

COMPILATION OF MEASURED CAPTURE CROSS SECTIONS FOR JENDL-FISSION PRODUCT NUCLEAR DATA FILE

March 1978

by Hiroyuki MATSUNOBU*and Takashi WATANABE**

日本原子力研究所 Japan Atomic Energy Research Institute

この報告書は、日本原子力研究所が JAERI-M レポートとして、不定期に刊行している 研究報告書です。入手、複製などのお問合わせは、日本原子力研究所技術情報部(茨城県 那珂郡東海村)あて、お申しこしください。

JAERI-M reports, issued irregularly, describe the results of research works carried out in JAERI. Inquiries about the availability of reports and their reproduction should be addressed to Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, Japan. Compilation of Measured Capture Cross Sections for JENDL Fission Product Nuclear Data File

Hiroyuki MATSUNOBU* and Takashi WATANABE**

Fission Product Nuclear Data Working Group Japanese Nuclear Data Committee Tokai Research Establishment, JAERI (Received January 31, 1978)

The status of experimental data of neutron capture cross section is reviewed on 38 fission product .(FP) nuclides important for fast reactor calculations. Experimental data are compiled for 24 of the 38 FP nuclides in the energy region above 1 keV.

Appendix I gives outlines of the experiments (neutron energy, number of data points, cross section, neutron source, experimental method, standard cross section, β - and γ -ray data etc.) in tables. Appendix II illustrates the compiled data of neutron capture cross section in figures.

This work was made as a part of evaluation work of Fission Product Nuclear Data Working Group of Japanese Nuclear Data Committee. The authors were supported under the contract with JAERI.

Keywords : Fission Products, Data Compilation, Experimental Data, Neutron Capture Cross Section, Graphs, Tables

* Sumitomo Atomic Energy Industries, Ltd.

** Kawasaki Heavy Industries, Ltd.

JENDL用・核分裂生成物核データ・ファイル作成のための 中性子捕獲断面積測定データの収集

> 日本原子力研究所東海研究所シグマ研究委員会 松延広幸・渡部隆**

> > (1978年1月31日受理)

本報告書は核分裂生成物(FP)核種の中性子捕獲断面積データ収集の結果をまとめたものであ る。高速炉の燃焼過程で炉心反応度に大きな影響を与える重要FP(Fisson Product)38 核種 の中で、高速エネルギー領域の中性子捕獲断面積が測定されている24 核種に就て、実験データの 現状がレビューされている。なお、付録に、実験の主な内容(中性子エネルギー、測定点数,断 面積、中性子源、測定方法、標準断面積値、β線およびr線データ等)が核種毎にテーブル形式 で与えられ、また、収集された中性子捕獲断面積データが核種毎にグラフで示されている。

本作業は、シグマ研究委員会・核データ専門部会・FP核データワーキンググループの作業の 一環として、核データセンターからの委託調査として行なわれた。

- * 住友原子力工業(株)技術部
- ** 用崎重工業(株)原子力技術部

.

Contents

1.	Introduc	ction	1
2.	Procedur	e of literatures and data compilation	2
3.	FP nucli	ides compiled in this document	2
4.	Status o	of the compiled experimental data	3
5.	Descript	tion of the attached Tables (Appendix I)	5
6.	Remarks	•••••••••••••••••••••••••••••••••••••••	7
Ack	nowledgem	nent	7
Ref	erences	•••••••••••••••••••••••••••••••••••••••	8
App	endix I	: Tables (1 \sim 24)	
		Contents of the Experimental Method and Data Compiled	
		for 24 Important FP Nuclides 1	1
App	endix II	: Figures (1 \sim 24)	
		(n, γ) Cross Sections of 24 Important FP Nuclides in	
		the Energy Range from 10eV to 15MeV	59

目 次

1.	序	<u>≉A</u> mi	1
2.	文献・	 データ収集方法 	2
3.	収録さ	されたFP核種	2
4.	収録さ	された実験データの現状	3
5.	付録I	[の表の説明	5
6.	所	見	7
謝	辞	·····	7
参考	予文献		8
付金 付金	ŧΙ :	 表(1~24) 重要24 FP核種のデータの実験法に関する記述 図(1~24) 	11
	—	重要 24 FP 核種の 10 eV~ 15 MeV間の(n, r)断面積	59

1. Introduction

The importance and needs of fission product (FP) nuclear data are rising more and more in the whole fields relating to nuclear power. Responding to these demands, evaluation work of the FP nuclear data for fast reactors has been powerfully performed in JNDC (Japanese Nuclear Data Committee) over several years. Capture cross section is one of the most important FP nuclear data. Accordingly, as a part of this evaluation work, compilation of the experimental data on capture cross section was required in order to examine the systematic trends of mass number and energy dependences of capture cross section, and to increase the reliability of evaluation.

In this compilation work, the experimental capture data in keV and MeV range were surveyed for 100 FP nuclides which selected according to the order of contribution to the capture effect in fast reactor cores. As a result of compilation work, many experimental data were collected for about 50 nuclides. The compiled data were plotted in the figures, and used to normalize the capture cross section obtained by theoretical calculation.

The FP nuclear data evaluated in the present work were compiled in JENDL-1 (Japanese Evaluated Nuclear Data Library, Version 1) which has been completed recently. This document gives a description of compilation of the measured capture cross sections performed in order to prepare the fission product nuclear data file for JENDL-1.

In Section 2, the procedure of data compilation is briefly described. In Section 3, the FP nuclides compiled in this document are shown on the basis of the classification of FP nuclides. In Section 4, the status of the experimental capture data is described for the compiled nuclides. In Section 5, a description on the contents of Tables attached in Appendix I is given. In the last Section 6, some remarks are given for preparation of this document.

Appendix I consists of the above Tables, the abbreviations used in these Tables, and the experimental references. In Appendix II, the Figures of capture cross section are shown for 24 FP nuclides.

- 1 -

2. Procedure of literatures and data compilation

Survey on the measurements of capture cross section for FP nuclides was done using CINDA $76/77^{1)}$ and its Supplement $76/77^{2)}$, and the recent literatures. The contents of measurements were surveyed for the collected literatures over the following items.

neutron energy and its resolution, neutron source, accelerator, method of the measurement, used detector, standard cross section, flux monitor, measured or used β -and γ -ray

data and their branching ratio, and measured cross section The used standard cross section or monitor reaction cross section, and the branching ratio of the decay mode by β and/or γ decay are especially important quantities, because the discrepancies between the cross sections measured by different experimenters might be caused by the differences of these quantities.

The measured capture cross section data were compiled on the basis of the collected literatures and the recent NEUDADA. In a few cases, the data plotted in the figures of BNL-325, Supplement³⁾, or the numerical data described in the comments of CINDA 76/77 were compiled when the numerical data are not given in the original papers and NEUDADA, or the original papers could not be obtained. There are some differences between the original data and NEUDADA on neutron energy and capture cross section in a few nuclides. It is supposed that the original data were revised when they were compiled in NEUDADA. Then, in such a case, the data compiled in NEUDADA were adopted in present compilation.

3. FP nuclides compiled in this document

The FP nuclides are classified into some categories according to their contribution to the capture effect in burn up of fast reactor. This classification is given by S. Iijima⁴⁾. In this document, 38 important FP nuclides classified into "Class I" to "Class III" were picked up, and their experimental capture data in keV and MeV range were searched by the procedure as mentioned in the previous section.

- 2 -

JAERI-M 7568.

In addition, the capture effect by these 38 nuclides occupies about 93% of that by the whole FP nuclides. As the result of survey, the 38 nuclides were divided as follows.

	Nuclides with the Exptl. Data	No Data Nuclides				
Class I	⁹⁷ Mo, ⁹⁹ Tc, ¹⁰³ Rh, ¹⁰⁵ Pd,	¹⁰¹ Ru, ¹⁰⁷ Pd, ¹³⁵ Cs, ¹⁴⁷ Pm,				
	¹³³ Cs, ¹⁴⁹ Sm	¹⁵¹ Sm				
Class II	⁹⁵ Mo, ⁹⁸ Mo, ¹⁰⁰ Mo, ¹⁰² Ru,	⁹³ Zr, ¹⁰³ Ru, ¹²⁹ I, ¹³¹ Xe,				
	¹⁰⁴ Ru, ¹⁰⁹ Ag, ¹⁴¹ Pr, ¹⁵⁰ Nd	¹³² Xe, ¹⁴³ Nd, ¹⁴⁵ Nd				
	¹⁵³ Eu					
Class III	⁹⁶ Zr, ¹⁰⁸ Pd, ¹²⁷ I, ¹³⁹ La,	¹⁰⁶ Ru, ¹⁵⁵ Eu				
	¹⁴² Ce, ¹⁴⁶ Nd, ¹⁴⁸ Nd, ¹⁴⁷ Sm					
	¹⁵² Sm					

Although a report⁵⁾ on measurement of the capture cross section has been published for ¹⁴⁷Pm in the energy range 20 eV to 10 keV, yet the numerical data have not been published. On the 24 nuclides with the measured capture cross section, Tables showing the contents of the experiments and Figures of their capture cross sections were prepared, and attached in Appendix I and II, respectively.

4. Status of the compiled experimental data

As mentioned in the previous section, the measured capture cross section data were obtained for 24 nuclides from among 38 important nuclides. Although, many data were collected in this compilation, most of the collected data concentrate on ⁹⁸Mo, ¹⁰⁰Mo, ¹⁰³Rh, ¹²⁷I, ¹³³Cs, ¹³⁹La, ¹⁴¹Pr, and ¹⁵³Eu. The data for these nuclides are very abundant and distribute densely over the energy range from eV to MeV. However, it is noticed that there are large discrepancies among the data measured by different experimenters for these nuclides. Particularly, remarkable systematic discrepancies are observed over the wide energy range for the data of ⁹⁸Mo, ¹⁰⁰Mo, ¹²⁷I, ¹³³Cs, and ¹⁵³Eu.

- 3 - -

Next, there are some data in the limited energy range for 95 Mo, 97 Mo, 99 Tc, 105 Pd, 108 Pd, 109 Ag, 148 Nd, 150 Nd, 147 Sm, and 149 Sm. It is also pointed out that there are remarkable systematic discrepancies among the data of 109 Ag in the energy range from 10 to 150 keV. The data of 96 Zr, 102 Ru, 104 Ru, 142 Ce, 146 Nd, and 152 Sm are poor and obtained for only three to nine energy points.

Generally speaking, the data for most of the nuclides exist most abundantly in the energy range around 25 keV. However, it is pointed out that the discrepancies among the data are also most remarkable around 25 keV, as shown in the attached Figures. It is necessary to investigate the cause of these discrepancies and to examine the reliability of the data in order to use these data in evaluation or as a normalization $_{\rm E}$ int of calculated cross section.

In this compilation, many new data are collected for 15 nuclides. These new data have been published after 1973 in which FP Nuclear Data Panel⁶⁾ was held at Bologna. The recent measurements for Mo-isotopes have been performed by A. R. de L. Musgrove et al.⁷⁾ in the energy range from 1 to 90 keV in 1976. Their data show good agreement with the data by Kapchigashev et al.⁸⁾ for ⁹⁵Mo and ⁹⁷Mo, although they deviate from the latter data in some energy intervals for ⁹⁸Mo and ¹⁰⁰Mo. The 25 keV data for ⁹⁸Mo and ¹⁰⁰Mo have been also presented by R. P. Anand et al.⁹⁾ in 1974. Their data are in agreement with the data by Musgrove et al. and Kapchigashev et al. for ⁹⁸Mo, while the data for ¹⁰⁰Mo are considerably lower than those by Musgrove et al. R. P. Anand et al. presented also the 25 keV data for ¹⁰⁴Ru. Their data show good agreement with the 24 keV data by Murty et al.¹⁰⁾ and Macklin et al.¹¹⁾ R. W. Hockenbury et al¹² presented a number of data in the energy range from thermal to 300 keV for ¹⁰³Rh, ¹⁰⁵Pd, and ¹⁵³Eu in 1975. The abundant data for ¹⁰³Rh have been also presented by C. Le Rigoleur et al.¹³⁾ in the same energy range as Hockenbury et al. in 1975. The first measurements for 105 Pd have been performed by R. L. Macklin¹⁴⁾, and Hockenbury et al. in 1975. The data by Macklin show the maximum and minimum values around 2.6 keV.

- 4 -

The recent measurements in keV region for ¹²⁷I have been performed by N. Yamamuro et al.¹⁵⁾ at 23.7 keV and K. Rimawi¹⁶⁾ at 24.3 keV in 1975. Both data show very good agreement. The measurements in MeV region have been done by J. Vuletin et al.¹⁷⁾ at 14.4 MeV and F. Rigaud et al.¹⁸⁾ at 14.6 MeV in 1974, and by O. Schwerer et al.¹⁹⁾ at 14 MeV in 1976. Their data are in agreement with mutually within the experimental errors. Yamamuro et al. presented also the 24 keV data for ¹³³Cs in 1976. Their data are consistent with the data by Popov and Shapiro²⁰⁾ (1962), and show a lower value than the data by Kompe²¹⁾ (1969). Vuletin et al., Rigaud et al., and Schwerer et al. presented also the 14 MeV data for ¹⁴¹Pr, for ¹⁰³Rh and ¹³⁹La, and for ¹³⁹La and ¹⁴²Ce, respectively.

The most recent measurements for ¹⁺⁷Sm, ¹⁺⁹Sm, and ¹⁵³Eu have been performed by B. N. Kononov et al.²²⁾ in the energy range from 5.5 to 342.5 keV in 1977. Their data for ¹⁺⁷Sm and ¹⁺⁹Sm show considerably higher values than the data by Macklin²³⁾ at 30 keV. Their data for ¹⁵³Eu show also systematically higher values than the data by Konks and Fenin²⁴⁾, Hockenbury et al., and M. C. Moxon et al.²⁵⁾ However, they are in good agreement with the values derived from the data by $Czirr^{25)}$ for natural Eu and ¹⁵¹Eu. The data by Moxon et al. show the lowest values compared with other data in the energy range from 0.1 to 400 keV, but are in agreement with the data by Konks and Fenin, and Hockenbury et al. within the experimental errors.

5. Description on the attached Tables (Appendix I)

The main contents of the measurements on capture cross section are given for 24 FP nuclides in the Tables attached in Appendix I. The items and contents described in the Tables for each nuclide are as follows.

Column 1 : Reference

The literatures cited in the present compilation are given in chronological order by the abbreviations combinning the year in which the experiment was done and the name of the leading author. These abbriviations are given in

- 5 -

"Experimental References" of Appendix I.

Column 2 : Energy

The energy range in which the measurement was performed is given in keV unit. The energy resolution is also shown if it was given by the author.

Column 3 : N

This means the number of data points measured.

Column 4 : Measured Cross Section

The measured capture cross section is given in milli-barn unit. The error of cross section is also shown if it was given by the author. However, they are omitted in case of many data points more than 5 points existing.

Column 5 : Neutron Source

The neutron source is shown in the form of radioactive material, or nuclear reaction and/or accelerator used.

Column 6 : Method

The method of measurement is shown with the detectors used.

Column 7 : Standard or Flux Monitor

The standard cross section which was used in relative measurement, or the reaction cross section which was used in determination of the absolute value of neutron flux is given in milli-barn unit with the nuclear reaction form. The reaction form is omitted in some cases, if it is (n,γ) reaction.

Column 8 and 9 : Thermal Cross Section

These columns are only used in case of "doubleratio comparison" technique applied in activation measurement. The thermal cross sections of the standard and target (sample) nuclides are given in barn unit in Column 8 and 9 respectively.

Column 10 : Comments

Appropriate information which is not given in the previous columns is described in this column. Especially, the data

-6-

on β -ray and/or γ -ray emitted from the residual nucleus, and their branching ratio are important in order to compare and renormalize the cross sections obtained by various methods and techniques.

In this Table, many abbreviations are used for the simplicity, and in order to give many information. Explanation on these abbreviations is given in the annexed papers of Appendix I.

6. Remarks

This document was prepared as a preliminary one in order to investigate the compiled experimental data and methods, and to promote the evaluation work of the FP nuclear data for JENDL-1. Accordingly, it is expected that this is not complete, but includes considerable defects. The revision of this document will be done in the next step of evaluation work. At the next step, the format of Tables and the abbreviations used in Tables will be modified to be more complete, effective and simple.

The purpose of this document is to clarify the status and problems of the experimental data, and to provide the subject matter of data evaluation.

Acknowledgement

The authors wish to cordially thank Dr. S. Iijima for his advice, discussion, and encouragement for this work. They are grateful to Dr. A. Asami and Prof. N. Yamamuro for their discussion and comments on the details of experiments. They are also indebted to Mr. T. Yoshida for introduction of a new literature on nuclear data evaluation, and to Mr. T. Nakayawa for his effort on retrieval of the data file.

- 7 -

References

1)	CINDA 76/77 : An Index to Data. Vol. By the Inte: (1976)	the lite l and 2, rnational	rature on m Atomic Ene	icroscopi rgy Ageno	ic neutron cy, Vienna
2)	CINDA 76/77 : An Index to Supplement l Data. By the Inter (1976)	the lite	erature on m . Atomic Ene	icroscopi rgy Ageno	ic neutron cy, Vienna
3)	BNL-325,Suppl.: Neutron Cros Suppl. No. 3 Vol. II A, Vol. II B, Vol. II C,	ss Sectio 2 Z = 21 t $Z = 41 tZ = 61 t$	ons : BNL-32 to 40, to 60, and to 87, (1966	5, 2nd Ed	dition,
4)	Iijima, S. : IAEA Second Nuclear Dat Petten, Net Review Pape Status of F Fission Pro	Advisory a. herlands, r No. 9: ast Neutr ducts	Group Meet 5-9 Septem	ing on F ber 1977 Cross-Se	ission Product ections of
5)	Beery, J. G. and Codding, J.	r., J. W.	: Bull, A 1391 (.m. Phys. 1968)	Soc. <u>13</u> ,
6)	IAEA-169 : Fission Pro- Vol. I, II, Proceedings Organized b	duct Nucl and III of a Par y the IAB	lear Data [F nel on Fissi EA, Bologna,	PND] on Produc 26-30 No	ct Nuclear Data. ovember 1973
7)	A. R. de L. Musgrove et al.	: See Ex	perimental	Reference	es •99)
8)	Kapchigashev et al. :	4	4	4	•27)
9)	R. P. Anand et al. :	4	4	4	•89)
10)	Murty et al. :	4	4	4	•84)
11)	Macklin et al. :	4	4	4	•1)
12)	R. W. Hockenbury et al. :	. 4	4	\$	•93)
13)	C. Le Rigoleur et al. :	4	4	4	•94)
14)	R. L. Macklin :	4	4	11	•95)
15)	N. Yamamuro et al. :	*	'1	4	•97)
16)	K. Rímawi et al. :	4	y 9	4	•96)
17)	J. Vuletin et al. :	%	'	4	•92)
18)	F. Rigaud et al. :	4	'	4	•90)
19)	0. Schwerer et al. :	4	4	4	•100)
20)	Popov and Shapiro :	4	4	4	•23)
21)	Kompe :	4	4	4	•60)
22)	B. N. Kononov et al. :	4	4	4	•102)

23)	Macklin :	See Expe	erimental H	References	•30)
24)	Konks and Fenin :	ý	4	4	•35)
25)	M. C. Moxon et al. :	4	4	4	•98)

Appendix I : Tables

(Table 1 \sim Table 24)

Contents of the Experimental Method and Data Compiled for 24 Important FP Nuclides

Reference	EnergyNMeasuredNeutronMethodStandar(keV)CrossSourceor Flux		Standard or Flux	Thermal C	.S.(barns)	Comments			
			Section (mb)			Monitor (mb)	Standard	Target	
57 Macklin	24	i	22	Sb-Be	ACT NaI (Tl)	¹²⁷ I 820			l y/dis.
58 Perkin	14500	1	<u><</u> 4	T(d,n)	ACT GM	²⁷ Al (n,a)			
59 Lyon	195±50	1	7±2	RdTh-D20	ACT Nai (Tl)	¹¹⁵ In 195			l y/dis ⁹⁷ Nb 0.66 MeVy
63 Macklin	30	1	40±12		M-R				
69 Schuman	2 and 25 2 25	2	79±8 21	Fe Filter		Au ¹⁹⁷ ơ _n ; 4800 690			$T_{1/2} = 17 nr$
							-		

Table l ⁹⁶Zr

Table 2 ⁹⁵Mo

Reference	Energy	N	Measured	Neutron	Method	ron Method	Method	Method Stand	thod Standard	Standard or Flux	Thermal C.S.(barns)		Comments
	(Kev)		Section (mb)	Source	-	Monitor (mb)	Standard	Target					
64 Kapchiga- shev	0.03∿46	47			Pb-SDTS				no documen- tation NEUDADA data				
76 Musgrove	3~90	19*		(y, n)	TOF C ₆ F ₆ SC	Li (n,α)			ORELA *Averaged Value				

Table 3 ⁹⁷Mo

Reference	Energy	N	Measured	Neutron Meth	Neutron	Neutron Source	Neutron Method	Standard	Standard	Thermal C.S.(barns)		Comments
	(Kev)	-	Section (mb)	Source		Monitor (mb)	Standard	Target				
64 Kapchiga- shev	0.028∿61	60			Pb-SDTS							
76 Husgrove	3∿90	23*		(Y, n)	TOF C ₆ F ₆ SC	Li (n,α)			ORELA *Averaged Value			

Table 4-1 ⁹⁸Mo

Reference	Energy (keV)	N	Measured	Neutron Source	Method	Standard or Flux	Thermal C.S.(barns)		Comments	
	(Kev)		Section (mb)	Bource		Monitor (mb)	Standard Target			
57 Macklin	24	1	209±21	Sb-Be	ACT NaI(Tl)	I ¹²⁷ 820			0.72 γ/dis	
58 Booth	25 (20)	1	390±120 (130)	Sb-Be	ACT DRC NaI(T1), PROP	I ¹²⁷ 820	5.5 (6.2)	0.45 (0.15)	6.7hr β-γ ()BNL-325 2nd	
59 Vervier	25	1	415 <u>+</u> 98*	Sb-Be	ACT DRC GM	Au ¹⁹⁷ 1065 In ¹¹⁵ 825	98.8 155	0.45	 average by different standards 	
59 Lyon	195±50	1	30±6	RdTh-D₂O	ACT NaI(T1)	In ¹¹⁵ 195				
62 Furr	25	1	140±70			I ¹²⁷ 780				
63 Kapchiga- shev	0.005∿31	63			Pb-SDTS Sc					
67 Petö	3000±200	1	10.6±6	300keV Cascade Generator D(d,n)	ACT GM	Au ^{1 9-7} 35.2			$T_{1/\frac{\pi}{2}} = 6.7 hr$	

- 15 -

Table	4-2	⁹⁶ Mo	(continued)
-------	-----	------------------	-------------

Reference	Energy	N	Measured	Neutron	Method	Standard	Thermal C.S	.(barns)	Comments
	Section (mb) (mb)	Monitor (mb)	Standard	Target					
68 Stupegia	36∿2644	28		⁷ Li(p,n) T(p,n)	ACT NaI(T1), PROP	U ²³⁵ (n,f) White-Hughes			
68 Hasan	24	1	110±15	Sb-Be	ACT β detec- tor	I ¹²⁷ 820			
69 Devbenko	1∿3000	16	•	T(p,n) VDG	ACT DRC	U ²³⁵ (n,f) Davey's data	577.1	0.15	
70 Chaturvedi	24±3	1	121.5	Sb-Be	ACT Nal(T1)	Au ¹⁹⁷ 640±25			6th Table of Isotope Table of ICC α-β-γ ray spec- troscopy 2(,65)
73 Murty	24±5	1	252±38	Sb-Be	ACT 4πγ by NaI(Tl)	$Li^{6}(n,\alpha)$			6th ed. TI
74 Rimawi	24	1	115±10						
74 Anand	25±5	1	116±7		ACT DRC NaI(T1)	I ¹²⁷ (n,Y)* 832±26	6.12±0.12	0.130± 0.09€	142.7keV γ : ^{99m} Tc * 441 keV γ T _{1/2} =66.7 hr

- 16 -

Table	4-3	⁹⁹ Mo	(continued)

Reference	Energy	N	Measured	Neutron	Method	Standard or Flux Monitor (mb)	Thermal C.	S.(barns)	Comments
	(Xev)		Section (mb)	Jource			Standard	Target	
76 Musgrove	3∿90	20*		(Y, n)	TOF C ₆ F ₆ SC	Li ⁶ (n,α)			ORELA *Averaged value
77 Rimawi	24.3	1	125±25						
								····	

Table 5-1 ¹⁰⁰Mo

Reference	Energy (keV)	N	Measured Cross	Neutron Source	Method	Standard or Flux	Thermal C	C.S.(barns)	Comments
	(Section (mb)			Monitor (mb)	Standard	Target	
57 Macklin	24	1	38±8	Sb-Be	ACT Nal(T1)	I ¹²⁷ 820			l.0 γ∕dis
58 Pasechnik	2500 3100 4000	3	6.3±1.2 5.6±1.0 4.5±0.7	D(d,n)	ACT	I ¹²⁷ 51 44 37			
58 Leipunsky	25 200 2700 4000	4	112±3 51.6±2.1 6.5±0.7 3.9±0.4	Sb-Be T(p, n) D(d, n)	ACT DRC GM	I ¹²⁷ 820 400 U ²³⁸ of 47 23	BNL-325 (1958)	BNL-325 (1958)	
58 Kononov	25	1	112±3	Sb-Be	ACT DRC	I ¹²⁷ 820	BNL-325	BNL-325	
59 Vervier	25	1	148±39	Sb-Be	ACT DRC	Au ¹⁹⁷ 1065 In ¹¹⁵ 825	98.8 155	0.2	
59 Lyon	195±50	1	27±6	RdTh-D₂O	ACT Nal(Tl)	In ¹¹⁵ 195			1.07/dis 7
59 Johnsrud	400~6200	24		Li(p,n) T(p,n) D(d,n)	ACT DRC NaI(Tl)	U ²³⁵ (n,f) Allen- Henkel	584	0.2	
60 Tolstikov	30~2100	18		T(p,n) VDG	АСТ	U ²³⁵ <1000keV I ¹²⁷ (Bame's)	5.6	0.2	graph Data:NEUDAD

JAERI-M 7568

- 18 -

Reference	Energy (keV)	N	Measured	Neutron	Method	Standard or Flux	Thermal C.	S.(barns)	Comments
			Section (mb)	504200		Monitor (mb)	Standard	Target	
60 Weston	4 7 10 15 25 40 60 80 150	9	350 207 175 129 97 69 47 41 30	Li(p,n) VDG	ACT	Mo ¹⁰⁰ Johnsrud's data			flux $B^{10}F_3$ $\sigma_{n\alpha}=642/\sqrt{E} D$ $\sigma_{s}=2.43 D$
62 Furr	25	1	109±50			I ¹²⁷ 780		-	
63 Kapchiga- shev	0.005∿31	39			Pb-SDTS SC				
64 Tostikov	5 15 60 82 120 140 150 160	8	430 200 54 39 37 34 29 30	Li (p,n) VDG	ACT	Mo ¹⁰⁰ 33.9 at 138 keV			
73 Murty	24	1	131±20	Sb-Be	ACT NaI(Tl)	I ¹²⁷ σ _{nγ} 832±26			6th TI
74 Annand	25±5	1	84±5		ACT DRC NaI(Tl)	I ¹²⁷ σ _{nγ} 832±26	6.12±0.12	0.199± 0.003	$307 \text{keV} \gamma : \text{Tc}^{101}$ $T_{1/2} = 14.6$ min

Table 5-2 ¹⁰⁰Mo (continued)

Reference	Energy	N	Measured	Neutron	Method	Standard	Thermal C.	S.(barns)	Comments
	(kev)		Section (mb)	Source		or Flux Monitor (mb)	Standard	Target	
76 Musgrove	3∿90	19*			TOF SC	Li(n,α)			ORELA *Averaged value

1
20
1

Table 6 ⁹⁹Tc

Reference	Energy	N	Measured	Neutron	Method	Standard	Thermal C.	S.(barns)	Comments
	(Kev)		Section (mb)	source		Monitor (mb)	Standard	Target	
73 Chou	0.001∿50	70		T(d,n) VDG Fast Chopper	SDTS PROP	BF 3			Use Calibrated Source
73 Qaim	1 47 00±300	1	9±2		ACT Ge(Li)				

Reference	Energy (KeV)	N	Measured Cross	Neutron Source	Method	Standard or Flux	Thermal C.	S.(barns)	Comments
			Section (mb)			Monitor (mb)	Standard	Target	
57 Macklin	24	· 1	386±39	Sb-Be	ACT Nai(Tl)	¹²⁷ I 820			0.9 y/dis.
59 Lyon	195 ±50	1	190±25	RdTh-D ₂ O	ACT Nal(Tl)				0.9 y/dis.
69 Schuman	2	1	830±80	Fe Filter	ACT	Au ¹⁹⁷ 4800			0.88 y/dis.
73 Murty	24±5	1	350±42	Sb-Be	ACT Nal(Tl)	¹²⁷ I 832			6th TI for deca⁄ data
							-		

Table 7 ¹⁰²Ru

Reference	eference Energy (KeV)		Measured Cross	Neutron Source	Method	Standard or Flux	Thermal C.	S.(barns)	Comments
			Section (mb)			Monitor (mb)	Standard	Target	
57 Macklin	24	1	211±21 ·	Sb-Be	ACT Nal (Tl)	¹²⁷ I 820			1.0 γ/dis. 730 KeV γ
58 Perkin	14500	1	13.6±2.7	T(d,n)	ACT GM	²⁷ Al(n,α)			
59 Lyon	195±50	1	28 ±5	RdTh-D ₂ O	ACT Nai (Tl)	¹¹⁵ In 195		1	1.0 γ/dis. 723 KeV γ
66 Gray	14700	1	2.5±0.5	T(d,n) C-W	ACT NaI (Tl)	$ \begin{array}{c} 6^{3}Cu(n,2n) \\ 507 \\ AL(n,\alpha) \end{array} $			NDS for decay data
66 Chaubey	24	1	80±10	Sb-Be	ACT GM	¹²⁷ I 820		ļ	NDS for decay data
67 Petö	3000	1	19.8±4	D(d,n) Cascade Generator	ACT GM	BF ₃ Anth.SC			Calibration ³¹ P(n,p) 74±6 mb NDS('61) for decay data
69 Schuman	2	1	890±80	Fe Filter		¹⁹⁷ Au 4800			1
73 Murty	24±5	1	204±25	Sb-Be	ACT NaI(T1)	¹²⁷ I(n, y) 832	-	! !	
74 Anand	25±5	1	181±78		ACT DRC	^{1 2 7} I (n, Y) 832±26	6.12±0.12	0.47±0.20	263 keV γ T _{1/2} =4.44 hr
								· ·	

Table 8 ¹⁰⁴Ru

- 22 -

JAERI-M 7568

Reference	Energy (keV)	N .	Measured Cross	Neutron Source	Method	Standard or Flux	Thermal C.	S.(barns)	Comments
	(Section (mb)			Monitor (mb)	Standard	Target	
53 Pasechnik	2500	6	54.6±4.5 g 9.8±1.9 m	D(d,n)	ACT	I ¹²⁷ σ _{nγ} 51			1049 Rh :44 Sec
	3100		43.5±3.2 g 8.9±1.4 m			4 4			
	4000		34.t±2.7 9 7.7±1.1 m			37			
59 Isakov	0.002~200	many			Pb-SDTS				Preliminary results
50 Diven	$175 \pm 25 250 \pm 50 400 \pm 90 600 \pm 75 800 \pm 66 900 \pm 63 1000 \pm 60$	7	416 339 186±19 129 94 84 81	VDG	SC-T	U ²³⁵ σ _a ^G f Allen- Henkel G _C Diven			
50 Weston	3-200	15		Li(p,n) VDG	ACT	l03 _{Rh} Diven(p.c.)			
51 Block	0.2~8	57		T(p,n) VDG ⁷ Li(p,n)	TOF SC-T	¹⁰ BF ₃			
61 Gibbons	65	1	540	T(p,n) ⁷ Li(p,n) VDG	TOF SC-T	¹¹⁵ In 448			
62 Popov	0.0039-34	96		T(d,n)	SDTS				
62 Furr	25	1	640±220	Sb-Be	ACT	¹²⁷ I 780	1		

Table 9-1 103Rh

•

Reference	Energy	N	Measured	Neutron	Method	Standard	Thermal C	.S.(barns)	Comments
	(kev)		Section (mb)	Source		Monitor (mb)	Standard	Target	
63 Csikai	14670	1	10.57 g 3.23 m		ACT				
63a Macklin	30 65	2	850 540	T(p,n) VDG	TOF SC-T	1 ¹¹⁵ σ _{nγ} 763 448			See also 61 Gibbons
63 Moxon	0.1∿27	664	-	LINAC	TOF MR	B ¹⁰			
64 Cox	138~1688	42		Li(p,n) VDG	ACT SC	U ²³⁵ ⁰ f Allen- Henkel		ರ ₉ :140 ^೮ m:12.8	
65 Pönitz	7.8 30 64	3	84±4.2 m 110±5.5m 162±8.1m		ACT				Standard= Ratio ^c m ^{/c} g
66 Chaubey	24	1	455±45 9 55±25 m	Sb-Be	ACT GM	I ¹²⁰ σ _{nγ} 820		NDS	$\int g:42Sec$
67 Csikai	14700	1	14±3	T(d,n) Cascade generator	ACT GM Nal(Tl)	Al ²⁷ o _{np} 72		NDS	
67 Macklin	70±19 125±23 150±21 182±21	4	708.1±25.7 415.5±15.9 353.3±26.3 336.7±23.3	Li ⁷ (p,n) VDG	TOF SC	Ta 8100Ē ^{0.69} E; kev B ¹⁰ -NaI	7		

Table 9-2 ¹⁰³Rh (continued)

•

Reference	Energy (keV)	N	Measured Cross	Neutron Source	Method	Standard or Flux	Thermal C	.S.(barns)	Comments
			Section (mb)			Monitor (mb)	Standard	Target	
57 Petö	3000±200	1	20.8±4	D(d,n) Cascade Generator	ACT GM	Al ²⁷ $\sigma_{np}^{2.5}$ B ¹⁰ F ₃ Anth. SC		NDS('61)	T 1/2 =4.4mir
59 Schuman	2	1	∿130 m ∿11000 g	Fe Filter		Au ¹⁹⁷ σ _{nγ} 4800			
70 Fricke	1∿1000	95		LINAC	TOF SC-T	B ¹⁰ F ₃ He ³		- -	
70 Tromp	25	1	69	MTR-Fe Filter	ACT	Au ¹⁹⁷ 0 ny 640			
71 Rigaud	14060	1	0.75±0.2	T(d,n)	TOF NaI(Tl)				
72 Lakshmana	25±5	1	445±6 m 600±90 gr	Sb-Be	ACT Nal(Tl)	I ¹²⁷ σ _{nγ} 832			
72 Kantele	14500	1	2		АСТ				
73 Petö	4500	1	5.7±0.7		ACT				Isomer ratio
73a Petö	14700	1	4.0±0.4		ACT GM				

Table 9-3 ¹⁰³Rh (Continued)

Reference	Energy	N	Measured	Neutron	Method	Standard	Thermal C.	S.(barns)	Comments
			Section (mb)	Jource		Monitor (mb)	Standard	Target	
74 Rigaud	14600±300	1	≤2	T(d,n) ELA		Al ²⁷ onp 68.6			
75 Hockenbu r y	63∿297	566 10*		LINAC	TOF SC-T	B ¹⁰ -NaI			* Averaged Value
75Le Rigoleur	15∿300	207 23*		VDG	TOF SC	B ¹⁰ -NaI Li glass SC			* Averaged Value
			·						

Table 9-4 ¹⁰³Rh (Continued)

Table 10 105Pd

Reference	Energy	N	Measured	Neutron	Method	Standard or Flux Monitor (mb)	Thermal C.S.(barns)		Comments
	(keV)	-	Cross Section (mb)	Source			Standard	Target	
75 Macklin	2.618 2.665	2	94 12900		TOF SC				ORELA
75 Hockenbury	0.002~200	562		RPI LINAC	TOF SC	b ¹⁰ -NaI			normalized to transmission data 55.2 eV Res.

Table 11 ¹⁰⁸Pd

Reference	Energy (KeV)	N	Measured Cross	Neutron Source	Method	Standard or Flux	Thermal C.S.(barns)		Comments
			Section (mb)			Monitor (mb)	Standard	Target	
57 Macklin	24	1	540±60 ·	Sb-Be	ACT Nal (Tl)	¹²⁷ I 820			0.0463 y/dis. 23 KeV y
58 Booth	20	1	580±200	Sb-Be	ACT DRC Nal (Tl)	¹²⁷ I 820	5.5	12	
59 Lyon	25 195	2	290±35 77±8	Sb-Be RdTh-D ₂ 0	ACT Nal (Tl)	¹²⁷ I 820 ¹¹⁵ In 195			0.046 y/dis.
60 Weston	3~700	12		Li(p,n) VDG	ACT	¹⁰⁸ Pđ 540			Relative
66 Chaubey	24	1	185±15	Sb-Be	ACT GM	¹²⁷ I 820			NDS for decay data T $1/2 = 4.8m$ +13.5h
68 Chaubey	24	1	26±6 m 159±16 9	Sb-Be	ACT GM	¹²⁷ I 820			T $1/2 = 4.8m$ 13.5h
72a Lak sh mana	25±5	1	15±2 m 185±30 g	Sb-Be	ACT Nal (Tl)	JP/A5, 1262 ('72)			
								- 	

- 27 -

Method Thermal C.S. (barns) Comments Measured Neutron Standard Reference Energy Ν or Flux Cross Source (keV) Standard Target Section Monitor (mb) (m.b) Li(p,n) ACT 16 2~200 60 Weston VDG ¹²⁷T 780 1620 ± 480 Sb-Be ACT 1 25 62 Furr Au¹⁹⁷ Data : NEUDADA ACT 7.8,30,64 3 65 Pönitz 7.8 50 m 40 m 30 60 m 64 ¹⁰B(n,α) T(p,n) TOF 30∿170 18 66 Kononov C-W SC-T $T_{1/2} = 24 s$ ¹²⁷I 820 Sb-Be ACT 690±60 24 1 66 Chaubey GMNDS for decay data I¹²⁷832 15±1.5 ACT 70 Murty 25 1 I¹²⁷σ_{nγ} 6th ed TI ACT 75±10 m Sb-Be 25±5 1 72 Siddapa $\sigma^{\mathfrak{m}}$ Nal(Tl) 832

Table 12 ¹⁰⁹Ag

- 28 -

Table 13-1 ¹²⁷I

Reference	rence	Energy (keV)	N	Measured Cross Section (mb)	Neutron Source	Method	Standard or Flux Monitor (mb)	Thermal C	Comments	
								Standard	Target	
57 Ma	acklin	24	1	820 <u>+</u> 60	Sb-Be	ACT NaI(Tl)			· · · ·	0.172γ/dis. 455 kev γ Calibrated Source
58 Le	eipunsky	2700 4000	2	47±2 23±1	D(d,n) Cascade Generator	ACT DRC	U ²³⁸ ^o f 59.3 33.3	BNL-325 ('58)	BNL-325 ('58)	
58 Pe.	erkin	14500	1	2.5±0.5	T(d,n)	ACT GM	Al ²⁷ σ _α		-	
58 Be	elanova	25±4 220±20 830±40	3	1097±39 314±42 101±40	Sb-Be Na-D2O Na-Be	RG-TRANS BF 3				60 Belanova 990mb at 24 } AE <u>8</u> , 549('60
59 Bar	ume	20~1000	31		Li ⁷ (p,n) T(p,n) VDG	ACT NaI(T1)	fission chamber			0.94y/dis. I ¹²⁸ 0.06y/dis. Te ¹²⁸
59 Gal	abbard	25∿506	9			sc				
59 Lyo	on	195±50	l	175±15	RdTh-D20	ACT NaI(T1)	In ¹¹⁵ 195			
59 Jol	ohnsrud	150~5500	28		Li(p,n) T(p,n) ELA	ACT DRC NaI(T1)	U ²³⁵ ⁰ f Allen- Henkel	584	5.6	

- 29 -

Reference	Energy (keV)	N	Measured Cross Section (mb)	Neutron Source	Method	Standard or Flux Monitor (mb)	Thermal C.	S.(barns)	Comments
							Standard	Target	
60 Weston	5~150	- 14		VDG	ACT	I ¹²⁷ 820			
60 Schmitt	24±2.2	1	885±90	Sb-Be	Shell Trans.				BNL-325 2nd Ed. abs. Status=2
60 Diven	400±90	1	176±15		SC-T	U ²³⁵ G 1500			
61 Gibbons	9.5∿169	47		Li ⁷ (p,n) T(p,n) VDG	TOF SC-T	In ¹¹⁵ σ _{nγ} (30 kev) 763 (65) 448 (167)258			normalized to a curve of In(n, γ) In(n, γ):norma- lized to $\sigma_{n,\alpha}$ (¹⁰ B) & σ (²³⁵ U)
61 Block	0.2∿8	38		T(p,n) Li(p,n) VDG	TOF SC-T	B ¹⁰ F ₃			, -/ - a,
6l Stavisskii	20∿2500	55		T(p,n) VDG	ACT DRC GM	U ²³⁵ 0 _{nf} Hughes	582	5.6	
62 Furr	25	1	635±180		АСТ				
62 Popov	0.01~50	73		T(d,n)	Pb-SDTS				
63a Macklin	30±7 65±20	2	733 440	T(p,n) VDG	SC-T	In ¹¹⁵ σ _{ny} 763 448			

Table 13-2 ¹²⁷I (continued)
Reference	Energy (keV)	N	Measured Cross	Neutron Source	Method	Standard or Flux	Thermal C.	S.(barns)	Comments
			Section (mb)			Monitor (mb)	Standard	Target	
63 Borbely	2600±120	1	28.3±6.0		ACT				Data: NEUDADA
64 Cox	180~1680	30		Li ⁷ (p,n) VDG	RCT NaI(Tl) 4π	U ²³⁵ ^o f Allen- Henkel	6.22 (1 ²²⁷ σ _{nY})		450 keV-Y relative to thermal value, renormalized
65 Stavisskii	30 100	2	660±70 800±130		ACT Shell Trans	Pu ²³⁹			to σ _f (²³⁵ U)
65 Robertson	24	1	832±26	Sb-Be Calibrated	ACT Cs-I				
67 Macklin	125±23 150±21 182±21	3	234.7±17.4 183.6±28.8 202.5±28.1	Li ⁷ (p,n) VDG	TOF SC	B ¹⁰ -NaI			
67 Petö	3000±200	1	31.8±6	D(d,n) Cascade Generator	ACT GM	$^{31}P(n,p)74$ $B^{10}F_3$ Anth. SC			
68 Dinter	14000	1	1.09±0.08	T(d,n)	NaI(Tl)	ZnS(Ag)			
68 Qaim	15000	1	7.2±1.2		ACT	Al σ _{nα}			Data:74Vuletin
68 Colditz	2900±200	1	42.8±5.0		ACT	In			Data : NEUDADA
70 Majumder	14800±80	1	2.74±0.2	T(d,n)	ACT	Cu ⁵³ σ _{n,2n} 530±25			
70 Chaturvedi	24±3	1	638	Sb-Be	ACT Nal(Tl)	Au ¹⁹⁷ 640			6th TI for decay data

Table 13-3 ¹²⁷I (continued)

Reference	Energy	N	Measured	Neutron	Method	Standard	Thermal C	.S.(barns)	Comments
	(Xev)		Section (mb)	Source		Monitor (mb)	Standard	Target	
71 Brzosko	400	1	150 g 67±5 m		TOĽ				NEUDADA
72 Kantele	14500	1	0.9±0.3		ACT				
73 Lakosi	830	1	77±11 (109±15)*	Na-Be	ACT	Au ¹⁹⁷ (n,Y)			* INDC(HUN) -11/L
73 Petö	4500	1	95±19		ACT				
74 Vuletin	14400	1	1.2±0.1	T(d,n)	ACT Ge(Li)				
74 Rigaud	14600	1	<1.38±0.35	T(d,n) Electro- static Accele- rator	ACT	Al ²⁷ (n,p) 68.6			
75 Yamamuro	23.7	1	760±20	Ta(Y,n) LINAC Fe Filt er	TOF C ₆ F ₆ SC	B ¹⁰ (n,αγ) Sowerby			
75 Rimawi	24.3±0.2	1	767±50	Fe Filter	ACT Ge(Li)	$B^{10}(n,\alpha)$ $\sigma_{t} = 5917.5$ $\sigma_{t} = 3487.5$			
76 Schwerer	14000	1	1.12±0.25		ACT Ge(Li)	ηα 3407.5			

Table 13-4 ¹²⁷I (continued)

.

Table 14-1 ¹³³Cs

Reference	Energy (keV)	N	Measured	Neutron	Method	Standard or Flux	Thermal C.	S.(barns)	Comments
			Section (mb)	Jouree		Monitor (mb)	Standard	Target	
58 Booth	20	1	90±45 m 1000±330 g	Sb-Be	ACT DRC β counter NaI(T1)	¹²⁷ I(n,γ) 820±60	¹²⁷ Ι(n,γ) 5.5±0.5	¹³³ Cs(n, y) 26±4.94 for ¹³⁴⁹ Cs (2.3 yr) 17±4 mb for ¹³⁴ Cs (3.1 hr)	β & γ En & σ _{nγ} :data compiled in NEUDADA
62 Popov	0.001~40	92		T(d,n)	TOF Pb-SDTS SCINT, PROP-C				Norm. of $\sigma_{n\gamma}$: RP of 3 lowest levels & group of levels at $\vec{E} \sim$ 100 eV
63 Borbely	2600	1	6.3±1.2		l ACT (ABS)				Data:NEUDADA
67 Tolstikov	142∿1230	8	m	T(p,n) VDG	ACT DRC EW-β	²³⁵ U(n,f) Davey's eval.('66)	²³⁵ U(n,f) 577.1±0.9 BNL-325 '65	¹³³ Cs(n,y) 2.6±0.2 BNL-325'66	Production of 2.9 hr ^{134m} Cs $\sigma_{n\gamma}^{m}/\sigma_{n\gamma}^{g}$ are given $\sigma_{n\gamma}^{\circ}$:NEUDADA
69 Schuman	2	1	330±30 <i>m</i> 2430±200 <i>g</i>	Fe-FILT-N	АСТ	¹⁹⁷ Au(n,γ) 4800			128keV-γ:14%, 2.895 hr 796+802keV-γ:
69 Kompe	10∿150	72		⁷ Li(p,n) VDG	TOF LIQ-SCINT -T, NaI- crystal	$197 Au(n, \gamma) *$ 596 ± 12 at 30keV, $10B(n, \alpha)$, $6Li(n, \alpha)$	- - -		γ * $\sigma_{n\gamma}$ of Au was determined relative to $\sigma_{n\alpha}$ of $1^{0}B \& {}^{5}Li$

- 33 -

Reference	Energy	N	Measured	Neutron	Method	Standard	Thermal C.	S.(barns)	comments
	(KeV)		Section (mb)	Source		Monitor (mb)	Standard	Target	
70 Qaim	14800±300	1	7,1±1,1 1,82±0,28 5,3±1,4 g	T(d,n)	ACT NaI(Tl)	²⁷ Al(n,α) 121			127 keV-γ:m 796 keV-γ:g 6th TI
71 Brzosko	400	1	60±15 m		TOF (ABS)				Data:NEUDADA
71a Rigaud	14060 <u>+</u> 10	1	1.51±0.42	* T(d,n) ELST- ACLTR	TOF NaI(Tl)				<pre>* integrated- ^ony,cf.72Buda- pest,p.220('72)</pre>
73 Murty	24±5	1	56±7 m	Sb-Be	ACT(ABS) NaI(T1)	¹²⁷ I(n,γ) 832±26			γ 6th TI
76 Yamamuro	24	1	580±35	Fe-FILT- KUR- LINAC	N TOF C ₆ F ₆ - SCINT	^l ⁰ B(n,αγ) sowerby's data			Ŷ

Table 14-2 ¹³³Cs (continued)

.

Table 15-1 ¹³⁹La

	Reference	Energy	N	Measured	Neutron	Method	Standard	Thermal C	C.S.(barns)	Comments
		(Kev)		Section (mb)	Source		or Flux Monitor (mb)	Standard	Target	
·	57 Macklin	24	1	50±7	Sb-Be	ACT NaI(Tl)	¹²⁷ Ι(n,γ) 820±60			1.60 MeV-γ, 0.882γ/dis. ¹²⁷ I: 455 keV-γ, 0.172γ/dis.
	58 Perkin	145000	1	1.48±0.148	T(d,n)	ACT EW·G-M	²⁷ Al(n, α)			З
	58 Booth	20	1	50±13	Sb-Be	ACT DRC, βcounter NaI(T1)	¹²⁷ Ι(n,γ) 820±60	¹²⁷ I(n,γ) 5.5±0.5	¹³⁹ La(n,y) 8.4±1.68	β&γ, 40.2 hr En & σ _{nγ} : data compiled in NEUDADA
	59 Lyon	195±50	1	10±2	RdTh-D20	ACT NaI(Tl)	In(n,γ) 54 min 195±10			1.60 MeV-γ, 0.88γ/dis. ¹¹⁵ In:1.28MeV- γ, 0.848γ/dis.
	59 Johnsrud	150∿2000 166 460 620 2000	4	16 0 5.9 6.2 5.25	Li(p,n): .15~0.6MeV T(p,n): 0.6~2.5Me D(d,n): 2.5~6.2Me ELST-GEN Pu-Be:THR-N	ACT DRC V	²³⁵ U(n,f) Allen & Henkel '58	^{2 3 5} U(n,f) 584	¹³⁹ La(n,γ) 8.2±0.8	815 keV-γ 1596 keV-γ 40.2 hr
	60 Wille	14800±800	1	1.1±0.2	T(d,n) C-W	ACT β PROP・C LONG・C	<pre>^{6 3}Cu(n,2n) 519 ^{6 5}Cu(n,2n) 1020</pre>	:		β, 40±2 hr Rev. Mod.Phys. 30,585 ('58) and others

- 35 -

.

Thermal C.S. (barns) Comments Ν Measured Neutron Method Standard Reference Energy (keV) Cross Source or Flux Monitor Standard Target Section (mb) (mb) 30 and 65 2 Li(p,n) TOF $In(n, \gamma)$ 63a Macklin γ T(p,n) LIQ·SCIN 30keV:763 30±7 55±10 65±20 18±3 ORNL-VDG - T 65keV:448 ⁷Li(p,n) ACT & TSG 66 Normalization: 0.04~40 63 Konks Sb-Be Pb-SDTS RP(73.5 eV) of ¹³⁹La (24 keV) RP of W,Au,Ta DATA : NEUDADA 65 Cuzzocrea 14000 ± 400 1 3.6±0.6 ACT Cu(n, 2n)DATA : NEUDADA 127 I (n, γ) 24 1 50 ± 10 Sb-Be ACT β. 66 Chaubey 820±60 NDS & others EW-β $^{27}Al(n,\alpha)$ ACT 67 Csikai 14700 1 1.4±0.3 D(t,n) B. NDS CASCD-GEN EW.G-M, 117 mon. reac. : α ¹⁰BF₁-LC NaI(Tl) АСТ $197 Au(n, \gamma)$ 67 Petö 3000±200 1 4.6 ± 0.7 D(d,n)β CASCD-GEN EW · G-M 35±3 SCINT. ¹⁰BF₃, NaI(Tl) ACT (ABS) 63 Cu(n,2n): 14000 ± 200 1 1,9±0.4 T(d,n) B, NDS 67 Cuzzocrea G-M 469±10 $\beta^{+}/K = (2.73 \pm$ ⁶⁵Cu(n,2n): 0.27)%: PR 142, 919±30 725 ('66) ²³⁵U(n.f) ⁷Li(p,n): 68 Stupegia 11.2~1997 19 ACT $\beta \& \gamma, \sigma \text{ of}$ 150∿1MeV EWPC, Nal (93.27%) impurities included in T(p,n): White'65 ^{2 3 5}U: Hughes 1∿3MeV et al. ([•]60)

Table 15-2 ¹³⁹La (continued)

- 36 -

Reference	Energy	N	Measured	Neutron	Method	Standard	Thermal C.	S.(barns)	Comments
	(Kev)		Section (mb)	Source		Monitor (mb)	Standard	Target	
69 Schuman	2	1	230±20	Fe-FILT-N	ACT	¹⁹⁷ Au(n,y) 4800			1596 keV-γ:96% 40.22 hr
70 Chaturvedi	24±3	1	13	Sb-Be	ACT NaI(Tl)	¹⁹⁷ Au(n,γ) 640±25			γ, TICC ('63) 6th TI
70 Zaikin	200∿5900	21		⁷ Li(p,n) T(p,n) D(d,n) ELST-ACLTR	ACT 3-counter	^{2 35} U(n, <u>f</u>)			β ratio of activities with fast and ther- mal neutrons
7la Rigaud	14060±10	1	1.35±0.40*	T(d,n) ELST-ACLTR	TOF NaI(T1)				* integrated ⁰ nY cf. 72Budapest p. 220 ('72)
72 Holub	14400	1	2.4±0.2		АСТ				Data:NEUDADA
74 Rigaud	14600±300	1	0.7±0.3	T(d,n) ESLT-ACLTR	ACT Ge(Li)	²⁷ Al(n,p) 68.6±1.4 at 14.1 MeV			Y
76 Schwerer	14600±200	1	1.01±0.10	T(d,n) C-W	ACT(ABS) NaI(T1) Ge(Li)	²⁷ Al(n,α) 114.2±1.37			1596 keV-γ 40.2 hr

Table 15-3 ¹³⁹La (continued)

.

Table 16 ¹⁴²Ce

Reference	Energy	N	Measured	Neutron	Method	Standard	Thermal C	.S.(barns)	Comments
	(keV)		Cross Section (mb)	Source		Monitor (mb)	Standard	Target	
57 Macklin	24	1	425±43	Sb-Be	ACT NaI(Tl)	¹²⁷ I(n,y) 820±60			290 keV-γ, 0.426γ/dis, ¹²⁷ I: 455 keV-γ, 0.172γ/dis.
58 Perkin	14500	1	≼7 . 5*	T(d,n)	ACT E₩•G-M	27 Al(n, α)			β, *upper limit
59 Lyon	195±50	1	22±5	RdTh-D₂O	ACT NaI(Tl)	In(n, y) (54 min) 195±10			290 keV-γ, 0.43γ/dis. ^{1 15} In: 1.28 MeV-γ, 0.848γ/dis.
66 Chaubey	24	1	525±50	Sb-Be	ACT EW-3	¹²⁷ I(n,γ) 820±60			β NDS & others
67 Petö	3000±200	1	33.4±6	D(d,n)	ACT EW•G-M SCINT, ¹⁰ BF ₃ NaI(T1)	³² S(n,p) 111±10			β
73 Siddappa	23±5	1	63±10	Sb-Be	ACT(ABS) NaI(Tl)	¹²⁷ I(n,γ) 836±26			4π-geom. γ 6th TI
74 Anand	25± 5	1	2 l± 2	Sb-Be, BARC- Reactor for THR-N	ACT DRC NaI(T1)	¹²⁷ I(n,γ) 832±26	¹²⁷ I(n,γ) 6.12±0.12	^{1 + 2} Ce(n,γ) 0.95±0.05	293keV- γ ,33hr ¹²⁷ I: 441 keV(2 ⁺)- γ
76 Schwerer	14600±200	1	1.11±0.17	T(d,n) C-W	ACT (ABS) Nal(Tl) Ge(Li)	²⁷ Al(n,α) 114.2±1.37			293.3 keV-γ 33.7 hr

- 38 -

Reference Energy Ν Measured Neutron Method Standard Thermal C.S. (barns) Comments (keV) Cross Source or Flux Section Monitor Target Standard (mb) (mb) $127 I(n, \gamma)$ 57 Macklin 24 1 155±15 Sb-Be ACT 1.59 MeV-y, NaI(Tl) 820±60 0.041 γ /dis. ¹²⁷ I: 455 keV-y, 0.172y/dis. $127I(n, \gamma)$ 58 Pasechnik 2500~4000 3 ACT β, D(d,n)19.1 hr 2500 8.6±0.4 ELST-GEN 51 3100 7.1±0.3 44 6..3±0.2 4000 37 3.33±0.333 T(d,n) 27 Al(n, α) 58 Perkin 14500 1 ACT β EW • G-M ¹²⁷I(n, y) 141Pr(n, γ) 58 Booth 20 1 $^{127}I(n, \gamma)$ 180±40 Sb-Be ACT $\beta \& \gamma, 19.1hr$ En & J_{ny}: 11.2±0.605 DRC 820±60 5.5±0.5 ß counter, data NaI(Tl) compiled in NEUDADA 59 Lyon 24 and 195 2 RdTh-D₂O 115 In(n, γ) ACT 1.59 MeV-y, 24 155±15 NaI(T1) (54 min) 0.04 γ /dis. ¹¹⁵In: 195±50 38±4 195±10 1.28 MeV-y, 0.848y/dis.

Table 17-1 ¹⁴¹Pr

- 39 -

Reference	Energy	N	Measured	Neutron	Method	Standard or Flux	Thermal C.	S.(barns)	Çomments
	(Kev)		Section (mb)	300100		Monitor (mb)	Standard	Target	
59 Johnsrud	165∿2000 165 175 234 2000	4	36 36 18 15.8	Li(p,n): 0.15~0.60Me T(p,n) 0.60~2.5Me D(d,n) 2.6~6.2M ELST-GEN Pu-Be: THR-N	ACT V DRC ²³⁵ U•FC V NaI(T1) eV	²³⁵ U(n,f)	^{2 3 5} U(n,f) 584	^{1 + 1} Pr (n, y) 10 ± 3	510∿798keV-γ, 19.2 hr
60 Wille	14800±800	1	2.1±1.0	T(d,n) C-W	ACT β PROP·C LONG·C	⁶ ³ Cu(n,2n): 519 ⁶ ⁵ Cu(n,2n): 1020			β, 19±1 hr Rev.Mod.Phys. 30, 585 ('58) and others
61 Gibbons	11.5~161 30±7 65±20	49 1 1	115±11.5 59±5.9	⁷ Li(p,n): 7∿70 keV T(p,n): 20∿170 keV ORNL-VDG	TOF LIQ·SCIN -T \$\phi_n: 10B-N	In(n,Y)* T 760±50 450±40 aI			* $\sigma_{n\gamma}$ (In): rel. to $(\sigma_{nf}+\sigma_{n\gamma})$ of ^{2 3 5} U above 100 keV $\sigma_{n\gamma}$ (In): rel. to $\sigma_{n,\alpha\gamma}$ of ^{1 0} B below 140 keV
63a Macklin	30 and 65 30±7 65±20	2	115 59	⁷ Li(p,n) T(p,n) ORNL-VDG	TOF LIQ-SCINT -T	In(n, y) 30keV:763 65keV:448			γ

Table 17-2 ¹⁴¹Pr (continued)

•

•

Reference	Energy (keV)	N	Measured	Neutron	Method	Standard or Flux	Thermal C.	S.(barns)	Comments
	(XeV)		Section (mb)	bource		Monitor (mb)	Standard	Target	
63 Bramlitt	14700±200	1	2.3±1.1	T(d,n) C-W	ACT EWPC NaI(T1)	²⁷ Al(n,α) 114			β:100% 19.1hr 1.57 MeV-γ,
64 Konks	0.022∿40	73		⁷ Lí(p,n Sb-Be (24 keV)) ACT & TSC Pb-SDTS Y-PC	3			norm, of σ _{nγ} : RP(85 eV) of ¹⁴¹ Pr RP of Br,Ta,W
65 Stupegia	187~2460	25			ACT				DATA:NEUDADA DATA:NEUDADA
65 Cuzzocrea	14000±400	1	6.25±0.15		ACT	Cu(n,2n)			Data:NEUDADA
66 Chaubey	24	1	100±15	Sb-Be	ACT EW-β	¹²⁷ I(n,y) 820±60			β ND S & others
67 Csikai	14700 13400∿15000	1 7	3.0±0.3	T (d,n) CASCD-GEN	ACT N EW•G-M, NaI(T1) Φ _n : ¹⁰ BF ₃ - LC & α- DTCTR				β, NDS mon. reac.:α
67 Petö	3000±200	1	12,2±2,4	D(d,n)	ACT EW•G-M SCINT, ¹⁰ BF NaI(T1)	^{3 1} P (n, p) 74±6 ³			β
67 Cuzzocrea	14000±200	1	2.6±0.5	T(d,n)	ACT (ABS) G-M	<pre>^{5 3}Cu(n,2n): 469±10 ^{6 5}Cu(n,2n): 919±30</pre>			β, NDS β ⁺ /K=(2.73± 0.27)% : PR 142,725 ('66)

Table 17-3 ¹⁴¹Pr (continued)

Reference	Energy	N	Measured	Neutron	Method	Standard	Thermal C.	S.(barns)	Comments
	(keV)		Cross Section (mb)	source		Monitor (mb)	Standard	Target	
68 Stupegia	1 4 5∿2457	24		⁷ Li(p,n): 0.15∿lMeV T(p,n): 1∿3MeV	ACT EWPC,NaI	²³⁵ U(n,f) (93.27%) White '65			β & γ σ of impurities included in ^{2 3 5} U: Hughes et al. ('60)
70 Diksić	3000±200	1	0.29±0.05n 10.9±0.9g	D(d,n) CASCD-GEN	ACT EW•G-M NaI(T1)	³ ¹ P(n,P) 74±6			β, NDS
70 Majumder	14800±80	1	2.19±0.31	T(d,n)	ACT	^{2 7} Al(n,α) ll6±8			β , 19.2 hr
70 Chaturvedi	24±3	1	82	Sb-Be	ACT NaI(Tl)	¹⁹⁷ Au(n,y) 640±25			Y TICC ('63) 6th TI
70 Zaikin	84~5900	30		⁷ Li(p,n) T(p,n) D(d,n) ELST-ACLTR	ACT βcounter	²³⁵ U(n,f)			β ratio of activities with fast and thermal neutrons
72 Holub	14400	1	2.3±0.3		ACT				Data:NEUDADA
74 Vuletin	14400	1	2.7±0.5		ACT (ABS) Ge(Li)	known reactions			<pre> was determined from the known monitor reactions </pre>

Table 17-4 ¹⁴¹Pr (continued)

.

Reference	Energy	N	Measured	Neutron	Method	Standard	Thermal C.	S.(barns)	Comments
	Section (mb)		Source		Monitor (mb)	Standard	Target	· ·	
70 Thirumala	25	1	89±10	Sb-Be	ACT Nal(Tl)				Y
72 Thirumala	25±5	1	68±23	Sb-Be (Ra-α-Be for THR-N)	ACT DRC NaI(T1)	¹²⁷ Ι(n,γ) 832	¹²⁷ I(n,Y) 6.17±0.2	¹⁴⁶ Nd(n,y) 1.8±0.6	530 keV-γ 11 day
73 Siddappa	23±5	1	120±18	Sb-Be	ACT (ABS) NaI(Tl)	¹²⁷ Ι(n,γ) 836±26			4π-geom. γ 6th TI

.

Table 18 ¹⁴⁶Nd

- 43 -

.

Table 19 ¹⁴⁸Nd

Reference	Energy	N	Measured	Neutron	Method	Standard or Flux	Thermal C.	S.(barns)	Comments
	(Rev)		Section (mb)	bource		Monitor (mb)	Standard	Target	
59 Johnsrud	175∿2500	14		Li(p,n) 0.15~0.60Me' T(p,n) 0.60~2.5Me' D(d,n) 2.6~6.2Me' ELST-GEN Pu-Be:THR-N	ACT V DRC, V ²³⁵ U•FC V NaI(T1) V	²³⁵ U(n,f) Allen and Henkel '58	^{2 3 5} U(n,f) 584	^{1 4 8} Nd (n,γ) 3.7±1.2	118 keV-γ 2.0 hr
68 Hasan	24	1	165±35	Sb-Be	ACT	¹²⁷ I(n,γ) 820			NDS Rev. Mod. Phys 30, 585 ('58) 1.9 hr
70 Thirumala	25	1	195±20	Sb-Be	ACT Nal(Tl)				Ŷ
72 Thirumala	25±5	1	388±144	Sb-Be (Ra-a-Be for THR-N)	ACT DRC NaI(Tl)	¹²⁷ Ι(n,γ) 832	¹²⁷ I(n,γ) 6.17±0.2	¹⁴³ Nd(n,y) 3.7±1.2	Half life: 1.9 hr Saturation activity
73 Siddappa	23±5	1	253±40	Sb-Be	ACT(ABS) NaI(T1)	¹²⁷ I(n,y) 836±26			4π-geom. γ 6th TI

- 44 -

Reference	Energy	N	Measured	Neutron	Method	Standard or Flux	Thermal C.	S.(barns)	Çomments
	(Kev)		Section (mb)	Jource		Monitor (mb)	Standard Target		-
59 Johnsrud	175∿2500	14		Li(p,n): 0.15~0.60MeV T(p,n) 0.60~2.5MeV D(p,n) 2.6~6.2MeV ELST-GEN Pu-Be: THR-N	ACT DRC ²³⁵ U•FC NaI(T1)	²³⁵ U(n,f) Allen and Henkel '58	^{2 3 5} U(n,f) 584	¹⁵⁰ Nd(n,y) 3.0±1.5	118 keV-y 12.0 min
68 Hasan	24	1	125±25	Sb-Be	ACT	¹²⁷ Ι(n,γ) 820			NDS Rev.Mod.Phys 30, 585 ('58) 12 min
70 Thirumala	25	1	85±9	Sb-Be	ACT NaI(T1)				γ
72 Thirumala	25±5	1	85±19	Sb-Be (Ra-p-Be for THR-N)	ACT DRC NaI(T1)	¹²⁷ I(n,γ) 832	¹²⁷ I(n,γ) 6.17±0.2	¹⁵⁰ Nd(n,γ) 1.5±0.2	half life: 12 min saturation activity

Table 20 ¹⁵⁰Nd

•

Table 21 ¹⁴⁷Sm

Reference	Energy	N	Measured	Neutron	Method	Standard or Elux	Thermal C.	Comments	
			Section (mb)	Jource	Monitor (mb)		Standard	Target	
63b Macklin	30±7	1	1173±192	⁷ Li(p,n) ORNL-VDG	TOF M-R				γ
66 Fenner	0.01	1	960±100b		mass spect.				
77 Kononov	5.5∿342,5	75			TOF LIQ- SCINT	¹⁰ B(n,α γ) ¹⁹⁶ Au(n,γ)*			$\star \sigma_{n\gamma} = 596 \text{mb}$ at 30 keV

.

Table 22 ¹⁴⁹Sm

Reference	Energy (keV)	N	Measured	Neutron Source	Method	Standard or Flux	Thermal C.	Comments	
			Section (mb)	Jourog		Monitor (mb)	Standard	Target	· · · ·
63 b Macklin	30±7	1	1622±279	⁷ Li(p,n) ORNL-VDG	TOF M-R				Y
77 Kononov	ɔ.5∿3 42. ⊃	75			TOF LIQ- SCINT	¹⁰ Β(n,αγ) ¹⁹⁶ Αu(n,γ)*			$\sigma_{n\gamma} = 596 \text{mb}$ at 30 keV

Table 23 ¹⁵²Sm

Reference	Energy N Me (keV) Cr		N Measured Neutron M Cross Source			Standard or Flux	Thermal C.	S.(barns)	Comments
	(Kev)		Section (mb)	bource		Monitor (mb)	Standard	Target	
57 Macklin	24	1	668±100	Sb-Be	ACT Nal(Tl)	¹²⁷ Ι(n,γ) 820±60			105 keV-γ; 0.357γ/dis. ¹²⁷ Ι: 455 keV-γ,
59 Lyon	195±50	1	150±20	RdTh-D₂O	ACT Nal(Tl)	¹¹⁵ In(n,γ) (54 min) 195±10			0.172y/dis. 105 keV-y, 0.357y/dis. ¹¹⁵ In: 1.28 MeV-y, 0.848y/dis.
63b Macklin	30±7	1	41 1±71	⁷ Li(p,n) ORNL-VDG	TOF M-R				Ŷ
66 Chaubey	24	1	575±60	Sb-Be	ACT EW-β	¹²⁷ I(n, y) 820±60			β NDS & others
67 Petö	3000±200	1	44.2±6.6	D(d,n) CASCD-GEN	ACT EW•G-M SCINT, ^{1°} BF ₃ NaI(T1)	¹⁹⁷ Au(n,γ) 35.2±3			β
71 Bensch	24∿974 24 138 264 974	4	569±45.5 307±36.8 195±15.6 122±15.3	PHO T O-N	ACT ABS				
73 Lakosi	830	1	130±25	Na-Be	ACT Nal(Tl)	¹⁹⁷ Au(n,Y) 100			Y

- 47 -

.

Table 24-1 ¹⁵³Eu

Reference	Energy	N	Measured	Neutron	Method	Standard or Flux	Thermal C.	S.(barns)	Comments
	(Kev)		Section (mb)	Source		Monitor (mb)	Standard	Target	
64a Konks	0.0008∿42	88							The data was adopted from BNL-325, 2nd. Suppl. ('66)
68 Konks	0.001~40	86	- - -	SDT-N in Pb	TOF GAS-DIS-P SCINT	c			Norm. of σ _{nγ} : RP of low- lying levels & other elements
68 Harlow	0.025~10			NUCL-EXPL	TOF M-R				Norm. of $\sigma_{n\gamma}$: ¹⁵¹ Eu data of Konks & Fenir ('64) Data: Fig. 3
70 Czirr*	0.2~12.5	98		LRL-LINA	C TOF LIQ-SCIN	ΓT			* The measure- ment was per- formed for ¹⁵¹ Eu & natEu.
									Norm. $of^{151}\sigma_{n\gamma}$ $a_{n\gamma}$: ^{151}Eu resonance at 7.44 eV was used for Eu. $\sigma_{n\gamma}$ of ^{153}Eu was derived from the data for ^{151}Eu & nat. Eu.

•

Reference Ν Measured Energy Neutron Method Standard Thermal C.S.(barns) Comments (keV) Cross Source or Flux Section Monitor Standard Target (mb) (mb) Norm. of $\sigma_{n\gamma}$: RP of ¹⁵³Eu E₀=31.3 eV 75 Hockenbury 6.3∿300 566 RPI-LINAC TOF LIO-SCINT-T $2g\Gamma n=2.28meV$, Data:NEUDADA $^{10}B(n,\alpha)$ 76 Moxon 27* 0.1~100 HAR-LINAC TOF γ M-R nat. U & * Averaged . n-booster Values ^{1 0}B(n,αγ) ^{1 9 6}Au(n,γ)* 77 Kononov 5.5~342.5 75 TOF $\sigma_{n\gamma}$ =596 mb LIQat 30 keV SCINT

Table	24-2	¹⁵³ Eu	(continued)
-------	------	-------------------	-------------

- 49 -

Abbreviations used in Table (Appendix I)

Column 1	Reference
Refer	ences of abbreviations used in this column are given in
Exper	imental References.
Column 4	Measured Cross Section
m	: Cross section to the meta-stable state
g	: Cross section to the ground state
Column 5	Neutron Source
BARC	: Bhabha Atomic Research Centre, Trombay
CASCD-GEN	: Cascade generator
C-W	: Cockcroft-Walton type accelerator
ELA, or	: electrostatic accelerator
ELST-ACLTR	
ELST-GEN	: electrostatic generator
Fe-FILT-N	: Fe-filtered neutron
HAR	: Harwell, AERE
KUR	: Kyoto University Research Reactor Institute
LINAC	: electron linear accelerator
LRL	: Lawrence Radiation Laboratory
nat. U	: natural uranium
n-booster	: neutron booster
NUCL EXPL	: underground nuclear explosion
ORELA	: Oak Ridge Electron Linear Accelerator
DHOTO-N	: Oak Riuge National Laboratory
	· Rensselaer Polytechnic Institute
SDT-N	 slowing-down-time neutron
THR-N	: thermal neutron
VDG	: Van de Graaf accelerator
Column 6	Method
(ADC)	· absolute measurement
	: absolute measurement
ACI Anth SC	: activation method (technique)
10 BF $-$ LC	· ¹⁰ BF, long counter
¹⁰ B-NaT	· ¹⁰ B-Nal detector
C (F - SCINT	$: C_{6}F_{6} \text{ scintillator}$
DRC	: double-ratio comparison
EW · G-M	: end-window G-M counter
EW • PC	: end-window proportional counter
EW•β	: end-window ß counter
GAS-DIS-PC	: gas-discharge proportional counter
Ge(Li)	: Ge(Li) spectrometer
G-M, GM	: Geiger-Müller counter
LIQ-SCINT	: liquid scintillator
LIQ-SCINT-T	: liquid scintillation tank
or SC-T	
LONG • C	: long counter
M-R	: moxon-Rae counter
NaI	: NaI crystal (scintillator)
NaI(T1)	: NaI(T1) crystal, (scintillation y-spectrometer)
rb-SDTS	: Pp slowing-down-time spectrometer
PROP-C, or	; proportional counter
SCINT, or SC	: scintillation counter

.

TOF : time of flight method (technique) TSG, or RG-TRANS: transmission sphere geometry(ring geometry) ²³⁵U fission counter (chamber) ²³⁵U•FC : α -DTCTR α particle detector : : β-ray counter β-counter $\beta - PROP \cdot C$: β-ray proportional counter : γ-ray proportional counter : Neutron flux (beam) γ-PC ^фп Standard or Flux Monitor Column 7 Allen & : Allen, W. D. and Henkel, R. L. Henkel ('58) Prog. Nucl. Ener., Ser. I, Vol II (1958) Anth, SC : anthracene scintillation counter Davey's data or : Davey, W. : Nucl. Sci. Eng. 26, 149 (1966) Davey's eval.'66 Diven '58 Diven, B. C., Terrell., J., and Hemmendinger, A. : : Phys. Rev. 109, 144 (1958) This is cited in [60 Weston] as " private communication" Diven (p.c.) : from Diven and Terrell. : Hughes, D. J., Magurno, B. A., and Brussel, M. K. : Neutron Cross Sections, BNL-325, 2nd Edition (1960) Hughes, or Hughes et al. '60 : Johnsrud, A. E., Silbert, M. G., and Barschall, H. H. : Phys. Rev. <u>116</u>, 927 (1959) Johnsrud JP/A5, 1262('72): Lakshmana Rao,A.and Rama Rao,J.: Jour. Phys.A5, 1262(1972) Li glass SC Li glass scintillation counter : : Sowerby, or Sowerby, M. G., Patrick, B. H., Uttley, C. A., and Sowerby's data Diment, K. M. : Proc. Symp. Neutron-Standards and Flux Normalization. AEC Symposium Series 23, p. 151 (1970) White's σ_{f} , or : White, P. : Jour. Nucl. Ener. A/B 19, 325 (1965) White '65 Thermal Cross Section Column 8 & 9 '58 Neutron Cross Section, BNL-325, 2nd Edition (1958) Neutron Cross Section, BNL-325, 2nd Edition BNL-325 : : BNL-325 '65 Suppl. No. 2, Vol. III (1965) '66 BNL-325 : Neutron Cross Section, BNL-325, 2nd Edition Suppl. No. 2, Vol. II B (1966) Comments Column 10 BNL-325, 2nd, Suppl. ('66) BNL-325, 2nd Edition, Suppl. No. 2, Vol II C (1966) : Irigary, J. L., Rigaud, F., Petit, G. Y., Longo, G., 72 Budapest, p. 220 ('72) and Saporetti, F. : Conference on Nuclear Structure and Study with Neutrons. Budapest, p. 220 (1972) Data : Fig. 3 The measured cross sections are plotted in Fig. 3 : of the original paper. Data:NEUDADA This means that the data were adopted from NEUDADA, because the literature didn't be obtained in present work, or the numerical data are not given in the original paper. neutron energy En En & $\sigma_{n\gamma}$:data : This means that En and $\sigma_{n\gamma}$ were adopted from NEUDADA, because the original values of En and $\sigma^{}_{n\gamma}$ were revised . compiled in NEUDADA when the data were compiled in NEUDADA.

¹⁵¹ Eu data of Kanka & Fonin(!	6 A \	: Konks, V. A. and Fenin, Yu. I. :
KONKS & renin(64)	Dubna, Report No. 1845 (1964) [64a Konks]
4π-geom. γ	:	4π-geometry gamma-counting technique
Hughes et al.(')	60)	: Hughes, D. J., Magurno, B. A., and Brussel, M. K. : Neutron Cross Sections, BNL-325, 2nd Edition (1960)
integrated $\sigma_{n\gamma}$:	(n,γ) cross section integrated over the energy of emitted γ-ray
mon. reac. : α	: '	This means that $lpha$ particles were measured as a monitor $-$
		reaction.
NDS	:	Nuclear Data Sheet, compiled by K. Way et al. :
		National Academy of Sciences, National Research Council,
	1	Washington 25, D. C.
Norm.	:	normalization
ORELA	:	Oak Ridge Electron Linear Accelerator
PR 142, 725('66) :	Grissom, J. T., Koehler, D. R., and Alford, W. L. : Phys. Rev., 142, 725 (1966)
Relative	:	relative measurement
Rev. Mod. Phys.	:	Strominger, D., Hollander, J. M., and Seaborg, G. T. :
30, 585 ('58)		Rev. Mod. Phys. 30, 585 (1958) ;
		Nuclear Data Cards (National Research Council, Washington 25, D. C.)
RP	:	resonance parameter
T 1/2	:	half life
6th TI	:	Lederer, C. M., Hollander, J. M., and Perlman, I :
		Table of Isotopes, Sixth Edition, (1967)
TICC.or Table	:	Sliv, L. A. and Band, I. M. :
of ICC		Table of I. C. C., Alpha-Beta-and Gamma-Ray
		Spectroscopy, Vol. 2, p. 1638 (1963)
upper limit	:	This means that the measured cross section is the upper
11		limit only due to insufficient yield.
6	:	β-ray counting
Ŷ	:	Y-ray counting
ďq	:	capture cross section to the ground state
ຕື້	:	capture cross section to the meta-stable state

.

Experimental References

1)	- 57	Macklin	•	Macklin, R. L., Lazar, N. H., and Lyon, W. S. : Phys. Rev. <u>107</u> , 504 (1957)
2)	58	Belanova	:	Belanova, T. S. : Sov. Phys. JETP <u>34</u> , 397 (1958)
3)	58	Booth	:	Booth, R., Ball, W. P., and MacGreyor, M. H. : Phys. Rev. <u>112</u> , 226 (1958)
4)	58	Kononov	:	Kononov, V. N., Stavisskii, Yu. Ya., and Tolstikov, V. A. : Atomnaya Energiya <u>5</u> , 564 (1958) (English Translation : Jour. Nucl. Ener. <u>All</u> , 46(1959)
5)	58	Leip unsky	:	Leipunsky, A. I., Kazachkovsky, O. D., Artyukhov, G. Y., Baryshnikov, A. I., Belanova, T. S., Galkov, V. N., Stavissky, Y. Y., Stumbur, E. A., and Sherman, L. E. : 2nd International Conference on the Peaceful Uses of Atomic Energy. Geneva, Vol. 15, p. 50 (1958)
6)	58	Pasechnik	:	Pasechnik, M. V., Barchuk, I. F., Totsky, I. A., Strizhak, V. I., Korolov, A. M., Hofman, Y. V., Lovchikova, G. N., Koltynin, E. A., and Yankov, G. B.: 2nd International Conference on the Peaceful Uses of Atomic Energy. Geneva, Vol. 15, p. 18 (1958)
7)	58	Perkin	:	Perkin, J. L., O'connor, L. P., and Coleman, R. F.: Proc. Phys. Soc. <u>72</u> , 505 (1958)
8)	5 9	Bame	:	Bame, S. J. and Cubitt, R. L. : Phys. Rev. <u>113</u> , 256 (1959)
9)	59	Gabbard	:	Gabbard, F., Davis, R. H., and Bonner, T. W. : Phys. Rev. <u>114</u> , 201 (1959)
10)	59	Isakov	:	Isakov, A. I., Popov, Yu. P., and Shariro, F. L.: Conference on the Peaceful Uses of Atomic Energy. Tashkent, USSR, Vol. 1, p. 64 (1959) (English Translation : AEC-TR-6398 (1964))
11)	59	Johnsrud	:	Johnsrud, A. E., Silbert, M. G., and Barshall, H. H.: Phys. Rev. <u>116</u> , 927 (1959)
12)	59	Lyon	:	Lyon, W. S. and Macklin, R. L. : Phys. Rev. <u>114</u> , 1619 (1959)
13)	59	Vervier	:	Vervier, J. F. : Nucl. Phys. <u>9</u> , 569 (1959)
14)	60	Diven	:	Diven, B. C., Terrell, J., and Hemmendinger, A. : Phys. Rev. <u>120</u> , 556 (1960)
15)	60	Schmitt	:	Schmitt, H. W. and Cook, C. W. : Nucl. Phys. <u>20</u> , 202 (1960)
16)	6 0	Tolstikov	:	Tolstikov, V. A. and Stavisskii, Yu. Ya : AEC-1R-4680 (1960)
17)	60	Weston	:	Weston, L. W., Seth, K. K., Bilpuch, E. G., and Newson, H. W. : Ann. Phys. 10, 477 (1960)

.

•

	18)	60	Wille	:	Wille, R. G., and Fink, R. W. : Phys. Rev. <u>118</u> , 242 (1960)
	19)	61	Block	:	Block, R. C., Slaughter, G. G., Weston, L. W. and Vonderlage, F. C. : EANDC Conference on Time of Flight Methods. Saclay, p. 203 (1961)
	20)	61	Gibbons	:	Gibbons, J. H., Macklin, R. L., Miller, P. D., and Neiler, J. H. : Phys. Rev. <u>122</u> , 182 (1961)
	21)	61	Stavisskii	:	Stavisskii, Yu. Ya., Tolstikov, V. A., and Kononov, V. N. : Atomnaya Énergiya <u>10</u> , 158 (1961) (English Translation : Jour. Nucl. Ener. A/B 16, 326 (1962))
	22)	62	Furr*	:	Furr, A. K. Div. of Tech. Inform. Ext., AEC Report, TID-16059 (1962)
	23)	62	Popov	÷	Popov, Yu. P. and Shapiro, F. L. : Sov. Phys. JETP <u>15</u> , 683 (1962)
	24)	63	Borbely*	÷	Borbely, et al. : Central Research Institute of Physics, Academy of Sciences (Hungary), KFKI-1467/F (1963)
	25)	63	Bramlitt	:	Bramlitt, E. T. and Fink, R. W. : Phys. Rev. <u>131</u> , 2649 (1963)
	26)	63	Csikai	:	Csikai, J., Bacsó, J., and Daróczy, A. : Nucl. Phys. <u>41</u> , 316 (1963)
	27)	63	Kapchigashev	,	: Kapchigashev, S. V. and Popov, Yu. P. : Atomnaya Énergiya <u>15</u> , 120 (1963) (English Translation : Sov. Jour. Atom. Ener. <u>15</u> , 808 (1964))
	28)	63	Macklin	:	Macklin, R. L., Inada, T., and Gibbons, J. H. : Bull. Am. Phys. Soc. <u>8</u> , 81 (1963)
·	29)	63a	a Macklin	:	Macklin, R. L., Gibbons, J. H. and Inada, T. : Phys. Rev. <u>129</u> , 2695 (1963)
	30)	631	Macklin	:	Macklin, R. L., Gibbons, J. H.,and Inada, T. : Nature <u>197</u> , 369 (1963)
	31)	63	Moxon	:	Moxon, M. C. and Rae, E. R. : Nucl. Inst. Meth. <u>24</u> . 445 (1963)
	32)	64	Cox	÷	Cox, S. A. : Phys. Rev. <u>B133</u> , 378 (1964)
	33)	64	Kapchigashev	7* :	: Kapchigashev, S. V. and Popov, Yu. P. : Conference on Interaction of Neutrons with Nuclei. Dubna, Report No. 1845, p. 104 (1964)
	34)	64	Konks	:	Konks, V. A., Popov, Yu. P., and Shapiro, F. L. : Sov. Phys. JETP <u>19</u> , 59 (1964)
	35)	648	a Konks*	:	Konks, V. A. and Fenin, Yu. I. : Conference on Interaction of Neutrons with Nuclei. Dubna, Report No. 1845, p. 100 (1964)

- 54 -

36)	64	Tolstikov	:	Tolstikov, V. A., Kolesov, V. E., Dovbenko, A. G., and Stavisskii, Yu. Ya. : Atomnaya Énergia <u>17</u> , 505 (1964) (English Translation : Sov. Jour. Atom. Ener. <u>17</u> , 1272 (1965))
37)	65	Cuzzocrea*	:	Cuzzocrea, P. : Private Communication, NEUDADA (1965)
38)	65	Pönitz*	:	Pönitz, W. P. : Karlsruhe Progress Report : ARB•BER-19 (1965)
39)	65	Robertson	:	Robertson, J. C. : Nucl. Phys. <u>71</u> , 417 (1965)
40)	65	Stavisskii	:	Stavisskii, Yu. Ya et al. Atomnaya Energiya <u>19</u> , 292 (1965) (English Translation : Sov. Jour. Atom. Ener. <u>19</u> , 1210 (1965))
41)	65	Stupeyia	:	Stupegia, D. C., Schmidt, M., Keedy, C. R., and Madson, A. A. : Argonne National Laboratory Report Series: ANL-7132, p. 31 (1965)
42)	6 6	Chaubey	:	Chaubey, A. K. and Sehgal, M. L.: Phys. Rev. <u>152</u> , 1055 (1966)
43)	66	Fenner*	:	Fenner et al.: European-American Nuclear Data Committee Documents: EANDC(UK) 75S (1966), (NEUDADA)
44)	6 6	Gray	:	Gray, P. R., Zander, A. R., and Ebrey, T. G. : Nucl. Phys. <u>75</u> , 215 (1966)
45)	66	Kononov	÷	Kononov, V. N., Stavisskii, Yu. Ya., Csistozvonov, S. R., and Shorin, V. S. : 1st IAEA Conference on Nuclear Data for Reactors. Paris, Vol. 1, p. 469 (1966)
46)	67	Csikai	:	Csikai, J.,Petö, G., Buczkó, M., Miligy, Z., and Eissa, N. A. : Nucl. Phys. <u>A95</u> , 229 (1967)
47)	67	Cuzzocrea	:	Cuzzocrea, P., Notarrigo, S., and Perillo, E. : Nuovo Cimento <u>B52</u> , 476 (1967)
48)	67	Macklin	:	Macklin, R. L. and Gibbons, J. H. : Phys. Rev. <u>159</u> , 1007 (1967)
49)	67	Þetö	:	Petö, G., Miligy, Z., and Hunyadi, I. : Jour. Nucl. Ener. <u>21</u> , 797 (1967)
50)	67	Tolstikov	:	Tolstikov, V. A., Koroleva, V. P., Kolesov, V. E., and Dovbenko, A. G. : Atomnaya Énergiya 23, 566 (1967) (English Translation : Sov. Jour. Atom. Ener. 23, 1347 (1967))
51)	68	Chaubey	:	Chaubey , A. K. and Se hgal, M. L. : Nucl. Phys. <u>All7</u> , 545 (1968)
52)	68	Colditz*	:	Colditz et al.: Oesterr. Akad. Wiss. Math. and Naturw. Anzeiger <u>105</u> , 236 (1968)
53)	68	Dinter	:	Dinter, H. : Nucl. Phys. <u>Alll</u> , 360 (1968)
			,	- 55 -

54)	68 Harlow	:	Harlow, M. V., Schelberg, A. D., Tatro, L. D., Warren, J. H., and Glass, N. W. : 2nd Conference on Nuclear Cross Sections and Technology. Washington D. C., p.837 (1968)
55)	68 Hasan	:	Hasan, S. S., Chaubey, A. K., and Sehgal, M. L.: Nuovo Cimento <u>B58</u> , 402 (1968)
56)	68 Konks	:	Konks, V. A., Popov, Yu. P., and Fenin, Yu. I. : Sov. Jour. Nucl. Phys. <u>7</u> , 310 (1968)
57)	68 Qaim*	:	Vaim, S. M. et al. Jour. Inorg. Nucl. Chem. <u>30</u> , 2577 (1968)
58)	68 Stupegia	:	Stupegia, D. C., Schmidt, M., Keedy C. R., and Madson, A. A. : Jour. Nucl. Ener. <u>22</u> , 267 (1968)
59)	69 Dovbenko	:	Dovbenko, A. G., Kolesov, V. E., Koroleva, V. P., and Tolstikov, V. A. : Atomnaya Énergiya <u>26</u> , 67 (1969) (English Translation : Sov. Jour. Atom. Ener. <u>26</u> , 82 (1969))
60)	69 Kompe	:	Kompe, D. : Nucl. Phys. <u>A133</u> , 513 (1969)
61)	69 Schuman	:	Schuman, R. P. : AEC, Washington Reports to the NCSAG, WASH-1127, p. 72 (1969)
62)	70 Chaturvedi	•	Chaturvedi, S. N. and Prasad, R. : Nuclear Physics and Solid Physics Symposium. Madurai, Vol. 2, p. 615 (1970)
63)	70 Czirr	:	Czirr, J. B. : Lawrence Radiation Laboratory Report, UCRL-50804 (1970)
64)	70 Dicsic	:	Dicsic, M., Strohal, P., Petö, G., Bornemisga- Pauspertl, P., Hunyadi, I., and Károlyi, J. : Acta Phys. Acad. Sci. Huny. <u>28</u> , 257 (1970)
65)	70 Fricke	:	Fricke, M. F., Lopez, W. M., Friesenhahn, S. J., Carlson, A. D., and Costello, D. G. : 2nd IAEA Conference on Nuclear Data for Reactors. Helsinki, Vol. 2, p. 265 (1970)
66)	70 Majumder	÷	Majumder, M. : Indian Jour. Phys. <u>44</u> , 204 (1970)
67)	70 Murty	•.	Murty, M. S., Siddappa, K., and Rao, J. R. Nuclear Physics and Solid Physics Symposium. Madurai, Vol. 2, p. 29 (1970)
68)	70 yaim	·	vaim, S. M. : Jour. Inorg. Nucl. Chem. <u>32</u> , 1799 (1970)
69)	70 Thirumala	:	Thirumala Rao, B. V., Rama Rao, J., and Kondaiah, E. : Nuclear Physics and Solid Physics Symposium. Madurai, Vol. 2, p. 25 (1970)
70)	70 Tromp	:	Tromp, R. L. : Reports of Idaho Nuclear Corp. : IN-1407, p.31 (1970)

- 56 -

1

.

71)	70 Zaikin	:	Zaikin, G. G., Korzh, I. A., Pasechnik, M. V. : and Sklyar, N. T. : Ukrainskij Fiziceskij Zurnal 16, 1205 (1970) (English Translation : INDC(CCP)-15, p. 52 (1971)
72)	71 Bensch	:	Bensch, F. and Ledermann, H. : EANDC(OR) 105 L, p. 1 (1971)
73)	71 Brzosko*	:	Brzosko, et al. : Acta Physica Polonica Section <u>B2</u> , 489 (1971)
74)	71 Riyaud	:	Rigaud, F., Irigaray, J. L., and Petit, G. Y. : Nucl. Phys. <u>A173</u> , 551 (1971)
75)	7la Rigaud	:	Rigaud, F., Irigaray, J. L., Petit, G. Y., Longo, G., and Saporetti, F. : Nucl. Phys. <u>Al76</u> , 545 (1971)
76)	72 Holub* .	:	Holub, E., et al. : Inst. Rudjer Boskovic Reports : LNS-4-/2 (1972)
77)	72 Kantele*	:	Kantele et al. Physics Letters <u>B39</u> , 625 (1972)
78)	72 Lakshmana	:	Lakshmana Rao, A. and Rama Rao, J. : Phys. Rev. <u>C6</u> , 572 (1972)
79)	72a Lakshmana	÷	Lakshmana Rao, A. and Rama Rao, J. : Lettere al Nuovo Cimento <u>5</u> , 1025 (1972)
80)	72 Siddappa	:	Siddappa, K., Murty, M. S., and Rama Rao, J. : Jour. Phys. <u>A5</u> , 877 (1972)
81)	72 Thirumala	:	Thirumala Rao, B. V., Rama Rao, J., and Kondaiah, E. : Jour. Phys. <u>A5</u> , 4 68 (1972)
82)	73 Chou	:	Chou, JC. and Werle, H. : Jour. Nucl. Ener. <u>27</u> , 811 (1973)
83)	73 Lakosi	:	Lakosi, L. and Beresh, A. : Conference on Neutron Physics. Kiev, Vol. 4, p. 312 (1973)
84)	73 Murty	:	Murty, M. S., Siddappa, K., and Rama Rao, J. : Jour. Phys. Soc. Japan <u>35</u> , 8 (1973)
85)	73 Petö*	:	Petö, G. et al. Acta Phys. Acad. Sci. Hung. <u>33</u> , 363 (1973)
86)	73a Petö	:	Petö, G. and Csikai, I. : Conference on Neutron Physics. Kiev, Vol. 3, p. 78 (1973)
87)	73 Qaim	:	Qaim, S. M. : Jour. Inorg. Nucl. Chem. <u>35</u> , 3669 (1973)
88)	73 Siddappa	:	Siddappa, K., Murty, M. S., and Rama Rao, J. : Nuovo Cimento <u>18A</u> , 48 (1973)
89)	74 Anand	:	Anand, R. P., Bhattacharya, D., Jhingan, M. L., and Kondaiah, E. : 17th Nuclear and Solid State Physics Symposium. Bombay, Vol. 2, p. 101 (1974)

.

- 57 -

•

 $A \to R I - M$ ~ 56

8

- 62 -

64

L

≻ ERI \mathbb{N}^{-1} ~1 S

6

œ

66

Ч AERI~M

~7 5 6

8

67

Т

- 68 -

- 69 -

-

70

1

JAERI-M 75 ົດ

8

JAERI-M 7568

- 72 -

1 73 ł

AERI-M

с.__

756

00

JAERI-M 7568

- 76 -

- 77 -

JAERI-M 7568/

- 79 -

- 80 -

- 81 -

- 82 -

- 83 -

- 84 -

いばらき印刷納