Upton, New York 11973

March 1974

1. Introduction

Evaluation of the neutron and gamma production cross section data have been

carried out for the ENDF/B-IV data library. The high energy elastic and inelastic

scattering data from the vibrational states of the even-even isotopes of Cr and

Ni were analyzed in terms of coupled channel calculations. The results of these

are presented in this paper. A detailed discussion of the complete evaluation

will be published soon.

- 2 4 5 -



JAERI-M 5984

2. Chromium (A. Prince)

As part of the evaluation effort for natural chromium, it was necessary

to analyze the neutron angular distributions for the various isotopes ( ' ' ' Cr)

52

Most of the experimental data exists only for Cr(nat) and Cr, therefore as part

of the investigation it was necessary to carry out model type calculations and

make comparisons with the available experimental data. Special emphasis was
52 53

placed on 'Cr and Cr since their abundances of 83.797<> and 9.57O make them

the major contributors to the cross sections of Cr(nat).

(12)
Optical model calculations using a modified coupled-channel code JUPITOR '

were carried out to determine the totals shape elastic, reaction and direct

inelastic cross sections. The compound nucleus contributions were analyzed with

the code C0MNUC. f

(4)
The optical model parameters were derived by a method similar to that

of Greenlees et al., ' ; Bolsterli et al.

The number of excitations used to calculate the inelastic cross sections

are given in Table I.

Isotope

Cr-50

Cr-52

Cr-53

Cr-54

Table I

Energy of
# Levels highest level (MeV)

10

24

15

11

4.7

7.9

4.0

3.8

The low lying levels were assumed to be vibrational thus the collective

+ + +
i n e l a s t i c e x c i t a t i o n s w e r e c a l c u l a t e d a s s u m i n g 0 - 2 , 0 - 2 - 3 , 0 - 2 - 4

- 2 4 6 -



JAERI-M 5984

type coupling. The higher states are weakly coupled to the ground state so

their contributions were assumed to be negligible.

The inconsistency between the Hauser-Feshbach calculations of the

inelastic scattering and the coupled-channel calculations were removed by

Introducing a reduction factor R given by

R m
 aexpt'l - gDI

expt'l

where it has been assumed that the difference between the experimental inelastic

cross section and the direct inelastic cross section is the true compound

inelastic cross section.

The comparison between the calculations and experimental data is given

in Figures 1 through 5.

Fig. 1 Shows the comparison between the compound differential inelastic and

the direct differential inelastic scattering cross sections of the 1.434(2 ) MeV

52
level in Cr. The sum of these producing the total inelastic. The experimental

data is that of Kinney and Perey. Note the symmetry about 90° in the compound

process as compared to the high forward peaking in the direct process.

Fig. 2 Depicts the 2.369(4+) level excitation at E = 8.56 MeV. Both

n
compound and direct components have been taken into account.

Fig. 3 The differential elastic cross section is given by

dO

the shape elastic (ag ) was calculated from JPIX and the compound elastic (a )

was calculated from the statistical model code C0MNUC.

- 4 Shows the high degree of anisotropy in the inelastic scattering

which is assumed to be due primarily to the direct excitation of these levels.

The coupled-channel calculations while producing a satisfactory shape, slightly

- 2 4 7 -
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underestimated the magnitude of the cross section by about 20%. The solid

curves have been normalized to the experimental data. It should be mentioned

(9)
that the experimental data of Stelson et al. is for Cr(nat) which means

that the low lying level contains a contribution for the 1.3 (5/2 ) MeV level

in 53Cr.

(9)
Fig. 5 Compares the coupled channel calculation with experimental data

at 14.0 MeV. Here the compound elastic cross section was zero, thus all the

contribution is derived from the potential scattering.

- 2 4 8 -
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2. Nickel (M. R. Bhat)

The following evaluation of the experimental data available on the

even-even isotopes 5 8 f 6 0* 6 2 > e 4Ni and the related calculations were carried

out in connection with the ENDF/B-IV data library. There are extensive

data on the inelastic cross section of the first excited 2 state in Ni

at 1.454 MeV and in 6 0Ni at 1.333 MeV along with differential angular

distributions. A continuous curve showing the excitation function for

these levels could be drawn through the experimental data from threshold

to about 8.56 MeV and joined smoothly to the results of coupled channel

calculations above this energy. It is reasonable to assume that the

compound nuclear contributions are essentially negligible at and above

9.0 MeV incident neutron energy and that the observed cross section is

entirely due to direct interaction. Below this energy the compound

nuclear and direct interaction cross sections were added to account for

both the total magnitude of the inelastic cross section as well as the

differential angular distributions.

The compound nuclear cross sections were calculated using the code

COMMNUC-I and the coupled channel calculations were done using JP1XR

which is a modified version of JUPITOR-1 •*• . The optical model parameters

used in the calculations were determined by fitting experimental differential

elastic data in the energy range 0.2 to 14.0 MeV. In these calculations

all the discrete energy levels below 3.5 MeV exctiation with known spins

and parities were used and it was assumed that the levels above 3.5 MeV

could be described by a continuum. However, in the coupled channel

calculations, the 3" level at about 4 MeV was explicitly taken into

account as it is strongly coupled to the ground state. The coupling

- 2 4 9 -
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parameters used in these calculations are from the literature ' '1 ' 1

were obtained from an analysis of (n,n'), (a,a1) and (p,p') reactions.

Because of the large computer time involved in the coupled channel

calculations, only three states viz., the ground state, the first

excited 2 state and either the 3 or one of the two phonon states

were coupled at a time. At those energies where the compound nuclear

contributions were significant, the direct interaction contribution

was subtracted from the evaluated total inelastic cross section and

the differential inelastic distributions from the compound nuclear

processes normalized to this value. This was then added to the angular

distribution given by the coupled channel calculations for comparison

with experimental data. In case the evaluated inelastic cross section

differed from the integrated inelastic cross section of a particular

data set the differential angular distribution was further normalized

to this value. The results of such calculations are shown in Figs.

6-12. In these are shown the data of Boschung and Lindow for ' 60Ni

and the data of Kinney and Perey on Ni. In addition are shown the

elastic scattering data at 14.0 MeV ' ' and the inelastic scattering

to the first excited state in the nickel isotopes. Kammerdienerl6*

also obtains a value of 39.5 ± 2.8 mb for the inelastic scattering to

the first excited states in Ni. This agrees with the data of Stelson

et al. as well as the results of the present calculations.

- 2 5 0 -



JABRI-M 5984

References

1. T. Tamura, ORNL-4152 (1967).

2. C. J. Slavik, KAPL-M-7079 (1971).

3. C. L. Dunford, AI-AEC-12931.

4. A. Prince, BNL (to be published).

5. G. W. Greenlees et al., Phys. Rev. 171 (1968) 1115.

6. G. W. Greenlees et al., Phys. Rev. Cl (1970) 1145.

7. M. Bolsterli et al., Phys. Rev. £5 (1972) 1050.

8. W. E. Kinney, ORNL-4806, Jan. 1974.

9. P. H. Stelson et al., Nucl. Phys. 68 (1965) 97.

10. C. R. Lubitz, private communication (1973).

11. Nuclear Data Sheets B3_ (1970).

12. T. Tamura, Prog.- Theor. Phys. Supplement 37/38 (1966) 383.

13. P. Boschung, J. T. Lindow and E. F. Shrader, Nucl. Phys. A161 (1971) 593.

14. W. E. Kinney and F. G. Perey, ONRL-4807 (1974).

15. R. L. Clarke and W. G. Gross, Nucl. Phys. A95 (1967) 320.

16. J. L. Kammerdiener, UCRL-51232 (1972).

17. L. F. Hansen, private communication (1973).

-251-



to
I

414

" ^ ^
r } -Y
: t - f
«*. 1

—
-

C
o-

• • * * .

o

ft
•t-

1.

Cr-rx :

^S —

iori— 1

Fig.l

Cr-Sx Inelilfi* 5e«rf..

30 60 90 120
8CM (DEG)
F i g . 2

150 18C

I 1 1 1 1 1 I I I I I I
I.!".-

g

00

Fig. 3



JAERI-M 5984

w

' * > • - '

V

T <.»+ ('") le«i

Fig. 5

- 2 5 3 -



JAERI-M 5984

(0

10

10

1 1 1 1 r

En = 5.05 ±0.01 MeV

58Ni Eex= 1.454 MeV

BOSCHUNG a LINDOW

En = 5.58 ±0.01 MeV

j I I I I I L
0 20 40 60 80 100 120 140 160 180

ro r

- IO

10

Fig 6

io E 1 1 1 r ~i 1 1 r-

E. = 5.05 ±0.01 MeV

i J

60Ni Eet= 1.333 MeV

o BOSCHUNG 8 LINDOW

= 5.58 ±0.01 MeV

I I I 1 I ! I L
0 20 40 60 80 100 120 140 160 180

Fig 7

-254



J A E B I - M 5 9 8 4

10

10

10 r

10

n r

I

~i 1 1 1 1 r~

En = 4.34 ± 0.07 MeV

0Ni 1.333 MeV

oKINNEY 8 PEREY

E. = 4.92 ±0.06 MeV

= 6.44± 0.07 MeV :

60 80 100 120 140 16

10 V

20 40 60 80 100 120 140 160 180

Fig. 8

I I I I 1 1 1 T

>oNi ELASTIC

En = 8.56 ± 0.05 MeV

_ I _
.0 20 40 60 80 100 120 140 160 180

Fig.10

10

10

1 1 1 1 1 i r

7.54±0.06 MeV

oKINNEY 8 PEREY

E. =8.56 ±0.05 MeV

j I | I I I L
0 20 40 60 80 100 120 140 160 180

10* c

Fig. 9

i 1 1 r

• NICKEL
En= 14.0 MeV

oCLARKE a GROSS
oSTELSON etol
aKAMMERDIENER
» BERKO etcl
• BAUER etol

. . i l l | I I I I ,
0 20 40 60 80 100 120 140 160 180

Fig.11

: NICKEL
= 14.0 MaV

>IRST EXCITED STATES

-

i

•

^ K 1il$ I
. ft . j l

I 1

, , , , -

oCLARKE 8 GROSS "
o STELSON el a,
- KAMMERDIENEfi J

COUPLED CHANNEL "
CALCULATIONS -

T (WEIGHTED
r i AVERAGE)

0 20 40 60 80 100 120 140 160 180
9c.rn.Weg)

Fig.12

- 2 5 5 -



JAERI-M 5984

DISCUSSION

S. TANAKA: In your talk on Prince and Bhat's work, what optical

parameters did they use?

R. E. CHRIEN: I don't know. The optical parameters in Bhat's work

were determined by fitting experimental differential elastic data in the

energy range 0.2 to 14 MeV.
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IV-2. The Effect of Gamma Ray Strength Function on the

Neutron Capture and Gamma Ray Production Cross Section

of Manganese and Europium

Hiroshi Takahashi

National Neutron Cross Section Center
Brookhaven National Laboratory, Upton, New York 11973, U.S.A.*
(*Present Address: Research Laboratory of Nuclear Reactor

Tokyo Institute of Technology)

Abstract

To calculate the high energy neutron gamma ray production cross section

of manganese, the ORNL measurements for iron were analyzed by changing the

functional forrf: of the gamma ray strength function. The Ey , dependence of

the y-ray strength function used by Axel in the region of 7 MeV, gives better

agreement with the overall experimental spectra than the energy-independent

form of the Blatt-Weiskopf single particle formula. The analysis was

carried out by using the statistical model code GROGI-3 with the Greenlees

and Fernandez optical potential parameters for neutron, proton, and

Q?-particles. Alsos the yrast levels which affect the shape of the

gamma-ray spectrum in the region of high and low energies, are taken

into account. The neutron capture cross sections of manganese calculated

by using the Axel formula are larger than the experimental values for

neutron energies above 1 MeV. This result and the marked structure in

the measured gamma ray production cross section indicates that the overall

gamma ray strength function varies as Ey
3 . In addition to this, Cook's

level density parameters for Mn used in these calculations were tested

by comparing the calculated neutron emission spectrum with the experimental

results. The agreement is good.

The analysis of the neutron capture cross section for Europium-151

and 153 isotopes indicates that there is less structure in the gamma ray

strength function than for the light element manganese. The analysis

also indicates that the neutron capture cross sections between 100 keV

and 1.5 MeV in ENDF/B-II are too small by a factor of 2 to 3.

- 2 5 7 -
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lo Gamma ray production cross section of Fe.

Since there are no experimental data on Mn it was decided to test the

general validity of the evaporation - cascade model used in these calculations

by comparison with the Fe ORNL data . These measurements were analyzed by

changing the functional form of the gamma ray strength function. The gamma-ray

strength function is defined here_ as Eq. (1)

J Hy i \ x L
f i X X L ( E v ) = j V

E y

-J
where ̂ v i X X L *s t*ie V~ray partial width averaged over states X of a

given spin and parity (denoted together by J) in the neighborhood of E\t

p (E \) is the average level density for such states and Ey L+^ is the

energy dependence for multiplicity L.

In the single particle approximation of Blatt, Weiskopf, this

strength function is energy independent. But it was pointed out by

Brink and emphasized by Axel that a more realistic energy dependence

of the El transition probability could be expressed by

fo X E 1 = K : (2)

(Ey8 - EG2 f + TG
2 Ey*

where K is constant for any particular nucleus and the quotient, involving

the width Fg and energy EQ of the electric giant dipole resonance are derived

from the classical Lorentz line. Figure 1 shows this function for Gd. This

figure is taken from L. Bollinger's paper(S). Axel has shown that the

radiative width should vary approximately as E in the region of 7 MeV.

That is, the El y-ray strength function varies as E.,2 .
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To study the effect of the y-ray strength functional form on the y-ray

production cross section, the statistical nucleus evaporation model code

GROGI-III(7) was used to analyze the recent experimental results for iron.

The analysis was carried out for Fe isotope which has an abundance of

91.7% in natural Fe. The GROGI-III code replaces the details of nuclear

level excitation by a continuum of levels, so that the strong structure

shown in the experimental results are smoothed out and only the overall

shape of the y-ray spectrum is calculated. This code also handles yrast

levels which are important in the calculation of the competition between

neutron and radiative emissions from the high spin compound states. The

effect of the yrast level on the y-ray spectrum will be discussed later.

As regards radiative transitions, this code handles only the dipole and

quadruple emissions. No distinction between electric and magnetic transitions

is made because the excitation level density as defined in this code does

not specify parity. The functional forms of the dipole and quadrupole

y-ray strength functions used in this code are energy independent in

the single particle approximation. The code was therefore modified to

take into account the Ey2 dependence of the y-ray strength function. The

normalization of the radiative width was carried out so that its value was equal

to the experimental measurement at the neutron binding energy. The optical

potential parameters used in the transmission calculations of neutron, proton and

o/-particles are respectively the ones obtained by Greenlees et al and Fernandez

Figs. 2-5 show the y-ray production cross sections calculated with

the energy independent and E v
2 functional form of the gamma-ray strength

function, and the ORNL experimental results. These indicate that the cross

sections calculated by using the y-ray strength function of Ey dependence are

- 2 5 9 -
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closer to the experimental results than the ones calculated by the energy

independent y-ray strength function. As indicated above, since a continuum of

excitation levels were used in these calculations they do not show any

structure. It was pointed out by Thomas and Grover that the yrast

leve affects very much the y-ray production cross section and the averaged

energy for fast fission y-rays. The author*l2 5 showed the effect of the

yrast level on the y-ray spectrum. To study this effect, figure 5 compares

the y-ray spectra which are respectively calculated with and without the

consideration of yrast levels. The inclusion of the yrast level increases

the high energy y-rays and decreases the low energy y-rays.

In this calculation, the yrast levels for low spin states were

determined from the Horen et al. level scheme and the ones for the

high spin states were calculated by using the approximate expression of

Eq.

Ej = (J + hf / 2 I + 6 (3)

where J is spin, I represents the effective nuclear moments, and 6 is

the pairing energy. From the analysis of the experiment for iron, it

was found that the overall y-ray production cross section could be

calculated by using the Ey2 dependent y-ray strength function. Hence,

the Mn calculations were carried out in the same way as for Fe using

the E v dependent y-ray strength function and the results put in the

ENDF/B-IV (preliminary/14) data files.

2. Neutron capture cross section of Mn.

The neutron capture cross section of 5 Mn was calculated by using the

Hauser-Feshbach statistical model code C0MNUC-3(1B) with Axel's y-ray

strength function of Eq. (2). The discrete excitation levels were taken

- 2 6 0 -
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from Horen et al.'s data and the continuum level parameters were taken

from Cook's data ( 1 6 ) in the Cameron Gilbert formula(17\

Figure 7 shows the comparison between the calculated neutron capture

cross section and several experimental results. The calculated curve is

quite similar to the one calculated by Devbenko

The calculated neutron capture cross section deviates from the

experimental values above 1.5 MeV. To get the smaller capture cross

section, the y-ray strength function should be small or the competitive

cross section such as inelastic should be large. However, the calculated

discrete level excitation functions show good agreement with the experimental

values. Furthermore, the calculated neutron emission spectrum for 7 MeV

neutron also shows the good agreement with experiment so that the level

density parameter used for the continuum level must be correct. Thus,

to get the smaller neutron capture cross section, the v-ray strength function

should be smaller. "In the light nuclei, the y-ray strength function is not

so smooth as shown in Fig. 1 but has some structure. This might give a

smaller cross section above 1 MeV neutron energy. The neutron capture

cross section from 0.1 MeV to 2.5 MeV in ENDF/B-IV (preliminary) data was

evaluated mostly from the experimental data, but the small structure due to

the opening of the inelastic neutron channel vere taken into account by

the results of the COMNUC-III calculations. The cross sections between

2.5 MeV and 10 MeV are evaluated from the Menlove et al. ( 1 9 ) data and

the ones from 10 MeV to 20 MeV were based on the Longo-Saporetti semi-

direct process calculation.
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3. The neutron capture cross section of Eu and Eu.

Figures 9 and 10 show the neutron capture cross sections of B Eu and

1 5 3 Eu respectively. Both ENDF/B-II data of 1 5 lEu and 1 B 3Eu from 160 keV

to 2.5 MeV are taken from the activation cross section of Eu 9.3 h

metastable state , and the cross section for Eu-ground states is

neglected. To evaluate the cross section, the COMNUC-III calculation

was carried out in the same manner as in the case of Mn. The normalization

of the capture cross section was carried out so that the calculated capture

( 22 ")

cross sections for both isotopes equal the Konks et al. experimental data.

The solid lines from 100 keV to 3 MeV are the values calculated by COMNUC-III

code. These are larger than the ENDF/B-II data by a factor of 2 to 3.

Recently, Harker(23^ made the integral measurement by using the hard

spectrum of CFRMF facility. The measured values are shown in the figures

with the values calculated by using the flux obtained by Harker. The

agreement between experimental and calculated values is excellent. The

isomeric branching ratio obtained by Harker's integral measurements also

confirms that the higher cross section of COMNUC-III calculation between

160 keV and 2.5 MeV is reasonable. In this calculation, the Axel's y-ray

strength function formula was used. The effect of the functional form

on the capture cross section in low energy neutron energy range from

1 keV to 100 keV, is small and the calculation shows a straight line. The

Konks et al. data indicates that there are small tluctuations in the capture

cross section, but this must be due to the fluctuation of level density, etc.

Therefore, the normalization of y-ray strenght function, which directly

affects the capture cross section, should be done with care. Recent

Czirr's and Hockenbury's preliminary experimental data around
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10 keV neutron energy shows a little higher value than the Konks

data, but we took the Konks experimental data as the ENDF/B-IV evaluated

data from the consideration of Barker's integral experimental data and

the COMNUOIII calculations. Above 2.5 MeV, the ENDF/B-IV data was

evaluated by using the GROGI calculation and the direct semi-direct

process estimates.
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DISCUSSION

H. E. JACKSON, Jr. : I know of data on the photoabsorption cross

sections for Mn and V from the Lawrence Livermore Laboratory which show

strong structure in the threshold region. So it is not surprising that

the results for Mn suggest structure in the photon strength function.

R. E. CHRIEN: We have seen evidence for a "pygmy" E-l resonance in

Mo 92-94-96-98 peaking near 7 MeV. The experiment was done with a 24 keV

neutron beam with a FWHM of 2 keV.
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IV-3. Models, Measurements and Evaluation

by

P. Guenther, P. Moldauer and A. Smith

Argonne National Laboratory

Argonne, Illinois, LSA.

ABSTRACT

A unified program of physical measurements and

theoretical calculations for the provision of evalu-

ated neutron data in the continuum region is outlined.

The basic theoretical concepts are the optical,

coupled-channel and statistical R-matri:< models. The

complementary measurement program provides the

essential experimental foundation consisting primarily

of neutron total and scattering cross sections. The

integrated use of experiment and theory to provide

evaluated data sets is discussed inclusive of: 1)

average total and elastic scattering cross sections

and the optical and coupled-channel models, 2) inelastic

neutron scattering cross sections and the statistical

and direct-reaction models, and 3) resonance statistics

and fluctuations. The importance of physical concepts

is emphasized throughout.

*This work supported by tne U. S. Atomic Energy Commission.

tSotue of the contents are of a preliminary nature and sub-

ject to change.
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I. Average Ileutrou Total and Elastic Scattering Cross

Sections and the Optical Model

The basic tool for the interpretation, extrapolation

and evaluation of fast neutron cross sections is the

optical model (1) and its generalization, the rotational

and vibrational coupled-channel model (2). The basic re-

lation of these models to nuclear forces and experimental

observables is schematically illustrated in Fig, 1.

The data that are most basically related to these

models are the average total and elastic scattering

cross sections.

The average total cross section is always directly speci-

fied by the optical or coupled-channel models. These

models also provide shape elastic and direct inelastic

cross sections. At low energies where few inelastic

channels are open these calculateu cross sections must be

supplemented by compound-nucleus contributions which can

be estimated by methods discussed in Section II, below.

In addition, neutron strength function data may be used

for determination of the model parameters and the behavior

of the fluctuating cross sections at lower energies can

provide additional information as discussed in Section III,

below.

The present work is a physically integrated approach

to model determination based upon complimentary measured

total and elastic scattering cross sections in the energy

range 0.1 to 6.U IleV and above with the oojective of pro-

viding comprehensive evaluated neutron data sets. The com-

parison of measured and calculateu results reveals informa-

tion about the variation of model parameters fron nuclide-

to-nuclide includino; the magnitude of the (N-Z) /A dependent

term, the energy dependence of mouel parameters and the

effect of ellipsoidal deformation. Tiie results are of value
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in the prediction and extrapolation of cross sections,

as inputs to the calculation of inelastic cross sec-

tions and in the study of cross section fluctuations.

The application of models to inelastic scattering are

discussed in Section II. Section III deals with fluctua-

tions and their implications on the selection of optical

and coupled—channel parameters.

The experimental average total cross section founda-

tion is obtained by measurements (3 to 9) with the objec-

tive of assuring the

— — precise experimental values essential to the forma-

tion of the model and evaluation.

The experimental resolution is good but not a goal in it-

self. Fig. 2 illustrates the type of results obtained for

nickel together witu the corresponding measured elastic

scattering values and evaluated total cross section. The

latter is derived from high-resolution values reported

primarily by Perey et al. (10) and Cierjacks et al.

(11), normalized where necessary to the present experimental

values. The model parameters are chosen so as to describe

the observed average total cross sections to within a few

percent from 0.1 to 20 MeV. The adjustments include the

six optical model parameters and the deformation, $„. The

energy dependence of the parameters is a free variable but

the results are generally consistent with that reported by

Engelbrecht and Fiedeldey (12). The cnaracteristically good

agreement between measured and calculated total cross sec-

tions is illustrated in Fir;. 3.

— The potentials are specific to the given nuclide and

not necessarily of a general nature.

The model parameters fluctuate from nuclide-to-nuclide re-

flecting real differences in the total cross sections. For

example, the iron and nickul models differ appreciably due
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primarily to the 15-20% differences between iron and

nickel average total cross sections in the region 1 to 3

MeV.

The total-cross-section based model parameters are

subsequently adjusted to fit the measured elastic scatter-

ing angular distributions

the measurement of vhicli is an essential part of this

effort.

At low energies the measurements are made with sufficient

resolution to define the intermediate structure and at

higher energies with broader resolutions (3 to 9). The

iron and niobium results of Fig. 4 illustrate this experi-

mental foundation. They are extended to higher energies

using values reported in the literature (e.g. by Perey et

al. (13) and by Holmqvist and Wiedling (14).

The model adjustments emphasize elastic scattering at

energies 'v- 5 MeV where the compound-elastic contribution

can be reasonably well determined. The adjustments were

constrained to give a continued good agreement with the ob-

served average total cross sections. Below 1-2 MeV the

pronounced fluctuations in cross sections of lighter nuclei

can preclude the determination of a well defined average

elastic angular distribution. Above approximately 6-8 MeV

the angular distributions are primarily due to shape-scat-

tering but compound-nucleus and other processes (e.g. pre-

compound processes) remain contributing factors particularly

in the minima which are very sensitive to model parameter

choice. Some of these physical aspects are illustrated by

the e:car:ples of Fig. 5. A siviple spherical potential is

suitable for cobalt in the few tleV range. Above 3 MeV the

calculation of compound elastic contributions becomes uncer-

tain, yet the r.easured valuer fall between the limits of

shape—elastic and shape—elastic+compounii—elastic calculations,

The saws trends occur in nickel. However, tue first few ex-

cited states are known to be f.vo-phouon vibrational levels
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(15) and thus the calculations are based upon the coupled-

channel model, coupling the ground and first excited states

in a vibrational interaction.

— — The effect of coupling on the elastic distributions can

be large, 5U% or more at some angles and energies.

Fissile, fertile and many fission product nuclei are

rotational-deformed and precise measurement of their

scattering cross sections is difficult. Theoretical extra-

polation is often necessary and the coupled-channel model is

a suitable mechanism. Such a model has been experimentally

validated in the case of W-186 and subsequently utilized

in the evaluation of the scattering cross section of U-238.

The energy intervals of the ground-state rotational

band of W-186 are about twice those of u-238 (15). As a

consequence, W-166 scattering cross sections can be well re-

solved at few-MeV energies in a manner not technically

feasible in the case of U-238. The total and scattering

cross sections of W-186 were measured to ^ 4 MeV and used

to deduce the parameters of a coupled-channel model. The

suitability of the model is illustrated in Fig. 6. The over-

all best agreement with measurements was obtained with an

ellipsoidal deformation of S~ "*> 0.2. This value is smaller

than that deduced from charge-sensitive studies (e.g.

coulomb excitation (16)) with possible theoretical implica-

tions.

With minor adjustments the above W-186 model also de-

scribes the U-23S average total cross sections over tiie range

0.1 to 20 MeV and the elastic angular distributions to 8 MeV.

The latter comparisons included inelastic scattering compo-

nents consistent with the various experimental resolutions

employed in the measurements. The majority of the elastic

angular distributions were measured especially for this

interpretation and evaluation and the experimental resolutions
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are reasonably well known. Representative comparisons of

measured and calculated elastic angular distributions are

shown in Fig. 7. Generally the Measured values fall be-

tween the two limits: 1) shape-elastic+direct-elastic

and 2) shape-elastic+cor.ipound-elastic+conpound-inelastic+

direct-inelastic. The discrepancies between measurement

and calculation are generally no larger than between experi-

ments and systematic uncertainties tend to be concentrated

near the cross section minim where the unresolved contri-

butions from inelastic scattering are largest, the data

raost uncertain, and the contribution to the angle-integrated

cross sections least.

The angle-integrated elastic scattering cross sections

deduced from the model interpretation of experiment are

summarized in Fig. 8. The results lead to

— — evaluated U-23o elastic scattering cross sections differ-

ing from ENDF/B (17), particularly in the range 1-3 MeV.

No physical explanation of the latter's lower values could

be identified. The present evaluated elastic cross sections

iiaply the total inelastic scattering cross sections shown in

Fig. 9.

— — These results are consistent with tuose subsequently de-

duced from discrete excitation functions but are 10-20%

lower than the maximum of the EKDF/B evaluation.

Such a reduction in the inelastic scattering cross section of

U-238 has been indicated from the analysis of some integral

experiments. This L-238 example illustrates the importance of

precise evaluation of total and elastic scattering cross sec-

tions with their consequent ir.plication of non-elastic and

inelastic scattering cross sections.

It is attractive to employ the optical model for broad

extrapolations in mass, energy and charge and this is widely

done. Fundamental considerations lead to generality at tlie ex-

pense of sinplicity (lt<) . The non-locality of the nuclear
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force implies an energy dependence of the potential (19).

Iso-spin considerations lead to an (N-Z)/A dependence (20)

and shell dependent terms have been proposed (21). The

resulting "global" optical potentials have not been exten-

sively verified in a neutron context.

Therefore the generality of the optical potential was

quantitatively examined for neutron induced processes

in the region of A=100.

This is the mass region of many fission products whose

evaluation is often based upon model extrapolations. The

potential can be written in the form (22).

V = V - BE - (N-Z)/A x C
real o ''

W. = W - D E - (K-Z)/A x E
imag o

(1)

The constants are usually determined from comparisons of

measured and calculated charged-particle induced processes.

An example is the work of Becchetti and Greenlees (22) from

which the values V =56.3 MeV, B=0.32, C=24 MeV, W = 13
o ' o

MeV, D=»0.25 and E=12 MeV are obtained. These values of B

and D are consistent with those of other authors (12). C

and E are more uncertain even with respect to sign (1,20).

In any event, these parameters and Eq. 1 lead to appreciable

variations of the potential even for rather snail mass and

energy shifts.

We have studied a comprehensive set of measured total

and scattering cross sections of the isotopes Mo-bf2, -96,

-98 and -10U extending from a few hundred keV to 4 MeV. The

rceasurements w<2re made in such a manner as to best identify

the mass dependence. The total cross sections were determined

witli accuracies of ^ 5% and the differential scattering mea-

surements nade with sufficient detail to assure a good data
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base in both energy and angle and to avoia isolated energy

dependent fluctuations. The energy ranpe was chosen to be

reasonably consistent with a knovleu^e of all exit channels.

Sorie impression of the scope of this experimental foundation

is given in Fig. 1U.

The analysis was based upon a six parameter Xi-square

fit to the measured elastic angular distributions (real and

imaginary strengths, radii and diffusenesses). The poten-

tial form consisted of Woods-Saxon real, Gaussian-surface

imaginary and Thomas spin-orbit terms. The compound-elastic

contributions were calculated using the Kauser-Feshbach

formula with width fluctuation corrections. The overall

agreement between experiment and calculation using a fixed

potential is illustrated in Fig. lu. Careful "tuning" of

parameters from this general base lead to several conclusions.

The real potential strength decreased with increasing

mass at each energy.

The effect was very small but consistent with the constant

"C" of Eq. 1. The parameter "B" giving the energy dependence

tends to be smaller than 0.32 of Ref. 22.

The results were not sensitive to snail variations in

W. given in Eq. 1.
imag e

There was a suall tendancy toward decreasing imaginary radius

with increasing energy. This nay be a first step toward the

volume absorption known to exist at higher energies.

lie conclude tuat there is

— — a small (H-Z)/A dependence of the real potential for

neutron processes in the iv.ass-energy region A=10u,

L % 4.0 iieV consistent witii tiiat observed in charged-

particle studies (22).

The r'.â nitude of the effect is only slightly greater than the

experimental uncertainties. Further, it is possible that the
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effect is mitigated by some other potential dependence

(e.g. shell effects).

The model parameters derived here in general do not

agree well with those deduced froi'i high energy elastic

scattering cross sections (E>b MeV). The manner of the

transition of the parameters from the low to higu energy

region will present an interesting topic for further study.

The above optical and coupled—channel models provide

a good method for the energy extrapolation of total cross

sections in the absence of definitive experimental informa-

tion. They are directly employed in the angle and energy

extrapolation of elastic cross sections for evaluation,

where such extrapolation is always necessary to some decree.

The models can also be used for extrapolating into unmea-

sured regions (e.g. fission products) but only with re-

duced reliability as detailed variations of the model

parameters from nuclide to nuclide are still uncertain.

II. Inelastic Neutron Scattering

Optical and coupled-channel parameters determined

through the fitting of neutron total and elastic-scattering

cross sections can be applied to the

calculation of average inelastic neutron scattering

cross sections by means of the Kauser-Feshbach formula

(23).

Where spins and parities of inelastic levels are known com-

parisons of the Hauser-FeshLach predictions with observed

excitation functions can provide additional confirmation of

the optical and coupled-channel model parameters. Where

they are unknown level spins and parities can be deternineu

either precisely or within limits.
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Precise application of the models for the interpreta-

tion and evaluation of inelastic neutron scattering data

requires modifications of the conventional Hauser-Fesh-

bach formula.

They are the width fluctuation and resonance interference

corrections (24). The latter is important at higher ener-

gies where the excitation of individual levels generally

becomes difficult to resolve. The width fluctuation correc-

tion enhances the average cross sections for reactions in

which the entrance and exit channel fluctuations are corre-

lated, with a corresponding reduction of reactions without

such correlation. One example is the reduction of the cross

section for the excitation of the first few levels near

threshold. This reduction can approach a factor of 1/2 in

the case of the first 2+ level of an even isotope. A second

example is the enhancement of compound-elastic scattering

which may approach a factor of three when a large number of

exit channels are open. The latter can be important in the

determination of optical model parameters from elastic scat-

tering cross sections (see Section I, above). Finally,

— — the theory predicts an enhancement of inelastic cross

sections for levels that are strongly coupled to the

ground state.

This is the result of both the direct cross section due to

channel coupling and the correlation enhancement of the com-

pound-inelastic cross sections. Theoretical and numerical

studies are now in progress which will define more accurately

the application of these corrections to tue Hauser-Feshbach

formula. The use of a number of these concepts to the inter-

pretation and evaluation of inelastic neutron scattering

cross sections is outlined in the following paragraphs.

The simplest example is the use of the spherical optical

model and the Kuaser-Feshbach foruula in the interpretation

and evaluation of inelastic neucrou scattering frora cobalt.
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The measured values, the calculated results and the evalua-

tion are summarized in Fig, 11. The theory guides the

evaluation near threshold. However, the range of applica-

bility is narrow with increasing uncertainty above ^ 3 MeV

due to unknown exit channels. The uncertainties are such as

to make detailed interpretation unrewarding. Even in the

well defined range the calculations are sensitive to J as

indicated by the two sets of calculations based upon

alternate spectroscopic schemes (15). Neither is in detailed

agreement with experiment but the calculations do resolve J

ambiguities. For example, the 1.19 MeV state is 9/2- rather

than the alternate 5/2- allowed by charged particle studies.

This assignment as well as similar ones support a spectro—

scopic scheme consistent with the concept of a proton hole

in the f7/7 shell strongly coupled to the spherical core

with associated collective bands in the manner of Mottelson

and Nilsson (27) .

Thus even this rather simple approach can give structure

information not otherwise easily available.

However, the evaluation remains primarily based upon ex-

perimental information.

Indeed, undue reliance on the model can lead to erroneous re-

sults. For example, Fig. 12 compares the present experi-

mentally based evaluation (curve A) with ENDF/B (curve B)

based primarily upon model calculations. While the

thresholds are very similar the magnitudes of the prominent

components can differ by a factor of two or more.

The effects of channel-coupling and the width fluctua-

tion correction are evident in inelastic scattering from

nickel. The first few excited states of tae predominent

even isotopes are vibrational levels. Results of calcula-

tions based upon both spherical and coupled-channel r.odels

are compared with experimental results in Fi;% 13. At these
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energies the spherical and coupled-channel (ellipsoidal)

results do not appreciably differ. However, the direct

contribution increases witn energy amounting to ^ 40 mb

for the excitation of the first 2+ state at 14 MeV; con-

sistent with experimental observations of Kamrnerdiener

(25). Below 3 MeV some of tne cross sections calculated

with the hauser-Feshbach formula are appreciably larger

than the experimental values (e.g. the excitation of the

2+, 1.45 MeV state in Ni-58). In these instances the ex-

perimental results themselves vary considerably probably

reflecting actual fluctuations very similar to those common-

ly observed in the excitation of tue o46 keV state in iron.

It is a region where the fluctuation correction should be

large and, indeed, it reduced the liauser-Feshbach result by

approximately a factor of two as indicated by the WFC curve

of Fig. 13.

— — When fluctuation corrected tne calculation provides a

good extrapolation of measured values into the experi-

mentally difficult threshold region.

The fissile and fertile nuclei as well as many-fission

product nuclei are ellipsoidally deformed with rotational

level spectra (15). The members of the ground state energy

bands of these nuclei are strongly coupled to the ground

state with a resulting enhancement of the cross section for

excitation of these levels by inelastic neutron scattering.

An example is provided by the scattering to the first

several excited states in W-186 which is shown in Fig. 6.

The spherical model calculations (3- = 0) are seen to be

low by about a factor of three, while coupled channel calcu-

lations with spheroidal deformation parameters 3., in the

range of U.2 - 0.3 proviue good â reeir.ent with trie observed

cross sections. The influence of the deformation
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is clearly of great importance. In this case the in-

elastic calculations are consistent with the value of

3~ ^ 0.Z5, deduced from the elastic scattering cross

sections.

The W-186 study establishes the importance of a

coupled-channel model for application to tiie experi-

mentally more uncertain inelastic scattering in U—23b.

At low energies the model can be used to extrapolate the

discrete level excitation cross sections of U-238 but it be-

comes less reliable at higher energies where the level

structure is uncertain or unknown. For example, the excita-

tion of the first excited state (2+, 43 keV) can be experi-

mentally resolved to 1.2 MeV (7). The direct component of

the inelastic cross sections for this first excited state

is computed to remain large up to several MeV as indicated

by the dotted curve in Fig. 15. At 'v. 3.U MeV this cross

section is several times the value given in the hliUF/Si

evaluation. At low energies the excitation function for the

first excited state in II exhibits the effects of both

direct coupling and width fluctuations. A definitive eval-

uation in this region requires a calculation including

those effects. In this region there is a large discrepancy

between experimental values and

extrapolation to threshold using theory provides an

essential guide to evaluation.

III. Resonances and Fluctuations

The high resolutions now technically available pro-

vide details of the resonances or fluctuations up to rela-

tively high energies. The optical and coupled-channel models

can also be applied to the calculation of the statistical

properties of these fluctuations. The average reaction

amplitudes provided by tiiese models determine the average

K-n.atrix parameters R and /y • ,y ) / . The resonance spac-
\ jje yd / u

in^s D are d^termned from resonance neutron data and tae

Y are assumed to be normally distributed with zero means.
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This information suffices to construct a numerical

statistical reaction amplitude. From this, fluctuating

cross sections are computed whose statistical properties

are then compared with the measured high resolution data.

This statistical comparison permits a further "fine tun-

ing" of the optical or coupled-channel model parameters.

It also permits the statistical prediction of cross sec-

tion fluctuations from poor resolution data. Finally,

the method is used for better definition of parameters

that determine width fluctuation ai\d resonance interfer-

ence corrections to the Hauser-Feshbach formula. This is

done by averaging the statistically generated cross sec-

tions and comparing these averages with the predictions of

the formula.

The above computational procedures have been incor-

porated into a computer program STASIG (2b). A random

number generator is used to select the R-matrix parameters

in accordance with optical and statistical model. The

statistical cross sections are calculated, averaged with a

resolution function equivalent to that of the experiments

and compared with the measured values. Such statistical

comparisons can be made either qualitatively by visual com-

parisons of the curves or quantitatively by comparisons of

auto-correlation functions, cross section distribution

functions, etc. The internal consistency of the calcula-

tions is verified by averaging the statistical total cross

section over large energy intervals and comparing these

averages with cross sections obtained from the optical

model employed in the input to the calculations.

The total and inelastic scattering cross sections of

the even isotopes of titanium were calculated using the

above methods with both spherical and ellipsoidal models

and compared with the measured values obtained in the
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complementary experimental effort (5) . The measured and

calculated total cross sections are compared in Fig. 16 •

Loth qualitatively and quantitatively the ellipsoidal

calculation agrees better with the measurement,

particularly with respect to the cross section extrema and

the grouping of resonances,, as well as with regard to the

auto-correlation function.

Similar comparisons of measured and calculated cross sec-

tions for the excitation of the 984 keV state of Ti-48 are

shown in Fig. 17.

The ellipsoidal result is similar to the measured in-

elastic values, in contrast to the results obtained

with the spherical model.

In this instance it is not possible to distinguish be-

tween spherical and deformed models on the basis of average

total and elastic scattering cross sections. However,

the analysis of the fluctuations clearly indicates a

preference for the ellipsoidal coupled-channel model.

In addition, the ellipsoidal calculations lead to an inter-

mediate resonance structure similar to that observed without

recourse to other reaction mechanises.

The above methods were applied to the evaluation of trie

total cross sections of cobalt. High resolution experimental

data is available at energies *v» 0.45 MeV with apparently no

equivalent information between. The fluctuating cross sections

were calculated from the optical model, statistically verified

against the experimental results available both below and

above the region of ignorance and then used to interpolate

across the experimental gap. The resulting evaluated cross

section is shown in Fig. lb. It is difficult to distinguish

the nodel-intcrpolated region from the adjoining experimentally-

based values. Ultimately t.ie above procedures have a potential

for the direct provision of fluctuating cross sections by
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analytical means thereby avoiding the increasing enormity

of evaluated numerical files and providing a physical

insight well beyond the experimental capability.

IV. Summary Comment

The above integrated program of models, measurements

and evaluations highlights some general conclusions.

— - - There is no substitute for as good an experimental

data base as possible. It is essential to reliable

models and evaluations.

Models have their primary strengths in the extrapola-

tion, interpolation and physical interpretation of

measured values.

— — Models extending too far from the experimental founda-

tion should be applied with considerable caution and

only when no other alternative is available.

The provision of evaluated data is an integrated

physical endeavor consisting of measurements, inter-

pretation and evaluation. They are not separate

disciplines and, in particular, evaluation in itself

cannot create information or knowledge.
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FIGURE CAPTIONS

1. Schematic outline of the interrelation of nuclear forces,

optical and coupled-channel rcodels and calculable observables.

2. Total neutron cross section of nickel (b). Present measured

values are indicated by®(ii>1.5 HeV) and tne solid curve

(E< 1.5 MeV) and the evaluation is shown by the dotted line.

Measured elastic scattering values are indicated by 11 •

3. Measured and calculated total cross sections of nickel (8).

The "experimental" values were constructed from a number of

sources (e.g. Kefs. 10 and 11). The calculation was obtained

using a coupled-channel model.

4. Elastic neutrons scattering cross sections of iron and niobium

(3, 4) present measured values are indicated by data points.

The curves indicate the results of legendre-fits to the data.

Intermediate structure is evident in iron at lower energies.

5. Differential elastic scattering cross sections of nickel and

cobalt (5,8). Measured values are indicated by symbols with the

present results denoted by "o". The curves indicate the results

of model calculations using spherical (cobalt) and ellipsoidal

(nickel) potentials.

6. Measured and calculated differential neutron scattering cross

sections of W-186 (6). The experiuental values are indicated by

symbols and the results of calculations using varying deforma-

tions from 3 2 = 0 to 0.3 are shown by curves. The upper distri-

butions pertain to elastic scattering and tne lower to the in-

elastic excitation of the 2+f 125 keV state.

7. Differential elastic scattering cross sections of U-23ti. Mea-

sured values are indicated by syubols with the present work,

given by "o" (7). All the measured values contain some contribu-

tion from inelastic neutron scattering. The results of ellip-

soidal calculations are imiicateu by curves with the notations;

SI:=shape-elastic, CL=compouud-elastic, DI=direct-inelastic and
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CI=compound-inelas tic.

8. Total and elastic scattering cross sections of U-238 (7). The

present evaluations are indicated by the heavy curve. That of

ENDF/13 (17) by the light curve. Data points indicate the

elastic scattering cross sections deduced from spherical and

ellipsoidal models based upon experiments. Dashed curves indi-

cate a subjective estimate of the limiting uncertainties in the

calculated results.

9. Total inelastic scattering cross sections of U-238 (7). Dotted

curves indicate the values implied by total and elastic scatter-

ing cross sections with respective maximum and minimum limits.

The heavy curve indicates the present evaluated total inelastic

scattering cross section and the light curve that of ENDF/B (17).

10. Differential elastic scattering cross sections of Mo-92, -96,

-98 and -100. Measured values are indicated by data points.

The results of a general optical model fit to the data are indi-

cated by curves.

11. Inelastic neutron scattering cross sections of cobalt (5). The

measured data is indicated by symbols with the present values

given by D . The solid curve shows the present evaluation.

The dashed and dotted curves refer to model calculations based

upon alternate spectroscopic schemes.

12. Evaluated inelastic scattering cross sections of cobalt (5).

Curve A is from the present work, curve B from ENDF/B (17).

13. Inelastic neutron scattering cross sections of nickel (8).

Measured values are indicated by symbols with the present work

given by 9 . The evaluation is indicated by the solid curve.

Hauser-Feshbach calculations based upon spherical and ellip-

soidal models are indicated by dashed and dotted curves,

respectively. In addition, the effect of the width fluctuation

correction to the calculated excitation of the 1.45 MeV state

of Hi-5b is shown.
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14. Inelastic excitation of tue 45 keV, 2+, state in U-238. Mea-

sured values are indicated by symbols (7). The present eval-

uation is indicated by the heavy curve. Its behavior toward

threshold follows the predictions of a coupled-channel model.

The same model gives the direct inelastic component indicated

by the dotted line. The Ei;DF/B (17) result is indicated by

the light curve.

15. Comparison of measured and calculated total cross sections of

titaniui1! (9). The upper curve indicates the experimental

values and the lower two those calculated from the statistical

model based upon ellipsoidal and spherical potentials.

16. Comparison of measured and calculated cross sections for the

excitation of the 948 keV state in Ti-48 (9). The format is

identical to that of Fig> 15.

17. Evaluated total cross sections of cobalt (5). The region 0.2

to 0.45 MeV is derived from the statistical calculations de-

scribed in Section III of the text.
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DISCUSSION

S. W. CIERJACKS: There has been some time ago some work at Argonne

on the investigation of intermediate structure in neutron cross sections.

In particular I remember the interpretation of intermediate structure

in terms of the intermediate optical potential of Moldauer. Could you

comment on the necessity for such a treatment and on the continuation

of this kind of work?

H. E. JACKSON, Jr.: This work is certainly continuing. The calculation

of fluctuating cross sections from the optical model described in this

paper is a continuation of that work.

O O Q

R. C. BLOCK: You presented some work on U where the elastic

scattering was subtracted from the ENDF total cross section, and that in

the region 1 ^ 3 MeV there was a large difference between the calculated
O T Q

and difference values. At RPI we measured the total cross section of U

and found that in the 1 ^ 3 MeV region there was a 3 ̂  5% discrepancy with

regard to the ENDF-III value. This is substantiated by the NBS recent

measurements. Thus the new difference between total and elastic cross

sections will be quite different from the value obtained in your (presented)

paper.
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V-l . FREE DISCUSSION

T. FUKETA: The title of this meeting was originally suggested by

Prof. W. W. Havens, Jr. at the previous EANDC Meeting. Not to speak of

his great contribution to the EANDC, I personally appreciate very much

for his advices to this Topical Discussion. We had known that the choice

of the title should rather be made by the discretion of the host of the

meeting. Aside from that, however, in the program and advisory committee

of this Topical Discussion, there has been a criticism on the title of this

Discussion Meeting which said that the work "critique" in the title sounds

too critical. I myself is not sure about this kind of nuance in English,

and I would like to hear about this from the EANDC members at this occasion.

But I'm not asking you about the linguistic nuance only.

P. RIBON: Evaluators have a tendency to use the nuclear computer codes

as black boxes which provide good answers if good input parameters are

entered forgetting that there are approximations both in the codes and

in the theories.

I have the feeling that Prof. W. W. Havens proposal was to use the

opportunity of this topical discussion to remind the approximations used

in the theories and in order that physicists tried to define clearly the

field of application of these theories and the consequences of various

approximations.

4
J. S. STORY: Dr. Motz showed an R-matrix analysis of the n-He

reactions. In comparison he showed the data from the ENDF/B3 file (MAT-1088);

the '̂ 2 MeV resonance being slightly shifted in energy. So far as I. recall

the ENDF/B file was based on a coupled-channel optical model analysis: it

might seem surprising at first that the optical model has applications in

resonance analysis but so it is. (Another excellent example may be found

in the work of Reynolds et al. Phys. Rev. 1_7_6, 1213 (1968) in relation to

neutron scattering by C-12.) In comparison the ordinary R-matrix theory

suffers from being based on the rather artificial concept of the infinite

square well and may run into difficulties when applied over an energy range

of several MeV; this theory can only be justified by its ability to inter-

pret experimental data.

1 should like to utter a further caution against too much reliance

on predictions derived from R-matrix theory. The analysis can only be used

reliably if one knows all the levels, and even for the light compound

nucleus involved in the n-Li reaction, one does not know the details of

all the levels.
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A. MICHAUDON: It is a well-known fact that fission theory cannot

predict relevant cross sections within 1% accuracy, but there are cases

where experimental data are very scarce and for which a crude estimate of

the cross sections would be useful. Could a real data user care to comment

on this?

It would seem that the development of fission reactors should be

sensitive to progress which can be made in the understanding of the fission

process. In fact, a break-through has been made in the understanding of

the fission process this last decade; for example, fission isomerism,

intermediate structure in fission cross sections etc. This makes now the

study of the fission process to be quite active now. On the other hand,

this activity seems to have little impact on model calculations of fission

cross sections. I would like to know, from a user of nuclear data, if more

elaborated model calculaitons of fission data present some interest.

P. RIBON: In most cases the request is for a more accurate knowledge

of the absolute value of the average cross section, and for the knowledge

of its smooth variation with energy. The nuclear fission theories do not

allow, presently, to predict these properties with a good enough accuracy.

J. S. STORY: I thought that Dr. Michaudon's presentation on the

calculation of fission cross-sections was valuable. In the future the

cross-sections of the transplutonium materials will be required and some

of these must be obtained by calculation. At present some are not known

to a factor of 2.
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