LEVEL SCHEMES FOR SOME FISSION PRODUCT NUCLIDES
－COMPARISON OF LEVEL SCHEMES USED BY JAERI AND PETTEN－

June 1978

Zyun－itiro MATUMOTO，Tooru MURATA＊ and Ryuzo NAKASIMA＊＊

日 本 原 子 力 研 究 所

この報告書は，日本原子力研究所がJAERI－Mレポートとして，不定期に刊行している研究预管書です。入手，複製などの打閵合わせは，日本原子力研究所技術情報部（茨城県删吅删東海村）あて，お申しこしください。

JAERI－M reports，issued irregularly，describe the results of research works carried out in JAERI．Inquiries about the availability of reports and their reproduction should be addressed to Division of Technical Information，Japan Atomic Energy Research Institute， Tokai－mura，Naka－gun，Jbarakiken，Japan．

Level Schemes for some Fission Product Nuc1ides -Comparison of Level Schemes used by JAERI and Petten-Zyun-itiro MATUMOTO, Tooru MURATA* and Ryuzo NAKASIMA**

Fission Product Nuclear Data Working Group, Japanese Nuclear Data Committee, Tokai Research Establishment, JAERI

```
(received June 5, 1978)
```

Level schemes of 24 fission product nuclides comparable between JAERI's and Petten's are presented. When the assignments of spin and parity are different between, the reasons for JAERI's are described. In typical cases are compared the cross section of inelastic scattering and (n, γ) reaction calculated using the JAERI's and Petten's level schemes. The distribution of the low-lying levels of which spins and parities are assigned, is also presented.

Keywords : Fission Product, Level Energy, Spin, Parity, Level Distribution, Neutron Inelastic Scattering Cross Section, Neutron Capture Cross Section, Comparative Evaluation

[^0]
核分裂生成核種の準位様式

－JAERIおよびPetten で使用した準位様式の比較一

日本原子力研究所東海研究所シグマ研究委員会松本純一郎•村田 徽＊中嶋 竜三＊＊
（1978年6月5日受理）

JAERI およびPetten で決めた核分裂生成核種のうち，両者の比較ができる 24 核種のレベル・ スキームを比較して示す。スピンやパリティの決定が両者の間でくいちかっている場合には，わ れわれの決定理由を述へた。てれらのレベル・スキームを使って計算した非弾性散乱と（ $\mathrm{n}, ~ r$ ）反応の断面積とを，典型的な場合について比較した。またスピンとパリティとを決められている レベルの分布状況を図で示してある。
＊日本原子力事業
＊＊法政大学
本調査は，シグマ研究委員会•核データ専門部会•FP核データワーキンググループの作業の一買 として行われたあのである。

Contents

1. Introduction 1
2. Comparison of Leve1 Schemes used by JAERIand Petten
2.1~2.24 : Tables of Leve1 Schemes for 24
Inportant Nuclides 2
3. Step-wise Diagrams for Distribution of Low-lying Levels 39
4. Examples of Calculated Inelastic Scattering and Capture Cross Sections 40
5. Remarks 40
Acknowledgement 41
References 42

目
 次

1．序 論 1
2．JAERI およびPettenで使用された準位様式の比較 2
2． $1 \sim 2.24$ 重要 24 核種の準位様式の表
3．低い準位の分布に対する階段表示 39
4．計算された非弾性散乱と捕隻䉼面積ひ例 40
5．所 見 40
謝 辞 41
参考文献 42

1. Introduction

In order to evaluate the neutron cross sections, it is necessary to use the evaluated level schemes of relevant nuclides. However, the critical evaluation of level schemes, of course, is so difficult that the international collaboration is .highly required. In making critical evaluation, the determination of level energies and the assignments of spin and parity should be worked out carefully based on many kinds of experimental data, not only decay data but also reaction data. In this case, the determined level energies, spins and parities can be ensured only when the all available experimental data are not inconsistent with each other. Critical evaluation, however, yields a little well-established assignments in many cases, while for cross section evaluation, the spin-parity assignments to levels are required as many as possible.

Working group on evaluation of fission product nuclear data has selected about 100 nuclides as important ones. However, the level schemes of the most of them appeared in Nuclear Data Sheets were not satisfactory to our purpose since some are out-of-date or some include only a little information. Therefore, we were obliged to make our own level schemes based on the all available experimental information, and using not only strong arguments but also weak arguments. In some cases, the spins and/or the parities have been unwillingly selected without any reasonable arguments on1y when the assignments were necessary in calculating the cross sections. One typical example for such assignments is the spin-parity selection based on only gamma
transitions from or to other known levels. The energies of levels (in MeV) have been taken from Nuclear Data Sheets or original paper.

In this report, our level Schemes, reported previously ${ }^{1)}$ and revised recently, are compared with those reported by Gruppelaar ${ }^{2)}$ for 24 nuclides. In section 2 , the level energies and spin-parities of the low-lying levels are tabulated for three cases. In section 3 , the step-wise diagrams for the distribution of low-lying levels of which spins and parities are assigned are presented. Although the diagram may be only a reference for the level density, it seems to be still useful in statistical calculation of cross section for high energy region. In section 4 , the calculated inelastic scattering cross sections are compared by using the different level schemes.
2. Comparison of Level Schemes used by JAERI and Petten

Level schemes, reported previous $y^{1)}$ and revised recently by us and those reported by Gruppelaar ${ }^{2}$) are tabulated in subsection 2.12 .24 . Comments are added if both of our revised ones and Gruppelaar's disagree with each other. However, the most of the comments are based on rather quite weak arguments unless new experimental evidence offers the convincing arguments.
$2.1{ }_{41}^{93} \mathrm{Nb}$

Adopted	
0.0	$9 / 2^{+}$
0.0304	$1 / 2^{-}$
0.686	$3 / 2^{-}$
0.7440	$7 / 2^{+}$
0.8087	$5 / 2^{+}$
0.8101	$5 / 2^{-}$
0.9499	$13 / 2^{+}$
0.9791	$11 / 2^{+}$
1.0826	$9 / 2^{+}$

Revised	
0.0	$9 / 2^{+}$
0.0304	$1 / 2^{-}$
0.686	$3 / 2^{-}$
0.7440	$7 / 2^{+}$
0.8087	$5 / 2^{+}$
0.8101	$5 / 2^{-}$
0.9499	$13 / 2^{+}$
0.9791	$11 / 2^{+}$
1.0826	$9 / 2^{+}$
1.28	$3 / 2^{-}$
1.2974	$9 / 2^{+}$
1.3156	$5 / 2^{-}$
1.3351	$17 / 2^{+}$
1.364	$7 / 2^{-}$

RCN	
0.0	$9 / 2^{+}$
0.0304	$1 / 2^{-}$
0.686	$3 / 2^{-}$
0.7440	$7 / 2^{+}$
0.8087	$7 / 2^{+}$
0.8101	$3 / 2^{-}$
0.9499	$13 / 2^{+}$
0.9791	$11 / 2^{+}$
1.083	$9 / 2^{+}$
1.127	$5 / 2^{+}$

$1.28 \quad 3 / 2^{-}$
$1.29749 / 2^{+}$
$1.29749 / 2^{+}$
$1.31565 / 2^{-}$
$1.3351 \quad 17 / 2^{+}$
$1.364 \quad 7 / 2^{-}$
$1.364 \quad 7 / 2^{-}$
0.8087 level Angular distribution in (p, α) and Hauser-Feshbach analysis for (n, n^{\prime}) show $5 / 2^{+}$.
0.8101 level Angular distribution in (p, α) suggests $5 / 2^{-}$or possibly $3 / 2^{-}$. ($n, n^{\prime} \gamma$) experiments suggest (3/2- $5 / 2^{-}$) or (5/2, 7/2).
1.127 level Uncertain level in ($n, n^{\prime} \gamma$) and analysis shows $5 / 2^{+}$, $7 / 2$. Only an uncertain γ to $5 / 2^{+}$.
1.28 level Angular distribution in (p, α), and $\ell=1$ in (${ }^{3} \mathrm{He}, \mathrm{d}$).
1.2974 level Hauser-Feshbach analysis for (n, n^{\prime}).
1.3156 level Hauser-feshbach analysis for (n, n^{\prime}). $\ell=3$ in (d, ${ }^{3} \mathrm{He}$) suggests $5 / 2^{-}, 7 / 2^{-}$, but no γ to $9 / 2^{+}$selects $5 / 2^{-}$.
1.3351 level Hauser-Feshbach analysis for (n, n^{\prime}).
1.364 level Angular distribution in (p, α).
$2.2{ }_{42}^{95} \mathrm{Mo}$

Adopted	$\left({ }^{\prime} 74\right)$
0.0	$5 / 2^{+}$
0.20394	$3 / 2^{+}$
0.76583	$7 / 2^{+}$
0.7862	$1 / 2^{+}$
0.82065	$3 / 2^{+}$
0.9478	$9 / 2^{+}$
1.0391	$1 / 2^{+}$
1.059	$5 / 2^{+}$
1.0741	$7 / 2^{+}$
1.2225	$5 / 2^{+}$
1.310	$1 / 2^{+}$
1.376	$3 / 2^{+}$
1.433	$5 / 2^{+}$

$$
\begin{array}{lr}
1.541 & 11 / 2^{+} \\
1.5528 & 9 / 2^{+}
\end{array}
$$

$1.541 \quad 11 / 2^{+}$
$1.5528 \quad 9 / 2^{+}$

Revised	
0.0	$5 / 2^{+}$
0.20394	$3 / 2^{+}$
0.76583	$7 / 2^{+}$
0.7862	$1 / 2^{+}$
0.82065	$3 / 2^{+}$
0.9478	$9 / 2^{+}$
1.0391	$1 / 2^{+}$
1.059	$5 / 2^{+}$
1.0741	$7 / 2^{+}$
1.2225	$5 / 2^{+}$
1.310	$1 / 2^{+}$
1.376	$3 / 2^{+}$
1.433	$5 / 2^{+}$

RCN	
0.0	$5 / 2^{+}$
0.2039	$3 / 2^{+}$
0.7658	$7 / 2^{+}$
0.7862	$1 / 2^{+}$
0.8207	$3 / 2^{+}$
0.9479	$9 / 2^{+}$
1.039	$1 / 2^{+}$
1.057	$5 / 2^{+}$
1.074	$7 / 2^{+}$
1.220	$3 / 2^{+}$
1.310	$1 / 2^{+}$
1.370	$3 / 2^{+}$
1.426	$3 / 2^{+}$
1.440	$7 / 2^{+}$
1.470	$1 / 2^{+}$
1.541	$11 / 2^{+}$
1.552	$9 / 2^{+}$
1.570	$5 / 2^{+}$
1.580	$3 / 2^{+}$
1.620	$3 / 2^{+}$
1.650	$7 / 2^{-}$
1.670	$5 / 2^{+}$
1.683	$9 / 2^{+}$

1.2225 level Weakly populated in ${ }^{95 \mathrm{~m}} \mathrm{Tc}\left(1 / 2^{-}\right)$decay with $\log \mathrm{ft}=10.7$, thus suggesting $5 / 2^{+}$.
1.426 level and 1.433 level These are assumed to be identical. $\ell=2$ in (d,p) suggests $3 / 2^{+}, 5 / 2^{+} .{ }^{92} \operatorname{Zr}(\alpha, n \gamma)$ and ${ }^{94} \operatorname{Zr}(\alpha, 3 n \gamma)^{3)}$ suggests $5 / 2^{+}$.
1.440 level $N o$ experimental evidence could be found. 1.470 level $N o$ experimental evidence could be found.
1.570 level $N o$ experimental evidence could be found.
1.580 leve1 $N o$ experimental evidence could be found.
1.650 level $N o$ experimental evidence could be found.
1.707 level $\ell=0$ in (d, p).
1.938 level ${ }^{92} \operatorname{Zr}(\alpha, \mathrm{n} \gamma)$ and ${ }^{94} \operatorname{Zr}(\alpha, 3 \mathrm{n} \gamma)^{4)}$.
$2.3{ }_{42}{ }_{2}$ Mo

Adopted	
0.0	0^{+}
0.7783	2^{+}
1.1479	0^{+}
1.4978	2^{+}
1.626	2^{+}
1.628	4^{+}
1.8695	4^{+}
1.9783	3^{+}
2.0956	2^{+}
2.219	4^{+}
2.2345	3^{-}
2.4262	3^{+}
2.438	5^{+}
2.441	6^{+}
2.481	4^{+}

Revised	
0.0	0^{+}
0.77826	2^{+}
1.1479	0^{+}
1.49782	2^{+}
1.626	2^{+}
1.628	4^{+}
1.8695	4^{+}
1.9783	3^{+}
2.0956	2^{+}
2.2193	4^{+}
2.2345	3^{-}
2.4262	3^{+}
2.43838	5^{+}
2.44064	6^{+}
2.4807	4^{+}

RCN	
0.0	0^{+}
0.7783	2^{+}
1.148	0^{+}
1.498	2^{+}
1.626	2^{+}
1.628	4^{+}
1.870	4^{+}
1.978	3^{+}
2.096	2^{+}
2.219	4^{+}
2.235	3^{-}
2.426	2^{+}
2.438	5^{+}
2.441	6^{+}
2.481	3^{+}
2.541	2^{+}
2.594	3^{+}
2.625	3^{+}

2.4262 level Intensity of γ from capturing state in ($\left.n_{t h}, \gamma\right)$ suggests $2^{+}, 3^{+}$or possibly 4^{+}. No γ to 0^{+}g.s., but to 2^{+}levels select 3^{+}or possibly 4^{+}. No ε-decay from ${ }^{96 m} \mathrm{Tc}$ $\left(4^{+}\right)$is not consistent with above evidence. 3^{+}is assigned tentatively considering the fact that it is hard to see the ε-decay even if exists, since ε-decay of 96 m Tc is on $1 \mathrm{y} 2 \%$ (I T=98\%).
2.4807 level Log $\mathrm{ft}=7.0$ from ${ }^{96 \mathrm{~m}} \mathrm{Tc}\left(4^{+}\right)$suggests $3^{+}, 4^{+}, 5^{+}$. No β from ${ }^{96} \mathrm{Nb}\left(6^{+}\right)$selects $3^{+}, 4^{+} .\left(p, p^{\prime}\right)$ and (α, α^{\prime}) show 4^{+}.
2.541 level Intensity of γ from capturing state in ($n_{t h}, \gamma$) suggests $2^{+}, 3^{+}$or possibly 4^{+}. No γ to 0^{+}g.s., but to 2^{+} levels. No E-decay from ${ }^{96 \mathrm{~m}} \mathrm{Tc}\left(4^{+}\right)$.
2.594 level $\log \mathrm{ft}=5.7$ from ${ }^{96 \mathrm{~m}} \mathrm{Tc}\left(4^{+}\right)$suggests $3^{+}, 4^{+}, 5^{+}$.

${ }_{42}{ }^{96} \mathrm{Mo}$

No β from ${ }^{96} \mathrm{Nb}\left(6^{+}\right)$selects $3^{+}, 4^{+}$.
2.625 level $\log f t=7.6$ from $96 \mathrm{~m} \mathrm{Tc}\left(4^{+}\right)$suggests $3^{+}, 4^{+}, 5^{+}$. No β from ${ }^{96} \mathrm{Nb}\left(6^{+}\right)$selects $3^{+}, 4^{+} .\left(p, p^{\prime}\right)$ and (α, α^{\prime}) show 4^{+}.
2.49_{4}^{97} Mo

Adopted	
0.0	$5 / 2^{+}$
0.4809	$3 / 2^{+}$
0.65792	$7 / 2^{+}$
0.6796	$1 / 2^{+}$
0.71947	$5 / 2^{+}$
0.7211	$3 / 2^{+}$

0.8882	$1 / 2^{+}$
1.02453	$7 / 2^{+}$
1.0926	$3 / 2^{+}$
1.1167	$9 / 2^{+}$

$1.26863 \quad 7 / 2^{+}$
$1.273 \quad 3 / 2^{+}$
$1.4095 \quad 11 / 2^{+}$
$1.4373 \quad 11 / 2^{-}$
$1.447 \quad 3 / 2^{+}$
$1.51564 \quad 9 / 2^{+}$
$1.5452 \quad 5 / 2^{-}$
$1.56513 / 2^{+}$

Revised	
0.0	$5 / 2^{+}$
0.4809	$3 / 2^{+}$
0.65792	$7 / 2^{+}$
0.6796	$1 / 2^{+}$
0.71947	$5 / 2^{+}$
0.7211	$3 / 2^{+}$

$0.8882 \quad 1 / 2^{+}$
1.02453
$7 / 2^{+}$
1.0926
$3 / 2^{+}$
$1.1167 \quad 9 / 2^{+}$
$1.1486 \quad 7 / 2^{-}$
1.26863
$7 / 2^{+}$
1.273
$3 / 2^{+}$
1.284
$13 / 2^{+}$
$1.2846 \quad 3 / 2^{+}$
$1.4095 \quad 11 / 2^{+}$
1.4373
$11 / 2^{-}$
$1.447 \quad 3 / 2^{+}$
$1.51564 \quad 9 / 2^{+}$
1.5452
$5 / 2^{-}$
1.5651
$3 / 2^{+}$

RCN	
0.0	$5 / 2^{+}$
0.4809	$3 / 2^{+}$
0.6583	$7 / 2^{+}$
0.6796	$1 / 2^{+}$
0.7193	$5 / 2^{+}$
0.7211	$3 / 2^{+}$
0.7530	$5 / 2^{+}$
0.7950	$1 / 2^{+}$
0.8810	$1 / 2^{+}$
0.9930	$3 / 2^{+}$
1.0250	$7 / 2^{+}$
1.0920	$3 / 2^{+}$
1.1180	9/2 ${ }^{+}$
1.1360	$3 / 2^{+}$
1.1490	9/2 ${ }^{+}$
1.2650	$5 / 2^{+}$
1.2690°	$7 / 2^{+}$
1.2840	13/2 ${ }^{+}$
1.2850	$3 / 2^{+}$
1.4100	$11 / 2^{+}$
1.4370	11/2 ${ }^{-}$
1.4470	$3 / 2^{+}$
1.5160	9/2+

0.7530 level No experimental evidence could be found.
0.7950 level No experimental evidence could be found.
$\underline{0.9930 \text { level }}$ No experimental evidence could be found.
1.1360 level Reported in (d, t) but no information for J^{π}.
1.1486 level Probably fed by β^{-}from ${ }^{97} \mathrm{Nb}\left(9 / 2^{+}\right)$with log ft >7.9, thus suggesting $7 / 2^{-}, 9 / 2^{-}, 11 / 2^{-}$.

97 M
42^{Mo}
γ to $5 / 2^{+}$g.s. selects $7 / 2^{-}$.
1.2650 level $N o$ experimental evidence could be fould.
1.273 leve1 $\ell=2$ in (d, p) suggests $3 / 2^{+}$or $5 / 2^{+}$, but $3 / 2^{+}$is more probable.
1.5452 level and 1.5651 level $5 / 2^{-}$and $3 / 2^{+}$doublet reported in (d, p).
$2.5{ }_{42}^{98} \mathrm{Mo}$

Adopted	
0.0	0^{+}
0.7349	0^{+}
0.78742	2^{+}
1.43232	2^{+}
1.51013	4^{+}
1.7585	2^{+}

Revised	
0.0	0^{+}
0.7349	0^{+}
0.78742	2^{+}
1.43232	2^{+}
1.51013	4^{+}
1.7585	2^{+}
1.8809	3^{+}
1.965	0^{+}
1.9855	1^{+}
2.0176	3^{-}
2.1049	2^{+}
2.2069	2^{+}
2.2240	2^{+}
2.3334	2^{+}
2.3437	6^{+}
2.4198	3^{-}
2.450	4^{+}
2.4854	3^{+}
2.5063	3^{-}

RCN	
0.0	0^{+}
0.7348	0^{+}
0.7875	2^{+}
1.4320	2^{+}
1.5100	4^{+}
1.7590	2^{+}
1.8120	6^{+}
1.8810	3^{+}
1.9640	0^{+}
1.9850	1^{+}
2.0180	3^{-}
2.0390	4^{+}
2.1050	2^{+}
2.2070	2^{+}
2.2240	2^{+}
2.3330	2^{+}
2.3440	6^{+}
2.4200	3^{-}
2.4500	4^{+}
2.4850	3^{+}
2.5060	3^{-}
2.5260	0^{+}
2.5620	3^{+}
2.5730	4^{+}
2.6090	3^{-}
2.6170	0^{+}
2.6210	2^{+}
2.6460	5^{-}
2.6790	6^{+}
2.7080	2^{+}

1.8120 level Observed only in (n, n^{\prime}). No evidence for J^{π} assignment.
${ }_{42} 2^{\text {Mo }}$
2.0390 level Observed in (n, n^{\prime}) and ($d^{\prime} d^{\prime}$), but no information for J^{π} assignment. No β from $2.8 \mathrm{~s}^{98} \mathrm{Nb}\left(1^{+}\right)$and 51.5 m ${ }^{98} \mathrm{Nb}$ (4 or 5) suggest $J>6$.
2.5260 level Observed in (d, p) and (p, t), but no information for J^{π} assignment.
2.5620 level Observed in (n, γ) and $\gamma^{\prime} s$ to 2^{+}and 3^{-}levels. Not observed in Nb decay.
$\underline{2.5730 \text { level }(p, t) \text { suggests } 4^{+} \text {. } . ~ . ~ . ~}$
2.6090 level $\log \mathrm{ft}=5.9$ from $2.8 \mathrm{~s}^{98} \mathrm{Nb}\left(1^{+}\right)$suggests $0^{+}, 1^{+}$, 2^{+}. No γ to 0^{+}but 2^{+}prefers 0^{+}.
2.6170 level (p, t) suggests 0^{+}.
2.6210 level (n, γ) suggests 2^{+}, but ($\alpha, 2 \mathrm{n} \gamma$) suggests 5^{-}.
2.6460 level Observed in (p, t) but no information for J^{π} assignmint.
$\frac{2.6790 \text { level }}{51.5 \mathrm{~m}^{98}} \mathrm{Nb}_{(\alpha, 2 \mathrm{n} \gamma) \text { suggests } 5^{+} \text {or } 5^{+} \text {or } 6^{+} .} . \log \mathrm{ft}=6.4$ from 2. 7080 level (p, t) suggests 2^{+}.
$2.6{ }_{42}^{100}$ Mo

Adopted	
0.0	0^{+}
0.5356	2^{+}
0.6944	0^{+}
1.0637	2^{+}
1.1361	4^{+}
1.4633	2^{+}
1.7657	1^{+}
1.7704	3^{+}
1.9081	3^{-}
2.033	0^{+}
2.040	2^{+}
2.1014	4^{+}
2.340	2^{+}
2.4156	3^{-}
2.470	4^{+}
2.5632	3^{+}
2.590	4^{+}

Revised	
0.0	0^{+}
0.5356	2^{+}
0.6944	0^{+}
1.0637	2^{+}
1.1361	4^{+}
1.4633	2^{+}
1.7657	1^{+}
1.7704	3^{+}
1.9081	3^{-}
2.033	0^{+}
2.040	2^{+}
2.1014	4^{+}
2.340	2^{+}
2.4156	3^{-}
2.470	4^{+}
2.5632	3^{+}
2.590	4^{+}

RCN	
0.0	0^{+}
0.5360	2^{+}
0.6944	0^{+}
1.0640	2^{+}
1.1360	4^{+}
1.4630	2^{+}

1.7657 level γ^{\prime} s to $0^{+}, 2^{+}$, but not to 4^{+}suggest 1^{+}. No strong reason exists to choose 1^{+}.
1.7704 level γ^{\prime} s to $2^{+}, 4^{+}$, not to 0^{+}. No strong reason exists to choose 3^{+}.
1.9081 level Coulomb excitation suggests 3^{-}.
2.033 level $\left(\gamma, \gamma^{\prime}\right)$ suggests 0^{+}.
2.040 level $\left(\gamma, \gamma^{\prime}\right)$ suggests 2^{+}.
2.1014 level γ^{\prime} s to $2^{+}, 4^{+}$, not to 0^{+}. No strong reason exists to choose 4^{+}.
2.340 level (p, p^{\prime}) suggests 2^{+}.
2.4156 level ($\mathrm{p}, \mathrm{p}^{\prime}$) suggests 3^{-}.
2.470 level (p, p^{\prime}) suggests 4^{+}.
2.5632 level γ^{\prime} s to $2^{+}, 3^{+}, 4^{+}$, not to 0^{+}. No strong reason exists to choose 3^{+}.
2. 590 level (p, p^{\prime}) suggests 4^{+}.
$2.7{ }_{43}^{99} \mathrm{Tc}$

Adopted ('74)		Revised		RCN	
0.0	9/2 ${ }^{+}$	0.0	9/2+	0.0	9/2 ${ }^{+}$
0.14051	$7 / 2^{+}$	0.140508	$7 / 2^{+}$	0.1405	7/2 ${ }^{+}$
0.14263	1/2 ${ }^{-}$	0.14263	$1 / 2^{-}$	0.1426	1/2 ${ }^{-}$
0.18107	$5 / 2^{+}$	0.18107	$5 / 2^{+}$	0.1811	$5 / 2^{+}$
0.5091	$3 / 2^{-}$	0.5091	$3 / 2^{-}$	0.5091	1/2 ${ }^{-}$
0.5343	5/2 ${ }^{-}$	0.5343	5/2 ${ }^{-}$	0.5343	$3 / 2^{-}$
		0.6254	7/2 ${ }^{+}$		
0.6715	5/2 ${ }^{-}$	0.6715	5/2 ${ }^{-}$	0.6715	5/2 ${ }^{-}$
0.7263	7/2+	0.7263	11/2 ${ }^{+}$	0.7263	9/2 ${ }^{+}$
0.7616	$5 / 2^{+}$	0.7616	$5 / 2^{+}$	0.7616	7/2 ${ }^{+}$
		0.7620	13/2 ${ }^{+}$		
0.9205	$3 / 2^{+}$	0.9205	$3 / 2^{+}$	0.9205	3/2 ${ }^{+}$
				0.9500	7/2 ${ }^{-}$
1.0040	3/2	1.0040	$3 / 2^{-}$	1.004	3/2 ${ }^{-}$
1.0729	5/2 ${ }^{-}$	1.0729	$5 / 2^{-}$	1.073	$5 / 2^{-}$
		1.0814	9/2 ${ }^{+}$		
1.1293	$1 / 2^{-}$	1.1293	$1 / 2^{-}$	1.129	$1 / 2^{-}$
1.1420	3/2 ${ }^{-}$	1.142	3/2 ${ }^{-}$	1.142	$3 / 2^{-}$
1.199	$3 / 2^{-}$	1.199	$3 / 2^{-}$		

0.5091 leve1 $\log \mathrm{ft}=8.4$ from ${ }^{99} \mathrm{Mo}\left(1 / 2^{+}\right)$suggests $1 / 2^{-}, 3 / 2^{-}$ or possibly 5/2 ${ }^{-}$. No preferable reason exists for $3 / 2^{-}$. 0.5343 level No B from ${ }^{99}$ Mo ($1 / 2^{+}$) suggests $\mathrm{J}>3 / 2$. γ to $1 / 2^{-}$ selects $5 / 2^{-}$.
0.6254 level Angular distribution in Coulomb excitation ${ }^{8}$) suggests $7 / 2^{+}$or possibly $9 / 2^{+}$.
0.7263 level Angular distribution in Coulomb excitation suggests $11 / 2^{+}$or possibly $9 / 2^{+}$. No γ to $5 / 2^{+}$selects $11 / 2^{+}$.
0. 7616 level Angular distribution in Coulomb excitation suggests $5 / 2^{+}$or possibly $7 / 2^{+}$.
0.7620 level Angular distribution in Coulomb excitation suggests $13 / 2^{+}$.
0.9500 level $N o$ experimental information could be found.

99
43
1.0814 level Angular distribution in Coulomb excitation suggests $9 / 2^{+}$or $11 / 2^{+}$. No preferable reason exists for $9 / 2^{+}$.
1.199 level β from ${ }^{99}$ Mo ($1 / 2^{+}$) with $\log \mathrm{ft} \simeq 8$ suggests $1 / 2^{-}$ $3 / 2^{-}$. γ to $5 / 2^{+}$selects $3 / 2^{-}$.
$2.8{ }_{44}^{101} \mathrm{Ru}$

Adopted (174)	
0.0	$5 / 2^{+}$
0.1271	$3 / 2^{+}$
0.3067	$7 / 2^{+}$
0.3112	$5 / 2^{+}$
0.3254	$1 / 2^{+}$
0.4224	$3 / 2^{+}$
0.528	$11 / 2^{+}$
0.5447	$7 / 2^{+}$
0.6161	$7 / 2^{+}$
0.6742	$3 / 2^{+}$
0.720	$7 / 2^{+}$
0.8426	$7 / 2^{+}$
0.9111	$7 / 2^{+}$
0.9282	$9 / 2^{+}$
0.9381	$7 / 2^{+}$
1.0011	$1.1 / 2^{+}$

Revised		RCN	
0.0	$5 / 2^{+}$	0.0	5/2 ${ }^{+}$
0.12722	3/2 ${ }^{+}$	0.1272	$3 / 2^{+}$
0.30681	7/2 ${ }^{+}$	0.3068	$7 / 2^{+}$
0.3113	5/2 ${ }^{+}$	0.3113	5/2 ${ }^{+}$
0.3252	$1 / 2^{+}$	0.3252	$1 / 2^{+}$
0.3441	3/2+	0.3441	3/2+
0.4220	$3 / 2^{+}$	0.4220	$3 / 2^{+}$
0.4623	$1 / 2^{+}$	0.4623	$1 / 2^{+}$
0.528	11/2 ${ }^{-}$	0.528	11/2 ${ }^{-}$
0.5450	7/2 ${ }^{+}$	0.5450	7/2 ${ }^{+}$
0.6163	7/2 ${ }^{+}$	0.6163	7/2 ${ }^{+}$
0.6235	7/2+	0.6235	7/2+
0.6438	9/2+		
0.6741	$3 / 2^{+}$		
0.7200	9/2+		
0.8427	7/2 ${ }^{+}$		
0.9119	$7 / 2^{+}$		
0.9289	9/2 ${ }^{+}$		
0.9383	7/2 ${ }^{+}$		
0.959	15/2 ${ }^{-}$		
1.001	11/2 ${ }^{+}$		
1.623	19/2 ${ }^{-}$		
1.861	15/2 ${ }^{+}$		
2.473	23/2 ${ }^{-}$		

0.6438 level $\log \mathrm{ft}=6.4$ from ${ }^{101 \mathrm{~m}} \mathrm{Rh}\left(9 / 2^{+}\right)$suggests $7 / 2^{+}, 9 / 2^{+}$, $11 / 2^{+}$. γ to $5 / 2^{+}$but not to $3 / 2^{+}$selects $9 / 2^{+}$.
0.6741 level ${ }^{101 \mathrm{~m}_{\mathrm{m}}} \mathrm{Tc}$ decay experiment ${ }^{6)}, 7$) proposed this level. No β from ${ }^{101} \mathrm{Tc}\left(9 / 2^{+}\right), \gamma$ to $5 / 2^{+} \mathrm{g} . \mathrm{s}$. and γ from $7 / 2^{+}$level suggest $5 / 2^{+}$or $3 / 2^{+}$. Data of ref. 8 are not inconsistent with those of ref. 6. No reason exists to choose $3 / 2^{+}$.
${ }_{44}{ }^{1} \mathrm{Ru}$
0.7200 level $\log \mathrm{ft}=6.7$ from ${ }^{101} \mathrm{Tc}\left(9 / 2^{+}\right)$suggests $7 / 2^{+}, 9 / 2^{+}$, $11 / 2^{+}$. γ to $5 / 2^{+}$but not to $3 / 2^{+} \operatorname{selects} 9 / 2^{+}$. $\alpha \gamma(\theta)$ in ${ }^{100}$ Mo ($\left.\alpha, 3 \mathrm{n} \gamma\right)$.
0.8427 level $L o g \mathrm{ft}=5.6$ from ${ }^{101} \mathrm{Tc}\left(9 / 2^{+}\right)$suggests $7 / 2^{+}, 9 / 2^{+}$, $11 / 2^{+}$. γ to $3 / 2^{+}$level selects $7 / 2^{+}$.
0.9119 level $L o g \mathrm{ft}=6.8$ from ${ }^{101} \mathrm{~T}^{\prime} \mathrm{C}, ~\left(9 / 2^{+}\right)$suggests $7 / 2^{+}, 9 / 2^{+}$, $11 / 2^{+}$. γ to $3 / 2^{+}$level selects $7 / 2^{+}$.
0.9289 level $\log \mathrm{ft}=6.5$ from ${ }^{101} \mathrm{Tc}\left(9 / 2^{+}\right)$suggests $7 / 2^{+}, 9 / 2^{+}$, $11 / 2^{+}$. No γ to $3 / 2^{+}$but to $5 / 2^{+}$selects $9 / 2^{+}$.
0.9383 level $\log \mathrm{ft}=5.8$ from ${ }^{101} \mathrm{Tc}\left(9 / 2^{+}\right)$suggests $7 / 2^{+}, 9 / 2^{+}$, $11 / 2^{+}$. γ to $3 / 2^{+}$level selects $7 / 2^{+}$.
0.959 level $\alpha \gamma(\theta)$ in ${ }^{100} \mathrm{Mo}(\alpha, 3 n \gamma)$.
1.001 level $\log \mathrm{ft}=6.9$ from ${ }^{101} \mathrm{Tc}\left(9 / 2^{+}\right)$suggests $7 / 2^{+}, 9 / 2^{+}$, $11 / 2^{+}$. No γ to $3 / 2^{+}$or $5 / 2^{+}$selects $11 / 2^{+} . \alpha \gamma(\theta)$ in ${ }^{100} \mathrm{Mo}(\alpha, 3 n \gamma)$.
1.623 level $\alpha \gamma(\theta)$ in $100_{\mathrm{Mo}}(\alpha, 3 \mathrm{n} \gamma)$.
1.861 level $\alpha \gamma(\theta)$ in $100_{\mathrm{Mo}}(\alpha, 3 \mathrm{n} \mathrm{\gamma})$.
2.473 level $\alpha \gamma(\theta)$ in ${ }^{100} \mathrm{Mo}(\alpha, 3 \mathrm{nr})$.
$2.9{ }_{44}^{102} \mathrm{Ru}$

Adopted	
0.0	0^{+}
0.4749	2^{+}
0.9437	0^{+}
1.1032	2^{+}
1.1066	4^{+}
1.5219	3^{+}
1.5808	2^{+}
1.7990	4^{+}
1.8371	0^{+}
1.8732	6^{+}
2.0375	2^{+}
2.0441	3^{+}
2.2192	5^{+}
2.2613	2^{+}
2.372	5^{-}

Revised	
0.0	0^{+}
0.47507	2^{+}
0.94365	0^{+}
1.10315	2^{+}
1.10637	4^{+}
1.52166	3^{+}
1.58058	2^{+}
1.6027	4^{+}
1.79870	4^{+}
1.83710	0^{+}
1.87324	6^{+}
2.03692	2^{+}
2.0442	3^{-}
2.21917	5^{+}
2.26125	2^{+}
2.372	5^{+}
2.4211	4^{+}
2.4419	4^{+}

RCN	
0.0	0^{+}
0.4750	2^{+}
0.9440	0^{+}
1.1030	2^{+}
1.1070	4^{+}
1.5220	3^{+}
1.5810	2^{+}
1.6030	4^{+}
1.7990	4^{+}
1.8370	0^{+}
1.8730	6^{+}
1.9970	5^{+}
2.0370	2^{+}
2.0440	3^{-}
2.1550	1^{+}
2.2190	5^{+}
2.2610	2^{+}
2.3720	5^{+}
2.4210	4^{+}
2.4420	3^{+}

1.9970 level Uncertain B from ${ }^{102} \mathrm{Rh}\left(5^{+}\right.$or $\left.6^{+}\right)$with $\log \mathrm{ft}=10.2$. Only uncertain γ to 2^{+}level. No other evidence. If this level is adopted, 3^{-}is more probable rather than 5^{+}.
2.1550 level Proposed by ${ }^{100} \mathrm{Mo}(\alpha, 2 \mathrm{n} \gamma)$ as an uncertain level. Not populated in ${ }^{102} \mathrm{Tc}\left(1^{+}\right)$and ${ }^{102 \mathrm{~m}_{\mathrm{Rh}}}\left(1^{-}\right.$or $\left.2^{-}\right)$decays, thus assignment of 1^{+}is not consistent even if this level exists.
 $2^{+}, 3^{+} . \gamma^{\prime}$ s to $0^{+}, 2^{+}, 3^{+}$, and possibly 4^{+}levels select 2^{+}.
2.4419 level $4.35 \mathrm{~m}^{102} \mathrm{Tc}$ decays to 4^{+}levels but not to $0^{+}, 2^{+}$, 3^{+}levels in ${ }^{102} \mathrm{Ru}$, thus suggesting $\mathrm{J} \geqslant 5$ for ${ }^{102 \mathrm{~m}} \mathrm{Tc}$. Log ft $=6.32$ suggests $4^{+}, \geq 5$ to 2.4419 level. γ to 2^{+}level selects 4^{+}.
$2.10{ }_{44}^{104} \mathrm{Ru}$

Adopted	
0.0	0^{+}
0.358	2^{+}
0.889	2^{+}
0.893	4^{+}
0.983	0^{+}

Revised	
0.0	0^{+}
0.35799	2^{+}
0.8885	4^{+}
0.8930	2^{+}
0.9881	0^{+}
1.2423	3^{+}

RCN	
0.0	0^{+}
0.3586	2^{+}
0.8892	4^{+}
0.8937	2^{+}
0.9830	0^{+}
1.2423	3^{+}
1.3558	2^{+}
1.5020	4^{+}
1.5160	0^{+}
1.7560	4^{+}
1.8747	6^{+}
1.8790	3^{+}
1.9710	1^{+}
1.9930	2^{+}

1.3558 level 104 Tc decay experiment ${ }^{8)}$ proposed this level by placing $462 \mathrm{keV} \gamma$ between this and 0.8930 levels, but ref. 9) did not ohserve $462 \mathrm{keV} \gamma$ in ${ }^{104} \mathrm{Tc}$ decay.
1.5020 level $18.2 \mathrm{~m}^{104} \mathrm{Tc}$ decay to $0.35799\left(2^{+}\right)$level in ${ }^{104} \mathrm{Ru}$ with log ft $=7.4$ and to $0.8885\left(4^{+}\right)$level with $\log \mathrm{ft}=7.7$, thus suggesting $2^{-}, 3^{+}$and 4° for $18.2 \mathrm{~m}{ }^{104} \mathrm{Tc}$. log $\mathrm{ft}=8.1$ to 1.5020 level suggests $0^{+}, 1^{ \pm}, 2^{ \pm}, 3^{+}, 4^{+}, 5^{ \pm}, 6^{+} . \gamma^{\prime} \leqslant$ to 2^{+} and 4^{+}but no y to 0^{+}selects 3^{+}or 4^{+}. Not possible to select unique.$^{\pi}$ from these possibilities.
$\underline{1} .5160$ level Log $\mathrm{ft} \geqslant 8$. Y's to $2^{+}, 3^{+}$, but no y to $0^{+}, 4^{+}$. Possible assignment is 2°.
1.7560 level No experimental evidence could be found.
1.8747 level Log $\mathrm{ft}>8.0$. γ^{\prime} s to $2^{+}, 4^{+}$but no γ to 0^{+}. Posisible assignment is 3^{+}or 4^{+}.
1.8790 level No experimental evidence could be found.
1.9710 level $\log \mathrm{ft}=7.2$ suggests $1^{ \pm}, 2^{ \pm}, 3^{+}, 4^{+}, 5^{ \pm}$. y^{\prime} s to $0^{+}, 2^{+}$selects 1^{+}or 2^{+}.
1.. 9930 level ${ }^{104} \mathrm{Tc}$ decay experiment ${ }^{i 3)}$ proposed this level with 2^{+}, but no evidence supporting this assignment is seen in ref. 9).
$2.11{ }_{45}^{103} \mathrm{Rh}$

Adopted ('74)		Revised		RCN	
0.0	1/2 ${ }^{-}$	0.0	$1 / 2^{-}$	0.0	1/2 ${ }^{-}$
0.040	$7 / 2^{+}$	0.039750	7/2 ${ }^{+}$	0.0398	7/2 ${ }^{+}$
0.093	9/2 ${ }^{+}$	0.093035	9/2 ${ }^{+}$	0.0930	9/2 ${ }^{+}$
0.298	3/2 ${ }^{-}$	0.29498	3/2 ${ }^{-}$	0.2949	3/2 ${ }^{-}$
0.360	5/2 ${ }^{-}$	0.35746	5/2 ${ }^{-}$	0.3574	5/2 ${ }^{-}$
0.537	$5 / 2^{+}$	0.53684	5/2 ${ }^{+}$	0.5368	5/2 ${ }^{+}$
		0.60763	7/2 ${ }^{+}$	0.6072	7/2+
0.651	$7 / 2^{+}$	0.65009	7/2 ${ }^{+}$	0.6500	5/2 ${ }^{+}$
		0.65180	$3 / 2^{+}$	0.6517	$3 / 2^{+}$
0.798	$5 / 2^{+}$			0.7980	9/2+
		0.8036	3/2 ${ }^{-}$	0.8031	3/2 ${ }^{-}$
0.843	3/2	0.8477	7/2 ${ }^{-}$	0.8475	7/2 ${ }^{-}$
0.877	5/2 ${ }^{-}$	0.8804	5/2 ${ }^{-}$	0.8806	5/2 ${ }^{-}$
0.915	5/2	0.9200	9/2 ${ }^{-}$	0.9200	9/2 ${ }^{-}$
				0.9680	5/2 ${ }^{-}$
				1.0100	$5 / 2^{+}$
				1.0350	9/2 ${ }^{+}$
				1.0800	7/2
1.102	$7 / 2^{+}$			1.1070	5/2 ${ }^{-}$
				1.1400	$5 / 2^{+}$
				1.1970	9/2 ${ }^{-}$
				1.220	$3 / 2^{+}$

$1.247 \quad 9 / 2^{-}$
$1.270 \quad 1 / 2^{-}$

1.2520	$5 / 2^{+}$
1.2520	$5 / 2^{-}$
1.2770	$3 / 2^{-}$

0.65009 level Log $\mathrm{ft}=5.9$ from ${ }^{103} \mathrm{Ru}\left(5 / 2^{+}\right)$suggests $3 / 2^{+}, 5 / 2^{+}$, $7 / 2^{+}$. No γ to $1 / 2^{-}, 3 / 2^{-}$select $7 / 2^{+}$. 0.7980 level Observed in (p, p^{\prime}), but could be identified with 0.8036 level.
0.9680 level Experimental information was not available.
1.0100 level No experimental evidence could be found.
1.0350 level No experimental evidence could be found. 1.0800 level No experimental evidence could be found.
1.1070 level $3 / 2^{-}$or $5 / 2^{-}$from Coulomb excitation.
1.1400 level $N o$ experimental evidence could be found.
1.1970 level $N o$ experimental evidence could be found.
1.220 level $N o$ experimental evidence could be found.
1.2520 level $N o$ experimental evidence could be found.
1.2520 level $N o$ experimental evidence could be found.
1.2770 level $3 / 2^{-}$from Coulomb excitation.
$2.12{ }_{46}^{104} \mathrm{Pd}$

Adopted	
0.0	0^{+}
0.55581	2^{+}
1.32359	4^{+}
1.33359	0^{+}
1.34168	2^{+}
1.79286	0^{+}
1.79383	$2^{+}\left(1^{+}\right)$
1.82065	2^{+}
1.9416	5^{+}
1.948	6^{+}
2.08238	4^{+}

Revised	
0.0	0^{+}
0.55581	2^{+}
1.32359	4^{+}
1.33359	0^{+}
1.34168	2^{+}
1.79286	0^{+}
1.79383	2^{+}
1.82065	3^{+}
1.9416	5^{+}
2.08238	4^{+}

RCN	
0.0	0^{+}
0.5557	2^{+}
1.3230	4^{+}
1.3240	0^{+}
1.3410	2^{+}
1.7930	0^{+}
1.7940	2^{+}
1.8210	3^{+}
1.9410	5^{+}
2.0820	4^{+}
2.1020	2^{+}
2.1260	4^{+}
2.1390	2^{+}
2.1790	3^{+}
2.1820	4^{+}

2.1020 level No experimental evidence could be found.
$\underline{2.1260}$ level (d, t) shows $\ell=2+4$?. No selection for J. $\pi=+$.
2.1390 level Found in $\left(p, p^{\prime}\right)$ and $\left(n, n^{\prime} \gamma\right) . \gamma$ to 2^{+}. 2.1790 level (d, t) shows $\ell=2+4$?. y to 2^{+}in ($n, n^{\prime} \gamma$). 2.1820 le:el $\left({ }^{13} \mathrm{C}, 3 \mathrm{n} \mathrm{\gamma}\right)^{10)}$ suggests 4^{+}.
$2.13 \quad{ }_{46} \quad 105 \mathrm{Pd}$

Adopted	(${ }^{\prime} 74$)	Revised		RCN	
0.0	5/2 ${ }^{+}$	0.0	5/2 ${ }^{+}$	0.0	5/2 ${ }^{+}$
0.2804	3/2 ${ }^{+}$	0.28051	$3 / 2^{+}$	0.2851	$3 / 2^{+}$
0.3062	$7 / 2^{+}$	0.30626	$7 / 2^{+}$	0.3063	$7 / 2^{+}$
0.3191	$5 / 2^{+}$	0.31918	$5 / 2^{+}$	0.3192	$5 / 2^{+}$
0.3444	$1 / 2^{+}$	0.34452	$1 / 2^{+}$	0.3445	$1 / 2^{+}$
0.4427	$7 / 2^{+}$	0.44223	$7 / 2^{+}$	0.4422	$5 / 2^{+}$
0.4890	11/2 ${ }^{-}$	0.48911	11/2 ${ }^{-}$	0.4891	11/2 ${ }^{-}$
0.5607	3/2 ${ }^{+}$	0.56075	$5 / 2^{+}$	0.5608	$5 / 2^{+}$
0.6444	7/2	0.64450	7/2 ${ }^{-}$	0.6445	7/2 ${ }^{-}$
0.6506	3/2 ${ }^{+}$	0.65069	$3 / 2^{+}$	0.6507	$3 / 2+$
0.6731	$7 / 2^{+}$	0.67318	$1 / 2^{+}$	0.6732	1/2 ${ }^{+}$
		0.694	$7 / 2^{+}$	0.6940	7/2 ${ }^{+}$
0.7271	$5 / 2^{+}$	0.72717	$5 / 2^{+}$	0.7272	$5 / 2^{+}$
0.78	9/2 ${ }^{-}$	0.7813	9/2 ${ }^{+}$	0.7813	$5 / 2^{+}$
		0.787	$1 / 2^{+}$	0.7870	1/2 ${ }^{+}$
				0.8500	5/2 ${ }^{-}$
		0.9294	7/2 ${ }^{+}$	0.9294	7/2 ${ }^{+}$
		0.939	$1 / 2^{+}$	0.9390	$1 / 2+$
0.9623	$5 / 2^{+}$	0.96237	$1 / 2^{+}$	0.9624	$3 / 2^{+}$
		0.9702	15/2 ${ }^{-}$		
		0.979	$5 / 2^{+}$	0.9790	$5 / 2^{+}$
1.0015	$5 / 2^{+}$				
		1.0118	$11 / 2^{+}$		
				1.0400	3/2 ${ }^{+}$
		1.0722	$5 / 2^{+}$	1.0720	5/2 ${ }^{+}$
		1.075	$1 / 2^{+}$	1.0750	$1 / 2^{+}$
1.0878	3/2 ${ }^{-}$	1.08793	3/2 ${ }^{-}$	1.0880	3/2 ${ }^{-}$
		1.0984	$5 / 2^{+}$	1.0980	$5 / 2^{+}$
		1.141	$1 / 2^{+}$	1.1410	7/2 ${ }^{+}$
				1.1710	7/2 ${ }^{-}$
				1.2010	$3 / 2^{+}$
				1.2200	$1 / 2^{+}$
				1.2500	9/2 ${ }^{-}$

${ }_{46}^{105} \mathrm{Pd}$
0.44223 leve1 $\left({ }^{12} \mathrm{C}, 3 \mathrm{n} \gamma\right)^{11)}$ suggests $7 / 2^{+}$.
0.7813 1evel $\quad\left({ }^{12} \mathrm{C}, 3 \mathrm{n} \gamma\right)$ shows $9 / 2^{+}$.
0.8500 leve1 $N o$ experimental evidence could be found. 0.96237 1eve1 $\log \mathrm{ft}=7.7$ from $1 / 2^{-105} \mathrm{Ag}$ suggests $1 / 2^{+}$, $3 / 2^{+}$. No γ to $7 / 2^{+}$prefers $1 / 2^{+}$.
0.9702 leve1 $\quad\left({ }^{12} \mathrm{C}, 3 \mathrm{n} \gamma\right)$ suggests $15 / 2^{-}$.
$\underline{1.0118 \text { leve1 }} \quad\left({ }^{12} \mathrm{C}, 3 \mathrm{n} \gamma\right)$ suggests $11 / 2^{+}$.
1.0440 level $N o$ experimental evidence could be found.
1.141 level $\ell=0$ in (d, p) and (d, t) suggests $1 / 2^{+}$.
1.1710 leve1 No experimental evidence could be found. 1.2010 level $\ell=2$ in (d, p) and (d, t) suggests $3 / 2^{+}$or $5 / 2^{+}$.
1.2200 level $N o$ experimental evidence could be found.
1.2500 level No experimental evidence could be found.
$2.14{ }_{46}^{106} \mathrm{Pd}$

Adopted	
0.0	0^{+}
0.51185	2^{+}
1.12802	2^{+}
1.1336	0^{+}
1.2292	4^{+}
1.5580	3^{+}
1.5621	2^{+}
1.7061	0^{+}
1.9104	2^{+}
1.9323	4^{+}
2.0012	0^{+}
2.0761	6^{+}
2.0774	4^{+}
2.0843	3^{-}
2.2424	2^{+}
2.2780	0^{+}
2.2829	4^{+}
2.3060	4^{-}
2.3086	2^{+}
2.3508	4^{+}
2.3660	4^{+}
2.4014	3^{-}
2.4386	2^{+}

Revised	
0.0	0^{+}
0.51185	2^{+}
1.12802	2^{+}
1.1336	0^{+}
1.2292	4^{+}
1.5580	3^{+}
1.5621	2^{+}
1.7061	0^{+}
1.9104	2^{+}
1.9323	4^{+}
2.0012	0^{+}
2.0761	6^{+}
2.0774	4^{+}
2.0843	3^{-}
2.2424	2^{+}
2.2780	0^{+}
2.2829	4^{+}
2.3060	4^{-}
2.3086	2^{+}
2.3508	4^{+}
2.3660	4^{+}
2.3973	5^{-}
2.4014	3^{-}
2.4386	2^{+}

RCN	
0.0	0^{+}
0.5119	2^{+}
1.1280	2^{+}
1.1340	0^{+}
1.2290	4^{+}
1.5580	3^{+}
1.5620	2^{+}
1.7060	0^{+}
1.9090	2^{+}
1.9320	4^{+}
2.0010	0^{+}
2.0760	6^{+}
2.0770	4^{+}
2.0840	3^{-}
2.1900	2^{+}
2.2420	2^{+}
2.2780	0^{+}
2.2830	4^{+}
2.3060	4^{-}
2.3090	2^{+}
2.3510	4^{+}

2.1900 level No experimental evidence could be found.
2.3660 level γ-ray angular distribution from polarized ${ }^{106 m} \mathrm{Ag}^{1}$ nuclei ${ }^{12)}$ suggests 4^{+}.
2.3973 level $\left({ }^{13} \mathrm{C}, 3 \mathrm{n} \gamma\right)^{10,13)}$ suggests 3^{-}.
2.4014 level (n, γ) suggests 4^{+}.
2.4386 level γ^{\prime} s to $0^{+}, 2^{+}, 4^{+}$levels suggest 2^{+}.
$2.15 \quad 107 \mathrm{Pd}$

Adopted	(174)	Revised		RCN	
0.0	5/2 ${ }^{+}$	0.0	$5 / 2^{+}$	0.0	5/2 ${ }^{+}$
0.1157	$1 / 2^{+}$	0.1157	$1 / 2^{+}$	0.1157	$1 / 2^{+}$
0.214	11/2	0.214	11/2 ${ }^{-}$	0.2140	11/2 ${ }^{-}$
0.3028	$5 / 2^{+}$	0.3028	$5 / 2^{+}$	0.3028	5/2 ${ }^{+}$
0.3122	7/2 ${ }^{+}$	0.3122	$7 / 2^{+}$	0.3122	7/2 ${ }^{+}$
0.3482	3/2 ${ }^{+}$	0.3482	$1 / 2^{+}$	0.3482	$5 / 2^{+}$
0.366	9/2 ${ }^{+}$	0.366	9/2 ${ }^{+}$	0.3660	9/2 ${ }^{+}$
0.3819	3/2 ${ }^{+}$	0.3819	$3 / 2{ }^{+}$	0.3819	$3 / 2^{+}$
0.3924	7/2 ${ }^{+}$	0.3924	$7 / 2^{+}$	0.3924	5/2 ${ }^{-}$
0.412	$1 / 2^{+}$	0.412	$1 / 2^{+}$	0.4120	$1 / 2^{+}$
0.4712	$3 / 2^{+}$	0.4712	$3 / 2^{+}$	0.4712	$3 / 2^{+}$
0.5677	$5 / 2^{+}$	0.5677	$5 / 2^{+}$	0.5677	$5 / 2^{+}$
				0.6200	7/2 ${ }^{-}$
0.6701	$5 / 2^{+}$	0.6701	$5 / 2^{+}$	0.6701	5/2 ${ }^{+}$
0.685	7/2 ${ }^{-}$	0.685	7/2 ${ }^{-}$	0.6850	$7 / 2^{+}$
0.698	1/2 ${ }^{+}$	0.698	$1 / 2^{+}$	0.6980	$1 / 2^{+}$
0.759	$3 / 2^{+}$	0.759	$3 / 2^{+}$	0.7590	$3 / 2^{+}$
0.781	$3 / 2^{-}$	0.781	$3 / 2^{-}$	0.7810	3/2 ${ }^{-}$
0.806	$1 / 2^{-}$	0.806	3/2 ${ }^{-}$	0.8060	$5 / 2^{+}$
		0.809	$5 / 2^{+}$	0.8070	5/2 ${ }^{-}$
0.889	$1 / 2^{+}$	0.889	$1 / 2^{+}$	0.8890	$1 / 2^{+}$
				0.9300	$3 / 2+$
				0.9500	9/2 ${ }^{+}$
				0.9800	7/2 ${ }^{+}$
1.023	$5 / 2^{+}$	1.023	$3 / 2^{+}$	1.023	$3 / 2^{+}$
				1.0400	$3 / 2^{+}$
				1.0600	3/2 ${ }^{-}$
				1.0710	3/2 ${ }^{+}$
				1.1020	$7 / 2^{+}$
				1.1130	$5 / 2^{+}$
				1.1200	$1 / 2^{+}$
				1.1490	5/2-
				1.1600	$3 / 2^{+}$
				1.1670	$1 / 2^{+}$
				1.2140	$5 / 2^{+}$

${ }^{107} \mathrm{Pd}$
0. 3482 level No β from ${ }^{107} \mathrm{Rh}\left(5 / 2^{+}, 7 / 2^{+}\right)$suggests $\mathrm{J}=1 / 2$ or $\mathrm{J}>9 / 2$. $\gamma^{\prime} \mathrm{s}$ from $5 / 2^{+}$and to $1 / 2^{+}, 5 / 2^{+}$prefers $1 / 2^{+}$.
0.3924 level $\log \mathrm{ft}=5.8$ in ${ }^{107} \mathrm{Rh}\left(5 / 2^{+}, 7 / 2^{+}\right)$decay suggests $3 / 2^{+}$to $9 / 2^{+}$. γ^{\prime} s to $5 / 2^{+}, 7 / 2^{+}$but no γ to $1 / 2^{+}$prefers $7 / 2^{+}$or $9 / 2^{+}$. No reason exists to choose $7 / 2^{+}$.
0.6200 level $N o$ experimental evidence could be found.
0.685 level $\ell=3$ in (d, p) suggests $7 / 2^{-}$.
0.806 and 0.809 levels Doublet of $\ell=1$ and 2 is suggested in (d, p), thus $1 / 2^{-}, 3 / 2^{-}$and $3 / 2^{+}, 5 / 2^{+}$are probable to both levels. $5 / 2^{+}$is suggested in (d, p) to 0.809 level. $3 / 2^{-}$
is suggested in (d, p) to one of 0.806-0.809 doublet.
0.9300 level No experimental evidence could be found.
0.9500 level No experimental evidence could be found.
0.9800 level No experimental evidence could be found.
1.0400 level $N o$ experimental evidence could be found.
1.0600 level No experimental evidence could be found.
1.0710 level (d, p) and (d, t) suggest $3 / 2^{+}$or $5 / 2^{+}$.
$\underline{1.1020 \text { level }} \log \mathrm{ft}=5.8$ from ${ }^{107} \mathrm{Rh}\left(5 / 2^{+}, 7 / 2^{+}\right)$decay suggests $3 / 2^{+}$to $9 / 2^{+}$. No γ to $1 / 2^{+}$suggests $7 / 2^{+}$or $9 / 2^{+}$.
$\underline{1} .1130$ level (dep) suggests $3 / 2^{+}$, but $5 / 2^{+}$is still possible.
1.1200 level $\ell=0$ in (d, t) shows $1 / 2^{+}$.
1.1490 level Probable β from ${ }^{107} \mathrm{Rh}\left(5 / 2^{+}, 7 / 2^{+}\right)$with $\log \mathrm{ft}=$ 6.0 suggests $3 / 2^{+}$to $9 / 2^{+}$. No γ to $1 / 2^{+}$suggests $7 / 2^{+}$or $9 / 2^{+}$.
1.1600 level $3 / 2^{+}$is suggested in (d, p).
1.1670 level $\ell=0$ in (d, t) shows $1 / 2^{+}$.
1.2140 level $\ell=2$ in (d, p) and (d, t) suggests $3 / 2^{+}$or $5 / 2^{+}$.
$2.16{ }_{46}^{108} \mathrm{Pd}$

Adopted	
0.0	0^{+}
0.4340	2^{+}
0.9312	2^{+}
1.0483	4^{+}
1.0528	0^{+}
1.3142	0^{+}
1.3356	3^{+}
1.4411	2^{+}
1.5400	1^{+}

Revised	
0.0	0^{+}
0.4340	2^{+}
0.9312	2^{+}
1.0483	4^{+}
1.0528	0^{+}
1.3142	0^{+}
1.3356	3^{+}
1.4411	2^{+}
1.5400	1^{+}

RCN	
0.0	0^{+}
0.4340	2^{+}
0.9312	2^{+}
1.0480	4^{+}
1.0530	0^{+}
1.3140	0^{+}
1.3350	3^{+}
1.4410	2^{+}
1.5400	2^{+}
1.6100	0^{+}
1.7000	4^{+}

1.771	6^{+}
2.046	3^{-}

1.771	6^{+}
2.046	3^{-}
2.141	0^{+}
2.214	2^{+}
2.2825	5^{+}
2.318	5^{-}
2.362	2^{+}
2.392	2^{+}

1.5400 level $\left(n, n^{\prime} \gamma\right)$ suggests $1^{+}, 2^{+}$. No γ to 4^{+}selects 1^{+}.
1.6100 level $0 b s e r v e d$ in (p, p^{\prime}) and (d, d^{\prime}). No evidence for spin assignment.
1.7000 level No experimental evidence could be found.
1.771 level $\left(\mathrm{n}, \mathrm{n}^{\prime} \gamma\right)$ and $(\mathrm{t}, \mathrm{p})^{14)}$ show 6^{+}.
2.046 level $\left(n, n^{\prime} \gamma\right)$ and (t, p) show 3^{-}.
$\underline{2.141}$ level (t, p) shows 0^{+}.
2.214 level (t, p) shows 2^{+}.
2.2825 level $N o$ from low-spin ${ }^{108}$ Rh, but populated indirectly from high-spin ${ }^{108}$ Rh decay suggest $J>3$. No γ to $0^{+}, 2^{+}$ but $3^{+}, 4^{+}$implies 5^{+}.
2.318 level (t, p) shows 5^{-}.
2.362 level (t, p) shows 2^{+}.
2.392 level (t, p) shows 2^{+}.
$2.17{ }_{46}^{110} \mathrm{Pd}$

Adopted	
0.0	0^{+}
0.3738	2^{+}
0.8138	2^{+}
0.9205	4^{+}
0.9463	0^{+}
1.171	0^{+}
1.2124	3^{+}
1.2145	2^{+}

1. 3090 level Observed in (p, p ') only at 4 angles.
1.3980 level ($n, n^{\prime} \gamma$) suggests $2^{+}, 3^{+}, 4^{+}$. No γ to 0^{+}rules out 2^{+}possibility. No reason exists to choose 4^{+}.
$\underline{1.5739 \text { level }}\left(\mathrm{n}, \mathrm{n}^{\prime} \gamma\right.$) suggests 6^{+}.
$2.18{ }^{107}{ }_{47} \mathrm{Ag}$

Adopted		Revised	
0.0	$1 / 2^{-}$	0.0	$1 / 2^{-}$
0.0931	$7 / 2^{+}$	0.0931	$7 / 2^{+}$
0.1257	$9 / 2^{+}$	0.1257	$9 / 2^{+}$
0.3246	$3 / 2^{-}$	0.3246	$3 / 2^{-}$
0.4226	$5 / 2^{-}$	0.4226	$5 / 2^{-}$
0.7864	$3 / 2^{-}$	0.7864	$3 / 2^{-}$
0.9220	$5 / 2^{+}$	0.9220	$5 / 2^{+}$
0.9490	$5 / 2^{-}$	0.9490	$5 / 2^{-}$
0.9732	$7 / 2^{-}$	0.9732	$7 / 2^{-}$
1.060	$1 / 2^{-}$	1.060	$1 / 2^{-}$
1.1424	$9 / 2^{-}$	1.1424	$9 / 2^{-}$
1.160	$\left(5 / 2^{-}\right)$	1.160	$5 / 2^{-}$
		1.221	$11 / 2^{-}$
1.224	$5 / 2^{+}$	1.224	$5 / 2^{+}$

RON	
0.0	$1 / 2^{-}$
0.0931	$7 / 2^{+}$
0.1254	$7 / 2^{+}$
0.3248	$3 / 2^{-}$
0.4230	$5 / 2^{-}$
0.6000	$5 / 2^{+}$
0.7867	$3 / 2^{-}$
0.8500	$3 / 2^{+}$
0.9221	$5 / 2^{+}$
0.9497	$5 / 2^{-}$

1.224 5/2
0.1257 level No ε-transition from ${ }^{107} \mathrm{Cd}\left(5 / 2^{+}\right)$decay suggests $J=1 / 2$ or $J>7 / 2$. M1 transition to $7 / 2^{+}$prefers $9 / 2^{+}$.
0.6000 level $N o$ experimental evidence could be found.
0.8500 level $N o$ experimental evidence could be found.
0.9732 level (p, t) reaction ${ }^{15)}$ suggests $7 / 2^{-}$.
1.060 level (p, t) reaction suggests $1 / 2^{-}$.
1.1424 level (p, t) reaction suggests $9 / 2^{-}$.
1.160 level Weakly populated directly in ${ }^{107} \mathrm{Cd}\left(5 / 2^{+}\right)$decay suggests $3 / 2^{-}, 5 / 2^{-}, 7 / 2^{-}$. γ^{\prime} s to $1 / 2^{-}, 3 / 2^{-}, 5 / 2^{-}$implies $3 / 2^{-}$or $5 / 2^{-}$, but $5 / 2^{-}$is more probable since γ to $1 / 2^{-}$ is weaker than others.
1.221 level (p, t) reaction ${ }^{15)}$ suggests $11 / 2^{-}$. 1.2224 level $\log \mathrm{ft}=6.7$ in ${ }^{107} \mathrm{Cd}\left(5 / 2^{+}\right)$decay suggests $3 / 2^{+}$, $5 / 2^{+}, 7 / 2^{+}$. El γ to $3 / 2^{-}$and γ to $9 / 2^{+}$imply $5 / 2^{+}$.
$2.19 \quad{ }_{47}^{109} \mathrm{Ag}$

0.6970 level No experimental evidence could be found.
0.7070 level $N o$ experimental evidence could be found.
0.7244 level E1 γ^{\prime} s to $3 / 2^{-}$and $5 / 2^{-}$level implies $3 / 2^{+}$or $5 / 2^{+}$. γ to $1 / 2^{-}$selects $3 / 2^{+}$.
0.8110 level $N o$ experimental evidence could be found. 0.8398 level $\log \mathrm{ft}=8.9$ in ${ }^{109} \mathrm{Pd}\left(5 / 2^{+}\right)$decay suggests $3 / 2^{-}$, $5 / 2^{-}, 7 / 2^{-}$. γ to $9 / 2^{+}$and no γ to $1 / 2^{-}$select $7 / 2^{-}$.
0.9110 level Log $\mathrm{ft}=8.5$ in ${ }^{109} \mathrm{Pd}\left(5 / 2^{+}\right)$decay suggests $3 / 2^{-}$, $5 / 2^{-}, 7 / 2^{-}$. γ^{\prime} s to $9 / 2^{+}, 7 / 2^{+}$and no γ to $1 / 2^{-}$select $7 / 2^{-}$.
$\underline{0.9123 \text { level }} \log \mathrm{ft}=6.7$ in ${ }^{109} \mathrm{Pd}\left(5 / 2^{+}\right)$decay suggests $3 / 2^{+}$, $5 / 2^{+}, 7 / 2^{+}$. No γ to $9 / 2^{+}$but γ^{\prime} s to $3 / 2^{-}, 5 / 2^{-}$prefers $3 / 2^{+}$.
1.0906 level (p, t) reaction ${ }^{14)}$ suggests $9 / 2^{-}$.
$2.20 \quad{ }^{127} \mathrm{I}$ I

Adopted	
0.0	$5 / 2^{+}$
0.05760	$7 / 2^{+}$
0.20284	$3 / 2^{+}$
0.37496	$1 / 2^{+}$
0.4179	$5 / 2^{+}$
0.6184	$3 / 2^{+}$
0.6286	$7 / 2^{+}$
0.6510	$9 / 2^{+}$
0.7165	$11 / 2^{+}$
0.7446	$9 / 2^{+}$

Revised	
0.0	$5 / 2^{+}$
0.0576	$7 / 2^{+}$
0.20284	$3 / 2^{+}$
0.37496	$1 / 2^{+}$
0.4179	$5 / 2^{+}$
0.6184	$3 / 2^{+}$
0.6286	$7 / 2^{+}$
0.6510	$9 / 2^{+}$
0.7165	$11 / 2^{+}$
0.7446	$9 / 2^{+}$
0.9910	$3 / 2^{+}$

RCN	
0.0	$5 / 2^{+}$
0.0576	$7 / 2^{+}$
0.2028	$3 / 2^{+}$
0.3750	$1 / 2^{+}$
0.4179	$5 / 2^{+}$
0.6184	$3 / 2^{+}$
0.6286	$7 / 2^{+}$
0.6510	$9 / 2^{+}$
0.7165	$11 / 2^{+}$
0.7446	$9 / 2^{+}$
0.9910	$3 / 2^{+}$
1.0440	$5 / 2^{+}$
1.0950	$5 / 2^{+}$

1.0440 level $N o t$ possible to find unique J^{π} from existing evidence.
1.0950 level $N o t$ possible to select unique J^{π} from existing data.
$2.21 \quad \begin{array}{r}129 \\ 53\end{array}$

0.5597 level No experimental evidence could be found for $5 / 2^{+}$level.
1.047 level $\ell=2$ in (${ }^{3} \mathrm{He}, \mathrm{d}$) suggests $3 / 2^{+}, 5 / 2^{+}$. No reason exists to choose $3 / 2^{+}$.
1.0504 level Log $\mathrm{ft}=10.5$ from $11 / 2^{-129}$ Te suggests $7 / 2^{+}$ or $15 / 2^{+}$. γ to $7 / 2^{+}$selects $7 / 2^{+}$.
1.11175 level $\log \mathrm{ft}=5.7$ from $3 / 2^{+}{ }^{129} \mathrm{Te}$ suggests $1 / 2^{+}$, $3 / 2^{+}, 5 / 2^{+}$. γ to $7 / 2^{+}$rules out $1 / 2^{+}$possibility. No reason exists to choose $5 / 2^{+}$.
1.210 level $\quad \ell=0$ in (${ }^{3} \mathrm{He}, \mathrm{d}$) shows $1 / 2^{+}$.
1.2608 level $\ell=2$ in (${ }^{3} \mathrm{He}, \mathrm{d}$) suggests $3 / 2^{+}, 5 / 2^{+}$. No reason exists to choose $5 / 2^{+}$.

129
53
1.2821 level Log $\mathrm{ft}=7.2$ from $3 / 2^{+129} \mathrm{Te}$ suggests $1 / 2^{+}$, $3 / 2^{+}, 5 / 2^{+}$. γ to $7 / 2^{+}$rules out $1 / 2^{+}$possibility. No reason exists to choose $3 / 2^{+}$.
1.2922 level Log $\mathrm{ft}=6.8$ from $3 / 2^{+129}$ Te suggests $1 / 2^{+}$, $3 / 2^{+}, 5 / 2^{+}$. No γ to $7 / 2^{+}$but to $1 / 2^{+}, 3 / 2^{+}, 5 / 2^{+}$ prefers $1 / 2^{+}$.
1.4016 level Log $f t=8.5$ from $11 / 2^{-129} \mathrm{Te}$ suggests $9 / 2^{+}$, $11 / 2^{+}, 13 / 2^{+}$. γ to $5 / 2^{+}$selects $9 / 2^{+}$.
1.4835 level $\ell=0$ in (${ }^{3} \mathrm{He}, \mathrm{d}$) shows $1 / 2^{+}$.
$2.22 \quad \begin{array}{r}133 \\ 55\end{array}$

No γ to $1 / 2^{+}$and $3 / 2^{+}$levels select $9 / 2^{+}$.
$2.23{ }_{57}^{139} \mathrm{La}$

Adopted	
0.0	$7 / 2^{+}$
0.1658	$5 / 2^{+}$
$(0.570$	$\left.3 / 2^{+}\right)$
$(0.830$	$\left.3 / 2^{+}\right)$
$(0.930$	$\left.9 / 2^{+}\right)$
$(1.070$	$\left.7 / 2^{+}\right)$
1.206	$1 / 2^{+}$
1.2191	$9 / 2^{+}$
1.2566	$5 / 2^{+}$
1.3813	$7 / 2^{+}$
1.4205	$7 / 2^{+}$
1.439	$11 / 2^{+}$
1.4764	$5 / 2^{+}$
1.5363	$7 / 2^{+}$
1.5582	$3 / 2^{+}$
1.5782	$9 / 2^{+}$
1.6831	$7 / 2^{+}$

Revised	
0.0	$7 / 2^{+}$
0.1658	$5 / 2^{+}$

RCN	
0.0	$7 / 2^{+}$
0.1660	$5 / 2^{+}$

1.206	$1 / 2^{+}$
1.2191	$9 / 2^{+}$
1.2566	$5 / 2^{+}$
1.3813	$7 / 2^{+}$
1.4205	$7 / 2^{+}$
1.439	$11 / 2^{-}$
1.4764	$7 / 2^{+}$
1.5363	$7 / 2^{+}$
1.5582	$3 / 2^{+}$
1.5782	$9 / 2^{+}$
1.6831	$7 / 2^{+}$

1.206	$1 / 2^{+}$
1.219	$9 / 2^{+}$
1.257	$5 / 2^{+}$
1.382	$7 / 2^{+}$
1.421	$7 / 2^{+}$
1.439	$11 / 2^{-}$
1.477	$7 / 2^{+}$
1.536	$7 / 2^{+}$
1.558	$3 / 2^{+}$
1.578	$9 / 2^{+}$
1.683	$7 / 2^{+}$
1.714	$5 / 2^{+}$
1.756	$7 / 2^{+}$
1.762	$3 / 2^{+}$
1.767	$9 / 2^{+}$
1.775	$1 / 2^{+}$
1.820	$5 / 2^{+}$
1.838	$7 / 2^{-}$
1.857	$3 / 2^{+}$
1.894	$11 / 2^{+}$
1.922	$5 / 2^{+}$
1.943	$13 / 2^{+}$

1.714 leve1 No β from ${ }^{139} \mathrm{Ba}\left(7 / 2^{-}\right)$suggests $1 / 2^{+}, 3 / 2^{-}$, or $11 / 2^{-},>11 / 2$. γ to $7 / 2^{+}$in $\left(n, n^{\prime} \gamma\right)$ and (α, α^{\prime}) suggests $\pi=+$. Spin assignment is impossible based on these evidences.
1.756 level No B from ${ }^{139} \mathrm{Ba}\left(7 / 2^{-}\right)$suggests $1 / 2^{+}, 3 / 2^{-}$or $11 / 2^{-},>11 / 2$. γ to $7 / 2^{+}$in ($n, n^{\prime} \gamma$) and the ($n, n^{\prime} \gamma$) data

139 La
suggests $\pi=+$. Spin assignment is impossible based on these evidences.
1.762 level Log ft =8.8 from ${ }^{139} \mathrm{Ba}\left(7 / 2^{-}\right)$suggests $3 / 2^{+}$, $5 / 2^{+}, 7 / 2^{+}, 9 / 2^{+}, 11 / 2^{+}$. Nuclear Data Sheets indentified this level with $9 / 2$ level found in (γ, γ^{\prime}).
1.767 level $\log \mathrm{ft}=9.5$ from ${ }^{139} \mathrm{Ba}\left(7 / 2^{-}\right)$suggests $3 / 2^{+}$, $11 / 2^{+}$or $5 / 2^{+}, 7 / 2^{+}, 9 / 2^{+}$. γ^{\prime} s to $7 / 2^{+}$and $5 / 2^{+}$ prefers $3 / 2^{+}$.
$\underline{1.775 \text { level }}$ No β from ${ }^{139} \mathrm{Ba}\left(7 / 2^{-}\right)$suggests $1 / 2^{+}, 3 / 2^{-}$or $11 / 2^{-},>11 / 2 . \quad \pi=+\quad$ in $\left(\alpha, \alpha^{\prime}\right)$.
1.820 level No β from ${ }^{139} \mathrm{Ba}\left(7 / 2^{-}\right)$suggests $1 / 2^{+}, 3 / 2^{-}$ or $11 / 2^{-},>11 / 2$. γ to $7 / 2^{+}$in ($n, n^{\prime} \gamma$). $=0,2$ in $\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$ suggests $\pi=+$. Spin assignment is impossible based on these evidences.
1.838 level No B from ${ }^{139} \mathrm{Ba}\left(7 / 2^{-}\right)$suggests $1 / 2^{+}, 3 / 2^{\circ}$ or $11 / 2^{-},>11 / 2 . \quad \gamma$ to $7 / 2^{+}$in ($n, n^{\prime} \gamma$).
1.857 level $\log \mathrm{ft}=9.5$ from ${ }^{139} \mathrm{Ba}\left(7 / 2^{-}\right)$suggests $3 / 2^{+}$, $11 / 2^{+}$or $5 / 2^{+}, 7 / 2^{+}, 9 / 2^{+}$. $\ell=2$ in (${ }^{3} \mathrm{He}, \mathrm{d}$) suggests $3 / 2^{+}, 5 / 2^{+}$.
1.894 level No B from ${ }^{139} \mathrm{Ba}\left(7 / 2^{-}\right)$suggests $1 / 2^{+}, 3 / 2^{-}$, $11 / 2^{-},>11 / 2 . \quad \gamma$ from $9 / 2^{-}$in (γ, γ^{\prime}).
1.922 level Log $\mathrm{ft}=9.4$ from ${ }^{139} \mathrm{Ba}\left(7 / 2^{-}\right)$suggests $3 / 2^{+}$, $11 / 2^{+}$or $5 / 2^{+}, 7 / 2^{+}, 9 / 2^{+}$. γ^{\prime} s to $5 / 2^{+}$and $7 / 2^{+}$. 1.943 level No β from ${ }^{139} \mathrm{Ba}\left(7 / 2^{-}\right)$suggests $1 / 2^{+}, 3 / 2^{-}$, $11 / 2^{-},>11 / 2 . \quad \pi=+$ in $\left(\alpha, \alpha^{\prime}\right)$.
$2.24 \quad{ }^{141} \mathrm{F9} \mathrm{Pr}$

Adopted	
0.0	$5 / 2^{+}$
0.145440	$7 / 2^{+}$
1.118	$11 / 2^{-}$
1.1270	$3 / 2^{+}$
1.2927	$5 / 2^{+}$
1.2986	$1 / 2^{+}$
1.4350	$3 / 2^{+}$
1.4502	$7 / 2^{+}$
1.4561	$5 / 2^{-}$

Revised	
0.0	$5 / 2^{+}$
0.145440	$7 / 2^{+}$
1.118	$11 / 2^{-}$
1.1270	$3 / 2^{+}$
1.2927	$5 / 2^{+}$
1.2986	$1 / 2^{+}$
1.4350	$3 / 2^{+}$
1.4502	$7 / 2^{+}$
1.4561	$5 / 2^{-}$

RCN	
0.0	$5 / 2^{+}$
0.1455	$7 / 2^{+}$
1.118	$11 / 2^{+}$
1.127	$3 / 2^{+}$
1.293	$5 / 2^{+}$
1.299	$1 / 2^{+}$
1.435	$3 / 2^{+}$
1.451	$7 / 2^{+}$
1.456	$5 / 2^{+}$
1.493	$9 / 2^{+}$
1.513	$5 / 2^{+}$
1.520	$9 / 2^{+}$
1.570	$11 / 2^{+}$
1.578	$5 / 2^{+}$
1.604	$7 / 2^{+}$
1.608	$3 / 2^{+}$
1.651	$9 / 2^{+}$
1.655	$3 / 2^{+}$
1.657	$1 / 2^{+}$
1.764	$5 / 2^{+}$
1.767	$13 / 2^{+}$
1.783	$5 / 2^{+}$
1.809	$3 / 2^{+}$
1.823	$5 / 2^{+}$
1.846	$5 / 2^{+}$

1.4561 level Log $\mathrm{ft}=8.7$ from ${ }^{14 l^{\prime}} \mathrm{Nd}\left(3 / 2^{+}\right)$suggests $1 / 2^{-}$, $3 / 2^{-}, 5 / 2^{-}$, or possibly $7 / 2^{-}$. $\gamma \gamma^{\prime}(\theta)$ suggests $5 / 2$ or $9 / 2$, thus $5 / 2^{-}$is selected. However, (d, d') suggests $\pi=+$ probably.
 $>7 / 2$. γ to $7 / 2^{+}$but not to $5 / 2^{+}$.
1.513 level No ε-decay from ${ }^{141}$ Nd $\left(3 / 2^{+}\right)$suggests $7 / 2^{+}$, $>7 / 2$. Probable γ^{\prime} s from $7 / 2$ and $5 / 2^{+}$in (γ, γ^{\prime}).
${ }^{141} \mathrm{P}$ Pr
1.520 level $N o \quad \varepsilon$-decay from ${ }^{141} \mathrm{Nd}\left(3 / 2^{+}\right)$suggests $7 / 2^{+}$, $>7 / 2$. $\gamma^{\prime} \mathrm{s}$ to $5 / 2^{+}$and $7 / 2^{+}$. ($\mathrm{d}, \mathrm{d}^{\prime}$) suggests $\pi=+$.
1.570 level $N o E$-decay from ${ }^{141} \mathrm{Nd}\left(3 / 2^{+}\right)$suggests $7 / 2^{+}$, $>7 / 2$. Only a γ to $11 / 2^{-}$level in ($\alpha, 2 \mathrm{n} \gamma$).
1.578 level If this is identified with 1.5802 level populated in ${ }^{141_{N d}}$ decay, $\log f t=7.0$ suggests $1 / 2^{ \pm}$, $3 / 2^{+}, 5 / 2^{+}$. γ^{\prime} s to $5 / 2^{+}$and $7 / 2^{+}$selects $3 / 2^{+}$and $5 / 2^{+}$. 1.604 level No ε-decay from ${ }^{141} \mathrm{Nd}\left(3 / 2^{+}\right)$suggests $7 / 2^{+}$, $>7 / 2$. $\ell=2$ in (${ }^{3} \mathrm{He}, \mathrm{d}$).
 $3 / 2^{+}, 5 / 2^{+}$. No γ to $7 / 2^{+}$but $5 / 2^{+}$prefers $1 / 2^{+}$.
1.651 level No E-decay from ${ }^{141}$ Nd $\left(3 / 2^{+}\right)$suggests $7 / 2^{+}$, $>7 / 2$. Only a γ to $5 / 2^{+}$in ($n, n^{\prime} \gamma$).
1.655 level Probable $\gamma^{\prime} s$ from $5 / 2^{-}$and $5 / 2^{+}$.
1.657 level $\log \mathrm{ft}=7.9$ from ${ }^{141} \mathrm{Nd}\left(3 / 2^{+}\right)$suggests $1 / 2^{+}$, $3 / 2^{+}, 5 / 2^{+}$. No γ to $7 / 2^{+}$but $5 / 2^{+}$selects $1 / 2^{+}, 3 / 2^{-}$.
1.764 level Observed in (d, d').
1.767 level On 1 y a γ to $11 / 2^{-}$in $(\alpha, 2 n \gamma)$.
1.783 level γ^{\prime} s to $5 / 2^{+}$and $7 / 2^{+}$in ($n, n^{\prime} \gamma$).
1.809 level $\gamma^{\prime} s$ to $5 / 2^{+}$and $7 / 2^{+}$in ($n, n^{\prime} \gamma$).
1.823 level Reported in (n, n^{\prime}) experiment.
1.846 level γ from $5 / 2^{+}$in (γ, γ^{\prime}).
3. Step-wise Diagrams for Distribution of Low-lying levels The step-wise diagrams for the different distribution of low-lying levels are illustrated in Figs. 3.1~3.24, where the solid lines are those revised by us and dashed lines by Gruppelaar. The straight lines are obtained by fitting the level distribution with

$$
N(E)=k e^{E / T}
$$

where E is excitation energy of nucleus (in MeV), T is the nuclear temperature (in MeV) and $\mathrm{N}(\mathrm{E})$ is number of the excited levels up to the excitation energy E. The values of k and T are tabulated in Table 1 for odd-A and even-even nuclides. It seems to be seen the even-odd effect in T or k, T is larger or k is smaller for even-even nuclide compared to odd-A, if quite rough consideration is applicable. The exceptions are seen in the cases of ${ }^{139} \mathrm{La}$ and ${ }^{141} \operatorname{Pr}$. There exist, however, the large energy gaps near the ground state as shown in Figs. 3.23 and 3.24 , because these nuclei have neutron magic number ($\mathrm{N}=82$). We gave, therefore, the additional values of k and T, which were obtained by fitting the level distribution above the second excited states with $N(E)-2=k . e^{(E-E O) / T}$. The results give good trends for the above mentioned systematics.

Fig. 3.1~3.24 Step-wide diagrams for distribution of low-lying levels for 24 nuclides by the present authors (solid lines) and by Gruppelaar ${ }^{2)}$ (dashed lines). The straight lines are fitted by $N(E)=k \exp (E / T)$. The notations are the followings; $N(E)$: Number of levels up to excitation.energy E

E : excitation energy of nucleus (in MeV)
T : nuclear temperature (in MeV)
k : proportional constant.
4.

Examples of Calculated Inelastic Scattering and Capture Cross Sections

Calculated inelastic scattering cross sections for typical cases, ${ }^{101} \mathrm{Ru},{ }^{103} \mathrm{Rh}$ and ${ }^{139} \mathrm{La}$, are compared using different level schemes, previously adopted and revised recently by JAERI, and reported by Petten. The computer code CASTHY has been used with optical potential parameters obtained by fitting the total cross sections.

Partial cross sections of inelastic scattering from each level are tabulated in Table $2 \sim 4$. Total inelastic scattering cross sections are illustrated as a function of the neutron energy in Figs. 4.1(a)~4.3(a). The cross sections for (n, γ) reactions are also illustrated in Figs.4.1(b)~4.3(b).
5. Remarks

This report was a part of works on evaluation of fission product nuclear data for about 100 important nuclides. The purpose of this work was to clarify the present status of the level information and how the ambiguity of the experimental data affects the evaluation of inelastic scattering and capture cross sections. However, the level scheme proposed here are still not so satisfactory because of the very complex and poor information of the experimental data. In many cases, we were
obliged to construct our level schemes using not only strong argument but also weak argument. In some cases, the spinparities have been unwillingly selected without any reasonable arguments only when the assignments were necessary in calculating the cross section. Therefore, it is very desirable for our purpose to obtain more acculate information of the nuclear structure of $F P$ nuclides.

We wish to propose the level schemes of about 100 important nuclides in the near future as the next step of this evaluation work.

Acknowledgement

The authors would like to express their appreciation to Dr. S. Iijima and other members of Fission Product Nuclear Data Working Group of Japanese Nuclear Data Committee for their advices and discussions. We are very grateful to Dr. S. Igarasi and Mr. Y. Nakagawa for their discussions and helps for calculation of the neutron cross sections.

References

1) Japanese Nuclear Data Committee, Evaluation of fission product nuclear data for fast reactor, JAERI-M 5752(1974)
2) H. Gruppe1aar, RCN-2 evaluation, Netherland Research Foundation ECN,(1976)
3). J. A. Pinston, J. Blachot and F. Schussler, Nucl. Phys. A157, 323(1970)
3) L. Mesko, A. Nilsson and S. A. Hjorth, Nucl. Phys. Al81, 566(1972)
4) L. -G. Svensson, D. G. Sarantites and Backlin, Nuc1. Phys. A267,190(1976)
5) B. Siwamogsatham and H. T. Easterday, Nuc1. Phys. A162, 42 (1971)
6) J. F. Wright, W. L. Talbert and A. F. Voigt, Phys. Rev. C12,572(1975)
7) N. K. Aras, P. Fettweis, G. Chilosi and G. D. O'Kelley Nucl. Phys. A169,209(1971)
8) P. J. Tivin, R. L. Schulte and H. W. Taylor, Z. Phys. A273, 339 (1975)
9) J. A. Grau, L. E. Samuelson, F. A. Rickey, P. C. Simms and G. J. Smith, Phys. Rev. C14, 2297 (1976)
10) F. A. Rickey, J. A. Grau, L. E. Samuelson and P. C. Simms, Phys. Rev. C15, 1530 (1977)
11) E. Schoeters, R. Geerts, R. E. Silverrans and L. Vanneste, Phys. Rev. C12,1680(1975)
12) D. C. Stromswold, D. O. Elliott, Y. K. Lee, J. A. Grau L. E. Samuelson, F. A. Rickey and P. C. Simms, Phys. Rev. C13, 1510(1976)
13) R. E. Anderson, J. J. Kvaushaar, I. C. Oelrich, R. M. DelVecchio, R. A. Naumann, E. R. F1ynn and C. E. Moss, Phys. Rev. C15,123(1977)
14) R. M. DelVecchio, I. C. Oelrich and R. A. Naumann, Phys. Rev. C12, 845 (1975)

Table 1 Values of parameters, k and T, for distribution of low-1ying levels of 24 important nuclides.

odd-A					even-even A				
Nuc lide	$\mathrm{T}[\mathrm{MeV}]$		k		Nuclide	$\mathrm{T}[\mathrm{MeV}]$		k	
	Revised	RCN	Revised	RCN		Revised	RCN	Revised	RCN
$9^{3} \mathrm{Nb}$	0.591	0.568	1.307	1.271	${ }^{96} \mathrm{Mo}$	0.910	0.892	0.897	0.873
${ }^{95} \mathrm{Mo}$	0.632	0.561	1.267	1.092	$9^{8} \mathrm{Mo}$	0.859	0.770	0.920	0.804
${ }^{97} \mathrm{Mo}$	0.507	0.455	1.041	1.035	${ }^{100} \mathrm{Mo}$	0.979	0.792	1.265	1.070
${ }^{99} \mathrm{Tc}$	0.499	0.525	1.856	1.826	${ }^{102} \mathrm{Ru}$	0.865	0.822	1.125	1.064
${ }^{101} \mathrm{Ru}$	0.365	0.257	1.777	1.183	${ }^{104} \mathrm{Ru}$	0.708	0.803	1.070	1.726
$103^{\text {Ru }}$	0.445	0.482	1.783	1.934	104 Pd	0.920	0.840	0.991	0.905
${ }^{105} \mathrm{Pd}$	0.383	0.403	1.572	1.696	${ }^{106} \mathrm{Pd}$	0.777	0.786	0.912	0.931
${ }^{107} \mathrm{Pd}$	0.356	0.421	1.995	2.432	${ }^{108} \mathrm{Pd}$	0.919	0.704	1.306	0.990
${ }^{107} \mathrm{Ag}$	0.610	0.527	1.790	1.727	110 Pd	0.644	0.610	1.027	0.978
${ }^{109} \mathrm{Ag}$	0.475	0.412	1.662	1.545					
${ }^{127}$ I	0.433	0.488	1.580	1.726					
${ }^{129} \mathrm{I}$	0.561	0.415	1.707	1.382					
${ }^{133} \mathrm{Cs}$	0.395	0.395	1.473	1.474					
${ }^{139} \mathrm{La}_{82}$	0.738	0.620	1.079	0.874					
	*0. 339	0.396	1.247	1.343					
${ }^{141} \mathrm{Pr}_{82}$	0.829	0.581	1.188	0.857					
	*0. 386	0.349	1.141	1.144					

* obtained by fitting the levels above 2nd excited state (E_{0}) with $N(E)-2=k \cdot e\left(E-E_{O}\right) / T$.

Table 2 Partial cross section of inelastic scattering of neutron on each level of ${ }^{101}$ Ru are tabulated for neutron energies of $0.5,0.7$ and 1.0 MeV . The first three columns are our level schemes, proposed previously and revised recently and those proposed by Gruppelaar, respectively. The next three columns are the partial cross section for each level in the three level schemes. The integrated inelastic scattering and capture cross sections are given in the last two lines for comparison.

Adopted		Revised			$\mathrm{E}_{\mathrm{n}}=0.5 \mathrm{MeV}$			0.7 MeV			1.0 MeV				
		Adopt.	Revis.		RCN	Adopt.	Revis.	RCN	Adopt.	Revis.	RCN				
0.0	5/2 ${ }^{+}$			0.0	$5 / 2^{+}$	$0.051{ }^{+}$	1.621	1.530	1.530	1.009	0.8895	0.9024	0.5533	0.4658	0.5257
0.1271	$3 / 2^{+}$	0.12722	$3 / 2^{+}$	$0.12723 / 2^{+}$	0.3854	0.3498	0.3498	0.2694	0.2278	0.2298	0.1728	0.1448	0.1572		
0.3067	$7 / 2^{+}$	0.30681	$7 / 2^{+}$	0.3068 $7 / 2^{+}$	0.4273	0.4103	0.4103	0.3699	0.3315	0.3382	0.2303	0.1926	0.2269		
0.3112	$5 / 2^{+}$	0.3113	$5 / 2^{+}$	$0.3113 \mathrm{~S}^{\left(2^{+}\right.}$	0.4047	0.3785	0.3785	0.3563	0.3123	0.3164	0.2270	0.1924	0.2161		
0.3254	$1 / 2^{+}$	0.3252	$1 / 2^{+}$	$0.32521 / 2^{+}$	0.0896	0.0783	0.0783	0.0885	0.0708	0.0712	0.0686	0.0555	0.0589		
		0.3441	$3 / 2^{+}$	${ }^{0.3441} 312^{+}$		0.1844	0.1844		0.1767	0.1782		0.1252	0.1356		
0.422	$3 / 2+$	0.4220	$3 / 2^{+}$	$0.42203^{3} 2^{+}$	0.0972	0.0872	0.0872	0.1792	0.1504	0.1516	0.1406	0.1176	0.1273		
		0.4623	$1 / 2^{+}$	$0.4623 \mathrm{I}^{1 / 2^{+}}$		0.0122	0.0122		0.0515	0.0518		0.0488	0.0517		
0.528	11/2 ${ }^{-}$	0.528	11/2 ${ }^{-}$	$0.528 \quad 11 / 2^{-}$				0.0330	0.0302	0.0319	0.0501	0.0417	0.0476		
0.5447	$7 / 2^{+}$	0.5450	$7 / 2^{+}$	0.5450 $71 / 2^{+}$				0.1867	0.1655	0.1692	0.1880	0.1570	0.1858		
0.6161	$7 / 2^{+}$	0.6163	$7 / 2^{+}$	0.6163 $7 / 2^{+}$				0.0951	0.0837	0.0857	0.1711	0.1427	0.1692		
		0.6235	$7 / 2^{+}$	0.6235 $7 / 2^{+}$					0.0748	0.0766		0.1411	0.1673		
		0.6438	$9 / 2^{+}$	overlap.					0.0377	0.0038		0.1030	0.1637		
0.6742	$3 / 2^{+}$	0.6741	$3 / 2^{+}$					0.0108	0.0089		0.1020	0.0849			
0.720	$7 / 2^{+}$	0.7200	9/2 ${ }^{+}$								0.1392	0.0864			
0.8426	$7 / 2^{+}$	0.8427	$7 / 2^{+}$								0.0842	0.0696			
0.9111	$7 / 2^{+}$	0.9119	7/2 ${ }^{+}$								0.0437	0.0357			
0.9282	9/2 ${ }^{+}$	0.9289	9/2+								0.0278	0.0205			
0.9381	$7 / 2^{+}$	0.9383	7/2 ${ }^{+}$								0.0269	0.0222			
		0.959	15/2-									0.0009			
1.0011	11/2+	1.001	11/2 ${ }^{+}$												
		1.623	19/2 ${ }^{-}$												
		1.861	$15 / 2^{+}$												
		2.473	$23 / 2^{-}$												
					1.404	1.501	1.501	1.589	1.722	1.705	1.627	1.780	1.707		
				$\sigma_{\mathrm{n}, \gamma}$	0.1491	0.1437	0.1437	0.1065	0.0925	0.0972	0.0855	0.0654	0.0780		

Table 3 Partial cross section of inelastic scattering of neutron on ${ }^{103} \mathrm{Rh}$. See the caption of Table 2 .

Table 4 Partial cross section of inelastic scattering of neutron on ${ }^{139}$ La are tabulated for neutron energies of $1.0,1.5$ and 1.75 MeV . See the caption of Table 2

Adopted	Revised	RCN	$\mathrm{E}_{\mathrm{n}}=$	1.0 MeV		1.5 MeV			1.75 MeV		
			Adopt.	Revis.	RCN	Adopt.	Revis.	RCN	Adopt.	Revis.	RCN
0.0 $7 / 2^{+}$	0.0 7/2 ${ }^{+}$	0.0 7/2 ${ }^{+}$	1.7315	1.9285	1.9286	1.1459	1.5099	1.5106	0.8421	1.0988	1.1070
0.1658 5/2 ${ }^{+}$	0.1658 5/2 ${ }^{+}$	0.1660 5/2 ${ }^{+}$	0.4817	0.5615	0.5614	0.3586	0.4981	0.4983	0.2759	0.3781	0.3780
$0.570{ }^{3 / 2}{ }^{+}$			0.1101			0.1395			0.1224		
$0.8303^{1 / 2}{ }^{+}$			0.0431			0.0916			0.0917		
$0.930 \mathrm{~g} / 2^{+}$			0.1251			0.2639			0.2541		
$1.070 \mathrm{~T}^{\text {a }}{ }^{+}$						0.1605			0.1689		
$1.206 \mathrm{l}^{\text {1 }}{ }^{+}$	$1.2061 / 2^{+}$	$1.2061 / 2^{+}$				0.0121	0.0204	0.0204	0.0186	0.0295	0.0293
$1.2191 \mathrm{~g}^{1}{ }^{+}$	1.2191 9/2 ${ }^{+}$	1.219 9/2 ${ }^{+}$				0.1341	0.1830	0.1831	0.1559	0.2051	0.2074
$1.2566 \mathrm{~S}^{1} 2^{+}$	1.2556 5/2 ${ }^{+}$	$1.2575 / 2^{+}$				0.0598	0.0868	0.0867	0.0760	0.1075	0.1069
$1.3813 \mathrm{~F}^{1 / 2}{ }^{+}$	1.3813 7/2 ${ }^{+}$	$1.3827 / 2^{+}$				0.0559	0.0780	0.0778	0.0855	0.1145	0.1146
$1.42057 / 2^{+}$	$1.4205{ }^{\text {7/2 }}{ }^{+}$	1.421 7/2 ${ }^{+}$				0.0427	0.0596	0.0594	0.0768	0.1027	0.1028
1.439 11/2 ${ }^{-}$	$1.43911 / 2^{-}$	1.439 11/2 ${ }^{-}$				0.0326	0.0443	0.0443	0.0834	0.1073	0.1092
$1.4764{ }^{1 / 2}{ }^{+}$	1.4764 7/2 ${ }^{+}$	$1.4777^{7 / 2}{ }^{+}$				0.0112	0.0250	0.0244	0.0422	0.0868	0.0868
1.5363 7/2 ${ }^{+}$	1.5363 7/2 ${ }^{+}$	$1.5367 / 2^{+}$							0.3530	0.0708	0.0710
$1.55823^{3 / 2}{ }^{+}$	$1.55823 / 2^{+}$	1.558 3/2 ${ }^{+}$							0.0164	0.0264	0.0262
$1.5782 \mathrm{~g}^{1} 2^{+}$	1.5782 9/2 ${ }^{+}$	1.578 9/2 ${ }^{+}$							0.0583	0.0765	0.0773
$1.6831 \mathrm{7}^{+}{ }^{+}$	$1.6831{ }^{7 / 2}{ }^{+}$	$1.683 \mathrm{7/2}{ }^{+}$							0.0234	0.0314	0.0314
overlap	overlap	$1.714{ }^{5 / 2^{+}}$							0.0206	0.0273	0.0142
		1.756 7/2 ${ }^{+}$									
		$1.7623 / 2^{+}$									
		$1.767 \mathrm{~g}^{1 / 2}{ }^{+}$									
		$1.775 \mathrm{I}^{1 / 2}{ }^{+}$									
		1.820 5/2 ${ }^{+}$									
		1.838 7/2 ${ }^{-}$									
		$1.8573^{3 / 2}{ }^{+}$									
		$1.894 \quad 11 / 2^{+}$									
		1.922 5/2 ${ }^{+}$									
		$1.943{ }^{13 / 2}{ }^{+}$									
$\begin{aligned} & \sigma_{\text {in }} \\ & \sigma_{\mathrm{n}}, \end{aligned}$			0.7600	0.5615	0.5614	1.3625	0.9951	0.9944	1.6231	1.3639	1.3551
			0.0121	0.0136	0.0136	0.0112	0.0146	0.0146	0.0099	0.0122	0.0129

Fig. $3.9 \quad{ }^{102} \mathrm{Ru}$

Fig. 3.10 $\quad{ }^{104} \mathrm{Ru}$

Fig. $3.11 \quad{ }^{103} \mathrm{Rh}$

Fig. $3.15 \quad 107 \mathrm{Pd}$

Fig． $3.23 \quad{ }^{139} \mathrm{La}$

Fig. 4.1(a) Inelastic scattering cross section for ${ }^{101} \mathrm{Ru}$

Fig. 4.1(b) Capture cross section for ${ }^{101} \mathrm{Ru}$

Fig. 4.2(a) Inelastic scattering cross section for $10{ }^{3} \mathrm{Rh}$

Fig. 4.2(b) Capture cross section for ${ }^{103} \mathrm{Rh}$

Fig. 4.3(a) Inelastic scattering cross section for ${ }^{139} \mathrm{La}$

Fig. 4.3(b) Capture cross section for ${ }^{139} \mathrm{La}$

[^0]: * NAIG Nuclear Research Laboratory, Nippon Atomic Industry Group Co., Ltd., 4-1, Ukisima-cho, Kawasaki, Japan .
 ** Hosei University, Fujimi, Chiyoda-ku, Tokyo, Japan. This work was done in evaluation work of Fission Product Nuclear Data Working Group, Japanese Nuclear Data Committee.

