LEVEL SCHEMES FOR SOME FISSION PRODUCT NUCLIDES — COMPARISON OF LEVEL SCHEMES USED BY JAERI AND PETTEN—

June 1978

Zyun-itiro MATUMOTO, Tooru MURATA* and Ryuzo NAKASIMA**

この報告書は、日本原子力研究所が JAERI-M レポートとして、不定期に刊行している 研究報告書です。入手、複製などのお問合わせは、日本原子力研究所技術情報部(茨城県 那珂郡東海村)あて、お申しこしください。

JAERI-M reports, issued irregularly, describe the results of research works carried out in JAERI. Inquiries about the availability of reports and their reproduction should be addressed to Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, Japan.

**

Level Schemes for some Fission Product Nuclides -Comparison of Level Schemes used by JAERI and Petten-

Zyun-itiro MATUMOTO, Tooru MURATA^{*} and Ryuzo NAKASIMA^{**}

Fission Product Nuclear Data Working Group, Japanese Nuclear Data Committee, Tokai Research Establishment, JAERI

(received June 5, 1978)

Level schemes of 24 fission product nuclides comparable between JAERI's and Petten's are presented. When the assignments of spin and parity are different between, the reasons for JAERI's are described. In typical cases are compared the cross section of inelastic scattering and (n, γ) reaction calculated using the JAERI's and Petten's level schemes. The distribution of the low-lying levels of which spins and parities are assigned, is also presented.

Keywords : Fission Product, Level Energy, Spin, Parity, Level Distribution, Neutron Inelastic Scattering Cross Section, Neutron Capture Cross Section, Comparative Evaluation

* NAIG Nuclear Research Laboratory, Nippon Atomic Industry Group Co., Ltd., 4-1, Ukisima-cho, Kawasaki, Japan .

Hosei University, Fujimi, Chiyoda-ku, Tokyo, Japan. This work was done in evaluation work of Fission Product Nuclear Data Working Group, Japanese Nuclear Data Committee.

İ

.

核分裂生成核種の準位様式

- JAERI および Petten で使用した準位様式の比較-

日本原子力研究所東海研究所シグマ研究委員会 松本純一郎・村田 徹^{*}・中嶋 竜三^{**}

(1978年6月5日 受理)

JAERI および Petten で決めた核分裂生成核種のうち,両者の比較ができる24核種のレベル・ スキームを比較して示す。スピンやパリティの決定が両者の間でくいちがっている場合には,わ れわれの決定理由を述べた。これらのレベル・スキームを使って計算した非弾性散乱と(n, γ) 反応の断面積とを,典型的な場合について比較した。またスピンとパリティとを決められている レベルの分布状況を図で示してある。

* 日本原子力事業

** 法政大学

本調査は、シグマ研究委員会・核データ専門部会、•FP 核データワーキンググループの作業の一環 として行われたものである。

Contents

1.	Introduction 1
2.	Comparison of Level Schemes used by JAERI
•	and Petten
	2.1~2.24 : Tables of Level Schemes for 24
	Inportant Nuclides 2
3.	Step-wise Diagrams for Distribution of Low-lying
	Levels
4.	Examples of Calculated Inelastic Scattering
	and Capture Cross Sections 40
5.	Remarks 40
Ackno	owledgement
Refei	cences

.

.

目 次

1.		序	論…	••••	••••••	•••••	••••••	· • • • • • • • • • •	• • • • • • • • • • • •	•••••	••••••	•••••••	•••••••••	•••••	1
2.		JA	ERI≭	よよび	Petten	で使用る	された準	位様式	の比較		•••••••••	• • • • • • • • •	•••••	, 	2
	2.	1~	- 2. 24	重要	24 核種	重の準位権	兼式の表	ž							
3.		低い	▶準位の)分布(こ対する	階段表示	<u>.</u>	• • • • • • • • • • •	••••	•••••••		•••••	••••••	• • • • • • •	39
4		計算	すされた	非弾	生散乱と	捕獲附直	面積の例	IJ		••••••	•••••		••••••	•••••	40
5.		所	見…		•••••	•••••	••••••	•••••	•••••	••••••		•••••		•••••	40
	謝		辞		•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • •	•••••	· · · • • • • • • • •	•••••	•••••	•••••	•••••	41
	参	考	文 献	· · • · · • •	•••••	• • • • • • • • • • •		••••	•••••••		•••••		•••••	• • • • • • • •	42

1. Introduction

In order to evaluate the neutron cross sections, it is necessary to use the evaluated level schemes of relevant nuclides. However, the critical evaluation of level schemes, of course, is so difficult that the international collaboration is highly required. In making critical evaluation, the determination of level energies and the assignments of spin and parity should be worked out carefully based on many kinds of experimental data, not only decay data but also reaction data. In this case, the determined level energies, spins and parities can be ensured only when the all available experimental data are not inconsistent with each other. Critical evaluation, however, yields a little well-established assignments in many cases, while for cross section evaluation, the spin-parity assignments to levels are required as many as possible.

Working group on evaluation of fission product nuclear data has selected about 100 nuclides as important ones. However, the level schemes of the most of them appeared in Nuclear Data Sheets were not satisfactory to our purpose since some are outof-date or some include only a little information. Therefore, we were obliged to make our own level schemes based on the all available experimental information, and using not only strong arguments but also weak arguments. In some cases, the spins and/or the parities have been unwillingly selected without any reasonable arguments only when the assignments were necessary in calculating the cross sections. One typical example for such assignments is the spin-parity selection based on only gamma

- 1 -

transitions from or to other known levels. The energies of levels (in MeV) have been taken from Nuclear Data Sheets or original paper.

In this report, our level Schemes, reported previously¹⁾ and revised recently, are compared with those reported by Gruppelaar²⁾ for 24 nuclides. In section 2, the level energies and spin-parities of the low-lying levels are tabulated for three cases. In section 3, the step-wise diagrams for the distribution of low-lying levels of which spins and parities are assigned are presented. Although the diagram may be only a reference for the level density, it seems to be still useful in statistical calculation of cross section for high energy region. In section 4, the calculated inelastic scattering cross sections are compared by using the different level schemes.

2. Comparison of Level Schemes used by JAERI and Petten Level schemes, reported previously¹⁾ and revised recently by us and those reported by Gruppelaar²⁾ are tabulated in subsection 2.1 2.24. Comments are added if both of our revised ones and Gruppelaar's disagree with each other. However, the most of the comments are based on rather quite weak arguments unless new experimental evidence offers the convincing arguments.

- 2 -

• •	93 _{Nb}
2.1	41 ND

Adop	ted	Rev	ised	RCN		
0.0	9/2+	0.0	9/2+	0.0	9/2+	
0.0304	1/2	0.0304	1/2	0.0304	1/2	
0.686	3/2	0.686	3/2	0.686	3/2	
0:7440	7/2+	0.7440	7/2+	0.7440	7/2+	
0.8087	5/2+	0.8087	5/2+	0.8087	7/2+	
0.8101	5/2	0.8101	5/2	0.8101	3/2	
0.9499	13/2+	0.9499	13/2+	0.9499	13/2+	
0.9791	11/2+	0.9791	11/2+	0.9791	11/2+	
1.0826	9/2+	1.0826	9/2+	1.083	9/2+	
				1.127	5/2+	
1.28	3/2	1.28	3/2		•	
1.2974	9/2+	1.2974	9/2+			
1.3156	5/2	1.3156	5/2			
1.3351	17/2+	1.3351	17/2+			
1.364	7/2	1.364	7/2			

- <u>0.8087 level</u> Angular distribution in (p,α) and Hauser-Feshbach analysis for (n,n') show $5/2^+$.
- <u>0.8101 level</u> Angular distribution in (p,α) suggests $5/2^{-}$ or possibly $3/2^{-}$. $(n,n'\gamma)$ experiments suggest $(3/2^{-}, 5/2^{-})$ or (5/2, 7/2).
- <u>1.127 level</u> Uncertain level in $(n,n'\gamma)$ and analysis shows $5/2^+$, 7/2. Only an uncertain γ to $5/2^+$.
- <u>1.28 level</u> Angular distribution in (p,α) , and l=1 in $({}^{3}\text{He},d)$.
- <u>1.2974 level</u> Hauser-Feshbach analysis for (n,n').
- <u>1.3156 level</u> Hauser-feshbach analysis for (n,n'). l=3 in $(d, {}^{3}$ He) suggests $5/2^{-}$, $7/2^{-}$, but no γ to $9/2^{+}$ selects $5/2^{-}$.
- 1.3351 level Hauser-Feshbach analysis for (n,n').
- 1.5551 level nauser-resubach analysis for (ii,ii)
- 1.364 level Angular distribution in (p,α) .

~ ~	95 _{Ma}
2.2	42 ^{MO}

Adopted	('74)	Re	<u>vised</u>	RCN	
0.0	5/2+	0.0	5/2+	0.0	5/2+
0.20394	3/2+	0.20394	3/2+	0.2039	3/2+
0.76583	7/2+	0.76583	7/2+	0.7658	7/2+
0.7862	1/2	0.7862	1/2+	0.7862	1/2+
0.82065	3/2+	0.82065	3/2+	0.8207	3/2+
0.9478	9/2+	0.9478	9/2+	0.9479	9/2+
1.0391	1/2+	1.0391	1/2+	1.039	1/2+
1.059	5/2+	1.059	5/2+	1.057	5/2+
1.0741	7/2+	1.0741	7/2+	1.074	7/2+
1.2225	5/2+	1.2225	5/2+	1.220	3/2+
1.310	1/2+	1.310	1/2+	1.310	1/2+
1.376	3/2+	1.376	3/2+	1.370	3/2+
1.433	5/2+	1.433	5/2+	1.426	3/2+
				1.440	7/2+
				1.470	1/2
1.541	11/2+	1.541	11/2	1.541	11/2
1.5528	9/2+	1.5528	9/2	1.552	9/2
				1.570	5/2+
				1.580	3/2+
		1.6202	3/2+	1.620	3/2+
				1.650	7/2
		1.670	5/2+	1.670	5/2
		1.683	9/2+	1.683	9/2+
		1.707	1/2+		
		1.938	11/2		

<u>1.2225 level</u> Weakly populated in 95mTc (1/2⁻) decay with log ft = 10.7, thus suggesting 5/2⁺.

<u>1.426 level and 1.433 level</u> These are assumed to be identical. $\ell = 2$ in (d,p) suggests $3/2^+$, $5/2^+$. $92_{2r(\alpha,n\gamma)}$ and $94_{2r(\alpha,3n\gamma)}^{3}$ suggests $5/2^+$.

1.440 level No experimental evidence could be found.

1.470 level No experimental evidence could be found.

95 ₄₂ Mo	
⁹⁵ 42 ^{Мо}	
42	

1.570 level	No experimental	evidence	could	be	found.
1.580 level	No experimental	evidence	could	be	found.
1.650 level	No experimental	evidence	could	be	found.
<u>1.707 level</u>	l=0 in (d,p).				
1.938 level	92 Zr(α ,n γ) and	94 Zr(α , 3n ⁻	(⁴⁾ .		
•					

 $2.3 \frac{96}{42}$ Mo

Adopte	d	Revise	ed	RCN		
0.0	0+	0.0	0+	0.0	0+	
0.7783	2+	0.77826	2 ⁺	0.7783	2+	
1.1479	0+	1.1479	0+	1.148	0+	
1.4978	2+	1.49782	2+	1.498	2+	
1.626	2+	1.626	2+	1.626	2+	
1.628	4 +	1.628	4 +	1.628	4 +	
1.8695	4 +	1.8695	4 +	1.870	4 +	
1.9783	3+	1.9783	3+	1.978	3+	
2.0956	2+	2.0956	2+	2.096	2+	
2.219	4 +	2.2193	4 +	2.219	4 +	
2.2345	3	2.2345	3	2.235	3	
2.4262	3+	2.4262	3+	2.426	2+	
2.438	5+	2.43838	5+	2.438	5+	
2.441	6 +	2.44064	6+	2.441	6+	
2.481	4 +	2.4807	4 +	2.481	3+	
				2.541	2+	
				2.594	3+	
				2.625	3+	

- 2.4262 level Intensity of γ from capturing state in (n_{th}, γ) suggests 2^+ , 3^+ or possibly 4^+ . No γ to 0^+ g.s., but to 2^+ levels select 3^+ or possibly 4^+ . No ε -decay from 96^{m} Tc (4^+) is not consistent with above evidence. 3^+ is assigned tentatively considering the fact that it is hard to see the $\epsilon\text{-decay}$ even if exists, since $\epsilon\text{-decay}$ of ^{96m}Tc is only 2% (IT=98%).
- $\frac{2.4807 \text{ level}}{\text{No } \beta \text{ from}} \log \text{ ft} = 7.0 \text{ from} \frac{96\text{m}}{\text{Tc}} (4^{+}) \text{ suggests } 3^{+}, 4^{+}, 5^{+}.$ No $\beta \text{ from} \frac{96\text{Nb}}{6} (6^{+}) \text{ selects } 3^{+}, 4^{+}. (p,p') \text{ and } (\alpha, \alpha')$ show 4⁺.
- 2.541 level Intensity of γ from capturing state in (n_{th}, γ) suggests 2⁺, 3⁺ or possibly 4⁺. No γ to 0⁺ g.s., but to 2⁺ levels. No ε -decay from ^{96m}Tc (4⁺). <u>2.594 level</u> Log ft = 5.7 from 96m Tc (4⁺) suggests 3⁺, 4⁺, 5⁺.

⁹⁶₄₂Mo No β from ⁹⁶Nb (6⁺) selects 3⁺, 4⁺. <u>2.625 level</u> Log ft = 7.6 from ^{96m}Tc (4⁺) suggests 3⁺, 4⁺, 5⁺. No β from ⁹⁶Nb (6⁺) selects 3⁺, 4⁺. (p,p') and (α , α ') show 4⁺.

•.

•

.

.	97	
2.4	42 ^{MO}	

Adopte	d	Revi	sed	RCN	
0.0	5/2+	0.0	5/2+	0.0	5/2+
0.4809	3/2+	0.4809	3/2+	0.4809	3/2+
0.65792	7/2+	0.65792	7/2+	0.6583	7/2 ⁺
0.6796	1/2+	0.6796	1/2+	0.6796	1/2+
0.71947	5/2+	0.71947	5/2+	0.7193	5/2+
0.7211	3/2+	0.7211	3/2+	0.7211	3/2+
				0.7530	5/2+
				0.7950	1/2+
0.8882	1/2+	0.8882	1/2+	0.8810	1/2+
				0.9930	3/2+
1.02453	7/2+	1.02453	7/2+	1.0250	. 7/2+
1.0926	3/2+	1.0926	3/2+	1.0920	3/2+
1.1167	9/2	1.1167	9/2+	1.1180	9/2+
				1.1360	3/2+
		1.1486	7/2-	1.1490	9/2+
				1.2650	5/2+
1.26863	7/2+	1.26863	7/2+	1.2690	7/2+
1.273	3/2+	1.273	3/2+		
		1.284	13/2+	1.2840	13/2+
		1.2846	3/2+	1.2850	3/2+
1.4095	11/2+	1.4095	11/2+	1.4100	11/2+
L.4373	11/2	1.4373	11/2	1.4370	11/2
1.447	3/2+	1.447	3/2+	1.4470	3/2+
l.51564	9/2+	1.51564	9/2+	1.5160	9/2 ⁺
1.5452	5/2	1.5452	5/2		
1.5651	3/2+	1.5651	3/2+		

<u>0.7530 level</u>	No experimental evidence could be found.
0.7950 level	No experimental evidence could be found.
0.9930 level	No experimental evidence could be found.
1.1360 level	Reported in (d,t) but no information for J^{π} .
1.1486 level	Probably fed by β^{-} from 9^{7} Nb (9/2 ⁺) with log ft
> 7.9, th	us suggesting 7/2 ⁻ , 9/2 ⁻ , 11/2 ⁻ .

- 8 -

•

97 42^{Mo}

 γ to 5/2⁺ g.s. selects 7/2⁻.

<u>1.2650 level</u> No experimental evidence could be fould.

- <u>1.273 level</u> l=2 in (d,p) suggests $3/2^+$ or $5/2^+$, but $3/2^+$ is more probable.
- <u>1.5452 level and 1.5651 level</u> $5/2^{-1}$ and $3/2^{+1}$ doublet reported in (d,p).

~ r	98,
2.5	42 ^{MO}

Adopted		Revis	ed	RCN	
0.0	0+	0.0	0+	0.0	0+
0.7349	0+	0.7349	0+	0.7348	0+
0.78742	2+	0.78742	2+	0.7875	2+
1.43232	2+	1.43232	2+	1.4320	2+
1.51013	4 +	1.51013	4 +	1.5100	4+
1.7585	2+	1.7585	2+	1.7590	2+
				1.8120	6+
		1.8809	3+	1.8810	3+
1.965	0+	1.965	0+	1.9640	0+
		1.9855	1+	1.9850	1+
2.0176	3	2.0176	3	2.0180	3
				2.0390	4 +
2.1049	2+	2.1049	2+	2.1050	2+
2.2069	2+	2.2069	2+	2.2070	2+
2.2240	4 +	2.2240	2+	2.2240	2+
2.3334	2 ⁺	2.3334	2+	2.3330	2+
2.3437	6+	2.3437	6 +	2.3440	6 +
2.4198	3	2.4198	3	2.4200	3
		2.450	4 +	2.4500	4 +
2.4854	4 +	2.4854	3+	2.4850	3+
		2.5063	3	2.5060	3
				2.5260	0+
				2.5620	3
				2.5730	4 *
				2.6090	3
				2.6170	0+
				2.6210	2+
				2.6460	5
				2.6790	6+
				2.7080	2+

<u>1.8120 level</u> Observed only in (n,n'). No evidence for J^{π} assignment.

98 42^{Mo}

2.0390 level Observed in (n,n') and (d,d'), but no information
for J^{π} assignment. No β from 2.8 s ⁹⁸ Nb (1 ⁺) and 51.5 m
98Nb (4 or 5) suggest J>6.
2.5260 level Observed in (d,p) and (p,t), but no information
for J^{π} assignment.
2.5620 level Observed in (n,γ) and γ 's to 2 ⁺ and 3 ⁻ levels.
Not observed in Nb decay.
2.5730 level (p,t) suggests 4 ⁺ .
<u>2.6090 level</u> Log ft = 5.9 from 2.8 s 98 Nb (1 ⁺) suggests 0 ⁺ , 1 ⁺ ,
2^+ . No γ to 0^+ but 2^+ prefers 0^+ .
$2.6170 \text{ level} (p,t) \text{ suggests } 0^+.$
2.6210 level (n,γ) suggests 2 ⁺ , but $(\alpha,2n\gamma)$ suggests 5 ⁻ .
2.6460 level Observed in (p,t) but no information for J^{π} assign-
ment.
2.6790 level $(\alpha, 2n\gamma)$ suggests 5 ⁺ or 6 ⁺ . Log ft = 6.4 from
$51.5 \text{ m} {}^{98}\text{Nb} (4^+ \text{ or } 5^+).$
<u>2.7080 level</u> (p,t) suggests 2 ⁺ .

	1	0	0
2.6		4	2 ^{MO}

Adopt	ed		Rev	ised	RCN	
0.0	0+		0.0	0+	0.0	0+
0.5356	2+		0.5356	2+	0.5360	2 ⁺
0.6944	0^+		0.6944	0+	0.6944	0+
1.0637	2+		1.0637	2+	1.0640	2+
1.1361	4 +		1.1361	4 +	1.1360	4 +
1.4633	2+		1.4633	2+	1.4630	2+
1.7657	1+		1.7657	1+		
1.7704	3+		1.7704	3+		
1.9081	3		1.9081	3		
2.033	0+		2.033	0+		
2.040	2+		2.040	2+		
2.1014	4+		2.1014	4 +		
2.340	2+		2.340	2+		
2.4156	3		2.4156	3		
2.470	4 +		2.470	4 +		
2.5632	3+		2.5632	3+		
2.590	4 +		2.590	4 +		
1.7657 1	evel	γ's to	0 ⁺ , 2 ⁺ , but	not to 4	+ suggest 1 ⁺ .N	No stro
rea	son e	xists to	choose 1 ⁺ .			
1.7704 1	evel	γ's to	2 ⁺ , 4 ⁺ , not	to 0^+ . No	strong reason	n exist
to	choos	e 3 ⁺ .				
1.9081 1	evel	Coulom	o excitation	suggests	3 ⁻ .	
2.033 le	<u>vel</u>	(Y,Y')	suggests 0 ⁺	•		
2.040 le	vel	(Y,Y')	suggests 2 ⁺	•		
2.1014 1	evel	γ's to	2 ⁺ , 4 ⁺ , not	to 0^+ . No	o strong reaso	n exist
to	choos	e 4 ⁺ .				
2.340 le	vel	(p,p')	suggests 2 ⁺	•		
2.4156 1	<u>evel</u>	(p,p')	suggests 3	•		
<u>2.470 le</u>	vel	(p,p')	suggests 4 ⁺	•		
2.5632 1	<u>evel</u>	γ's to	2 ⁺ , 3 ⁺ , 4 ⁺ ,	not to O	⁺ .No strong re	eason
exi	sts t	o choose	e 3 ⁺ .			
2.590 le	vel	(p,p')	suggests 4 ⁺	•		

.

 $2.7 \frac{99}{43}$ Tc

Adopted	('74)	Revised		RCN	
0.0	9/2+	0.0	9/2+	0.0	9/2+
0.14051	7/2+	0.140508	7/2+	0.1405	7/2+
0.14263	1/2	0.14263	1/2	0.1426	1/2
0.18107	5/2+	0.18107	5/2+	0.1811	5/2+
0.5091	3/2	0.5091	3/2	0.5091	1/2
0.5343	5/2	0.5343	5/2	0.5343	3/2
		0.6254	7/2+		
0.6715	5/2	0.6715	5/2	0.6715	5/2-
0.7263	7/2+	0.7263	11/2	0.7263	9/2+
0.7616	5/2+	0.7616	5/2+	0.7616	7/2+
		0.7620	13/2+		
0.9205	3/2+	0.9205	3/2+	0.9205	3/2+
				0.9500	7/2
1.0040	3/2	1.0040	3/2	1.004	3/2
1.0729	5/2	1.0729	5/2	1.073	5/2
		1.0814	9/2+		
1.1293	1/2	1.1293	1/2	1.129	1/2
1.1420	3/2	1.142	3/2	1.142	3/2
1.199	3/2	1.199	3/2		

0.509	91	<u>level</u>	Log	ft	Ŧ	8.4	from	⁹⁹ Mo	$(1/2^{+})$	suggests	1/2	, 3/2 ⁻
	or	poss	ibly	5/2	•	No	prefe	erable	reason	exists	for 3/	/2 ⁻ .
						99		. +				- 10-

0.5343 level	No β	from ⁵⁵ M	(1/2')	suggests	J>3/2.	γ 1	to $1/2$
selects	5/2						

 $\frac{0.6254 \text{ level}}{\text{suggests 7/2}^{+} \text{ or possibly 9/2}^{+}}.$

<u>0.7263 level</u> Angular distribution in Coulomb excitation suggests $11/2^+$ or possibly $9/2^+$. No γ to $5/2^+$ selects $11/2^+$.

- <u>0.7616 level</u> Angular distribution in Coulomb excitation suggests $5/2^+$ or possibly $7/2^+$.
- $\frac{0.7620 \text{ level}}{\text{suggests } 13/2^+}.$

0.9500 level No experimental information could be found.

⁹⁹43^{Tc}

- <u>1.0814 level</u> Angular distribution in Coulomb excitation suggests $9/2^+$ or $11/2^+$. No preferable reason exists for $9/2^+$.
- $\frac{1.199 \text{ level}}{3/2} \beta \text{ from } 99 \text{Mo} (1/2^+) \text{ with log ft } 28 \text{ suggests } 1/2^-$

 $2.8 \frac{101}{44} Ru$

Adopte	d ('74)	Revise	d	R	CN
0.0	5/2 ⁺	0.0	5/2+	0.0	5/2+
0.1271	3/2+	0.12722	3/2+	0.1272	3/2+
0.3067	7/2+	0.30681	7/2+	0.3068	7/2+
0.3112	5/2+	0.3113	5/2+	0.3113	5/2+
0.3254	1/2+	0.3252	1/2+	0.3252	1/2+
		0.3441	3/2+	0.3441	3/2+
0.4224	3/2+	0.4220	3/2+	0.4220	3/2+
		0.4623	1/2+	0.4623	1/2+
0.528	11/2	0.528	11/2	0.528	11/2
0.5447	7/2+	0.5450	7/2+	0.5450	7/2+
0.6161	7/2+	0.6163	7/2+	0.6163	7/2+
		0.6235	7/2+	0.6235	7/2+
		0.6438	9/2+		
0.6742	3/2+	0.6741	3/2+		
0.720	7/2+	0.7200	9/2+		
0.8426	7/2+	0.8427	7/2+		
0.9111	7/2+	0.9119	7/2+		
0.9282	9/2+	0.9289	9/2+		
0.9381	7/2+	0.9383	7/2+		
		0.959	15/2		
1.0011	11/2+	1.001	11/2		
		1.623	19/2		
		1.861	15/2+		
		2.473	23/2		

<u>0.6438 level</u> Log ft = 6.4 from $101m_{Rh}$ (9/2⁺) suggests 7/2⁺, 9/2⁺,

 $\frac{11/2^{+}}{11/2^{+}}$, γ to 5/2⁺ but not to 3/2⁺ selects 9/2⁺. $\frac{0.6741 \text{ level}}{101 \text{ mTc}}$ decay experiment⁶, 7) proposed this level. No β from ¹⁰¹Tc (9/2⁺), γ to 5/2⁺ g.s. and γ from 7/2⁺ level suggest $5/2^+$ or $3/2^+$. Data of ref. 8 are not inconsistent with those of ref. 6. No reason exists to choose $3/2^+$.

 $^{101}_{44}$ Ru

0.7200 level	Log	ft =	6.7	from	¹⁰¹ Tc	(9/2+)	suggests	7/2+,	9/2 ⁺ ,
11/2 ⁺ .	γ to	5/2+	but	not t	co 3/2	+ select	$15 9/2^+$.	αγ(θ)	in
¹⁰⁰ Μο(α.	3nγ).								
0.8427 level	Log	ft =	5.6	from	¹⁰¹ Tc	(9/2+)	suggests	7/2+,	9/2 ⁺ ,
$\frac{11/2^{+}}{2}$	γ to	3/2+	1e ⁻	vel se	elects	7/2 ⁺ .			
0.9119 level	Log	ft =	6.8	from	¹⁰¹ Tc	(9/2 ⁺)	suggests	7/2+,	9/2 ⁺ ,
11/2 ⁺ .	γ to	3/2+	lev.	el sel	lects	7/2 ⁺ .			
0.9289 level	Log	ft =	6.5	from	¹⁰¹ Tc	(9/2+)	suggests	7/2+,	9/2 ⁺ ,
11/2 ⁺ .	Νο γ	to 3,	′2 ⁺ 1	but to	$5/2^{+}$	selects	s 9/2 ⁺ .		
0.9383 level	Log	ft =	5.8	from	¹⁰¹ Tc	(9/2+)	suggests	7/2 ⁺ ,	9/2 ⁺ ,
11/2 ⁺ .	γ to	3/2+	lev	el sel	lects	7/2 ⁺ .			
0.959 level	αγ(θ) in	100	Μο(α,3	3nγ).				
1.001 level	Log	ft =	6.9	from	¹⁰¹ Tc	(9/2)	suggests	7/2+,	9/2+,
11/2+.	Νο γ	to 3,	′2 ⁺	or 5/2	2 ⁺ sele	ects 11,	12 ⁺ . αγ(θ) in	
¹⁰⁰ Μο (α.	,3nγ).								
1.623 level	αγ(θ) in	100	Μο(α,3	3nγ).				
1.861 level	αγ(θ	9) in	100	Μο(α,3	Snγ).				
2.473 level	αγ(θ) in	100	Μο(α,3	3nγ).				

· 1	02	, ,
2.9	44	^{Ru}

Adopt	ed	Revi	evised RCN		
0.0	0+	0.0	0+	0.0	0+
0.4749	2+	0.47507	2+	0.4750	2 +
0.9437	0+	0.94365	0+	0.9440	0+
1.1032	2+	1.10315	2+	1.1030	2 +
1.1066	4 +	1.10637	4 +	1.1070	4 +
1.5219	3+	1.52166	3+	1.5220	3+
1.5808	2+	1.58058	2+	1.5810	2+
		1.6027	4 +	1.6030	4 +
1.7990	4 +	1.79870	4 +	1.7990	4 +
1.8371	0+	1.83710	0+	1.8370	0+
1.8732	6+	1.87324	6+	1.8730	6 +
				1.9970	5+
2.0375	2 +	2.03692	2 +	2.0370	2+
2.0441	3	2.0442	3	2.0440	3
				2.1550	1+
2.2192	5+	2.21917	5+	2.2190	5+
2.2613	2+	2.26125	2+	2.2610	2
2.372	5	2.372	5	2.3720	5
		2.4211	4 +	2.4210	4 +
		2.4419	4 +	2.4420	3+

 $\frac{1.9970 \text{ level}}{1.9970 \text{ level}} \quad \text{Uncertain } \beta \text{ from } {}^{102}\text{Rh} (5^+ \text{ or } 6^+) \text{ with log ft = 10.2.} \\ \text{Only uncertain } \gamma \text{ to } 2^+ \text{ level.} \text{ No other evidence. If this } \\ \text{level is adopted, } 3^- \text{ is more probable rather than } 5^+. \\ \frac{2.1550 \text{ level}}{2.1550 \text{ level}} \quad \text{Proposed by } {}^{100}\text{Mo}(\alpha, 2n\gamma) \text{ as an uncertain level.} \text{ Not } \\ \text{populated in } {}^{102}\text{Tc} (1^+) \text{ and } {}^{102}\text{Rh} (1^- \text{ or } 2^-) \text{ decays, thus } \\ \text{assignment of } 1^+ \text{ is not consistent even if this level exists.} \\ \frac{2.26125 \text{ level}}{2^+, 3^+.} \quad \gamma' \text{ s to } 0^+, 2^+, 3^+, \text{ and possibly } 4^+ \text{ levels select } 2^+. \\ \frac{2.4419 \text{ level}}{3^+ \text{ levels in } {}^{102}\text{Ru}, \text{ thus suggesting } J \ge 5 \text{ for } {}^{102}\text{m}\text{Tc.} \text{ Log ft} \\ = 6.32 \text{ suggests } 4^+, \ge 5 \text{ to } 2.4419 \text{ level.} \quad \gamma \text{ to } 2^+ \text{ level selects } \\ 4^+. \\ \end{array}$

2.10^{104}_{44} Ru

0+ 0.0 (
0 0.0 (
799 2 ⁺ 0.3586 2
85 4 ⁺ 0.8892 4
30 2 ⁺ 0.8937 2
81 0 ⁺ 0.9830 (
23 3 ⁺ 1.2423 3
1.3558 2
1.5020 4
1.5160 0
1.7560 4
1.8747 6
1.8790 3
1.9710 1
1.9930 2
5 9 8 4

1.3558 level 104 Tc decay experiment⁸ proposed this level by placing 462 keV γ between this and 0.8930 levels, but ref. 9) did not observe 462 keV γ in 104 Tc decay.

- 1.5020 level 18.2 m ¹⁰⁴Tc decay to 0.35799 (2⁺) level in ¹⁰⁴Ru with log ft = 7.4 and to 0.8885 (4⁺) level with log ft = 7.7, thus suggesting 2⁻, 3⁺ and 4⁻ for 18.2 m ¹⁰⁴Tc. Log ft = 8.1 to 1.5020 level suggests 0⁺, 1⁺, 2⁺, 3⁺, 4⁺, 5⁺, 6⁺. Y's to 2⁺ and 4⁺ but no Y to 0⁺ selects 3⁺ or 4⁺. Not possible to select unique J^π from these possibilities.
- 1.5160 level Log ft ≥ 8 . γ 's to 2⁺, 3⁺, but no γ to 0⁺, 4⁺. Possible assignment is 2⁻.

1.7560 level No experimental evidence could be found.

- 1.8747 level Log ft > 8.0. γ 's to 2⁺, 4⁺ but no γ to 0⁺. Possible assignment is 3⁺ or 4⁺.
- 1.8790 level No experimental evidence could be found.
- $\frac{1.9710 \text{ level}}{0^{+}, 2^{+} \text{ selects } 1^{+} \text{ or } 2^{+}, 3^{+}, 4^{+}, 5^{+}, \gamma' \text{ s to}}{2^{+}, 2^{+} \text{ selects } 1^{+} \text{ or } 2^{+}.$
- $\frac{1.9930 \text{ level}}{\text{but no evidence supporting this assignment is seen in ref. 9}.$

2.11 $\frac{103}{45}$ Rh

Adopted	('74)	Revised	<u> </u>	RC	N
0.0	1/2	0.0	1/2	0.0	1/2
0.040	7/2+	0.039750	7/2+	0.0398	7/2+
0.093	9/2+	0.093035	9/2+	0.0930	9/2+
0.298	3/2	0.29498	3/2	0.2949	3/2
0.360	5/2	0.35746	5/2	0.3574	5/2
0.537	5/2+	0.53684	5/2+	0.5368	5/2+
		0.60763	7/2+	0.6072	7/2+
0.651	7/2+	0.65009	7/2+	0.6500	5/2+
		0.65180	3/2+	0.6517	3/2+
0.798	5/2+			0.7980	9/2+
		0.8036	3/2	0.8031	3/2
0.843	3/2	0.8477	7/2	0.8475	7/2
0.877	5/2	0.8804	5/2	0.8806	5/2
0.915	5/2	0.9200	9/2	0.9200	9/2
				0.9680	5/2
				1.0100	5/2+
				1.0350	9/2
				1.0800	7/2-
1.102	7/2+			1.1070	5/2
				1.1400	5/2+
				1.1970	9/2
				1.220	3/2+
1.247	9/2				
				1.2520	5/2+
				1.2520	5/2
1.270	1/2			1.2770	3/2
				+	

 $\frac{0.65009 \text{ level}}{7/2^{+}} \text{ Log ft} = 5.9 \text{ from } {}^{103}\text{Ru} (5/2^{+}) \text{ suggests } 3/2^{+}, 5/2^{+},$

0.7980 level Observed in (p,p'), but could be identified with 0.8036 level.

0.9680 level	Experimental information was not available
1.0100 level	No experimental evidence could be found.
1.0350 level	No experimental evidence could be found.
1.0800 level	No experimental evidence could be found.

103₄₅Rh

1.1070 level	3/2 or 5/2 from Coulomb excitation.
1.1400 level	No experimental evidence could be found.
1.1970 level	No experimental evidence could be found.
1.220 level	No experimental evidence could be found.
1.2520 level	No experimental evidence could be found.
1.2520 level	No experimental evidence could be found.
1.2770 level	3/2 from Coulomb excitation.

•

 $2.12 \begin{array}{c} 104\\ 46 \end{array} Pd$

+			······	
0'	0.0	0^{+}	0.0	0^{+}
2+	0.55581	2+	0.5557	2+
4 +	1.32359	4 +	1.3230	4 +
0+	1.33359	0+	1.3240	0+
2+	1.34168	2+	1.3410	2+
0+	1.79286	0+	1.7930	0+
2 ⁺ (1 ⁺)	1.79383	2+	1.7940	2+
2 ⁺	1.82065	3+	1.8210	3+
5+	1.9416	5+	1.9410	5+
6 ⁺				
4 +	2.08238	4 +	2.0820	4 +
			2.1020	2+
			2.1260	4 +
			2.1390	2+
			2.1790	3+
			2.1820	4 +
el No expe	erimental evi	dence co	uld be found.	
	$ \begin{array}{c} 0 \\ 2^{+} \\ 4^{+} \\ 0^{+} \\ 2^{+} \\ 0^{+} \\ 2^{+} \\ (1^{+}) \\ 2^{+} \\ 5^{+} \\ 6^{+} \\ 4^{+} \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.0 0.0 0 0.0 2 ⁺ 0.55581 2 ⁺ 0.5557 4 ⁺ 1.32359 4 ⁺ 1.3230 0 ⁺ 1.33359 0 ⁺ 1.3240 2 ⁺ 1.34168 2 ⁺ 1.3410 0 ⁺ 1.79286 0 ⁺ 1.7930 2 ⁺ (1 ⁺) 1.79383 2 ⁺ 1.7940 2 ⁺ 1.82065 3 ⁺ 1.8210 5 ⁺ 1.9416 5 ⁺ 1.9410 6 ⁺ 4 ⁺ 2.08238 4 ⁺ 2.0820 2.1020 2.1260 2.1390 2.1390 2.1820

2.1260 level	(d,t) shows $l=2+4$?. No selection for J. $\pi=+$	•
2.1390 level	Found in (p,p') and $(n,n'\gamma)$. γ to 2^+ .	
2.1790 level	(d,t) shows $l=2+4?$. γ to 2^+ in $(n,n'\gamma)$.	
2.1820 level	$\binom{13}{C}, 3n_{\gamma}$ suggests 4 ⁺ .	
2.1820 level	$(^{13}C, 3n\gamma)^{10}$ suggests 4 ⁺ .	

2.13 ¹⁰⁵₄₆Pd

Adopted	('74)	Revised		RCN	
0.0	5/2+	0.0	5/2 ⁺	0.0	5/2+
0.2804	3/2+	0.28051	3/2+	0.2851	3/2+
0.3062	7/2+	0.30626	7/2+	0.3063	7/2+
0.3191	5/2+	0.31918	5/2+	0.3192	5/2+
0.3444	1/2+	0.34452	1/2+	0.3445	1/2
0.4427	7/2+	0.44223	7/2+	0.4422	5/2
0.4890	11/2	0.48911	11/2	0.4891	11/2
0.5607	3/2+	0.56075	5/2+	0.5608	5/2+
0.6444	7/2	0.64450	7/2	0.6445	7/2
0.6506	3/2+	0.65069	3/2+	0.6507	3/2+
0.6731	7/2+	0.67318	1/2+	0.6732	1/2
		0.694	7/2+	0.6940	7/2+
0.7271	5/2 ⁺	0.72717	5/2+	0.7272	5/2
0.78	9/2	0.7813	9/2 +	0.7813	5/2+
		0.787	1/2+	0.7870	1/2+
				0.8500	5/2
		0.9294	7/2+	0.9294	7/2+
		0.939	1/2+	0.9390	1/2
0.9623	5/2+	0.96237	1/2+	0.9624	3/2
		0.9702	15/2		
		0.979	5/2 ⁺	0.9790	5/2
1.0015	5/2+				
		1.0118	11/2+		
				1.0400	3/2*
		1.0722	5/2+	1.0720	5/2
		1.075	1/2+	1.0750	1/2
1.0878	3/2	1.08793	3/2	1.0880	3/2
		1.0984	5/2 ⁺	1.0980	5/2+
		1.141	1/2+	1.1410	7/2*
				1.1710	7/2
				1.2010	3/2+
				1.2200	1/2
				1.2500	9/2

105 ₄₆ Pd	
0.44223 level	$\binom{12}{12}$ C, 3ny) ¹¹ suggests 7/2 ⁺ .
0.7813 1evel	$({}^{12}C, 3n\gamma)$ shows $9/2^+$.
0.8500 level	No experimental evidence could be found.
0.96237 level	Log ft = 7.7 from $1/2^{-105}$ Ag suggests $1/2^{+}$,
3/2 ⁺ . No	γ to 7/2 ⁺ prefers 1/2 ⁺ .
<u>0.9702 level</u>	$\binom{12}{2}$ C,3n γ) suggests 15/2 ⁻ .
1.0118 level	$({}^{12}C, 3n\gamma)$ suggests $11/2^+$.
1.0440 level	No experimental evidence could be found.
1.141 level	$\ell=0$ in (d,p) and (d,t) suggests $1/2^+$.
<u>1.1710 level</u>	No experimental evidence could be found.
1.2010 level	$l=2$ in (d,p) and (d,t) suggests $3/2^+$ or
5/21.	
1.2200 level	No experimental evidence could be found.
1.2500 level	No experimental evidence could be found.

2.14 $\frac{106}{46}$ Pd

Adopte	ed	Revise	ed	RCN	
0.0	0+	0.0	0+	0.0	0+
0.51185	2+	0.51185	2+	0.5119	2+
1.12802	2+	1.12802	2+	1.1280	2+
1.1336	0+	1.1336	0+	1.1340	0+
1.2292	4 +	1.2292	4 +	1.2290	4 +
1.5580	3+	1.5580	3+	1.5580	3+
1.5621	2+	1.5621	2+	1.5620	2+
1.7061	0+	1.7061	0+	1.7060	0+
1.9104	2+	1.9104	2+	1.9090	2+
1.9323	4 +	1.9323	4 +	1.9320	4 +
2.0012	0+	2.0012	0+	2.0010	0+
2.0761	6+	2.0761	6+	2.0760	6+
2.0774	4 +	2.0774	4 +	2.0770	4 +
2.0843	3	2.0843	3	2.0840	3
				2.1900	2+
2.2424	2+	2.2424	2+	2.2420	2+
2.2780	0+	2.2780	0+	2.2780	0+
2.2829	4 +	2.2829	4 +	2.2830	4 +
2.3060	4	2.3060	4	2.3060	4
2.3086	2	2.3086	2+	2.3090	2+
2.3508	4 +	2.3508	4 +	2.3510	4 +
2.3660	4 +	2.3660	4 +		
		2.3973	5		
2.4014	3	2.4014	3		
2.4386	2*	2.4386	2+		
2.1900 1	evel No e	xperimental evic	lence co	uld be found.	
2.3660 1	evel y-ra	y angular distri	ibution	from polarize	d ^{106m} Ag
nuc	lei ¹²⁾ sug	gests 4 ⁺ .			
2.3973 1	<u>evel</u> (¹³ C	,3nγ) ^{10,13)} sugg	gests 3 ⁻	•	
2.4014 level (n,γ) suggests 4 ⁺ .					
2.4386 1	evel y's	to 0 ⁺ , 2 ⁺ , 4 ⁺ 16	evels su	ggest 2 ⁺ .	

2.15 ¹⁰⁷₄₆Pd

.

Adopted	('74)	Revi	sed	RCN	
0.0	5/2+	0.0	5/2+	0.0	5/2+
0.1157	1/2+	0.1157	1/2+	0.1157	1/2+
0.214	11/2	0.214	11/2	0.2140	11/2
0.3028	5/2+	0.3028	5/2+	0.3028	5/2+
0.3122	7/2+	0.3122	7/2+	0.3122	7/2+
0.3482	3/2+	0.3482	· 1/2 ⁺	0.3482	5/2+
0.366	9/2+	0.366	9/2+	0.3660	9/2+
0.3819	3/2+	0.3819	3/2+	0.3819	3/2+
0.3924	7/2+	0.3924	• 7/2+	0.3924	5/2
0.412	1/2+	0.412	1/2+	0.4120	1/2+
0.4712	3/2+	0.4712	3/2+	0.4712	3/2+
0.5677	5/2+	0.5677	5/2+	0.5677	5/2+
				0.6200	7/2
0.6701	5/2+	0.6701	5/2+	0.6701	5/2+
0.685	7/2-	0.685	7/2	0.6850	7/2+
0.698	1/2+	0.698	1/2+	0.6980	1/2+
0.759	3/2+	0.759	3/2+	0.7590	3/2+
0.781	3/2	0.781	3/2	0.7810	3/2
0.806	1/2	0.806	3/2	0.8060	5/2+
		0.809	5/2+	0.8070	5/2
0.889	1/2+	0.889	1/2+	0.8890	1/2+
				0.9300	3/2+
				0.9500	9/2
				0.9800	7/2+
1.023	5/2+	1.023	3/2+	1.023	3/2+
				1.0400	3/2+
				1.0600	3/2
				1.0710	3/2+
				1.1020	7/2
				1.1130	5/2+
				1.1200	1/2+
				1.1490	5/2
				1.1600	3/2+
				1.1670	1/2+
				1.2140	5/2+

1	0	7	LП
	4	6	Рa

0.3482 level No β from 10^7 Rh (5/2 ⁺ , 7/2 ⁺) suggests J=1/2 or
J>9/2. γ 's from 5/2 ⁺ and to 1/2 ⁺ , 5/2 ⁺ prefers 1/2 ⁺ .
<u>0.3924 level</u> Log ft = 5.8 in 10^{7} Rh (5/2 ⁺ , 7/2 ⁺) decay suggests
$3/2^{+}$ to $9/2^{+}$. γ 's to $5/2^{+}$, $7/2^{+}$ but no γ to $1/2^{+}$ prefers
$7/2^+$ or $9/2^+$. No reason exists to choose $7/2^+$.
0.6200 level No experimental evidence could be found.
0.685 level &=3 in (d,p) suggests 7/2.
0.806 and 0.809 levels Doublet of $l=1$ and 2 is suggested in
(d,p), thus $1/2^{-}$, $3/2^{-}$ and $3/2^{+}$, $5/2^{+}$ are probable to both
levels. $5/2^+$ is suggested in (d,p) to 0.809 level. $3/2^-$
is suggested in (d,p) to one of 0.806-0.809 doublet.
0.9300 level No experimental evidence could be found.
0.9500 level No experimental evidence could be found.
0.9800 level No experimental evidence could be found.
1.0400 level No experimental evidence could be found.
1.0600 level No experimental evidence could be found.
<u>1.0710 level</u> (d,p) and (d,t) suggest $3/2^+$ or $5/2^+$.
<u>1.1020 level</u> Log ft = 5.8 from 107 Rh (5/2 ⁺ ,7/2 ⁺) decay suggests
$3/2^{+}$ to $9/2^{+}$. No γ to $1/2^{+}$ suggests $7/2^{+}$ or $9/2^{+}$.
<u>1.1130 level</u> (d,p) suggests $3/2^+$, but $5/2^+$ is still possible.
<u>1.1200 level</u> $l=0$ in (d,t) shows $1/2^+$.
<u>1.1490 level</u> Probable β from ¹⁰⁷ Rh (5/2 ⁺ , 7/2 ⁺) with log ft =
6.0 suggests $3/2^+$ to $9/2^+$. No γ to $1/2^+$ suggests $7/2^+$ or
9/2 ⁺ .
1.1600 level $3/2^+$ is suggested in (d,p).
<u>1.1670 level</u> $l=0$ in (d,t) shows $1/2^+$.
<u>1.2140 level</u> $l=2$ in (d,p) and (d,t) suggests $3/2^+$ or $5/2^+$.

2.16 $\frac{108}{46}$ Pd

Adopt	ed	Revi	sed	RCN	
0.0	0+	0.0	0+	0.0	0+
0.4340	2 +	0.4340	2+	0.4340	2+
0.9312	2+	0.9312	2+	0.9312	2+
1.0483	4 +	1.0483	4 +	1.0480	4 +
1.0528	0+	1.0528	0+	1.0530	0+
1.3142	0+	1.3142	0+	1.3140	0+
1.3356	3+	1.3356	3+	1.3350	3+
1.4411	2+	1.4411	2+	1.4410	2+
1.5400	1 ⁺	1.5400	1+	1.5400	2+
				1.6100	0+
				1.7000	4 +
1.771	6 ⁺	1.771	6 +		
2.046	3	2.046	3		
		2.141	0+		
		2.214	2 +		
		2.2825	5+		
		2.318	5		
		2.362	2+		
		2.392	2+		
1.5400 level	(n,n'y) sug	gests 1 ⁺ , 2 ⁺	. Noγt	o 4 ⁺ selects	$\overline{1^+}$.
1.6100 level	Observed in	(p,p') and	(d,d').	No evidence f	or
spin as	signment.				
1.7000 level	No experime	ntal evidenc	ce could b	e found.	
1.771 level	$(n,n'\gamma)$ and	$(t,p)^{14}$ sh	now 6 ⁺ .		
2.046 level	$(n,n'\gamma)$ and	(t,p) show	3.		
2,141 level	(t,p) shows	0 ⁺ .			
2.214 level	(t,p) shows	2 ⁺ .			
2.2825 level	No β from 1	ow-spin ¹⁰⁸ F	Rh, but po	pulated indir	ectly
from hi	gh-spin ¹⁰⁸ Rh	decay sugge	est J>3.	No γ to 0^+ , 2	, '
but 3^+ ,	, 4 ⁺ implies 5	•			
2.318 level	(t,p) shows	5.			
2.362 level	(t,p) shows	2.			
2.392 level	(t,p) shows	2.			

~ 17	110 _n
2.17	46 ^{Pa}

Adopte	ed	Revise	ed	RCN	
0.0	0+	0.0	0+	0.0	0+
0.3738	2+	0.3738	2+	0.3738	2+
0.8138	2+	0.8138	2+	0.8138	2+
0.9205	4+	0.9205	4 +	0.9205	4 +
0.9463	0+	0.9463	0+	0.9463	0+
1.171	0+	1.171	0+	1.1710	0+
1.2124	3+	1.2124	3+	1.2110	3+
1.2145	2+	1.2145	2+	1.2150	2+
				1.3090	4 +
1.3980	4 +	1.3980	4 +	1.3980	2+
1.4701	1+	1.4701	1	1.4700	1 ⁺
1.5739	6+	1.5739	6 ⁺		
1.3090 10	evel Obse	rved in (p,p')	only at	4 angles.	
1.3980 10	evel (n,n	'γ) suggests 2	, 3 ⁺ , 4	*. Νογτο 0	⁺ rules
out	2 ⁺ possib	ility. No reas	on exis	ts to choose	4 ⁺ .
1.5739 10	evel (n,n	'γ) suggests 6	•	·	

2 10	107
2.10	47 ^{Ag}

Adop	ted	Rev	ised	<u>RCN</u>	
0.0	1/2	0.0	1/2	0.0	1/2
0.0931	7/2+	0.0931	7/2+	0.0931	7/2+
0.1257	9/2+	0.1257	9/2+	0.1254	7/2+
0.3246	3/2	0.3246	3/2	0.3248	3/2
0.4226	5/2	0.4226	5/2	0.4230	5/2
				0.6000	5/2+
0.7864	3/2	0.7864	3/2	0.7867	3/2
				0.8500	3/2+
0.9220	5/2+	0.9220	5/2+	0.9221	5/2+
0.9490	5/2	0.9490	5/2	0.9497	5/2
0.9732	7/2	0.9732	7/2		
1.060	1/2	1.060	1/2		
1.1424	9/2	1.1424	9/2		
1.160	(5/2)	1.160	5/2		
		1.221	11/2		
1.224	5/2+	1.224	5/2+		

0.1257 level No ε-transition from 107 Cd (5/2⁺) decay suggests J=1/2 or J>7/2. M1 transition to 7/2⁺ prefers 9/2⁺. 0.6000 level No experimental evidence could be found. 0.8500 level No experimental evidence could be found. 0.9732 level (p,t) reaction ¹⁵) suggests 7/2⁻. 1.060 level (p,t) reaction suggests 1/2⁻. 1.1424 level (p,t) reaction suggests 9/2⁻. 1.160 level Weakly populated directly in ¹⁰⁷Cd (5/2⁺) decay suggests 3/2⁻, 5/2⁻, 7/2⁻. Y's to 1/2⁻, 3/2⁻, 5/2⁻ implies 3/2⁻ or 5/2⁻, but 5/2⁻ is more probable since Y to 1/2⁻ is weaker than others. 1.221 level (p,t) reaction¹⁵) suggests 11/2⁻. 1.2224 level Log ft = 6.7 in ¹⁰⁷Cd (5/2⁺) decay suggests 3/2⁺, 5/2⁺, 7/2⁺. El Y to 3/2⁻ and Y to 9/2⁺ imply 5/2⁺. 2.19 $109 \atop 47$ Ag

			<u> </u>
0.0	1/2	0.0	1/2
0.088032	7/2+	0.0880	7/2+
0.1328	9/2+	0.1328	9/2+
0.3114	3/2	0.3114	3/2
0.4153	5/2	0.4153	5/2
4		0.6970	7/2+
0.7019	3/2	0.7019	3/2
		0.7070	3/2+
0.7244	3/2+	0.7244	5/2+
0.7353	5/2+	0.7353	5/2+
		0.8110	3/2+
0.8398	7/2-	0.8398	1/2
0.8627	5/2	0.8627	5/2
0.8695	5/2+	0.8695	5/2+
0.9110	7/2	0.9110	7/2+
0.9123	3/2+		
1.0906	9/2		
imental evi	idence c	ould be foun	d.
imental evi	idence c	ould be foun	d.
o 3/2 and	5/2 le	vel implies	3/2 or
selects 3,	/2'.		
imental evi	idence c	ould be foun	d
8.9 in 103	Pd (5/2	') decay sug	gests $3/2$,
o 9/2 and	no y to	1/2 select	7/2 .
8.5 in ¹⁰³	Pd (5/2	') decay sug	gests $3/2$,
to 9/2 ⁺ , 7,	/2 ⁺ and	no γ to $1/2$	select
1.00	`		
6.7 in ¹⁰	Pd (5/2) decay sug	gests 3/2 ⁺ ,
$to 9/2^{+} b$	ut $oldsymbol{\gamma}$'s t	0 3/2, 5/2	prefers
1 4 \			
eaction ¹⁴⁾	suggests	9/2.	
	0.0 0.088032 0.1328 0.3114 0.4153 0.7019 0.7244 0.7353 0.8398 0.8627 0.8695 0.9110 0.9123 1.0906 Timental evi timental evi selects $3/2^{-}$ and selects $3/2^{$	0.0 $1/2$ 0.088032 $7/2^+$ 0.1328 $9/2^+$ 0.3114 $3/2^-$ 0.4153 $5/2^-$ 0.7019 $3/2^-$ 0.7019 $3/2^-$ 0.7244 $3/2^+$ 0.7353 $5/2^+$ 0.8398 $7/2^-$ 0.8627 $5/2^-$ 0.8695 $5/2^+$ 0.9110 $7/2^-$ 0.9123 $3/2^+$ 1.0906 $9/2^-$ Finental evidence c imental evidence c imental evidence c imental evidence c 0.3/2 and $5/2^-$ le selects $3/2^+$. Finental evidence c 8.9 in 10^9 Pd ($5/2$ to $9/2^+$ and no γ to 8.5 in 10^9 Pd ($5/2$ to $9/2^+$, $7/2^+$ and 6.7 in 10^9 Pd ($5/2$ to $9/2^+$ but γ 's t eaction 14) suggests	0.0 $1/2$ 0.0 0.088032 $7/2^+$ 0.0880 0.1328 $9/2^+$ 0.1328 0.3114 $3/2^-$ 0.3114 0.4153 $5/2^-$ 0.4153 0.6970 0.7019 $3/2^-$ 0.7019 0.7070 0.7244 $3/2^+$ 0.7244 0.7353 $5/2^+$ 0.7353 0.8110 0.8398 $7/2^-$ 0.8627 0.8695 $5/2^+$ 0.8695 0.9110 $7/2^-$ 0.9110 0.9123 $3/2^+$ 1.0906 $9/2^-$ Timental evidence could be foun imental evidence could be foun imental evidence could be foun 0.3/2^- and $5/2^-$ 1evel implies selects $3/2^+$. Timental evidence could be foun 8.9 in 10^9 Pd $(5/2^+)$ decay sug to $9/2^+$ and no γ to $1/2^-$ select 8.5 in 10^9 Pd $(5/2^+)$ decay sug to $9/2^+$, $7/2^+$ and no γ to $1/2^-$ eaction 14^- suggests $9/2^-$.

	127 _T
2.20	53 ¹

	Revis	ed	RCN	
5/2+	0.0	5/2+	0.0	5/2+
7/2+	0.0576	7/2+	0.0576	7/2+
3/2+	0.20284	3/2+	0.2028	3/2+
1/2+	0.37496	1/2+	0.3750	1/2+
5/2+	0.4179	5/2 ⁺	0.4179	5/2+
3/2+	0.6184	3/2+	0.6184	3/2 ⁺
7/2+	0.6286	7/2 ⁺	0.6286	7/2+
9/2+	0.6510	9/2+	0.6510	9/2 ⁺
11/2+	0.7165	11/2+	0.7165	11/2+
9/2+	0.7446	9/2 ⁺	0.7446	9/2 ⁺
	0.9910	3/2+	0.9910	3/2+
			1.0440	5/2 ⁺
			1.0950	5/2+
	5/2 ⁺ 7/2 ⁺ 3/2 ⁺ 1/2 ⁺ 5/2 ⁺ 3/2 ⁺ 7/2 ⁺ 9/2 ⁺ 11/2 ⁺ 9/2 ⁺	$5/2^+$ 0.0 $7/2^+$ 0.0576 $3/2^+$ 0.20284 $1/2^+$ 0.37496 $5/2^+$ 0.4179 $3/2^+$ 0.6184 $7/2^+$ 0.6286 $9/2^+$ 0.6510 $11/2^+$ 0.7165 $9/2^+$ 0.7446 0.9910	Revised $5/2^+$ 0.0 $5/2^+$ $7/2^+$ 0.0576 $7/2^+$ $3/2^+$ 0.20284 $3/2^+$ $1/2^+$ 0.37496 $1/2^+$ $5/2^+$ 0.4179 $5/2^+$ $3/2^+$ 0.6184 $3/2^+$ $7/2^+$ 0.6286 $7/2^+$ $9/2^+$ 0.6510 $9/2^+$ $11/2^+$ 0.7165 $11/2^+$ $9/2^+$ 0.7446 $9/2^+$ 0.9910 $3/2^+$	RevisedRCN $5/2^+$ 0.0 $5/2^+$ 0.0 $7/2^+$ 0.0576 $7/2^+$ 0.0576 $3/2^+$ 0.20284 $3/2^+$ 0.2028 $1/2^+$ 0.37496 $1/2^+$ 0.3750 $5/2^+$ 0.4179 $5/2^+$ 0.4179 $3/2^+$ 0.6184 $3/2^+$ 0.6184 $7/2^+$ 0.6286 $7/2^+$ 0.6286 $9/2^+$ 0.6510 $9/2^+$ 0.6510 $11/2^+$ 0.7165 $11/2^+$ 0.7165 $9/2^+$ 0.7446 $9/2^+$ 0.7446 0.9910 $3/2^+$ 0.9910 1.0440 1.0950

<u>1.0440 level</u> Not possible to find unique J^{π} from existing evidence.

<u>1.0950 level</u> Not possible to select unique J^{π} from existing data.

2.21 $\frac{129}{53}$ I

Adopted	(174)	Revi	sed	RCN	
0.0	7/2+	0.0	7/2+	0.0	7/2+
0.02777	5/2+	0.02777	5/2 ⁺	0.0278	5/2+
0.27842	5/2+	0.27842	3/2+	0.2784	3/2+
0.48738	3/2+	0.48738	5/2 ⁺	0.4874	5/2+
				0.5597	1/2+
0.55957	1/2+	0.55957	1/2+	0.5610	1/2+
0.69598	11/2+	0.69598	11/2+	0.6960	11/2+
0.72962	9/2 ⁺	0.72962	9/2 ⁺	0.7296	9/2+
0.7689	7/2	0.7689	7/2+	0.7688	7/2+
0.8299	3/2+	0.8299	3/2+	0.8300	· 3/2 ⁺
0.8450	7/2	0.8450	7/2+	0.8450	7/2+
		1.047	3/2+		
1.0504	9/2 ⁺	1.0504	7/2+		
1.052	5/2+				
1.11175	3/2+	1.11175	5/2 ⁺		
1.210	1/2+	1.210	1/2+		
1.2608	5/2+	1.2608	5/2+		
1.2821	3/2+	1.2821	3/2+		
1.2922	3/2+	1.2922	1/2+		
1.4016	9/2+	1.04016	9/2 ⁺		
		1.4835	1/2+		

1	2	9	т
	5	3	Ŧ

<u>1.2821 level</u> Log ft=7.2 from $3/2^{+129}$ Te suggests $1/2^{+}$,
$3/2^+$, $5/2^+$. γ to $7/2^+$ rules out $1/2^+$ possibility.
No reason exists to choose 3/2 ⁺ .
<u>1.2922 level</u> Log ft=6.8 from $3/2^{+129}$ Te suggests $1/2^{+}$,
$3/2^+$, $5/2^+$. No γ to $7/2^+$ but to $1/2^+$, $3/2^+$, $5/2^+$
prefers 1/2 ⁺ .
<u>1.4016 level</u> Log ft=8.5 from $11/2^{-129}$ Te suggests $9/2^{+}$,
$11/2^{+}$, $13/2^{+}$. γ to $5/2^{+}$ selects $9/2^{+}$.
<u>1.4835 level</u> $\ell = 0$ in (³ He,d) shows $1/2^+$.

.

2 22	$133_{C_{c}}$
2.22	5505

Adopted	('74)	Revi	sed	RCN	1
0.0	7/2+	0.0	7/2+	0.0	7/2+
0.0810	5/2+	0.080977	5/2 ⁺	0.0810	5/2+
0.1605	5/2+	0.161618	5/2 ⁺	0.1606	5/2+
0.3828	3/2+	0.383851	3/2+	0.3839	3/2+
0.4371	1/2+	0.437002	1/2+	0.437	1/2+
0.605	11/2	0.605	11/2	0.605	11/2
0.633	11/2+	0.6325	11/2+	0.633	11/2+
0.641	3/2+	0.6412	3/2+	0.642	3/2+
0.706	7/2+	0.7060	7/2+	0.706	7/2+
0.768	9/2+	0.7687	9/2 ⁺	0.769	9/2
0.787	7/2+	0.787	7/2+	0.787	7/2
0.819	7/2+	0.819	9/2+	0.819	5/2+
0.873	9/2	0.8718	9/2+	0.872	9/2+
0.917	3/2+	0.917	3/2+	0.917	3/2+

<u>0.819 level</u> (n,n' γ) suggests 5/2⁺,7/2⁺,9/2⁺. No γ to 1/2⁺ and 3/2⁺ levels select 9/2⁺.

.

 $2.23 \frac{139}{57}$ La

Adop	ted	Re	vised	RCN	
0.0	7/2+	0.0	7/2+	0.0	7/2+
0.1658	5/2+	0.1658	5/2 ⁺	0.1660	5/2 ⁺
(0.570	3/2+)				
(0.830	3/2+)				
(0.930	9/2+)				
(1.070	7/2+)				
1.206	1/2+	1.206	1/2+	1.206	1/2+
1.2191	9/2+	1.2191	9/2 ⁺	1.219	9/2+
1.2566	5/2+	1.2566	5/2+	1.257	5/2+
1.3813	7/2+	1.3813	7/2+	1.382	7/2+
1.4205	7/2+	1.4205	7/2+	1.421	. 7/2 ⁺
1.439	11/2	1.439	11/2	1.439	11/2
1.4764	5/2 +	1.4764	7/2+	1.477	7/2+
1.5363	7/2+	1.5363	7/2+	1.536	7/2+
1.5582	3/2+	1.5582	3/2+	1.558	3/2+
1.5782	9/2+	1.5782	9/2+	1.578	9/2+
1.6831	7/2+	1.6831	7/2+	1.683	· 7/2 ⁺
				1.714	5/2+
				1.756	7/2+
				1.762	3/2+
				1.767	9/2 +
				1.775	1/2+
				1.820	5/2 ⁺
				1.838	7/2
				1.857	3/2+
				1.894	11/2+
				1.922	5/2+
		· .		1.943	13/2

- <u>1.714 level</u> No β from ¹³⁹Ba (7/2⁻) suggests 1/2⁺, 3/2⁻, or 11/2⁻, >11/2. γ to 7/2⁺ in (n,n' γ) and (α , α ') suggests π =+. Spin assignment is impossible based on these evidences.
- $\frac{1.756 \text{ level}}{11/2^{-}, >11/2. \quad \gamma \text{ to } 7/2^{+} \text{ in } (n,n'\gamma) \text{ and the } (n,n'\gamma) \text{ data}$

1	3	9	T o
	5	7	Гg

suggests π =+. Spin assignment is impossible based on these evidences.

- <u>1.762 level</u> Log ft=8.8 from 139 Ba (7/2⁻) suggests 3/2⁺, 5/2⁺, 7/2⁺, 9/2⁺, 11/2⁺. Nuclear Data Sheets indentified this level with 9/2 level found in (γ,γ').
- $\frac{1.767 \text{ level}}{11/2^{+} \text{ or } 5/2^{+}, 7/2^{+}, 9/2^{+}. \text{ } \gamma' \text{ s to } 7/2^{+} \text{ and } 5/2^{+}, }{\text{ prefers } 3/2^{+}. }$
- <u>1.775 level</u> No β from ¹³⁹Ba (7/2⁻) suggests $1/2^+$, $3/2^-$ or $11/2^-$, >11/2. $\pi=+$ in (α,α').
- <u>1.820 level</u> No β from ¹³⁹Ba (7/2⁻) suggests 1/2⁺, 3/2⁻ or 11/2⁻, >11/2. γ to 7/2⁺ in (n,n' γ). =0, 2 in (³He,d) suggests π =+. Spin assignment is impossible based on these evidences.
- <u>1.838 level</u> No β from ¹³⁹Ba (7/2⁻) suggests $1/2^+$, $3/2^-$ or $11/2^-$, >11/2. γ to $7/2^+$ in (n,n'γ).
- <u>1.857 level</u> Log ft=9.5 from ¹³⁹Ba (7/2⁻) suggests $3/2^+$, <u>11/2⁺</u> or $5/2^+$, $7/2^+$, $9/2^+$. $\ell = 2$ in (³He,d) suggests $3/2^+$, $5/2^+$.
- <u>1.894 level</u> No β from ¹³⁹Ba (7/2⁻) suggests $1/2^+$, $3/2^-$, $11/2^-$, >11/2. γ from $9/2^-$ in (γ,γ').

2.24 $^{141}_{59}$ Pr

Adopt	ed	Revise	d	RCN	·
0.0	5/2 ⁺	0.0	5/2+	0.0	5/2+
0.145440) 7/2 ⁺	0.145440	7/2+	0.1455	7/2+
1.118	11/2	1.118	11/2	1.118	11/2
1.1270	3/2+	1.1270	3/2+	1.127	3/2+
1.2927	5/2+	1.2927	5/2 ⁺	1.293	5/2+
1.2986	1/2+	1.2986	1/2+	1.299	1/2+
1.4350	3/2+	1.4350	3/2+	1.435	3/2+
1.4502	7/2+	1.4502	7/2+	1.451	7/2+
1.4561	5/2	1.4561	5/2	1.456	5/2 ⁺
				1.493	9/2 ⁺
				1.513	· 5/2 ⁺
				1.520	9/2 ⁺
				1.570	11/2+
				1.578	5/2 ⁺
				1.604	7/2+
				1.608	3/2+
				1.651	9/2+
				1.655	3/2+
				1.657	1/2+
				1.764	5/2
				1.767	13/2+
				1.783	5/2+
				1.809	3/2
				1.823	5/2+
				1.846	5/2 ⁺

1.4561 level Log ft=8.7 from ¹⁴¹Nd $(3/2^+)$ suggests $1/2^-$, $3/2^-$, $5/2^-$, or possibly $7/2^-$. $\gamma\gamma'(\theta)$ suggests 5/2 or 9/2, thus $5/2^-$ is selected. However, (d,d') suggests π =+ probably.

 $\frac{1.493 \text{ level}}{>7/2.} \text{ No } \varepsilon \text{ -decay from } ^{141}\text{Nd } (3/2^{+}) \text{ suggests } 7/2^{+},$

 $\frac{1.513 \text{ level}}{>7/2.}$ No ε -decay from ¹⁴¹Nd (3/2⁺) suggests 7/2⁺, Probable γ 's from 7/2 and 5/2⁺ in (γ,γ ').

1	4	1	D ∽
	5	9	r I

.

<u>1.520 level</u> No ε -decay from ¹⁴¹ Nd (3/2 ⁺) suggests 7/2 ⁺ ,
>7/2. γ 's to 5/2 ⁺ and 7/2 ⁺ . (d,d') suggests π =+.
<u>1.570 level</u> No ε -decay from ¹⁴¹ Nd (3/2 ⁺) suggests 7/2 ⁺ ,
>7/2. Only a γ to $11/2$ level in (α , $2n\gamma$).
1.578 level If this is identified with 1.5802 level
populated in ¹⁴¹ Nd decay, log ft=7.0 suggests $1/2^+$,
$3/2^+$, $5/2^+$. γ 's to $5/2^+$ and $7/2^+$ selects $3/2^+$ and $5/2^+$.
<u>1.604 level</u> No ε -decay from ¹⁴¹ Nd (3/2 ⁺) suggests 7/2 ⁺ ,
$>7/2$. $\ell = 2$ in (³ He,d).
<u>1.608 level</u> Log ft=6.9 from 141 Nd (3/2 ⁺) suggests 1/2 ⁺ ,
$3/2^{+}$, $5/2^{+}$. No γ to $7/2^{+}$ but $5/2^{+}$ prefers $1/2^{+}$.
<u>1.651 level</u> No ε -decay from ¹⁴¹ Nd (3/2 ⁺) suggests 7/2 ⁺ ,
>7/2. Only a γ to 5/2 ⁺ in (n,n' γ).
1.655 level Probable γ 's from $5/2^-$ and $5/2^+$.
<u>1.657 level</u> Log ft=7.9 from ¹⁴¹ Nd $(3/2^+)$ suggests $1/2^+$,
$3/2^+$, $5/2^+$. No γ to $7/2^+$ but $5/2^+$ selects $1/2^+$, $3/2^-$.
<u>1.764 level</u> Observed in (d,d').
<u>1.767 level</u> Only a γ to $11/2$ in $(\alpha, 2n\gamma)$.
<u>1.783 level</u> γ 's to $5/2^+$ and $7/2^+$ in $(n,n'\gamma)$.
<u>1.809 level</u> γ 's to $5/2^+$ and $7/2^+$ in $(n,n'\gamma)$.
1.823 level Reported in (n,n') experiment.
<u>1.846 level</u> γ from 5/2 ⁺ in (γ , γ ').

.

3. Step-wise Diagrams for Distribution of Low-lying levels

The step-wise diagrams for the different distribution of low-lying levels are illustrated in Figs. $3.1 \sim 3.24$, where the solid lines are those revised by us and dashed lines by Gruppelaar. The straight lines are obtained by fitting the level distribution with

$$N(E) = k e^{E/T}$$

where E is excitation energy of nucleus (in MeV), T is the nuclear temperature (in MeV) and N(E) is number of the excited levels up to the excitation energy E. The values of k and T are tabulated in Table 1 for odd-A and even-even nuclides. It seems to be seen the even-odd effect in T or k, T is larger or k is smaller for even-even nuclide compared to odd-A, if quite rough consideration is applicable. The exceptions are seen in the cases of 139 La and 141 Pr. There exist, however, the large energy gaps near the ground state as shown in Figs. 3.23 and 3.24, because these nuclei have neutron magic number (N=82). We gave, therefore, the additional values of k and T, which were obtained by fitting the level distribution above the second excited states with N(E)-2 = k.e^{(E-Eo)/T}. The results give good trends for the above mentioned systematics.

Fig. 3.1~3.24 Step-wide diagrams for distribution of low-lying levels for 24 nuclides by the present authors (solid lines) and by Gruppelaar²⁾ (dashed lines). The straight lines are fitted by N(E)=k exp(E/T). The notations are the followings; N(E) : Number of levels up to excitation energy E

- 39 -

- E ; excitation energy of nucleus (in MeV)
- T : nuclear temperature (in MeV)
- k : proportional constant.
- 4. Examples of Calculated Inelastic Scattering and Capture Cross Sections

Calculated inelastic scattering cross sections for typical cases, 101 Ru, 103 Rh and 139 La, are compared using different level schemes, previously adopted and revised recently by JAERI, and reported by Petten. The computer code CASTHY has been used with optical potential parameters obtained by fitting the total cross sections.

Partial cross sections of inelastic scattering from each level are tabulated in Table $2 \sim 4$. Total inelastic scattering cross sections are illustrated as a function of the neutron energy in Figs. $4.1(a) \sim 4.3(a)$. The cross sections for (n, γ) reactions are also illustrated in Figs. $4.1(b) \sim 4.3(b)$.

5. Remarks

This report was a part of works on evaluation of fission product nuclear data for about 100 important nuclides. The purpose of this work was to clarify the present status of the level information and how the ambiguity of the experimental data affects the evaluation of inelastic scattering and capture cross sections. However, the level scheme proposed here are still not so satisfactory because of the very complex and poor information of the experimental data. In many cases, we were

- 40 -

obliged to construct our level schemes using not only strong argument but also weak argument. In some cases, the spinparities have been unwillingly selected without any reasonable arguments only when the assignments were necessary in calculating the cross section. Therefore, it is very desirable for our purpose to obtain more acculate information of the nuclear structure of FP nuclides.

We wish to propose the level schemes of about 100 important nuclides in the near future as the next step of this evaluation work.

Acknowledgement

The authors would like to express their appreciation to Dr. S. Iijima and other members of Fission Product Nuclear Data Working Group of Japanese Nuclear Data Committee for their advices and discussions. We are very grateful to Dr. S. Igarasi and Mr. Y. Nakagawa for their discussions and helps for calculation of the neutron cross sections.

References

- Japanese Nuclear Data Committee, Evaluation of fission product nuclear data for fast reactor, JAERI-M 5752(1974)
- H. Gruppelaar, RCN-2 evaluation, Netherland Research Foundation ECN, (1976)
- 3) J. A. Pinston, J. Blachot and F. Schussler, Nucl. Phys. A157,323(1970)
- L. Mesko, A. Nilsson and S. A. Hjorth, Nucl. Phys. <u>A181</u>, 566(1972)
- 5) L. -G. Svensson, D. G. Sarantites and Backlin, Nucl. Phys. <u>A267</u>,190(1976)
- B. Siwamogsatham and H. T. Easterday, Nucl. Phys. <u>A162</u>,
 42(1971)
- 7) J. F. Wright, W. L. Talbert and A. F. Voigt, Phys. Rev. C12,572(1975)
- N. K. Aras, P. Fettweis, G. Chilosi and G. D. O'Kelley Nucl. Phys. A169,209(1971)
- 9) P. J. Tivin, R. L. Schulte and H. W. Taylor, Z. Phys. A273,339(1975)
- 10) J. A. Grau, L. E. Samuelson, F. A. Rickey, P. C. Simms and G. J. Smith, Phys. Rev. C14,2297(1976)
- F. A. Rickey, J. A. Grau, L. E. Samuelson and P. C. Simms, Phys. Rev. C15,1530(1977)
- 12) E. Schoeters, R. Geerts, R. E. Silverrans and L. Vanneste, Phys. Rev. <u>C12</u>,1680(1975)
- 13) D. C. Stromswold, D. O. Elliott, Y. K. Lee, J. A. Grau
 L. E. Samuelson, F. A. Rickey and P. C. Simms, Phys. Rev. <u>C13</u>,1510(1976)

- R. E. Anderson, J. J. Kvaushaar, I. C. Oelrich, R. M.
 DelVecchio, R. A. Naumann, E. R. Flynn and C. E. Moss,
 Phys. Rev. <u>C15</u>,123(1977)
- 15) R. M. DelVecchio, I. C. Oelrich and R. A. Naumann, Phys. Rev. <u>C12</u>,845(1975)

.

	Ċ	odd-A		even-even A					
	T[Me	≥V]	1	ĸ		T[Me	≥V]	ŀ	τ
Nuclide	Revised	RCN	Revised	RCN	Nuclide	Revised	RCN	<u>Revised</u>	RCN
⁹³ Nb	0.591	0.568	1.307	1.271	⁹⁶ Мо	0.910	0.892	0.897	0.873
^{9 5} Mo	0.632	0.561	1.267	1.092	⁹⁸ Мо	0.859	0.770	0.920	0.804
97 _{Mo}	0.507	0.455	1.041	1.035	100 _{Mo}	0.979	0.792	1.265	1.070
⁹⁹ Tc	0.499	0.525	1.856	1.826	¹⁰² Ru	0.865	0.822	1.125	1.064
¹⁰¹ Ru	0.365	0.257	1.777	1.183	¹⁰⁴ Ru	0.708	0.803	1.070	1.726
¹⁰³ Ru	0.445	0.482	1.783	1.934	¹⁰⁴ Pd	0.920	0.840	0.991	0.905
¹⁰⁵ Pd	0.383	0.403	1.572	1.696	¹⁰⁶ Pd	0.777	0.786	0.912	0.931
¹⁰⁷ Pd	0.356	0.421	1.995	2.432	¹⁰⁸ Pd	0.919	0.704	1.306	0.990
107 _{Ag}	0.610	0.527	1.790	1.727	¹¹⁰ Pd	0.644	0.610	1.027	0.978
¹⁰⁹ Ag	0.475	0.412	1.662	1.545]	
¹²⁷ I	0.433	0.488	1.580	1.726					
¹²⁹ I	0.561	0.415	1.707	1.382					
¹³³ Cs	0.395	0.395	1.473	1.474					
¹³⁹ La ₈₂	0.738	0.620	1.079	0.874					
	*0.339	0.396	1.247	1.343					
¹⁴¹ Pr ₈₂	0.829	0.581	1.188	0.857					
	*0.386	0.349	1.141	1.144					

Table 1 Values of parameters, k and T, for distribution of low-lying levels of 24 important nuclides.

* obtained by fitting the levels above 2nd excited state (E_0) with $N(E)-2=k\cdot e(E-E_0)/T$.

- 44 -

Table 2 Partial cross section of inelastic scattering of neutron on each level of ¹⁰¹Ru are tabulated for neutron energies of 0.5, 0.7 and 1.0 MeV. The first three columns are our level schemes, proposed previously and revised recently and those proposed by Gruppelaar, respectively. The next three columns are the partial cross section for each level in the three level schemes. The integrated inelastic scattering and capture cross sections are given in the last two lines for comparison.

					E _n =0.5 MeV			0.7 MeV				1.0 MeV		
Adop	ted	Revis	ed	<u>RC</u>	N	Adopt.	Revis.	RCN	Adopt.	Revis.	<u>RCN</u>	Adopt.	Revis.	RCN
0.0	5/2+	0.0	5/2+	0.0	5/2+	1.621	1.530	1.530	1.009	0.8895	0.9024	0.5533	0.4658	0.5257
0.1271	3/2+	0.12722	3/2+	0.1272	3/2+	0.3854	0.34 98	0 .3498	0.2694	0.2278	0.2298	0.1728	0.1448	0.1572
0.3067	7/2+	0.30681	7/2+	0.3068	7/2+	0.4273	0.4103	0.4103	0.3699	0.3315	0.3382	0.2303	0.1926	0.2269
0.3112	5/2+	0.3113	5/2+	0.3113	5/2+	0.4047	0.3785	0.3785	0.3563	0.3123	0.3164	0.2270	0.1924	0.2161
0.3254	1/2+	0.3252	1/2+	0.3252	1/2+	0.0896	0.0783	0.0783	0.0885	0.0708	0.0712	0.0686	0.0555	0.0589
		0.3441	3/2+	0.3441	3/2+		0.1844	0.1844		0.1767	0.1782		0.1252	0.1356
0.422	3/2+	0.4220	3/2+	0.4220	3/2+	0.0972	0.0872	0.0872	0.1792	0.1504	0.1516	0.1406	0.1176	0.1273
		0.4623	1/2+	0.4623	1/2+		0.0122	0.0122		0.0515	0.0518		0.0488	0.0517
0.528	11/2	0.528	11/2	0.528	11/2				0.0330	0.0302	0.0319	0.0501	0.0417	0.0476
0.5447	7/2+	0.5450	7/2+	0.5450	7/2+				0.1867	0.1655	0.1692	0.1880	0.1570	0.1858
0.6161	7/2+	0.6163	7/2+	0.6163	7/2+				0.0951	0.0837	0.0857	0.1711	0.1427	0.1692
		0.6235	7/2+	0.6235	7/2+					0.0748	0.0766		0.1411	0.1673
		0.6438	9/2+	overlar						0.0377	0.0038		0.1030	0.1637
0.6742	3/2+	0.6741	3/2+						0.0108	0.0089		0.1020	0.0849	
0.720	7/2+	0.7200	9/2+	ĺ								0.1392	0.0864	
0.8426	7/2+	0.8427	7/2+									0.0842	0.0696	
0.9111	7/2+	0.9119	7/2+									0.0437	0.0357	
0.9282	9/2+	0.9289	9/2+									0.0278	0.0205	
0.9381	7/2 ⁺	0.9383	7/2+]			0.0269	0.0222	
		0.959	15/2								ļ		0.0009	
1.0011	11/2+	1.001	11/2+											
		1.623	19/2											
		1.861	15/2 ⁺				•							
		2.473	23/2			ļ					i			
					σ_{in}	1.404	1.501	1.501	1.589	1.722	1.705	1.627	1.780	1.707
					σ _{n,γ}	0.1491	0.1437	0.1437	0.1065	0.0925	0.0972	0.0855	0.0654	0.0780

				E _n =0.5 MeV			<u>0.7 MeV</u>			1.0 MeV				
Adopte	<u>d</u>	Revise	<u>d</u>	RCN		Adopt.	<u>Revis.</u>	RCN	Adopt.	Revis.	RCN	Adopt.	Revis.	RCN
0.0	1/2	0.0	1/2	0.0	1/2	1.8910	1.8841	1.8839	1.3242	1.3002	1.2934	0.8020	0.7666	0.7559
0.040	7/2+	0.039750	7/2+	0.0398	7/2+	0.0736	0.0735	0.0735	0.0873	0.0804	0.0797	0.0905	0.0782	0.0747
0.093	9/2+	0.093035	9/2+	0.0930	9/2+	0.0208	0.0208	0.0208	0.0291	0.0269	0.0269	0.0358	0.0302	0.0290
0.298	3/2	0.29498	3/2	0.2949	3/2	0.6293	0.6334	0.6335	0.5945	0.5865	0.5830	0.4152	0.3998	0.3936
0.360	5/2	0.35746	5/2	0.3574	5/2	0.3193	0.3230	0.3230	0.3878	0.3823	0.3802	0.3090	0.2931	0.2884
0.537	5/2+	0.53684	5/2+	0.5368	5/2+				0.0848	0.0773	0.0751	0.0990	0.0855	0.0793
		0.60763	7/2+	0.6072	7/2+					0.0147	0,0147	ŗ	0.0344	0.0327
0.651	7/2+	0.65009	7/2+	0.6500	5/2+				0.0084	0.0076	0.0254	0.0369	0.0315	0.0663
		0.65180	3/2+	0.6517	3/2+				1	0.0463	0,0452		0.1095	0.1017
0.798	5/2+			0.7980	9/2 ⁺	- 5 1			۲.			0.0574		0.0068
		0.8036	3/2	0.8031	3/2								0.1959	0.1933
0.843	3/2	0.8477	7/2	0.8475	7/2							0.1657	0.0552	0.0545
0.877	5/2	0.8804	5/2	0.8806	5/2 ⁻							0.0971	0.0887	0.0870
0.915	5/2	0.9200	۶/2 ⁻	0,9200	9/2							0.0620	0.0093	0.0093
		overlap		0.9680	5/2								0.0042	0.0120
				1.0100	5/2									
				1.0350	9/2+									
				1.0800	7/2				; 					
1.102	7/2+			1.1070	5/2									
				1.1400	5/2 ⁺									
				1.1970	9/2									
				1.220	3/2+									
1.247	9/2													
				1.2520	5/2+									
				1.2520	5/2		•							
1.270	1/2			1.2770	3/2									
					σ_{in}	1.0431	1.0506	1.0508	1.1918	1.2220	1.2300	1.3686	1.4153	1.4285
					^σ n,γ	0.1309	0.1303	0.1302	0.1049	0.0986	0.0975	0.0881	0.0767	0.0742

Table 3 Partial cross section of inelastic scattering of neutron on 103Rh. See the caption of Table 2.

.

- 46 --

						En=	E _n = 1.0 MeV		1.5 MeV			1.75 MeV		
Adopt	ed	ed Revised		RC	N	Adopt.	Revis.	RCN	Adopt.	Revis.	RCN	Adopt.	Revis.	RCN
0.0	7/2+	0.0	7/2+	0.0	7/2+	1.7315	1.9285	1.9286	1.1459	1.5099	1.5106	0.8421	1.0988	1.1070
0.1658	5/2 ⁺	0.1658	5/2+	0.1660	5/2+	0.4817	0.5615	0.5614	0.3586	0.4981	0.4983	0.2759	0.3781	0.3780
0.570	3/2+	ĺ				0.1101			0.1395			0.1224		
0.830	3/2+					0.0431			0.0916			0.0917		
0.930	9/2+					0.1251			0.2639			0.2541		
1.070	7/2+			1					0.1605			0.1689		
1.206	1/2+	1.206	1/2+	1.206	1/2+				0.0121	0.0204	0.0204	0.0186	0.0295	0.0293
1.2191	9/2+	1.2191	9/2+	1.219	9/2+				0.1341	0.1830	0.1831	0.1559	0.2051	0.2074
1.2566	5/2+	1.2556	5/2+	1.257	5/2+	•			0.0598	0.0868	0,0867	0.0760	0.1075	0.1069
1.3813	7/2+	1.3813	7/2+	1.382	7/2+	1			0.0559	0.0780	0.0778	0,0855	0.1145	0.1146
1.4205	7/2+	1.4205	7/2+	1.421	7/2+				0.0427	0.0596	0.0594	0.0768	0.1027	0.1028
1.439	11/2	1.439	11/2	1.439	11/2				0.0326	0.0443	0.0443	0.0834	0.1073	0.1092
1.4764	5/2	1.4764	7/2	1.477	7/2+				0.0112	0.0250	0.0244	0.0422	0.0868	0.0868
1.5363	7/2+	1.5363	7/2+	1.536	7/2+							0.3530	0.0708	0.0710
1.5582	3/2	1.5582	3/2	1.558	3/2	İ			ļ			0.0164	0.0264	0.0262
1.5782	9/2	1.5782	9/2	1.578	9/2							0.0583	0.0765	0.0773
1.6831	7/2	1.6831	7/2	1.683	7/2	i						0.0234	0.0314	0.0314
overlap	,	overlap		1.714	5/2							0.0206	0.0273	0.0142
				1.756	7/2									
				1.762	3/2							1		
				1.767	9/2 ⁺									
				1.775	1/2'									
Ì				1.820	5/2'	j								
				1.838	7/2									
Į				1.857	3/2'									
1				1.894	11/2'				1					
				1.922	5/2		•					1		
L		L		1.943	13/2 T				<u> </u>			<u> </u>		
					σin	0.7600	0.5615	0.5614	1.3625	0.9951	0.9944	1.6231	1.3639	1.3551
					σn,γ	0.0121	0.0136	0.0136	0.0112	0.0146	0.0146	0.0099	0.0122	0.0129

Table 4 Partial cross section of inelastic scattering of neutron on ¹³⁹La are tabulated for neutron energies of 1.0, 1.5 and 1.75 MeV. See the caption of Table 2.

T 47 —

- 50 -

Fig. 4.3(a) Inelastic scattering cross section for 139 La

Fig. 4.3(b) Capture cross section for 139 La

いばらき印刷納