Fo2_

NEANDC(J)38L

JAERI-M JINDCUAPL |
2984

PROCEEDINGS OF THE EANDC TOPICAL DISCUSSION ON
"CRITIQUE OF NUCLEAR MODELS AND
THEIRVALIDITY IN THE EVALUATION OF NUCLEAR DATA"

February 1975

Edited by Toyojiro FUKETA

B x*x B F Hh B R
Japan Atomic Energy Research Institute



ZOEEEIL, BHERRT LD JAERIM Lif—F & LT, REMICHITL T3
PR mEETT, AT, L roBMehEIE, AREFHFREMERE (KE
WA E R ) HT, BHLILCZE 0,

JAERI-M reports, issued irregularly, describe the results of research works carried out
in JAERI. Inquiries about the availability of reports and their reproduction should be
addressed to Division of Technical Information, Japan Atomic Energy Research Institute,

Tokai-mura, Naka-gun, Ibaraki-ken, Japan.



JAERI-M 5984 NEANDC (J) 38L
INDC (JAP) 25L

Proceedings of the EANDC Topical Discussion on
"Critique of Nuclear Models and Their Validity

in the Evaluation of Nuclear Data"

Editor: Toyojiro FUKETA
Division of Physics, Tokai, JAERI
(Received January 21, 1975)

The topical discussion meeting was held on March 27, 1974 in the
middle of the 17th meeting of the European-American Nuclear Data Com-—
mittee (EANDC)* from‘March 25 through 29, 1974 at Akasaka Prince Hotel,
Tokyo. The topical discussion meeting was organized jointly by JAERI
and Japanese Nuclear Data Committee. About 70 researchers including
the attendants of the EANDC meeting participated in the discussion.

The proceedings consist of 18 papers and the records of discussion
prepared later by each speaker. Most of the papers are kept intact
by photo-offsetting the manuscripts; the editorial arrangement was

intended to be minimal.

Organizing Committee

Kineo Tsukada (Member of the EANDC; JAERI)

Toyojiro Fuketa (Local Secretary of the EANDC meeting; JAERI)
Kichinosuke Harada (JAERI)

Sin-iti Igarasi (JAERI)

Mitsuji Kawai (Tokyo Institute of Technology)

Yasuyuki Kikuchi (JAERI)

Ryuzo Nakasima (Hosei University)

Kazuaki Nishimura (JAERI)

Shigeya Tanaka (JAERI)

Tokuo Terasawa (University of Tokyo)

Nobuhiro Yamamuro (Tokyo Institute of Technology)

* now Nuclear Energy Agency Nuclear Data Committee (NEANDC).



JAERI - M 5984

BT - OFEICE T B EFHER &
zDRYMFR 7 I ZEANDC
FEAL e T4 RH v a vl

H KJEF Ot Bl e Fr B8
GRES) HHBRBRH
(19751821 H%HE)

1974 4E 3 A 25 AH 5 29 HKEERORIR 7Y ¥ A7 L CiibhicBks 7 - 2 E8LEANDC)”
O FE1TELEEOHENO—H, 3H 27T BCREOHER SR Nl MIRKXRFEME Y 7<EB2
EDXF THEME INTco EKTIAEANDC RENHBEEEZ S TH 10 BOMEEBBML 7,

COMEZI BRENARNE, BTREBCL oTELLHONIRDHELOK TN S, TH
FLEETR, BHINEBO4 72y PERHIRICE 5T, KBAFOBIBELENT TR LNT
B0, HMELOBBERENRICEEHZ LS LA

AR A
B H BTH (EANDCZ%E. Fob)
B OB BREL (EANDCEGD -hw 27 L&) —, R
B B FzB Jg=  #)
EtE E — 0 R #D)
moa X B (RERILEKRE)
% M R Z (& #H
holR B = FEBRE)
LR S I 1 (& &)
Bk K (& &)
F R B & EERAE)
o # {5k (RRILEKRF)

* BAENEAK 7~ 4FHA S (NEANDC) L&,



CONTENTS

SESSION I (Chairman: H. Condé)

I-1 Models Based on Multichannel R-Matrix Theory
for Evaluating Light Element Reactions ....ceveeeeesnceressenosnes . 1
D. C. Dodder, G.M. Hale, R.A. Nisley, K. Witte
and P.G. Young
(presented by H.T. Motz)

Discussion ....cccceeven... cs e erecr e enrensens ceeersesrsesassare 31
I-2 A Study on the Hierarchy Model of Nuclear Reactions .........couveen. 34

Y. Kitazoe and T. Sekiya

DiscuSSion «.eevvevserenenes Certerenae Ceereerreeseaeaaees cereen. .. b9

I-3 Effects of Nuclear Deformations on Neutron Total Cross Sections .... 51
Ch. Lagrange

I-4 Evaluation of Neutron-Nucleus Cross Sections in Heavy Nucleil
with a Coupled Channel Model in the Range of Energy
from 10 keV to 20 MeV .......... Creeeeere e Cereireieeeaas . 58
Ch. Lagrange

I-5 Calculation of (n,n'y) Cross Sections from 2 to 7 MeV
Neutron Energy for Light Nuclei ....ec.uivnns et terearettene et 68
B. Duchemin

I-6 Statistical Model Evaluation of Neutron-Induced Fission and
Capture Cross Sections of Heavy Nuclei for Energies

in the Range 3 keV to 1 MeV ....cveeunnn. heessesstneenarestaanans 71
P. Thomet

I-7 Evaluation of the (n,xn) and (n,xnf) Cross Sections for
Heavy Nuclei with the Statistical Model ...........c..c..n ceeeranss 76
J. Jary

(The above five papers were presented all together
by A. Michaudon.)
DiSCUSSION civeieitnvrveessseeracaassosossosesoanane ceverraeaonane 82

I-8 Some Remarks on the Use of Nuclear Models in the Evaluation Work ... 83
V. Benzi, F. Fabbri and G. Reffo
(This paper was not orally presented.)

SESSION II (Chairman: K. Harada)

II-1 On the Calculation Methods of the Neutron Capture Cross Sections ...103
S. Igarasi, A. Mori and K. Harada
Discussion ....... e seerrasanes ceesesrearseecans Creeesansans eeess118

II-2 Status of Predictions of Photon Strength Functions by

Giant Dipole Resonance and Valence Models ........ ceerseanvens ....119
H. E. Jackson
DiSCUSSION vevvsverosssesnossssssssssossssnsen ceressetneene ceeenss 136

II-3 Calculation of the Collective Radiative Capture Cross Sections
for 5-20 MeV Neutrons ....c.eecoeeesnen Crreeescerrerrenana I NS
H. Kitazawa and N. Yamamuro
Discussion .evievsverssecrtesentnannans et erreesass ettt eannen s 158



SESSION III  (Chairman: P. Ribon)

III-1 Optical Model Analysis for 56Fe ..... s asreaas esenvassrerseseddl59
H. Yamakoshi
Discussion ceeeceancces sesecccctccncnenann B e

III-2 oOptical Model Calculations at Rensselaer Polytechnic Institute,...193
J. M. Sierra and P.J. Turinsky
(presented by R.C. Block)
Discussion ... ..... e et e seeacsesseas e et s et e et e et eae st atnansan 211

III-3 Analysis of Neutron Cross Sections Using the Coupled-Channel:

Theory ...ceeeeensns ceeenae cresseesesevesrnaron ceericecerernere 212
S. Tanaka
Discussion «veeecse cete v ciseesrsesesescanans ceetarsenna vesasas 229

III-4 Optical Model Analysis of Neutron Cross Sections and

Strength Functions ......... et easeeacaereatesneans feeereaesunens 230
C. M. Newstead and S. Cierjacks
DiSCUSSIOoN vievveerenenen Ceeeeieesaen Ceerecesereersanseretnsnrns 244

SESSION IV (Chairman: W. G. Cross)

IV-1  Evaluation of Neutron Elastic and Inelastic Scattering of
Cr and Ni Isotopes Using Coupled-Channel Calculations ........... 245
A. Prince and M.R. Bhat
(presented by R.E. Chrien)
DiSCUSSIOoN eevececevenarnnns Ceeenens e eeerereeeaaeeans Cerrreneee256

IV-2 The Effect of Gamma Ray Strength Function on the Neutron Capture
and Gamma Ray Production Cross Section of
Manganese and Europium ......ceceeeeecrensonoseas Ciesessasaaanan 257
H. Takahashi
(presented by R. E. Chrien)
Discussion ...svaeese.. T cevseerseratesaranns . 0268

IV-3  Models, Measurements and Evaluation .....cieeevecaeennn, ceriereesss269
P. Guenther, P. Moldauer and A. Smith
(presented by H.E. Jackson) '
Discussion ...cveveeeans ceesaean Ceeeees ceeseensereane ceernarens 2908

SESSION V (Chairman: G. L. Rogosa)

V-1 Free Discussion «..ceecevevesrsones creeeens ceesearesrasnsenns teesee299
List of Participants of the 17th EANDC Meeting ...... seseessaseanes 301

AUthor IndeX .oceeseennsonasanns Ceeeerereenaans Cteecreseeertaneaans 304



JAERI~-M 5984

I-1. Models Based on Multichannel R-Matrix Theory

%
for Evaluating Light Element Reactions

D. C. Dodder, G. M. Hale, R. A, Nisley, K. Witte, and P. G. Young
Los Alamos Scientific Laboratory, University of California

Los Alamos, New Mexico 87544

Abstract

Multichannel R-matrix theory has been used as a basis for
models for analysis and evaluation of light nuclear systems.
These models have the characteristic that data predictions can be
made utilizing information derived from other reactions related
to the one of primary interest. Several examples are given where

such an approach is valid and appropriate.

* Work performed under the auspices of the United States Atomic

Energy Commission.
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Models Based on Multichannel R-Matrix Theory

for Evaluating Light Element Reactions

D. C. Dodder, G. M. Hale, R. A. Nisley, K. Witte, and P. G. Young

As has no doubt been emphasized in the other papers in this symposium,
the reason for using models in data evaluations is to try to make use of
more information than is Jjust contained in the measurements under con-
sideration. This additional information ranges all the way from knowledge
of the general laws of nature to results of explicit measurements closely
related to those being evaluated. In the same way models range, in their
philosophy, from little more than mathematical parameterizations of data
to detailed and realistic constructs clearly based on our knowledge of
physics. We would like to show that the R-matrix formalism of Wigner and
Eisenbudléffers a framework for embodying a number of different model
concepts in nuclear data evaluation.

The R-matrix theory is a general formalism that is really a method
of description that insures compatability with fundamental physical laws.
Invariance principles such as unitarity and conservation of total angular
momentum are maintained, and in addition it can be shown that its content
is closely related to requirements of causality. Within this framework
it is an economical and appropriate description for many observed
phenomena. In its most general form it is already a model in the sense
that it does insist on compliance with the general laws involved in its
derivation; on the other hand much more model-like behavior can be imposed

by constraining the values of its parameters in appropriate ways. We

shall give a number of examples of this.
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Even an outline of the derivation of R-matrix theory is beyond the
scope of this report. Some idea of its structure however is essential
to underst:anding our point of view. The entire observational content
of collision processes is contained in the so-called collision matrix
(S-matrix). This matrix, relying on the superposition principle of
quantum mechanics, essentially gives the outgoing amplitudes of a
collision in terms of the incoming ones. At this descriptive level of
procedure certain general symmetry principles are directly reflected in
the structure of the collision matrix. The conservation of particles is
imposed by having the matrix unitary. Time reversal invariance is equivalent
to having the matrix symmetric in a suitable representation. And finally
conservation of total angular momentum and parity mears that the matrix
can be so chosen as to reduce to a series of disconnected submatrices
slong the diagonal, each submatrix referring to a state of given J and
parity and each submatrix being individually unitary and symmetric.
It is evident that alréady a description of scattering and reaction pro-
cesses at this level demands relationships between the different processes
and that the requirement of consistency is a valuable aid to data evaluation.

The energy dependence of the collision metrix elements is, however,
quite complicated, and depends on the external Coulomb and centrifugal
barriers as well as the nuclear forces. This is seen even in the simple
case of a single isolated energy level, where the cross section for a

transition from state i to state f is given by:

_ rirf

g -
£i 2 41 2
(B - B.) + 3Ty + Ty
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Here the widths Fi and Ff have factors (the so-called penetration
factors) which are often strongly energy dependent, and the resonant
energy Er is also in general energy dependent. The R-matrix formalism
deals with this situation by dividing the configuration space in each
channel into an inner and an outer region, the inner region being that
vhere the strong interaction predominates, and the outer that where only
the Coulomb force exisfs, and where the main effect of the centrifugal
barrier is felt. The R-matrix itself is a relationship between the
values and derivatives of the wave functions at the boundary between
the two regions. The theory shows that the R-matrix must, under very
general assumptions about the nature of the interaction in the inner

region, have the form

J YJ YJ
R =E 1atg!
a's'L',as8 Aas? ‘X a's'g

J
A EA -E

where J, s, £ have their usual meanings, @ is the channel label, E is the

C.M. energy, Ei are the eigenvalues of the Hamiltonian operator in the interior
region with a certain set of boundary conditions on the logarithmic derivatives
of the wave functions, and the Yiase?® the reduced width amplitudes, are
essentially the values of the wave functions on the boundaries. The

collision matrix can be expressed in terms of the R-matrix but we shall

not give the expression here. We usually let the computing machine do

this rather tediocus work. The point is that the rather simple form of the
R-matrix allows model-like behavior to be used in parameterization of the
nuclear data. And the main reason this is appropriate is that the values of

radii in the different channels which are the btoundaries between the inner



JAERI-M 5984

and outer regions, corréspond in a real way to the actual nuclear radii

in the different configurations. This means that the physically occurring
cutoff in £ values is naturally accounted for in R-matrix calculations
through the dependence of the phase shifts on the penetration factors.

In the employment of the R-matrix approach as a model it is clear
that it will be macroscopic like the optical model, rather than micro-
scopic like the shell model. Its usefulness is indicated by a few general
observations. The levels and widths occurring in the general R-matrix
expression can be made to correspond to real energy levels of physiéal
systems and frequently relatively few suffice to entirely describe a
given (J, parity) state. Furthermore, symmetries of the internal
Hamiltonian can be applied directly to the R-matrix. In cases where
the internal interaction is dominated by nuclear forces, for instance,
it iIs appropriate to impose constraints reflecting parity conservation and
charge symmetry or charge independence (isospin conservation) on the
R-matrix parameters.

The application of such an R-matrix model to the elastic scattering
of nucleons from hHe has been highly successful. Almost all available
measurements for p-¢ and n-¢ scattering at lab energies in the 0-20 MeV
range were analyzed simultaneously, with R-matrix parameters in the two
systems related by a simple model of the charge symmetry. Specifically,
for common boundary conditions imposed at the same channel radius, the
reduced width amplitudes for a given level were constrained to be equal

(YAP = Yln)’ and the level energies were constrained to differ by a Coulomb



JAERI-M 5984

"shift" &E (E, = Em + AE) that was taken to be the same for all levels.

g
In addition to the known p-wave levels, distant-level contributions were
represented in each state by single pole terms. Partial waves having

£ > 3 were neglected. Thus constrained and truncated, the combined R-

metrix analysis required 15 free parameters, just one parameter (AE)

more than the number needed to analyze either p-o or n-a scattering
separately.

Figure ]?Lhows the resulting least squares fit (solid line)* to a segment
of the n-& total cross section over the 1.25 MeV resonance (the dotted curve
is ENDF/B III). Figures 2-L4 show representative fits to the n-o differential
cross sections, while Figs. 5 and 6 show representative fits to the n-a
analyzing powers (or polarizations) over the energy range considered.

On Fig. T is given a sampling of the fits to the p-a differential cross
sections, and Fig. 8 shows fits to various p-o polarization measurements.
Note that the top two curves in the right column of Fig. 8 represent
measurements (K:', K:') of outgoing proton Polarization with a polarized
proton beam incident. In general, the p-a experiments were more numerous
and more precise than the n-q experiments, and we feel that even this
simple charge-symmetric model has imposed better accuracy on the predicted
n-q observables than can be attained in most present n-o measurements.

Interestingly, the parameters which fit the data indicated that an
even more stringent model might have been imposed. The channel radius
preferred a value (2.9 f.) close to that expected from the nuclear sizes.

The reduced widths of the two p-wave levels became, for the first time

*¥ The solld line represents the R-matrix fit on this and all succeeding
figures.
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in such an analysis, approximately equal to each other and to the singie-
particle width. The phenomenologically determined Coulomb energy shift
(AE = 1.58 MeV) agreed well with calculations using realistic hHe charge
densities. It is pleasing that the parameters moved naturally toward
vaiues characteristic of a very simple mechanism for the elastic
scattering of nucleons from hHe, namely, single-particle scattering from
g simple potential.

The invariance under charge symmetry shown by the nucleon—hHe
systems is a manifestation of the more general principle of isospin con-
servation, and that invariance in the internal region can be applied to
the R-matrix parameters. An example is found in the Y4-nucleon systems.
The p-3He and n-T elastic scatterings occur only in the T = 1 state, while
among the pairs of the system of p-T, n-3He, and d-D, the d-D channel is
only in the T = 0 state while the other two are in both the T= 0 and T =1
states. By using R-matrix levels of pure isospin states, and constraining
the reduced widths in the various channels to being appropriate Clebsch-Gordan
fractions of the isospin widths, it is possible to guarantee exact charge
independence in the internal region, while still predicting the isospin
mixing in the external region which is caused by the different Coulomb
potentials in the different channels .h)The differences in Coulomb energy
among the Z = 1, Z = 2, and Z = 3 systems are still expected to be accounted
for mainly by a shift in the EA'S' Our current analysis is using the T =1

parameters from the p-3He system in the 1‘He compound system, but eventually

gll three systems will be analyzed simultaneously.
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Although the major concern of evaluation work has been with cross
sections for ﬁeutron-induced reactions, we feel it is essential in these
analyses to include data of various types and from all important re-
actions that bear on the compound system in which the neutron-induced
reactions occur. Primarily through unitarity, data from other reactions
determine the model parameters more accurately, which in turn generate
more reliable predictions of the neutron cross sections of interest. The
analysis we are doing of reactions in the llB system among the channels

n—lOB, a-TLi(g.s.), and -1

of lOB (spin 3) introduces many scattering amplitudes into the problem

Li*(.478), is a case in point. The large spin

even for low partial waves, so that inecluding data from a variety of
sources is important.

Exemples of the types of data we are fitting in our analysis at low
energies (En < 1 MeV) are given in the next few figures. Figure
9 shows the fit to the total neutron cross section for lOB (again, the
dotted curve is ENDF III), while Fig. 10 displays the fits to integrated

lOB(n,Go)T 10

Li and ~ B(n,c )TLi* cross sections. As you can see in the

1
bottom part of this figure, there are severe disagreements among the
experiments, particularly above 100 keV. Fits to the loB(n,n)lOB

differential cross section and polarization measurements of Lane are
shown at two energies on Fig. 11. The experimental values (%) shown
for the polarizations (on the right) may not be accurate, since they

were generated from Legendre coefficients, but the change of sign in

the polarization is significant, indicating the presence of a p-wave
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resonance in this energy region (at =~ 450 keV). Figure 12 shows
examples of the fits to lOB(n,ao) differential cross sections obtained

T

by detailed balance from the recent Li(u,n)lOB measurements of Van der
Zwean and Geiger. And the last figure in this sequence (Fig. 13) shows
representative fits to the 7Li(ot,a)TLi differential cross section measure-
ments of Cusson. These fits, as well as those to the 7Li(0L,0L)7Li"‘e
integrated cross section (not shown) indicate that levels with large
widths in the d-channels are as yet unidentified in the llB system.
Although these fits for the neutron-induced reactions on loB represent
the most comprehensive analysis effort made thus far at low energies

in this system, we feel that the accuracy of the curves is still limited
by insufficient data and incomplete knowledge of the level structure

of llB.

As in the case of lOB, the cross sections for neutron-induced reactions
on 6Li are important in applications, and particularly in neutron measure-
ments. Our analysis of reactions in the 7Li system gains additional
information from including o-T scattering measurements along with data
from the 6Li(n,n)6Li and 6Li(n,a)T reactions. Figure 1b gives examples
of the types of T(a,a)T data that are being fit. The upper left-hand part
of the figure indicates that the only existing low-energy differential cross
section data, even when renormalized, may be seriously in error at back
angles. The curve below that is representative of the generally excellent

fit obtained to the angular distributions of Ivanovich, Young and Ohlsen

at medium energies. Data on the upper right-hand curve are taken from
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excitation functions measured by Spiger and Tombrello at an energy close
to the 5/2- resonance sbove the n—6Li threshold. Below that is shown

an example of the fit to double-scattering experiments that measure the
outgoing triton polarization.

Attention is focused in the next two figures on the region of the
important 5/2- resonance near En = 250 keV, mentioned earlier. Figurg 15
shows for 6Li(n,n) elastic scattering the integrated cross section across
the resonance, and (normalized) esngular distribution and polarization
approximately at resonance. Notice that the fit lies above the experimental
points in the peak of the integrated cross section. On Fig. 16 are shown
the total neutron cross section for 6Li (top), and the 6Li(n,a)T integrated
cross section across the resonance, along with the 6Li(n,d)T differential
cross section approximately at resonance. Although it is difficult to
tell from the figure, the calculated total cross section peasks at the
currently accepted value (~11.0 barns), while the calculated peak (n,a)
cross section lies above that of the recent.measurements of Coates, Fort,
and Poenitz (~3.0 barns). If one believes the total cross section is
best determined, then either or both of the observed integrated cross
sections is wrong. There are those who feel strongly that the recent
measurements of the (n,a) cross section are correct, and that only
the (n,n) cross section is too low. Our analysis including the T(a,a)T
data in this region indicates that both integrated cross sections are too
low. It is an important question, since the 6Li(n,d) cross section is often

used as a "standard". Unfortunately, the Spiger and Tombrello data
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are not of sufficient quality firmly to resolve the question, but we feel
that accurate charged particle measurements in this region might be more
useful in resolving these discrepant observations relative to the (n,a)
cross section than another direct measurement.

The examples we have so far given are all actually demonstrations
of the detail obtainable with these models in realistic data evaluations.
We should mention also an example where the work is of a more exploratory
nature, where we are trying at first to gain an understanding of the
rhysics involved. The 5 nucleon systems p-a and d-3He and n-o + 4-T
afford this example. The systems are quantitati&ely understood at
energies up through the famous 3/2+ resonance that occurs in each at a
few hundred keV deuteron energies. Above this energy the systems become
very complicated, with the scatterings and reactions dominated by a whole
series of overlapping resonances mainly in the even parity states of
various spin arrangements which have their spatial configuration mainly
in the £ = 2 state between the deuteron and the 3-nucleon particle.
The R-matrix formalism is an almost ideal mode of description of this
situation, and we have succeeded in fitting a rather formidable collection
of experimental results in a rather satisfactory fashion.

In the 5

Ii system, for instance, there have been 39 different types

of observables measured for the reactions among d—3He and p-hHe. These
include, in addition to the usual differential cross sections and
polarizations, measurements made with both first- and second-rank polarized

deuteron beams incident on 3He, end with polarized proton beams incident

on hHe. In some of the experiments, the polarization of the outgoing
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particle has been measured. (Examples of tnese "polarization transfers"
have already been shown for l+He(p,p)hHe on Fig. 8.) In others, both
polarized and unpolarized deutron beams have been scattered from polarized
3He targets.

A1l these various types of measurements have been included in our
analyses of the d—3He, p—hHe system. The next two figures show examples
of fits to a selection of these, taken from an analysis that extends to
Ed = 4 MeV. The first of these displays the four independent analyzing
tensors (1 first-rank, 3 second-rank) measured by Koenig, et al. for
3He(d,d)3He at 4 MeV. The second figure gives examples of the fits to

3He(d,p)hHe with both polarized

measurements made at various energies for
beams and polarized targets.

The examples we have given demonstrate the versatility of the R-
matrix approach to data analysis and evaluation. The chief theoretical
limitation, which we have not dwelt upon, is the restriction to two-body
final states. This can only be avoided at present in those cases where
the multi-body final states can be mocked up by quasi- two-body states.

We are indeed using this method in the five nuclear system where we take
into account the final state p + l+He* as an approximation for the whole
spectrum of p + n + 3He and p + p + T breakup channels. A practical
limitation of the approach, is, of course, that computers are only so
large, and there definitely are limits to the number of channels, %2-values

and levels we can consider. This limits the work in its present form

to the light nuclei. And finally, Just because the method of deseription
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is so comprehensive, it is necessary to have a comprehensive data base

before the analysis can be successful. This means many experiments of

various kinds must be done over a significant range of energies. This is

the price we pay for the checks on consistency and physical reasonableness,

and it is perhaps not a disadvantage in the long run, because it never

hurts really to know what's going on.

1.

2.

3.

4.
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'uB SYSTRM

Reaction Observable Types Analyzed:

Total Neutron Integrated Differential

Cross Section Cross Secrion Cross Section Polarization
10B "
10B(n,n)lOB X X X
8,0, "1 X X
8n,0) 711" X X
7L1 (a,ao) 7Li X
"Lico,ap TLe* X

Fig, 9a., Types of data included in llB analysis.

/ //// ///////////// Distant-level
‘—
/5//2////////// ,/// //////// contributions
L—4.2 5.
14.56
14.33 T=3/2
+
o8 14.0 (9/2,11/2)
+
3/2,5/2,7/2)
A 13.15 3
1305 ==L (3/2,5/2,7/2) . (5,2
1.9 2
2.9 /2=~ T7=3/2
12.55 etr=3/2
.94 5/2”
10 1.79 772t = -
B+n +« (broad
1456 8 5721%] © forosd)
.46 Br2-)
.27 972+
1.0 {1/2-, broad)
10.6 et
10.32 s/2=7/2° 1.
10.26 (3/27)
9.88 3/2t
9.28 5,2t
5.19 7/2%
Nit+a
8.664
I
B
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DISCUSSION

S. W. CIERJACKS: Do you think that discrepancies in the 6Li(n,OL)
peak cross section can be explained in terms of theory? I personally
still doubt that the mentioned new U.S. measurements, giving a higher
peak cross section, are correct. I rather trust the bulk of earlier

measurements with a lower peak cross section.

H.T. MOTZ: More detailed information, such as for 4He + t, could
well permit theoretical insight concerning the 6Li(n,OL) cross section.
I would like to see reliable, direct observations as well. But if they
are not consistent with other measurements as dependable theoretical
analysis might indicate, then lack of confidence would be appropriate.
The sensitivity of various quantities on one another is crucial for such
conclusions. This sensitivity is not yet determined. I have not yet
formed an opinion of the most recent (Friesenhahn) results which indicate

very high ( v 3.7b) peak Li(n,a) cross sectioms.

S. W. CIERJACKS: Have the authors included in their R matrix fit
of the 6Li(n,OL) peak cross section other resonances, in particular those

below neutron binding?

H. T. MOTZ: Levelsin Li-7 that were included are:

Energy J1T
keV
0 3/2°
477 1/2”
4633 7/2°
6680 5/2
7467 5/2

(also broad, distant level contributions in all states above 20 MeV).

The neutron binding in Li-7 is 7251 keV.

R. C. BLOCK: I was delighted to see the RPI He total neutron cross
section data of Goulding et al. fit so nicely by the R-matrix theory from

0-3 MeV. Do you have the higher energy fit with you?

*
H. T. MOTZ: (No. I am not sure that such a fit has yet been made.)

These fits have been made. (See the following two figures.)

The comment was changed to the above following one after the meeting.

The data were not available at the meeting, but are attached.
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R. C. BLOCK: Do you feel there is a need for precise (1/2 v 1%) total
neutron cross section data from 0.5 Vv 20 MeV for the light nuclei to aid

in these fits?

H. T. MOTZ: 1 am sure they would be helpful, but probably not as
much as other observations would be, for example, the authors believe that
further 4He + t data would be crucial to the n + 6Li problem. In the case

of 10B, an accurate total cross section would be very valuable.
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I-2. A study on the hierarchy model of nuclear reactions
Yasuhiro Kitazoe and Tamotsu Sekiya
Department of Nuclear Engineering, Osaka University,

Suita-shi, Osaka, Japan

We would like to discuss the applications of the hierarchy
model of nuclear reactions. Here, the hierarchy model means
that the compound nucleus states are formed after several
steps, at least, one step of the reaction. 1In this paper,
this model is applied to the analysis of the observed cross

235

sections of U and some other elements. Neglecting the

exchange scattering effect, we get the following expressions

for the total neutron cross section of 235U; 2
. d ST+ %)
0:= ma‘:+ 326X/0 r:\c(m ™m < (l)
T 4 v E m (E _Em-;m)2+(rn1+7m)/4
and
& °
- 2 3‘2,6xlo [:u Im
= AT+ e LTy T afr
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Equation(l) describes explicitly a hierarchy of the transi-
tion from the intérmediate reaction states X into the com-
pound nucleus states Xs. As is seen from this equation, the
intermediate reaction states have two kinds of widths. One
is the escape width Fm for direct decay into the open channels.
The other is the decay width Yo into the compound nucleus
states. The latter width Yo is characterized by the strength
of the direct coupling ]Vhslz between the intermediate reso-
nance states and the compound nucleus states. Equation(1l)
thus is a resonance formula which describes the fine structure
of the resonance cross section.

On the other hand, equation(2) is the cross section
formula averaged over an energy interval which is larger than
the average level spacing of the compound nucleus eigenvalues
Eg but is smaller than that of the simple mechanism eigen-
values Em. When the energy interval I is suitable, the aver-
age transition guantities <Gﬁ> and Y in egs. (6) and (7)
become almost constant within the level spacing of the eigen-
values Em. Thus, we understand that the average cross sec-
tion formula(2) is substantially reduced to a resonance formu-
la of the well-known dispersion type. This formula is an
interesting and useful tool to study the existence of the
intermediate resonances, since it is sufficient for us to
investigate whether the formula can satisfactorily reproduce
an observed cross section averaged over a suitable energy
interval. | -

We have applied the formula(2) to the evaluation of the
total neutron cross section of 235U at low energies. The

observed resonances in this cross section are fully resolved
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at low energies{ E < 60 ev ) and the cross section fluctuates
rapidly with energy variance. By a detailed investigation,
we find that the cross section consists of different sized
resonances and that a few satellite resonances are usually
located in the neighborhood of each large sized resonance,
as seen from curve A in Fig.l. When this cross section is
averaged over the energy interval AE = 2.0 ev, curve B is
obtained ( here we have the relation I = AE /{7 ). By this
average procedure, only the resonance peaks 4, 7, 10 and 14
have clearly been retained but the remainder has almost
completely disappeared. We tried to reproduce curve B by
using the formula (2) ( see curve C in Fig.l ). As is evident
from Fig.l, curve C is in good agreement with curve B. The
obtained resonance parameters are listed in Table 1. Then,
the hierarchy model explains the reaction mechanism of the
present cross section as follows; at an early stage of the
reaction, we first have the simple mechanism states which
correspond to the resonance peaks 4, 7, 10, 12 and 14 in Fig.l.
Next, in the middle stage of the reaction, further interact-
ions among nucleons of the system produce the more complicated
mechanism states which correspond to the resonance peaks 3,
5, 6, 8, 11, and 13 in Fig.l. We examined whether the
formula(2) is applicable to the full energy range ( E = 0 n
60 ev ) of the resolved resonances. From Fig.2, we see that
the result of the evaluation is satisfactory from a qualitative
view point.

Let us investigate in more detail a hierarchy of the

reaction mechanism. Fig.3 shows a typical example of two
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resonances at low energies. We suppose that the peaks 1
and 2 correspond to the simple mechanism state Xm and
the complicated mechanism state XS, respectively. Then,
equation(l) is applicable to the present example. In

this simplest case we have

5 (-]
2 £.52 %10 e (fo + %) (8)
Fr =AML ® ITE (€ Ewidn) + (Tt T
5 [
L, 652x10 e Im (9)
(o y=4nde + i (E Em-<3md)*+ In/4
where
S = (E -E5) | v""la ’ (10)
™ (E-EN*+ LY/4
_ 71 Vs I? . (11)

T = 7
(E"E.g)'z -+ r; /4

Here the parameters ch ’ Em and Im are obtained by applying
Eg. (9) to the average cross section( curve D in Fig.3 ) given
by averaging the experimental data( <6m> in Eg. (9) can be
neglected). Curve B is given using Eq. (8) and curve A by
using the R-matrix theory approximated by

452 10° e In

R 2 .
A T R R o

There is a remarkable difference of the functional form
between Egs. (8) and (9). 1In the R-matrix theory we regard

the resonance energies E,=51.25 eV and Eu=52.23 eV as the true

A
eigenvalues of the compound system. On the other hand, in the
hierarchy model the above two energies are not the true eigen-

values but they represent only apparent resonant peaks. The
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experiment is interpreted as follows; when the compound

nucleus state XS is formed by the interaction V the

12’
original simple mechanism resonance ( curve E in Fig.3)is
influenced by the occurence of the state XS, so that the
position of this resonance peak is shifted from E_ =51.60
ev to E_ = 51.25 and then the position of the other peak
is also shifted from ES=51.88 eV to Es=52'23 eV, since
the state X is also influenced by the existence of the
state Xm. We here emphasize that the experiment can be
explained by a different formalism from that of the R-
matrix theory having extensively been used. We also
emphasize that the observed cross section in Fig.l can be
reproduced in a similar way to that mentioned above.
The point is that the cross section may consist of reso-
nances with the states of different complexities.

We have applied the hierarchy model to the case of

1)

the unresolved energy region. 'The observed cross section

in this energy region is naturally averaged over because of
the rough energy resolusion and the Doppler effect. 1In this
situation, agreement between curves B and C in Fig.l pre-
dicts that the hierarchy model formula(2) will reproduce

the observed cross section at higher energies. We know that

the energy resolution AE_ and the Doppler width AED have the

R
following energy dependences:z)
- 32
AE,= 2.76x10° N E (13)
and
AE, 20023V (14)
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where E and N are in eV and ns/m, respectively. When we put

2.1/2

R) =1.95 eV.

E = 200 ev and N = 25 ns/m, we get AE=(AE§ + AE
This value of AE is about equal to the energy interval used

to curve B in Fig.l. This fact states that the situation of
curve B in Fig.l will roughly correspond to the observed total
cross section in the neiborhood of E = 200 eV, provided that
the average level spacing is assumed to be constant. To see
this more explicitly, we evaluated the average cross section
by using the formula(2). As is clear from the solid line of
Fig.4, the evaluation reproduces well the observed cross
section. Table 3 explains the relation between the average
resonance parameters and the energy intervals in the resolved
energy region ( E < 60 eV ). On the other hand, Table 4 shows
the energy dependence of the average resonance parameters in
the unresolved energy region( E=0~v 300 eV ). The average
resonance parameters in Tables 3 and 4 ensure the above-men-
tioned prediction that the observed cross section in the neigh-
borhood of E = 200 eV will correspond to the cross section
averaged over the energy interval AE=2.0 eV.

It is found from Tables 3 and 4 that the ratio of the
average resonance parameters, <ch>/<rh>, remains constant
though <T o> and <D.> change fairly with the increasing AE
and E. This can easily be proved by using (15). Let us

consider two different energy intervals AE. and AE2 over

1
which the collision matrix Ucc is averaged. We suppose that
each energy interval AEi(i=l,2) extracts a .set of intermediate

states,{xw}. These two sets have different complexities

from each other. Then we have
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[
Ucc = f - us
CUedpe,= Qe [1-¢2 5 ST s ] (15)
and
CUedue,= foly [1-¢Z L ] (16)

m, E = Em, +<dm,> + i Imf2

Further averages over the above two kinds of the intermediate

resonances should give a same average of U, denoted by <<U_,>>:

< b
Uy = L [ 1’”L<o,,,>J = (< Ly, > = 0 [4- clzﬁ";] (17)

from which we obtain

(e L lme) (18)
<Dm> < Dm>

This fact makes it possible to evaluate the average cross
section at the higher energies (E > 300 eV). This result is

shown by the solid line of Fig.5.

The optical model

This moedel is the simplest case of the hierarchy model.
In this case, the energy interval over which the collision
matrix is to be averaged becomes the largest and the
states X represent the single particle states of the inci-
dent particle. On the other hand, the states xs include
all the possible reaction states. The optical model regards
these reactions as an absorption by the average procedure.
There are many experimental facts where the optical poten-

tial is considered to have the mass and energy dependences.
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A typical example comes from the collective excitation
process of the deformed nucleus. This means that the
collective excitation states in some mass region are
strongly coupled to the initital state. As an another
example, we have studied the contribution of the exchange
scattering. At low energies where the compound nucleus
are easily formed, there will be a large possibility with
which neutrons differént from the incident one are emitted
from the compound nucleus. The s-wave strength function

is given by

’ (19)

S=Re i ¥ E

n E - EG1-+ { LJm + F;

where Fm comes from the channel couplings among different

neutrons and can be approximated as follows:

(20)

m m E - Em- -+ L—!m'
Consequently the imaginary part of the optical potential is

modified as

U¥=u, - Na. 5 A U

(21)
m’ (E‘Em')z -+ Ufﬂ,

Here it is very interesting that the form of this poten-
tial is similar to that employed by Dr.Newstead and Dr.
Delaroche.4) In Eg.(21), N is the number of the target
neutron and Fm represents the strength of the exchange scat-
tering through the compound nucleus formation. We calucu-

lated Em’ Fm and Fm by using the square-well potentials
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and tried to reproduce the observed strength functions for
several elements of recent interest(here the surface thick-

ness of the real potential was taken into account by using

3)

the diffuse-edge factor £ of E.Vogt ). Then we get

AU 26 cosh 2
am = | - SIN2b ( b‘?— _ 5‘-”— ) ’ (22)
26 m
where
- E
b = JZm(\:; “.oa, (23)

fm= (m +0.85) T | ar__—_o.73o’7+l-l343/\)5‘ (24)

The quantity & in (22) is a spectroscopic factor and Ed is

the energy of a target neutron bcund by the square-well

] TEd T

alxmndrmﬁtnmlto VT
ke gxchanged for the
incident neutron

potential V&.

Figures 6, 7, 8 and 9 show the results of the evaluation
and the parameters used are listed in table 6. The thin line
and the dotted line are given by the usual optical model and
the isospin model, respectively. The thick full line is given
by the exchange scattering model. The rapid varience of the
strength function with mass number comes from the change of

the depth parameter E This parameter roughly estimates

a
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the location in the target nucleus of the neutron to be
exchanged for the incident neutron. If we have the
surface absorption, the value of this parameter is equal
to the neutron binding energy of the target. Thus, this
value increases with the volume absorption. From table
6,-we see that a large part of the isotopes Sn50’ Xe54
and Ba56 can well explained by using the binding energies.
Figure 10 and table 7 give the result of the more kinds
of the isotopes. Here we did not try to evaluate the
strength functions in the mass region ( A > 140 ), since

we neglected in this task the effect of the nuclear deforma-

tion. This inclusion will be discussed elsewhere.
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Tabie 1: The resonance parameters of Fig. 1

Res. No. E; r, el E, I, Iyl
1 1402 03099 9480

2 145 0239 5382

3 1542 02006  8.938

4 1610 01863  13.65 1605 2148 3445
5 1667 00877 478

s 1802 0752 1213

7 928 01933 8013 193 145 92
8 2005 03491 3437

9 2061 02413 4848

10 06 o1z s OB M .02
1 N9 0z 1235

12 261 02625 88 B 22 7198
13 2426 02871 140

4 2555 073 2077

In Table 1, the porameters E;, I'; and Ty % were obfained by using the
R-matrix formula 12 and the parameters. E,, 1, ond I, 2 were ob-
tained by using the present formula (2. The E;, I'y, E,, ond I,, are in

ev. I 0 =2gr; E'and I, 8=2g T, EVt are in (eV)!/2X 10

Table3: The resonance parameters of Fig. 1

No. E_ I Pac No. E, I Cac
1 201.4 2,163 138.1 12  247.4 2.437 75.93
2 205.00 1.092 28.35 13  250.3 1.689  62.52
3 208.3  1.604 54.91 14  254.9 3.420 177.3
4 212.5 2,586 55.85 15  258.9 1.593  24.64
5 215.0  1.83% 102,2 16  263.3 2.083  208.7
6 218.4  1.383 30.65 17  268.5 3.087 137.1
7 222.2  1.923 138.9 18  272.3 3.447 182.5
8 226.6 4,523 218.2 19 274.7 1.289  $9.95
9 233.1  3.871 213.6 20  278.9 2.089 113.8
10 235.1  2.173  36.94 21 282.1 2.236 113.0
11 242.7  2.110 188.8 22 291.6 4.004  242.0

In Table 1, the parameters E,,, 1, ond I°, . were obtoined by using the
farmula (27, where E,, and I, ore in eV while I is in [eV)"? x 105,

Toble4: The relation b the g P and the
energy intervals AE averaged over in the energy region (E = 0 < 60 eV}
ar I s> {0y {Cac?

<Dy
0.0 0.272 20.1 0.882 22.8
2.0 2.09 71.3 2.8 25.5
3.0 2.78 72.1 3.0 24.0

Table §: The snergy dependence of the average resonance parameters

e o> Tacd <o {Cmned
) <P
30 0.272 20.1 0.882 22.8
70 0.516 25.4 1.13 22.4
110 0.91 36.9 1.54 24.0
150 1.19 57.0 2.14 26.6
200 1.78 73.2 3.0 24.4
250 2,43 118.9 4.44 26.8
270 2,69 128.8 5.0 25.8

In Tobles 2 and 3, the parameters E, AE, {I,,> ond {D,,> are in eV while
(L) is in (8V)2 X102,

Table 2: The resonance parometers in the present formula and those in
the R-matrix formula

The present formula | The R-matrix formula

Ep =516 I, =052 I'),® =73.05|E; = 51.25 I'; = 0.4019 I, % = 39.34
Ey=51.88 Ig=04 [Vg,|=022 |Ex=5223 I'u= 05314 I'd = 3057
JE=40 1, =32

The I'}°, and I, ° and I}, 0 are in (eV)'/?X105. The [Vyps|? is in {eV)?
and the other paramelers are in eV,
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Fig.&§: The total neutron cross section in the energy region (E =
= 300 ~ 108 eV). The solid points are the experimental data. Curve A is
given by using Eq. (2.15) ond the parameters, a, = 9.097 fermi, (I?),.>/
(D,,) = 2.47 x 10~ (aV)-"*. On the other hond, curve B is given by using
the formula (opd = 4:1/&’2(2{4-'1] sin® & + YE2 n’/k'zl(2l+ )5V,

cos 24, ond the parameters of reference 2, a, = 945 fermi, Sy =
= 1.02x10 (eV}-'%, S, = 2.0x 10 (eV) "%, where V; and &, ore the pene-
traYion factor and the scottering phose shift, respectively
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Fixed Parameters Variable Parameters
Usual model V0=53.0 Mev W0=4.0 Mev
£=2.172
Isospin model|V,=53.0 Mev V1='30.-0' Mev W, Wy
£=2.172
Exchange model \_70=53. 0 Mev W°=4.0 Mev ,5 Ed
£=2.172 V&=56.0 Mev
A WO Wl 2 Ed Binding Energy
Sn 112 10.802 10.802
114 10.320 10.320
115 7.534 7.534
116 9.566 9.566
117 9.3 44.9 0.735 8.500 6.9425
118 9.3273 9.3273
119 8.5 6.485
120 9.1044 9.1044
122 11.5 8.8047
124 11.2 8.493
Te 122 11.0 9,790
123 13.5 6.9299
124 l10.8 9.4238
125 12.8 62.8 0.490 9.9 6.5849
126 9.1093 9.1093
128 9.7 8.772
130 11.7 8.413
Xe 128 9.614 | 9.614
129 12.0 6.905
131 23.1 115.5 0.361 11.4 6.6056
132 B8.9361 8.9361
134 , 8.535 8.535
Ba 134 9.4644 9.4644
135 6.9752 6.9752
136 22.8 115.5 0.200 9.1071 9.1071
137 6.9021 6.9021
138 8.6115 6.6115
Table 7
A s Ed Binding Energy A . Ed Binding Energy
ca 40 15.634 15.634 Sr 84
42 0.249 11.4727 11.4727 86 0.0
43 7.9326 7.9326 87
44 11.1361 11.136) 88
TLi 46 13.1961 13.1961 Mo 92 12.692 12.692
47 13.0 8.8751 94 18.67 9.6722
48 0.249  14.0 11.6281 55 9.375 7.3751
49 11.5 8.1434 96 0-447 3.1542 9.1542
50 10. 9480 10,9480 97 6.8161 6.8161
cx 50 12.940 12.940 98 8.6424 8.6424
52 0.279 14.3 12.0407 100 18.3 8.301
53 16.0 7.9405 R1 99 9.468 7.468
54 16.0 9.7202 100 9.6335 9.6335
Ni 58 101 1.48 11.80 6.805
60 102 9.2161 9,2161
61 00 104 9,912 8.912
62 cd 111 6.9768 6.9768
64 112 0.806 11.40 9.397
se 74 113 10.54 6.5398
76 114 14.04 9.0410
77 0.0
78
80
82
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DISCUSSION

A. MICHAUDON: I would like to mention that the fluctuations of the
local average values of the total cross section for heavy nuclei (235U
for example) can be explained in terms of the fluctuations of the widths
and spacings of the resonances. It is not necessary to take into account
the effect of intermediate states whose influence has never been proved
in such cases. Why do you need to postulate the existence of intermediate

. . . 23
states to explain the behavior of the total cross section of 5U?

Y. KITAZOE: Our theory does not stand on the nuclear fluctuation
concept. We consider that what should be compared with this theory is
only the reaction theories of Wigner and Eisenbud, Kapur and Peierls and
so on, but not the others. We would like to stress that the hierarchy
model describes not only the average cross sections but also the fine
structures. We can show practically that the formula(l) reproduces well
the observed fine structure of the 235U total neutron cross section as
well as the R-matrix formula. As is seen from equation(l), the number of
the parameters used is the same as that in the R-matrix theory. The main
feature of equation(l) is that when it is averaged over a suitable energy
interval, the obtained formula is substantially reduced to a dispersion
type formula with the Em which are almost equal to the peak energies of
the really obtained quasi-resonances. On the other hand, the R-matrix
formula does not give such an explicit description. The formula(2) repro-
duced well both the averaged cross section in the resolved region and the
observed cross section in the unresolved region.

In this work, for simplicity, we decomposed the reaction states of
the system into the two kinds of complexities. Therefore, if necessary,
more kinds of them must be considered. The present two kinds of the
reaction states have only their relative meaning of complexity. Therefore,
there may be the cases where the states Xm are considerably complicated in
comparison with the single-particle states of the incident particle. This
means that if the states Xm are the single-particle states, the states XS
may be the doorway states of the two-particle one-hole type, if the states
Xm consist of the two-particle one-hole states, the states XS may be the
hallway states, and so on. Any way, the former must be more simpler than
the latter. .

The hierarchy model formula is considered to be applied to many cases

of the other elements. A typical example of them is demonstarated in

Fig. (A).
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I-3. Effects of Nuclear Deformations on Neutron Total Cross Sections

Ch. LAGRANGE

Service de Physique Nucléaire
Centre d'Etudes de Bruyeres-le-Chitel
B.Pn° 61
92120 Montrouge - France

Several different experiments have recently reported total cross
sections for deformed nuclei whiech have not been properly described by calcula-

tions using spherical optical models.

Glasgow and Foster [l} used the non-local potential of PEREY and
BUCK [2] to represent their extensive measurements of total cross sections, but
divergences between calculations and measurements reach 19 % for the deformed
nuclei. SHAMU, et al {3] studied deformation effects explicitly in the Sm isoto-
pes, which range from spherical ISOSm to strongly deformed lshSm. They found
lshSm and 150

pronounced differences between the cross sections for Sm, and also

between the cross sections for 1528m and lsoSm. These measured differences are

lSOSm cross section in figs la and 1b, respectively.

expressed as ratios to the
The structure of these differences as a function of incident neutron energy
cannot be reproduced with a spherical optical potential, even with a calculation
in which the diffusivity of the potential has been strongly increased to appro-—
ximate the effects of deformation [3] . The study presented here has been
undertaken with the goal of seeing to what degree the systematic effects of
nuclear deformaticns could be represented within the framework of coupled
channel calculations. The coupled channel code JUPITOR 1 of TAMURA {h} has been

modified and used for these tests.
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The potential used has the ususl form, reported often in reference to

nuclear scattering :

V( V;f('La.R +kuWa.’

where §(r9, R) = {4 + uorvf_("- R)/a}} Rer, A? [4 +fy Y;(G)J

The parameter 132 fixes the size of the quadrupole deformation, the

only deformation envisaged here.

The effects of this deformation have been extensively studied over
the: range of energies from 2 MeV to 20 MeV, and reported in the form :
€= Tt (B2)/ 0y (Pa=0) . Studies have been completed for the
following nuclei : 238U, 182W, and the even isotopes of Sm with A = 148 to 15k,

Two sets of potential parameters have been considered in this study :

a) The set 1, in table 1, used by G. PALLA [5] in her demonstration
of deformation effects in neutron elastic scattering at small angles. Her cal—-

238U and 232

culations were for scattering from Th et 14.7 MeV incident energy.

b) The set 2, also in table 1, which we have developed to fit the

following experimental data for 238

U:'"s"and "' wave strength functions,
potential elastic scattering cross sections, and total cross sections measu—
red by CABE, et al [6] between 200 keV and 6 MeV incident energy. This set of
parameters is slightly different from the most recently determined one which is

given in ref. [7].

RESUME OF RESULTS

1) The nuclear deformation induces into the function f(Etn) an oscil-
latory behaviour, oscillating about the value 1, For a given nucleus, the
regions in energy where the effects are either a minimum, that is, the ratio
f =1 , or & maximum, are well defined and practically independent of parameters

238U one can see in fig. 2 that minima occur

or detailed model assumptions. For
near 4.2 and 8,3 MeV and maxima occur near 6.5 and 13.5 MeV. To be more specific
about parameter dependence, the minima and maxima are essentially independent
of : the deformation itself, whether one uses potential parameter sets 1 or 2,
and the number of collective states coupled to the ground state. In contrast,

the positions of minimum effects are rather sensitive to whether one uses real
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or complex coupling between the different channels. Depending upon the choice
of real or complex coupling, the other parameters of the calculation must be

ajusted to produce the same results for both types of coupling. The amplitudes
of the oscillations of ‘f are themselves particularly sensitive to the defor—

mation parameter /5,5 .

2) When the mass of the target nucleus is considerably diminished,
the same behaviour of the function j’(En) is obtained, but with a displacement
of the whole pattern to lower energies. Figure 2c compares results for 238U

ana 182y,

3) The oscillatory behaviour of .f(Em) is readily demonstrated also
for calculations assuming a vibrational nucleus, just as already discussed for
rotational nuclei. Nonetheless the corresponding stuctures of g are different,
as demonstrated in fig. 1d. There the results are shown for the rotational

154 148

nucleus Sm and for Sm, assumed vibrational.

4) The structure obtained in the recent measurements of SHAMU, et al [3}
is well reproduced by the present calculations, as shown in fig. 1 . Examination
of these results shows the sensitivity of this structure to small differences

in deformation or nuclear size ; it changes character noticebly between the

1545, In spite of this sensitivity, the calculations
150

close neighbours 1528m and

do not seem to permit us to decide whether Sm should be treated as a rotatio-

pal or vibrational nucleus, for the purposes of these calculations.

We thank M. McEllistrem and J. Salvy for their encouragements in this

study and for very useful discussions.
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Figure Captions
Fig. 1

Variations of total cross section differences &s & function of incident
neutron energy. The relative differences are showm for 15k 0% in part
(a) and for **Psm and *°%sm in part (b). The experimental dete heve been teken
from ref. [3] . The curves are the results of caleulations with different hypo-
theses about the ecollective character of l5oSm. The potential parameters are
set 1 of table 1 ; channels coupled are 0%, 2% ; complex coupling has been used

Sm and

between channels.

Fig. 2

Variation in energy of total eross section ratios., The ratio is that
of the cross section for the indicated value of PE divided by that for PZ = 0.
The potential parameters are from table 1 : set 1 for a, ¢, d; set 2 for b.

238 . .
(a) 2% - complex coupling between channels ; solid curve - coupled
ehannels, including 0%, ot ; dashed curve - adigbatic epproxima-

tion.

2 . .
(v) 238y - channels coupled : 0%, 2% ; solid curve : complex coupling
between channels ; dashed curve : real coupling.

(e) Comparison for '238U and 182W - channels coupled : 0"', ot - complex

coupling

15&81:1 and the vibratio-

. at - complex coupling

(d) Comparison between the rotational nueleus
nal nucleus lhBSm = channels coupled : o*

between channels.
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I-4. vEvaluation of Neutron-Nucleus Cross Sections
in Heavy Nuclei with a Coupled Channel Model
in the Range of Energy from 10 keV to 20 MeVU"

Ch. LAGRANGE
Service de Physique Nucléaire
Centre d'Etudes de Bruytres-le-Chitel

B.P, n® 61 - 92120 lontrouge - France

The existence of permanent deformations in heavy nuclei
makes it necessary to account for the direct excitation of
rotational levels explicitly. This can be done using the optical
model with coupled channels. In order to exploit this approach
in a practical way for the purvoses of evaluation, we have deve-
loped a code based on JUPITOR 1 of TAMURA Yﬂ . The code developed
here is more complete and also more rapid than JUPITOR. The speed
has been improved by the utilization of a method of numericsl
integration called "modified Numerov" as set forth by RAYNAL [2].
This modification of the numerical integration method vermits us
to adopt a radial mesh much larger than that emploved in the
Stormer method used initially. The code thus modified has been
used to search for a unioue and physically coherent parameter
sot which would cover the range of incident energies from 10 keV
to 20 MeV, and notably for nuclei with masses 232 £ A {242, Ve
calculate not only the total cross sections and the direct scatte-
ring cross sections but also the compound nucleus formation crecss
sections,or the neutron transmicsion coefficients necessary ‘or
evaluations with the statigtical model. As test nuclei we have

8 >
chosen 23 U and, to a lesser deeree, 232

Th. We require that we
have gatisfactory fits, in the order of decreasing importance,

to the following experimental results
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1. The strength functions described as SO and S; , and the potential
cross section at low energies as well as the total cross section
from 10 keVto1l MeV .

2. The total cross section from 1 MeV to 20 MeV |

3. The different angular distributions for "elastic'' scattering in the
range of energy from 2 MeV to 15 MeV . At these energies it is
almost impossible to distinguish between the elastic and the inelas-
tic scattering to the first excited states . We will compare the
experimental results to calculationed values obtained by summing
differential scattering to the included nuclear states with energies

less than 400 keV ,

This order of importance follows from the order of decreasing influ-
ence of the parameters of the model on the calculated values . We require
a satisfactory overall agreement with all of the data, and refuse to search
for alterations of the parameterization which would give better agreement
with particular data sets . Thus, for example, we have not implemented an

automatic parameter search to fit elastic scattering angular distributions .

Among the parameters of the model only those which describe the
quadrupole (f,) or hexadecapole (84) deformations and the radius of the
nuclear potential vary from one nucleus to another . We have noted that at
low energies the total parameterization was very sensitive to the choice
of deformation parameters . For this reason, and because of the large
experimental errors associated with measuréments of deformation para-
meters issuing from a common model calculation of the nuclei which we
have studied . The nuclear model used was based on the Nilsson model
modified by the methods of Strutinsky as described by Moller [3] . Some

of the deformation parameters obtained in this fashion are the following :

232Thﬁ{32:0.206,/34=0.086

238

242U t B, =0.216, B, = 0,067
Pu : ,=0.239, o, =0.058

The parameterization obtained has the following characteristics :

+ o+
, 4 up to an energy

a) A Coupled Channel model with the base states 0+ , 2
of 10 MeV . At higher energies, to reduce the extensive calculation time,
the adiabatic approximation has been used .
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R=47.5-0.3En, a

roR =1,24 £,

b) Real Potential : V =0,621f,

R

c) Imaginary Potential (surface absorption with a Woods-Saxon derivative

form factor) :

w {27 +0.4E_ E < 10MeV
D (6.7 E. 5> 10 MeV

n
a,=0.58f, r__=1.26f

d) Spin-Orbit Potential :
VvV =7,50MeV,a =0,62f ,r =1,24f (Thomas form) .
80 so so

e) The coupling between channels is taken to be real and the value of the

imaginary potential is the same for all channels .

The potential at very low energies was determined by simultaneous
adjustment of calculated values of the strength functions S0 and S; and of the
potential scattering cross section to the measured values of these quantities .
The variation of these parameters with neutron energy has been determined

to reproduce the total cross section in the energy range from 10 keV to 10 MeV.

Following this, the theoretical-experimental comparison for the angu-
lar distributions of ""elastic' scattering has permitted us to judge the well-
determined paramaterization ., In the energy range from 10 to 20 MeV, where
the results are much less sensitive to model parameters, we have based our
choices on the total cross sections and especially on the angular distributions
for elastic scattering ., These have been measured by HUDSON [4] at 15
MeV and by GUZHOVSKII 5] at 15.2 MeV ,

We present now some results and comments :

1., Strength functions and potential cross sections .

Our calculatgd values at 10 keV éan be compared to the experi-

mental results obtained by VAN'KOV et al [6] for 238U and by RIBON {7]

for 2327 . |
8
4 4
S_Ox 10 S1 x 10 0 pot. (barns)

238U Theoretical 0. 949 2,134 10.73

Experimental(0.96 + 0.07| 2.2 + 0.3 10.7 4 0.3
232Th Theoretical 1,004 1.719 11,23

Experimental |0.87 +0.10| S;=1.5+ 0.4 11.7 +0.24
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2
2. Total cross sections from 10 keV to 1 MeV for 38U .

We have found that a good preliminary fit to the potential cross
section at 10 keV was necessary to obtain a good adjustment of the total
cross section at low energies with a simple paramaterization ,In fig. la
the calculated total cross sections are compared to measurements of CABE
et al, [8] . In the range of energies from 30 keVto 1 MeV the calculated
values are very near those of the recent evaluation of A. B, SMITH [9] ,
deviating from them by 1 - 2 % . On the other hand, in the range of energy
10 - 30 keV the calculated total cross section deviates nearby 5 % from the

experimental results ; we find here again a characteristic fault of the model .

3. Total cross sections from 1 to 20 MeV,

We compare the results of our calculations to the measuremerts
of GOULDING et al. [10] and BOWEN et al. [11] in figs. 1 b and 2 . Our
values compare favorably to the experimental evaluation of SMITH [9] the
largest deviations being in the region of i8 to 20 MeV, where we have values
3 % above those recommended by SMITH .
32T

2 2
4, Angular Distribution for "Elastic' Scattering by 38U and h.

Figures 3 to 6 show the comparison of calculated and measured
angular distributions . The calculations include elastic scattering and ine-
lastic scattering to the first excited levels of the ground state band (The
first three nuclear states when the coupling is 0+ , 2+ , 4+ , or the first
four nuclear states when we apply the adiabatic approximation) . The only
parameter adjustment for this data has been to adjust WD to match the mea-
sured distributions near 15 MeV .

Since there has becn no systematic re-determination of parameters, the
examiuation of these results permits one to judge the parameterization
adopted . The different measurements reproduced here have been taken
from references [12] to [19] . The good overall agreement between theory
and experiment developed here is the result of the method of parameterization
explained above .

In conclusion, the parameterization obtained proves itself useful for
extrapolations over a range quite extended in energy and in target nuclei .

This has been exploited in a systematic fashion for a group of even isotopes

of Uranium, for A = 232 to 240, and for Plutonium, with A = 238 to 242 . In
the framework of a first theoretical evaluation we have judged it sufficient
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in the case of odd nuclei to interpolate the results furnished by this model

from the two neighboring even isotopes .
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I-5. Calculation of (n, n'Y ) cross sections from 2 to 7 MeV

neutron energy for light nuclei

B. DUCHEMIN

Service de Physique Nucléaire
Centre d'Etudes de Bruyeres-le-Chéitel
B.P n° 61
92120 Montrouge - France

Cross sections for the production of deexcitation }/féys
following inelastic neutron scattering have been calculated for Si,
Cr and Ni isotopes from threshold to 7.0 MeV incident neutron energy.
The statistical model [l? with width fluctuation corrections [21 was

used, taking into account only the @ = O correction. The optical model
used is of the form

2 5
V(z) = - U $) +4iW g(e) + u(mi_) 7 442y
1 C
with $(2) = {4 + exp [(Q-Ru)/a_]}"' , Ry = r(,auA"’b
d . -4 13
and %(ﬂ = 55[4-" WP[(Q'RW)/&]] } ) Rw= "'owA

The parameters were chosen from recent work on inelastic neutron
scattering. These calculations do not include (n,p), (n,« ) or direct
interaction contributions. A calculation done by Kellie and al [3]
shows that at 9 MeV excitation energy the influence of (n,p) and (n,« )

56

channels is only 2 % of the cross-section in Fe. Perey and Kinney {4}

show that at 7 MeV the direct interaction contributes only 5 % to the
56

¥ - ray cross-section in Fe,

We compare in figure 1 only the most significant calculatio-

nal results with recent experimental results from our laboratory [51
4
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for the transitions Ey= 1.779 MeV in 2°Si and Ey= 1.332 MeV in Ni,

a) Silicon

The optical parameters and the adopted level scheme were
taken respectively from Holmqvist and al {6] and Tucker and al [7] . The

1,779 keV Y ray comes from the transition 1,779 kev(2¥)%20(0%) in 28g;,

b) Kickel

The optical model parameters were taken from a study of ine-

56

lastic neutron scattering on Fe by Rolard and al {8} and they are

as follows :

Tou = Toy = 1.24 fm a = 0,66 fm b = 0.48 fm

# = 49.02 -~ 0.33 E MeV W = 10,46 MeV  Ugo = 8 MeV

The adopted level scheme was taken from Tucker and al [9] « The 1.332 MeV
Y-ray intensity is composed of two transitions, the 1,332 keV(2+)§?0(0+)
transition in °ONi(26.23%) and the 2,775kev(2" ) 1,454kev(2*) transition
in °BNi (67.88 %). This last transition contributes 26 % to the total
strength. No account has been taken of the levels of excitation energy
greater than 4 MeV, but it does not appear that inclusion of these

levels would alter the calculated results appreciably.

In the excitation energy range considered here the width
fluctuation corrections are necessary to get a satisfactory comparaison
between experiment and theory for nickel and silicon and also for other
cases not reported here. As can be seen from nickel results shown in
fig. 1 the two calculations will eventually coincide at sufficiently

high energies.

These calculations were done with the code ERMAUD which is
a synthesis of HELENRE {lO], which computes the statistical cross-~sections
for y rays following inelastic scattering, and the optical model code
MAUD {11} s both written for spin 1/2 particles only.

Similar results were obtained for the 1434 keV y -ray transition
52

to the ground state in Cr.
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I-6. Statistical Model Evaluation of Neutron-Induced Fission
and Capture Cross Sections of Heavy Nuclei for Energies

in the Range 3 keV to 1 MeV

P. THOMET
éer_vice de Physique Nucléaire
Centre d'Etudes de Bruyeéeres-le-Chéatel

B.Pn° 61
92120 Montrouge - France

The purpose of this paper is to present a method which has been
used for evaluation of fission and capture cross sections induced by neutrons
with energies from 3 keV to 1 MeV on a set of heavy nuclei . The first appli-

cation of this method has been to the following even-even nuclei : U236, Pu238

and Pu240

In the energy range studied, experimental fission cross sections
are relatively well known (Fig, 2) . However, there are few experimental
values for radiative capture (Fig. 3) .

For the determination of a set of fission, capture, and also inelastic
scattering cross sections, we proceeded as follows ., Fission channel charac-
teristics (energy, spin and parity) are found by fitting fission cross sections
calculated within the framework of the statistical model to the known experi-
mental values , We can then calculate, within the same model, the cross
sections for the other decay modes of the compound nucleus : radiative
capture, elastic and inelastic scattering . Moreover, this calculation can be
extended to low energies where the fission cross section is not always known .,
It also allows interpolation between various measured values ,

The derivation of such a set of cross sections is made thi-ough the

combined use of several models :
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- optical model potentials in coupled-channel equations Ll] for the calculation
of neutron transmission coefficients and direct inelastic scattering . |
- the statistical model to treat the competition between the various modes
of decay of the compound nucleus .

- the double-humped fission barrier for the calculation of fission probabilities .

The parametérs of these models are obtained by fitting various expe-
rimental data . In this paper we concentrate mainly on the general method
which is used to determine the properties of the fission channels by fitting
appropriately chosen fission data .

The differential and total fission cross sections which are used in the

calculations are given by the following expressions :

o (6,6)=2ZZ 0 (3nmE) Brwm ) 2dsd| & (0)| (1)
¢ Jm kM € 4 MK
O;_(z):JZ;?; G (3T E) B(3KT,E) (2)
in which :

GF (CA E) is the differential fission cross section at incident neutron energy
E for the emission of fission fragments at angle § ,

O'F' (€) is the total fission cross section at incident neutron energy E ,
O:_(?’T M, g) is the cross section for the formation of the compound nucleus
at energy E and with quantum numbers J, 17 and M ,
B(rKxm,g) is the fission branching ratio including a fluctuation correction [2]

dJ (B) is the usual reduced rotational function .
MK

The e;ﬁperimental fission data which are used to fix parameters are

the following :

- the fission cross section GF(E)

- the angular distribution W(8E)/W(40,E) of the fission fragments

- the anisotropy a_ = W(0,E)/V(9g )

Moreover the anisotropy of the fragments emitted in photofission is also used
to determine the imaginary part of the fission potential as will be discussed

below .,
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The fission potential used in the calculation of the fission probabilities
is sketched in Fig, 1.

The real part is a two-humped barrier, as obtained with the Strutinsky's
prescription ., The various parameters of the barrier can be determined from
the analysis of various types of fission phenomena : fission isomerism, vibra-
tional resonances, intermediate structure in subthreshold fission cross sec~
tions , near threshold fission cross sections .... L3,4, 5]

In the second well, moderate damping is taken into account by intro-
ducing a parabolic imaginary part in the fission potential ., The maximum
value Wm is adjusted to reproduce tl;z;bser;;sd aniszzt(;'opy of tzh:Zfission
fragments emitted in photofission of Th, U, Pu and Pu induced
by photons having energy E, between 5 and 6 MeV ., For such even-even nuclei
one then obtains :

W_=a (Ey-E -2) o)

witha = 0.08 +0.04 for E > E_ +2MeV

and a =0 for E.‘,é EH+2MeV

Further examination indicates that the above values of W_ need to be increased
by a quantity b for odd nuclei . In the case of the target nuclei 238Pu. and
240Pu s b has been set equal to 0.1 MeV [4] . In the case of the target 236U,
where the fission occurs much below the threshold, both parameters a and b
were adjusted directly to the fission cross-sections measured between 24 keV
and 500 keV ,

In the first well, full damping is assumed .,

The main difficulty, when trying to predict such fission cross sections
lies in the fact that the fission channels are very poorly known, Therefore,
one has to make crude assumptions about them , In fitting the data using the
least - squared method, the following parameters are adjusted :

- Height of the fission barrier for the exit channels which are considered in
the calculations . For each "K, J, 7T " channel the shape of the barrier

remains unchanged but the height is adjusted to a value which is determined

by fitting the data .
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- The effective number of fission channels . This parameter is adjusted to
take into account the effect of other channels, having the same K, J , 1T

quantum numbers, but situated higher in energy .

We present as an illustration of the use of the method results on the

. 236 238
fission and capture cross sections (Gk and Oy respectively) for U, Pu

and 2AOPu . The fission data used for the determination of the parameters
are CJ'G [6] to [9] and as[7 » 10, 11] in the energy regions where they are
known ., The results obtained for the fission and capture cross sections are
shown in Fig. 2 and 3-respectively . This method is particularly useful to

obtain values of 0‘; and O‘,o. in energy regions where no data are available

and also for nuclei for which measurements are very difficult if not impos-

sible ,

2]
[5]

[+]
[5]
(6]
[7]

(8]
[9]
[1d]
(1]
[12]

]
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Definition of the various parameters used to
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I-7. Evaluation of the (n, x n) and (n, x nf) cross sections for

Heavy Nuclei with the Statistical Model

J. JARY

Service de Physique Nucléaire
Centre d'Etudes de Bruyéres-le-Chitel
B.P n° 61

92120 Montrouge - France

This paper presents a method which has been used to calculate the
(n,xn) and (n,xnf) cross sections for heavy nuclei having mass numbers
232 ¢ A < 239 and for incident neutron energies from 2 MeV to 15 MeV.
In the calculations, it is assumed that in the (n,xn) process, the in-
cident neutron is captured by the target nucleus A to form a compound
nucleus (A + 1) which then deexcites by the evaporation of x neutrons,
(x > 1), without fission, according to the laws of conventional statis-
tical models. For the nuclei and the excitation energies which are con-
sidered, fission can also compete with neutron and y-ray emission. It
is therefore necessary to consider also the (n,x'nf) process in which
the compound nucleus (A + 1) deexcites by the evaporation of x' neutrons
followed by fission.

The cross section for the (n,xn) process, which is illustrated in

fig. 1, is piven below :

- f
c(nxn) = o (E)) neE). P (e,x) €>4  4)
] . FT ﬂ#d-
In this expression
_'cgﬁl (En) is the cross section for the formation of the compound nucleus

(A+1) at incident neutron energy En. The excitation enerpy of the compound

nucleus is then E,
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= Pn and Evare the neutron width and the total width respectively for
the compound nucleus (A+]) at excitation energy E.

- PA+| (E,x) 1is the relative.probability that the compound nucleus (A+l1)
at excitation energy E emits x neutrons, without fission.

The expression for P (E,x) 1s obtained by conventional theory

A+l
of neutron evaporation and then reads :

E-(Sy+ 5, +52)

- ™
£1. * G ) - @A &) {\_—: (E.L)]A- Pn (E4 , rx.-&) it
€.5,

€ . qn(g) . 6;*4(5*) a€,

.PA_“_(EI"C) = (2)

x74

In this expression :

- £, is the center-of-mass kinetic energy of the nuclear system (A+1)

aft;r the evaporation of one neutron.

- 0-A+l (s]) is the cross section for the formation of the compound
nucleus (A+1) at the energy €)"
- QA (E]) is the level density in the residual nucleus A at excitation
energy El =E - S] - gy

- S], 82 coe Sx are the neutron separation energies for the nuclei

(A+1), A, ... (A-x+1) respectively.

r
-[—E (Elﬂ A is the ratio of the neutron width to the total width, for

L
™
the residual nucleus A, at excitation energy E].

- P (El’ x-1) is similar to the expression P (F,x) but for the resi-

A A+l
dual nucleus A at excitation enerpy E] and for the emission of (x-})
neutrons.
The values of PA+) (E,x), PA (E], x-1)... are then deduced one from the

other through a series of equations of the type (2).
The cross section for the (n,x'nf) process, which is also illustrated in
fig. 1 is given below :

o(n,xnf)= o (En)'[;i(E)J . P, (g,<n}) &

Ayd
. u R4
All the terms used in equation (3) have the same reaning as those used
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in equation (2) except for P (E,x"'nf) which represents the relative

A+l
probability that the compound nucleus (A+!) at excitation energy E emits

x' neutrons and then fissions. The expression for P (E,x'nf) is very

A+l
similar to that for P (E,x'n).

A+]
In order to calculate the wvarious expressiomns (1), (2) and (3) it
is necessary to know the following quantities :
1°) the cross section for the formation of the compound nucleus
(A+1) as a function of energy. This cross section is calculated with
an optical model code described elsewhere{l].

2°) the partial widths T s Ty, I, for the nuclei (A+1), A, etc...

f
and excitation energies reached through the various modes of decay.

The neutron width Pn is obtained from the neutron penetrability
calculated with the optical model code mentioned above[1]}. The level
density which is needed to extract the neutron width is obtained from
the Fermi gas model approximation using tabulated values of the level
density parameter a [2].

The y-ray width PY is obtained assuming that the radiation is of
the electric dipole type, normalised to PY values for slow neutron reso-
nances when they are known.

At excitation energy EA’ well above the fission barrier height Bf

in the compound nucleus A, the fission width I'_ is obtained from the

£
following expression : £,
4

b (Ea) = [ZWQA(EA)] (’f (€) d€ (&)

where :
2

- EA (EA) is the level density at enerpy E,, as defined above.

A

- Ei (¢) is the level density at energy ¢ and at saddle point deformation

for which the Fermi level density parameter is a. instead of a. In this

f

work, the parameter a_ is adjusted to fit the plateaus of the known fis-

f
sion cross sections. A better fit to the data is obtained if s rather

than being constant, is assumed to have an energy dependence of the form

a=a+,‘3 (5)
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At excitation energy close to Bf, the fission width is determined from
the penetrability of the fission barrier, supposed to have a single-hum-

ped parabolic shape.

Application of the method to the calculation of (n,xn) and (n,xnf) cross

sections for 236U, 237U and 238U.

The parameterization of the optical model is described elsewhere(l].
235y .nq 238

236

The fission cross sections of U, recently evaluated by

Sowerby{3], and the fission cross section of U4}, have been used to

determine the other parameters needed in the calculations.

239U and 238U have been obtained by fitting

the first-chance and second-chance fission plateaus of the 238U cross

The fission widths of

section.

237U has been determined in the same manner

236U.

The fission width of
from the first plateau of the fission cross section of
A similar fit to the first-chance and second-chance fission cross
236U and 235

With the parameters thus obtained, it has been possible to calculate :

sections of 235U gives the fission widths of U respectively.
1°) fission cross sections in energy ranges where no data are available ;
for example, for 236U between 6 eV and 14 eV and for 237
1 MeV and 15 MeV (fig. 2).

U between

236, 237 23

2°) (n,2n) and (n,3n) cross sections for ~~ U, U, 38y (fig. 3) from
threshold up to 15 eV,
For 238U, cood agreement is observed between the result of our cal-

culations and the experimental data[5]. Note that the calculations are
not fitted to such data. |

237 236 . .

For U and U, theoretical results are obtained where no data

are available.

These results show that the statistical and the optical model
together with an appropriate fitting procedure to known fission cross
sections can be used for the calculation of (n,xn) and (n,xnf) cross

sections of heavy nuclei.

~79-
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DISCUSSION
R. C. BLOCK: The RPL 240Pu(n,Y) measurements also produced a fission
cross section in the 10 v 30 keV region (with poorer accuracy than the
capture data). The fission cross section appeared high relative to the
sparse data (then available) from 100 keV on up. How does your extra-
polated 240Pu(n,f) cross section below v 100 keV compare with the RPI

data?

A. MICHAUDON: I am afraid that Dr. Thomet who carried out the
calculations did not include the RPI data because he was not aware of its

existence. Have these data been published?

S. TANAKA: In your talk for 238U, what value of the coupling parameter

did you use? In my analysis, I had to used a little smaller value than the

value taken from other bibliography.

A. MICHAUDON: Dr. Lagrange found necessary to use complex values of
the coupling parameter, but the actual values are not given in his paper;

we would be glad to mail you this information if you are interested in.
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I-8. SOME REMARKS ON THE USE OF NUCLEAR MODELS IN THE
EVALUATION WORK

V. Benzi, F. Fabbri and G. Reffo
CNEN, Centro di Calcolo, Bologna, Italy

ABSTRACT

At present, a large number of optical and statistical nuclear model codes
having different degree of sophistication is available.
The effects of some approximations on the calculated data are

briefly discussed from the point of view of the evaluation work.

INTRODUCTION

Nuclear models are frequently used in the field of neutron data

evaluation in order to:

i) make sophisticated fits of consistent data;
ii) make a definite choice among inconsistent data;
iii) fill gaps among loose data;

iv) predict cross-sections for which no data at all exist.

In the first kind of application, there are no special problems,
except the usual ones connected with the selection of a best-fit crite-
rion.

In the remaining applications, howéver, a number of problems
arise, the most important ones being the physical suitability of the
model adopted and the determination of the numerical values of the para
meters involved.

In solving these two problems, we have to face a dilemma. In
fact, in order to achieve better physical adequacy, we are inclined to
add more and more details to the models. These details, in turn, in-
volve more and more parameters, whose ifdetermination introduces a large

degree of uncertainty in the result of the calculations.

Thus, a high degree of theoretical reliability in a model might

imply a low degree of reliability in the numerical results.

As a provocative example, let us consider the case of the optical

model. In its primitive form, the optical potential was
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V+iW if r<R
-U(r) = (1)

0 otherwise

so that only three parameters, viz. V , W and the nuclear radius con-

1/

3 . .. .
stant ro(R=ro A ) were required, at the beginning, in order to per—
form numerical calculations.
At present, one of the suggested forms for the optical potential

is the following

() = [v_+ ESN;AZl] £(r,R ,a )+ _{Eg (r,R ,a,)

(2)

u

+ (1—€)g2(r,R2,a2)} + ( 5 )2(V8+iws)g3(r,R3,a3)£g§

m _C
™

which contains 18 parameters if one assumes

The number of parameters further increases if the energy depen-

dence and the deformation of the potential are taken into account.

Obviously, a potential like (1) cannot very accurately reproduce
a given set of experimental data, whereas the use of a potential like
(2) enables us to reproduce nearly everything in the smallest details,

especially if the various parameters are allowed to vary wildly.

However, good taste (and the worst vulgarities like the cost of
the computer time) oblige us to adopt a potential depending on a small
number of adjustable parameters, and make a reasonable compromise between

physical adequacy and drastic approximations.

The purpose of this paper is to examine, to some extent, the ef-
fects of these compromises on the results given by the optical and the
statistical models which are by far the most frequently used in evalua-

tion work.
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I. THE OPTICAL MODEL

A very large number of experimental data have been analyzed by
various authors in order to produce a "recommended" set of a few (five
to six) parameters to be used in connection with some selected form of‘
the optical potential.

From these analyses, it is usually found that the central part
of the optical potential ranges between 45+55 MeV at low (v1 MeV) energy,
decreasing smoothly as the energy increases.

The radii are of the order of (1.15%1.30)A1

fusenesses are of the order of 0.430.7 fm, both for the real and the

/3

fm, whereas the dif-

imaginary part of the potential.

The magnitude of the imaginary part is of a few MeV, and is as-
sumed to be constant or smoothly increasing with the energy. The spin-
—orbit also results as a rather shallow potential, of the order of a
few MeV.

The use of the optical model, together with a recommended set of
a reasonable number of parameters, enables us to evaluate total and elas
tic cross-sections which are satisfactory in a large number of cases.

For example, about three years ago Glasgow and Foster |1| compared
a large set of experimental neutron total cross—sections with the corre-
sponding optical model cross-sections calculated by using a non-local
potential depending on seven parameters. The adopted potential and para-
meters were those recommended by Perey and Buck |2| fifteen years ago on
the basis of an analysis of the elastic scattering angular distributionms
of Pb at 7 and at 14.5 MeV. It is worth noting that the parameters of
a non-local optical potential are usually assumed to be energy-indepen
dent, because the non-locality to a large extent replaces the energy de-
pendence required by a local potential.

In the comparison carried out by Glasgow and Foster, 78 elements
and 14 separate isotopes were considered, spanning the energy range
2,25315 MeV,

For 68 elements or nuclei with A>45 an average deviation smaller
than 37 was found in 607 of cases; whereas, such a deviation was between
4% and 177 in the remaining 407 of cases. The biggest discrepancies were
always found in the case of hard deformed nuclei.

The foregoing example shows that an optical potential depending

on a reasonable number of parameters can be used with confidence in eval-
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uating cross-sections in the continuum, provided the nucleus considered
is not a very deformed one.

Unfortunately, a number of nuclei of major interest for nuclear
reactors are strongly deformed. This is the case, for instance, of U
and Pu isotopes, Th-232, Na-23, etc.. For these cases, one has to
modify the parameters considerably if the deformation is not explicitly
taken into account. On the other hand, if one assumes that the spheri-
cal optical potential represents the limit of the deformed one, for B=0
(the B being the deformation parameter), the same set of parameters
might be used in principle, provided the deformation is taken into ac-
count correctly.

However, there are some aspects of non-spherical potential calcu-
lations which make the adoption "sic et simpliciter" of the parameters
inferred from analyses of spherical nuclei rather questionable. We will

examine here some of these aspects.

To solve the appropriate Schrgdinger equation with a deformed po-
tential, two different kinds of numerical approximations are frequently
used. In the first kind of approximation the potential is expanded into
powers of B wup to the first order. The second kind of approximation
assumes a Legendre polynomial expansion of the potential (in general up
to £=4). Now, there may be rather large differences in the results,
depending on the approximation adopted.

As an example, fig. 1 shows the results of calculations of the to-
tal cross-section of Gd-156 in the MeV energy range.

Curve (a) was calculated assuming a deformation parameter R=0.35
and strong coupling of the first excited 2" level. The potential was
expanded in Legendre polynomials up to £=4 . Curve (b) was obtained by
using the same parameters of curve (a) , but the potential was expanded
in power series of B to the first order. It can be seen that there is
a systematic difference between the two curves of ~10%15 per cent. The
total cross-section calculated by assuming B=0 (spherical potential)
is also shown in order to demonstrate the importance of the deformation
effect.

Quite large differences are also found for the shape-elastic angu
lar distribution, as shown in fig. 2.

Another aspect to be considered when the nucleus is a deformed

one, concerns the imaginary part of the optical potential. One of the
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effects of the nuclear deformation is the damping of the diffraction
pattern of the shape-elastic angular distribution. The same effect can
be obtained, qualitatively, by using a spherical potential with a large
value for the absorption potential W . Since a rather large number of
nuclei are more or less deformed, systematic analyses based on a spheri-
cal potential might result in a W-value which is too high for deformed
potential calculations,

In addition, the magnitude of the theoretical cross-sections given
by the generalized optical model strongly depends on the coupling scheme
used in each particular calculation.

Therefore, the value of W to be adopted also depends greatly on
the coupling scheme assumed. As an example, in fig. 3 the calculated
angular distribution for direct inelastic scattering of 1 MeV neutrons
by the first 2+ excited state of Gd-156 at 0.09 MeV is shown. All the
curves were calculated using the same set of parameters. Curve (a) was
obtained by assuming that only the first 2% excited state channel is
strongly coupled with the elastic channel. Curve (b) was calculated under
the hypothesis that the second (4+) excited state is also strongly coupled.
Curve (c) was calculated in adiabatic approximation, taking into account
the coupling of all the excited levels belonging to the fundamental rota-
tional band. It can be seen that there is a rather sensitive-dependence
of the results on the coupling scheme assumed.

Further difficulties arise as a consequence of the so-called
"geometrical W.b ambiguity", b being the diffuseness of the imaginary
potential. An example of the effects of such an ambiguity is given in
fig. 4. The curve labelled (a) shows the theoretical angular distribu-
tion of the inelastic cross-section for 1 MeV neutrons scattered by the
first 2% excited level of Gd-156 via compound nucleus. The parameters
adopted in the calculations were those of Agee and Rosen |3] » With
W=5.75 MeV and b=0.70 fm. The dots superimposed on the curve represent
the results of a calculation carried out using the same parameters, but
with W=8.05 MeV and b=0.5 fm. In both cases one has W.b=4.025 MeV.fm,
and the results are identical up to the third significant figure.

The angular distribution for direct inelastic scattering, however,
differs markedly in magnitude in the two cases, as can be seen in fig. 4
itself.

Another parameter which may change drastically when deformation

effects are taken into account is the depth of the spin-orbit potential
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VSo . The correlation between 8 and VSo has been discussed by
Thompson et al. |4| who found a lower value of Vso than in a spheri-

cal potential calculations when the deformation is taken into account.
This correlation mainly depends on the fact that the nuclear deformation
effects predominate near the nuclear surface where the phenomenological
spin-orbit potential also produces major effects. _

From the above considerations, it can be concluded that three
parameters at least (i.e. W, b and Vso) have to be varied when changing
from spherical to non-spherical optical model calculations. Thus, the
prediction of an unknown cross—section obtained by using "standard"
spherical optical model parameters and deformed potentials must be treated
with caution, the goodness of the results being strongly influenced by the
various approximations adopted in performing the generalised optical model

calculations.

IT. THE STATISTICAL MODEL

In the time scale of nuclear theories, the statistical model is
an extremely old concept. It was first developed by Bethe |5| , who in

1937 derived the following formula for the average reaction cross-section

3.3
2.2 rJr
- _ 27°% cc'
Yot T DG § (2IHD< S IR (3)

where, s and I are the spins of the projectile and the target, respec
tively, and the brackets indicate an average over many resonances. The
DJ is the average spacing of the levels with angular momentum J in the
energy region considered.

By introducing the transmission coefficients T, » edq. 3 can be
expressed in the well-known Hauser-Feshbach form |6| . For elastic and

inelastic scattering of neutrons one has
J J
* ejl(2J+1) E' ej'ﬂ'T,Q,'(E')
- - @ .
Un,n'(E’E) 2(21+1 ETR(E)E r T ) (4
p gll j"g" 2” p

*

The T,'s can be calculated on the basis of a given nuclear model.
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If the optical model is adopted, formula (4) can take on a more
complicated form, depending on the particular potential adopted (e.g.
deformed, with spin-orbit part, etc..).

Some channel transmission coefficients cannot be easily obtained
by starting from an optical potential. This is the case of radiative
capture and fission channels, for which other semi-empirical tools must
be developed to estimate the corresponding transmission coefficients.

The extension of the Hauser-Feshbach formula to the case of

capture and fission was made by Margolis |7[ ;3 the formula is

_ 52 E‘.IQ(2J+1)TI_(J,E)
o () = =e—=< 2 T (R,E) L (5)
n,r 2(21+1) n? J J 1ot
s [ ETr(J,E)+ 2'§E'gj,2,Tn(z ,E")

In the derivation of eq.(3) , (4) and (5) it has been assumed that
the average ratio <F2Fg, / FJ> could be replaced by the ratio of averages
(<Pg> <Pg,>/ <T">). This is not true in general because the various widths
are not constant but fluctuate from level to level., Therefore, the above
mentioned equations have to be corrected by a factor F given by

J . J

' J
F =< T, /T

> / [<Pg><Pg.>/<PJ>] (6)

The function F depends on the nature of the frequency distribu-
tion functions which represent the statistical distribution of various
widths.

About ten years ago the Hauser-Feshbach formula was re-examined
by Moldauer |8[ s |9| , in the more general framework of the statistical
theory of R~matrix. One of the results of such a re-examination was that
the transmission coefficients Tc should be replaced by the quantity

(o4

=2 -(1- 4
0 n [1-(1-o 1)) (7)

where Qc is a parameter with range O:Qc:2 .

Having briefly recalled the main features of the statistical model,
we will examine in the following section the influence on the numerical
results of some of the approximations currently adopted for calculating

the various quantities which appear in the formulae.
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Let us consider the case of radiative capture cross-section cal-

culation first.

A,

Radiative capture. To begin with, let us consider the Margolis'

formula.
The radiative capture cross—section is obtained from formula (5)

by taking

T_(3,E) = T_(J,E)

E'Tr'(J’E) = T,Y(J)E)

The absorption term Ta(J,E) refers to the capture of the neu-
tron with no particle re-emission, whereas TY(J’E) refers to
all the exit channels in which the compound nucleus initially
emits a +y-ray. The usual link between transmission coefficients
and strength-functions

<T ,a(J,E)>

TY a(J,E) = 27 (8)

’ D(J,E)
is assumed, so that we must know TQ(E) , <FY(J,E)> R <Fa(J,E)>
and D(J,E) 1in order to perform the calculations.
The simplest way to calculate TR(E) is to assume that the nucle
us behaves like a black absorbing sphere of radius PR , so that
only incoming waves, like ¢ ~ exp (-iKr) for s-neutrons, are
allowed inside the nucleus.
If this model is adopted, the parameters required by the calcula-
tions of the Tz's are the radius R and the neutron wave number
K inside the nucleus.
A more sophisticated approach is based on the "cloudy crystal ball"
or optical model. In this case what we need to know are the para-
meters appearing in the optical potential. Fig. (5) shows a com-—
parison of I-127 capture cross—sections calculated according to
the two models. All the parameters, except T2 , were kept the
same for both calculations; the optical potential adopted was a
5-parameter Saxon-Wood one, whereas a value of K=1013cm—1 was
assumed for the black nucleus calculations.

The differences in cross—-sections are of the order of 104157

everywhere, in spite of the fact that the T2 differs by a factor
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1.5+2 below 100 KeV.
The explanation of this fact is quite easy. If, for simplicity's
sake, we assume no inelastic scattering, then the contribution of
the 2&~-th partial cross—section to the total cross—section is

given by
—(g P
oi e [Tl(E).ra]/[Tl(E).mznr; (9)

where nggwrn/ﬁ' . If we express the energies in eV one has,

3

1 - -
very roughly, TZmEz.IO , DmlO2 and 2wram1 . Thus, for

's

EiIOAeV , we can neglect the term 2nFa in eq. 9 , and the T2
cancel out.
The above argument shows that capture cross-section greatly depends
on the ratio Fa/B' rather than on the particular optical potential
adopted in order to calculate the transmission coefficients. For
this reason it seems worth considering here some of the various
recipes usually adopted in order to estimate such a ratio.
As far as the calculation of FY a is concerned, the simplest
approach is represented by the ;ell-known "Weisskopf estimate' which
gives

+E

R B

n n

rY’a(Bn+E)—1"Y,a(Bn) |_po(Bn)/po(Bn+E)] J € po(Bn+E g)de/ Je po(Bn g)de
AE o

(10)

Bn and E being the neutron binding and kinetic energy, respective
ly, and Po the nuclear level density of levels with J=0 of the

(compound) nucleus considered. The parameter ) takes the values

In deriving formula (10) a (2J+1) level density dependence on J
has been assumed, so that FY a is J-independent.

’
A more sophisticated formula is given by the so~called "Brink-

-Axel" estimate |10],|11| which for am arbitrary J-dependence gives
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+E

B
2 J+1 2 ]
T)= —e): ! .

PY’a(Bn+E,J) e%o (€) bzlf'p an+E €);J ]d;/[3(nﬁc) p(Bn+E,J)J

AE

(11)

where, oY(e) is the photo-absorption cross—section of the
(compound) nucleus considered. Formula (11) gives, in principle,
the absolute values of PY Q? whereas formula (10) is usually
normalised at T (®).

¥,a 1n
Formulae (10) and (11) can be improved, in order to take the tran-

sitions to the resolved levels into greater account. For example,

for the "Brink-Axel" estimates, one has

r (B +E;J!TT)

Yy n
K J+1 2 2
=1; |ZHJ. Sg1,g, By*EED o (Bn+E‘Ei)/[3(1rﬁc) p (B_+E;T,m)]
1™ - i
B +E—EX

Jn 2 Ji 2 ]
,p (B_+E-¢;J")de /[3 (R B_+E:J
+ € cY(e) JZIP o (B +E-¢;J") e/[ (mc) "o (B_+E;J)

© (11")

where the 8's take into account the spin and parity selection rules
and EX is the energy at which the first level of unknown charac-—
teristics is assumed to be found.

In order to have an idea of the effects of the various approxima-
tions on the numerical results, we have carried out a number of
calculations in some significant cases. Let us consider first the
Weisskopf estimate. In Table I, columns labelled (1) through (4)

show the calculated ratios

RY’a(E) = PY,a(Bn+E)/FY’a(Bn)
for the (compound) nucleus Nb-94 . Index (L) means that the Lang-Le
Couter level density formu1a|12| has been adopted in (10) , whereas
index (C) means that the composite Cameron formula |13| has been
used together with the improved formula, like (11') , for the
resolved levels. As one can see, there are no significant differ-
ences in the results, in spite of the fact that the use of Cameron's
formula should imply in principle a J-dependence.

Columms (5) to (8) show some results obtained for Sn-118 , using
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the Cameron level density formula together with formula (11),

(values below R.Y a) and (11'), (values below R: a). Again,
3 ’
there are no significant differences in the results, in spite of

the fact that resolved levels are known up to 2.77 MeV.

Similar results were obtained for a large variety of nuclei, lead~
1

Y,a

is rather insensitive to the assumed level density formula and

ing to the conclusion that the calculated behaviour of the T s

J-dependence.
Let us now consider the '"Brink-Axel" estimate. As far as the
dependence on the level density formula is concerned, a large
number of numerical calculations lead to the same conclusions as
above. In some cases, however, significant differences can be
found, as shown in Table II for Se-78 where numerical values in mV
of the T ,a and F:’ obtained by means of formulae (11) and (11'")
respectively are given. In addition, if the results of such an
estimate are compared with those given by the Weisskopf formula, as
shown in fig. 6 for Nb-94, strong differences are found above a few
hundred KeV., These differences are mainly due to the fact that the
Weisskopf estimate does not take into account the giant resonance
phenomenon. All the conclusions reached so far for the r

_ Y,a
apply to the energy dependence of the ratio PY a/D .

As far as the absolute value at neutron binding’energy of such a ratio
is concerned, the main difficulty is connected with the evaluation of
the average level spacing D for those nuclei for which a sufficient
number of low energy resonances was not yet measured. Present theoret
ical models for calculating nuclear level spacings are still unable to
give agreements with a large class of observed D-values better than
a factor ~ 2+¢3 . A cursory examination of formula (3) shows that an
uncertainty of the same order of magnitude has to be expected in the
calculated cross-sections whenever empirical D-values do not exist.
We should now say a few words concerning the correction factor F
given by formula (6) . As an example, in fig. (7), the effects of
this correction for 1I-127 are shown. It can be seen that the
corrections may be quite important for neutron energies up to some
hundred kiloelectronvolts.

If one assumes a one-degree chi-square distribution for the neutron

widths and a §-function for 1"Y , one has
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«©

{ exp(-Tiw. x)dx

Jm Jm
(1+2XTC ) I:I" (1+ZXTCH)

F =217
(o4 c'C

(12)

o]

where index c¢" refers to all channels except those leading to

radiation emission.
The numerical calculation of formula (12) is rather cumbersome.

The following approximate formula was suggested by Cameron |14|

«©

N exp(—TJﬂ. x)dx
F =(Z,TJ?) T 3/2Y 7% o Jmn/? (13)
¢ ¢ (e2xT" 7 1 Z 5 700"

o c n oo’

with

=3
I

Jm
= (Z"Tcn) /M
C

=
I

Jm
max.(Tc")

The differences between the numerical results given by formulae
(12) and (13) are usually small. Inaccurate results, however,
can be obtained with both formulae if the upper limit of the
numerical integration is not carefully selected. 1In order to
overcome this difficulty, it is useful to transform formula (12)

as follows

1

J J J J

Fc=[(§'Tc?)/(2TmZx)] [{ exp[‘(l/y—l)TY“/(szgx)]}f(y)dy
)

(12"

with

13/2

-1_2 Jn,J Jn . J !
(E] =y [/l ) A=D1, [T/t ) (1/y-1)]

(14)
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Formula (12') can be easily integrated by using the Gauss method.
A similar transformation can be performed in order to integrate

formula (13). The result is formally identical to (12') if one

puts

32 e, 12m ary-vymrin V2
C

-1 2 Jr ,_Ju
[£()] "=y [1+(Tc /77 ) (1/y=1)] o

(14")

Numerical results obtained by means of the various formulae, are
shown in Table III for the case I-127 , (Jﬂ,2=2+,0).

In order to conclude these remarks on the numerical calculation

of the neutron capture cross—sections, it can be pointed out that
the use of Moldauer's O2 (see formula (7)) instead of the conven-

tional T does not in practice change the results.

2/'
This is due to the rather weak dependence of the results on the

T as explained above.

2'

Inelastic scattering. The conclusions reached so far about the

dependence of the cross-section on T,'s are no longer valid in the

2
case of inelastic scattering cross—sections. Because of the strong
influence of the Tl's » the calculated cross-sections will be, in
general, rather sensitive to the adopted optical potential. 1In
particular, if a local spherical potential is used, the energy de-
pendence of the central and imaginary depths should be accurately
known.

In fact, one should remember that the various Tl's refers to the
inverse process so that, near the thresholds, the transmission
coefficients have to be calculated for very low neutron energies.
Thus, recommended sets of parameters obtained from systematic analy
ses carried out in the several MeV energy range cannot be used with
confidence in this kind of calculationms.

To give an example, fig. 8 shows the energy dependence of the cen-
tral and imaginary part of an optical potential obtained for Cu-63
by means of an analysis of the total, differential-elastic and to-
tal non-elastic experimental cross-sections (full line curves),

As one can see, above 3.5 MeV the central part of the potential

shows a linear dependence on the neutron energy E , whereas the
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imaginary part is constant. However, below 3.5 MeV a quite dif-
ferent behaviour has to be adopted if one wants to obtain good
fits for the inelastic scattering cross-sections of the first and
second excited levels (see fig. 8 C) and D), fullkline curves).
In fact, the extrapolation to zero of the results obtained for the
potentials above 3.5 MeV (dashed lines in the figure) gives very
bad results, as one can see in fig. 8 C) and D) (dashed lines).
As in the case of neutron capture, calculated inelastic scattering
cross-sections are considerably influenced by the statistical
fluctuation correction factor.

Table IV shows some numerical results obtained by means of the
"Cerbero" code ]15] at 3 MeV for Sn-118. As one can see, the cal-
culated cross-sections are lowered or raised depending on whether
the fluctuation factor is used or not. The discrepancies between
the two cases are partially reduced if Moldauer's formula is
adopted (see Table IV, column C)).

Similar calculations carried out for a large number of nuclei, led
to the conclusions that discrepancies of the order of 15-307 among
the calculated results are usually found, depending on the partic-

ular formalism adopted.

CONCLUSIONS

From the above cursory examination, it seems that the following

conclusions may be drawn:

i) Optical model calculations for spherical or quasi-spherical nuclei
based on recommended parameters are reasonably reliable for total

neutron cross—-section evaluations above &~ 2 MeV.

ii) The same conclusion cannot be applied for strongly deformed nuclei,
for which consistent sets of recommended parameters have not yet

been obtained.

iii) Coupled-channel calculated cross—sections for direct processes
could have at present a very large degree of uncertainty. The same

could be true also for compound inelastic cross—sections if the hehav-

iour of the optical potential parameters at low energies is not well known.

iv) For a given set of basic parameters, calculated compound nucleus capture,
elastic and inelastic scattering cross-sections can easily differ by

~ 30%, as a consequence of the particular degree of sophistication

adopted in the model.
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Because of the accuracy usually required by reactor physicists,
the above conclusions do not appear to be too optimistic as far as the
usefulness of nuclear models as an evaluation tool is concerned. In a
number of cases, however, uncertainties of <~ 20+307 could be accepted,
but experimental data are lacking or too scarce. Because of the cost
and/or the time required in order to perform the measurements, nuclear
model calculations can be useful in these cases, taking into account that,

for the wise man, a bird in the hand is worth two in the bush.
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TABLE 1 : EXAMPLES OF NUMERICAL CALCULATIONS OF R, =T, ,Bn#€) / T jBm) IN THE FRAMENORK
OF THE "WEISSKOPF ESTIMATE”,
<Nb -94> <Sn - 118>
Ry @ 3) ) (5) ®) @ ®)
(MEV) RO RO RalD Ry Ry(O) R';,(C) R4(C) R3O
0 1.00 1.00 1,00 1,00 1.00 1,00 1.00 1.00
0,001 1,00 1,00 1,00 1,00 1.00 1.00 1.00 1,00
0.01 1.00 1,00 1,00 1,00 1.00 1,00 1,00 1.00
0.1 1.02 1,03 1,02 1,03 1.02 1.02 1,02 L0
0.5 1,13 1.13 1.13 1,13 1.13 1,13 112 112
1 1.28 1.27 1,22 1.23 1.26 1.27 1,20 1.20
2 157 1.57 1,24 1,23 1.57 1.57 111 1.12
3 1,90 1,90 1,03 1,03 1.90 1,90 0,84 0.84
f 2,27 2,27 0.78 0.77 2,27 2,26 0,55 0.55
5 2.68 2.66 0,54 0.53 2,66 2,66 0,34 0.34
6 3,10 3,08 0.35 0.35 3,08 3.09 0.20 0.20
7 3,55 3,53 0.23 0.22 3,53 3,54 0.11 0.11
8 14,00 4,02 0,14 0.14 4,02 1,04 0.06 0.06
9 14,50 1,54 0.087  0.084 4,54 1,55 0,033 0,033
10 5,10 5,08 0.054  0.051 5,10 5,12 0.018 0.018
11 5,70 5,65 0,033 0,031 5,66 5,68 0,098 0.0098
12 6,32 6.26 0,020 0.019 6.27 6.30 0.0053  0,0053
13 7,02 6,90 0.012 0,011 6.92 6,95 0,029  0.0029
14 7.60 7.55 0,007  0.007 7.56 7.61 0,0016  0.0016
15 8,26 8,24 0,006 0,004 2,29 8,33 0,000 0.0010
TABLE 11 : EXAWPLES OF NUMERICAL CALCULATIONS OF T, (Bn+:J) FOR Se-78
(BRINK-AXEL ESTIMATE),
(MEV) Iy ly Iy I}*- fa fa_ a” F:-
Wr=07) (Rl (R0 (=1 Re0T) (Jf=1T) (R=0T)  (JTel0)
0 182 180 241 285 182 180 241 285
0.001 182 180 241 285 182 180 241 285
0.01 182 181 241 285 182 181 241 285
0.1 187 185 243 285 187 185 243 285
0.5 208 206 255 289 208 206 255 289
1 237 235 276 302 236 234 274 300
2 307 304 333 348 283 280 308 324
3 382 388 409 417 300 297 318 307
Y 491 487 503 507 287 281 299 304
5 607 602 616 616 256 252 264 265
6 742 736 747 744 217 215 223 222
7 894 888 898 893 180 179 184 182
8 1069 1061 1071 1064 148 146 149 148
9 1266 1258 1268 1260 121 119 122 120
10 1488 1480 1489 1481 99 98 99 98
11 1737 1728 1738 1729 81 80 81 80
12 2015 2005 2017 2006 66 Bl 66 64
13 2324 2313 2326 2314 51 50 51 50
14 2666 2654 2668 2655 37 36 37 36
15 3043 3030 3045 3032 23 23 23 23
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TABLE III : FLUCTUATION FACTORS F FOR 1-127 (J™e=2%,n)
ACCORDING T0 VARIOUS APPROXIMATIONS.

“ExacT” "ExacT” “CAMERON”  "CAMERON"
ELah FormuLa(12) FormuLA(12’) FormuLa(13) ForMmuLa(l4')
' (S1mMPSoON) (Gauss) (S1MPsON) (Gauss)

0,001 0.6787 0.6843 0,6787 (0.6843

0.01 0.7296 0.7313 0.7296 0,7313
0.03 0.7483 0.7585 0, 7478 00,7581
0,05 0.7609 0.7685 N.7609 0.7685
0.07 0,7728 0.7728 0.7671 0,7671
0,10 0.7690 0.7722 n,7691 0.7724
0.30 0,8098 N, 8104 0,8647 n,8676
0.50 N, 8449 (. 8449 0, 9414 1.9416
0,70 N.,8807 0.,8807 n.9711 0,9711
1.00 0.9175 0.9175 0,9864 N,9864

TABLE IV : INELASTIC SCATTERING CALCULATIONS
FOR Sn-118 AT 3 MeV,

< ohnnnh) >
(a) (h) (e)
LevEL H.F, H.F. MoLp,
(WFC)

Funp, 241 536 434
1° 486 386 420
2° 278 229 246
3° 97 74 82
y° 108 g8 101
5° 9y 8n 85
g° 215 177 190
7° 196 162 174
8° 77 71 73
g° 61 47 52

10° 2 2 2
11° 21 20 21
12° 37 35 36
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FIGURE CAPTIONS

Theoretical ‘total cross-sections of Gd-156 calculated with
the same set of parameters, but assuming different approxi
mations for the optical potential representation.

Theoretical shape-elastic cross—sections of Gd-156 at 4 MeV
corresponding to the various cases of fig. 1.

Theoretical direct inelastic scattering angular distribu-
tions for Gd-156 at 1 MeV, according to different channel
coupling schemes.

: An example of the effects of the '"geometrical W.b ambiguity"
on the calculation of the inelastic scattering cross-sections.

: Theoretical neutron capture cross—section of I-127 according
to the "black nucleus" and the "cloudy crystal ball" model.

A comparison of the energy dependence of radiative (curve a)
and capture widths (curve b) calculated according to Brink-
~Axel and Weisskopf.

An example of the effects of the width fluctuation correction
factor on the theoretical radiative capture cross-section of
I—127c

An example of the effects of the optical potential parameters
on calculated inelastic scattering cross-sections of Cu-63.
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I1-1. On the Calculation Methods

of the Neutron Capture Cross Sections
by
S. Igarasi, A. Mori* and K. Harada
Japan Atomic Energy Research Institute

Tokai-mura, Naka-gun, Ibaraki-ken

Some remarks on the nuclear model calculations of the neutron capture
cross sections are presented, on the basis of the optical model, statistical
model and coupled channel calculation model. Calculation methods on the
statistical model are discussed to obtain the total, elastic, inelastic
scattering and capture cross sections consistently. The cross-section formulae
with the level-width fluctuation and resonance interference are modified in
order to conserve the sum of the partial cross sections. Example are shown
on the cross sections of U-238. Effects of the competing process, that is

the fission cross section, are also discussed.

* Tokyo Institute of Technology
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1. Introduction

There have been many kinds of the nuclear models available for the neutron
cross—section calculations, in the energy region above resonance. The optical
modell) is used to obtain the total cross section, shape elastic scattering
cross section and total reaction cross section, and the statistical mode12’3)
is applied to the neutron capture, inelastic and compound elastic scattering
cross-section calculations. Besides, we often use the direct and collective
interaction models for the high energy neutron cross-section calculations.
However, in the usual study of the nuclear physics, they are not mnecessarily
used by taking account of their mutuality.

An aim of this work is to make the sum of partial cross sections equal the
total cross section obtained from the optical model calculations, even if the
partial cross sections are obtained by using different kinds of the nuclear
model calculations. For the purpose of obtaining this equality, we have tried
to modify the conventional neutron cross-section formulae in the framework of
the statistical model calculations, from the view point of the neutron cross-
section evaluation.

In section 2, conventional cross-section formulae will be reexamined from
the view point of the above mentioned equality of the cross sections. Discussions
will be given about the contributions of the competing processes, such as fission
and (n,2n) reaction. In section 3, modified neutron cross-section formulae
will be derived by taking account of the contributions from cascading process
and the competing process. Correction factors of the resonance level-width

fluctuation4’5’6’7) 5,6)

and of the repulsion effect will be introduced in our
modified formulae of the cross sections. In this report, we will treat the
cascading process in an approximate way. In section 4, we will show an example
of the numerical calculation for U-238 cross section, and discuss the contribu-
tions of the resonance level-width fluctuation and resonance interference. In
this report, we will try to unify the calculation methods of the neutron cross
sections, in the framework of the statistical model calculation. Though this
is a preliminary trial, it may be expected to develop a comprehensive and

convenient method for nuclear cross-section calculations.
2. Conventional Cross~Section Formulae

Total cross section is one of the most characteristic quantities in the

neutron induced reaction. It can be measured independently of partial neutron
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cross sections whose sum must be equal to the total cross section. The similar
situation holds in the theory. The total cross section can be obtained by the
optical model calculation which provides shape elastic scattering cross section
and total reaction cross section (formation cross section of the compound nucleus

+ direct reaction cross sections);

Ota=025+0z =0t Op t 0 *0x4 +407, @V

where[&(). is the cross section of the competing process mentioned in the previous
section. In general, partial cross sections O;Q_C. , O‘m R O:n,z( and AO’
in Eq.(2.1) are obtained by using the statistical model, direct and/or collective
interaction models, and are not necessarily calculated by taking account of
their mutuality, in the usual study of the nuclear physics.

From the view point of the neutron cross-section evaluation, it is desirable
that the relation described in Eq.(2.1) is strictly satisfied in the nuclear
model calculations. The neutron capture cross section, for instance, is calculated

by using the following formu1a3),

° 1T m
Onx n) = _7_[&_ J <-,:"i@ Z §‘];l >
y (EE ) IELn ;;;;f?} <:'—T-J :> ,

2)

in the framework of the conventional Hauser-Feshbach theory™*. In Eq.(2.2),

(2.2)

a character "o'" upon the neutron transmission coefficient l 0 and the total
"

transmission coefficient .1-J" indicates the quantities obtained by the optical

model calculations. Two kinds of the gamma-ray transmission coefficients are

8)

defined as follows ’,

EntBn

Jr
Ta0=C. |48, E fE0 R EnvBa-E ,

and

EntB,

(TJT} =C:“ d‘ng: :E:(E"‘) E;(En'\-Bn-Ex) D
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©
respectively, and the total transmission coefficient ’ includes only

T.
e Jm
T Z T il + Iz . (2.5)

'.'t
Descriptions of the normalization coefficient C , profile function _‘fa, (EX)
and level density function §>(II) w1ll be given in later sectionm.
m ,
Two quantities and correspond to the gamma-ray transition
q Ty -l';, P 8 y

to the states below the neutron separation energy and to all the states available
for the gamma-ray energy. We define a quantity which represents the difference

between these two quantities;

T =KT> - <> e

This corresponds also to the sum of the neutron and gamma-ray emissions through
the cascading process from the compound nuclear states above the neutron separation

IN is not zero, the relation given in Eq.(2.1)

energy. If this quantity A
is not satisfied formally, even in the energy region where ACT does not con-
tribute. It is easily seen by looking at the formula for inelastic and compound

elastic scattering cross sections;

(2.7)

6'n'n'_n = 'I'LT I <~[”'::'r >°‘:§T—I;:j'9_'>
n(Ea) k’.n{n\%@ﬁ T

Summation of all the exit channels is not equal to the total reaction cross section;

GK(E,J Z % <—’; > (2.8)

- n JWiL ’
if ATX ='= 0 . Therefore, we must treat the quantity AT;m in a

proper way for satisfying the equality mentioned in Eq.(2.1). In the next section,

we will discuss this problem.
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Moreover, we must consider the treatment of the competing process. In
general, the cross section A()' is able to include every partial cross section
which we cannot calculate by our cross-section formulae. One of these partial
cross sections may be the direct capture cross sections), for instance. The
total reaction cross section Cj% should include this partial cross section
whose transmission coefficients are not included in our cross~section formulae,
Egs.(2.2) and (2.7). We assume here that the transmission coefficients for the

competing process are proportional to the ratio;

A = AO‘/O*R , (2.9)

and the total transmission coefficient with ( :r s Tr ) is redefined as follows,

T'= “T'”/u ) 210

: L]

This modified total transmission coefficient takes the place of .T-Jn in Egs.(2.2)
and (2.7). Thus, we are able to calculate the cross section including the
contribution of the competing process.

We mentioned above that the partial cross section.4A(J- may be composed
of every available partial cross section, if there is no contradiction among
them. For practical purposes, some of them are the experimental data and the
others may be the calculated values obtained by an appropriate nuclear model
calculation. For example, we consider the direct capture cross section which is
calculated by using the coupled channel theoryg). If we obtain the neutron
transmission coefficients in Egs.(2.2) and (2.7) by the use of the spherical
optical model, our calculations would comprise some inconsistent components.
From the view point of the consistent nuclear model calculations, it is desirable
to carry out the calculations on the basis of the same fundamental nuclear model.

Though the generalized optical modelg’lo)

is very efficient for investigations

of the nuclear physics, there are many problems to be solved in order to make use
of the model effectively to the cross-section evaluation work. In this report,
the spherical optical model is used as the basic model, but the essential points
of our discussion will not be changed even in the case of the generalized optical

model.
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3. Modified Cross-Section Formulae

In the previous section, we mentioned that the sum of the partial cross
sections is not equal to the total reaction cross section, in the framework of
the conventional cross-section formulae. In this section, we derive the modified
cross—-section formulae, which take the place of Eqs.(2.2) and (2.7), by taking
account of the quantity A:T;?“ given in Eq.(2.6). This quantity corresponds
to the sum of the neutron and gamma-ray emission through the cascading process
from the compound nuclear states above the neutron separation energy. The
contribution of the cascading process to each exit channel should be estimated

7,11,12) of the intermediate states generated

by using population probability
by the cascading process. 1In this report, however, we try to formulate this
contribution in an approximate way.

We assume here that the contribution of the cascading process to each exit

channel is proportional to the branching ratio;

Q OJTr
sTan=aT" o (T kT es

and

ATHH = AT,H x<—‘;2n>/<~(i-:m> . (3.2)

Here, the denominators in Eqs.(3.1) and (3.2) are the original total transmission
coefficients, but not the modified quantities, because the cross section ‘A()~

is already given and the quantity IL-T;?“ should be distributed among the
neutron and gamma-ray channels. Using Eqs.(3.1) and (3.2), modified transmission
coefficients are given for the neutron and gamma-ray channels respectively,

as follows;

S m Jn
<I?2 = <ij'z'> + Aij'z’ , -3
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and

<—[-:1I> = <T;|n> +A_l;im (3.4)

It is easily seen that the relation given in Eq.(2.1) is satisfied by taking the
modified quantities -TJ" s -T;?L and -T:“ , instead of the original

e il Ny . .
quantities ‘rJ' , "ﬂh! , and 'T;' in Egs. (2.2) and (2.7), respectively.
Therefore, the cross-section formulae should be given as follows,

0— . It J < olnmjl> ] < ]¥m>
T, En) " 2 (3.5)
4 " >m:j9.ﬁ CT™ ,

and

(3.6)

3<Iﬂ.> <T >
ol (T

respectively, in the framework of the Hauser-Feshbach theory without resonance

QunlBd =

level-width fluctuation correction.

It may be believed that the properties of the resonance level-width
fluctuation are not altered by the cascading process. Besides, the cross
section AO" is already given independently of the resonance level—width
fluctuation correction. Therefore, the energy averages of the resonance

contribution can be written for the neutron and gamma-ray channels as follows,

o Ty Claged T
T‘.m 1-‘--Inl> S‘nz, “Jl{ 4 },(3.7)

and

Tt T \_¢
TJ’H TTN) {<—E!l > 5.5

+<—‘; [ )S:‘m (1 _Snawz)”,
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respectively, where the correction factors of the resonance level-width

fluctuation miLsc are calculated by using the original quantities only.

Derivation of Eq.(3.8) is carried out by the use of an important relation for

the transmission coefficients;

Z <T >( ' - Snj!,'c) = () (3.9)

This relation is rewritten for the original quantities and for the modified

quantities as follows,
=~ JU o IW m
TH=2 T Se * <o " S 10
Jr
a o : '
—Z<T'n3'¢,>Snaz nu + —I;/<T:m>} +¥X (.11

"fl

respectively, where )( is a quantity for the gamma-ray channel which should

be expressed by the use of the modified quantities, and is given as follows,

X =<Tor> +<Te (S = 1D
AT /CT™ Syl }

Our treatments mentioned above can be applied to the Moldauer theory ,

(3.12)

whose transmission coefficients are given by the following equations,
S 3
Oy - Q@™ By =<Tay> . om
njt 4 njt nyL
for the neutromn channel, and

O -2 Q@GR = <TR> e
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for the gamma-ray channel, respectively. A quantity QJ'II’ represents the

. 5,6 R R ..
resonance interference effect™’ ) and is a function of the total transmission

coefficient given by the following formula
J 2 J0 SN JT
@™ =@M ={,§L,<®mf>+<®n>}/(1-0(), 6.1
. Jr . .
The quantity ATX is replaced by a new quantity,

a8 =(@a) —<87) | 016

and the cross-section formulae are represented as follows,

J<® m
Ot =36 1 7 iy 10>

+4@, > [A®m/<®“ ' ::L 2 (1- Sj;rz Xz)]} ,

<:GDn ~> <- n1;>
» %‘j’cﬂ{ ?GD’") S’"ﬂ e

and

();qu(fzn. -

(3.18)

(22 s
x wponje 7 U=00Q €E™)- <®,,J¢>}

respectively. Explicit representation of the correction factors of the resonance

level-width fluctuation is described as the following integral forms,

(3.19)

I _X:Lt exp (‘(@ > t/(@ >)
(1"'2'%@31) t)“ (H Ve (@Tﬂ) )
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for gamma-ray, and

vo o
o (142 %njz-n'j'f)' @xp(— @H/@™)
njﬂ.m'j'!.'— dk(i + 2 2 (@ 2 (@,-61 t)'”' | + 2 <®J‘l> ji3 +20)
®3">
for neutron, respectively.

In this section, we derived our modified cross-section formulae, Egs.(3.17)
and (3.18), for the neutron capture, inelastic and compound elastic scattering.
Using Egs.(3.9), (3.13), (3.14) and (3.15), it is easily seen that the relation
in Eq.(2.1) is satisfied by these cross-section formulae. In the next section,

we will confirm this result with numerical calculations.

4. Example of Numerical Calculation

In Table 1, we show an example of the numerical calculations for U-238,
Column 6 (Sum) is provided for the sum of the partial cross sections CJ;ui . (3;£
:(jx“‘ and z&(}‘ , and column 7 is for the total cross section obtained with
the optical model calculation. Numerical values in col. 6 must be equal to the
values in col. 7. Results show that the equality is apparently satisfied.

13)

In this calculation, we adopted Kanda's evaluated values for the cross
section AO’ » which is the fission cross section in this case. In this
Table, we show the results for two examples. One is the calculation with the
resonance level-width fluctuation correction and resonance interference effect,
and the other is the calculation without the resonance interference effect.

The results of the former are shown in the upper line for each energy block,
and the results of the latter are in the lower line. The differences between
these two are due to the resonance interference effect, and are small in the
low energy region. In both cases, we normalized the neutron capture cross
section to the value, 0.637 barns, at 10 keV, with the width of 5%Z. Therefore,
these differences depend also on the difference of the normalization coefficient,
C::I » used in Eqs.(2.3) and (2.4). Precise comparison should be performed
with the same normalization coefficient, but we do not discuss this problem in
this report. The coefficient C::]. is given by using the observed gamma-ray

width and level spacing;
C:m (zmT’ ) B
Dir A€y &y i,(ﬁg) ﬁ Bn-Ey), (4.1)

o

o

—-112—-



JAERI-M 5984

where

(4.2)

(271:?")__ 2Jt1  2m1yu.
Dm /8, 2021+ Das.

mn
It is also possible to use the theoretical values of -r; and 'I)Jn >
instead of the experimental data. ‘In the calculation mentioned above, we
did not use these data, but normalized the cross section directly.
As for the profile function j;(83)7ui2§ in Eqs.(2.3) and (254), there
s

are two available types; Brink-Axel type and Lane-Lynn type ‘. In this

calculation, we adopted the Brink-Axel type tentatively;

ZT,R Ez!
T (& -ER) + (&)

(4.3)

fg( 8?!) =

with EER. =13.6 and T;L =6.0. In the evaluation or analysis of the
nuclear data, choice of the profile function as well as the values of the
parameters should be carried out after careful investigations about their
effects. 1In our preliminary investigation, there are little differences
between the cross-section values with the Brink-Axel type and with the Lane-
Lynn type.

In our calculation, we used the level density function of Gilbert-Cameron
type. For the compound nucleus, we used the function without spin cut-off
factor. Therefore, the level width of the gamma-ray channel is independents)
of the spin and parity of the compound nuclear state. The values of the
parameters were taken from Gilbert-Cameron's recommendation, and the neutron
separation energy was adopted from the table compiled by Wapstra and Gove16).

For overlapping levels of the residual nucleus, we used the level density
function with the spin cut-off factor as well as the distribution function of

the parity which is defined as follows,

Ne + 0.5 exp[(U-E,)/a]
| + exp[(U-E/a] ,

(4.4)

RO =
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where PJ7L stands for the fraction of the discrete levels with parity T ,
and the parameters Eo and A are given by the use of a joint energy Ex s
at which the gas model and constant temperature model of the level density join
smoothly, and an energy EEC above which the levels are assumed to be over-

lapping;
E.=(E(+ Ec)/z , (4.5)

and

A:—.\EX—EC\/X . (4.6)

In Fig. 1, we show several kinds of the partial cross sections of U-238.
The neutron capture cross section reveals two humps around 300 keV and 1.0 MeV.
The former is due to the p-wave neutron capture and the latter is caused by
the competition tetween the transmission coefficients for the gamma-ray and
the inelastic neutron channels. The gamma-ray transmission coefficient increases
rapidly above about 500 keV, and the transmission coefficients for the inelastic
neutron channels, especially for the overlapping levels of the residual nucleus,
become very large above about 1.0 MeV. Being due to this competition, the
neutron capture cross section decreases with increasing the neutron incident
energy, in the framework of the statistical model calculation. In general,
the contribution of the direct and/or collective capture processesl7%20) play
a dominant role in the energy region above such energy as 1.0 MeV in this
example. We tried to estimate the direct capture cross section for single
particle El transition by using the adiabatic approximation of the coupled

9)

channel calculation™’;

R Errcea ) S L1 B

Where.]é and P(P are spin and K-quantum number of the bound state respectively,

and
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Vere "m“'hl>

J+m3 i+3 L (> L4041 [
"‘Z> (1= =3 )u%;a’( = gl 5 (1+ ™. J23+ (§§ -;'z'zl' 0)

x{(:“ My K= \Jpr)'(iT*r?tg Ke=73 13 Ke) (4.8)
10 = = = — s B X
+ (= T (T K+ ‘Jpr)-(ﬂ-mj Kp+mjtg K@)}- (Rj'f.’KP(T).’RO;Qﬁé(T)'T A

According to our preliminary calculation, the partial cross section for each
single particle state was too small to be desired.

Finally, we show a comparison of the neutron capture cross sections obtained
by the use of the Hauser-Feshbach's formulae, Egs.(3.5) and (3.6), and Moldauer's
formulae, Egs.(3.17) and (3.18). 1In Fig. 2, we show two curves of the neutron
capture cross section normalized at 10 keV. The curve with the Hauser-Feshbach's
formulae reveals a rapid fall from several ten keV to hundred keV. This rapid
fall is reduced in the curve of the Moldauer's formulae. The curve of the latter
is apparently larger than the curve of the former, above about 50 keV. However,
if we use the same coefficient (:2r mentioned in Eq.(4.1) for both curves,
the situation of the two curves is upset. This is due to the effect of the
level~width fluctuation, which moderates not only the variation but also the

value of the neutron capture cross section.

5. Concluding Remarks

We derived the neutron cross-section formulae, by which we obtain the
several partial cross section whose sum is equal to the total cross section
calculated with the spherical optical model. The formulae are very useful for
neutron cross-section evaluation work. Two quantities AT:“ and A@' play
an important role in our cross-section formulae which represent the effects
of the cascading and competing processes respectively. These two, however,
are treated only approximately in our formulae presented in this report. It
is necessary to look for the methods to obtain them reasonably, for the cross-
section calculations. In particular, fheoretical treatment of AQ)" is needed
in order to improve our present nuclear model calculations. One possibility
is to use the generalized optical model and to unify the statistical, direct

and collective model calculations.
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Table and Figure Caption

Table 1. Cross sections of U-238. "Sum" in col. 6 means the sum of Cfny .
Cn& , CI%L and A(}' . Values in col. 6 must be equal to the
values in col. 7, which are the values of the total cross section
calculated with the optical model.

Fig. 1. Partial cross sections of U-238. Cross sections of s-wave and p-wave
neutron capture are also exhibited.

Fig. 2. Comparison of the neutron capture cross section obtained with Egs.(3.5)

and (3.17).
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Table 1
| keV 2.5511 24.929 27.4801 27.480
2.5668 24913 27.4798 "
(0 keV 0.66142 |15.705 16.3664 16.367
0.66388 [15.703 16.3669 ”
100 keV 0.18283 (11.273 |0.38436 11.8402 | 11.840
© 0.18353 (11.281 |0.37473 11.8393 ”
0.15408 5.5616 | 1.5820 7.30068| 7.3007
0.003
BOOkeV 14 15274 | 5.7028 |1.4422 7.30074| -
0.16573 5.0192 | 1.8546 7.06153| 7.0615
TMeV 15 16231 | 5.1714|1.7058 | 09?2 | 7.06151 "
0.060607 | 4.3605 [2.2546 7.20371 7.2037
) .528
2MeV 0.073002 | 4.4079 |2.1948 0.52 7.20370 ”
|st line : with fluctuation & interference.
2nd line : with fluctuation but without interference.

Normalization at 10 keV, Ony =0.637+5 %

T

T

O

~
_______

Eq. (3.5)

Pty

-

_I .. coapture “
A
0.001 001 0.1 1.0 MeV
Fig. 1
T T T
U-238 , O,
normalized
point
— Eq. (3.17) 3
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DISCUSSION

H. E. JACKSON, JR.: How sensitive are your results to the use of the

Brink Axel relationship for the transition strength?

S. IGARASI: I haven't investigated it in detail yet. As far as the
cross—section calculation in the low energy region is concerned, there
may be scarcely any difference between Brink-Axel form and Lane-Lynn form

of the profile function.
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I1-2. STATUS OF PREDICTIONS OF PHOTON STRENGTH FUNCTIONS

BY GIANT DIPOLE RESONANCE AND VALENCE MODELS

H. E. Jackson
Argonne National Laboratory, Argonne, Illinois 60439

The data available on the strength of radiative transitions from highly
excited states in the threshold region are reviewed for nuclei from mass 50 to
250. Photon strength functions for E1 and M1 radiation resulting from measure-
ments of threshold photoneutron spectra, individual neutron spectra, and average
capture spectra are summarized. To date neither the single particle nor the
giant dipole model has given an accurate description of <I(E1)>/D. Howecver,
the precision of data on the magnitude and energy dependence of <T(E1)>/D has
improved and systematic trends are emerging. Evidence for the importance of
single particle effects in the mass region A®90 are discussed briefly. Data
parameterized in terms of the giant dipole prediction appears to be the most
satisfactory basis for describing the systematics of <I'(E1)>/D in calculating
and evaluating gamma-ra'y spectra and production cross sections. Data for the
reaction 181Ta(n,x\() are discussed. Use of the giant dipole model results in a

ma jor improvement in the comparison of calculated and measured spectra.

%
Work performed under the auspices of the U, S, Atomic Energy Commission.
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I. Introduction,

The purpose of this paper is to review our present knowledge of
the strength of radiative transitions of highly—exciteci states in the threshold
region. The topic is one which has been actively investigated in neutron and
photonuclear physics for several decades. It is testimony to the difficulty
in obtaining and interpreting accurate experirﬁental estimates that even now
our ideas are still in the formative stage. We will compare the growing body
of data for dipole tlransitions which have been accumulated for a wide range
of nuclei with the predictions of various simple models of radiative transitions.
Our discussion will be restricted to the mass region, 50-250 where as a first
approximation we can rely on the statistical model of highly excited states for
a description of the properties of individual resonances. Under these assumptions
individual radiation widths should be distributed according to the Porter-Thomas
distribution. Resonance energies and spacings should be governed by well
established laws such as the Wigner distribution. Variations in local averages
of resonance in transition strength should be consistent with the random
fluctuations in level density and width characteristic of these distributions.
Under these conditions it is convenient to discuss the transition strength in
terms of the photon strength functions for the various multipole types of
transitions. For our discussion we. define the strength function for multipole Mp
as the dimensionless ratio of the average width to the mean spacing of states of
the appropriate spin and parity: S(Mp) = < T vi >/ D. (1)

We expect the radiative strength corresponding to possible individual nuclear
configuration to be spread ovef excitation regions large compared to the level

spacing. In this case, any nuclear structure effects if important should manifest
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themselves in variations in the strength function with energy and the mass.

ITI. Single Particle Model,
The simplest and most widely used estimate of the photon strength
function comes from the single-particle estimate of radiative transitions due
to Weisskopf. : In this calculation a one-nucleon transition between bound
single particle states is assumed. All wave functions are assumed to be constant

within the nuclear radius and zero outside. The resulting estimates are

< T (E1)> /D=6.8x 1078 A 2/3E3 / D
yi Y 0
_ _ -8 _ 3
< rYi(M{)> /D=2.1x10 EY / D, (2)
-14 ,4/3 .5 /D

< I‘Yi(EZ)>/D=4.9x10 0

where D0 is customarily assumed to be a single particle spacing. The intro-

duction of this level spacing has never been put on a sound theoretical basis,

and over the years D _has been treated as an empirical parameter which is

0
adjusted to give the best fit to available data.

However, the single particle estimate for E1 can be more firmly
established by using the connection between the strength function and the cor-
responding photon absorption cross section:

2, 2 |
(¢ )= 27 X g(F_)/D . (3)
a vi

For E1! radiation, the absorption cross section can be constrained to satisfy

the classical dipole sum rule:
L.

Jo ' dE=.060 NZ/A MeV barns . | (4)
0

It is reasonable in view of our knowledge of the systematics of the E1 giant
dipole resonance to assume that the upper limit of the integration is approximately
40 MeV. Using the mass and energy dependence indicated by the Weisskop{

expression in evaluating the sum rule leads to the relation:

(I‘Yi(Ei))/Dz 8.8 ><1o'9 E3 A2/3 (5)
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for a nucleus with A=160. This expression should be reasonable zeroth
approximation to the E1 strength function.

Fig. 1 is a comparison of this single particle prediction with the
data available on <1"Yi(E1)>/ D. These data include results
from measurements of average capture spectra, resonance capture spectra,
and threshold photoneutron spectra. In compiling this data we required that
the number of resonances studied in any measurement be sufficient to suppress
the uncertainty imposed on the data by Porter-Thomas fluctuations. For this
reason there are fewer data points than have been included in earlier
compilations, The quantity plotted is actually the photon strength function
divided by the energy and mass dependence of the single particle estimate.

The solid line is the prediction based on the dipole sum rule. Clearly the

latter predicts values much too large. If we arbitrarily decrease the single
particle estimate bya factor of 3.5 we obtain the dotted curve which is in
crude agreement with the data. However, the discrepencies for the lighter
nuclei and the arbitrary character of the best normalization suggest that a

more refined model is necessary.

TII. Giant Dipole Resonance,

Our knowledge of the systematics of the giant dipole resonance
tell us that the single particle model with its uniform distribution of dipole
strength is completely unrealistic. The situation is described in Fig. 2 for
a nucleus of mass =~ 190, Here the single particle dipole matrix element
is compared with the value implied 'by the empirically established ILorentzian
approximation to the giant dipole resonance. The natural refinement first

. 2 .
suggested by Brink and implemented by Axeljwas to use the systematics of
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the giant dipole resonance in heavy nuclei to predict the strength function in-
the threshold region. Two assumptionsare necessary, ZFirst, it is assumed
that the dipole strength in the threshold region can be described by the low
energy tail of the giant dipole resonance. This tail is then parameterized in
terms of the classical Lorentzian shape that is used to fit the main part of the
dipole resonance in the damped-harmonic oscillator model. The second
assumption pertains to the relationship between radiative transitions in photon
and neutron induced reactions. In (n, y) reactions transitions to a range of
final states occur while in the (v, n) reaction the transition always corresponds

to the inverse of the (n, y) ground state transition. The relationship between

photon strength functions for these two reactions is not evident. The usual
assumption is the Brink Hypothesis, namely that each excited state has
built on it the same giant dipole resonance as the ground state. This then
establishes the equality of the strength functions as observed in the inverse
reactions. This is indicated schematically in Fig. 3.

Following these assumptions Axef has used parameterization of
the giant dipole resonance that is applicable to a wide range of nuclei to develop
a relationship for the photon strength function expected to be accurate in the
threshold region:

Ly -15 3
(" }J/D=6.1x%x 10 ES A8/ . (6)
v0 Y

E 1is in MeV,
Y
In Fig., 4 we have presented a summary comparison of EIl
photon strength functions parameterized in terms of the giant dipole model
with the predictions of Axel. The solid line is his prediction. The results

are very interesting. As in the case of the single particle model the overall
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agreement is poor. In the mass region between between 150 and 250 the
giant dipole model badly overestimates the E! strength. Perhaps we
should not be sﬁrprised at this since only the order of 1% of the total EIl
strength as given by the classical dipole sum rule is expected to occur
below the threshold region. The Brink-Axel treatment may simply not be

capable of describing such detail,

IV. Nuclear Structure Effects,

At the moment the best strength function estimate appears to be

the ''retarded' single particle value. This suggests that the radiative

strength be attributed to some residual single particle strength in the
threshold region. This possibility has been extensively discussed by L.ynn4
in developing his ''Valence'' approximation of radiative transitions. He observes
that the giant dipole resonance is customarily attributed to the residual inter-
action between an excited core nucleon and the nucleons remaining in a closed
shell. This interaction raises the energy of the shell-model excitation of the
core nucleons to the giant resonance region. However, the effect should not
be nearly as great for valence nucleons in partially filled shells. Consequently
the energies of valence transitions should be much lower than those
in the giant dipole resonance. Considerable support for this picture is found
in the recent results from resonance-capture studies of the Brookhaven group
in the mass region A = 90 to 1005 where such valence effects are expected
to be particularly strong.

A prime candidate for investigation of the valence model is the
nucleus 9121' which can be viewed as a single valence nucleon outside a

1
spherical 90Zr core, as shown in Fig. 5. The ground state of ? Zr can be

—124 -~



JAERI-M 5984

approximated by a pure d5/2 orbital, which can be connected by an EI
transition to unbound p3/2 resonances. Inthe valence model, the transition
would be between the 3p3/2 and 2d5/2 single particle states. Using the
threshold photoneutron technique at Argonneewe have investigated the E1
strength for this nucleus. Because of the high level density we were able to
resolve the structure only within 225 keV of threshold, and over such a small

region of excitation we were not able to demonstrate the existence of any

. . 3/2
intermediate structure. However, the 35 observed p / resonances

represent a large enough sample for the study of the statistical properties

of individual radiation widths. For these widths, using the valence approximation
Lynn has established the relationship given in Fig. 5. The reduced width
factors, yi and y: measure the fractions of the appropriate single-particle
states contained in the resonance and ground states of 912r respectively.

As this equation indicates, the presence of a significant valence component
in the mode of excitation will give rise to a correlation between 1';(0 and

yz. This picture is strongly supported by the photoneutron data. The usual
statistical analysis gives a value of the correlation coefficient between the
radiation width and neutron width, p = 0.59. The correlation is clearly
evident in the observed statistical distribution. The analysis of the individual

widths was pursued under the assumption that the individual transition

amplitudes are a sum of a valence term and a compound nucleus term.

fr)‘ f;)‘ _ (7))
yo =N Yo +by)\

cmpnd nuc.
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The results of this analysis are that the mean width for the valence component

L2 2
of F\/O’ b 'y = 90 meV out of an average total width of 150 meV. Using

Lynn's approximation and the observed neutron widths we obtain an identical

2 2 : . s . .
Y predicted = 90 meV. Such good agreement is probably fortuitous but
the results do indicate that valence transitions account for a major portion of

the E! transition amplitude near threshold.

However, to date, the importance of such single particle effects
has been clearly established only for nuclei with A ~ 90—100 near the
3p peak in the neutron p-wave _strength function. Such effects are also
expected to be important in the mass regions A ~40—-65 and A ~{40 —180
where the neutron interaction is dominated by the 3s and 4s peaks in the
neutron strength function., Thus far, the evidence for valence effects in

these regions is conflicting.

V. Energy Dependence of < I  (E1) >/ D.
yi

Orne might hope to gain further insight intd the behavior of the
strength functions by studying their energy dependence. An extensive body
of information? particularly results from measurements from average capture
spectra has been accumulated. A representative case is shown in
Fig. 6 where the capture gamma-ray widths for Gd iSotopeSBare compared
with the giant dipole resonance. The solid curve was calculated from the
measured parameters for the giant dipole resonance, but the vertical scale
has been adjusted to give the best fit with the data. The relative energy
dependence is in good agreement with the prediction based on the giant resonance
parameters, and clearly conflicts with the plrediction of the single particle model.

This agreement is typical of a wide range of nuclei and is a compeling reason
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for not abandoning the Brink-Axel model in spite of its consistent overestimates
of absolute values of <1"Yi(E1)/D).

The other aspect of the energy dependence which should be noted
in this context is the evidence for a relatively localized but very dramatic

variation in (I'Yi(Ei)/D) in the mass region Au-Pb. Bartholomew and co-workers

in a recent review7report results of an extensive analysis of a wide range of
data which establish that there is a sharp break in <Fyi(E 1))/D for nuclei in this
mass range at about EY =5 MeV. Below this energy it appears that E1
transitions are severely inhibited.

Thus we find ourselves in something of a quandry as to
how best to describe the electric dipole strength function. While the
Brink-Axel model best describes the energy dependence, a somewhat
retarded single particle estimate gives the more reasonable variation with
atomic mass and better absolute values. I would suggest for the moment that
we continue to rely on the giant dipole model. The accuracy of the data on
£1 strength functions continues to improve. When existing data is parameterized
in terms of this prediction, as in Fig. 4, the suggestion of a trend begins to
emerge. Perhaps eventually the E1 strength function will be described
satisfactorily in terms of a modified Brink-Axel model. In the meantime,
the model does offer a convenient parameterization into which to cast the
experimental data for use in the prediction and evaluation of gamma-ray

production cross sections.
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VI. M1 Transitions.

Previous estima.’ces9 of the magnetic dipole strength function
have been made by using Eq. 6 together with the observed ratio of the
average widths for E1 and M1 transitions. Consequently the observation of
structure in the E1 strength function or deviations from the Brink-Axel
estimate, Eq. 2, will affect our estimates of the magnetic dipole strength
function. If we restrict ourselves to measurements which establish
absolute values, the information is indeed fragmentary. The results are
shown in Fig., 7. For the most part the data are consistent with the earlier
suggestion of Bollingez? that the photon strength function be approximated by
18 X 10-3. This is roughly 10 to 20 times the single particle value. Strong
evidence for enhancement above this value exists for the Pb isotopes, as a

. 10 11
result of both electron scattering and photoneutron measurements . For

207P'b the strength observed in the excitation region 7—8 MeV in the threshold
photoneutron measurements are consistent with the existence of the giant Ml
resonance resulting from the collective contributions of spin-flip transitions
between the i13/2 and i“/2 neutron orbits and between the h1 12 and
h9/2 proton orbits. There is also evidence for strong M1l transitions in
the Ruthenium isotopes from recent resonance capture results of Chrien and
co--worker.s1 %nd evidence for an inhibition of M1 transitions in the Au-Ta
region (see Fig. 7). However with the exception of the Pb isotopes, it

has not been possible to establish a relationship between nuclear structure
and observed values of the M1! strength function nor to justify the background
value 18 X 10-3, which characterizes many nuclei. A major objective of

future work should be a systematic study of M1 strength over the periodic

table and a search for significant departures from this background value.
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81
VII. Gamma Ray Production in Ta (n,xy}.

I would like to finish by discussing briefly the application of data
on photon strength functions to calculations of the gamma-ray production cross
81

sections of : Ta. Itis clear from our discussion that for the present we

must rely on the normalization and energy dependence of the photon str ength function

as measured for the same or neighboring nuclei in evaluating or predicting
gamma-ray production cross sections, Fortunately measurements of

. 13
average resonance capture have been made for Ta., Representative results

. . 5
are shown in Fig. 8. The E energy dependence characteristic of the

Brink-Axel model shown by the solid curves, is in accord with the spectra.

Unfortunately, to date, evaluations of gamma-ray production
cross sections have been based on simple empirical evaporation models
whose relationship to more basic nuclear parameters remains obscure.
However Bartholomew and co-workers7 studied the implications of fast
neutron gamma-ray production spectrum for 181Ta, with regard to the photon
strength function. Although it was not their intention, the analysis of such
spectra in light of other more direct measurements of { F(E1)>/D was
already in a sense a data evaluation. They followed a fitting procedure which
utilizes a dependence of level density on excitation energy adjusted to agree
with values of the level spacing determined empirically just above the pairing
gap (~2 MeV) and at threshold. A best fit to the data is obtained by
varying the functional dependence of ( F(Ei)) /D. Their results for 0.7 MeV
neutrons are shown in Fig. 9 where it is compared with the calculated tail of

the giant dipole resonance. The agreement with Brink-Axel hypothesis in this
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‘case is excellent. However, the energy dependence EY < 2 MeV must be
excluded in.their spectrum fitting procedure.
The statistical model evaporation codes under development by
15 s

Gardner and co-workers = represent a much more ambitious attempt to
calculate and evaluate gamma-ray production results. These routines
calculate complete gamma-ray spectra as well as production cross sections.
One of the principal difficulties to date has been that the calculated spectra do

: . . . 81
not show enough high energy gamma rays. Fig. 10 shows in the case of Ta
the effect of replacing the usual Weisskopf estimate for E1 radiation by the
Brink-Axel values. In addition, variations were made in the level density
formula used. In this calculation, the full range of photon energies were fit.
Although the results are still not satisfactory, the higher power energy dependence
of the Brink-Axel model definitely does improve the fit into the experimental
data., This work is in a continuing state of development, and I believe we can

expect further improvement as our knowledge of the photon strength functions

evolves and is applied to these calculations.
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FIGURE CAPTIONS

Fig. 1 Average Values of El reduced widths. The solid line is the prediction
based on a normalization according to the dipole sum rule. The dotted

line represents an arbitrary normalization,

Fig. Z Comparison of the square of the electric-dipole matrix element cal-
culated from the single-particle estimate, dashed line, and an assumed

Lorentz shape for the giant dipole resonance, solid curve (see reference |

Fig. 3 Schematic representation of the Brink hypothesis. In the lower section
the heavy horizontal arrows indicate the magnitude of the photon strength

function, S;.

Fig. 4 Average Values of the El transition strength. The solid curve is the

prediction of the relationship due to Axel (ref. 3) given in eq. 6.
. . ‘o 91
Fig. 5 Schematic of the Valence Model of El transitions for *~ Zr.
Fig. 6 Relationship of the giant dipole resonance to the E1 widths (ref. 8).

Fig. 7 Average Values of M1 reduced widths. The solid line is the empirical

approximation suggested by Bollinger, (ref.9 ).

Fig, 8 Energy dependence of the average intensities of transitions to individual
182
states in Ta. The dashed lines indicate the expected magnitude of

Porter -Thomas fluctuations.

Fig. 9 E1 reduced strength function for Ta according to Earle, Lane, and
Bartholomew (ref. 7). The dotted curve represents the tail of the

giant dipole resonance.

Fig. 10 Calculated gamma-ray energy spectrum produced by 1 MeV neutrons
181
on 8 Ta, according to Gardner (ref. 15). Experimental data are

indicated by open circles.
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DISCUSSION

R. E. CHRIEN: There has been considerable evidence for enhanced E-1
transition strength in the A=90 region. We have studied p-wave neutron
capture and subsequent Y-decay in isotopes of Mo 92, 94, 96, 98 where the
d5/2 shell is filling. These nuclides show strong E~1 strengths, considerably
greater than predicted by either valence or giant dipole resonance models.
Clearly the Brink hypothesis can only explain the photon strength function
in some average sense. Considerable structure in photon strength is

superposed on this giant resonance tail.
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I7-3 Calculation of the Collective Radiative

Capture Cross Sections for 5-20 MeV Neutrons

Hideo Kitazawa and Nobuhiro Yamamuro
Research Laboratory for Nuclear Reactors, Tokyo Institute

of Technology, O-okayama, Meguroku, Tokyo, Japan

Abstract: A volume type particle-vibration coupling Hamiltonian

in the collective radiative capture of fast neutrons is described
in terms of the collective variables for density wvibration. This
Hamiltonian is compared with the ones of the surface and volume

types, respectively given by Clement et al. and Longo and

Saporetti. The closed neutron shell nuclei uoCa, 888r, lL#OCe and

208Pb are chosen for calculation of the capture cross section and
capture v —ray spectrum. The excitation cufves for 5-20 MeV
neutrons are calculated with these three Hamiltonians. Moreover
the partial cross section for radiative capture to each neutron
single particle state of 209Pb is obtained for 5-20 MeV neutrons,
and the capture y -ray spectra in aoCa, 888r and lL#OCe for 14-MeV
neutrons. Consequently it is concluded that in the giant dipole
resonance energy region the profile of the capture 7 -ray spectrum
for the transifions to low lying states of a residual nucleus and
the capture y —ray yield and fairly well estimated by the collec-
tive capture model, using the volume coupling Hamiltonian and the
reasonable isospin potential depth 90-130 MeV, with the exception
of the rather small one for aoCa. With the surface coupling
Hamiltonian, however, a similar agreement between theory and
experiment is obtained only when a much larger value than the

experimentally predicted one is taken for the isospin potential

depth.
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1. Introduction

The radiative capture reactions by fast neutrons are inter-
esting sources of information on the structure of the highly
excited nuclear system, These reaction cross sections are
indispensable nuclear data for design of a nuclear fusion reactor.
Moreover, in the field of fast nuclear reactor technology there
is the practical need for estimation of ther -ray heating in the
blanket of reactors. In this case it is necessary to obtain
knowledge of the cross section and the y -ray spectrum for the
radiative neutron capture reaction, in the same manner as for
fission and for inelastic scatfering.

The radiative capture of low energy neutrons mainly takes
place through the formation of a statistical compound nucleus.
However, the statistical theory is unsatisfactory for understand-
ing the mechanism of the radiative capture of neutrons with
energies greater than about 5 MeV. The discrepancy between the
theoretical and experimental results, generally speaking, is
remarkable in the radiative capture reaction of 14-MeV neutrons
by heavy nuclei. Lane and Lynn (1) suggested that the radiative
capture of 14-MeV neutrons by heavy nuclei is dominated. by a
direct capture process, But, the calculation with this model
gave a (p,r) reaction cross section below 20 MeV that is too
small by one order of magnitude[Z]. To improve the situation a
semi-direct and a collective capture model were proposed by
Brown(3) and Clement et al.(4), respectively. The radiative
capture cross section for 14-MeV neutrons of 208Pb has been
calculated by these models (5]. The calculated cross section was
smaller by a factor of 3 to 4 than the observed one. As a result
it was considered that this discrepancy for the semi-direct
capture model is due to the approximation in the schematic model
and that the discrepancy for the collective capture model is due
to the inadequacy of the particle-vibration coupling Hamiltonian
of the surface type. On the other hand Longo and Saporetti[6)
found an agreement between theory and experiment, using a volume
coupling Hamiltonian.

In the present paper we give a volume type particle-vibra-

tion coupling Hamiltonian which is described in terms of the
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collective variables for density vibration in the nuclear
hydrodynamic model., This Hamiltonian is compared with the ones
given by Clement et al. and Longo and Saporetti. Moreover the
validity of the collective capture model is investigated for the
radiative neutron capture reaction. The depth of the isospin
dependent part of an optical potential, that is the strength of
particle-vibration coupling, is also predicted from analyses of

Lo 88 140 208
the capture r —ray spectra for Ca, Sr, Ce and Pb.
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2. Theoretical foundation

In the case of the target spin O we calculate the radiative
neutron capture cross section and capture y —ray spectrum by means
of the direct and collective capture models. The direct capture
process is an electric dipole radiative transition of an incident
nucleon from its free state in the nucleon potential field to an
unfilled single particle bound state of a target nucleus. In
the collective capture process the incident nucleon and the
target nucleus interact to give an intermediate state, in which
the former is in a single particle bound state, while the latter
is excited to its giant electric dipole state. The target
nucleus then decays by an electric dipole radiation. The sche-
matic interpretation for these processes is given in Fig. 1.

The metrix element of an electric dipole transition for the

radiative capture process is given by

t (+)
(), S Tele ¥ ane><Fins[ TS
| Iwi + - I, (1)
. . - - + =i
£33 Ledp R 2R

< =
Tey Ve

where 5 §+), g and ¥ g are the initial, intermediate and

int

final state wave functions, ER and [h are the giant dipole

resonance energy of a target nucleus and its width, and

Eijf are the initialtand final state energies of an iigident
neutron, and ¢ and ¢ are the incident neutron and target parts
of an electric dipole operator. The particle-vibration coupling
Hamiltonian H' couples the incident nucleon to the giant electric
dipole state of the target nucleus. The first and second terms
describe the direct and collective capture processes, respectively,
Clement et al.(4) have shown that the effective particle-
vibration coupling Hamiltonian for the dipole mode which leaves

the charge of the incident particle unchanged is given by

: 3 NZ .10 r.y
H :—E_E_A._P h(r) lrl T3 (2)

with
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< 1fagu(n)]o>

h(r) < llalﬂ|02> ; (3)
Aq,(r) fp Yy, (2)a2, (4)
p = Zi~ 2'3 5(I‘—I‘i), (5)

where A, N and Z are the mass, neutron and proton numbers of the
target nucleus, PlO is the strength of the isospin dependent two
body force between the incident particle and the target nucleons,
r and r, are the position vectors of the incident particle and
the target nucleons, 7 is the separation vector of the centroids
of the neutron and proton systems, and 13 is the z—éomponent of
the isospin of an incident nucleon. The vectors |O>>and |1>>are
the ground and giant dipole states of the target nucleus, and

a are the collective coordinates. The function h(r) is the

1n
radial form factor of the coupling Hamiltonian and normalized as

Jh(r)rBdr = 1. (6)

Using Eq. (2), Clement et al.[4) have introduced the particle-

vibration coupling Hamiltonian of the surface type, hereafter

referred to as "S", as follows:
vV1i,, NZ df(r)
- -
- g2 ) T (7)
where vy is the strength of particle vibration coupling and f(r)

is the distribution function of the nucleon density. The coupl-
ing strength is related to the isospin dependent part of an
optical potential, which is given by

Vi(r) =35 (r-T)v £(x), (8)

where 7 and T are the incident nucleon and target isospins.
Here, we introduce a coupling Hamiltonian with a form factor
of the volume type. In the hydrodynamic picture(7] the proton

and neutron densities are given by
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_ 5

Pp = Pp[l+ 3, (9)
- z

P = P (1 -=-0, (10)

po= Pyt Py | (11)

where;;p and Fn:(N/Z);p are the proton and neutron equiliblium
densities, and § is the fluctuating part of the density. The

fluctuating density for a dipole mode is given by
) *
8 = 2, Fpi)(gpr)ey, ¥, () (12)

with kD=2.0815/R, where FD is the normalization constant,
jl(kDr) is the spherical Bessel function, kD is the wave number
for the vibration of a dipole mode, R is the nuclear radius in
fm, and¢xl# are the collective coordinates. .

In Eq. (5), we approximate the nucleon density operator by

the local isovector density
p = p - P . (13)
Consequently the radial form factor is given by

h(r) = Fpri;(kyr)s(z), (14)

where 1 r <R

s(r) ={ 0

r >R .

From Egs. (2), (6) and (lh), the volume coupling Hamiltonian,

hereafter referred to as "V-1", is given by
41 NZ T.y
. AN, T
H = GF)2—5 K (gr)s(r) [ 3 (15)
with K=9.931/R.
The dipole operators(4] are given by
e - e _rY. (@), (16)

1n ™" 1x
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1
e{p = comst. + e(hﬂ) 7, ' (17)
where ep is the effective charge (_Zeﬂxfor a neutron, Ne/A for a

proton). The sum-rule for the dipole operator(8] in the case
when the transitions are concentrated in one state is given by
2 A 12

= —— —(1 + 0.8x), (18)

E<l|77 ‘ 0>
R z NZ 2M

where X is the exchange force factor and taken to be 0.5.

On the other hand Longo and Saporetti( 6 ) proposed the volume

coupling Hamiltonian, hereafter referred to as "V-2", as follows:
3L n r.a
H' = (——02 v '————7'rf(r) T ) (19)
L 1 Aagr=> Irl 3

where <:r%> is the mean sgquare distance of the nucleon's centre-
of-mass from the nucleus' centre-of-mass. They calculated the
matrix element between the ground and giant dipole states by

using the non-energy weighted sum-rule

2 ~ A 2
<O|alO>=d E<I‘ >, (20)
where @ is the reduction factor which takes into account the
ground state correlation and estimated from the isospin splitting
of the giant dipole resonance. In the next section we investi-

gate on the validity of these coupling Hamiltonians S, V-1 and

V-2,
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3. Calculations and discussions
The closed neutron shell nuclei AOCa, 885r, l40Ce and 208Pb
are chosen for calculation of the capture cross section and
capture y -ray spectrum. The neutron single particle states in
these nuclei are clear so that they are suitable for investigating
the validity of the collective capture model. The initial state

wave function is obtained with the optical potential
U(r) = -vi(r)-iWg(r)-v  h(r)(e.q), (21)

where

f(r)

(14 eD)] T,

-1
d -

g(r) = -4b—a;'[l + expGEEB)] ;
2 1 d

h(r) = =%, —r—"a‘; f(r) ’
1

- 3
R = rg A .

The potential parameters V, W, Vso’ a, b and Ty are taken from
the work of Rosen et al.[9]° The final state wave function is

obtained with the nucleon potential of the Wood-Saxon type

v(r) = —anjf(r) - Vsoh(r)(Loa), (22)
where n, ¢ and jJ are the quantum numbers of a neutron single
particle state. The radial dependence of the functions f(r) and
h(r) are taken to be the same as in the optical potential U(r).
The depth of the central part of the nucleon potential is adjusted
to give the observed value of the binding energy for the particu-
lar single particle state. The spin-orbit coupling potential is
determined to give the experimentally obtained energy splitting

of the centre of gravity of the neutron single particle levels
j=¢-1/2 and j=¢+1/2.

The giant dipole resonance energy and its width for the target
nuclei are taken from the experiments of photo-nuclear reactions

(10] and listed in Table 1. The resonance parameters of lL‘lPr
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are used for 1L‘OCe. The reduction factors a for 888r, 1400e and

208Pb are taken from the evaluation by Leonardi(11l]) and the one
for hoCa is calculated with the pure harmonic oscillator model,

20

3.1 8Pb(n

,7)209Pb reaction

The radiative capture cross sections of 208Pb for 5-20 MeV

neutrons are calculated with three Hamiltonians V-1, V-2 and S.
The spin-orbit coupling potential depth is determined from the

energy splitting of the g-state. This value is taken to be 5.9
MeV for all final state wave functions. The characteristics of

209

the neutron single particle states of Pb are taken from the

208be123° The spectroscopic

study of the (d,p) reaction of .
factors of all states except for the j15/2 state are assumed 1.0,
The one for the j15/2 state is taken to be 0.6.

The total and partial radiative capture cross sections are
shown in Figs. 2-6. The solid, dashed and dot-dashed curves are
calculated with the Hamiltonians V-1, V-2 and S, respectively.
The calculated cross sections are compared with the observed
ones(13,14]) for 7-15 MeV neutrons. The isospin potential depth
is so determined that the total capture cross section calculated
for higher energy neutrons than the resonance energy agrees with

1 are obtained to be 130 MeV
for V-1, 110 MeV for V-2, and 240 MeV for S. It is not clear

the observed one. The quantities v

which radial form factor is the most suitable. However, the
isospin potential depth obtained with the volume coupling
Hamiltonian, V-1 or V-2, is consistent with the omne predicted by
Greenlees and Pyle[15)]. It seems that the disagreement between
the calculated and observed cross sections for 7-9 MeV neutrons
should be removed by taking a contribution of the statistical
process to this reaction into consideration.

3.2 lhoCe(n,r)lthe reaction

The spin-orbit coupling potential depth is determined from

the energy splitting of the p-state to be 10.3 MeV. The charac-

teristics of the neutron Single particle states of 1the are

taken from the study of the (d,p) reaction of lhoCe[l6]. The

—145-



JAERI-M 5984

spectroscopic factors of all states are assumed to be 1.0. The

energy of the T state is calculated with the potential depth

5/2

determined for the f7/2 state. Although the i state is not

identified by the (d,p) experiment, it is incligéi in the calcu-
lation; the state is probable in the experiment and expected by

the shell model. The energy of the state is taken from the work
of Rigaud et al.(17]).

The capture y —ray spectrum for lLLOCe with 14-MeV neutrons
and the excitation curve are shown in Figs. 7-8. The isospin
potential depth is so determined that the observed capturer -ray
spectrum[l?] for the transitions to low lying states of lthe
agree with the one predicted by the theory. The guantities vy
are obtained to be 100 MeV for V-1, 90 MeV for V-2, and 190 MeV
for S. A disagreement between theory and experiment is remark-
able for the lower energy iy -ray spectrum. As reasons of this
disagreement, there are three posibilities; firstly that is due
to the contribution of the inelastic scattering y ~rays resulted
in the energy broadening of 7 -rays in a detector, secondly due
to the contribution of other reaction mechanisms, and'finally
due to neglecting the highly excited single particle states.

3.3 88Sr(n,r)898r reaction

The spin-orbit coupling potential depth is determined from
the splitting of the d-state to be 5.9 MeV. The characteristics
89

of the neutron single particle states of Sr are taken from the
study of the (d,p) reaction of 888r[18] and from the study of
the (p,p) and (p,p‘) reactions of 888r[l9]. The spectroscopic

factors of all states are assumed to be 1.0, The h state

is included in the calculation, though this state iiléit observed
by the (d,p) reaction, as it is expected by the shell model.

The energy of the state is taken from the work of Rigaud et al.
(20). The capture 7 -ray spectrum for 888r with 14-MeV neutrons
and the excitation curve are shown in Figs., 9-10, The isospin
potential depths are 110 MeV for V-1, 100 MeV for V-2, and 250

MeV for S.
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4OCa(n,T)tha reaction

3.4

The spin-orbit coupling potential depth is determined from

the splitting of the p-state to be 7.5 MeV, The characteristics

of the neutron single particle states of lCa are taken from the

study of the (d,p) reaction of 4OCa[ZlJ. The energy of the f5/2

state nearly agrees with the value predicted by using the energy

splitting between the p
f - £

7/2 5/2

this state is difficult to observe by (d,p) experiments, it is

probable that some weak f

3/2 and pl/2 states and by assuming the
splitting to be proportional to (2L+l)[223. Since

5/2 states are missed(21]. The spectro-

scopic factor of the f state is therefore assumed to be 1.0,

even though it is obseiézd to be 0.5. The g9/2 state is not
clearly observed by the experiment. However, this state is
expected by the experiment or by the shell model.

The capture r ~ray spectrum for 40Ca with lh—MeV-neutrons and
the excitation curve are shown in Figs. 11-12. The isospin
potential depths are obtained to be 40 MeV for V-1, 35 MeV for
V-2, and 80 MeV for S. A disagreement between theory and experi-
ment is remarkable for higher excitation than about.B MeV in
41Ca. From a preliminary calculation we obtained a result that
this situation was fairly improved by including a contribution

of the statistical process.
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4., Concluding remarks
. . . 4o 88
The depth of the isospin dependent potential for Ca, Sr,
lLLOCe and 208Pb has been obtained from the analysis of radiative

neutron capture reactions'by the collective capture model., The
results are shown in Table 2. These quantities obtained with the
volume coupling Hamiltonian are in the range of 90-130 MeV,
except for the rather small one for hOCa, and consistent with
the values derived from different analyses. Consequently it is
concluded that in the giant dipole resonance energy region the
profile of the capture y -ray spectrum for the transitions to low
lying states of a residual nucleus and the capture 7 -ray yield
are fairly well estimated by the collective capture model and
with the volume coupling Hamiltonian, V-1 or V-2, However,
higher resolution measurements of capture 7 -ray spectra are
necessary for the detailed check of the radial dependence of the

coupling Hamiltonian.
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Table captions

Giant dipole resonance parameters and reduction factors
used in calculations.

Depth of the isospin dependent part of an optical
potential obtained with three Hamiltonians V-1, V-2

and S.

Figure captions

Schematic interpretation for the direct and collective
capture processes. The quantum numbers n, £ and j
characterize the single particle state of a captured
neutron.

208

Total cross section for the Pb(n,r)209

Pb reaction.
Experimental points of the closed circle are taken from
the work of Berggvist et al.[13]). These points are
obtained by the spectrum method, that is by integrating
r-rays with energies higher than the incident neutron
energy. Experimental points of the open circle are
taken from the work of Csikai et al.l(14) and obtained
with the activation method. The solid, dashed and dot-
dashed curves are calculated with the Hamiltonians V-1,
V-2 and S, respectively.

Total cross section for the y —ray transition to the

89 /2 ground state of 2O9Pb.
taken from the work of Bergqgvist et al.[13]). The solid,

Experimental points are

dashed and dot-dashed curves are calculated with the
Hamiltonians V-1, V-2 and S, respectively.

Total cross section for the 7y -ray transition to the
111/2 state of 209Pb. Experimental points are taken
from the work of Bergqvist et al.013). The solid,
dashed and dot-dashed curves are calculated with the
Hamiltonians V-1, V-2 and S, respectively.

Total cross section for the r —-ray transitions to the
and d 209Pb.

states of Experimental points

t15/2 5/2
are taken from the work of Berggvist et al.[13].
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The solid, dashed and dot-dashed curves are calculated
with the Hamiltonians V-1, V-2 and S, respectively.
Fig. 6 Total cross section for the 7y —ray transitions to the

209Pb. Experimental points are

g7/2 and d3/2 states of
taken from the work of Bergqvist et 21.013). The solid,
dashed and dot-dashed curves are calculated with the
Hamiltonians V-1, V-2 and S, respectively.

Fig. 7 Spectrum of y —rays from the radiative capture of 14.06-
MeV neutrons by 140Ceo Experimental points are taken
from the work of Rigaud et 2l1.(17]). The solid, dashed
and dot-dahsed curves are calculated with the Hamiltonians
V-1, V-2 and S, respectively. The arrows indicate the
centres of gravity of neutron single particle levels in
lthe. Gauss distribution with FWHM=2 MeV is used as
the response function of a 7 —-ray detector.

Fig. 8 Total cross section for the lhOCe(n,r)lthe reaction.

An experimental point is taken from the work of Rigaud
et al.(17]). The solid, dashed and dot-dashed curves are
calculated with the Hamiltonians V-1, V-2 and S,
respectively.

Fig. 9 Spectrum of 7 -rays from the radiative capture of 14.06-
MeV neutrons by 888r° Experimental points are taken
from the work of Rigaud et al.[20)]. The solid, dashed
and dot-~dashed curves are calculated with the Hamiltonians
V-1, V-2 and S, respectively. The arrows indicate the
centres of gravity of neutron single particle levels in
89Sr. Gauss distribution with FWHM=2 MeV is used as
the response function of a r-ray detector.

Fig., 10 Total cross section for the 88Sr(n,r)89Sr reaction.

An experimental point is tzken from the work of Rigaud
et a1.020). The solid, dashed and dot-dashed curves
are calculated with the Hamiltonians V-1, V-2 and S,
respectively.

Fig. 11 Spectrum of 7 -rays from the radiative capture of 14-MeV
neutrons by 4oCa. Experimental points are taken from
the work of Cvelbar and Hudoklin[ZB]a The solid,
dashed and dot-dashed curves are calculated with the

Hamiltonians V-1, V-2 and S, resvectively. The arrows

—151—



Fig.

i2

JAERI-M 5984

indicate the centres of gravity of neutron single
particle levels in 4lCa. Gauss distribution with
FTWHM=2 MeV is used as the response function of a 7y -ray
detector.

. Lo L1 X
Total cross section for the _Ca(n,T) Ca reaction.
The solid, dashed and dot-dashed curves are calculated

with the Hamiltonians V-1, V-2 and S, respectively.
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Table 1
ER Iy a
(MeV) (MeV)
40, 19.8 k.50 0.50
88Sr 16.7 L.20 0.35
1406, 15.4 3.90 0.27
2085, 13.6 3.78 0.24
Table 2
vy (MeV)
V-1 V-2 s
40cq 40 35 80
8851 110 100 250
1404, 100 90 190
208y, ~ 130 110 240
n T(ED
Direct
T ‘ [
O—(nej)
Y (ED
Coflectlve
/(nﬂp /(712 P>
E:>'\\ "|||||||’)E:>‘ <:::::;;;2)
Initiaf Intermediate Final
Fig 1
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DISCUSSION

R. E. CHRIEN: Does your calculation include the interference between

collective and direct reaction mechanisms?

H. KITAZAWA: Yes.
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III-1. Optical Model Analysis for 56Fe

Hisao Yamakoshi

Ship Research Institute, Ministry of Transport, Japan

1. Introduction

Among optical potentials ever proposed, one may regard
Engelbrecht-Fiedeldy s optical potential (a:ls) a potential being
applicable t0 more wider energy range than the Perey-Buck
potentiaffn (Hereafter, "E~F potential" will be referred to
as abbreviation of Engelbrecht-Fiedeldy potential.) The E-F
poiential is based essentially on the non-local theory.

The energy dependence of well depth parameters in the E-F
potential is so determined as to give the consistent results
with those obtained by Moldauer’s local potentiaf£11 low energy
limit (zero energy), and to explain the behaviour of total cross
section in high energy region (30 150 MeV) very well.
Consequently, the E-F potential is supposedly applicable to
analyses of total cross section and elagtic scattering cross
section over a wide energy range. As is shown in Table 1,

this widness is characteristic to the E-F potential.

The E-F potential, however, still seems to be inadequate for
explaining experimental data on polarigzation and angular
distribution of elastic scattering of neutrons. It may be

4)
possible to say from Fig. 1*that Rosen s potential and

(5)
Becchetti-Greenlees’s potential are superior to the E-F
potential in explaining whole behaviour of experimental data
56
on polarigation for Fe at 24 MeV. From Fig. 2 for angular

5
distribution of elastic scattering of neutrons from Fe at

* All calculated curves fluctuate so violently around 25

degrees that detail of fluctuation is omitted in Fig. 1.
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14.5 MeV, it may be also possible to say that at large

scattering angle the E-F potential yilelds an angular distribution
fluctuating too much around experimental data. The inadequacy
suggests that there is a room for improving the E-F potentisal.

In improving the situation, value of the radius parameter in the
spin-orbit term of the E-F potential can be chosen independently
of that in the wvolume term..

This recipe leads to new set of parameters plausible for
explaining experimental data on angular distribution of elastic
scatteting and polarization far56E@, without harming applicability
to the experimental data on neutron strength functions, total and

elastic scattering crossgs section so much.

2. Potential Parameters

The E-F potential can be expressed as follows:
2
V(r) = -(Vo+iWe)f, (r)-iWsf,(r)-Vso(k/me) (1/r)ldf1/dr‘C3.§>;
where
£,r) = (1+exp((r-Ro)/aq))-1,
£5(r) = (4 exp((r-Rs)/ay))/(1+exp((r-Rs)/ay))°,

Vo = 46-0.25E (MeV), W = 0.125B-1x10 % E°(MeV),

Ws = 14-0.2E (MeV), Vso = 0.7 (MeV),

a; = 0.62 (fm), ap = 0.5 (fm),

Ro =":E'0A1/3 or Ro = rv+roA1/3,

Rs = EsAV3 or Rso = rs+roA1/3,

TOo = 1.317 (fm) or rv = 0.6 (fm),

Ts = 1,447 (fm) or rs = 1.1 (fm), ro = 1.16 (fm),

In the present study, expression of the spin-orbit term is

altered into the following expression:
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—Vso(fu/mnc)z' (1/x)e ldf3 /dr’ ‘G
where

£ (r) = (1+exp((r-Rso)/a}))“1 )

Rso ='?soAj/3 or Rso = rso+roA?/3,
According to preliminafy parameter study, one can explain
behaviour of experimental polarization data far56Eb very well
by choosing appropriate values for following parameters:

Tso, ay, Vso, Ts and To
By taking account of results of preliminary parameter study and
of values given by various authors, following range of values
seems to be plausibble:

1.3172 Tso 2 0.9, 1.0 2 &, 2 0.1,

72 Vso 2 5, 1.447> s 21,332

1.3172 To 2 1.254,

3 Calculated Results

3=-A. Polarization of Scattered Neutrons at 24 MeV.

As a result of analysis at 24 MeV, it turned out that neutron

polarization depends mainly on parameters rso and a As is

o
shown in Fig. 3. the peak of calculated curve around 30 degrees
decreases once as the value of the parameter rso decreases but
again increases slowly. Judging from comparison of calculated
curves with experimental results, desirable value of a5 is
expected to be around 1.0.

Fig 4. shows that the valley around 50 degrees becomes

shallower and the peak around 60 degrees becomes lower as the

value of the parameter a decreases. Figures 5-1 to 5~3 shows
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how changes the shape of polarization curve with changing the
parameters Vso, To and rso. In general spealing, (1) the
peak around 60 degrees becomes lower with the value of Vso
decreases, (2) smaller value of To makes the peaks around 30
degrees and 60 degrees higher, and the valley around 50 degrees
shallower besides being shifted towards larger angles, and (3)
as the value of rs decreases, the peaks around 30 degrees and
60 degrees become lower and the latter is shifted towards
larger angle.

Taking account of above mentioned behaviour, it can be said

that preferable parameter set is expected to be in the following

region:
0.1_<_a2_<_0.5, Tso >~ 1.07, Vso~~ 6,
1.254 £ 7o £1.286, 1.3325 1rs £.1.390.

3-B Neutron Strength Functions

Calculated neutron strength functions are shown in Table 2
together with used values of parameters. Strength functions
Si,J are calculated by the relation}6)

sp,9 = (1=Q=T, Y2 /Ge-v-EV/2),
where the quantity TL,J is calculated by computor code ELLIESE-E;f.
The quantity VL is calculated by the following expression in terms
of nuclear radius R multiplied by wave number K of incident
neutron : KR,

Vv = P (KR)/KR

(8), (9)
where P 1is penetrability for L-wave neutrons, and

R = (1.234 "3 +0.8) fm,
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| -3
K = 2.19685(A/A+1) E,'f(ev) 10 ,
Po =1,
2 -2
Py = (KR) /(1+(KR) ),
m
P, = &R/ 93ER F IR,

Strength funtion averaged over J is calculated by the reration:

<8p> = (L°S /2+(T+1) *8 /2)/(21+1).

L,L-1 L,L+1

As can be seen from Table 2, calculated S-wave strength
function So 1s independent of values of parameters in the
spin-orbit term, while calculated P-wave strength function S1
depends on values of parameters in spin-orbit term as well as in -
volume and surface terms.

EXperiment?%dgalue of S-wave neutron strength function for
56Fe is 4X10° . Comparing this experimental data with
the calculated value of S-wave strength function in Table 2,
one can obtain following parameter region in which preferable
parameter set for S-wave strength function may be found:

0.5< a, £ 0.7, 1.254 £ To £ 1.317,

1.390 £ Ts £1.447,

Experimental value of P-wave strength funtion for 56Fe is
about 1X10"5 (11) By comparing the experimental data on P-wave
strength function with calculated value in Table 2, one can
obtain following parameter region in which desireble parameter
set for the P-wave strength function may be found:

0.5 a,% 0.7, To ™~ 1.286, Ts >~ 1.390,

Vso= 6, ‘Tso™1.07.

On assumption that desirable parameter set for the P-wave

strength function should be also found in the parameter region

—163~—



JAERI-M 5984

for the S-wave strength function.

3-C. Angular Distributions of Elastic Scattering

By comparison of calculated angular distribution with

(12) (15)s5¢
experiment for ~ Fe at 14.5 MeV, it can be said that value of
parameter a, must be about 0.7 (See Fig. 6-1 6-3).  These
figures seem to show that the choice of 6.7 for the parameter
a 1s rather independent of any combination of values of
parameters ro, rs and Vso.

From Fig. 7 and Fig. 8, it can be said that preferable
parameter set (for explaining angular distribution of elastic
scattering at 14.5 MeV) is expected to be in the foilowing
rigion:

1.286 10 £.1.317, 5 <. Vso £ 6,

1.332 S rs £1.390.

As is shown in Fig. 7, angular distribution of elastic
scattering at 14.5 MeV is insensitive to the choice of the
value for the parameter Vso. Since the value 6 is chosen for
the parameter Vso as preferable value in explaining experimental
polarization data at 24 MeV, one may also fix here the value 6
for the parameter Vso.

Fig. 9 shows angular distribution at 7.55 MeV,

From figures 7, 8 and 9, one can expect that preferable parameter
set in explaining the angular distributions of elastic
scattering is :

rso=~1.317, rs o 1,332, Vso~6,

8.2 20.7, :—P.SO 21.07-
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3-D Total and Elastic Scattering Cross Sections

The calculated total and reaction cross sections at 14.5
MeV are given in Table 3 together with used values of the
parameters. In Table 4, the calculated total and elastic
scattering cross sections at 7.55 MeV are given. The calculated
total elastic and inelastic scattering cross sections at 1.5 MeV
are tabulated in Table 5.
At 14.5 MeV, experimental value by Kinney and Gwé&6zs 2.6
$0.05 b for total cross section of Fe. Therfore, according
to Table 3, preferable parameter set is expected to be in the
following region:
rsoo 1.07, ar,™ 0.7, ro ~1.317,
1.332% rs £ 1.390, 5% Vso < 6.
At 7.55 MeV, experimental value of 3.5+0.04 b is reported for
total cross section by Kinney and Gwin. According to Table 4,
preferable parameter set is expected to be in the following region:

rso  1.07, 0.7, To  1.317,

a2
1.390 Ts  1.447, 6 Vso 7.
17 _
If Foster’s data of 3.3 b is adopted in stead of Kinney and
Gwin’s data, preferable parameter set is expected to be in the
following region:
rso = 1.07, a, 0.7, 1.286 < ro £1.317,
1.332< rs £ 1,407, 5 £ Vso £ 7.
As to elastic scattering cross section at 7.55 MeV,
(18)
experimental value of 1.8+0.1 b is reported by Holmgvist.
Table 4 suggests that if the Holmqvist’s data is taken into

account, one should use more larger value to the parameter
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ao than the value of 0.7.

As to total cross section at 1.5 MeV, aY%%%abl%2%§perime%g?%
date are those obtained by Carlson and Cerbone, Smith and Jones.
These experimental data have fluctuation around the energy 1.5
MeV. Each author s experimental data is averaged over energy
region from 1.0 MeV to 2.0 MeV to obtain averaged total cross
section at 1.5 MeV. As an averaged value, (3.3+0.1)b may be
deduced as total cross section at 1.5 MeV. Assuming the value
0.7 for a, and the value 1.07 for ;so, one can expect that
preferable parameter set is in the following region:

1.286< 1o < 1.317, 1.390 £ 7s £ 1.447,

6 < Vso X 7.

As to elastic scattering cross section at 1.5 MeV, 223
experimental cross section is deduced from Giiboy’s data at 3.0
MeV, 2.0 MeV and 1.0 MeV. Elastic scattering cross section at
these energy points are (2.0+0,05) b, (2,24+0.05)b, (2.02t0.05)b
regpectively. From these data, experimental cross section at
1.5 MeV is deduced to be (2.12+0.11)b. Te error of 0.11 b
seems to be too large to select appropriate parameter set from
Table 5. If experimental error is assumed to be 0.05 b, the
value of the parameter rs should be smaller than 1.447 fm
obtained by E-F in the case of ro = 1.317 and a, = 0.7.

In the case of ;o 1.286, value of parameter rs should be
smaller than 1.390. In the case of 70 1.254, wvalue of
parameter rs could be equall to 1.332 at most. This tendency

of the parameter rs seems to be contradiéting with that found

for other quantities. Thus, in this paticular case of elastic
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scattering cross section at 1.5 MeV, the value 0.5 seems to be
more plausible for the parameter a , so far as i1t concerns with

comparison between calculation and experiment.

3-E. Excitstion Functions for Inelastic Scattering of Neutrons

Inelastic scattering cross section for the first excited
level of 56 Fe at 0.845 eV by 1.5 MeV neutron is also tabulated
in Table 5. In Pig. 10-1 gnd 10-2, excitation functions of
inelastic scattering calculated for the first and second excited
levels are compared with eXperimental(ég%;T/(2%% these figures,
calculated results with the E-F potential énd with the most
preferable parameter set are shown by broken lines and broken

lines with dots, respectively. Here, the most preferable

parameter set is as follows;

ro = 1.254, rs = 1,390, Vso = 6,
a_ = 0.7, rso = 1.07.

2

3-F. (n,p),(n,x) and (n,2n’ Reaction Cross Sections at 14.5 MeV

The (n,p),(n,X) end (n,2n) reaction cross sections through
compound process are calculated at 14.5 MeV with the compound
nucleus formation cross section gr in Tgble 3. The cross
section o(n,x) is expressed as

th,x)/qv = FX/?Fi,
where funtion Fi aré given by
Emax
Pi = kgimi|Eci(E)Wi(Ui)dE,
w(u) = C e;ptzJa_U).

In the sbove expressions, quantities ¢i(E), gi and mi
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ere the inverse reaction crcss sections, statistical weight
fsctor determirieé¢ by spin of emitted particle i and the
reduced nmass, respectively. The quantity Wi(Ui) is the level
density of the residual nucleus at excitation energy Ul given by
Ui = En+Q(n,i)-E.
where En is the incident energy in center cof mass system and
¢n,i) is the G-value for the (n,i) reaction. The upper
limit of the integration is the maximum energy available to
the emitted particle i and is given by
Emax = En+Q(n,i).
In performing the integration, energy dependence cf the
cross section 0i(E) for charged particle emission is assumed
(26)
to be:
0i(E) = ¢go(1-Bi/E) for E>Bi,
=0 for E <Bi.
while for neutron emission, variation of the cross section
0i(E) with energy is ignored. The quantity Bi in the sbove
expression is effective coulomt barrier and is given by
Bi = ki Vi,
(272
where ki is a coefficient verying with atomic number Z, and Vi
~

is expressed as follows:

1/3
1.019(2-1)/C(A +1) (MeV), for i

il
il

Vi D

Ke

i
]

13
2.038(2-2)/(4-3)"245197  (uevy, tor i
' (26)
Integration gives following expressions for csoss sections;
oln,pl/or = IpeDP/TK]+I er/T),
b
Dp = Qn,p )+6T—5R—Bp’

1-C1+E, /T S I

Ip
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En+Q(n,p)-Bp,

Emp

Dp/T
Py,

on,0/0r = 216" f1+Tpe
Dy = Qn, )+0p-0g-B;,
To = 1-(1+Em/Te /T,
Emx = En+Q(n,X)-Bx,

~(By-5,)/T D
Bn-8n yai+pe o E,

oln,2n)/or = (1=-(1+(En-Sn)/T) e
where Sn is neutron seperation energy of target nucleus.

Using following values to various quantities in above
expressions:

(27)
0.647,

En = 14.244 (MeV), Kp
(28) (27)
(28)

Q(n, ) = 0.3220 (MeV), 6T = 1.,54+1.27 (MeV) for (n,p)
(29) (30
Sn = 11.2027 (MeV), 5R = 0 (MeV) reaction
(30)
T = 1.5833 (MeV), 6T = 1.54+1.27 (MeV) for (n,c) ;
(30
6R = 1.,35+1.30 (MeV) reaction }

one obtains following results for branching rations:
o(n,pl)/or = 0,09385, o(n,) /or = 0.01381,
cny,2n)/or = 0,51729.
Kinney has repo%%ga that experimental value of total

cross section for 56Fe at 14.5 MeV is 2.6+0.05 b. As to

56Fe at

experimental value of (n,p) reaction cross section for
14.5 MeV, Kanda and Ngkashima have deducég1it to be 106+12 mdb

by evaluation of existing experimental data.

Experimental value of elastic scattering cross section has

been reported by Coon et éig)for natural iron at 14 MeV to

be 1.14+0,06 D. From behaviour of elastic scattering cross
section for iron around 14 MeV, one may expect quite the same
value at 14.5 MeV. As to experimental value of (n,2n) reaction

56

3
cross section for Fe, Ashby et al. have reporteé %ﬁe value
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0.5+0.04 b at 14 MeV. Judging the behaviour of (n,2n) reaction
cross section for isotopes of Al and Cu, a more larger value is
expected at 14.5 MeV.

By using obtained branching ratios and or in Table 3, one
can calculate (n,p), (n,X) and (n,2n) reaction cross sections at
14.5 MeV.

Considering that values of (n,r),(n,d),(n,t) and (n;SHe)
reaction cross sections are negligibly small at 14.5 MeV, one can
estimate inelastic scattering cross section ¢gin by following
approximation:

oin =<0y, = Og; — 0(n,p) - o(n,X) -gn,2n),
As to elastic scattering cross section, experimental value of
1.14+40.06 b seems to be fairly small in comparison with calculated
result by using the E-F potential. This experimental
value is in good agreement with those values for smaller value
of ro in Table 3. Experimental value of 106+12 mb for (n,p)
regction cross section corresponds to value of or ranging from
1257 mb to 1002 mb. On teking account of this range of the
cross section, one can see from Table 3 that prefergble value of
a2 is found to be in g region from 0.3 to 0.5.

The E~F potential yields following results:

ctot = 2.6183 b., cel = 1.3171 b., o(n,p) = 0.1221 b.,

on,X) = 13.8 mb., o(n,2n) = 673.1 mb., oin = 492.2 mb..
while, one of preferable parameter sets:

ro = 1.286, 1Ts = 1.390, rso = 1.07,

Vso = 6, a = 0.7,

2
gives following results:
otot = 2.5337 b., cel = 1.1844 Db., o(n,p) = 0.1226 b.,
o(n,X) = 18.6 mb., on,2n) = 698.0 mb., oin = 472.4 mb,.
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By comparing these results for the two parameter sets with
experimental values, it can be said that the latter parameter
set yields fairly gzood agreement with experimental results and

that one can use the parameter set in stead of the E-TF set.

4, Discugsion

From comparison between experiment and calculation for
angular distribution of elastic scattering at 14.5 MeV, the
value 0.7 seems to be more suitable for the parameter a5
although the value 0.5 has been used in the E-F potential.
This is also supported by S~wave strength function and total
cross section. Experimental data on polarization at 24 MeV
seems to ingist on some value at most 0.5. But assignment of
the value 0.7 is possible by choosing values of other parameters
properly.

So far as one uses penetrabilities for square well potentggz,
experimental P-wave strength function requires quite a large
value for channel radius parameter, as large as 20 percent more
than 1.25 fm.

Elastic scattering cross section measured by Coon et al. at
14 MeV seems to be rather small. From experimental data
at 14 MeV and 14.5 MeV for oln,p) and o(n,2n) preferable parameter
region cannot be found except the parameter a,. This is due to

large experimental error for these cross sectiouns.

As a final conclusion, the most preferable parameter'set for

56
Fe is determined to be
rso = 1.07, rs = 1.390, ro = 1.286,
a2=05h Veo = 6.

on balance of contradicting requirements to parameter set deduced
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from experimental data except for that on inelastic scattering.

The cross section of total inelastic scatter%ng at 14 MeV
has been reported as 1113+149 mb by Fujita et(gf. while the
present calculation gives 470A-490 mb. However, it seems to
be not clear whether the experimental value includes contributions
not only from inelastic scattering but also from (n,2n) reaction.
If the experimental value is considered to be the cross section
for neutron emission, present calculation seems to give rather
congistent result.

As to calculated excitation curves on 56Fe, it seems that
the most preferable parameter set explains experimental data
fairly well as a whole, although there is a tendency of slight
over estimation of excitation function in low energy region from

1 0.845 to about 2.0 MeV. This tendency may be relieved by

taking account of the Moldauer effect.
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Table 1 Comparison of Potentials and Potential Parameters

Authors Rosen et al Engelbrecht - Fiedeldy Bjorklund Auerbach Becchetti- Greenlees
icabl 4 MeV-~24 MeV 0 MeV ~~—150 MeV Fernbach Moor 0.5 MeV 50 MeV
Applicable Energy e 4 Me e € 14 MeV 0.98 MeVA~4 MeV . eV o~ e

Optical Parameter

Volume Part

Vo (MeV) 49,3 - 0,33 B 46,0 « 0,25 E 50,0 46.9 5643 = 0,32 B -~ 24,0 (N - 2)/ A

Ug (MeV) 04125 E - 4x10-4 B2 0.22 E - 1.56 or 0,0 (either lar-
ro (Fermi) 1.25 1.16 1.25 1,28 11317(Rea1 Part), -ger one)

ry (Fermi)” 0.6 } Fo = 1.317 1,26 (Imag. Part)

ay (fermi) 0,65 0,62 0.65 0,55 0,75(Real Part) , 0,58(Imag. Part)

—€81—

Surface Part

Wo (MeV) 5,75 14 - 0,2 B 9.5 14.8 13,0 « 0,25 E - 12(N - 2)/Aa or 0,0
ro (Fermi) 1,25 1.16 1,25 1,28 1,26

r2 (Fermi)® 1.1 } Tg-= l.447

a, (Fermi) 0.70 0.5 0.98 1.0 0458

Spin-Orbit Part

Vso (MeV) 5.5 7 7 5.1 6.2
rgo (Fermi) 1.25 14317 (Fg,) 1.25 1,28 1.01
ago (Fermi) 0.65 0462 0.65 0.55 0,75

C for th . . . .
omment for the Diff. Wood-Saxon Gaussian Gaussian Gaussian Diff, Wood-Saxon

Surface Term

* R

r, *+ 1o Al/3 where, k = 1,2
o Al/3

¥86S W-IHEVS
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1,317

1,317

1,317

1,317

1,317

1.317

1,317

1.317

lal]
©

1.447

1.447

1,447

1.447

1,390

1,332

1,390

1,332

table 2-1

fso

1.317

1.070

1.070

1,070

1,070

1,070

1,070

1,070

ap = Oel

6.199x10~4
1,526x10~7
1.697x10~%
6.674x10~7

6.199x10-4
5,711x10~8
2.925x10~%
1,013x10-°

6.199x10~4
8.151x10-8
2,419x10-6
8.607x10~7

6.199x10™4
1.148x10-7
1.934x10-6
7.212x10-7

4,618x10-4
2,390x10-%
6.501x10~0
3.760x10-°

2.562x10~4
5.262x107°
9.098x1070
6.,541x10-6

4,618x10~4
2.543x10-6
5.879x10~0
3.655x10-6

2,5615x10-4
5,436x10~°
8.553x10~°
6.475x10™°
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ay = 0.3
5.800x10~4
4,225x10-6
6.213x10-6
4,888x10~6
5.800x10"%
4,118x107°
8,488x107°
5,575x10-%

5.800x10"%
4,081x10~6
7.615x10-
5,259x10-%

5.800x10~4
4,075x10-6
6.807x10-9
4,986x10~6

6.612x10~4
8.372x10-°
1,786x10"
1.153x10~5

7.,076x10-4
1.977x107
3.305x10-5
2.420%10™7

6.612x10~4

8.687x10-6
1.642x107°

1.126x10-3

7.076x10~4
2.034x10™
3,124x10-5
2.397x10-5

—-184-—

Strength Functions Estimated at 10 eV

ay = 0.5

4,191x10-4
1.810x10-5
1.886x10-5
1,835x10-5

4.191x10"%
1.784x10-5
2.207x10"3
1.925x10-5

4,191x10-4
1.771x10-5
2.104x10-3
1.882x10-3

4.191x10"4
1,759x10-3
2.004x10-5
1.841x10-5

5.129x10"4
2.288x10=>
3.433x10-3
2.670x10"°

6.337x10~4
3,733x10°3
5.341x10-
4,269x107°

5.129x10°4
2.329x10-5
3.255x107°
2.638x107

6.337x10~%4
3,809x103
$.113x10-3
4,244x10-5

a = 0,7

3.200x10~4
4.401x10-5
4,072x10-5
4,291x10-3

3.200x10"4
4,379x1077
4.422x10™5
4,393x10~3

3.200x10™%
4,338x10-5
4,335x10~3
4,337x103

3.,200x10~4
4,294x10-3
4,268x10~5
4,285x10-5

3,929x10~4
4,643x10"5
5.499x10-5
4.928x10~>

4,976x10"4
5.893x10~5
7.231x10™°
6.339x10"5

3,929x10™%
4,664x10"4
5.344x10~5
4.891x10-7

4,976x10~4
5.935x107
7.034x10-5
6.301x10-53

a, = 1.0

2.382x10-4
1.060x10-3
8,704x10-5
9.967x10™

2,382x10~4
9,942x10~°
8,960x10"7
9.615x10-5

2.382x10™4
9.860x10™9
8,971x10-3
9.564x107

2,382x10-4
9,765x10-5
8,993x10-3
9,508x10"

2.820x10"4
9.339x10-5
9,276x10-3
9,318x10-5

3.438x10~4
9.649x10
1.010x10~4
9,799x10-5

2.820x10~4
9.303x10-5
9.228x10=>
9,278x10"

3.438x10~4
9.648x10™5
9,997x10~3
9,764x10



]
(]

1,286

1,254

1.286

1.254

1,286

1,254

1.254

lal]

1.390

1,390

1,332

1.332

1,390

1,390

1,332

lak)

1.070

1,070

1,070

1,070

1,070

1,070

1,070

SO

Table 2-2

So
s1
S1
Sy

So
s1
51
S

a; = 0,1

2.959x10-8
2,505x10-6
6.350x10-¢
3.787x1070

8.503x10-4
5.447x10-9
1,364x10"3
8.178x10~°

3.220x10-3
4,684x10~%
7.964x10~6
5.777x 10~

5,357x10-1
8.404x10~0
1,425x10~3
1,035x10~3

2.959x10-3
2,653x10~6
5.820x10-0
3,709x10-6

8.503x10-4
5.731x10°
1,240%107°
7 4954x 100

5.357x10-4
8.095x10-6
1,533x10-3
1.051x10-5
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ay = 0.3
4

9,218x10™

1,057x10-5

2.398x10-3
1.504%10-6

7.014%x10-4
1,498x 10~
3.508x10-5
2.168x10-3

1.305x10-3
2.351x10-5
3.755x10~3
2.819x10-3

8.236x10~4
2.938x10~5
4.921x10™5
3,599x10~3

9.218x10-4
1.108x10™9
2.194x10-3
1.470x10-3

7.014x10-4
1.568x10"5
3.209x10-3
6.345x10"3

8,236x10~4
2.266x10-5
3.987x10-7
2.840x10-5

—185—

a; = 0.5

5.657x10~4
2.453x10~53
4.129x10~5
1.504x10~3

4.906x10~4
2.952x10~3
5.504x10~5
3.803x10~5

7.822x10™4
4,084x10~5
5.827x10~3
4,665x10~3

6.205x10~4
4,753x10=5
7.176x10~3
5.561x 10~

5.657x10~4
2.521x10™3
3.881x10~5
2.974x10~3

4,906x10™%
3.052x10™5
5.124x10=7
3,743x107

6.,205x10~4
4,634x10~
7.581x107
5,516x10™>

Strength Functions Estimated at 10 eV

a, = 0.7

4,079%10~4
4.530x10-5
6.,000x10-3
3,011x10-3

3.753x10~4
4.,842x107
7.190x10-3
5.625x10~3

5.386x10-4
5.964x10~5
7.556x10~5
6.,495x10-5

4,710x10-4
6.466x10™
8.621x10-3
7.184x10-5

4,079x10~4
4,584x10"5
5.776x10~3
4,981x10~3

3,753x10"4
4,927x10™
6.832x10™>
5,569x10~5

4,710x10"%
6.324x10~5
8.,999x10™7
7.216x10~5

ay = 1.0

2,873x10-4
8.637x10-5
9,214x10~>
8.829x10™3

2,775x10~4
8,417x10-5
9,746x10~3
8.859x10~3

3,514x10-4
9.132x10-5
9.941x10">
9.,402x10"

3.,302x10~4
9,089x10-5
1.047x10-4
9,549x 105

2.873x10~4
8.646x10™
9.094x10™>
8.795x10™>

2,775x10-4
8,454x10~5
9.527x10~3
8.812x10-3

3.302x10-4
9,021x10™>
1.068x10™"
9,574x10™3
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Table 3, Total, Elastic and Reaction Cross Sections at 14,5 MeV ( in mb )

1.286 1,317 1.317 1,317 1,317 1.317 1,317 1,317 1,317

1,254

—186—

@ 2 a; = 0.1 az = 0.3 a, = 0.5 ay = 0,7 a; = 1.0

'™ o, 2.493x103  2.564x103  2.618x103  2,706x10°  2.899x103

v 5 cel 1.563x103  1,383x103  1.317x103  1,301x103  1,335x103

- I or 0,930x103 1,181x103 1.301x103 1.405x103 1,565x103

op 2.580x103  2.620x103  2,673x103  2,755x103  2.983x103

E 5 Oep 1.677x103  1.458x103  1,376x103  1.348x103  1,369x103

- -  or 0.,903x103 1.163x103 1.297x103 1,407x103 1,569x103

oy 2.582x103 2.608x103 2.659x103 2,743x103 2,928x103

3 5 1 1.674x10%  1.446x103  1,363x103  1.336x103  1,359x103

- ~ oy 0.908x103 1.162x103 1.297x103 1.407x103 1.,570x103

oy 2.588x103  2,603x103  2.650x103  2.733x103  2,920x103

v 5 Oep 1.675x10%  1.439x103  1.352x103  1,325x103  1.349x103

- ~ or 0.914x103 1.164x103 1.298x103 1.408x107 1.571x103

o, 2.573x103  2.550x103  2.575x103  2.640x103  2,808x103

8 5  Oe1 1.716x103  1.406x103  1,299%x103  1,258x103  1,276x103

- ~ oy 0,856x103 1.144x103 1,276x103 1,382x103 1.532x103

ot 2.568x103 2,509x103 2,512x103 2.,652x103 2.712x10°

§ & Oel l.728x103  1.,379x103  1,251x10%  1.,197x103  1.206x103
- ~ o 0,840x103 1.131x103 1.261x103 1.265x10°3 1.506x103
op 2.580x103  2,554x103  2,565x103  2,630x103  2,799x103

g 5 Oep 1.716x103  1.397x103  1.289x10%  1,248x103  1,267x103
- ~ o, 0.846x103  1.147x10%  1,277x103  1,382x103  1,533x103
o 2.577x103 2.503x103 2,504x103 2.553x103 2,704x103

2 5 Oey 1.728x103  1.368x103  1.241x103  1,187x10°  1.198x103
- ~ o, 0.849x10%  1,135x103  1.263x10%  1,366x103  1.506x103
o¢ 2.323x10°  2.387x103  2.449x10%  2.534x103  2,718x103

S & Oep 1.430x10%  1.286x10%  1.209x103  1.184x10°  1,216x103
R s 3 3 3
K S o, 0.893x103  1.102x10%  1+241x10 1,349x10 1.502x10
op 2.150x103  2.284x103  2.360x103  2.452x103  2.644x10°

g 5 Oep 1.377x103 1.202x10%  1.140x103  1.126x103  1,167x103

}

- ~ or 0.773x103  1.082x103  1.220x103  1,326x103  1,447x10°



1.286 1.254 1.286 1,254 1,286

1,254

1.332 1,390 1,390 1,332 1,332

1,332

1,07

1,07

1,07

1,07

1,07

1.07

o, 2,350x103

32 = 0.l

Oe11.486x103

r

ot 2.206x103
Oe1l.420x103
op 0.786x103

%

o. 0.864x103

2.371x103

3
Op11.452%10

op 03919x103

op 2.223 x103

0g1l.417x103
or 0,806x103

%

2.293x103

Ce1l.458x103
or 0.835x103

o, 2.130x103
3
Oe11.378x10

I

o, 0.752x103

Table 3

a = 0.3
2.353x103
1.250x103
1.103x103

2,241x103
1.159x103
1,082x103

2.407x10°
1.288x103
1.119x103

2,310x103
1.206x10°3
1.104x103

2.334x103
1,248x103
1.,085x103

2.215x103

1.155x103
1.060x103

—187—-
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( continued )

a2 = 0.5
2,357x10°3
1.145x103

1.230x103

2,274x103
1.070x103
1.203x103

2.453x103
1.204x103
1.249x103

2.368x103
1,137x103
1.231x10°3

2,370x103
1.150x103
1.220x10°

2.264x103
1.072x103
1.191x103

ay; = 0.7

2.437x103
1.107x103
1,330x103

2,343x10
1.043x103
1.300x103

2.531x103
1.178x103
1.353x103

2.452x10°
1.122x103
1.331x10°3

2.438x103
1.113x10°
1.325x10°3

2.340x103
1.046x103
1.293x103

3

a = 1.0
2,602x103
1.132x10°3
1.470x10°

2,518x103
1.079x103
1.439x10°

2.713x103
1.210x10°3
1.503x103

2.642x10°
1.163x103
1.479x103

2.606x103
1.138x10°3
1.468x10°

2.519x103
1.083x103
1.436x10°



rt
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1,286 1,254 1,286 1,254 1,286 1.254 1,286 1,317 1,317 1,317 1.317 1,317 1,317 1,317 1,317

1,254

lal}
»

1.332 1,390 1,390 1,332 1.332 1,390 1.390 1,332 1,390 1,332 1,390 1,447 1.447 1.447 1.447

1,332

50

£s0

1.070 1.070 1,070 1.070 1.070 1,070 1,070 1,070 1,070 1.070 1,070 1.070 1,070 1,070 1,817

1,070

Table 4.

6y 4.031
Tey 24895

op  3.966
Oel 24857

Oy 3.867
Oel 2.818

Ot 3.917
Te1 2.865

g 3.940

Oel 20953

o; 3.820
oel 2.825

o, 3.829

oq 24906

oy 3.698
Gel 2,848

Ot 3.547
Og1 24553

Ot 3.547
Oy 2.849

Ot 3.434

Cel

o, 3.553

%y 2,783

op 3.444
Oy 24513

Op 34698
Oel 2.921

ot 3.545
Oel 2.617

2,568
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82=0.3

3,759
2,506

3,801
2,518

3.759
2.497

3,711
2.478

3,694
2,488

3.656
2.499

3.646
2,468

3,605
2,476

3.526
2,348

3355
2.192

3,392
2,307

3.230
2,145

3.454
2,325

3.307
2,178

3.462
2.332

3,275
2,161

—188~—

ay=0,5

3.613
2,232

3,642
2,235

3.618
2.224

3,591
2,215

3539
2,196

3.493
2,189

3.515
2,186

3.467
2,177

3.398
2.087

3,240
1,964

3,285
2,040

3,118
1,902

3.365
124,076

3,219
1,957

3319
2,053

3.140
1.911

Total and Elastic Cross Sections at 7,55 Me¥

32=0.7
3.558

2,071

3.578
2.069

3.564
2,063

3.549
2,059

3,474
2.012

3.419
1,983

3.462
2.007

3,406
1,976

3.353
1.931

3.221
1.839

3,250
1,871

3,100
1,764

3.338
1,925

3.211
1,834

3.267
1.880

3,112
1,771

( in barns)

32‘1.0

3.611
1.965

3.625
1.962

3.618
1.960

3.610
1,958

3,510
1,885

3.435
1.830

3.505
1.883

3,430
1,826

3.416
1.829

3.316
1,767

3.311
1,756

3.192
1,683

3.410
1.826

3.312
1,764

3,318
1,761

3,198
1,687



Table 5-1

1.254 1.286 1.317 1.317 1,317 1,317 1,317 1.317 1,317 1,317

1.286

14390 1.332 1.390 1,332 1.390 1,447 1.447 1.447 1.447

1.390

1,332

Total ,

1,070 1.070 1,070 1.070 1.070 1,070 1,070 1,070 1,070 1,317

1.070

Ot
Oel

Sin

Elastic and Inelastic Cross Sections at 1,5 MeV

az = 0.1
3.9942
2.9980
0.5416

4,2174
3.1736
0.5849

4,2645
3.1961
0,6272..

4,2548
3.1730
0.,6720

4,4360
3.4743
0.,5309

4,4881
3.5505
0.,4885

4,3868
3.4151
0.5818

4,4280
3.4783
0,5435

4,2888
2,9564
0,8337

4,7804
3.5863
0.,5503

4,7834
3.5265
0.7887
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ap = 0,3
3.3989
2,1957
0.7172

3.4747
2.2381
0.7376

3.5086
2.2532
0,7538

3.5371
2.2652
0.7687

3.5532
2.,2497
0.7840

3.,6941
2,3178
0.8189

3.5821
2.2616
0.8003

3.7238
2.3290
0.8375

3.670Q
2,2720
0,8270

3,6143
2,2811
0.,7588

3.8355
2.3268
0,.8806

—-189-

a, = 0.5

3.2823

2.1296

0.6745

3.320%
2.1492
0.,6842

3.3340
221547
0.6907

3.3448
2.1590
0.6963

3.3388
2.0024
0.7347

3.4451
2,0793
0.8035

3.3522
2,0982
0.7411

3.4615
2.,0866
0.8109

3.4208
2,1474
0.7433

3.4387
2,2116
0.7030

3.5057
2,0962
0.8202

a5 = 0.7
3.3554
2.2002
0.6633

3.3778
2,2118
0.6685

3.3827
2.2135
0.,6714

3.3866
2.,2148
0.6739

3.3540
2,1154
0.7107

3.3952
2.,04093
0.7800

3.3499
2.1178
0.7129

3.4032
2,0534
0.7830

3.4047
2,1808
0,7035

3.4457
2,2587
0.6752

3.4314
2,0830
0,7762

(in barns)

a, = 1.0
3.6911
2.,4446

0.7086

3.7025
2.,4513
0,7107

3.7029
2,4509
0,7115

3.7038
2.,4508
0,7125

3.5964
2,3161
0,7288

3.5543
2,2027
0.7717

3.5976
2,3168
B.7294

3.5564
2.2044
0.7721

3.6194
243668
0.7106

3.6476
2.4299
0.6876

3.5655
2,2397
0,7533



1.254 1,286 1.254

1,286

r

1,332

1.390

1,390

1,332

vSO

sO

h

1.07

1.07

1.07

1,07

Ot
Oel

in

%t
Cel

in

ay = 0.1
4.8458
3.6927
0.4702

4,5845
3.1561
0.8721

4,8260
3.6116
0.5510

4,3638
3.2147
0,7509
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Table 5~/ (continued)

ay = 063
3.6583
2.2597
00,7789

3,7305
2.3015
0.8440

3.6452
242937
00,7682

3.5749

2.2849
0.8612

~190-

a, = 0.5
3.,4424
2,1086
0.7586

3.4418
2,1565
0.,7507

3.4537
2.,2177
0,7083

2.3765
2,0825
0.8114

az; = 0.7
3,4191
2.1263
0.7337

3.4142
2.1852
0,7070

3.4533
2,2623
0.6777

3.4184
2.0767
0.7723

2.,2881
0.,7230

3.6226
2.,3686
0.7117

3.6506
2,4316
0.6882

3.5614
2,3373
0.7523
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DISCUSSION

P. RIBON: The problem of uniqueness of parameters is a very frequent
problem in nuclear data evaluation. 1In the conclusions of your abstract,
you expose that you obtained several parameters sets providing satisfactory
explanation of experimental data. Can you comment about the origin of

these different sets, and how it would be possible to select the best one.

H. YAMAKOSHI: Prior to answer the question, the following may be
mentioned in order to note on criteria imposed on calculated nuclear data
to check if a given set of parameter values is plausible or not. The
criteria in this study consists of experimental data for following items:
Angle dependence of percent polarization at 24 MeV, total and elastic cross
sections at 14.5 MeV, 7.55 MeV and 1.5 MeV, angle dependence of elastic
differential cross section at 14.5 MeV, 7.55 MeV and 1.5 MeV, neutron
strength functions for s-wave and p-wave and excitation curves for
inelastic neutron scattering up to third level.

Now, cause of existence of several plausible parameter sets can be
ascribed to following two reasons. (A) Experimental data for each item
has uncertainty in its value because of experimental error. (B) For
monotonic change in value of a parameter arbitrarily chosen in parameter
space, experimental data in some items persist that value of the parameter
in certain range can explain experiments well, while experimental data in
another group of items persist that value of the parameter in quite other
range can explain experimental data well. This sort of inconsistency is
one of the causes of the possibility of existence of several plausible
parameter sets.

As a significant example, just take a, dependence. In accordance with

2

increase of a, value from 0.1 to 1.0, calculated s-wave strength function

has a tendency of decreasing from value far larger than experimental value
to value smaller than experimental value. This situation suggests that

possible a, value lies between 0.5 and 0.7, while comparison between calcu-

2
lated and experimental data for angular distribution of differential elastic

scattering at 14.5 MeV suggests that possible a, value is between 0.7 and

1.0. Similar discussion for total cross section at 7.55 MeV yields that

possible a, value is between 0.3 to 0.5, while for total cross section

2
at 14.5 MeV, possible a, value is between 0.7 and 1.0. Besides, p~wave
‘strength function suggests that possible a, value is between 0.1 and 0.5.

2

-191-
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As a whole, judging from experimental error for each item, it is
possible to say that the most plausible value of a, is around 0.5. One
cannot also beat the case that the most plausible value of a, is around
0.7. One confronts to similar situations for other parameters.

Thus, it is possible to say that there are several recommendable
parameter sets for 56Fe calculation in addition to the set shown in the
text. The most plausible parameter set should be chosen from more global
view point. That is, the most plausible parameter set should explain
experimental data on the average over medium weight nucleus region. Even
if a parameter set explains experimental data for 56Fe, it is not always
true that the parameter set can explain experimental data for other nucleus
well.
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IIT-2. OPTICAL MODEL CALCULATIONS
AT

RENSSELAER POLYTECHNIC INSTITUTE*

Jose' M. Sierra and Paul J. Turinsky#
Department of Nuclear Engineering
Rensselaer Polytechnic Institute
Troy, New York, USA 12181

ABSTRACT

Experimental evidence of deep minima in the p-wave neutron
strength function about mass numbers 55 and 160 has been studied
via optical model calculation. By employing a spherical optical
model with an angular momentum dependent cﬂ) imaginary potential
strength ohfwb, a global optical model parameter set has been
determined which accurately predicts the s and p-wave neutron
strength functions and potential scattering radius over mass num-
bers 40-240. Extension of the angular momentum dependent optical
potential to coupled-channel calculations treating 0+-2+ collective
state coupling, improved the agreement between prediction and ex-
perimental data. The Valuesw@'l-'IQMeV andWQI,SMeVemployed in the

calculations indicate that p-wave neutrons effectively interact

less weakly than s-wave neutrons with the target nucleus.

* Research supported by the USAEC under Contract AT(11-1)}-3058.
#Present Address: Senior Engineer, Westinghouse Electric Corporation

Nuclear Center, Box 355
Pittsburgh, Pennsylvania, USA 15230
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I, INTRODUCTICN

ligh resolution neutron interac:iion experiments have macde availabl
n-wave neutron strength function (Sy) values, in addition to refined
s-wave neutron strength function (%, ) and potential scattering radii
( R') values, as a function of mass number (A). Experiments conducted
at the RPI Linear Accelerator Laboratory(l)and other facilities re=-
vealed strong ninima in S » Where at A=55 and 160 values of'4314XJ0-6
and‘EIXMis were observed, respectively,

This new data on 5;1 h:s regenerated an interest in the ability
of optical model calculations to simultaneously accurately predict 550,
51 and RI versus mass number A from 40 to 240, Previous work per-
formed by Perey-Buck,(Z)Moldauer,(3)and by otherg4ag)obtaining a
global optical model parameter set was biased towards simultaneous
fits to E% and{?lversus A, since scarce data existed on f;i values,
With interesting'sﬁdata available, we have attempted to obtain a

global optical model parameter set with as few additional free para-

meters that also accurately predicts E}iversus A, in addition to §

Q
and RI »

TI, ANGULAR MOMENTUM INDEPZNOHENT CPCICAL MUDEL

Restricting our discussion to low energy neutron interactions,
the basis of optical model calculations is that the interaction of
the ircident neutron and tarcet nucleus can be modeled by a comnlex
central notential, hence, the optical nodel Schrgdinger's equation

becomes
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2 > -~ -
_.%_va%;*) +\[)P(lrl)%r)= Etjj(r) (1)

where

Voo (I71) = Vg, (17D + iVLMj(\r-‘:), )

Physically the real potential accounts for shape elastic scatciering;
whereas, the imaginary potential accounts for excitations of the target
nucleus which would generally remove the incident neutron from its
entrance channel and lead to resonance behavior, lience, the magnitude
of (ﬁq) can be internreted as the entrance channel removal inter-
action strength exerted between the incident neutron and the target nucleus,
Noting the simplicity of the lHamiltonian operator in Eg., (1),
the incident neutrohl's wave functiﬁnl?}%?)is easily numerically deter-
mined, We have employed the ABACUS II computer-codéékor the numerical
determination of Ffl?). Once having determined this wave function,
the energy averaged neutron total, shape elastic and removal cross
sections can be computed, Alternately, the neutron strengih function
and potential scattering radius values can be evaluated, where as

usual, we define the angular momentum dependent (Q) sirength

function by
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69. = ——L— gJ’ <F_QJ—> (3)
20t1 >; JE <D

and notential scatiering radii by

. L
R/ = lim ( <<1;e_7)a (@)
E->0 1\ 4
with
V= [2/4R
8\.]_:: (Q;T‘f'i)/a ...statistical spin factor,
Fi ..encutron penetration factor
for f-waves,
ﬁ% .se neutron wave number,
Fi " eees Channel radius,
<FQJ-> .. average neutron total width for

angular momentum i and total

nomentum J,

' <{I:) :? ... average resonance spacing for

total momentum J,

<< U;£;7 ... Shape elastic neutron cross section
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It is recognized that the potential scattering radii can bhe associated
with hard snhere elastic scattering interaction; whereas, the strength
function indicates the target nucleus strength to enter into resonance
reactions with either s or p-wave incident neutrons,
. . / e s .
llaving defined S'a,sland R’ and indicated they can e obtained
o
from the model systems wave function,gpzr),we now consider the con-

P
struction of the optical potential,‘xéép<lrL>. As usual, we express

Vo,

terms plus an imaginary term, hence

—
(1F1) as the sum of the potential well and spin-orbit real

Voo (1) = =V £ (170, R)-%%}%‘TZ#J’”Z’:%P) o
-uiWaImﬂ(ﬁ,aIm) R+b).

The real form function, 'F , has generally been chosen to reflect the

target nucleus nucleon density via the Saxon-wWood's form

_ -1 (7)
£ty a,R) = [1+ep(5R)]

which we have also emnloyed,
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By contrast, several imaginary form functions, <3 , have been em-
nloyed in the rast, in particular Moldauer employed a shifted Gausian

form given by 5
(FLag, R = L exp[- (IER)
g »~dm] L‘Ov_]'n) P ( O'Im (8)

and Perey-Ruck, ourselves and others have used the Saxon-Wood's

derivitive form

ﬁ(l‘r‘bamf@g): OI‘FC'_zaIm) R+b) (9)
dr

s
where F&ztaf% . It will be noted that the only quantum number
dependence of the chosen optical potential.is contained in the spin-
= 2" ‘ _ -8

orbit potential via (V‘ﬂ) . Theoretical calculations do indicate
considerably more cuantum number dependence, but to minimize the
number of unknown optical parameters to be determined there is a
strong incentive to ignore this fact, We refer to the pronosed poten-
tial as the angular momentum indevendent spherical optical potential,

Having specified the angular momentum inderendent optical model
form, we have attempted to determine a globtal optical model parameter

. . ] : /

set which simultaneously predicts values of 60 ,si,and R over the
mass number range A=40-240 consistent with experimental values, We
were particularly interested in predicting the recently observed
deep: minima infil about A=Z5 and 160, Table I presents the optical
parameter set we thus determired and contrasts our set to optical

parameter sets pronosed by Terey-Buck and holdauer,
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It should be recalled that both of the previous works were primarily
concerned with predicting fso and F?/, since little data on f;l was
then available, In Figures (1-3) values of 60 ’ 61 » and R, versus
mass number A are presented respectively, as calculated by Perey-Buck,
Moldauer and our work and experimentally determined, Mcldauer pre-
dicts fso very accuratély; whereas, our work underpredicts the SSO
minima due to our heavy bias on accurately predicting 551 . Figure (2)
reveals that indeed we have improved uvron former works in prediciing 551
versus A, particularly in the deep fsiminima. It is quite surprising
that Moldaver's work predicted the deep 551 minima about A=55 before
any strong supporting experimental evidence, Finally, Figure (3)
clearly illustrates the trouble we encountered in accurately pre-

4
dictingFein*copjuncfion withSe and S,. With considerable effort
expended on obtaining a global optical parameter set that simultaneously
predicts f;o, €51, and le versus A and the poor results indicated in
Figures (1-3), we concluded that the employed angular momentum in-

dependent spherical optical model was inacdequate,

III, ANGULAR NOMENITM “EFENDENT GFTICAL MODEL

Concluding that an angular momentum derendent srherical ontical
model was required, we have atiempted to construct sucli a model with
a minimum of a~ditional unknown optical narancters, +ith bound state
calculations indicating only a weak dependence [;ther than sSnin-crbit
o
force] of the real potential, Uﬁhd(“1%on the bonnd state pariicle anc-
ular momentum, we chcse to place the toval angnlar mouwentum dependence

of the optical potential on the imaginary termjx%gmﬁ(ntu .
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To minimize the additional nuwber of c¢ptical raramecers introduced,
angular momentum dependence was restricied to the norential strengih,

hence

df (iwLag, Rib)
T : . Qo)

of the ontical potential indicate ang-

-~
VImgﬂ(irl) = -4 W&)arm
: e (78
Theoretical derivations
ular momentum denendence, but liitle information exists to supnort
the form we have assumed.
The pronosed angular momentum dependent snherical optical potential
was then employed to obtain an associated set of global optical para-
/
neters which would simultaneously predict So ’ 6 , and R from A=40-240,
Table II presents the values we obtained, and contrests them (Table 1, to opt-
ical parameter-values obtained by Perey-Buck and Moldauen, it is noted that
our real nrotential emnloys a smaller diffusness length, CZRQ’ implying
a sharrer nucleon surface, In contrast to nrevious work which has
choseu to restrict ClS&:ClRE’ we have chosen 6265=<2Ih' The imaginary
potential share employed Dby i{'oldauver and our work were found very similar,
even though different imaginary form functionmns, (j y were employed.
Most interestingly, we determined W“’iuﬂé\hwW“:lS Mev. The
ontimum value ofT}TU) to emnloy was found not very uniquely specified,
but all acceptable values of‘ﬂza)were considerably smaller t}mnlef@v. Ve
conclude from the large magni:vde of (UJ«%/%ATN) that s-wave neutrons
effectively interact with the target nucleus rmuch s.ronrer than p-wave
nevtrons.A theorastical derivation of the optical pocential in a (2
paticle~-l-hole, basis is underway to determine whether a simple mech-

anism for this behavior can be identified.
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Values of So R Gi » and R,versus mass number A are presented
in Figures(4-6) using the angular momentum dependent snherical
optical model, The simultaneous fit to these three quantities is
very accurate over a majority of the mass number range. As illustrated,
calculations using the ABACUS IIcomputer code were nerformed at three
different neutron energies, revealing thecare that should be exercised
in interpreting the adequacy of the fit in the energy sensitive strengch
function peaks, For certain mass number ranges where either f;o or :;1
reach maxima or minima, agreement between prediction and data is less
adequate, Following the work of Perey-Buok(z)we attributed this disa-
greement to be due to the —resence of 1ow'1ying collective target nucleus
states which could casily be excited by the incident neutron. With
our sphericeal ontical model not modeling such collective state excit-
ations, we extended our angular momentum derendent ontical model to
courled-channel calculations anticipating improved agrcement in pre-
dicted and measured 5,, ’ 61 s and E' values,

Briefly reviewing the basis of ccupled-channel calculaiions and
em~loying the notation of Tamura(gi the counled-channel model Schrgdinger

equation 1S given by

CHT _;Z_F_m_ V_FSZ.{_VOP(?) %T—;"‘)-_-_—E r_{&f-:g’) (11)
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S ——
where T denotes the incident neutron coordinates and g the collective

target nucleus coordinates, Now the collective target nucleus wave

function, d?I'PT satisfies the Hamiltonian
n''n

%T[Cﬁ ] = W, @Inmn (12)

for intrinsic momentum‘:[h and projection.r1hfor energy state ¢ . The
solution of the collective state Hamiltonian equation is well known for
vibrator and rotator states and toially specified by the excitation
energy, Lb% , and deformation parameter,/ég, associated with each state,
Thus by expanding the total system wave function, F}j , in the coll-
ective state basis, £q, (11) can be numerically solved,from

which energy averaged cross sectiouns, 50 y 5 , and RI values can be

(QJWas used for these calculations,

determined, The JUPITER .computer code
Ne recognize that fso ’ f;l, and 521 values are not only sensitive
to the ontical parameter set empnloyed, but also the parameters specifying
the collective states, 1In our calculations, the collective state
parameters are not free to chcose but set to values determined in fitting
other data (eleciromagneiic transition scvrengths, etc.J,

Restricting our coupled-channel calculations to ()f;;z*' target
nucleus collective states,fso ’ fS , and lel were computed emnloying
the angular momentum dependent optical parameter set previously given
in Teble II, The excellent resnlts are presented in Figures (4-6).

Both the vibrator swvate splitting of the fso peak about A=150 and

minima filling about A=100 and 240 are accurately predicted,
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Figure (5) illustrates the excellent prediction of the deepﬁf&minima,
where the rresence of vibrator states is noted to fill the 531 minima
about A=160 which does not contradict the existing data., Uf particular
interest is the fsipeak about A=100, Contradicting experimental evidence
as to whether this {51 peak is s»nlit has once again appeared.(loj Both
our snherical and collective ortical model calculations do predict split-
ting. To help understand the mechanism of this splitting,in Figure (7)
the Pl/a and PB/;I strength functions are nresented as calculated by the
spherical and collective angular momenium devendent optical model,
The spherical optical riodel results indicate that the splitfﬁpeaks
about A=100 can be uniquely associated with either the fDV& or F)%ﬁl
states, hence caused by the srin~orbit force, Huwever, when the presence
of collective states is mocdeled via coupled-channel calcuiations, no
such unique identification is nossible, Finally, the scarce data on
the potential scattering radii is seen in Figure (6) to be accurately
fitted via courled-channel calculations emnloying the angular momentum
denendent optical model,

Having demonsirated that a <et of global optical parameters exists
for the nronosed angular momentum dependent ortical model that accurately

/

predicts 50, 61 , and R from A=40-240, we have emnloyed this model
to also compute the energy averaged total neutron cross section, lIndeed
from a nractical viewpoint, we are most interested in obtaining a model
that accurately predicts cross sections for use in reactor physics
calculations, Figure (8) contrasts predictions of the total ncutron
cross section energy averaged about 100 keV, obteined by rerey-Buck and
our work for both the spherical and collective models, OUur work predicts

t -
considerably more siructure than Perey-Buck s work, which the data

weakly supports,
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Both models fail to correctly predict the total cross section peak

about A=150, caused by the split S, peak. To study the energy
sensitivity of our model, the energy averaged total neutron cross
section was calculated and contrasted to experimental data in Figure (9
at 30, 100and 300 ke¥. As in the previous figure, the data has con-
siderable scatter but does indicate the expected trend of increased
total cross section peaks with decreasing neutron energy due to single
narticle binding, The previously discussed total cross sec:iion peak
about A=150 is noted to be quite energy sensitive in our calculations,
hence difficult to accurately predict., Scatter of data does not enable
us to make a firm statement as to the adequacy of our angular momentum
optical model in comruiting the energy averaged total neuiron cross sec -

tion, but we can conclunde that general trends are adeguately nredicted.

IV CONCLUSION

Our work has indicated that an anguvlar momentum (ﬁ) dependent
optical model emnloying a glebal ontical parameter sSet is reduired to
simultanecously and accurately predict 50 ’ Si, and R' versus mass
numbers A=40-240, We have chosen the angular momentum dependence of the
optical model to be totally contained in the strength of the imaginary
norential,‘Nﬂﬂ) [bther than spin orbit forcé]. Extending this model

to coupled-channel calculaiions, the fine structure of fso R f;1 , and

]?’ have been accurately pradicted. ‘Tthe large magnitude of (XA7¢3/\A70)

.

obtained in this work indicates that s-wave neutirons effectively intera

much sironger than »-wave neutrons with the target nucleus, fheoretica
calculations emnloying a (2 particle-1 hole) basis are in progresésgo

possibly determine the mechanism of this interaction strengih phenomina
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FIGURE CAFXTICNS:

Figure (1)

Figure (2)

Figure (3J

Figure (4)

Ficure (5)

Figure (6)

F

e

gure (7)

Figure ()

Figure (0J

The s-wave neutron strength function as calculated by
the angular momentum independent spherical optical model,

The p-wave neutron strength function as calculated by
the angular momentum independent spherical optical model,

iThe notential scaitering radius as calculated by the
angular momentum independent srherical optical model.

The s-wave neutron strength function as calcrlated by
both the angular momentum denendent spherical and col-
lective state optical model,

The p-wave nevtron strengih function as calculated by
both the angular riomentum denendent snherical and col-
lective state optical model,

The rorential scattering radius as calculated by both
the angular momentum & :pendent spherical and collective
state ontical model,

1 =2 .
The A;and klneutron strength functionsas calculated
by both the angular momentum denendent snherical and
collective state optical model,

The energy averaged total neutren cross section at 100
keV as calcnrlated by both an angular momenium indenendent
(Yerey-Buck) and dependent (RII) srnherical and coilect-
ive state ontical wmcdel.

1The energy averaged :total neucron cross secvion at 30, 100
and 300 keV as calculated by both the angular momentum
dependent sphericzl and collective state .piical model,

TABLE CAPTIONS

Table (1)

Table (11)

The angular momentum independent onrtical perameier sets
employed by Ferey-Puck, Moldauer, and ourselves used to
ottain results shown in Figures (1-3).

The angular momentum denendent ortical rarameter set we
employed to obtain results shown in Figures (4-9),
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TABLE I
UNITS: POTENTIAL-MeV, LENGTH-fm

PEREY-BUCK PARAMETERS

.

'VR =48 dge =0.65 R=1.27A/3
e

Ve =6 Qep =0:65

W =11 Q,=0-47 b =0.00

MOLDAUER PARAMETERS

. ]
.\]ée:d’ﬁ aRe =0,62 R-’—'—l.l(ﬂAB’f’U.()
\'750—7 Oa)=0. 62
W =14 Q=050 b=0.50

RPI PARAMETERS
- ' -
AVAS — _1 ~al3
\{?8—52 QRe=t:.40 R=1.27a
'Vso:r« Qe,=0.65
W:a, O.Im=().25 b =0.00
TABLE I1I
UNITS: POTENTIAL-MeV, LiNGTH-m
|
%8-47 QRe=0. 52 K:-1.30a"3
Vo, =6 Q. =0.73
W |
=i2 al‘m=(}..23 b =2.30
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you have been able to improve

but do you know which are the

R. BLOCK: No, we do not

study had a limited objective
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DISCUSSION

slightly the number of adjusted parameters,
the fit to data that you have considered;

consequences for other data such as polarization?

as yet. As I mentioned in this talk, this

of fitting SO’ S1 and R' data. No comparisons

have been made with polarization data.
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ITI-3. Analysis of Neutron Cross Sections

Using the Coupled-Channel Theory

Shigeya TANAKA
Japan Atomic Energy Research Institute

Tokai-mura, Naka-gun, Ibaraki-ken

Abstract: Fast neutron total and scatteringcross sections calculated with
the coupled-channel theory and the spherical optical model are compared
with experimental data. The optical-potential parameters used in both
the calculations were obtained from comparison of calculations with scat-
tering data for 209g;

The calculations for total cross sections were made for thirty-five
nuclides fron123Na to 239Pu in the energy range of 0.25 to 15 MeV, and
good results were obtained with the coupled-channel calculations. The
comparisons of the calculations with the elastic data for about twenty
nuclides were made at incident energies of 8 and 14 MeV., In general, the
coupled-channel calculations at 8 MeV have given better agreements with
the experimental data than the spherical optical-model calculations. At
14 MeV, differénces between both the calculations were small, The analysis
was also made for the elastic and inelastic scattering by several nuclei
such as Fe, Ni, 120Sn, Pu in the low energy region, and good results
have been given by the coupled-channel calculations,

Thus, it is demonstrated that the coupled-channel calculations with
one set of the optical parameters well reproduce the total and scattering

cross sections over a wide energy and mass region.

1. Introduction
So far many authors have made optical-model analyses for neutron cross

1)

sections and proposed optical potentials™” which well reproduce the neutron
cross sections for a wide energy and mass region. Almost all of those analy-
ses were based on the spherical optical model. Accordingly, those authors
did not make predictions or analyses of cross sections for largely deformed
nuclei, jn which couplings between the states in the ground band are strong.
Cross sections for vibrational nuclei, in which couplings between the ground
states and the excited states are of medium strength, have usually been cal-
culated in the framework of the spherical optical model, assuming that the

effect of couplings on the cross sections is negligible. This assumption,
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however, is not always true. Therefore, it will be worthwhile to make a
systematic analysis for nutron ctross sections over a wide energy and mass
region under a condition that the coupling effect is always taken into ac-
count in the calculations.

This report aims at a presentation of an optical potential for coupled-
channel calculations, which well reproduces neutron cross sections over a
wide energy and mass region.

We have already reportedz) that the angular distributions of elastic
neutrons for rare-earth nuclei such as 139La, 141Pr, Gd, Fr calculated with
the coupled-channel theory fit the experimental data better than those cal-
culated with the spherical optical model. Potential parameters used in those
calculations were obtained from the comparison of the spherical optical-

. . . . 209,
model calculations with experimental values for neutron scattering by 0 Bi.

The present analysis also starts from the comparison with the 209Bi.data.

2. Optical Potential

In the coupled-channel calculation the following potential was used:

V(r,0,4) = - V—2 - aiw LI R/D]
1+exp[(r-R)/a] {1+exp[(r-R/b]}
> .21 exp[ (r-R,)/a]
-V (o)X 0
S0 T ar {1+exp[(r—RO)/a]}2‘:
where
R = Ry{1 *ZAB;\YAO("')} for rotational,
R = Rp{l +S.a. Y. (6,81
ot f%’\g?\u )\u(e R % _ '

o, =R — (b, + ()W ) for vibrational.

The potential parameters were obtained according to the following pro-

cedure:

(1) By using the spherical optical model, the depth parameters V and W were
searched so that the calculated results were fitted to the elastic data for
209Bi, and the energy dependence of V and W was obtained; while other optical
parameters were fixed to some reasonable values. Open circles in Fig, 1 show
the values thus obtained, In this figure it is seen that the energy dependence

of V is obviously represented by a straight line. The energy dependence of W
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is not so clear. In the present analysis, however, we adopted W=2.55JE .

3)

Crosses are values of Tomita et al. which were obtained from analysis of

207Pb data. These values support the present curve for W.
(2) In order to make the potential applicable to a wide mass region, charge
symmetry term 24 (N-Z)/A was accounted for V. Charge symmetry term for W
was not considered in the present analysis, because of its unccertainty in
the strength.
(3) The value of coupling parameter taken from published bibliography4) or
other papers (ref. a,e~h in Table 1 and 2) were used in the coupled-channel
calculations.

All the calculated results, i.e, both the coupled-channel and the
spherical optical-model calculations, shown hereafter are based on an optical

potential with the parameter values thus adopted; i.e.

V = 51.85 - 0.33E- 24(N-2)/A (MeV), a = 0.65 (fm),
W = 2.55,E (MeV), b = 0.48 (fm),
V= 7-0 (MeV),

R, = rOAV3 , Tg= 1.25 (fm) .

In the present analysis, the coupled-channel calculations were carried

5)

out with complex coupling using the code JUPITOR-1 and the rest of cal-

culations using the codes STAX26) and ELIESE37).

Table 1 shows coupling modes, etc. used in the coupled-channel calcu-
lations. In the column of the coupling mode,“rotr stands for rotational,"vibrf'
for vibrational and‘W.C! for weak coupling. Brackets mean average with res-
pect to isotopes. Most nuclides were treated as vibrational. The weak coupl-
ing model was applied to odd nuclei such as 27A1, 55Mn, etc., although this
application is not appropriate, Calculated results for these nuclei will be
shown by dash-dot curves in the figures shown hereafter. Table 2 also shows

the coupling modes, etc. for heavier nuclei.

3. Analysis for the Total Cross Sections

Foster and Glasgows) have measured the total cross sections for a num-

ber of nuclei ranging from H tozsgPu in the energy range of 2.5 to 15 MeV,

Of those data, typical thirty-five nuclei from 23Na t0239pu were chosen in
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the present analysis. In order to extend the energy range downwards, the
data in the energy range from 0.25 to 2.5 MeV were cited from BNL 325 and

its Supplémentsg).

_ In the following figures from Fig. 2 to Fig. 5, the
former data are represented by thick crooked curves and the latter by dashed
thick curves. Thin solid and dash-dot curves represent the coupled-channel
calculations, and thin dashed curves the spherical optical-model calculations.

Fig. 2 shows the total cross sections from 23Na to Ni., Large differences
between the two kinds of calculations are seen in the low energy region, the
region below about 3 MeV, and in almost all cases, the results of coupled-
channel calculations give values closer to the experimental data than the
spherical ones.

Fig. 3 shows the cross sections for heavier nuclei from Cu to In., The
same as the case of Fig, 2 may be said of the fitness. In Fig. 4, agreement
of the coupled-channel calculations with the eperimental data is fiiry good
for Sn, Sb, 139La and 141Pr even in the low energy region of 1 to 3 MeV,

For the total cross sections of largely deformed nuclei such as id, Fr, Hf,
Ta, W, there appear large differences between the two kinds of curves not
only in the low energy region but also in the energy region of 5 to 12 MeV,
and, as may be expected, the solid curves give far hetter apreement with
the data than the dashed curves.

The cross sections for actinide nuclei are shown in Fig. 5. For these
nuclei, agreement between the coupled-channel calculations and the experi-
mental data is not always good. In the energy region higher than 7 MeV, good
agreement was obtained, but in the lower energy region the coupled-channel
calculation does not reproduce the experimental maxima and minima. However,
this is very much improved by using smaller values of the deformation para-
meters than those in Table 2.For example, the solid curve for plutonium was
calculated using 82=0.28, but by changing this value to 0.22, as Benzi et

; 10)

a used in Helsinki Conf., good fit to the experimental datais obtained.

The smaller values of the deformation parameters are supported by the recent

Coulomb excitation experiment done by Bermis, Jr. et al.ll)

82=O.223 and 0.233 for 238Pu and 240Pu, respectively, which were calculated

They reported

on the basis of a deformed Woods-Saxon potential model. As will be shown
afterwards, the same thing may be said of angular distributions of the elas-

tic scattering.

4. Scattering Cross Sections at 8 and 14 MeV

Measurement of the elastic scattering cross sections has been made

12)

extensively at 8 MeV by Holmgvist and Wiedling and at 14 MeV by various
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experimenters. On the other hand, analysis at such energies is rather straight-
forward, because contribution of the compound elastic is negligible.

The analysis at 8 MeV is shown in Figs. 6 - 8. Circles are data of Holm-
qvist and Wiedlinglz), crosses JAERI datals), and triangles Kentucky datal4).
Solid and dash-dot curves represent the coupled-channel calculations. The
curves shown by dash-dot denote such that the weak coupling model was used
in the calculation, notwithstanding that the application of this model is not
appropriate. Dashed curves represent the spherical optical-model calculations.
From Figs. 6 and 7 we can see that, if the couplings are appropriately taken
into account, the coupled-channel calculation results in good fit to the
experimental data. For example, we see in Fig, 7 that the solid curves for
Ni, Cu and Zn rather well fit to the data, whereas the dash-dot curves for

59 75

Co and As do not.

In the case of rotational nuclei such as Hf, 181Ta in Fig. 8, agreement
of the solid curves with the data are not so good at backward angles, though
fairy good agreement is obtained at the rest of angles. A little smaller
value of B

case for 2%gPu. This case will be shown later.

within its ambiguity might improve the fitness, as it is the

Fig. 9 shows the elastic cross sections at 14 MeV. Comparisons with the

15)

experimental data are made for many nuclei, but the differences between the
two kinds of calculations are too small to select which calculation gives

better fitting to the experimental data.

5. Analysis for Several Nuclei in Low Energy Region

We have seen in the figures of the total cross sections that there are
large differences between the coupled-channel and the spherical optical-
model calculations in the low energy region, i.e. the region lower than 3 or
4 MeV. Therefore, the analysis of the scattering cross sections in this energy
region will be of more interest. In this region we have to take the compound
process into account and must be careful about fluctuation of the cross sec-
tions. The analysis in this energy region has been made for several nuclei
slich as Fe, Ni, ZIn, 120Sn, Gd, Pu, etc. Results of some of them are mentioned

in the following.
16)

17)

The compound elastic scattering was calculated by using the Moldauer theory '/,

Fig. 10 shows the analysis for iron. Closed circles are JAERI data

in which seven excited levels up to 3.12 MeV in 56Fe were taken into aceount,

and the results were added to bbth the calculations. As may be expected, both
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the calculations lead to considerably different values each other, and the
coupled-channel calculations show very good agreement with the experimental
data. In the figure of inelastic scattering for the 0.85 MeV level, the dashed
curves represent Moldauer calculation, and solid curves Moldauer calculation
plus the coupled-channel calculation, The solid curves well agree with the
data at the higher energies, but at the lower three energies they show large
deviations from the data. Intermediate structures with width of 0,2 MeV,
however, have been reported at 1.6 and 2.05 Mevls). The measurement was made
with an energy spread of 0.09 MeV. Therefore, the deviations at 1.71 and
2.01 MeV are consistent with the presence of the intermediate structures.
The deviation at 1.37 MeV may also be due to fluctuation of the cross section.
In case the spherical optical model was used in the analysis, what para-
meter values would be obtained? Circles and triangles in Fig. 11 are the
values of V and W, respectively, searched with the spherical optical model
so as to be fitted to the solid curves in Fig, 10 (:if'i.e. to the values
calculated with the coupled-channel theory. In the calculation, T, was
changed to 1,25 fm to improve the fitness. Therefore, the circles in the
figure approximately satisfy the rule of Vr02= const. A remarkable feature
is the large values of W. They scatter in a region from 8 to 11 MeV, They
lead to somewhat larger values of the compound inelastic cross sections than
the original values of W do.
Fig. 12 shows the scattering cross sections of nickel. Closed circles
are JAERI data16). The compound cross sections were estimated by taking into
é?ount six excited levels assumed in a 'mnucleus'" averaged with respect to
58Ni and 60Ni in the Moldauer calculation. Both the elastic and inelastic
results calculated by taking into account the coupling between the ground
and first 2° levels show far better agreement than the case without the
coupling.

Fig. 13 shows the scattering cross sections of 120Sn. Closed circles

are JAERI datals). Twenty-one excited levels up to an excitation energy
3,07 MeV were taken into account in the Moldauer calculation. As may be
expected, the effect of the coupling on the elastic and inelastic cross
sections is not large, but still the results with the coupling show hetter
agreement with the elastic and first 2" inelastic data.

Fig. 14 shows the elastic cross sections of 239Pu. The eXperimental

19) 20) o

data shown by circles are of Koppola and Knitter ~°. Argonne data

shown by triangles. The experimental values contain the inelastic cross sec-
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tions for low-lying levels. Accordingly, the solid lines also contain the
contribution of the direct inelastic scattering from the three lowest-lying
levels. As mentioned in the discussion for the total cross section of plu-
tonium, the deformation parameter 82 was taken to be 0.22. Agreement with
the experimental data is fairy good. The value of 8
238 240 4)

the values for Pu and
agreement with the data. The same thing may be said of the analysis for

2=O.28, which is close to

Pu in a bibliography , resulted only in a poor

gadolinium (the result is not shown here). The value of 62 taken from the

bibliography4) is 0.34, but 82=0.30 or a little smaller value gave better
results.

For a largely deformed nucleus one has to change the value of Ty if
the volume of nuclear matter is to be held constant. For example, Ty for a
nucleus of a prolate deformation with 82=0.30 should be changed from 1.25
to 1.24, where 1.25 is for the spherical nucleus, and a nucleus with B2=0.34,
T, should be changed to 1.23. We considered these changes for the analysis
of Gd, Pu, etc., and the changes of the Ty values showed a little improve-
ment for the fitness. Use of the smaller values of 62 was, however, still

needed to obtain good agreement.

6, Conclusion

In conclusion, the coupled-channel calculations using the one set of the
optical parameters well reproduce the total and scattering cross sections
over a fairy wide energy and mass region, except for extremely low energy region
and extremely light nuclei. For largely deformed nuclei, use of a little small-
er values of deformation parameter, which are consistent with the values

11)

obtained from a recent Coulomb excitation experiment , gives good fit to

the experimental data.
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Figure captions

Energy dependence of the potential depths. Open circles and
crosses are the values obtained from parameter search using
209Bi dataz) and 207Pb datas), respectively.

Comparison between the experimental and calculated total cross
sections. Thick solid curves are the data of Foster and
Glasgows) and thick dotted curves are the data cited from BNL

325 and its Supplementsg).

Thin solid and dash-dot curves
represent the coupled-channel calculations, and thin dashed
curves the spherical optical-model calculations.

Comparison between the experimental and calculated cross
sections for elastic scattering at 8 MeV. Circles are the

data of Holmgvist and Wiedlinglz), crosses JAERI datals),

14)

and triangles Kentucky data Solid and dash-dot curves
represent the coupled-channel calculations, and dashed. curves
the spherical optical-model calculations.

Comparison between the experimental and calculated scattering

15)

cross sections at 14 MeV. The experimental data are shown

by various symbols. Solid curves represent the coupled-channel
calculations and dashed curves the spherical optical-model
calculations,

Comparison between the experimental and calculated cross sections
for elastic (a) and inelastic (bj scattering by iron. Closed

16). Solid and dashed curves for the

circles are JAERI data
elastic scattering are cross sections calculated with the coupled-
channel theory and the spherical optical model, respectively.

The compound elastic cross sections were added to both the cal-

culated results. The dashed curves for the inelastic scattering
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11.

12.

13.

14.
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are those calculated with the Moldauer theory. The solid

curves represent the summed values of the coupled-channel and

the Moldauer calculations.

Energy dependence of the potential depths for 56Fe. Circles

and triangles are the values searched with the spherical

optical model so as to be fitted to the values calculated with
the coupled-channel theory.

Comparison between the experimental and calculated cross sections
for elastic (a) and inelastic (b) scattering by nickel. Points
and curves have the same meaning as in Fig. 10.

Comparison between the experimental and calculated cross sections
for elastic (a) and inelastic (b) scattering by 1205n. Points
and curves have the same meaning as in Fig. 10.

Comparison between the experimental and calculated cross sections

for elastic scattering by 239Pu. Open and closed circles are

19)

»

the data of Koppola and Knitter 20).

and triangles Argonne data
Solid curves represent the coupled-channel calculations and

dashed curves the spherical optical-model calculations.
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Table 1 Table 2
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DISCUSSION

K. NISHIMURA: Your coupled-channel calculation does not show the

good fit for actinide nuclei. Do you have any specific reason for it?

S. TANAKA: By using a little smaller value than that taken from
other bibliography for coupling parameter, the present potential can well
reproduce the experimental data. For example, the value was changed from
0.28 to 0.22 so that the coupled-channel calculations gave good fit to
the experimental data, Dr. Harada commented that the value 0.22 is not

unreasonable.

S. W. CIERJACKS: Have you applied the coupled channel method to the
interpretation of cross sections above 15 MeV? At Karlsruhe we have observed
in the analysis of total neutron cross sections quite severe deviatiomns
of experiments from theory. These are normally explained in terms of
onset of volume absorption. Can this be accounted for in the coupled
channel model by inclusion of a volume absorption term or perhaps by

changing the coupling strength systematically with increasing energy?

S. TANAKA: T have only few experiences on the application of the
coupled-channel model in the energy range above 15 MeV. Once I tried
parameter search for 209Bi elastic data at 24 MeV, and had to include a
volume absorption term in the potential, I remember. I don't think that
the large differences between the coupled-channel calculations and the
experimental data above 15 MeV can be accounted for by the coupled-channel

calculations using my parameter values.

R. C. BLOCK: Have you calculated the strength functions with your

potential?

S. TANAKA: Not yet calculated. So I don't insist that the present

parameter set is applicable to the very low energy region.
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III-4. OPTICAL MODEL ANALYSIS OF NEUTRON CROSS SECTIONS
AND STRENGTH FUNCTIONS

C.M. Newstead
Physics Department, Combustion Engineering, Inc.

Windsor, Connecticut
and

Institut fir Angewandte Kernphysik

Kernforschungszentrum Karlsruhe

and

S. Cierjacks
Institut fir Angewandte Kernphysik

Kernforschungszentrum Karlsruhe

ABSTRACT

Current problems met in the attempt to interpret fast neutron total
cross sections with spherical and coupled channels optical model calcula-
‘lons are discussed. The energy dependence of the real and imaginary po-
zential strengths is considered and progress in fitting neutron total
cross sections over a wide energy range is discussed. Fluctuations in the
strength of the imaginary potential are investigated in terms of the
s-and p-wave neutron strength function. The role of strength function sys-
tematics in aiding study of the optical potential is developed. The impli-
cations of energy and mass dependences of the optical potential for neutron

data precictions are outlined.
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INTRODUCTION

The optical model has been remarkably successful in describing
é variety of nuclear reactions encompassing a wide energy range. In recent
years a number of global potentials have been proposed each of which has
particular merits in describing the gross features of particular sets of
reactions. To assess the validity of the several forms of the optical
model and the various potentials for the actual evaluation of nuclear data
one is concerned not with a global description but rather with the extent
of the departure from it. By comparison of the optical model predictions
with accurately measured cross sections we can hope to learn in what way
and perhaps even why the potentials depart from their global trends. In an
attempt to investigate these variations we have: 1) compared the predic-
tions of the model with neutron total cross sections over a wide energy
range to study the energy dependence of the optical potential strength and
2) considered the accuracy of the model in predicting s- and p-wave neutron
strength functions for a number of nuclei to both obtain information con-
cerning the strength of the potential at low energy and its variation with
mass number. It is hoped that this and similar studies may serve as some
guide to evaluators faced with the problem of choosing a potential suitable

for a particular mass and energy range.

TOTAL CROSS SECTION ANALYSIS

Theoretically the total neutron cross section constitutes a remarkable
and constantly varying mixture of elastic and inelastic partial cross sec-
tions. From an experimental standpoint the total cross section can be mea-
sured absolutely with high precision. Thus analysis of the variation of the
total cross section with energy provides a useful tool for study of the

optical potential.

In what follows we present the results of a series of total cross sec-
tion measurements carried out at the Karlsruhe cyclotron and their analysis
in terms of the spherical non-local optical model potential of Perey and
Buck. We then attempt to understand the observed departures from this global

description in terms of simple physical considerations.
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Total neutron cross sections for a variety of spherical and vibra-
tional nuclei ranging from calcium to bismuth were measured with a nomi-
nal resolution of 0.04 nsec/m in the energy range 0.5 to 40 MeV with the
fast neutron time-of-flight spectrometer of the Karlsruhe isochronous
cyclotron. For the present study these high resolution results were avera-
ged with a sliding energy width of 500 keV. The resulting average cross
sections are plotted in figure 1 and compared to the predictions of the
spherical non-local optical model of Perey and Buckl). We note that below
3 MeV and above approximately 20 MeV the agreement between theory and ex-

periment rapidly deteriorates.

In a previous investigation carried out with moderate energy resolution
in the energy range 2.5 to 15 MeV, Foster and Glasgow2) measured the neutron
total cross section of a number of nuclei ranging from hydrogen to pluto-
nium. Comparing their data with the predictions of the spherical non-local
potential of Perey and Buck they found better than 3 % agreement for the
46 spherical or vibrational nuclei included in their study as illustrated

in figure 2 for the case of various 1f shell nucleil while agreement was

7/2
only within 17 % for the 19 deformed nuclei considered in their study as
illustrated in figure 3 for various lh9/2 and 2f7/2 shell nuclei.

This latter result is clearly to be expected and serves to illustrate
the utility of coupled channels calculations for rotational nuclei. The for-
mer result was considered an additional triumph for the Perey-Buck model.

It certainly must be regarded as an achievement since the potential was
originally derived from fitting only the elastic angular distribution for 7
and 14.5 MeV neutrons on lead although the resulting potential was then
compared to angular distributions and reaction cross sections for a number
of nuclei at 4.1, 7- 14.5 and 24 MeV and found to give an adequate descrip-
tion. The remarkable success of this simple potential is most probably

due to its non-locality or put another way to the fact that the local repre-

sentation has a built-in energy dependence.

The present study demonstrates that the Perey-Buck potential is inade-
quate to describe the upper and lower regions of the extended energy range.
We note that above 20 MeV an increase in the strength of the imaginary po-

tential would yield better agreement. While this is partly a matter of ener-
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gy dependence of the surface peaked absorption it is primarily due

to the onset of volume absorption. The Perey-Buck potential does not

include a volume absorption term. While this is perfectly justified

at the energies considered in their analysis because of the inhibiting
effects of the Pauli principle which dictates surface absorption at low
energy, it becomes increasingly inadequate at the higher energies consi-
dered here. Of course we cannot uniquely determine the ratio of surface

to volume absorption and its variation with energy from our total cross
section analysis but rather can only infer the need to increase the strength

of the imaginary term.

It would appear that agreement between prediction and measurement
could be obtained below 3 MeV by reducing the strength of the surface
peaked absorption. This is reasonably theoretically since there are less
channels available for excitation at low energy.Thus in the simplest
possible terms the imaginary potential may be thought of as being given
by the product of an average interaction matrix element and the density
of states available for interaction. When this density is low so is the

imaginary potential strength.

Recently evidence for the reduction of the imaginary potential
strength at low neutron energy has been forthcoming from several different
sources. In the latter part of this paper évidence from neutron strength
function analysis will be given. Evidence is also available from analysis
of both neutron scattering and the (p,n) interaction on lead.

Fu and Perey3) have carried out an extensive analysis of elastic
and inelastic reactions for the lead isotopes. They find it necessary to
reduce the strength of the surface peaked absorption at low energy to
correctly describe inelastic scattering while preserving agreement for
elastic scattering. Fu and Perey employ the strengths V = 47.0 - 0.25 En Mev
and W = 3.5 + 0.43 En eV. This is to be compared with the eguivalent lo-
cal representation of the non-local potential of Perey-Buck which has been

4)

determined by Hodgson and Wilmore to be given by W = 47.01 - 0.267 En
- 0.00118 En2 MeV and W = 9.52 - 0.053 En MeV. We note that these two
parameterizations of the energy dependence agree well in the vicinity of

14 MeV where the Perey-Buck analysis was predominately biased by the experi-
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mental results.

Smith and co—workerss) have found both positive and negative ener-
gy dependent coefficients for the imaginary strength depending on the
nuclei being analyzed. This may in part be due to compensation for the
use of the spherical model to describe deformed or highly vibrational

nuclei.

Additional evidence for the reduction of imaginary strength at low
energy comes from the study of the total proton decay of iscobaric analogue
states near threshold. Hoffmann and Coker6) have suggested that the sharp
drop in the (p,n) gfexcitation function near threshold can be described
by such a reduction. It should be noted, however, that there are a number
of difficulties in both the measurement and interpretation of these exci-

tation functions.

The energy dependence of the central or isospin independent optical
potential (Vo and Wé) is intimately connected with the energy dependence
of the isospin dependent optical potential or so-called Lane potential
(V1 and Wl). The energy dependence of the complex Lane potential as obtained
from analysis of (n,n), (p,p), and (p,n) reactions from a few MeV up to
100 MeV has been previously discussed7). This analysis tends to support

8)

Rook's theoretical calculations for the energy dependence of Vo and V

1
carried out using the Bruckner - Bethe G-matrix and the reference spectrum

method of Bethe.

Isospin effects may be of importance when the optical potential is
used to evaluate cross sections for chains of isotopes. Perhaps the best
way to determine the strength and energy dependence of the complex Lane
potential is the comparison of proton and neutron scattering at a number of
different energies. The role of isospin in increasing absorption for pro-
tons as a function of increasing asymmetry ({and decreasing it in the same
manner for neutrons) is illustrated in figure 4 and provides the signature

of the isospin component.

Unfortunately neutron angular distributions of quality comparable with

their proton counterparts are not generally available because of the experi-
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mental difficulties involved in such measurements. To further our study
of isospin streﬁgths a series of high resolution differential excitation
functions at ten different angles are currently planned for measurement
at the Karlsruhe cyclotron to complement the tétal cross section work. It
is recognized that the study of chains of separated isotopes will be of

particular value here.

STRENGTH FUNCTION ANALYSIS

Nuclear data requirements for reactors tend to be concerned with the
lower neutron energy region (if one excludes fusion and material damage
requirements) while our knowledge of the optical potential tends to be
based on measurements and calculations carried out in large measure at higher
energies. In this respect study of neutron strength function systematics
are particularly valuable since the strength function is intimately related
to the strength of the optical potential at low energy. Since the strength
function is measured for particular waves one alsc is spared some of the
ambiguity inherent in averaging over many partial waves as is necessary at

higher energies.

In recen£ yeafs improvements in time-of-flight spectrometry and
strength function analysis techniques have greatly increased our knowledge
of accurate strength function values. In particular use of cyclotron based
high resolution fast neutron spectrometers has permitted us to cbtain
strength functions for light nuclei and higher partial wavesg) while the
employment of the"sharp spike capture technique" by Bloék and co-workers

0)

1 . -
at RPI has led to the measurement of strength functions in deep minima.

11)

In addition the average analysis technique as developed at Harwell and

Saclaylz) has led to the accurate determination of s-, p—- and d-wave strength
functions by the sampling of a large number of resonances and elimination

of the necessity of individual resonance parity assignment.

Analysis of these new results by coupled channel optical model cal-
culations has led to several interesting conclusions. It has been found
that the deep s~ and p-wave strength function minima can be simultaneously

described by the same optical potentiallB). The results of the calculation

—235—



JAERI-M 5984

are given in table 1 and figure 5 where comparison is made with the
experimental values. The important point here is that the strength

of the surface peaked absorption must be reduced in comparison to the
value normally employed for higher energy scattering. It will be recog-
nized that this tends to substantiate the conclusion reached in the

total cross section discussion given above. It is interesting in this
respect to compare the strength function predictions of the Perey-Buck
spherical non-local potential with strength function measurements. This
comparison is given in figure 6. We note that the Perey-Buck predictions
tend to be larger than the measured values in the minima and smaller than
experiments in the maxima. This is consistent with our supposition that
the Perey-Buck imaginary strength (W = 9.5MeV) is too strong for the low
energy region. (Note that in the maxima reduction of W results in increase of
So.) We note that the imaginary strengths given in table 1 are considerab-

ly less than 9.5 MeV.

Sometime ago Moldauer14) proposed an optical potential which gave
good agreement with the s-wave neutron strength functions for the mass
100 region and also provided a good description of neutron scattering

5)

near 1 MeV. In a series of investigations Smith and co-workers have
verified the utility of the Moldauer potential for the description of

low energy neutron interactions. The essential characteristics of the Mol-
dauer potential are the reduction in width of the surface peaked absorption
and the translation of the location of the absorptive band by a small
amount outside the nuclear half-way radius. One can regard this as a way
of reducing the imaginary potential strength rather than having any deeper
physical significance associated with diffuseness or polarization of the
nuclear matter distributions. Such an interpretation would be consistent
with the interpretation of our study. It should be mentioned that the RPI
group has proposed an explanation of the deep strength function minima
based upon the optical potential being different for s- and p-waves. While
this is acceptable theoretically it would not appear to substantiate the

trend found in the total cross section analysis.
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It does seem that particularly at low energy (because of the avail-
ability of states argument) the optical potential fluctuates with mass
number as can be seen from table 1. In extensive scattering studies carried
out at 8 MeV Holmgvist and Wiedlinng) have also found fluctuations in .

the strength of the potential as illustrated in figure 7.

Thus it is clear that evaluators must give some thought to the varia-
tion of the strength of the‘potential when attempting to make accurate
assessments of neutron cross sections. Clearly at the lower energies in-
volved in most nuclear data evaluations nuclear structure effects play an

important role in modulating the glcbal optical potential.
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FIGURE CAPTIONS
Fig. 1 Karlsruhe neutron total cross sections versus energy for nuclei
B 40 209 . .
ranging from Ca to Bi compared to predictions of Perey-Buck

spherical non-local optical model.

Fig. 2 Battelle neutron total cross sections versus energy for various
4
lf7/2 nuclei (with the exception of 4Ca) compared to predictions
- 2
of Perey-Buck spherical non-local optical model ).

Fig. 3 Battelle neutron total cross sections versus energy for various
1h and 2f nuclei compared to predictions of Perey-Buck
9/2 7/2 2)
spherical non-local optical model .

Fig. 4 Contrast between neutron and proton imaginary potentials versus
asymmetry e when the optical potential has an isospin dependent

strength W.. A similar effect occurs for the isospin dependent

1
real potential.

Fig. 5 Comparison between experimental and theoretical values of the
s- and p-wave neutron strength functions versus mass number. The
solid curves are the Buck and Perey collective model predictions
while the symbols + indicate the coupled channels calculations of

the present study whose parameters are given in table 1.

Fig. 6 S-wave neutron strength functions predicted by the Perey-Buck
spherical non-local optical model compared to experimental values.
This comparison suggests that the Perey-Buck imaginary potential
strength should be reduced at low neutron energy. It is understood
that the spherical model is inadequate to describe the splitting of

the 4 S size resonance.l)

Fig. 7 Optical model parameters (strength and geometry) versus mass number as
obtained from a study of 8 MeV neutron elastic scattering. The open
circles are the result of a five parameter analysis. The solid circles
are the result of a two parameter (U and W) analysis with the other

15)

parameters held fixed at average values.
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Table 1 Comparison of theoretical and experimental results for the s- and
p-Wave strength functions
TARGET v W 8, soth slth soeXp . si'i""p :
35, 51.04 0,9 0.0 0.15 1.15 0.08%.07 1.65%0.55
370 48.38 0.9 0.0 0.13 2.07 0.12%0.09 2.87%1.06
39, 48.00 2.5 Lo 0.41 2.40 o.37i:.§2 2.71?2.?3
s0,, 53.50 1.5 Bz=o'36 2.16 0.31 2.56! to 0.2570-°¢
50, 51.11 1.12 30.22  1.94 0.27 2.18%.75  o0.264%0.152
52, 5c.40 0.8 0.17  2.06 .15 2.10%1.05  0.053%.023
54, 49.60 0.44  0.17  0.89 0.076  1.79%1.03  o0.042%0.024
89, 48.97 3.6 0.0  o©0.44 3.92 0.3970%7 4.4 ;f:;
93Nb 49.15 1.35 0.0 0.15 5.18 0.17-0.06 5.16-0.24
98, 48.42 6.2 0.168 0.77 7.21 0.42%0.25 6.8 < 0.5
loo, ~ 47.9% 4.0  0.253 o.74 4.43 0.55%0.30 a.6 " Z‘Z
lod,, ~ 48.91 3.3 0.264 0.4o 5.06 0.40:07 5.o7t::§9
135Ba 47.59 4.0 o.150 l1.01 1.60 1.0 - 0.3
137Ba 47.22 1.82 o.130 o.50 0.84 o.33+o.1?
139, 47.30 212 o.3 o071  0.83  o.70l0 1o 0.7012"2
141, 47.81 4.00 o.llo 1.73 2.0470°%7
165, 47.5 3.00 o0.30  1.82 1.61 1.66%0.24 1.63%.25
200,  46.5 1.5 2322:32 0.50 0.29 O-GSfE:ig o.25f§:§g

Geometry set for all calculations: r, = 1.25 £, a

strengths in Mev. S, and S, in units of 10 .
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DISCUSSION

R. C. BLOCK: At RPI, Turinsky et al. showed that a "simple" (i.e.
non f-dependent imaginary potentials) optical model could produce deep
S. and S, minima. However, when attempting to fit R', the "simple"

0 1

potential did not work. Thus, to fit S S. and R' requires more than

0’ "1
a "simple" potential --- can you comment on the Karlsruhe work with

regard to fitting R'?

S. W. CIERJACKS: It is, of course, possible to adjust the parameters
of simple optical potentials to fit the deep S0 and S1 minima. The crucial
problem is, however, whether you can simultaneously reproduce minima, =
maxima and the widths of size resonances for the strength functions with
one consistent potential. That this is possible, has been demoenstrated
to some extent by the work of Newstead and collaborators. I am not aware

of investigations to fit potential scattering radii, R', additionally.
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carried out for the ENDF/B-IV data library.

scattering data from the vibrational states of the even-even isotopes of Cr and
Ni were analyzed in terms of coupled channel calculations,

are presented in this paper.
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IV-1. Evaluation of Neutron Elastic and
Inelastic Scattering of Cr and Ni

Isotopes Using Coupled-Channel Calculations

by
A. Prince and M. R. Bhat
National Neutron Cross Section Center

Brookhaven National Laboratory
Upton, New York 119732

March 1974

Introduction

Evaluation of the neutron and gamma production cross section data have been

will be published soon.
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2. Chromium (A, Prince)

As part of the evaluation effort for natural chromium, it was necessary
to analyze the neutron angular distributions for the various isotopes (
Most of the experimental datsa existé only for Cr(nat) and 52Cr, therefore as part
of the investigation it was necessary to carry out model type calculations and
make comparisons with the available experimental data. Special emphasis was
placed on 52Cr and 53Cr since their abundances of 83.79% and 9.5% make them
the major contributors to the cross sections of Cr(nat).

Optical model calculations using a modified coupled-channel code JUPITOR(l’Z)
were carried out to determine the total, shape elastic, reaction and direct
inelastic cross sections. The compound nucleus contributions were analyzed with

the code C¢MNUC.(3)

(4

The optical model parameters were derived by a method similar to that

(5,6 (N

of Greenlees et al., ) Bolsterli et al.

The number of excitations used to calculate the inelastic cross sections

are given in Table 1.

Table T
Energy of
Isotope # Levels highest level (MeV)
Cr-50 10. 4.7
Cr-52 24 7.9
Cr-53 15 4.0
Cr-54 11 3.8

The low lying levels were assumed to be vibrational thys the collective

inelastic excitations were calculated assuming O - 2+, 0 -~ 2+ - 3-, 0 - 2+ - 4+

50,52,53, 54,

)
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type coupling. The higher states are weakly coupled to the ground state so

their contributions were assumed to be negligible.

The inconsistency between the Hauser-Feshbach calculations of the
inelastic scattering and the coupled-channel calculations were removed by

jntroducing a reduction factor R given by

-0
oexpt'l DI

o
expt'l

whiere it has been assumed that the difference between the experimental inelastic
cross section and the direct inelastic cross section is the true compound
inelastic cross section.

The comparison between the calculations and experimental data is given
in Figures 1 through 5.

Fig, 1 Shows the comparison between the compound differential inelastic and
the direct differential inelastic scattering cross sections of the 1.434(2+) MeV
level in 52Cr. The sum of these producing the total inelastic. The experimental
data is that of Kinney and Pereyss) Note the symmetry about 90° in the compound
process as compared to the high forward peaking in the direct process.

Fig. 2 Depicts the 2.369(4+) level excitation at En = 8.56 MeV. Both
compound and direct components have been taken into account.

Fig. 3 The differential elastic cross section is given by

d d

o]
+ CE

dQ

CIel - doSE
dQ dQ

the shape elastic (OSE) was calculated from JPIX and the compound elastic (OCE)
was calculated from the statistical model code C@MNUC,
Fig. 4 Shows the high degree of anisotropy in the inelastic scattering

which is assumed to be due primarily to the direct excitation of these levels.

The coupled-channel calculations while producing a satisfactory shape, slightly
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underestimated the magnitude of the cross section by about 20%. The solid

curves have been normalized to the experimental data. It should be mentioned

9

that the experimental data of Stelson et al, is for Cr(nat) which means
that the low lying level contains a contribution for the 1.3 (5/2°) MeV level

in 53Cr.

Fig. 5 Compares the coupled channel calculation with experimental data(9)

at 14.0 MeV. Here the compound elastic cross section was zero, thus all the

contribution is derived from the potential scattering.
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2. Nickel (M. R. Bhat)
The following evaluation of the experimental data available on the

58'60'62'641\11 and the related calculations were carried

even-even isotopes
out in connection with the ENDF/B-IV data library. There are extensive
data on the inelastic cross section of the first excited 2" state in °°Ni
at 1.454 MeV and in °°Ni at 1.333 MeV along with differential angular
distributions. A continuous curve showing the excitation function for
these levels could be drawn through the experimental data from threshold
to about 8.56 MeV and joined smoothly to the results of coupled channel
calculations above this energy. It is reasonable to assume that the
compound nuclear contributions are essentially negligible at and above
9.0 MeV incident neutron energy and that the observed cross section is
entirely due to direct interaction. Below this energy the compound
nuclear and direct interaction cross sections were added to account for
both the total magnitude of the inelastic cross section as well as the
differential angular distributions.

The compound nuclear cross sections were calculated using the code
COMMNUC-I@ ) and the coupled channel calculations were done using JP1XR(®’
which is a modified version of JUPITOR-I*’ . The optical model parameters
used in the calculations were determined by fitting experimental differential

(10) In these calculations

elastic data in the energy range 0.2 to 14.0 MeV.
all the discrete energy levels below 3.5 MeV exctiation with known spins
and parities were used and it was assumed that the levels above 3.5 MeV
could be described by a continuum. However, in the coupled channel

calculations, the 3~ level at about 4 MeV was explicitly taken into

account as it is strongly coupled to the ground state. The coupling
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parameters used in these calculations are from the literature’ ®r 11+ 12)
were obtained from an analysis of (n,n'), (o,2') and (p,p') reactiomns,.
Because of the large computer time involved in the coupled channel
calculations, only three states viz.,, the ground state, the first
excited 2° state and either the 3~ or ome of the two phonon states

were coupled at a time. At those energies where the compound nuclear
contributions were significant, the direct interaction contribution

was subtracted from the evaluated total inelastic cross section and

the differential inelastic distributions from the compound nuclear
processes normalized to this value. This was then added to the angular
distribution given by the coupled channel calculations for comparison
with experimental data. In case the evaluated inelastic cross section
‘differed from the integrated inelastic cross section of a particular
data set the differential angular distribution was further normalized
to this value. The results of such calculations are shown in Figs.

6-12. 1In these are shown the data of Boschung and Lindow'1®? for 587 %°yi

and the data of Kinney and Perey(14) on °°Ni. 1In addition are shown the

(1s,9,18)

elastic scattering data at 14,0 MeV and the inelastic scattering

to the first excited state in the nickel isotopes. Kammerdiener{1%:17)
also obtains a value of 39.5 * 2.8 mb for the inelastic scattering to

the first excited states in Ni. This agrees with the data of Stelson

9
et al.{®) as well as the results of the present calculations.
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DISCUSSION

S, TANAKA: 1In your talk on Prince and Bhat's work, what optical

parameters did they use?

R. E. CHRIEN: I don't know. The optical parameters in Bhat's work
were determined by fitting experimental differential elastic data in the

energy range 0.2 to 14 MeV.
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IV-2, The Effect of Gamma Ray Strength Function on the
Neutron Capture and Gamma Ray Production Cross Section

of Manganese and Europium

Hiroshi Takahashi

National Neutron Cross Section Center
Brookhaven National Laboratory, Upton, New York 11973, U.S.A.*
(*Present Address: Research Laboratory of Nuclear Reactor
Tokyo Institute of Technology)

Abstract

To calculate the high energy neutron gamma ray production cross section
of manganese, the ORNL measurements for iron were analyzed by changing the
functional form of the gemma ray strength function. The Eyf, dependence of
the y-ray strength function used by Axel in the region of 7 MeV, gives better
agreement with the overall experimental spectra than the energy-independent
form of the Blatt-Weiskopf single particle formula. The analysis was
carried out by using the statistical model code GROGI-3 with the Greenlees
and Fernandez optical potential parameters for neutron, proton, and
o-particles. Also, the yrast levels which affect the shape of the
gamma-ray spectrum in the region of high and low energies, are taken
into account. The neutron capture cross sections of manganese calculated
by using the Axel formula_are larger than the experimental values for
neutron: energies above 1 MeV. This result and the marked structure in
the measured gamma ray production cross section indicates that the 6vera11

gamma ray strength function varies as E In addition to this, Cook's

2
v .
. 5 . .

level density parameters for ®°Mn used in these calculations were tested
by comparing the calculated neutron emission spectrum with the experimental
results. The agreement is good.

The analysis of the neutron capture cross section for Europium-151
and 153 isotopes indicates that there is less structure in the gamma ray
strength function than for the light element manganese. The analysis

also indicates that the neutron capture cross sections between 100 keV

and 1.5 MeV in ENDF/B-II are too small by a factor of 2 to 3.
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1. Gamma ray production cross section of Fe.

Since there are no experimental data on Mn it was decided to test the

general validity of the evaporation - cascade model used in these calculations

by comparison with the Fe ORNL data(l). These measurements were analyzed by

changing the functional form of the gamma ray strength function. The gamma-ray

strength function is defined here as qu (1)(2)

J Ty ixxti

HAXL (B = = 5 (Ey) (L)
Ey

where Fy i A x 1 1is the y-ray partial width averaged over states )\ of a

given spin and parity (denoted together by J) in the neighborhood of Ey,

o (E X> is the average level density for such states and E.y2 I+l 35 the

energy dependence for multiplicity L.

)

In the single particle approximation of Blatt, Weiskopf,(a this

strength function is energy independent. But it was pointed out by
Brink'®) and emphasized by Axe1'®’ that a more realistic energy dependence

of the El transition probability could be expressed by

- ' E
G v
foXE1=K i (2)

(B - K6°)° +T6® Eq2

where K is constant for any particular nucleus and the quotient, involving

the width Té and energy EG of the electric giant dipole resonance are derived

from the classical Lorentz line. Figure 1 shows this function for Gd. This

figure is taken from L. Bollinger's paper(s). Axel has shown that the

6

Y
That is, the El y-ray strength function varies as Ey .

radiative width should vary approximately as E in the region of 7 MeV.
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To study the effect of the Y-ray strength functional form on the Yy-ray
production cross section, the statistical nucleus evaporation model code
CROGI-III' 7’ was used to analyze the recent experimental results for irom.

The analysis was carried out for 56 pe isotope which has an abundance of

91.7% in natural Fe. The GROGI-III code replaces the details of nuclear

level excitation by a continuum of levels, so that the strong structure

shown in the experimental results are smoothed out and only the overall

shape of the ¥-ray spectrum is calculated. This code also handles yrast

levels which are important in the calculation of the competition between

neutron and radiative emissions from the high spin compound states. The

effect of the yrast level on the y-ray spectrum will be discussed later.

As regards radiative transitions, this code handles only the dipole and
quadruple emissions. No distinction between electric and magnetic transitions

is made because the excitation level density as defined in this code does

not specify parity. The functional forms of the dipole and quadrupole

¥-ray strength functions used in this code are energy independent in

the single particle approximation. The code was therefore modified to

take into account the Ey? dependence of the %¥-ray strength function. The
normalization of the radiative width was carried out so that its value was equal
to the experimental measurement at the neutron binding energy. The optical
potential parameters used in the transmission calculations of neutron, proton and
10 ;

1(9) and Fernandez(

¢-particles are respectively the ones obtained by Greenlees et a
Figs. 2-5 show the wv-ray production cross sections calculated with
the ener independent and E.? i -
8y P - functional form of the gamma-ray strength

function, and the ORNL experimental results. These indicate that the cross

sections calculated by using the Yy-ray strength function of E>? dependence are
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closer to the experimental results than the ones calculated by the energy

independent y-ray strength function. As indicated above, since a continuum of
excitation levels were used in these calculations they do not show any

(11)

structure. It was pointed out by Thomas and Grover that the yrast

leve affects very much the Y¥-ray production cross section and the averaged

2) showed the effect of the

energy for fast fission ¥-rays. The author(1
yrast level on the y-ray spectrum. To study this effect, figure 5 compares
the y-ray spectra which are respectively calculated with and without the
consideration of yrast levels. The inclusion of the yrast level increases
the high energy ¥-rays and decreases the low energy Y¥-rays.

In this calculation, the yrast levels for low spin states were
determined from the Horen et al.‘}®? 1level scheme and the ones for the

high spin states were calculated by using the approximate expression of

Eq. (3)¢®)

E;=(@+%° /21+6 (3)
where J is spin, I represents the effective nuclear moments, and § is
the pairing energy. From the analysis of the experiment for irom, it
was found that the overall Yy-ray production cross section could be
calculated by using the Ey? dependent ¥-ray strength function. Hence,
the ®°Mn calculations were carried out in the same way as for ®€re using
the Ejf dependent 9y-ray strength function and the results put in the
ENDF/B-1V (preliminary)(14) data files,

. 66
2. Neutron capture cross section of ~ Mn.

The neutron capture cross section of ®®*Mn was calculated by using the
Hauser-Feshbach statistical model code COMNUC-3‘1®? with Axel's y-ray

strength function of Eq. (2). The discrete excitation levels were taken
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from Horen et al.'s data and the continuum level parameters were taken
from Cook's data‘*®’ in the Cameron Gilbert formula*?,

Figure 7 shows the comparison between the calculated neutron capture
cross section and several experimental results. The calculated curve is
quite similar to the one calculated by Devbenko‘*®’ .

The calculated neutron capture cross section deviates from the
experimental values above 1.5 MeV. To get the smaller capture cross
section, the ¥-ray strength function should be small or the competitive
cross section such as inelastic should be large. However, the calculated
discrete level excitation functions show good agreement with the experimental
values. Furthermore, the calculated neutron emission spectrum for 7 MeV
neutron also shows the good agreement with experiment so that the level
density parameter used for the continuum level must be correct. Thus,
to get the smaller neutron capture cross section, the v-ray strength function
should be smaller. 'In the light nuclei, the y-ray strength function is not
so smooth as shown in Fig. 1 but has some structure. This might give a
smaller cross section above 1 MeV neutron energy. The neutron capture
cross section from 0.1 MeV to 2.5 MeV in ENDF/B-IV (preliminary) data was
evaluated mostly from the experimental data, but the small structure due to
the opening of the inelastic neutron channel vere taken into account by
the results of the COMNUC-III calculations. The cross sections between
2.5 MeV and 10 MeV are evaluated from the Menlove et al.(*®’ data and

(20)

the ones from 10 MeV to 20 MeV were based on the Longo-Saporetti semi-~

direct process calculation.
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151 163
d

3. The neutron capture cross section of Eu an Eu.

Figures 9 and 10 show the neutron capture cross sections of 1825y and

1 151Eu 163

®3Eu respectively. Both ENDF/B-II data of and Eu from 160 keV

162

to 2.5 MeV are taken from the activation cross section of Eu 9.3 h

metastable state(zlz and the cross section for 15zEu-ground states is
neglected. To evaluate the cross section, the COMNUC-III calculation

was carried out in the same manner as in the case of °°Mn. The normalization
of the capture cross section was carried out so that the calculated capture

cross sections for both isotopes equal the Konks et al.(zz)

experimental data.
The solid lines from 100 keV to 3 MeV are the values calculated by COMNUC-III
code. These are larger than the ENDF/B-II data by a factor of 2 to 3.

%) made the integral measurement by using the hard

Recently, Harker'?
spectrum of CFRMF facility. The measured values are shown in the figures
with the values calculated by using the flux obtained by Harker. The
agreement between experimental and calculated values is excellent. The
isomeric branching ratio obtained by Harker's integral measurements also
confirms that the higher cross section of COMNUC-III calculation between

160 keV and 2.5 MeV is reasonable. In this calculation, the Axel's 7y-ray
strength function formula was used. The effect of the functional form

on the capture cross section in low energy neutron energy range from

1 keV to 100 keV, 1is small and the calculation shows a straight line. The
Konks et al. data indicates that there are small fluctuations in the capture
cross section, but this must be due to the fluctuation of level density, etc.

Therefore, the normalization of Y-ray strenght function, which directly

affects the capture cross section, should be done with care. Recent

(24) 1.(28)

Czirr's and Hockenbury's preliminary experimental data around
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10 keV neutron energy shows & 1little higher value than the Konks

data, but we took the Konks experimental data as the ENDF/B-IV evaluated

data from the consideration of Harker's integral experimental data and

the COMNUC-III calcuiations. Above 2.5 MeV, the ENDF/B-IV data was

evaluated by using the GROGI calculation and the direct semi-direct

process estimates.

References

. K. Dickens et al. Nucl. Sci. & Eng. 50, 311 (1973).
. A. Bartholomew et al. Preprint "Advances in Nuclear Physics' Feb. 1973,

. M. Blatt and V. F. Weisskopf. Theoretical Nucl. Phys. John Wiley and

Sons, New York (1952).

4, D. M. Brink. Doctoral Thesis, Oxford University (1955).

5. P.

6. L.

Axel., Phys. Rev. 126, 671 (1962).

Bollinger in Proc. of Internation Symposium on Nuclear Structure,

Dubna, Oct. 13-16, 1970. AED-CONF-70-364-002,

7. H.
8. J.
9. F.
10. F.
11. T.
12. H.

Takahashi. GROGI-III, Modified from GROGI-2 (8) (1972).
Gilat. BNL-50246 (T-580) (1969).

Becchetti and G. Greenlees. Phys. Rev. 182, 1190 (1969).
Fernandez. Phys. Rev. 180, 140 (1968).

D. Thomas and J. R. Grover. Phys. Rev. 159, 980 (1967).

Takahashi. Nucl. Sci. & Eng. 51, 296 (1973).

—263—



JAERI-M 5984

13. D; J. Horen et al. To be published in Nuclear Data Table.

14. H. Takahashi. To be published as ENDF/B-IV.data.

15. C. Dunford. Private communication (COMNUC-3 code) (1971).

16. J. Cook, H. Ferguson and A, Musgrove. Australian Atomic Energy Commission
AAEC/TM-392 (1967).

17. A. Gilbert and Cameron. Can. J. Phys. 43, 1446 (1965).

18. A. G. Dovbenko et al., J. of Afomic Energy 26, 67 (1969).

19. H. 0. Menlove et al. Phys. Rev. 163, 1299 (1967).

20. G. Longo and F. Saporetti, Nucl. Phys. Al27, 503 (1969).

21. A. E. Johnsrud, M. G. Silbert and H. H. Barshall. Phys. Rev. 116,
927 (1959).

22. V. A. Konks, Yu, I. Fenin. Dubna 64, 100 (1964).

23. Y. D. Harker. Private communication (1973).

24, J. B. Czirr. UCRL-50804 (1970).

25. R. Hockenbury et al. Private communication. Deec. 1973.

—264 —



20,

1,E; (Arbitrary Units)

JAERI-M 5984

N L

T T

DEPENDENCE OF
-3

LES ON E,
IBG.ISBGd

' ' ' 13

PO PRI BV |

et tad

o 1al

)

mb
sr MeV

GAMMA-RAY PRODUCTION -CROSS SECTION (

Lo !
8 9 10 2 14 |6 I8 20

Fig.1
3
Io = T T T T T T T T T T T T T-
- Fe (n,Xy) .
-//‘ --- EZ y-RAY STRENGTH FUNCTION |
2|/ s —-- €9 y-RAY STRENGTH FUNCTION
0 E/ —— EXPERIMENTAL RESULTS BY E
Er DICKENS et al 3
- E,=5 MeV(cal) _
| 5,00 ~ 5.524 MeV (Exp)
10 F 3
10° 3
. Il -
1
- i
IOI - \ \ 3
= I 3
= i 3
F [ S 3
- N B
n \\ -
- . \\
|0'2 YR LA ST SN N T WU N T N T SR SO
O IL2 345 6 7 8 9101 121314

GAMMA-RAY ENERGY (MeV)

Fig, 2

—265—

)

mb
srMasV

GAMMA-RAY PRODUCTION CROSS SECTION (

)

mb
srMeV

GAMMA-RAY PRODUCTION CROSS SECTION (

|°3 = T T T ¥ 1 T T 1 1 T T 1 = Ll =
F -!'\ Fe(n,Xy) 3
i I‘"I‘ --~ EZ y-RAY STRENGTH FUNGTION ]
i
ol --- g? y~RAY STRENGTH FUNCTION |
0 —— EXPERIMENTAL RESULTS BY 3
o DICKENS et ol 3
[t m
i} -
i
_:' . Eq,=9.0 MeV(cal) i
--| 29,028 ~ 9463 MeV (Exp)
10 = 3
: : 5
- \y 1
| Y
- \ \ h
\ \\
10 A} E
o \ E
o \\ ]
- ‘\ n
I()-l = \‘\ =
E \ 3
- \ 3
|0'2 P IO S | L T B 1 1 TR S |
O | 2 3 4 5 6 7 8 9 1011 12 1314
GAMMA - RAY ENERGY (MeV)
Fig.3
3
0T T T T T T % g
E Fe(n,Xy) E
i --- €2 5 -RAY STRENGTH FUNCTION ]
2 - E? y~ RAY STRENGTH FUNCTION
10" g — EXPERIMENTAL RESULTS BY E
C/ DICKENS et al 3
Lt -
1
i E,=15 MeV(cal) )
| =13.95~ 14,97 MeV(Exp)
o'k g
E 3
i AR 1
N s
. \ \ B
0 A}
-~ N -]
10 E \ \\ 5
o \ \ 1
- \ 3
AY \
B \ 4
\ A
R Y A
I()-I = \\ “‘ =
E 1 3
c \ \ ]
\! ]
~ 1 -
L i _
|°'2 1 1 1 1 1 1 1 i 1 1 1 1 A
O 1 2 3 4 5 6 7 8 9 101 i2 13 14

GAMMA-RAY ENERGY (MeV)

Fig L



)

(

GAMMA-RAY PRODUCTION CROSS SECTION

JAERI-M 5984

103 T T T T T T T T T T T T =
E Fe (n,Xy) 3
£ _
F --- €2, ~RAY STRENGTH FUNCTION ]
2t 7 --~ EY y-RAY STRENGTH FUNCTION
o ~— EXPERIMENTAL RESULTS BY 3
Th DICKENS et al 3
- .
-rl . 7
- £,=19.0 MeV (cal) J >
. =18.09~19.9 MeV (Exp) 2,10 T T T T T T T T
o't 3 *Mp NEUTRON CAPTURE CROSS SEGTION
E 4 -2 .
t ] 0 F --- ENDF/B-1I
| i - — ENDF/ B-TY¥ (PRELIMINARY)
o : --— COMNUGC -3 CALCULATION
107 = 3 "
o 3 = B
C 3 o
o \'\ 7 3 I~ -
- \ -
\\ ~
L 4 > L
N b x JOHNSRUD Exp
10k \ Y . - o STAVISKI Exp
£ \ N 3 ,®L & DOVBENKO Exp
f- \ - -
L \ \ B o
- AN -7 g3
- \ 3 222
10 e e T A NN IS S 1 1 IR NS .
0Ol 2 34 5 6 7 8 9 10 12 i3 14
0.1 1.0
GAMMA-RAY ENERGY (MeV)
E, (MeV)
Fig.5 Fig.7
‘03 T T T T T T T T T T T T - T E!
EFFECT OF Yrast LEVEL TO Fe(n,Xy) =
3
— Yrost LEVEL #0 ]
L ——- Yrast LEVEL = 0 E
.g ; 10 o ‘ ‘ —_1 E T T T T T- T
a0 =L E; y~RAY STRENGTH FUNCTION = £ PLOT OF Ln [N(E)/E! vs EMITTED NEUTRON
~— - *
- E Eq =15 Mev 3 " ENERGY FOR 7.0 MeV NEUTRONS SCATTERED
& i INELASTICALLY BY °mn
o 7
] i Ol
@ olL - 10" — GROGI-3 CALCULATION
a E = N © THOMSON'S Exp
8 - = ——
& . . o — -~ MAXWELLIAN DISTRIBUTION
z i S E WITH TEMPERATURE OF | MeV
= i Z
S—— -
E = o'
8 = - _ e
F >3 E
& L - E"’"’ C
5 L 3 c L
<1
[+ = - -
: | 2.
= 10 = = 10 E
< g = ~
o — A —
C B r
| L
|0'2 1 1 1 1 1 1 1 ! 1 1 1 1 1 ‘ |O'3 1 L 1 1 1 1
0O 1 2 3 4 5 6 7 8 9 10 I 12 13 14 0 ! 2 3 3 5 6
GAMMA-RAY ENERGY (MeV) EMITTED NEUTRON ENERGY E, (MeV)
Fig, 6 Fig ., 8

—266—

LoLaan

Sorasnd g i unl

[T RS S S AN BT 1 I

11yl

1




Ty, (barns)

JAERI -M 5984

1 T IIIIII] T T llllll] T 1 T T TTTT] T T III171] T T T T 17717717
1021 Xx ¢ X (51 i
E N Eu n,y CROSS SECTION 3
- —— ENDF/B-I¥ PRELIMINARY -
I ---~ ENDF/ B-IT EVALUATION . ]
i —-— BENZI'S CALCULATION N |
X KONKS'S Exp \
- < A CZIRR'S Exp ‘\ X 100
~. © HOCKENBURY Exp \
o' L \~\ D JOHNSRUD Exp (9.3 h META STABLE N \ B
s ACTIVATION) NN ]
C ~. \\ N
C \ .
B \
HARKER'S INTEGRAL Exp B
0k 7 ('5'Eu (n, y)lsz u-g )=1.52£0I3b .
- (15! N \ ]
- Eu (n, 7) 2Eu(9.3h)) =1.072 £ 0.086b @A S
o T (SUM)=2.592 born (Exp) -
i T =2.5! barn (CALCULATED BY ENDF/B-TZ-PRELI B\ N \ i
AND THE FLUX CBTAINED BY HARKER) DUB‘D\ \
b a\ ‘\ -
q J
a
IO_I 1 [ U N I I N | SN 1 TN W VO 15 U S 1 ISR ENNSURN NS S B A I B __1__1_1__1_1'_LLL4
107! 10° 10! 102 10 10
NEUTRON ENERGY (keV)
Fig.9
2
10 T T T T TR Al i o i o o { ol S S I R
153

T T T

T T TTTT]

HARKER'S INTEGRAL Exp
o =151 0.12b (Exp)

G =1.53 (CALCULATED BY ENDF/B-I¥ -PRELI!

AND THE FLUX OBTAINED BY HARKER)

t SN (W 1 t 1 vl 1]

—— ENDF/B-I¥ PRELIMINARY
---- ENDF/ B-IL EVALUATION .
—-—~ BENZI'S CALCULATION

Eu (n,y) CROSS SEGTION

KONKS'S Exp
CZIRR'S Exp
HOCKENBURY Exp

z
2

11 lllllil[

m[ol

10°

NEUTRON ENERGY (keV)

Fig. 10

— 267 —



JAERI-M 5984

DISCUSSION

H. E. JACKSON, Jr.: I know of data on the photoabsorption cross
sections for Mn and V from the Lawrence Livermore Laboratory which show
strong structure in the threshold region. So it is not surprising that

the results for Mn suggest structure in the photon strength function.

R. E. CHRIEN: We have seen evidence for a "pygmy" E-1 resonance in
Mo 92-94-96-98 peaking near 7 MeV. The experiment was done with a 24 keV

neutron beam with a FWHM of 2 keV.
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IV-3. Models, lMeasurements and Evaluationxf

by
P. Guenther, P. Moldauer and A. Smith
Argonne iWational Laboratory

Argonne, Illinois, USA.

ABSTRACT

A unified program of physical measurements and
theoretical calculations for the provision of evalu-
ated neutron data in the coutinuum region is outlined.
The basic theoretical coucepts are the optical,
coupled—-channel and statistical R-matrix models. The
complementary measurement program provides the
essential experimental foundation consisting primarily
of neutron total and scattering cross sectious. The
integrated use of experiment and theory to provide
evaluated data sets is discussed inclusive of: 1)
average total and elastic scattering cross sections
and the optical and coupled-cliannel models, 2) inelastic
neutron scattering cross sections and the statistical
and direct-reaction models, and 3) resonance statistics
and fluctuations. The importance of physical concepts

i1s emphasized throughout,

*This work supported by the U, S. Atomic Energy Commission.
tSome of the contents are of a preliminary nature and sub-

ject to change,
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i. Averace !eutron Total and Elastic Scattering Cross

Secticns and the Optical llodel

The basic tool for tiwe interpretation, extrapolation
and evaluation of fast neutron cross sections is the
optical model (1) and its generalization, the rotational
and vibrational coupled-channel model (2). The basic re-
lation of these models to nuclear forces and experimental
observables is schiematically illustrated in Fig., 1.
~——~ The data that are most basically related to these

models are the average total and elastic scattering

cross sections,
The average total cross section is always directly speci-
fied by the optical or coupled-ciiannel models. These
nodels also provide shiape elastic aud direct inelastic
cross sections. At low energies where few inelastic
channels are open these calculateu cross sections must be
supplemented by compound-nucleus contributions which can
be estimated by methods discussed in Section II, below.
In addition, neutron streungth function data may be used
for determination of the model parameters and the behavior
of the fluctuating cross sections at lower energies can
provide additional information as discussed in Section III,
below,

The present work is a physically integrated approach
to model determination based upon complinmentary measured
total and elastic scattering cross sections in the energy
range 0.1 to 6.0 eV aud above with tue objective of pro-
viding comprehensive evaluated neutron data sets. The com-
parison of measured and calculated rasults reveals informa—
tion about tie variation of model puaraieters from nuclide-
to~nuclide including the mapnitude of the (il~2Z)/A dependent
term, the energy dependence of wmourl parameters and the

effect of ellipsoicdal deforwation, Tie results are of value
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in the prediction and extrapolation of cross sections,

as inputs to the calculation of inelastic cross sec~
tions and in tihe study of cross section fluctuations,

The application of models to inelastic scattering are
discussed in Section II., Section III deals with fluctua-
tions and their implications on thie selection of optical
and coupled-channel parameters.

The experimental average total cross section founda-
tion is obtained by measurements (3 to 9) with the objec~
tive of assuring the
-~~~ precise experimental values essential to the forma-

tion of the model and evaluation,

The experimental resolution is good but not a goal iun it-
self, Fig. 2 illustrates the type of results obtained for
nickel together witn the corresponding measured elastic
scattering values and evaluated total cross section, The
latter is derived from high~resolution values reported
primarily by Perey et al, (10) and Cierjacks et al.
(11), normalized where necessary to the present experimental
values. The model parameters are chosen so as to describe
the observed average total cross sections to within a few
percent from 0.1 to 20 eV, The adjustrments include the
six optical model parameters and the deformation, Bye The
energy dependence of the parameters is a free variable but
the results are generally consistent with that reported by
Enselbreciit and Fiedeldey (12). The cnharacteristically good
agreement between measured and calculzted total cross sec-
tions is illustrated in Fig. 3,
~-~-~ The potentials are specific to the given nuclide and
not necessarily of a general nature.
The model parameters fluctuate from nuclide-to-nuclide re-
flectine real differences in the total cross sections. Tor

example, the iron and nickel models differ appreciably due
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primarily to the 15-20% Jifferences between iron and
nickel average total cross sections in the region 1 to 3
MeV,

The total-cross-section based model parameters are
subsequently adjusted to fit tiie measured elastic scatter-
ing angular distributious
---- the measurement of which is an essential part of this

effort,

At low energies the measurements are made with sufficient
resolution to define the intermediate structure and at
higher energies with broader resolutions (3 to 9). The
iron and niobium results of Fig. 4 illustrate this experi-
mental foundation., They are extended to hisher energies
using values reported in tiie literature (e.g. by Perey et
al, (13) and by Holmqvist and Wiedling (14).

The model adjustments emphasize elastic scattering at
energies ~ 5 MeV where the compound—elastic contribution
can be reasonably well determined. The adjustments were
constrained to give a continued good agreement with the.ob-
served average total cross sections. Below 1-2 }eV the
pronounced fluctuations in cross sections of lighter nuclei
can preclude the determination of a well defined average
elastic angular distribution. Above approxinately 6-8 MeV
the angular distributions are primarily due to shape-scat-
tering but compound-nucleus and other processes (e.g. pre-
compound processes) remain contributing factors particularly
in the minima which are very sensitive to model parameter
choice. Some of these plivsical aspects are illustrated by
the examples of Tig. 5. A simple spherical potential is
suitable for cobalt in the few leV range. Above 3 ieV the
calculation of compound elastic contributions becomes uncer-—
tain, yet the reasured values fall between the linits of
shiape-elastic and shape-elastictcompouna—elastic calculations.
The same trends occur in nickel, lowever, tiue first few ex-

cited states ave known to be {wo-phonon vibrational levels
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(15) and thus tlhie calculations are based upon the coupled-
channel model, coupling the ground and first excited states
in a vibrational interactiou,
~--- The effect of coupling on the elastic distributions can
be large, 50Z or more at some aungles and energies,
Fissile; fertile and many fission product nuclei are
rotational—d;formed and precise measurement of their
scattering cross sections is difficult, Theoretical extra—-
polation is often necessary and the coupled-channel model is
a suitable mechanism. Such a model has been experimentally
validated in the case of W-186 and subseguently utilized
in the evaluation of tiie scattering cross section of U-238.
The energy intervals of the ground—-state rotational
band of W-180 are about twice those of U-238 (15). As a
consequence, W-1566 scattering cross sections can be well re-
solved at few-MeV energies in a manner not tecimnically
feasible in the case of U=238, The total and scattering
cross sections of W-186 were measured to ~ 4 MeV and used
to deduce the parameters of a coupled-channel model. The
suitability of the model is illustrated in Flg. 6. The over-
all best agreement with measurements was obtained with an

ellipsoidal deformation of 8, ~ 0,2, This value is smaller

Y]
than that deduced from charge-seunsitive studies (e.g.

coulomb excitation (16)) witih possible theoretical implica-
tions.

With minor adjustments the above W~136 model also de-
scribes the U-238 average total cross sections over tiie range
0.1 to 20 MeV and the elastic angular distributions to 8 MeV.
The latter comparisons included inelastic scattering compo=-
nents consistent with the various experinental resolutions
employed in the measurements. The majority of the elastic
angular distributions were measured especially for this

interpretation and evaluation and the experimental resolutions
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are reasonably well knowi. Representative comparisons of

measured and calculated elastic anpular distriburions are

shown in Fig., 7. Generally the measured values fall be-

tween the two limits: 1) shape-elastictdirect-elastic

and 2) shape-elastictconpound—-elastic+compound-inelastict

direct-inelastic., Tiie discrepancies between measureunent

and calculation are generally no larger than between experi-

ments and systematic uncertainties tend to be concentrated

near the cross section minima where the unresolved contri-
butions from inelastic scattering are largest, the data

most uncertain, and the contribution to the angle~integrated

cross sections least,

The angle~integrated elastic scattering cross sections
deduced from the model interpretation of experiment are
summarized in Fig. 8. The results lead to
~—== evaluated U-238 elastic scattering cross sections differ-

ing from ENDF/B (17), particularly in the rance 1-3 MeV.

No physical explanation of the latter's lower values could

be identified. The present evaluated elastic cross sections

imply the total inelastic scattering cross sections shown in

Fig. 9.

—— These results are consistent with tiose subsequently de-
duced from discrete excitation functions but are 10-20%
lower than the maxiium of the ENDF/B evaluation.

Such a reduction in the inelastic scattering cross section of

U~235 has been indicated from the analysis of some integral

experiments, This U-238 exarmple illustrates tne importance of

pracise evaluation of total and elastic scattering cross sec-
tions with their consequent inplication of non—-elastic and
inelastic scatteriug cross sactions,

It is attractive to employ the optical model for broad
extrapolations in mass, enerry and charrse and this is widely
done. Fumdamental considerations lead to gernerality at tie ex~

pense of simplicity (lv), The non-locality of the nuclear
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force implies an energy dependeuce of the poteutial (19).

Iso-spin considerations lead to an (N-Z)/A dependence (20)

and shell dependent terms have been proposed (21). The

resulting "global" optical potentials have not been exten-

sively verified in a neutron context.

~—=- Therefore the generality of the optical potential was
quantitatively examined for neutron induced processes
in the region of A=10O0,

This is the mass region of many fission products whose

evaluation is often based upon model extrapolations. The

potential can be written in the form (22),

cea1 = Vo = BE = (M-Z)/A x C

(1)

o W o~ M o~ (1=
wimag ko DE (5-2)/A x E

The constants are usually determined from comparisons of
measured and calculated charged-particle induced processes,
An example is the work of Becchetti and Greenlees (22) from
which the values Vo = 56.3 MeV, B=0,32, C=24 MeV, W0= 13
MeV, D=0,25 and E=12 MeV are obtained. These values of B
and D are consistent with those of other authors (12). C
and E are more uncertain even with respect to sign (1,20).
In any event, these parameters and Eq. 1 lead to appreciable
variations of the potential even for ratiher small mass and

energy shifts.

and scattering cross sections of the isotopes Mo-t2Z, -9G,

=98 and -10U extending from a few hundred eV to 4 eV, The
measurements were made in suchh a manner as to best identify
tiie mass dependence, The total cross sections were determined

v
withh accuracies of ~ 5% and the differential scattering mea-

surements nade with sufficient detail to assure a good data
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base in both enerpy aud angle and to avoia isolated energy
dependent fluctuations. The enersy range'was citosen to be
reasonably consistent with a kuowleupe of all exit chaunnels,
Sonie impression of tie scope of this experimental foundation
is given in Fig. 1U.

The analysis was based upon a six parameter Xi-square
fit to the measured elastic angular distributions (real and
imagiuary strengths, radii and diffusenesses). The poten-
tial form counsisted of Voods-~Saxon real, Gaussian-surface
imaginary and Thomas spin-orbit terms, The compound-elastic
contributions were calculated usiug the Hauser-Feshbach
formula with width fluctuation corrections., 7%The overall
agreement between experiment and calculation using a fixed
potential is illustrated iun Fig. lu. Careful "tuning" of
parameters from this general base lead to several conclusions,
—~~ The real potential streugth decreased with increasing

mass at each eunergy.

The effect was very small but consisteunt with the constant
"C" of Eq. 1. The parameter "B" giving the energy dependence
tends to be smaller than 0.32 of Ref. 22,

———=~ The results were not seusitive to small variations in

wimag given in kq. 1.

There was a suall tendancy toward decreasing imaginary radius
with increasing energy. This may be a first step toward the
volume absorption known to exist at higher eunergies.

lie conclude tnat there is
——— a small (-2)/A dependence of tiie real potential for

neutron processes in the mass-energy region A=1lUu,

L’f 4,0 eV consistent witu tuast observed in charged-—

particle studies (22).

The magnitude of the effect is only sliishtly greater than the

experimental uncertaiuties., Further, it is possible that the
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effect is mitigated by some otiier potential depeundence
(e.sr. shell effects).

The model paraneters derived nere in pgeneral do not
agree well with those deduced from high energy elastic
scattering cross sections (E>b MeV), The manner of the
transition of the parameters from tlhie low to hign energy
region will present an interesting topic for further study.

The above optical and coupled=-channel models provide
a good method for the energy extrapolation of total cross
sections in the absence of definitive experimental informa-
tion. They are directly employed in tue angle and energy
extrapolation of elastic cross sections for evaluation,
where such extrapolation is always necessary to some degree.
The models can also be used for extrapolating into unumea-
sured regions (e.g., fission products) but only witir re-
duced reliability as detailed variations of the model

parameters from nuclide to nuclide are still uncertain.

II. Inelastic Keutron Scattering

Optical and coupled-channel parameters determined
through thie fitting of neutron total and elastic-scattering
cross sections can be applied to tue
—=~= calculation of average inelastic neutron scattering

cross sections by means of the Hauser-Feshbach formula

(23).

Where spins and parities of iunelastic levels are known con-
parisons of the Hauser-Feshbach predictions with ouserved
excitation functions can provide additional confirmation of
the optical and coupled-channtel model parameters. Where
they are unknown level spins aud parities can be determined

eititer precisely or within limits.
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Precise application of the models for the interpreta-
tion and evaluation of inelastic neutron scattering data
———= requires modifications of the couventional Hauser-Fesh=-

bach formula.

They are the width fluctuation and resonance interference

corrections (24), The latter is important -at higher ener-

gies where the excitation of individual levels generally
becomes difficult to resolve, The width fluctuation correc~
tion enhances the average cross sections for reactions in
which the entrance and exit channel fluctuations are corre-
lated, with a corresponding reduction of reactions without
such correlation. One example is the reduction of the cross
section for the excitation of the first few levels near
threshold. This reduction can approach a factor of 1/2 in
the case of the first 2+ level of an even isotope. A second
example is the enhancement of compound-elastic scattering
which may approach a factor of three when a large number of
exit channels are open. The latter can be important in the
determination of optical model parameters from elastic scat-
tering cross sections (see Section I, above). Finally,

---~ the theory predicts an enhancement of inelastic cross
sections faor levels that are strongly coupled to the
ground state,

This is the result of both the direct cross section due to

channel coupling and the correlation enhancement of the com=-

pound-inelastic cross sections, Theoretical and numerical
studies are now in progress which will define more accurately
the application of these corrections to tne Hauser-Feshbach
formula. The use of a number of these concepts to the inter=-
pretation and evaluation of inelastic neutron scattering
cross sections is outlined in the following paragraphs.

The simplest exanple is the use of the spherical optical
model and tiie Huaser=Feshibach foruula in the interpretation

and evaluation of inelastic neutron scattering from cobalt.
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The measured values, the calculated results and the evalua—-
tion are summarized in Fig., 11. The theory guides the
evaluation near ‘tiireshold. lowever, thie range of applica-
bility 1s mnarrow witlh increasing uuncertainty above ~ 3 MeV
due to unknown exit cnannels, The uncertainties are such as
to make detailed interpretation unrewarding. Even in the
well defined range the calculations are seunsitive to J" as
indicated by the two sets of calculations based upon
alternate spectroscopic schewes (15). Neither is in detailed
agreement with experiment but the calculations do resolve Jr
ambiguities, For example, the 1.19 MeV state is 9/2- rather
than the alternate 5/2- allowed by charped particle studies,
This assignment as well as similar ones support a spectro-
scoplc scheme consistent with the concept of a proton hole

in the f shell strongly coupled to the spherical core

7/2

with assoiiated collective bands in the manuner of Mottelson

and Nilsson (27).

——-- Thus even this rather simple approach can give structure
information not otherwise easily available,

-—— However, the evaluation remains primarily based upon ex-
perimental information,

Indeed, undue reliance on the model can lead to erroneous re=-

sults, For example, Fig. 12 compares the present experi-

mentally based evaluation (curve A) with ENDF/B (curve B)

based primarily upon model calculations. While the

thresholds are very similar the magnitudes of the prominent

components can differ by a factor of two or more,

The effects of chamel~-coupling and the width fluctua-
tion correction are evident in inelastic scattering from
nickel. The first few excited states of tie predominent
even isotopes are vibrational levels., Results of calcula-
tions based upon both spherical and coupled-channel models

are compared with experirental results in Fi~. 13. At these

—279 —



JAERI-M 5984

energies the spherical and coupled-channel (ellipsoidal)
results do not appreciably differ. Iilowever, the direct
contribution increases witi energy amounting to X 40 mb
for the excitation of the first 2+ state at 14 MeV; con-
sistent with experimental observations of Kammerdiener
(25). below 3 MeV some of tune cross sections calculated
with the hauser-Feshbach formula are appreciably larger
than the experimental values (e.g. the excitation of the
24+, 1.45 MeV state in Ni-58)., In these instances the ex-
perimental results themselves vary comsiderably probably
reflecting actual fluctuations very similar to those common-
ly observed in the excitation of the (46 keV state in iron.
It is a region where the fluctuation correction should be
large and, indeed, it reduced the Hauser—Feshibach result by
approximately a factor of two as indicated by the WFC curve
of Fig. 13.
~—=— When fluctuation corrected tine calculation provides a
good extrapolation of measured values into the experi-
mentally difficult thresiiold region,

The fissile and fertile nuclei as well.as many.fisstion
product nuclei are ellipsoidally deformed with rotational
level spectra (15). The members of the ground state energy
bands of these nuclei are strongly coupled to the ground
state with a resulting enhancement of tihe cross section for
excitation of these levels by inelastic neutron scattering.
An example is provided by the scattering to tiie first
several excited states in w=-186 which is shown in Fig. 6.
The spherical model calculations (32 = () are seen to be
low by about a factor of tiiree, wiile coupled chaunnel calcu-
lations with spheroidal deformation parameters 32 in the
range of U,2 - 0.3 provide good agreement with the observed

cross sections, The influeuce of thie deformation
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is clearly of great importance. In this case the in-
elastic calculations are consistent with tite value of
8o

sections.

v 0.25, deduced from the elastic scattering cross

——== The W-186 study establisiies the importaunce of a
coupled-channel model for application to tiie experi-
mentally more uncertaiu inelastic scattering in U-234.

At low energies tiie model can be used to extrapolate the

discrete level excitation cross sections of U-235 but it be=~

cones less reliable at higher energies wiiere the level
structure is uncertain or unknown, For example, the excita-
tion of the first excited state (2+, 45 keV) can be experi~-
mentally resolved to 1.2 leV (7). The direct component of
the inelastic cross sections for this first excited state

is computed to remain large up to several ifeV as indicated

by the dotted curve in Fig. 15. At ~ 3.0 MeV this cross

section is several times the value given in tune ENDF/B
evaluation. At low euerzies tie excitation function for the
first excited state in U238 exhibits the effects of both
direct coupliung and width fluctuations. A definitive eval-
uation in this region requires a calculation including

those effects. In this region there is a large discrepancy

between experimeutal values aund

~—=-~ extrapolation to threshold using theory provides an

essential guide to evaluatiom,

III. Resonances and Fluctuations

The high resolutions now technically available pro-
vide details of tne resounances or fluctuations up to rela=-
tively high energies, The optical and coupled-channel rodels
can also be applied to tiie calculatiou of the statistical
properties of these fluctuatiowus, Tie averase reaction
amplitudes provided by these models determine the average
R-matrix paranreters Rm and <Yue’Tud> /D. Tie resonance spac-
ines D are determined from rzsonauce neutron data and toe

Yue are assumed to be normally distributed with zero means.
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This information suffices to construct a numerical
statistical reaction amplitude. From this, fluctuating
cross sections are computed whose statistical properties
are then compared with the measured high resolution data.
This statistical comparison permnits a further "fine tun-
ing" of the optical or coupled-channel model parameters.
It also permits the statistical prediction of cross sec~
tion fluctuations from poor resolution data. Finally,
the method is used for better definition of parameters
that determine width fluctuation and resonance interfer-
ence corrections to the llauser-Feshbach formula. This is
done by averaging the statistically generated cross sec—
tions and comparing these averages with the predictions of
the formula.

The above computational procedures have been incor—
porated into a computer program STASIG (20). A random
number generator is used to select the R-matrix parameters
in accordance with optical and statistical model. The
statistical cross sections are calculated, averaged with a
resolution function equivalent to that of the experiments
and compared with the measured values., Such statistical
comparisons can be made either qualitatively by visual com~
parisons of the curves or quantitatively by comparisons of
auto-~correlation functions, cross section distribution
functions, etc., The internal consistency of the calcula-
tions is verified by averaging the statistical total cross
section over large energy intervals and cowparing these
averages with cross sections obtained from the optical
model employed in tne input to the calculatioms.

The total and inelastic scattering cross sections of
the even isotopes of titanium were calculated using tne
above methods with both spherical and ellipsoidal models

and compared with the measured values obtained in the
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complementary experimental effort (8). The measured and
calculated total cross sections are compared in Fig. 1b.
—~= DBoth qualitatively and quantitatively the ellipsoidal
calculation agrees better witii tlie measurement,
particularly with respect to the cross section extrema and
the grouping of resonaunces, as well as with regard to the
auto-correlation functiomn.
Similar comparisons of measured and calculated cross sec-
tions for the excitation of the 954 keV state of Ti-48 are
shown in Fig. 17.
~——= The ellipsoidal result is similar to tiie measured in-
elastic values, in contrast to the results obtained

with the spherical model.

In this instance it is not possible to distinguish be-
tween spherical and deformed models on the basis of average
total and elastic scattering cross sections. liowever,
~——~ the analysis of the fluctuations clearly indicates a

preference for the ellipsoidal coupled-channel model.
In addition, tie ellipsoidal calculations lead to an inter-
mediate resonance structure similar to that observed without
recourse to other reaction mechaniswms.

The above methods were applied to tihe evaluation of tne
total cross sections of cobalt. High resolution experimental
data is available at energies R 0.45 MeV with apparently no
equivalent information between, The fluctuating cross sections
were calculated from the optical model, statistically verified
against the experimental results available both below and
above the region of ignorance and then used to interpolate
across the experimental gap. The résulting evaluated cross
section is shown in Fig. 18, It is difficult to distinguish
tire nodel-intorpolated region frowm tihe adjoining experimentally-
based values, Ultimately tue above procecures have a potential

for the direct provision of fluctuating cross sections by
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analytical means thereby avoiding the increasing enormity

of evaluated numerical files and providing a physical

insight well beyond the experimental capability,

Iv,

Summary Comment

The above inteprated program of models, measurements

and evaluations highlights some general conclusions.

There is no substitute for as good an experimental
data base as possible. It is essential to reliable
models and evaluations.

Models have their primary strengths in the extrapola-
tion, interpolation and physical interpretation of
measured values,

Models extending too far from the experimental founda-
tion should be applied with considerable caution and
only when no other alternative is available,

The provision of evaluated data is an integrated
physical endeavor consisting of measurements, inter-
pretation and evaluation, They are not separate
disciplines and, in particular, evaluation in itself

cannot create information or knowledge.
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FIGURE CAPTIONS

Schematic outline of the interrelation of nuclear forces,
optical and coupled-chaunel models and calculable observables.
Total neutron cross section of nickel (8). Present measured
values are indicated by @ (&>1.5 MeV) and tiie solid curve

(E< 1.5 MeV) and the evaluation 1is sliown by the dotted line.
Measured elastic scattering values are indicated by .
Measured and calculated total cross sections of nickel (&).

The “experimental"” values were constructed from a number of
sources (e.g. Refs., 10 and 11)., The calculation was obtained
using a coupled=channel model.

Elastic neutrons scattering cross sections of iron and niobium
(3, 4) present measured values are indicated by data points.

The curves indicate the results of legendre-fits to the data.
Intermediate structure is evident in iron at lower energies,
Differential elastic scattering cross sections of nickel and
cobalt (5,8). Measured values are indicated by symbols with the
present results denoted by "o'". The curves indicate the results
of model calculations using spherical (cobalt) and ellipsoidal
(nickel) potentials.

Measured and calculated differential neutron scattering cross
sections of W-186 (6). The experiniental values are indicated by
symbols and the results of calculations using varying deforma-
tions from 82 = 0 to 0.3 are shown by curves. The upper distri-
butions pertain to elastic scattering and tine lower to the in-
elastic excitation of the 2+, 125 keV state,

Differential elastic scattering cross sections of U-238, 1lea-
sured values are indicated by syubols with the present work
given by "o" (7). All the measured values contain scme contribu-
tion from inelastic neutron scatterius, The results of ellip-
soidal calculations are indicated by curves with the notations;

si=shape-elastic, Ck=compouund-elastic, DI=direct-inelastic and
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CI=compound-inelastic.

Total and elastic scattering cross sections of U=-238 (7). The
present evaluations are indicated by the heavy curve. That of
ENDF/B (17) by the light curve., Data points indicate the
elastic scattering cross sections deduced from spherical and
ellipsoidal models based upon experiments. Dashed curves indi-
cate a subjective estimate of the limiting uncertainties in the
calculated results.

Total inelastic scattering cross sections of U-238 (7). Dotted
curves indicate the values implied by total and elastic scatter-
ing cross sections with respective maxinmum and minimum limits.
The heavy curve indicates the present evaluated total inelastic
scattering cross section and the light curve that of ENDF/B (17).
Differential elastic scattering cross sections of Mo-92, ~96,
~98 and -~100. Measured values are indicated by data points.
The results of a general optical model fit to the data are indi-
cated by curves,

Inelastic neutron scattering cross sections of cobalt (5). The
measured data is indicated by symbols with the present values
given by [0 . The solid curve shows the present evaluationm.
The dashed and dotted curves refer to model calculations based
upon altermate spectroscopic schemes.

Evaluated inelastic scattering cross sections of cobalt (5).
Curve A is from the present work, curve B from ENDF/B (17).
Inelastic neutron scattering cross sections of nickel (8).
Measured values are indicated by symbols with the present work
given by @ . The evaluation is indicated by the solid curve.
Hauser-Feshbach calculations based upon spherical and ellip-
soidal models are Indicated by dashed and dotted curves,
respectively, In addition, tine effect of the width fluctuation
correction to the calculated excitation of the 1.45 MeV state

of Ni-56 is shown,
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Inelastic excitation of tue 45 keV, 2+, state in (=238, }Mea-
sured values are indicated by symbols (7). The present eval-
uation is indicated by the heavy curve. Its behavior toward
threshold follows the predictions of a coupled-ciiannel model.
The same model gives tiie direct inelastic component indicated
by the dotted line. The ELDE/B (17) result is indicated by
the light curve,

Comparison of measured and calculated total cross sections of
titanium (9). The upper curve indicates the experimental
values and the lower two those calculated from the statistical
model based upon ellipsoidal and spiherical potentials.
Comparison of measured and calculated cross sections for the
excitation of the 948 keV state in Ti-48 (9). The format is
identical to that of Fig. 15.

Evaluated total cross sections of cobalt (5). The region 0.2
to 0.45 MeV is derived from the statistical calculations de~

scribed in Section III of the text,
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DISCUSSION

S. W. CIERJACKS: There has been some time ago some work at Argonne
on the investigation of intermediate structure in neutron cross sections.
In particular I remember the interpretation of intermediate structure
in terms of the intermediate optical potential of Moldauer. Could you
comment on the necessity for such a treatment and on the continuation

of this kind of work?

H. E. JACKSON, Jr.: This work is certainly continuing. The calculation
of fluctuating cross sections from the optical model described in this
paper is a continuation of that work.

R. C. BLOCK: You presented some work on 238U where the elastic

scattering was subtracted from the ENDF total cross section, and that in
the region 1 v 3 MeV there was a large difference between the calculated
and difference values. At RPI we measured the total cross section of 238U
and found that in the 1 v 3 MeV region there was a 3 v 5% discrepancy with
regard to the ENDF-IIT value. This is substantiated by the NBS recent
measurements. Thus the new difference between total and elastic cross

sections will be quite different from the value obtained in your (presented)

paper.
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V-1. FREE DISCUSSION

T. FUKETA: The title of this meeting was originally suggested by
Prof. W. W. Havens, Jr. at the previous EANDC Meeting. Not to speak of
his great contribution to the EANDC, I personally appreciate very much
for his advices to this Topical Discussion. We had known that the choice
of the title should rather be made by the discretion of the host of the
meeting. Aside from that, however, in the program and advisory committee
of this Topical Discussion, there has been a criticism on the title of this
Discussion Meeting which said that the work "critique" in the title sounds
too critical. I myself is not sure about this kind of nuance in English,
and I would like to hear about this from the EANDC members at this occasion.

But I'm not asking you about the linguistic nuance only.

P. RIBON: Evaluators have a tendency to use the nuclear computer codes
as black boxes which provide good answers if good input parameters are
entered -—-- forgetting that there are approximations both in the codes and
in the theories.

I have the feeling that Prof. W. W. Havens proposal was to use the
opportunity of this topical discussion to remind the approximations used
in the theories and in order that physicists tried to define clearly the
field of application of these theories and the consequences of various

approximations.

J. S. STORY: Dr. Motz showed an R-matrix analysis of the n—He4
reactions. In comparison he showed the data from the ENDF/B3 file (MAT-1088);
the v 2 MeV resonance being slightly shifted in energy. So far as I recall
the ENDF/B file was based on a coupled-channel optical model analysis: it
might seem surprising at first that the optical model has applications in
resonance analysis but so it is. (Another excellent example may be found
in the work of Reynolds et al. Phys. Rev. 176, 1213 (1968) in relation to
neutron scattering by C-12.) In comparison the ordinary R-matrix theory
suffers from being based on the rather artificial concept of the infinite
square well and may run into difficulties when applied over an energy range
of several MeV; this theory can only be justified by its ability to inter-
pret experimental data.

I should like to utter a further caution against too much reliance
on predictions derived from R-matrix theory. The analysis can only be used
reliably if one knows all the levels, and even for the light compound
nucleus involved in the n—Li6 reaction, one does not know the details of

all the levels.
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A. MICHAUDON: It is a well-known fact that fission theory cannot
predict relevant cross sections within 1% accuracy, but there are cases
where experimental data are very scarce and for which a crude estimate of
the cross sections would be useful. Could a real data user care to comment
on this?

It would seem that the development of fission reactors should be
sensitive to progress which can be made in the understanding of the fission
process. In fact, a break-through has been made in the understanding of
the fission process this last decade; for example, fission isomerism,
intermediate structure in fission cross sections etc. This makes now the
study of the fission process to be quite active now. On the other hand,
this activity seems to have little impact on model calculations of fission
cross sections. I would like to know, from a user of nuclear data, if more

elaborated model calculaitons of fission data present some interest.

P. RIBON: In most cases the request is for a more accurate knowledge
of the absolute value of the average cross section, and for the knowledge
of its smooth variation with energy. The nuclear fission theories do not

allow, presently, to predict these properties with a good enough accuracy.

J. S. STORY: I thought that Dr. Michaudon's presentation on the
calculation of fission cross-sections was valuable. In the future the
cross—sections of the transplutonium materials will be required and some
of these must be obtained by calculation. At present some are not known

to a factor of 2.
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