JAERI-M 8 8 1 1

EVALUATION OF GAMMA-RAY INTENSITIES

April 1980

Yasukazu YOSHIZAWA, Hikaru INOUE, Masaharu HOSHI Kiyoshi SHIZUMA and Yosei IWATA

日本原子力研究所 Japan Atomic Energy Research Institute

この報告書は、日本原子力研究所が JAERI-M レポートとして、不定期に刊行している 研究報告書です。入手、複製などのお問合わせは、日本原子力研究所技術情報部(茨城県 那珂郡東海村)あて、お申しこしください。

JAERI-M reports, issued irregularly, describe the results of research works carried out in JAERI. Inquiries about the availability of reports and their reproduction should be addressed to Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, Japan.

Evaluation of Gamma-ray Intensities

Yasukazu YOSHIZAWA^{*} Japanese Nuclear Data Committee, Tokai, JAERI

and

Hikaru INOUE	Faculty of Science, Hiroshima University, Hiroshima
Masaharu HOSHI	Oita Institute of Technology
Kiyoshi SHIZUMA	Faculty of Engineering, Hiroshima University, Hiroshima
Yosei IWATA	Faculty of Science, Hiroshima University, Hiroshima

(Received March 5, 1980)

Relative intensities and intensities per decay of gamma rays were evaluated for 16 nuclides, 22 Na, 24 Na, 46 Sc, 54 Mn, 60 Co, 85 Sr, 88 Y, 95 Nb, 108m Ag, 134 Cs, 133 Ba, 139 Ce, 180m Hf, 198 Au, 203 Hg and 207 Bi. For most of these nuclides disintegration rates can be determined by means of $\beta - \gamma$ or X- γ coincidence method. Since decay schemes of these nuclides are established, intensities per decay of strong gamma rays were accurately evaluated by using weak beta-ray branching ratios, relative gamma-ray intensities and internal conversion coefficients. Half-lives of the nuclides were also evaluated. Use of the nuclides, therefore, are recommended for precision intensity calibration of the detectors.

Keywords: Decay, Gamma Ray, Gamma-Ray Intensity, Half-Life, Intensity Evaluation Internal Conversion, Sodium 22, Sodium 24, Scandium 46, Manganese 54, Cobalt 60, Strontium 85, Yttrium 88, Niobium 95, Silver 108m, Cesium 134, Barium 133, Cerium 139, Hafnium 180m, Gold 198 Mercury 203, Bismuth 207

* Permanent address, Department of Physics, Faculty of Science, Hiroshima University, Hiroshima

İ

JAERI - M 8811

ガンマ線強度の評価

日本原子力研究所シグマ研究委員会

吉沢康和* 広島大学理学部 井上 光 大分工業大学 星 正治 広島大学工学部 静間 清 広島大学理学部 岩田洋世

(1980年3月5日受理)

標準ガンマ線として使われる 16 の核種について、ガンマ線の強度と半減期に関する文献調査 と評価を行った。評価した核種は、²²Na、²⁴Na、⁴⁶Sc, ⁵⁴Mn, ⁶⁰Co, ⁸⁵Sr, ⁸⁸Y, ⁹⁵Nb, ^{108 m}Ag, ¹³⁴Cs, ¹³³Ba, ¹³⁹Ce, ^{180 m}Hf, ¹⁹⁸Au, ²⁰³Hg, ²⁰⁷Bi である。^{180 m}Hf 以外は $\beta - r$, またはX - r 同時計数法により、線源強度を正確に定めることができるので、これらの 核種は、ガンマ線検出器の校正用として有用である。

*1 広島大学理学部

この報告書は、シグマ研究委員会活動の一環として行われた核データの評価結果を利用し易い 形にまとめたものである。この研究は、昭和 50 年度および 51 年度に、日本原子力研究所より広 島大学に委託した調査(JAERI - M 7567)、および JAERI - M 8196の延長線上にも位置す るものである。

Nuclide	Half-life	Gamma ray			
	-	Energy (keV)	Relative intensity (%)	Intensity per decay (%)	
²² Na	950.6±0.5 d (2.6027±0.0013 y)	1274.5		99.94 ±0.02	
²⁴ Na	14.965±0.002 h	1368.8 2754.1	100.000 ±0.003 99.887 ±0.008	99.994 ±0.003 99.881 ±0.008	
⁴⁶ Sc	83.79 ±0.03 d	889.2 1120.5	99.9965±0.0016 100.0000±0.0012	99.9836±0.0016 99.9871±0.0012	
⁵⁴ Mn	312.21 ±0.05 d	834.8		99.9746±0.0025	
⁶⁰ Co	1924.6 ±0.3 d (5.2694 ±0.0008 y)	1173.3 1332.5	99.91 ±0.02 100.0000±0.0015	99.89 ±0.02 99.9816±0.0015	
⁸⁵ Sr	64.84 ±0.03 d	514.0		98.4 ±0.4	
8 ⁸ Y	106.6 ±0.2 d	898.0 1836.	94.4 ±0.3 * 100.0 ±0.3 *	93.7 ±0.4 99.24 ±0.07	
⁹⁵ Nb	34.98 ±0.02 d	765.8		99.80 ±0.02	
¹⁰⁸ mA g	127 ±21 y	434.0 614.4 723.0	99.476 +0.090 100.000 ±0.034 99.74 ±0.38	90.5 ±0.7 91.0 ±0.7 90.7 ±0.8	
¹³⁴ Cs	754.1 ±1.4 d (2.065±0.004 y)	563.3 569.3 604.7 795.8 801.8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	15.40 ±0.08 97.64 ±0.06 85.52 ±0.05 8.68 ±0.04	
¹³³ Ba	10.71±0.11 y	276.4 302.9 356.0 383.9	11.53 ±0.06 * 29.48 ±0.14 * 100.0 ±0.4 * 14.39 ±0.06 *	62.00 ±0.14	
¹³⁹ Ce	137.66±0.05 d	165.9		79.99 ±0.16	
¹⁸⁰ mHf	5.5 ±0.1 h	215.3 332.3 443.2	86.3 ±1.6 100.0 ±0.6 87.0 ±0.8	81.5 ±1.5 94.4 ±0.5 82.1 ±0.7	
¹⁹⁸ Au	2.6937±0.0007 d	411.8		95.56 ±0.08	
²⁰³ Hg	46.60±0.02 d	279.2		81.48 ±0.08	
²⁰⁷ Bi	33.4 ±0.8 y	569.7 1063.6 1770.	100.0 ±0.4 * 75.79 ±0.25 * 7.026 ±0.029 *	97.74 ±0.03 74.0 ±0.3 6.87 ±0.04	

Summary: Evaluated values of half-lives and gamma-ray intensities

* Obtained from relative intensity measurements.

Contents

Abstract	
Table Captions	
Figure Captions	
l. Introduction	1
2. Method of Evaluation	2
2.1 Gamma-Ray Intensity Evaluation	2
2.2 Half-Life Evaluation	5
2.3 Average Value and Error	6
2.4 Notations	8
3. Evaluation of Gamma-Ray Intensities 1	10
3.1 ²² Na	10
3.2 ²⁴ Na 1	.6
3.3 ⁴⁶ Sc 2	20
3.4 ⁵⁴ Mn	23
3.5 ⁶⁰ Co	25
3.6 ⁸⁵ Sr	;1
3.7 ⁸⁸ Y	35
3.8 ⁹⁵ Nb	19
$3.9 {}^{108m}Ag$	+3
3.10 ¹³⁴ Cs	62
3.11 ¹³³ Ba	,4
3.12 ¹³⁹ Ce	'3
3.13 ¹⁸⁰ ^m Hf	6'
3.14 ¹⁹⁸ Au	0
3.15 ²⁰³ Hg	6
3.16 ²⁰⁷ Bi	0
4. Evaluation of Half-Lives 10	15
4.1 ²² Na 10	5
4.2 ²⁴ Na 10	5
4.3 ⁴⁶ Sc 10	5
4.4 ⁵⁴ Mn	5
4.5 ⁶⁰ Co 10	6
4.6 ⁸⁵ Sr 10	6
4.7 ⁸⁸ Y 10	6
4.8 ⁹⁵ Nb	7

4.9	^{109}mAg	107
4.10	¹³⁴ Cs	107
4.11	¹³³ Ba	107
4.12	¹³⁹ Ce	108
4.13	¹⁸⁰ mHf	108
4.14	¹⁹⁸ Au	108
4.15	²⁰³ Hg	109
4.16	²⁰⁷ Bi	109

次

Ħ

1.	F	郣	論・・		1
2.	tin L	評価	の方法		2
	2.	1	ガンマ	線強度の評価	2
	2. 1	2	半斌期	の評価	5
	2.	3	平均值	「および誤差	6
	2. 4	4	26	F]	8
3.	5	ガン	マ線強	度の評価	10
	3.	1	²² Na		10
	3. 3	2	²4Na		16
	3. 3	3	46S c		20
	3. 4	4	⁵⁴ M n		23
	3. 1	5	⁶⁰ Co		25

ガンマ線強 2.1 2 2.2 半減期の評 5 2.3 平均値およ 6 2.4 記号… 8 3. ガンマ線強度の 10 ²²Na 3.1 ²⁴Na 3.2 46Sc 3.3 3 4 ⁵⁴Mn ⁶⁰Co 3.5 ⁸⁵Sr 31 3.6 3.7 3.8 ⁹⁵Nb 39 3.9 ^{108 m} Ag 43 3. 11 ¹³³Ba ····· 64 3. 13 ^{180 m} Hf ······ 76 3. 14 ¹⁹⁸ Au ····· 80 3. 15²⁰³ Hg ····· 86 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 ^{108 m} A g ······· 107 4.9

4. 11	¹³³ Ba	107
4.12	¹³⁹ Ce	108
4.13	^{180m} Hf	108
4.14	¹⁹⁸ A u	108
4.15	²⁰³ Hg	109
4. 16	²⁰⁷ Bi	109

Table Captions

1. Introductio	n
2. Method of l	Evaluation
3. Evaluation	of Gamma-Ray Intensities
3.1^{22} Na	
Table 3.1.1	Experimental values of electron capture to positron emission ratio.
Table 3.1.2	Average values of electron capture to positron emission ratio.
Table 3.1.3	Theoretical values of electron capture to positron emission ratio.
Table 3.1.4	Evaluation of beta branches.
Table 3.1.5	Experimental values of internal conversion coefficient for the 1274 keV
	transition.
Table 3.1.6	Theoretical values of internal conversion coefficients and internal pair
	formation coefficient.
Table 3.1.7	Evaluation of gamma-ray intensities per decay.
3.2 ²⁴ Na	
Table 3.2.1	Experimental values of relative gamma-ray intensities.
Table 3.2.2	Experimental values of gamma-ray branching ratios in nuclear reactions
	and in the decay of ²⁴ Al.
Table 3.2.3	Theoretical values of internal conversion coefficients and internal pair
	formation coefficients.
Table 3.2.4	Experimental values of internal pair formation coefficients.
Table 3.2.5	Evaluation of gamma-ray intensity per decay.
Table 3.2.6	Evaluated values.
3.3 ⁴⁶ Sc	
Table 3.3.1	Experimental values of beta-ray branching ratio of the 1.47 MeV component
	(β_2) .
Table 3.3.2	Upper limit of weak gamma rays.
Table 3.3.3	Experimental values of internal conversion coefficients.
Table 3.3.4	Theoretical values of internal conversion coefficients.
Table 3.3.5	Evaluation of intensity per decay.
Table 3.3.6	Evaluated values.
3.4 ^M Mn	
Table 3.4.1	Beta transition to the ground state.
Table 3.4.2	Experimental values of internal conversion coefficients.
Table 3.4.3	Theoretical values of internal conversion coefficients.
1 abre 3.4.4	Evaluation of the opp kev gamma-ray intensity.
$\mathbf{J}_{\mathbf{a}} = \mathbf{U} \mathbf{U}$	Experimental values of bata, new branching notics
	Experimental values of deamon new interaction new dear
1 aute 3.3,2	Experimental values of gamma-ray intensities per decay.

- Table 3.5.3 Branching ratios of transition intensities from the decay of ⁶⁰Cu.
- Table 3.5.4 Experimental values of conversion coefficients.
- Table 3.5.5 Theoretical values of internal conversion coefficients and internal pair formation coefficients.
- Table 3.5.6 Evaluated values of beta-ray branching ratios per decay.
- Table 3.5.7 Evaluated values of intensities per decay.
- Table 3.5.8 Evaluated values.
- 3.6 ⁸⁵Sr
- Table 3.6.1 Log ft values of the unique first forbidden transition for the neighbouring nuclei.
- Table 3.6.2 Estimation of the electron-capture transition intensity from ⁸⁵Sr to the ground state of ⁸⁵Rb.
- Table 3.6.3 Experimental values of relative gamma-ray intensities.
- Table 3.6.4 Experimental values of internal conversion coefficients for the 514 keV transition.
- Table 3.6.5 Theoretical values of internal conversion coefficients.
- Table 3.6.6 Evaluation of intensity per decay.
- 3.7 ⁸⁸Y
- Table 3.7.1 Experimental values of gamma-ray intensities.
- Table 3.7.2 Experimental values of internal conversion coefficients and internal pair formation coefficients.
- Table 3.7.3 Theoretical values of internal conversion coefficients and internal pair formation coefficients.
- Table 3.7.4 Evaluation of gamma-ray intensity per decay.
- Table 3.,7.5 Evaluated values.
- 3.8 ⁹⁵Nb
- Table 3.8.1 Experimental values of beta-ray branching ratios.
- Table 3.8.2 Relative K conversion electron intensities and relative gamma-ray intensities.
- Table 3.8.3 Experimental values of E2/M1 mixing ratio for the 766 keV gamma ray.
- Table 3.8.4 Experimental values of K conversion coefficient for the 766 keV transition.
- Table 3.8.5 Theoretical values of internal conversion coefficients.
- Table 3.8.6 Evaluation of intensity per decay.
- 3.9 ^{108m}Ag
- Table 3.9 1 Log ft values of second forbidden transition for neighbouring nuclei.
- Table 3,9,2 Estimation of the electron capture transition intensity from ¹⁰⁸MAg to the 1048.3 keV (4)+ state of ¹⁰⁸Pd.
- Table 3,9,3 Experimental values of relative gamma-ray intensities in the decay of ¹⁰⁸MAg.
- Table 3.9.4 Average values of relative gamma-ray intensities in the decay of ¹⁰⁸MAg.
- Table 3.9.5 Experimental values of relative conversion electron intensities in the decay of ¹⁰⁸MAg.

Table 3.9.6 Experimental values of internal conversion coefficients. Table 3.9.7 Theoretical values of internal conversion coefficients. Evaluated values of internal conversion coefficients. Table 3.9.8 Table 3.9.9 Experimental branching ratios of beta transitions in the decay of ¹⁰⁸Ag. Table 3.9.10 Experimental values of relative intensities of gamma rays in the decay of ¹⁰⁸Ag. Table 3.9.11 Average values of relative intensities of gamma rays in the decay of ¹⁰⁸Ag. Table 3.9.12 Evaluated values of the 434 keV and the 633 keV gamma-ray intensities per decay in the decay of ¹⁰⁸Ag. Table 3.9.13 Evaluation of the isomeric transition intensity. Table 3.9.14 Evaluation of intensities per decay and relative intensities of gamma rays in the decay of ¹⁰⁸MAg. 3,10 ¹³⁴Cs Table 3,10,1 Experimental values of beta-ray branching ratios. Table 3,10.2 Experimental values of relative gamma-ray intensities. Table 3.10.3 Experimental values of intensities per decay. Table 3.10.4 Experimental values of K-shell internal conversion electron intensities. Table 3.10.5 Experimental values of relative K-shell internal conversion electron intensities. Table 3,10.6 Average values of relative K-shell internal conversion electron intensities. Table 3,10,7 Theoretical values of internal conversion coefficients. Adopted values of the internal conversion coefficients. Table 3,10,8 Table 3.10.9 Experimental values of E2/M1 mixing ratio of the 563.3 keV and the 569.3 keV gamma rays. Table 3.10.10 Evaluated values of gamma-ray intensities. Table 3,10,11 Evaluated values for primary standard. 3.11 ¹³³Ba Table 3,11.1 Experimental values of relative gamma-ray intensities in the decay of ¹³³Ba. Table 3.11.2 Average values of relative intensities of the 223.1 keV gamma ray. Table 3.11.3 Experimental values of electron-capture branches in the decay of ¹³³Ba. Table 3,11,4 Estimation of electron-capture branches. Table 3,11.5 Experimental values of K-shell internal conversion coefficients. Table 3,11,6 Experimental values of K/L, K/LM and L/MN ratios. Table 3,11,7 Theoretical values of internal conversion coefficients. Table 3,11,8 Average values of K-shell internal conversion coefficients. Table 3,11,9 Average values of K/L ratios. Table 3.11.10 Evaluated values of internal conversion coefficients. Table 3.11.11 Evaluated gamma-ray intensities.

- 3.12 ¹³⁹Ce Table 3.12.1 Experimental values of conversion coefficients of the 166 keV transition. Table 3.12.2 Theoretical values of internal conversion coefficients. Table 3.12.3 Experimental values of E2/M1 mixing ratio. Table 3.12.4 Evaluation of the intensity per decay for the 166 keV gamma ray. 3.13 ¹⁸⁰mHf Table 3.13.1 Experimental values of relative gamma-ray intensities. Table 3.13.2 Experimental values of internal conversion coefficients. Table 3.13.3 Theoretical values of internal conversion coefficients. Table 3.13.4 Experimental values of E3/M2 mixing ratio for the 500.7 keV gamma ray. Table 3,13,5 Evaluation of the intensities per decay. Table 3.13.6 Evaluated values of gamma-ray intensities. 3.14 ¹⁹⁸Au Table 3.14.1 Experimental values of beta and electron capture branches. Table 3.14.2 Log ft values of the unique first forbidden transitions for neighbouring nuclei. Table 3.14.3 Estimation of the electron capture transition intensity from ¹⁹⁸Au to ¹⁹⁸Pt. Table 3.14.4 Experimental values of relative gamma-ray intensities. Table 3.14.5 Experimental values of conversion coefficients of the 412 keV transition. Table 3.14.6 Average values of conversion coefficients of the 412 keV transition. Table 3,14,7 Theoretical values of internal conversion coefficients. Table 3.14.8 Evaluation of the 412 keV gamma-ray intensity per decay. 3.15 ²⁰³Hg Table 3.15.1 Beta transition to the groune state (unique first forbidden). Table 3.15.2 Experimental values of internal conversion coefficients for the 279 keV transition. Table 3, 15, 3 Theoretical values of internal conversion coefficients. Table 3.15.4 Average values of the total internal conversion coefficient. Table 3.15.5 Evaluation of gamma-ray intensity per decay. 3.16 ²⁰⁷Bi Table 3.16.1 Experimental values of relative gamma-ray intensities. Table 3.16.2 Experimental values of internal conversion coefficients. Table 3.16.3 Theoretical values of internal conversion coefficients. Table 3.16.4 Evaluation of intensities per decay. 4. Evaluation of Half-Lives Table 4.1.1 Half-life of ²²Na Table 4.2.1 Half-life of ²⁴Na Table 4.3.1 Half-life of ⁴⁶Sc Table 4.4.1 Half-life of ⁵⁴Mn
 - Table 4.5.1 Half-life of ⁶⁰Co

Table 4.6.1	Half-life of ⁸⁵ Sr
Table 4.7.1	Half-life of ⁸⁸ Y
Table 4.8.1	Half-life of ⁹⁵ Nb
Table 4.9.1	Half-life of ¹⁰⁸ mAg
Table 4.10.1	Half-life of ¹³⁴ Cs
Table 4.11.1	Half-life of ¹³³ Ba
Table 4.12.1	Half-life of ¹³⁹ Ce
Table 4.13.1	Half-life of ¹⁸⁰ mHf
Table 4.14.1	Half-lif e of ¹⁹⁸ Au
Table 4.15.1	Half-life of ²⁰³ Hg
Table 4.16.1	Half-life of ²⁰⁷ Bi

Figure Captions

- 1. Introduction
- 2. Method of Evaluation

Fig. 2.1.1 Typical decay scheme

- 3. Evaluation of Gamma-Ray Intensities
 - Fig. 3.1.1 Decay scheme of ²²Na
 - Fig. 3.1.2 Ratio of electron capture to positron decay.
 - Fig. 3.2.1 Decay scheme of ²⁴Na.
 - Fig. 3.3.1 Decay scheme of ⁴⁶Sc.
 - Fig. 3.4.1 Decay scheme of ⁵⁴Mn.
 - Fig. 3.5.1 Decay scheme of ⁶⁰Co.
 - Fig. 3.6.1 Decay scheme of ⁸⁵Sr.
 - Fig. 3.7.1 Decay scheme of ⁸⁸Y.
 - Fig. 3.7.2 Intensity ratio of the 898 keV gamma ray to the 1836 keV one in the decay of ⁸⁶Y.
 - Fig. 3.8.1 Decay scheme of ⁹⁵Nb.
 - Fig. 3.9.1 Decay scheme of ¹⁰⁸mAg
 - Fig. 3.10.1 Decay scheme of ¹³⁴Cs.
 - Fig. 3.10.2 Intensity ratio of the 1168 keV gamma ray to the 605 keV one in the decay of ¹³⁴Cs.
 - Fig. 3.10.3 Comparison of relative intensities of strong gamma rays in the decay of ¹³⁴Cs.
 - Fig. 3.11.1 Decay scheme of ¹³³Ba.
 - Fig. 3.11.2 Relative intensity of the 303 keV gamma ray to the 356 keV one in the decay of ¹³³Ba.
 - Fig. 3.11.3 Comparison of relative intensities of strong gamma rays in the decay of ¹³³Ba.
 - Fig. 3.12.1 Decay scheme of ¹³⁹Ce.
 - Fig. 3.12.2 Total conversion coefficient of the 166 keV transition in the decay of ¹³⁹Ce.
 - Fig. 3.13.1 Decay scheme of ¹⁸⁰mHf
 - Fig. 3.14.1 Decay scheme of ¹⁹⁸Au.
 - Fig. 3.14.2 K-shell internal conversion coefficient of the 412 keV transition in the decay of ¹⁹⁸Au.
 - Fig. 3.15.1 Decay scheme of ²⁰³Hg.
 - Fig. 3.15.2 Total internal conversion coefficient of the 279 keV transition in the decay of ²⁰³Hg.
 - Fig. 3.16.1 Decay scheme of ²⁰⁷Bi.
 - Fig. 3.16.2 Intensity ratio of the 1064 keV gamma ray to the 570 keV one in the decay of ²⁰⁷Bi.
- 4. Evaluation of Half-Lives
 - Fig. 4.1.1 Half-life of ²²Na.

- Fig. 4.2.1 Half-life of ²⁴Na.
- Fig. 4.3.1 Half-life of ⁴⁶Sc.
- Fig. 4.4.1 Half-life of ⁵⁴Mn.
- Fig. 4.5.1 Half-life of ⁶⁰Co.
- Fig. 4.6.1 Half-life of ⁸⁵Sr.
- Fig. 4.7.1 Half-life of ⁸⁸Y.
- Fig. 4.8.1 Half-life of ⁹⁵Nb.
- Fig. 4.9.1 Half-life of ¹⁰⁸MAg.
- Fig. 4.10.1 Half-life of ¹³⁴Cs.
- Fig. 4.11.1 Half-life of ¹³³Ba.
- Fig. 4.12.1 Half-life of ¹³⁹Ce
- Fig. 4.14.1 Half-life of ¹⁹⁸Au.
- Fig. 4.15.1 Half-life of ²⁰³Hg.
- Fig. 4.16.1 Half-life of ²⁰⁷Bi.

1. Introduction

Gamma-ray intensities have been usually measured with the accuracy of $2\sim5$ %. Accurate values of gamma-ray intensities, i.e. relative intensities and intensities per decay, are useful for the safe guard technique of the atomic fuel. Therefore, precision measurements of gamma-ray intensities of the actinide nuclides and the long-lived fission products have been desired. The precision measurement of the gamma-ray intensity is also valuable for the nuclear spectroscopy, the burn up investigation of the atomic fuel, the activation analysis, etc.

The best measurements of gamma-ray intensities were performed by using Ge(Li) detector systems. Detectors must be calibrated with standard gamma-ray sources and cascade gamma-ray sources. For the standard gamma-ray sources, disintegration rates are determined by means of the β - γ or X- γ coincidence method, and the gamma-ray intensities per decays must be evaluated with good accuracies. When the gamma-ray intensity per decay is nearly 100 % and the decay scheme is well established, the intensity per decay can be accurately evaluated by using branching ratio of beta transition, relative gamma-ray intensities and internal conversion coefficients. In such cases the evaluated values are almost independent of the gamma-ray intensity measurement. We call these gamma rays "the primary standards". Such a gamma ray is emitted by the transition from the first 2^+ state to the ground state in the even-even nucleus and sometimes by the 4^+ + 2^+ + 0^+ cascade transition. For the low energy region, such a gamma ray is found in the transitions from low-lying states in the odd-mass nucleus. Since the internal conversion coefficient is very large for the region lower than 100 keV, the accurate value of the intensity per decay cannot be obtained.

In this report gamma-ray intensities of 16 nuclides were evaluated within uncertainties of 0.5% (mostly 0.1%). Intensities per decays of these gamma rays are strong. These primary standards are useful for precision calibration of the detector. In addition, half-lives of these nuclides are also evaluated, because half-lives are important to correct decays of standard sources.

- 1 -

2. Method of Evaluation

2.1 Gamma-Ray Intensity Evaluation

Intensities per decays evaluated are $99 \sim 100$ % except a few cases. The decay schemes of these nuclei are reliable. Branching ratios of weak beta-ray components feeding to lower states, relative intensities of weak cross over gamma rays and total internal conversion coefficients are important to evaluate these strong gamma-ray intensities. The evaluation methods of them are as follows.

a) Branching ratios of beta transitions

The weak beta branchings to the ground state and to the first 2^+ state are accounted for evaluation of the gamma-ray intensities of the ground-state transition and the $4^+ \cdot 2^+$ transition, respectively. When experimental values are available for the weak beta branching, the most reliable experimental value is adopted. When the experiment gives only upper limit Δ , the value $\Delta/2 \pm \Delta/2$ is used (for example, ${}^{54}Mn$, ${}^{203}Hg$).

If no experimental value is available, the branching Δ is obtained from the transition energy and the log ft value (for example, ¹⁰⁰MAg, ¹³³Ba). The log ft value is estimated from log ft values of similar transitions in neighbouring nuclei. In this case the value of $\Delta \pm \Delta$ is adopted except ⁸⁵Sr.

For the highly forbidden transition such as the ground-state transition of $4 \rightarrow 0^+$, $4 \rightarrow 0^+$ or $5^+ \rightarrow 0^+$, the log ft value is ~16. Then the branching ratio of such a transition is $10^{-6} \sim 10^{-10}$. Therefore, branchings of the highly forbidden transitions are neglected (for example, $^{88}Y (4 \rightarrow 0^+)$, ^{24}Na , ^{46}Sc , $^{134}Cs (4 \rightarrow 0^+)$, and $^{60}Co (5 \rightarrow 0^+)$).

b) Relative gamma-ray intensities

Relative gamma-ray intensities are necessary to evaluated strong gamma-ray intensity per decay. For example, when a strong gamma ray and a weak gamma ray feed to the ground state, the intensity ratio of the weak gamma ray to the strong one and the total internal conversion coefficient of the strong one gives the intensity per decay of the strong gamma ray.

Relative intensities of weak gamma rays are obtained not only from the decay data but also from data in the decay of the other side, in the (n, γ) reaction, etc. In addition, unobserved weak gamma-ray intensities are estimated from level energies, spins and parities, and the enhancement or hinderance factor of nuclear systematic properties. Relative gamma-ray intensities more than 0.1% must be known for accurate evaluation of the strong gamma-ray intensity per decay.

c) Internal conversion coefficients

The most required data for evaluation are the total internal conversion coefficients, especially for low energy gamma rays and heavier nuclei. The internal conversion coefficient is usually obtained from the intensity ratio of electrons to gamma ray, the electron

- 2 -

intensity per decay or the intensity ratio of electrons to the beta ray. Therefore, the experimental value of the internal conversion coefficient often depends on the gamma-ray intensity measurement. If the total internal conversion coefficient is less than 0.01, this error is not effective. However, the accurate conversion coefficient is important, when it is more than 0.01.

Agreements between experimental values and theoretical ones are not always good enough for the K-shell conversion coefficient. Sometimes, discrepancies between them are more than 10 %. A systematic deviation is observed in deformed nuclei. The discrepancy may be understood as the nuclear finite size effect or the nuclear structure effect, but the discrepancy cannot be always expalined. Therefore, when no good experimental value is available, the theoretical value is adopted with 10% error.

Multipole mixing often appears for the transition in the odd-mass nucleus, while the $2^{+}0^{+}$ and $4^{+}+2^{+}$ transitions are pure E2 transition for the even-even nucleus. When the multipole mixing ratio was measured by means of the angular correlation method, the theoretical conversion coefficient with the multipole mixing is calculated.

For theoretical values we adopt the tables of Hager and Seltzer (68HaSe), Trusov (72Tr) and Band et al. (76Ba) for the K- and L-shell conversion coefficients and Dragoun and Brabec (75DrBr) for L/MNO. Interpolation is performed by the computer program given by Hager and Seltzer. We use extrapolated values for low Z nuclides, assuming that the coefficients are proportional to Z^3 .

d) Internal pair formation and internal Compton effect

The effect of internal pair formation cannot be neglected for the gamma transition higher than 1.02 MeV. The internal pair formation probability rapidly increases with an increase of the transition energy, and is nearly equal to the internal conversion probability at 1.3 MeV for the light nucleus.

When an experimental value of the internal pair formation coefficient is available, this value is used. For other cases, the theoretical values given by Rose (49Ro) and Jaeger and Hulme (34JaHu) were adopted. We interpolate the theoretical value at the low energy, assuming that the coefficient is proportional to $(E_{\chi}-1.02)^2$.

Since the emission probability of the internal Compton electron is much smaller than that of the internal conversion electron, this probability is neglected.

e) Evaluation calculation

The intensity per decay is evaluated on the basis of the intensity balance, when the gamma ray is strong and no strong beta transition feeding to the lower lying state is observed as shown in Fig. 2.1.1. Especially, this method is useful for gamma rays, intensities per decays of which are nearly 100 %. From the intensity balance at the ground state one obtains the equation

$$\gamma_1(1 + \alpha_1 + \Gamma_1) + \gamma_4(1 + \alpha_4 + \Gamma_4) + \beta_1 = 1$$
(2.1)

From the balance at the first excited state, one obtains

$$\gamma_1 (1 + \alpha_1 + \Gamma_1) = \gamma_2 (1 + \alpha_2 + \Gamma_2) + \gamma_3 (1 + \alpha_3 + \Gamma_3) + \beta_2$$
(2.2)

where γ_i , α_i and Γ_i indicate the gamma-ray intensity per decay, the total internal conversion coefficient and the internal pair formation coefficient, respectively, and β_i is the branching ratio of the beta transition.

Fig. 2.1.1 Typical decay scheme

For the case of $\gamma_1 \gg \gamma_4$ and $\beta_1 \ll 1$, the intensity per decay of γ_1 is given by

$$\gamma_{1} = \frac{1 - \beta_{1}}{1 + \alpha_{1} + \Gamma_{1} + \gamma_{4} + (1 + \alpha_{4} + \Gamma_{4})}$$
(2.3)

where γ_1^{\dagger} denotes the relative intensity $(\gamma_1^{\dagger}=1)$. This equation applied to most of ground state transitions. For the case of $\gamma_3^{\dagger} / \gamma_2^{\dagger} \ll 1$, $\gamma_4^{\dagger} / \gamma_2^{\dagger} \ll 1$, $\beta_1 \ll 1$ and $\beta_2 \ll 1$.

$$\gamma_{2} = \frac{1 - \beta_{1} - \beta_{2}}{1 + \alpha_{2} + \Gamma_{2} + (\gamma_{3} + / \gamma_{2} +) (1 + \alpha_{3} + \Gamma_{3}) + (\gamma_{4} + / \gamma_{2} +) (1 + \alpha_{4} + \Gamma_{4})}$$
(2.4)

where $(\gamma_1^+ / \gamma_2^+)$ means an observed relative intensity. Errors of them are given by

$$\left(\frac{\Delta \gamma_{1}}{\gamma_{1}}\right)^{2} = \frac{\Delta \alpha_{1}^{2} + \Delta \Gamma_{1}^{2} + \Delta \gamma_{4}^{2} + 2}{\left(1 + \alpha_{1} + \Gamma_{1} + \gamma_{4}^{2}\right)^{2}} + \frac{\Delta \beta_{1}^{2}}{\left(1 - \beta_{1}\right)^{2}}$$
(2.5)

for Eq.(2.3), and

$$\left(\frac{\Delta\gamma_{2}}{\gamma_{2}}\right)^{2} \approx \frac{\Delta\alpha_{2}^{2} + \Delta\Gamma_{2}^{2} + \Delta(\gamma_{3} + /\gamma_{2} +)^{2} + \Delta(\gamma_{4} + /\gamma_{2} +)^{2}}{(1 + \alpha_{2} + \Gamma_{2} + (\gamma_{3} + /\gamma_{2} +) + (\gamma_{4} + /\gamma_{2} +))^{2}} + \frac{\Delta\beta_{1}^{2} + \Delta\beta_{2}^{2}}{(1 - \beta_{1} - \beta_{2})^{2}}$$
(2.6)

for Eq. (2.4), where \triangle indicates the error. Therefore, one obtains very accurately evaluated values of γ_1 or γ_2 , when α_1 , β_1 and γ_4^+ , or α_2 , β_1 , β_2 , γ_3^+ and γ_4^+ are less than 1 %.

There are two methods to evaluate the relative gamma-ray intensity. First one is the usual method that one adopts the average value of the selected data of observed relative intensity. Second one is the method based on the intensity balance. This second method is also useful for strong cascade gamma rays as shown in Fig. 2.1.1. For the case of $\gamma_2^{\gg>}\gamma_3$ and $\gamma_2^{>>}\beta_2$, Eq. (2.2) gives the relative intensity γ_2^+

$$\gamma_{2} + = \frac{\gamma_{2}}{\gamma_{1}} = \frac{1 + \alpha_{1} + \Gamma_{1} - \beta_{2} / \gamma_{1}}{1 + \alpha_{2} + \Gamma_{2} + (\gamma_{3} + / \gamma_{2} +) (1 + \alpha_{3} + \Gamma_{3})}$$
(2.7)

where (γ_3^+/γ_2^+) means an observed relative intensity. The error of γ_2^+ is given by

$$\left(\frac{\Delta \gamma_{2}^{+}}{\gamma_{2}^{+}}\right)^{2} \approx \frac{\Delta \alpha_{1}^{2} + \Delta \Gamma_{1}^{2} + \Delta \beta_{2}^{2}}{\left(1 + \alpha_{1} + \Gamma_{1}^{-} - \beta_{2}^{-}\right)^{2}} + \frac{\Delta \alpha_{2}^{2} + \Delta \Gamma_{2}^{2} + \Delta \left(\gamma_{3}^{+} + \gamma_{2}^{+}\right)^{2}}{\left(1 + \alpha_{2}^{+} + \Gamma_{2}^{+} + \left(\gamma_{3}^{+} + \gamma_{2}^{+}\right)\right)^{2}}$$
(2.8)

If α_1 , α_2 , β_2 and $(\gamma_3^+ / \gamma_2^+)$ are <1 % and errors of them are <10 %, the error of γ_2^+ is obtained to be <0.1 %. This method is applied to the gamma rays of ²⁴Na, ⁴⁶Sc, ⁶⁰Co, etc.

The necessary conditions for the evaluation are as follows: (1) the decay scheme is well established, (2) weak gamma rays were already measured or no weak gamma ray (<0.1%) was reported, (3) the branching ratio of the beta transition feeding to the lower lying state is small. When this ratio is not known experimentally, the ratio which is estimated from the systematic property of the log ft value should be small (<1\%). (4) spins and parities of the initial and final states are established for the requisite strong gamma transition and the multipolarity of the gamma transition is known. For the odd - mass nucleus it is necessary that a reliable experimental value of the internal conversion coefficient is available or the multipole mixing ratio is known.

2.2 Half-Life Evaluation

Half-lives are evaluated for 16 nuclides, intensities of which are evaluated in this report. Many experimental values are available for each nuclide except for ¹⁰⁸MAg and ¹⁸⁰MHf. These values are listed in Chapter 4. In most of measurements, decays were followed with radiation detectors. For the cases of long-lived nuclides (>10 y), different

- 5 -

kinds of measurements were performed, and the accuracies are not good.

In general, the systematic error must be main part of the error. When one follows the decay, the systematic error is due to the impurity, the dead time of the detector system, change of the discriminator bias and others. Since the statistical error is usually small, the systematic error is often $3\sim10$ times larger than the standard deviation. Some authors used only the standard deviations as their errors without estimate of the systematic error. In such a case we rewrite their errors to three or five times of the standard deviations. Since the systematic error is independent of the statistical error, this factor has not essential meaning.

Values before 1968 are rejected except for ¹⁸⁰mHf, because estimates of the systematic errors were rough and stabilities of detectors and electronic circuits were not good enough in that age. Data after 1968 are discussed and a few reliable data are selected. Only one best value is adopted for some cases. When a few data are adopted, the weighted and unweighted averages and also the internal and external errors are calculated. Finally each ones of the averages and the errors are adopted as the evaluated value. The internal and external errors are discussed in next section.

Since the period of one year gradually changes year after year, "year" is not a good unit for the precision measurement of the half-life. Therefore the unit of "day" is used for the half-life shorter than 10 y. But "year" is used for the half-life longer than 10 y, because accuracy is worse for them. In our evaluation "year" is translated into "day" as 1 y =365.242 d.

2.3 Average Value and Error

In general, the average value, the internal error and the external error are written as,

$$\mathbf{x} = \frac{\sum_{i} \mathbf{x}_{i} \mathbf{w}_{i}}{\sum_{i} \mathbf{w}_{i}}$$
(2.9)

$$\varepsilon_{\text{int}} = \frac{\sqrt{\Sigma \varepsilon_i^2 w_i^2}}{\Sigma w_i}$$
(2.10)

$$\varepsilon_{\text{ext}} = \sqrt{\frac{\sum (x_i - x)^2 w_i}{(n-1) \sum w_i}}$$
(2.11)

where x_i , ε_i and w_i denote the observed value, its error and its weight, respectively, and n is the number of experimental values.

The experimental error ε_i is divided to three parts, which are the statistical error, the systematic error and the standard error. Estimation of the systematic error is difficult, and it depends on the individual experiment. The systematic error is often underestimated, though it is usually the largest. Unreasonably small error does not mean a good experiment, because the error sometimes includes only the statistical error without

- 6 -

estimate of the systematic error.

The weight w_i should be estimated as follows : after the calibration error which is common in most of experiments is removed from each experimental error and the systematic error is adjusted, the weight is obtained from this corrected error. However usually it is very difficult to estimate the systematic error in this way, when the author did not show details of the experiment. Then we used simple way for evaluation.

First, old data before 1970, 1960 and 1968 were rejected for strong gamma rays, weak gamma rays and half-lives, respectively, if new data are available. Some errors in remainders are corrected. A few groups performed series of measurements and reported gamma-ray intensities or half-lives for many nuclides. It is possible in such cases to correct their errors. If the corrected error is more than 3 times larger than the smallest error, this value is omitted. Then only one or a few data remained.

Two average values with the weights 1 and ϵ_i^{-2} and the internal and external errors are calculated by using following equations :

$$\bar{\mathbf{x}} = \frac{1}{n} \Sigma \mathbf{x}_{\mathbf{i}}$$
(2.12)

$$\varepsilon_{\text{int}} = \frac{1}{n} \sqrt{\Sigma \varepsilon_{i}^{2}}$$
 (2.13)

$$\varepsilon_{\text{ext}} = \sqrt{\frac{\Sigma (x_{1} - \bar{x})^{2}}{n(n-1)}}$$
(2.14)

for w =1, and

$$\bar{\mathbf{x}} = \frac{\Sigma \mathbf{x}_{i} \varepsilon_{i}^{-2}}{\Sigma \varepsilon_{i}^{-2}}$$
(2.15)

$$\epsilon_{\text{int}} = \frac{1}{\sqrt{\Sigma \epsilon_{i}^{-2}}}$$
 (2.16)

$$\varepsilon_{\text{ext}} = \sqrt{\frac{\Sigma(x_{i} - \bar{x})^{2} \varepsilon_{i}^{-2}}{(n-1) \Sigma \varepsilon_{i}^{-2}}}$$
(2.17)

for $w_i = \varepsilon_i^{-2}$. When all of ε_i represent correct errors and are different each other, the weighted average is adopted. When the uncertainties of the selected values do not seem different each other, the unweighted average is adopted.

If the external error is larger than the internal error, usually one takes the external error as the error of the average value. The larger external error suggests two following cases. One is that the systematic errors are underestimated. Another case are that only two or three data are used for average and data accidentally scatter. Nost of the intensity measurements and the half-life measurements are the first case. In this case one should adjust systematic errors. The intensity measurements of very weak gamma rays and the half-life measurements of very weak gamma rays and the half-life measurements of very weak gamma rays and the half-life measurements of very long-lived nuclides sometimes correspond to the second

- 7 -

case. Since data are carefully selected and some errors are corrected in our evaluation, the internal errors are generally larger than the external errors. Therefore the internal errors are adopted for our evaluated values.

2.4 Notations

Notations in chapters 3 and 4 are as follows :

γ_1, γ_2	Gamma-ray intensity per decay
γ_{1}^{+} , γ_{2}^{+}	Relative gamma-ray intensity
γ_1', γ_2'	Gamma-ray branching ratio
t_{1}, t_{2}	Transition intensity per decay. $t_1 = \gamma_1 (1 + \alpha + \Gamma)$
β_1, β_2	Branching ratio of the beta-ray component
$\varepsilon_1, \varepsilon_2$	Branching ratio of the electron capture component
α _K	K-shell internal conversion coefficient
α _{LI}	L _I -shell internal conversion coefficient
α	Total internal conversion coefficient $\alpha = \alpha_{K} + \alpha_{L} + \cdots$
K/L	K to L ratio $K/L = \alpha_K / \alpha_L$
Г	Internal pair formation coefficient
ε	Error
*	Adopted value
σ	Standard deviation
δ	Systematic error
chem	Chemical separation
ic	Ionization chamber
pc	Proportional counter
GM	Geiger-Muller counter
Nal	NaI(Tl) scintillator
Ge	Germanium detecter
4πγic	4π ionization chamber
4πpc	4π proportional counter
2mpc	2π proportional counter
4πβγ	4π proportional counter in coincidence with a gamma counter
electroscope	2π air ionization chamber
mag spect	Magnetic spectrometer
mass spect	Mass spectrometer

References

- 34JaHu J. C. Jaeger and H. R. Hulme, Proc. Roy. Soc. 148 (1935) 708.
- 49Ro M. E. Rose, Phys. Rev. 76 (1949) 678.
- 68HaSe R. S. Hager and E. C. Seltzer, Nuclear Data A4 (1968) 1.
- 72Tr V. F. Trusov, Nuclear Data Tables 10 (1972) 477.
- 75DrBr O. Dragoun and V. Brabec, Atomic Data and Nuclear Data Tables 15 (1975) 49.
- 76Ba I. M. Band, M. B. Trzhaskovskaya and M. A. Listengarten, Atomic Data and Nuclear Data Tables 18 (1976) 433.

3. Evaluation of Gamma-Ray Intensities

3.1 ²²Na

The radioactive nuclide ²²Na emits the 1275 keV gamma ray of almost 100 % per decay in the positron decay and the electron capture. The decay scheme is shown in Fig. 3.1.1. Intensities of the 1275 keV gamma ray and the annihilation radiation were evaluated.

a) ϵ/β^+ . For the test of the beta decay theory, a lot of measurements of $\epsilon_1/(\beta_1+\beta_2)$ were performed as shown in Table 3.1.1 and Fig. 3.1.2. Williams (64Wi04), Leutz and Wenninger (67Le07) and Vatai et al. (68Val3) obtained values with errors less than 1 % which were smaller than the theoretical value. After these measurements Merritt and Taylor (71Me) and MacMahon and Baery (76Ma38) precisely determined ϵ/β^+ . Since Bosch et al. (77Bo10) measured with NaI(T1) detectors, this value was not adopted. Though the error of MacMahon and Baery is smaller than that of Merritt and Taylor, reliabilities of two measurements are not essentially different. Therefore the unweighted averate ($w_1 = 1$) was adopted as shown in Table 3.1.2. This value agrees well with the theoretical value (70Wi) shown in Table 3.1.3.

b) Ground state transition of β^{\dagger} . The positron intensity β_1 of the ground state transition was observed only by Write (53Wrl3). The ratio of β_2/β_1 and the theoretical value of ϵ_2/ϵ_1 is given in Table 3.1.4. The branching ratio of $\beta_2+\epsilon_2$ is used for evaluation of the gamma-ray intensity.

c) Internal conversion coefficient. Two experimental values of the total conversion coefficient are available as shown in Table 3.1.5. The theoretical conversion coefficients were obtained from Z^3 extrapolation of Hager and Seltzers' table. The experimental values are in good agreement with the theoretical value listed in Table 3.1.6. The internal pair formation coefficient is larger than the internal conversion coefficient for the 1275 keV transition. The average of the experimental values is adopted for the total internal conversion coefficient and the theoretical value with the error of 20 % is for the pair formation coefficient.

d) Evaluation of the 1275 keV gamma-ray intensity. The intensity per decay was obtained from Eq. (2.1), i.e. the relation $\gamma_1 = 1 - (\beta_1 + \epsilon_1) - (\alpha_1 + \Gamma_1)$. The evaluated value is shown in Table 3.1.7 and is almost independent of the gamma-ray intensity measurement.

e) Evaluation of the annihilation radiation intensity. If all positrons annihilate, the intensity of annihilation radiation is twice of the positron intensity. However, the intensity of the 511 keV radiation was obtained from subtraction of the three-quantum annihilation and the annihilation in flight. Probabilities of these effects depend on material of the positron stopper. The values in Table 3.1.7 are of the annihilation in copper. The error of the evaluated intensity of the 511 keV radiation is small, but there still remains ambiguity larger than the error because of ambiguity in the calculated probability of the three-quantum annihilation in flight. In addition, the 511 keV line is affected by the Dopplar broadening effect, and the cover of the gamma-ray source usually used is not thick enough to stop positrons. Therefore the 511 keV radiation is not a very good intensity calibration line.

- 10 -

Authors	ε/β ⁺	K/β ⁺	Ref.
Sherr, Miller	0.110 ±0.006		54Sh
Kreger	0.124 ±0.011		54Kr
Allen et al.	0.122 ±0.010		55A1
Konijin et al.	0.109 ±0.008		58Ko
Ramaswamy	0.112 ±0.004		59Ra
Williams	0.1041±0.0007 ^{a)}	I	64Wi04
Leutz, Wenninger	0.1048±0.0007		67Le07
Vatai et al.	0.1042±0.0010		68Val3
McCann, Smith		0.105 ±0.009	69Mc
Merritt, Taylor	0.1082±0.0033 [*]		71Me
MacMahon, Baerg	0.1077±0.0006 [*]		76Ma38
Bosch et al.	0.1128±0.0057	0.1043±0.0052 ^{b)}	77Bo10

Table 3.1.1 Experimental values of electron capture to positron emission ratio.

a) The error is a quadratic sum of statistical error (0.45%) and systematic error (0.5%).

b) The value was obtained from the experimental value of ϵ/β^+ .

Table	3.1.2	Average	values	of	electron	capture	to
		positron	n emissi	ion	ratio.		

	w=1/ε ²		W	=1	
Average	Error		Average	Error	
value	Int.	Ext.	value	Int.	Ext.
0.1077	0.0006	0.0001	0.1080*	0.0017*	0.0003

Authors	ε/β ⁺	κ/β ⁺	Ref.
Sherr, Miller	0.1135±0.003		54Sh
Zweifel	0.111		54Zw
Leutz, Wenninger	0.1138±0.0025 ^{a)} 0.100 ±0.006 ^{b)}	0.1058±0.0015 ^{a)} 0.090 ±0.005 ^{b)}	67Le07
Vatai et al.	0.1118±0.0025 ^{a)} 0.0974 ^{b)}		68Va13
Zyryanova, Suslov		0.1146±0.003	682r
Williams	0.1099±0.0027		70Wi
Fitzpatrik et al.		0.1073±0.0004	73Fi
Bosch et al.		0.1041±0.0005	77Bo10

Table 3.1.3 Theoretical values of electron capture to positron emission ratio.

a) Ommiting the electron exchange corrections.

b) Including the electron exchange corrections.

Item	Value	Ref.
$\varepsilon_1/(\beta_1+\beta_2)$	0.1080±0.0017	
β2/β1	0.0006±0.0002	53Wr13
ε_2/β_2 (Theoretical)	0.0023	70MaB1
β1	90.20±0.14 % ^{a)}	
β ₂	0.05 ±0.02 %	
ει	9.75 ±0.15 %	
ε2	0.0001 %	

Table 3.1.4 Evaluation of beta branches.

a) Obtained from the equation $\beta_1 + \beta_2 + \varepsilon_1 + \varepsilon_2 = 1$.

Authors	α×10 ⁶	Ref.
Leamer, Hinman	6.74±0.67	54Le
Nakayama, Hirata	6.77±0.45	63Na

Table 3.1.5 Experimental values of internal conversion coefficient for the 1275 keV transition.

Table 3.1.6 Theoretical values of internal conversion coefficients and internal pair formation coefficient.

Item		Value	
Atomic number		10	
Energy (keV)		1274.5	
Multipolarity		E 2	
	aĸ	6.42(- 6)	<u></u>
	α ₁ .	3.77(- 7)	
Conversion coeff		2.07(-10)	
coefficients	a _T	3.39(-10)	
	α, α,	3.78(- 7)	
	κ/L	17	
	α	6.80(- 6)	
Pair formation	Г	2,5(-5)	
coefficient	•		
Gamma branch	1/(l+α+Γ)	0.999968	

Item	Value	Ref.
β ₂ +ε ₂	0.05±0.02 %	
α1	(6.76 ± 0.37) 10 ⁻⁶ a)	
Г	2.5×10 ⁻⁵	
Υ 1	99.94±0.02 % ^{b)}	
$\beta_1 + \beta_2$	90.25±0.14 %	
f ₁ ^{c)}	0.27 %	4901
f_2^{d}	1.0 ±0.2 %	76Az
γ _a e)	178.0 ±0.5 %	

Table 3.1.7 Evaluation of gamma-ray intensities per decay.

a) Weighted average of the two values in Table 3.1.5.

b) Obtained from the equation $\gamma_1(1+\alpha_1+\Gamma_1)+\beta_2+\epsilon_2=1$.

- c) Cross section ratio of 3γ to 2γ decay.
- d) Ratio of positron annihilation in flight to total annihilation in aluminum.
- e) Annihilation radiation intensity obtained from the equation $\gamma_a = 2(\beta_1 + \beta_2 f_1 f_2)$.

Fig. 3.1.1 Decay scheme of ²²Na

- 15 -

Fig. 3.1.2 Ratio of electron capture to positron decay.

3.2 ²⁴Na

The short-lived nuclide ²⁴Na decays to ²⁴Mg and emits the 1369 keV and 2754 keV gamma rays of almost 100 % per decay. The decay scheme is shown in Fig. 3.2.1. Relative intensities and intensities per decay of these strong gamma rays were evaluated.

a) Beta-decay branches. The main beta transition feeds to the second excited state (4+). A weak branch to the first excited state was observed by Turner and Cavanagh (51Tu). Their result is $3x10^{-5}$ for the ratio of this weak transition to the main transition, which was used for our evaluation.

b) Weak gamma rays. Two weak gamma rays of 3867 keV and 4239 keV were observed in the decay of ²⁴Na. These intensities are shown in Table 3.2.1. The values of Lebowitz et al. (70Le12) and Raman et al. (72Ra21) were adopted for relative intensities of the 3867 keV and the 4239 keV gamma rays, respectively. On the other hand, weak gamma rays emitted from the 4239 keV and the 5236 keV levels were measured in nuclear reactions such as ²³Na(p, γ)²⁴Mg. The branching ratios of gamma rays are listed in Table 3.2.2, and the values of Meyer et al. (72Me09) were adopted. The 997, 1113 and 5236 keV gamma rays emitted from the 5236 keV level were neglected.

c) Internal conversion and pair formation coefficients. Theoretical coefficients are shown in Table 3.2.3. The theoretical values were adopted for the total internal conversion coefficient. Many experimental values of the pair formation coefficients are available as shown in Table 3.2.4. We adopted Spring's values which are in agreement with the theoretical values in Table 3.2.3.

d) Evaluation of the strong gamma rays. Intensities per decay of two strong gamma rays at 1369 keV and 2754 keV were evaluated, as shown in Table 3.2.5, by using the three weak gamma rays and the pair formation coefficients, while the internal conversion coefficients are negligibly small. The final evaluated values are listed in Table 3.2.6.

Number Authors Energy(keV)	1 1368	2 2754	6 3867	8 4239	9 5 2 3 6	Ref.
Artamonova et al.	(100)	100	0.09 ±0.02	0.0015 ±0.0005 <2	2×10 ⁻⁵	60Ar
Monahan et al.	(100)	100	0.075 ±0.020	0.008 ±0.003 ^{a)} <	7×10 -4	62Mo
Vanklinken et al.	(100)	100	0.063			68Va06
Lebowitz et al.	(100)	100	0.0489±0.0025	0.0033 ^{a)}		70Le12
Raman et al.	(100)	100		0.00084±0.00010*		72Ra21

Table 3.2.1 Experimental values of relative gamma-ray intensities.

a) Gamma rays of number 7 and 8 are not resolved.

	Level energy	4239 keV		5236 keV				
Authors	Number Energy (keV)	5 2871	8 4239	3 996	4 1113	6 3 86 7	9 5236	Rei.
Batchelor		1.0	2.9 ±0.5				<u> </u>	60Ba
Cohen, Co	okson	1.0	3.44±0.50	< 3		92	< 5	62Co
Meyer et	al.*	23 ±2	77 ±2	1.0±0.5	<1	99.0±0.5	< 8	72Me09
Detratz		1.4±0.4	3.6 ±0.4					72De28

Table 3.2.2 Experimental values of gamma-ray branching ratios in nuclear reactions and in the decay of ²⁴Na.

Table 3.2.3	Theoretical values of in	ternal conversion	coefficients
	and internal pair format:	ion coefficients.	

Item		Value	•	
Atomic number	<u> </u>	12	12	
Energy (keV)		1368.6	2754.1	
Multipolarity		E2	E2	
	a _K	9.33(-6)	2.52(-6)	
	α _{1.} ,	6.12(-7)	1.76(-7)	
Conversion	aLa	5.44(-10)	7.15(-11)	
coefficients	α _{La}	8.83(-10)	1.70(-10)	
	α ₁	6.13(-7)	1.76(-7)	
	Ќ/L	15.2	14.3	
	M/L	0.05	0.05	
	a	9.97(-6)*	2.71(-4)*	
Pair formation coefficient	Г	0.3(-4)	6.9(-4)	
Gamma branch	1/(1+α+Γ)	0.99996	0.99931	
Authors	Γ×10*		Method	Ref.
------------------	-----------------	-----------	-------------------	--------------
	1369 keV	2754 keV		
Rae		11.6 ±1.0	e ⁺ /β	49Ra
Mims et al.		7.6 ±1.9	Ann/decay	50Mi
		8.25±1.05	Ann/decay	50Mi
Cleland et al.		6.7 ±1.0	Ann/decay	51C1
Slätis, Siegbahn	0.30	8.0 ±0.5	e ⁺ /β	52S1
Bloom	0.6 ±0.1	7.1 ±0.2	e ⁺ /β	52 B1
Spring	0.4 ± 0.3 *	6.6 ±0.7*	Triple coinc.	65Sp08

Table 3.2.4 Experimental values of internal pair formation coefficients.

Table 3.2.5 Evaluation of gamma-ray intensity per decay.

Item	Value	Remarks
β4/β3	0.003 ±0.001 ^{a)}	51Tu
$\gamma_6^{\dagger}/\gamma_2^{\dagger}$	0.0489 ±0.0025	70Le12
$\gamma_0^{\dagger}/\gamma_2^{\dagger}$	0.00084±0.00010	72Ra21
Y 8 / Y 8	29.9 ±2.7	7 2 Me 0 9
Y 2	99.9470 ±0.0027	b)
Yi	99.99916±0.00010	1-y2(y1/y2)
Ύ1	99.994 ±0.003	$\gamma_1 / (1 + \alpha_1 + \Gamma_1)$
Ϋ 2	99.881 ±0.008	$\gamma_2^{\prime}/(1+\alpha_2+\Gamma_2)$

a) The error is estimated by us.

b)
$$[1+\frac{\beta_{+}}{2}+\frac{\gamma_{6}}{2}+\frac{\gamma_{6}}{2}(1+\frac{\gamma_{5}}{2})]^{-1}$$

$$\beta_3 \gamma_2 \gamma_2 \gamma_1 \gamma_2 \gamma_1$$

		Intensity per decay	Relative intensity
Number	Energy (keV)	(%)	(%)
1	1368.6	99.994±0.003	100.000±0.003
2	2754.1	99.881±0.008	99.887±0.008

Table 3.2.6 Evaluated values.

Fig. 3.2.1 Decay scheme of 24 Na.

3.3 ⁴⁶Sc

Two cascade gamma rays of 889 keV and 1120 keV are emitted in the decay of ⁴⁶Sc. The decay scheme is shown in Fig. 3.3.1. Intensities per decay and relative intensities of these gamma rays were evaluated.

a) Beta-decay branching. Main part of beta transitions feeds to the second excited state, while a small branch does to the first excited state. The upper limit of it was observed by several group as shown in Table 3.3.1. Since Wolfson's value (56Wo09) is consistent with other upper limits, this value is adopted. Then the log ft value becomes 12.94, which is suitable to the non-unique second forbidden transition. The beta transition to the ground state is the fourth forbidden $4^+ \rightarrow 0^+$. Hence this branching was neglected.

b) Weak gamma rays. Three groups observed the upper limits of weak gamma rays which are shown in Table 3.3.2. The upper limit of the cross over gamma ray at 2010 keV was obtained to be 1.2×10^{-5} from Fluharty and Deutsch (49F105). Recent Ge(Li) detector measurement by Iwata and Yoshizawa (80Iw) indicates that no effective weak gamma rays exist. The possibility of the existence of weak gamma rays is very small, because no other excited states lower than 2611.3 keV of ⁴⁶Ti have been found by nuclear reaction experiments.

c) Internal conversion coefficients. Experimental values of total internal conversion coefficients are shown in Table 3.3.3. The theoretical internal conversion coefficients of two gamma rays are listed in Table 3.3.4, which were obtained by extrapolation. The pair formation coefficient for the 1120 keV gamma ray was also estimated. The experimental values scatter each other, but roughly agree with the theoretical values, except values given with the Compton electron method by Sturcken et al (54St08). Since both transitions are pure E2, the theoretical values with 10 % errors were adopted.

d) Evaluation of intensities. The evaluation method of the intensities per decay are shown in Table 3.3.5. The error of the 889 keV gamma ray was obtained only from the error of α_1 , while the error of the 1120 keV gamma ray was from the errors of β_2 and α_2 . The error of the relative intensity is given by the root square sum of the errors of the two gamma rays. The final evaluated values are listed in Table 3.3.6.

Authors	Value (%)	Ref.
Moon et al.	≨0.06	50Mo62
Sorensen et al.	<0.05	50So57
Whalen et al.	≤ 0.1	53Wh06
Keister, Schmidt	0.096±0.001	54Ke04
Wolfson	0.0036±0.0007*	56Wo09

Table 3.3.1 Experimental values of beta-ray branching ratio of the 1.47 MeV component (β_2) .

Authors	Gamma-ray energy (MeV)	Intensity (%)	Ref.
Fluharty, Deutsch	1.63~2.68	1.2x10 ⁻⁵	49F105
Bartlett et al.	0.05~2.0	<2.2	63Ba40
Iwata, Yoshizawa	0.09~1.116	<0.06	80 I w
•	1.124~2.400	<0.006	

Table 3.3.2 Upper limit of weak gamma rays.

Table 3.3.3 Experimental values of internal vonversion coefficients.

Gamm	a ray	ax10 ⁴			ax10 ⁴		ax10 ⁴	
Number	Energy (keV)	Moon et al. 50Mo62	Whalen et al. 53Wh06	Strucken et al. 54St08	Keister 54Ke28			
1	889.2	1.74±0.08	1.9	1.86 ± 0.25 a)	1.55±0.16			
2	1120.5	0.98±0.05	0.88	1.00 ± 0.06 a) 1.34 ± 0.15 b)	0.82±0.08			

a) Beta ray spectrometer.

b) Compton electron method.

Table 3.3.4 Theoretical values of internal conversion coefficients.

Item		Valu	le
Atomic number Z		22	22
Energy (keV)		889.2	1120.5
Multipolarity		E 2	E2
<u> </u>	°.K	1.49(-4)	8.44(-5)
	a _L	1.32(-5)	7.47(-6)
Conversion		9.07(-8)	3.98(-8)
coefficients	a ₁ .	1.11(-7)	5.12(-8)
	α ¹ .	1.26(-5)	7.82(-6)
	K∕L	11.12	11.16
	M/L	0.14	0.14
	α	1.64(-4)*	9.30(-5)*
Pair formation coefficient	Г		0.4(-6)*
Gamma branch	l/(l+α+Γ)	0.9994	0.99991

•

Item	Value	Ref.
β2	0.0036±0.0007 %	56Wo09
Cross-over gamma ray	Neglected	
α_1 (Theoretical)	1.64x10 ⁻⁴	
α_2 (Theoretical)	9.30x10 ⁻⁵	
Γ_2 (Theoretical)	0.4×10^{-6}	
Υ1	99.9836±0.0016 %	a)
Ϋ2	99.9871±0.0012 %	a)

Table 3.3.5 Evaluation of intensity per decay.

a) Obtained from the equations $\gamma_2(1+\alpha_2+\Gamma_2)+\beta_2=1$ and $\gamma_1(1+\alpha_1)=1$.

Gamma ray			
Number	Energy (keV)	Intensity per decay (%)	Relative intensity (%)
1	889.2	99.9836±0.0016	99.9965±0.0016
2	1120.5	99,9871±0.0012	100.0000±0.0012

Fig. 3.3.1 Decay scheme of ⁴⁶Sc.

3.4 ⁵⁴Mn

The radioactive nuclide ⁵⁴Mn decays to ⁵⁴Cr by electron capture and emits the 835 keV gamma ray as shown in Fig. 3.4.1. No other gamma rays have been observed.

a) Ground state transition. The main electron capture transition feeds to the first excited state at 835 keV of ⁵⁴Cr. Since the Q value between ground states of ⁵⁴Mn and ⁵⁴Cr is 1375 keV as shown in Table 3.4.1, the weak positron emission is expected. Berenyi et al. (68Be01) observed upper limit of the β^+ transition, and gave a lower limit of the log ft value shown in Table 3.4.1. This value is reasonable for the unique second forbidden transition compared with log ft = 12 for ¹⁰Be. From this limit the electron capture transition is expected to be $\varepsilon_2 < 1 \times 10^{-5}$. Therefore this branching ratio is assumed to be $\varepsilon_3 = (0.5\pm0.5) \times 10^{-5}$.

b) Weak gamma rays. No one reported a weak gamma ray up to date. In addition, the second excited state was observed at 1824 keV which is higher than the ground state of ⁵⁴Mn and no level between 835 keV and 1824 keV has been observed by various kinds of nuclear reactions. Therefore, no weak gamma ray can be expected.

c) Internal conversion coefficient. A few measurements were reported for the internal conversion coefficient of the 835 keV transition shown in Table 3.4.2. In this region, deviations between experimental and theoretical coefficients are small and the 835 keV transition is a pure E2 transition. Therefore, the theoretical internal conversion coefficient given by Band et al. (76Ba) was adopted. The theoretical coefficients are listed in Table 3.4.3.

d) Evaluation of intensity. The 835 keV gamma-ray intensity was evaluated from the upper limit of the ground state electron capture transition and the theoretical total internal conversion coefficient as shown in Table 3.4.4.

Authors	Q _ε (keV)	β1 ⁺	log ft	E 2	Ref.
Berenyi et al Wapstra, Gove	1374.9±3.6	<8×10 ⁻⁷	> 12.0	<1×10 ⁻⁵ *	68Be01 71Wa
 Table 3.4.2 E	Experimental va	lues of in	nternal co	onversion c	oefficient

Table 3.4.1 Beta transition to the ground state.

Authors	α _K ×10⁵	K/L	α×10 5	Ref.
Katoh et al.		8.5±0.7		58Ka34
Rao			20 ±5	63Ra21
Hamilton et al.	22.4±1.0		25.1±1.1	66Ha07

	. <u>-</u>	
Item		Value
Atomic number		24
Energy (keV)		834.8
Multipolarity		E 2
<u></u>	αĸ	2.25(-4)
	α _{L1}	2.04(-5)
Conversion	aL2	1.89(-7)
coefficients	αL	2.21(-7)
	α _I	2.08(-5)
	ĸĨL	1.08(+1)
	M/L	0.15
	a	2.49(-4)
Gamma branch	$1/(1+\alpha)$	0.999751

Table 3.4.3 Theoretical values of internal conversion coefficients.

-

Table 3.4.4 Evaluation of the 835 keV gamma-ray intensity.

Item	Value
£ 2	(0.5±0.5)×10 ⁻⁵
α	(24.9±2.5)×10 ⁻⁵
1/(1+α)	0. 99 9751±0.000025
Υı	99.9746±0.0025 %

Fig. 3.4.1 Decay scheme of ⁵⁴Mn.

3.5 ⁶⁰Co

Two strong gamma rays of 1173 keV and 1333 keV and three weak gamma rays are emitted in the decay of 60 Co. The decay scheme is shown in Fig. 3.5.1. Intensities per decay and relative intensities of the two strong gamma rays were evaluated by using weak beta decay branching ratios, weak gamma ray intensities and internal conversion coefficients.

a) Beta decay branchings. Observed values of beta decay branching ratios are listed in Table 3.5.1. The main transition is the 316 keV component. The weak branch β_4 to the first excited state is important to evaluate the intensity of the 1173 keV gamma ray. Since Hansen (68Ha03) reported details of experiment and discussed the error, his value was adopted.

Other weak branches β_1 and β_3 can be estimated from weak gamma-ray intensities. Since the beta transition to the ground state is the unique fourth forbidden, this branching is completely negligible.

b) Weak gamma rays. Wolfson (55Wo44) observed internal conversion electrons of the weak gamma ray at 2159 keV. Measurements of weak gamma rays were performed by many groups by means of the coincidence method, the Compton suppression spectrometry and others. These results are listed in Table 3.5.2. The values of Camp and Van Hise (76Ca) were adopted for the 347 keV and 2159 keV gamma rays, because their measurement with a Compton suppression spectrometer is reliable and their values agree with some others. For the 2506 keV gamma ray the value of Fujishiro (76Fu) was adopted.

Unobserved weak gamma-ray intensities were estimated from gamma-ray branching ratio in the decay of 60 Cu. These values are shown in Table 3.5.3.

c) Internal conversion and pair formation coefficients. Experimental values of the internal conversion coefficients and the internal pair formation coefficients for two strong gamma rays are shown in Table 3.5.4. Experimental values were used for internal pair formation coefficients. Theoretical values of the internal conversion coefficients were used for evaluation. These values are listed in Table 3.5.5.

d) Evaluation of intensity. The branching ratios of the beta decays were evaluated from the experimental values of the beta branching ratios and the weak gamma-ray intensities (Table 3.5.6).

The evaluated values of weak gamma-ray intensities are summarized in Table 3.5.7. The 1173 keV and 1333 keV gamma-ray intensities were evaluated by using the beta-decay branching ratios, the weak gamma-ray intensities and the internal conversion coefficients. Equations for the evaluation are shown in remarks of Table 3.5.7. The final results in intensities per decay and relative intensities are summarized in Table 3.5.8.

\mathbf{N}		Brancing ra	tios (%)		
Authors Number	1	2	3	4	Ref.
Maximum					
\setminus energy(keV)	196	316	663	1490	
Keister,Schmidt				0.15	54Ke04
Wolfson			<0.0105 ^a)	55Wo44
Wolfson				0.010±0.002	56Wo09
Camp et al.				0.12	61Ca05
Hansen,Spernol		99.74±0.05	0.18±0.03	0.08 ±0.02*	68Ha03
Rauch et al.			<0.022		69Ra23
Van Hise,Camp <0	.0006	99.862	<0.0057		69Va20
Dixon,Storey <	0.01		<0.01		70Di01
Rice-Evans,Aung			<0.012		70Ri20
Legrand,Clement		99.92	∿0.0035	~0.08	72Le

Table 3.5.1 Experimental values of beta-ray branching ratios.

Table 3.5.2 Experimental values of gamma-ray intensities per decay.

\mathbf{N}	Intensity per decay ×10 ⁶						
Authors Number Energy(keV	2) 346.8	3 467.3	4 826.4	6 1293.7	8 2158.9	.9 2505.7	Ref.
Wolfson					12±2		55Wo44
Van Hise,Camp	78						69V a 20
Legrand,Clement			30±20		5±2	non obs.	72Le
Fujishiro					20±13	0.09±0.07	73Fu
Camp,Van Hise	75.8±5.0	<2.3	76.2±8.0	<1.1	11.1±1.8	*	76Ca
Logan et al.	69 ±10	<12					77L o

Gamm	a ray	Gamma-ray	Branching ratios
Number	Energy (keV)	Branching ratios γ† 69Ra07	of transition intensities (%)
4	826.4	24.7 ± 1.2	86.7
8	2158.9	3.8 ± 0.2	13.3
1	120.5	0.22± 0.02	4.5
3	467.3	4.0 ± 0.2	62.6
6	1293.7	2.1 ± 0.2	32.9
10	2626.2	<0.02 ^{a)}	<0.31

Table 3.5.3 Branching ratios of transition intensities from the decay of ^{60}Cu .

a) Our estimation from F. Rauch et al. (69Ra07)

Table 3.5.4 Experimental values of conversion coefficients.

Gamm Number	na ray Energy	Waggoner et al.	Fan	Kamada et al.	Camp et al.	Frey et al.	Sprin~
	(keV)	50W09	52F14	58K13	61Ca5	62Fr13	65Sp08
5	117 3. 3 α ×10 α _r ×10	⁴ 1.73±0.06	1.72±0.17	1.50±0.06	1.65	1.65±0.07	
7	r×10	5	1 24.0 12				1.5±0.5*
1	1332.5 a ×10 a _K ×10	4 1.29±0.04	1.24±0.12	1.16±0.06			
	۲ ×10	5					4.7±0.7*

Item		Valu	le
Atomic number	Z	28	· · · · · · · · · · · · · · · · · · ·
Energy (keV) Multipolarity		1173.3 E2	1332.5 E2
	α _K α _{L1}	1.50(-4) 1.44(-5)	1.13(-4) 1.09(-5)
Conversion coefficients	α _{L2} α _{L3}	1.55(-7) 1.57(-7)	1.18(-7) 1.07(-7) 1.11(-5)
	K/L M/L	10.20 0.16	10.20
Pair formation	α	1.67(-4)*	1.26(-4)*
coefficients	Γ 1/(1+α+Γ)	0.9(-5) 0.999824	3.7(-5) 0.999837

Table 3.5.5 Theoretical values of internal conversion coefficients and internal pair formation coefficients.

Table 3.5.6 Evaluated values of beta-ray branching ratios per decay.

Beta ray		Du su shi su su shi s	F actorian
Number	Maximum energy(keV)	Branching ratio (%)	Estimation
1	196	<0.00037	γ ₁ '+γ ₃ '+γ ₆ '+γ ₁₁ '
2	316	99.91 ±0.03	Y5'+Y2'+Y10'-Y1
3	663	0.0087±0.0009	Y = ' + Y a '

•

Gamma	a ray	Intensity	Remarks
Number	Energy (keV)	per decay (%)	
1	120.5	(8±8)×10 ⁻⁶	β ₁ ×γ ₁ '
2	346.8	0.0076±0.0005	76Ca
3	467.3	0.00012±0.00012	76Ca
4	826.4	0.0076±0.0008	76Ca
5	1173.3	99.89±0.02	(γ7-Υ6-Υδ-β4)/(1+α+Γ)
6	1293.7	0.00006±0.00006	76Ca
7	1332.5	99.9816±0.0015 (100-ys-y11-y10)/(1+a+r)
8	2158.9	0.00111±0.00018	76Ca
9	2505.7	(9±7)×10 ⁻⁶	7 3Fu
10	2626.2	$(6\pm 6) \times 10^{-6}$	Y1×Y11'

Table 3.5.7 Evaluated values of intensities per decay.

Table 3.5.8 Evaluated values.

	Gamma ray		Gamma ray Intensity per decay		Remarks	
	Number	Energy	(\$)	intensity (%)		
		(KCV)	(v) 	(8)		
	5	1173.3	99.89 ±0.02	99.91 ±0.02	a)	
	7	1332.5	99.9816±0.0015	100.0000±0.001	5 b)	
-	a)	These val transitic 1173 keV	ues are obtatned from ons to the first exc: and 1294 keV).	om intensities of ited state (826 k	three eV,	
	b)	These val 1332 keV transitio	ues are evaluated f and 2159keV transit: ons to the ground sta	rom intensities o ions. Other gamm ate are neglected	f the a	

- 30 -

Fig. 3.5.1 Decay scheme of ⁶⁰Co.

3.6 ⁸⁵Sr

The radioactive nuclide ⁸⁵Sr decays to ⁸⁵Rb by electron capture and emits the 514 keV gamma ray. The decay scheme is shown in Fig. 3.6.1. The intensity per decay was evaluated for this gamma ray.

a) Electron capture transition to the ground state. No one observed the branching ratio of the ground state transition, and the measurement of this branching ratio is almost impossibly difficult. However, this ratio is the most important value to evaluate the gamma--ray intensity. Therefore we estimated it from the systematics of log ft values in neighbouring nuclei. This transition is a unique first forbidden one $9/2+\rightarrow 5/2-$. Log f_1 t values of the unique first forbidden transitions in neighbouring nuclei are listed in Table 3.6.1. The values except for ⁸¹Kr and ⁸⁶Y are between 9.40 and 9.60. We adopted 9.47±0.17 as the unweighted average of seven values with uncertainty of 2 σ . This adopted value includes most of log f_1 t values in neighbouring nuclei. Then the branching ratio was calculated as shown in Table 3.6.2. The half-life of ⁸⁵Sr was taken from the value in 4.6 and the Q_{β} value was from the mass table of Wapstra and Gove (71Wa). The adopted branching ratio of the ground state transition is obtained to be 0.8±0.4 %.

b) Weak gamma rays. Experimental values of relative intensities are listed in Table 3.6.3. Bubb et al. (71Bu08) reported that the 869 keV gamma ray decreased after chemical separation. The value given by Vatai et al. (74Va02) was adopted to evaluate the intensity of the 514 keV gamma ray.

c) Internal conversion coefficients. Experimental values and theoretical values of the internal conversion coefficients for the 514 keV transition are shown in Table 3.6.4 and Table 3.6.5, respectively. The experimental values are compatible with the theoretical values of M2 and E3 within the experimental errors. It is possible that the transition is M2 and E3 mixing. Therefore, the experimental value of α given by Sunyar et al. (52Su29) was adopted, though the error is large.

d) Evaluation of the intensity per decay. The 514 keV gamma-ray intensity was evaluated by using the estimated value of the electron capture transition to the ground state, the weak gamma-ray intensity and internal conversion coefficient, as shown in Table 3.6.6. The evaluated value is 98.4 ± 0.4 %. The main part of the error is due to the electron capture transition to the ground state. If one neglects the electron capture branching to the ground state, a larger value is obtained as 99.2 %.

- 31 -

Nucleus		Spin-pa	log f+			
Parent	Daughter	Initial Final		ghter Initial Final		108 90
⁷ ⁹ Se	⁷ ⁹ Br	7/2+	3/2-	10.17		
^{e 1} Kr	^{8 1} Br	7/2+	3/2-	11.05		
⁸⁵ Kr	⁸⁵ Rb	9/2+	5/2-	9.45		
⁸⁹ Sr	8 ⁹ Y	5/2+	1/2-	9.40		
9 ¹ Y	⁹¹ Zr	1/2-	5/2+	9.59		
ª 4 Rb	⁸ 4 Kr	2 -	0+	9.60		
[₿] [₩] Rb	⁸ Sr	2 -	0+	9.44		
^{₿ 6} Rb	⁸⁶ Sr	2 -	0+	9.43		
8 6 Y	⁸⁶ Sr	4 -	2+	11.10		
۹٥Y	⁹⁰ Zr	2 -	0+	9.40		

Table 3.6.1 Log ft values of the unique first forbidden transition for the neighbouring nuclei.

Table 3.6.2 Estimation of the electron-capture transition intensity from ⁸⁵Sr to the ground state of ⁸⁵Rb.

.

Item	Value	Ref.
log ft	9.47±0.17	
Transition energy	1064 ±7 keV	71Wa
log f	0.61	71Go
$T_{1/2}$	64.93±0.24 day	
ε 3	0.8 ±0.4 %	

Gamma ray		Sattler	Vartanov	Bubb	Vatai	
Number	Energy	Suttion	et al.	et al.	et al.	
	(keV) 625ai2 66Val6	66Va16	16 71Bu08 74Va0			
1	514.0	100	100	100	100	
2	356	0.002		no	< 10 - 3	
3	869	0.017	0.010±0.002	<0.006	0.014±0.002	

Table 3.6.3 Experimental values of relative gamma-ray intensities.

Table 3.6.4 Experimental values of internal conversion coefficients for the 514 keV transition.

Authors	α _K ×10 ³	K/L	α×10 ³	Ref.
Emmerich, Kurbatov	7	12±3		52Em02
Sunyar et al.			8±1*	52Su29
Alvager et al.		8.4		62A111

Table 3.6.5 Theoretical values of internal conversion coefficients.

Item		Va	lue
Atomic number	· · · · · · · · · · · · · · · · · · ·	3	7
Energy (keV)		51	4.0
Multipolarity		M2	E 3
	α _κ	6.30(-3)	7.92(-3)
	a _L ,	6.73(-4)	8.02(-4)
Conversion	al	2.60(-5)	1.01(-4)
coefficients	α_{L_2}	9.85(-6)	6.66(-5)
	a ₁	7.09(-4)	9.69(-4)
	ĸĨL	8.88	8.17
	MN/L	0.18	0.18
	α	7.13(-3)	9.06(-3)
Gamma branch	l/(1+a)	0.993	0.991

Item	Value	Remarks
α ₁ (Exp.)	0.008±0.001	52Su29
Υ 3	0.014±0.002 %	74Va02
ε_3 (Estimated)	0.8 ±0.4 %	
Υ 1	98.4 ±0.4 %	$\gamma_1(1+\alpha_1)+\epsilon_3+\gamma_3^{\dagger}=1$

Table 3.6.6 Evaluation of intensity per decay.

Fig. 3.6.1 Decay scheme of ⁸⁵Sr.

3.7 ⁸⁸Y

Two strong gamma rays of 898 keV and 1836 keV are emitted in the electron capture decay of 88 Y. The decay scheme is shown in Fig. 3.7.1. These gamma-ray intensities per decay were evaluated.

a) Electron capture transition to the ⁸⁸Sr ground state. This transition is not observed, and is a unique third forbidden transition $4 \rightarrow 0 +$. An example of the $4 \rightarrow 0 +$ transition is ⁴⁰Kr, the log ft values of which are 18 and 21 for ⁴⁰Kr \rightarrow ⁴⁰Ca and ⁴⁰K \rightarrow ⁴⁰Ar, respectively. Then the branching ratio of the transition to the ⁸⁸Sr ground state is estimated to be 10^{-9} . Therefore, this transition is neglected.

b) Gamma-ray intensities. Experimental values of relative intensities and intensities per decay are summarized in Table 3.7.1. Intensities of the 2734 keV and 3219 keV gamma rays are necessary to evaluate the intensity per decay of the 1836 keV gamma ray. The values given by Ardisson et al. (74Arl2) were adopted. The intensity ratio of the 898 keV gamma ray to the 1836 keV one was used for evaluation of the intensity of the 898 keV gamma ray.

c) Internal conversion coefficients and internal pair formation. Experimental and theoretical internal conversion coefficients are shown in Table 3.7.2 and Table 3.7.3, respectively. For the 1836 keV transition the theoretical value of α_{K} is obtained from interpolation of Trusov's values (72Tr) and the K/L ratio is from extrapolation of theoretical Values of α_{K} and α_{L} are available for this energy region. For the total internal conversion coefficients the experimental value is 17% smaller than the theoretical value. The theoretical value of the internal pair formation coefficient is obtained from interpolation of the value of Lombard et al. (71Lo), and agrees with the experimental value of Allan. Therefore we adopted his experimental values for the total internal conversion coefficient and the internal pair formation coefficient.

d) Evaluation of gamma-ray intensities. The intensity per decay of the 1836 keV gamma ray was obtained from the total internal conversion coefficient, the internal pair formation coefficient and the intensities of the 2734 keV and 3219 keV gamma rays as shown in Table 3.7.4. The value of Yoshizawa et al. (79Yo) was adopted for the relative intensity of the 898 keV gamma ray. The intensity per decay of this gamma ray was obtained from this relative intensity and the intensity per decay of the 1836 keV gamma ray. The evaluated result of two strong gamma rays are shown in Table 3.7.5.

Gamma ray			Relative intensity			Intensity per decay		
Number Energy Pelle (keV) 60Pe23	Pelle	Shastry et al.	y Sakai et al.	Zarnowiki	Yoshizawa et al.	Schotzig et al.	Ardisson et al.	
	64Sh16 66Sa08 67Za			79Yo	74Ar12			
1	898.0	94.0±0.7	7 91		92	94.4±0.3*	94.3±0.5	91.4±0.7 ^{a)}
2	1836	100	100	100	100	100.0±0.3*	99.37±0.02	99.4±0.1 ^{a)}
3	850.6						(0.066±0.013
4	1328		3				(0.021±0.006
5	2734		0.97	0.63±0.0	4 0.63±0.4		($0.72 \pm 0.07^*$
6	3219		0.3 (0.0095±0.0	03		0	.0071±0.0020

Table 3.7.1 Experimental values of gamma-ray intensities.

a) IAEA recommended value.

Table 3.7.2 Experimental values of internal conversion coefficients and internal pair formation coefficients.

Gamma ray		_	Peacock	Metzger	Hamilton	Allan
Number	Energy (keV)	-	Jones Pe	Amacher 52Me50	et al. 66Ha07	71A106
1	898.0	α _v ×10 ⁴			3.01±0.21	2.5 ±0.3
		K/LMIN			7.0 ±0.5	8.0 ±0.2
		a×104	27	3 4+0 7	3.45±0.24	2.8 ±0.3
2	1836	α _r ×10 4	.,	5.420.7		1.24±0.16
		K/LMN				7.8 ±0.3
		a×104	1.3	1.7±0.4		1.40±0.16 [*]
		Γ×104				$2.3 \pm 0.3^*$
5	2734	Γ×10 ⁴				3.3 ±0.5

Item		Valu	le
Atomic number		38	38
Energy (keV)		898.0	1836
Multipolarity		El	E2
	a _K	2.73(-4)	1.45(-4)
	α _{1.1}	2.79(-5)	
Conversion		3.23(-7)	
coefficients	a _{1.2}	6.12(-7)	
	α ₁	2.89(-5)	
	К/́L	9.45	9.23
	MN/L	0.18	0.19
	α	3.07(-4)	1.64(-4)
Pair formation coefficient	Г		2.28(-4)
Gamma branch	1/(1+a+Γ)	0.99969	0.99961

Table 3.7.3 Theoretical values of internal conversion coefficients and internal pair formation coefficients.

Table 3.7.4 Evaluation of gamma-ray intensity per decay.

Item	Value	Ref.
Υ 5	0.72 ±0.07%	74Ar12
Ύб	0.0071±0.0020%	74Ar12
α₂×10 ⁴	1.40 ±0.16	71A106
Γ ₂ ×10 ⁴	2.3 ±0.3	71A106
Υ 2	99.24 ±0.07% ^{a)}	

a) Obtained from the equation $\gamma_2(1+\alpha_2+\Gamma_2)+\gamma_5+\gamma_6=1$.

Table 3.7.5	Evaluated	values.
-------------	-----------	---------

Gamma-ray energy	Relative intensity	Intensity per decay
(keV)	(%)	(%)
898.0	94.4±0.3	93.7 ±0.4
1836	100.0±0.3	99.24±0.07

Fig. 3.7.1 Decay scheme of ⁸⁸Y.

Fig. 3.7.2 Intensity ratio of the 898 keV gamma ray to the 1836 keV one in the decay of ⁸⁸Y.

3.8 ⁹⁵Nb

The radioactive nuclide ⁹⁵Nb emits a strong 766 keV gamma ray and weak gamma rays. The decay scheme is shown in Fig. 3.8.1. The intensity of the 766 keV gamma ray was evaluated.

a) Beta-decay branching. The main transition β_1 of 160 keV is more than 99.9 %. Branching ratios β_2 of the transition to the 204 keV level and β_3 to the ground state are shown in Table 3.8.1. The value β_3 given by Antoneva et al. (74An22) was adopted. The value β_2 was not used for evaluation.

b) Weak gamma rays. A weak gamma ray at 204 keV was observed by Antoneva et al. Their value shown in Table 3.8.2 was adopted.

c) Internal conversion coefficients. The E2/M1 mixing ratio of the 766 keV transition is shown in Table 3.8.3. The value of Cameron et al. (67Ca07) was adopted. Experimental values of the K conversion coefficient are listed in Table 3.8.4. Theoretical internal conversion coefficients are shown in Table 3.8.5. The experimental values except Langer and Wortman agree with the theoretical value within experimental errors. Since the K-shell and the total internal conversion coefficients of M1 is almost identical to those of E2 and the E2 component is very small, the theoretical coefficient of M1 was adopted.

d) Evaluation of intensity. The intensity per decay of the 766 keV gamma ray was evaluated as shown in Table 3.8.6 by using the branching ratio of the ground state transition β_3 , the relative intensity of the 204 keV gamma ray γ_2^{\dagger} and the total conversion coefficient of the 766 keV transition α_1 . The internal conversion coefficients of the 204 keV transition (M1+E2) was neglected.

Beta ray		Branching	; ratio (%)
Number	r Maximum energy (keV)	Langer Wortman 63La06	Antoneva et al. 74An22
1	160	> 99.92	99.95
2	721		0.017±0.011
3	925	<0.075	0.030±0.005*

Table 3.8.1 Experimental values of beta-ray branching ratios.

Gamma ray		ay K conversion electron		Gamma-ray
Number	Energy (keV)	intensity ^a) (%)	α _K ×10 ³	intensity ^{D)}
1	765.8	100	1.28 ^{c)}	100
2	204.1	1.0 ±0.3	46 ^{d)}	0.028±0.008*
3	561.7	0.025±0.005		

Table 3.8.2 Relative K conversion electron intensities and relative gamma-ray intensities.

a) 74An22.

b) Obtained from the K-conversion electron intensities and the internal conversion coefficients.

c) Theoretical value.

d) Obtained from the decay of ⁹⁵Tc (72MeHo).

Table 3.8.3	Experimental values of E2/M1 mixing	
	ratio for the 766 keV gamma ray.	

Authors	δ(E2/M1)	E2 (%)	Ref.
Collin	$-0.02^{+0.17}_{-0.23}$	$0.04^{+2.8}_{-7.4}$	65Co18
	or -2.1 +0.8 -1.5	or 82 +39 -69	
Cameron et al.	0.05±0.01	0.25±0.10 [*] .	67Ca07

Authors	۵ĸ	Ref.	
Langer, Wortman	0.0011 ±0.0001	63La06	
Eissa et al.	0.00126 ± 0.00025	67Ei03	
Brahmava, Hamilton	0.00132±0.00013	69 Br 29	

Table 3.8.4 Experimental values of K conversion coefficient for the 766 keV transition.

Table 3.8.5	Theoretical	values	of	internal	conversion	coefficients.
					·	

Item		Val	ue
Atomic number		42	
Energy (keV)		765	. 8
Multipolarity		Ml	E2
	aĸ	1.28(-3)	1.29(-3)
	a _L ,	1.38(-4)	1.36(-4)
Conversion	alla	3.05(-6)	6.23(-6)
coefficients	α_{L_2}	1.32(-6)	5.20(-6)
	α ₁ .	1.43(-4)	1.48(-4)
	K∕L	8.97	8.73
	MEN / L	0.21	0.21
	α	0.00145*	0.00147
Gamma branch	1/(1+a)	0.999	0.999

Item	Value	Ref.
β 3	0.030±0.005 %	74An22
γ2†	0.028±0.008 %	
α_1 (Theoretical)	0.00145±0.00015	
Υ1	99.80 ±0.02 % ^{a)}	

Table 3.8.6 Evaluation of intensity per decay.

a) Obtained from the equation $\beta_3 + \gamma_1 (1 + \alpha_1 + \gamma_2 +) = 1$.

Fig. 3.8.1 Decay scheme of ⁹⁵Nb.

3.9 ¹⁰⁸mAg

The long-lived isomer ¹⁰⁸MAg mainly decays to ¹⁰⁸Pd by electron capture and emits three cascade gamma rays. The branching ratio of the isomeric transition to the ground state of ¹⁰⁸Ag is only 9 %. The decay scheme is shown in Fig. 3.9.1. Intensities of three strong cascade gamma rays were evaluated.

a) Electron capture. The isomeric state (6+) decays to the 1771 keV level (6+) in ¹⁰⁸Pd. Electron capture decay to the 1047 keV level (4+) has not been reported. But the branching of this non-unique second forbidden transition can not be neglected. This branching is estimated from log ft values of other non-unique second forbidden transitions in Table 3.9.1. The lower limit of the log ft value is about 12.0. If log ft is 12.0 or 12.3, the branching ratio ε_2 is 0.75 or 0.38, respectively. Therefore we adopted $\varepsilon_2=0.38\pm0.38$, as shown in Table 3.9.2.

b) Relative gamma-ray intensities. Experimental values of relative intensities are shown in Table 3.9.3. Errors of the 79 keV gamma ray following the isomeric transition are larger than 10 %. The relative intensity of the 79 keV gamma ray was evaluated by using values of Kistner and Sunyar (66Ki03), and of Kracikova and Kracik (68Kr04). That of the 633 keV gamma ray was by using two values of Hamilton et al. Average values of relative intensities are shown in Table 3.9.4.

c) Internal conversion coefficients. Experimental values of relative internal conversion electron intensities are listed in Table 3.9.5. Experimental and theoretical values of internal conversion coefficients are in Table 3.9.6 and Table 3.9.7, respectively. Internal conversion coefficients of the 79 keV transition are obtained from the experimental electron intensities of Kistner and Sunyar in Table 3.9.5 and the theoretical conversion coefficients of the 434 keV transition. The theoretical coefficients with 10 % errors was adopted for the 434 keV, 614 keV and 723 keV transitions. The evaluated values are shown in Table 3.9.8.

d) Decay of ¹⁰⁸Ag. The ground state of ¹⁰⁸Ag decays to both ¹⁰⁸Pd and ¹⁰⁸Cd. Decay data of the short lived ¹⁰⁸Ag are necessary to the evaluation of the ¹⁰⁸MAg gamma rays. Experimental branching ratios of ¹⁰⁸Ag beta transitions are listed in Table 3.9.9. The new result of Frevert et al. (65Fr01) in this table was adopted. Relative gamma-ray intensities in the decay of ¹⁰⁸Ag are listed in Table 3.9.10, and the average values are in Table 3.9.11. Evaluated values of two gamma rays are shown in Table 3.9.12.

e) Branching ratio of isomeric transition. This ratio can be extracted from the intensity ratio of the 79 keV gamma ray to one of the cascade gamma rays and also from the intensity ratio of the 633 keV gamma ray to the 434 keV gamma ray. In Table 3.9.13, f_1 indicates the former and f_2 the latter. Relations used in extraction are in the foot notes, where γ_{μ}^{+} means the relative intensity of the 434 keV gamma ray in the decay of ^{108}Mag , $\widehat{\gamma}_{\mu}$ means this gamma-ray intensity per decay of ^{108}Ag and γ_{g}^{+} and $\widehat{\gamma}_{g}$ are similar ones for the 633 keV gamma ray.

f) Evaluation of three cascade gamma-ray intensities. The final evaluated result is given in Table 3.9.14. Since the 434 keV gamma-ray intensity per decay of ¹⁰⁸Ag is very

- 43 -

weak, intensity ratio of this gamma ray to the 614 keV gamma ray can be accurately evaluated. The branching ratio f_1 in Table 3.9.13 was used for the evaluation. Larger errors of intensities per decay are mainly due to the error of f_1 .

Nuc	leus	Spin –	parity	$\log ft$	
Parent	Daughter	Initial	Final	TOR JC	
° " Nb	^{9 4} Mo	6+	4+	12.0	
°°Tc	° ® Ru	(6)+	4+	14.1	
^{1 o m} Ag	110 Cd	6+	4+	2 11.9	
^{9 3} Mo	° 'Nb	5/2+	9/2+	2 11.3	
⁹³ Zr	^{9 3} Nb	5/2+	9/2+	≥ 12.8	
⁹⁷ Tc	⁹⁷ Mo	(9/2)+	5/2+	13.1	
۶°Tc	° ° Ru	9/2+	5/2+	12.3	
¹²⁹ I	^{1 2 9} Xe	7/2+	3/2+	13.5	
^{1 3 5} Cs	^{1 3 5} Ba	7/2+	3/2+	13.2	
¹³⁷ La	^{1 3 7} Ba	(7/2+)	3/2+	12.1	
^{1 37} Cs	^{1 3 7} Ba	7/2+	3/2+	12.8	

Table 3.9.1 Log ft values of second forbidden transition for neighbouring nuclei.

Table 3.9.2 Estimation of the electron capture transition intensity from ^{10 gm}Ag to the 1048.3 keV (4)+ state of ^{10 g}Pd.

Item	Value	
log ft	12.3	
log f	0.27	
$T_{1/2}$ of 100^{m} Ag	127 ± 21	
ε2'	0.38 ± 0.38	

Gamma ray		Wahlgren	Kistner	Kracikova	Hamilton	et al.	Meyer
Number	Energy	Meinke	Sunyar	Kracik	71Ha1	7	
	(keV)	60Wa10	66Ki03	68Kr04	Vanderbilt	ORNL	78Me
1	79.2	5.9	7.3±0.8*	8.3±0.9*		· · · · · · · · · · · · · · · · · · ·	
	406			0.8±0.4	<0.012	<0.011	
4	434.0	100	100	100	100	100	991±3*
7	614.4	100	103± 3	105±10	98.8±2.8	99.3±2.0	997±3
8	632.9			0.18±0.07	0.16±0.02*	0.15±0.01*	1.51±0.008*
9	723.0	100	102± 3	102±10	97.8±2.8	100.4±2.0	1000±3
10	837			0.06±0.04	<0.01	0.005±0.003	
	1020			1.0±0.5	<0.004	<0.003	

Table 3.9.3 Experimental values of relative gamma-ray intensities in the decay of ^{100 m}Ag.

Gamm	a ray	w = 1			w	$= 1/\epsilon^2$	
Number	Energy	Average	verage Error		Average	Erro	r
	(keV)	value	Int.	Ext.	value	Int.	Ext.
1	79.2	7.80*	0.60*	0.50	7.74	0.60	9.50
4	434.0	100.			100.		
8	633.0	0.154*	0.008*	0.003	0.152	0.006	0.002

Table 3.9.4 Average values of relative gamma-ray intensities in the decay of ^{10 gm}Ag.

Table 3.9.5 Experimental values of relative conversion electron intensities in the decay of ^{10 em}Ag.

Gamma	ray		W ahlg ren	Kistner
Number	Energy (keV)		Meinke 60Wal0	Sunyar 66Ki03
1	79.2	K		204 ±10*
		L		25 ± 2*
		M+N		6.1± 1.3*
4	434.0	К	100	100
		L+M	200	14.8± 2.3
6	614.4	К	41	37 ± 3
		L+M	71	5.1± 1.6
9	723.0	К	21	25.0± 1.2
		L+M	61	4.6± 0.8

Table 3.9.6 Experimental values of internal conversion coefficients

Gamma	Gamma ray		Kracikova	
Number	Energy Kracik			
	(keV)	<u> </u>	68Kr04	
1	79.2	α	0.25 ± 0.15	
6	614.4	α _κ	$3.15 \pm 0.30 (-3)$	
9	723.0	αĸ	1.69 ± 0.30 (-3)	

Item				Value		
Atomic number		46	46	46	47	48
Energy (keV)		434.0	614.4	723.0	79.2	632.9
Multipolarity		E2	E 2	E 2	E1	E 2
	ar	7.87(-3)	2.92(-3)	1.91(-3)	0.271	3.01(-3)
	α,	8.35(-4)	3.15(-4)	2.07(-4)	2.59(-2)	3.29(-4)
Conversion		9.94(-5)	2.47(-5)	1.33(-5)	3.08(-3)	2.84(-5)
coefficients	α,	8.37(-5)	1.95(-5)	1.03(-5)	4.62(-3)	2.14(-5)
	α, L3	1.02(-3)	3.59(-4)	2.30(-4)	3.36(-2)	3.79(-4)
	K/L	7.73	8.12	8.28	8.08	7.95
	MN/L	0.22	0.22	0.22	0.23	0.23
	a	9.11(-3)*	3.36(-3)*	2.19(-3)*	0.312	3.48(-3)
Gamma branch	$1/(1+\alpha)$	0.99097	0.99665	0.99781	0.7622	0.99653

Table 3.9.7 Theoretical values of internal conversion coefficients.

Table 3.9.8 Evaluated values of internal conversion coefficients.

-

Item		Value		
Atomic number	46	46	46	47
Energy (keV).	434.0	614.4	723.0	79.2
Multipolarity	E 2	E2	E 2	El
ar	7.87±0.79(-3) ^a) 2.91±0.37(-3)	1.97±0.22(-3)	0.206±0.028
K/LMN	6.8 ±1.1	7.3 ±2.4	5.4 ±1.0	6.56 ±0.60
α	9.03±0.92(-3)	3.31±0.45(-3)	2.33±0.27(-3)	0.237±0.032*
1/(1+α) (0.99105±0.00090	0.99670±0.00045 0	.99768±0.00027	0.808±0.021

a) Theoretical value.

Electron capture		Perlman	Wahlgren	Frevert	Frevert*
Symbol	Transition energy(keV)	et al. 53Pel6	Meinke 60Wa10	62Fr07	65Fr01
β1	177			∿ 0.02	∿ 0.02
β2	1018	0.8	1.90	1.73±0.10	1.75±0.10
β3	1650	97.3	93.8	95.0 ±0.3	95.9 ±0.3
β1 ⁺	1921	0.14	0.36	0.28±0.02	0.28±0.02
ε1	990	0.22	0.42	0.26±0.03	0.27±0.03
٤ ع	1490	0.06	0.18	0.19±0.03	0.19±0.03
٤.	1921	1.5	3.35	2.49±0.25	1.73±0.12

Table 3.9.9 Experimental branching ratios of beta transitions in the decay of 10.8 Ag.

Table 3.9.10 Experimental values of relative intensities of gamma rays in the decay of ¹⁰⁸Ag.

Gamm	ia ray	Johnson	Okano	Singhal
Numb er	Energy	et al.	et al.*	et al.*
	(keV)	71Jo07	710k01	73Si02
2	383			0.18 ±0.06
3	389		< 0.2	0.37 ± 0.12
4	434.0	100 ± 2.3	100	100
5	497	0.26 ±0.15	0.25 ±0.09	0.45 ±0.11
7	618.9	54.9 ±1.5	54.1 ±2.4	52.4 ±2.6
8	633.0	375.9 ±8.5	355.1 ± 1 4.9	349.6 ±17.5
11	841	≨ 0.15	<0.1	
12	880	0.45 ±0.08	0.65 ±0.03	0.64 ±0.05
13	931	0.094±0.045	0.091±0.016	0.11 ± 0.01
14	1007	2.97 ±0.30	2.71 ±0.11	2.79 ±0.14
15	1106	0.49 ±0.04	0.26 ±0.02	0.33 ±0.03
16	1441	0.53 ±0.08	0.56 ±0.04	0.61 ±0.04
17	1540	0.15 ±0.06	0.20 ±0.02	0.21 ±0.02

a) Normalized at the 434 keV gamma-ray intensity.

'Gamma ray		ay w = 1		$w = 1/\epsilon^2$			
Number	Energy	Average	Err	or	Average	Err	or
	(keV)	value	Int.	Ext.	value	Int.	Ext.
4	434.0	100*			100		· <u> </u>
5	497	0.32	0.07	0.07	0.32	0.06	0.07
7	618.9	53.8	1.3	0.7	54.2	1.1	0.7
8	632.9	360.2*	8.2*	8.0	367.6	6.8	7.9
12	880	0.580	0.033	0.065	0.629	0.024	0.041
13	931	0.098*	0.016*	0.006	0.104	0.008	0.006
14	1007	2.82	0.12	0.08	2.76	0.08	0.05
15	1106	0.360	0.018	0.068	0.312	0.015	0.056
16	1441	0.567*	0.033*	0.023	0.579	0.027	0.021
17	1540	0.187*	0.022*	0.019	0.204	0.014	0.009

Table 3.9.11 Average values of relative intensities of gamma rays in the decay of ¹⁰⁸Ag.

Table 3.9.12 Evaluated values of the 434 keV and the 633 keV gamma-ray intensities per decay in the decay of ^{10 °}Ag.

Gamma ray		Intensity per decay		
Number	Energy (keV)	(
4	434.0	0.48 ± 0.07		
8	633.0	1.73 ± 0.23		

Item		Value (%)	Remarks	_
Isomeric transition intensity	f 1 f 2	8.73 ± 0.65* 8.1 ± 1.1	a) b)	-

Table 3.9.13 Evaluation of the isomeric transiton intensity.

- a) Obtained from the equation $f_{1} = \gamma_{1}^{\dagger} (1+\alpha_{1}) / \{ \gamma_{4}^{\dagger} (1+\alpha_{4}) + \gamma_{1}^{\dagger} (1+\alpha_{1}) (1-\hat{\gamma}_{4}) \},$ where $\hat{\gamma}_{4}$ means the gamma-ray intensity per decay of 2.4 min ¹⁰⁸Ag, while γ_4^+ denotes the relative intensity in the decay of $127y^{108}$ Mg. b) Obtained from the equation
 - $f_{2} = [\gamma_{s}^{\dagger}(1+\alpha_{s})/\hat{\gamma}_{s}]/[\gamma_{*}^{\dagger}(1+\alpha_{*})+\{\gamma_{s}^{\dagger}(1+\alpha_{s})/\hat{\gamma}_{s}\}(1-\hat{\gamma}_{*})].$

Table 3.9.14 Evaluation of intensities per decay and relative intensities of gamma rays in the decay of ^{10 sm}Ag.

Number	Energy (keV)	Intensity per decay (%)	Relative intensity (%)
4	434.0	90.5 \pm 0.7 ^a)	$99.476 \pm 0.090^{\text{d}}$
6	614.4	91.0 \pm 0.7 ^b)	100.000 ± 0.034
9	723.0	90.7 ± 0.8 ^{c)}	99.74 ± 0.38 ^{e)}

- c) $(1-f-\epsilon_2)/(1+\alpha_9)$. d) $[1/(1+\alpha_9)+\frac{f}{1-f}\hat{\gamma}_{+}](1+\alpha_6)$.
- e) $(1-\epsilon_2)(1+\alpha_6)/(1+\alpha_9)$.

Fig. 3.9.1 Decay scheme of ¹⁰⁸MAg

3.10 ¹³⁴Cs

Eleven gamma rays are emitted in the decay of ¹³⁴Cs. The decay scheme is shown in Fig. 3.10.1. Relative intensities and intensities per decay of gamma rays were evaluated by using relative gamma ray intensities.

a) Beta-ra branching ratios. Experimental branching ratios are shown in Table 3.10.1. For the weak transition β_5 to the 2+ state at 605 keV, we adopted the experimental value of Hsue et al. (68Hs01) which is necessary to evaluate the intensities per decay of the 796 keV gamma ray. Since the ground state beta transition is the fourth forbidden one $(4^+ \rightarrow 0^+)$, the branching ratio of the ground state transition is about 10^{-6} .

b) Relative gamma-ray intensities. Many intensity measurements have been done with NaI detectors, Ge(Li) detectors and magnetic beta-ray spectrometers. Relative intensities and intensities per decay were listed in Table 3.10.2 and Table 3.10.3, respectively. Eight of them are measurements with Ge(Li) detectors. Experimental values of relative 1168 keV gamma-ray intensity are plotted in Fig. 3.10.2.

Fig. 3.10.3 shows deviations of intensities from values of Yoshizawa et al. (79Yo). In the 600~1000 keV region, larger deviations are seen in old measurements, and systematic deviations are much smaller between values of Yoshizawa et al. and Debertin et al. (77De) We adopted the values of Yoshizawa et al.

c) Internal conversion coefficients. Experimental values of K-shell internal conversion electron intensities are listed in Table 3.10.4, and adopted values are also in Table 3.10.5. The average values of K-shell electron intensities were obtained from these values as shown in Table 3.10.6. Theoretical values are listed in Table 3.10.7. The M1+E2 mixing is expected for the 475 keV and the 1038 keV transitions, and the E0+M1+E2 mixing is for the 563 keV and the 569 keV transitions. Adopted values of the K-shell conversion coefficients are shown in Table 3.10.8 with five other transitions. Values for the four transitions are obtained from the average values with the weight w=1/ ε^2 which are normalized at the 605 keV transition, and values for five other transitions are the theoretical values. The total internal conversion coefficients in Table 3.10.8 are obtained from the adopted values of α_{cr} and theoretical values of K/L and MNO/L in Table 3.10.7.

The M1/E2 ratios for the 569 keV transition given by gamma-gamma angular correlation experiments are summarized in Table 3.10.9. These values are consistent with the adopted internal conversion coefficients of $\alpha_{\rm K}$ and α .

d) Evaluation of gamma-ray intensities. Evaluated values of gamma-ray intensities are shown in Table 3.10.10. Relative intensities are cited from the adopted values in Table 3.10.3. The intensity per decay of the 605 keV gamma ray γ_6 is obtained from the intensity balance of two transitions of 605 keV and 1165 keV. Since the relative intensity $\gamma_{10}^+ = \gamma_{10}/\gamma_6$ is only 1.8 %, the intensity per decay γ_6 was accurately evaluated. The intensity per decay of the 796 keV gamma ray γ_7 was also evaluated from the intensity balance at the 605 keV level, and is satisfactorily accurate. Other values for intensities per decay were obtained from the relative intensities. Final evaluated values for two

- 52 -

gamma rays are listed in Table 3.10.11, where relative intensities were obtained from the evaluated intensities per decay.

Beta ray		Trehan	Van Wijngaarden	Hsue	
Number	Maximum energy (keV)	et al. 63Tr05 (%)	Connor 64Va06 (%)	et al. 68Hs01 (%)	
1	89	26	28	27 ±2	
2	416	2.1 ±0.2	1	3.0 ±0.5	
3	658	71 ±3	71	70 ±2*	
4	891	0.7 ±0.08	<0.045	0.045±0.015	
5	1454	0.13±0.02	<0.005	0.008±0.004*	

Table 3.10.1 Experimental values of beta-ray branching ratios.
	Gamma ray Number Energy (keV)	Verhaeghe	Keister	Girgis	Yamamoto	Segaert	Brown	Bashaindy Abd	Nagpal	Yoshizawa Luctot	
		Energy (keV)	et al. \$4Ve09	et al. 55Ke04	et al. 59Gi49	60Ya03	63Se09	65B r 20	El-Hariem 66Ba57	68Nall	79Yo
-	3	475.4	4	1.8±0.4	1.3±0.4	1.72	1.4±0.04	1.54±0.8	0.31±0.05	1.67±0.11	
	4	563.3	15	9± 2		12.2		8.5 ±0.8	8.86±0.83	8.83±0.46	8.57 ±0.03
ו ית	5	569.3	20	13±2	24±4	26.3	20±5	14.6 ±1.4	14.18±1.12	13.61±0.70	15.78 ±0.06
1	6	604.7	100	100	100	100	100	100 ± 5	100	100 ± 3	100.0 ±0.4
	7	795.8	100	91±4	92±7	46.55	91±10	90 ± 9	48.08±3.55	89.25±4.47	87.5 ±0.3
	8	801.8	15	18±4		4.85		9.0 ±1.5	1.43±0.25	8.12±0.42	8.89 ±0.03
	9	1038.5	4	0.9±0.2	1.5±0.3	0.36	1.5±0.3	1.06±0.10	1.55±0.21	1.06±0.06	1.008±0.005
	10	1167.9	4	3.0±0.4	2.2±0.3	0.44	2.4±0.5	1.99±0.17	2, 31 ±0,30	2.06±0.14	1.827±0.008
	11	1365.1	4	4.6±0.3	3.3±0.5	0.57	3.5±0.7	3.46±0.30	4.76±0.52	3.55±0.19	3.074±0.013

Table 3.10.2 Experimental values of relative gamma-ray intensities.

Gamn	ia ray	Brown	Raeside	Nagpal	Abdul-	Ho fmann	Stelson	Hise	Debertin	Yoshizawa
Number	Energy (keV)	Ewan 65Br20	et al. 67Ra10	68Na11	68Ab01	ет аг. 70Но06	et al. 73St	et al. 75Hi	et al. 77De	79Yo
	2 3 3						< 0.0005	<0.0002		
1	242.9		0.02±0.01 ^a)		< 0.08	0.022±0.00	2 0.0210±0.000	8 *	
2	326.5		0.02±0.01 ^a)		<0.08	0.014±0.00	2 0.0144±0.000	5*	
ວ່າ 3	475.4	1.5 ± 0.15	1.51±0.16	1.62 ± 0.11	1.4±0.2	1.57±0.08	1.50±0.03	1,465±0.040	* 1.51 ±0.03*	
4	563.3	8.3 ±0.8	8.96±0.84	8.60±0.46	8.7±1.0	8.86±0.45	8.47±0.17	8.38 ±0.05	8.34 ±0.12*	8.37 ±0.05
5	569.3	14.2 ±1.4	15.81±1.1	13.30±0.70	15.0±1.6	16.0 ±1.0	15.36±0.31	15.43 ± 0.11	15.38 ±0.22	15.40 ±0.08
6	604.7	97.5	98.04	97.50±3.0	98.0	98.1 ±6.0	98.2 ±1.0	97.56 ±0.32	97.6 ±0.1	97.64 ±0.06
7	795.8	87.8 ±9	87.79±6.6	87.00±4.47	88.4±9.1	86.0 ±4.3	84.9 ±2.2	85.44 ±0.38	85.3 ±0.9	85.52 ±0.05
8	801.8	8.8 ±1.5	8.94±0.8	7.90±0.42	9,2±1,0	8.70±0.44	8.61±0.22	8.73 ± 0.04	8.64 ±0.12	8.68 ±0.04
9	1038.5	1.03±0.1	1.02±0.08	1.04±0.06	1.1±0.6	0. 99± 0.06	1.01±0.02	1,00 ±0,01	0.998±0.013	0.984±0.006
10	1167.9	1.94±0.15	1.96±0.22	2.01±0.14	1.9±0.2	1.86±0.10	1.84±0.04	1.805±0.026	1.800±0.020	1.783±0.010
11	1365.1	3.37±0.30	3.25±0.32	3.47±0.19	3.3±0.3	3.23±0.17	3.11±0.08	3.04 ± 0.04	3.02 ±0.03	3.001±0.017

Table 3.10.3 Experimental values of intensities per decay.

a) Intensities were measured with the bend-cristal spectrometer.

Gamm	ia ray	Relati	ve intensity		Intensity per decay × 10 ⁸			
Number	Energy (keV)	Keister et al. 55Ke04	Trehan et al. 65Tr05	Abdul-Malek Naumann 68Ab01	Van Wijngaarden Connor 64Va06	Brown Ewan 65Br20	Nagpal 68Nall	
3	475.4	3 ±1	1.2 ±0.2			14.1 ±0.6	15,97± 3.2	
4	563.3	11.9 ± 0.6		10.5±0.7		46.5 ±2	55.00± 5.50	
5	569.3	26 ± 1	20 ±2	22.4±1.2		116.2 ±5	117.00±11.70	
6	604.7	100	100 ±10	98.0	469	473 ±10	494.00±49.40	
7	795.8	44 ±1		51.4±2.0		216 ±8	252.10±25.21	
8	801.8	3.9 ±0.5	94 ±9	5.6±1.0		22.6 ±1	21.90± 4.4	
9	1038.5	0.43±0.08	1.14±0.15		1.82±0.18	1.67±0.09	1.75± 0.18	
10	1167.9	0.49±0.08	3.0 ± 0.3		1.82±0.18	2.04±0.10	2.11± 0.20	
11	1365.1	0.49±0.08	3.6 ±0.4		2.30±0.20	2.41±0.10	2.75± 0.27	

Table 3.10.4 Experimental values of K-shell internal conversion electron intensities.

Gamma ray		Keister *	Brown *	Abdul-Malek *	Nagpal *	
Numb er	Energy(keV)	et al. 55Ke04	Ewan 65Br20	68Ab01	68Nall	
3	475.4	3 ±1	2.98 ±0.13		3.23±0.65	
4	563.3	11.9 ±0.6	9.83 ±0.42	10.71±0.71	11.1 ±1.1	
5	569.3	26 ±1	24.6 ±1.1	22.9 ±1.2	23.7 ±2.4	
6	604.7	100 ±4	100 ±2.1	100 ±4 ^{a)}	100 ±10	
7	795.8	44 ±1	45.7 ±1.7	52.5 ±2.0	51.0 ±5.1	
8	801.8	3.9 ±0.5	4.78 ±0.21	4.6 ±1.0	4.43±0.89	
9	1038.5	0.43±0.08	0.353±0.019		0.35±0.0036	
10	1167.9	0.49±0.08	0.431±0.021		0.43±0.041	
11	1365.1	0.49±0.08	0.510±0.021		0.56±0.055	

Table 3.10.5 Experimental values of relative K-shell internal conversion electron intensities.

a) Errors are our estimation.

Gamma	ray		$w = 1/\epsilon^2$		w = 1			
Number	Energy	Average	Erro	r	Average	Erro	or	
	(keV)	value *	Int.*	Ext.	value	Int.	Ext.	
3	475.4	2.99	0.12	0.034	3.07	0.40	0.081	
4	563.3	10.59	0.30	0.50	10.89	0.38	0.43	
5	569.3	24.61	0.60	0.71	24.28	0.76	0.67	
6	604.7	100	1.7	0	100	2.9	0	
7	795.8	45.77	0.78	1.75	48.3	1.5	2.0	
8	801.8	4.64	0.19	0.18	4.43	0.37	0.19	
9	1038.5	0.356	0.017	0.011	0.379	0.030	0.026	
10	1167.9	0.433	0.018	0.009	0.449	0.031	0.020	
11	1365.1	0.515	0.019	0.012	0.519	0.033	0.020	

Table 3.10.6 Average values of relative K-shell internal conversion electron intensities.

Gamm	na ray	E2 conversion coefficients					M1 conversion coefficients				
Number	Energy (keV)	α _K ×10 ³	α _L ×10 ³	K/L	MNO/L	α ×10 ³	α _K ×10 ³	α _L ×10 ³	K/L	MNO/L	α ×10 ³
3	475.4	9.52	1.45	6.54	0.25	11.3	13.0	1.67	7.77	0.26	15.1
4	563.3	6.04	0.88	6.86	0.25	7.14	8.54	1.09	7.83	0.26	9.91
5	569.3	5.88	0.85	6.88	0.25	6.94	8.32	1.06	7.83	0.26	9.65
6	604.7	5.03	0.72	6.98	0.25	5.93					
7	795.8	2.58	0.35	7.38	0.25	3.02					
8	801.8	2.54	0.34	7.39	0.25	2.97					
9	1038.5	1.43	0.19	7.69	0.25	1.67	2.00	0.25	7.97	0.26	2.32
10	1167.9	1.12	0.14	7.80	0.25	1.30					
11	1365.1	0.819	0.104	7.91	0.25	0.949					

Table 3.10.7 Theoretical values of internal conversion coefficients.

Gam	na ray	Conversion coefficienrs						
Number	Energy (keV)	α _K ×10 ³	a×10 ³ *	Remarks				
3	475.4	9.7 ±0.5	11.4 ±0.6	a)				
4	563.3	6.7 ±0.4	7.9 ±0.4	a)				
5	569.3	7.9 ±0.3	9.2 ±0.4	a)				
6	604.7	5.03±0.50	5.93±0.59	b)				
7	795.8	2.58±0.26	3.02±0.30	b)				
8	801.8	2.54±0.25	2.97±0.30	b)				
9	1038.5	1.73±0.10	2.01±0.12	a)				
10	1167.9	1.12±0.11	1.30±0.13	b)				
11	1365.1	8.19±0.82	0.94 9 ±0.95	b)				

Table 3.10.8 Adopted values of the internal conversion coefficients.

a) These values are experimental values and are normalized to the theoretical values of 5.03×10^{-2} at 604.7 keV.

b) Theoretical values.

Gamma ray		Begzhanov	(1972)
Number	Energy (keV)	δ (E2/M1)	E2(%)
4	563.3	7.5±0.9	98.3+8:3
5	569.3	-0.29±0.02	7.8±1:8

Table 3.10.9 Experimental values of the E2/M1 mixing ratio of the 563.3 keV and 569.3 keV gamma rays.

Gamma	ray	Rela	tive	Intensity		
Number Energy (keV)		inte (%	nsity)	per decay (%)		
1	242.9	0.022	2±0.0012	0.021	7±0.0012	
2	326.5	0.015	3±0.0009	0.014	9±0.0008	
3	475.4	1.55	±0.04	1.52	±0.04	
4	563.3	8.57	±0.03	8.37	±0.05	
5	569.3	15.78	±0.06	15.40	±0.08	
6	604.7	100.0	±0.4	97.64	±0.06	
7	795.8	87.5	±0.3	85.52	±0.05	
8	801.8	8.89	±0.03	8.68	±0.04	
9	1038.5	1.008	±0.005	0.984	±0.006	
10	1167.9	1.827	±0.008	1.783	±0.010	
11	1365.1	3.074	±0.013	3,001	±0.017	

Table 3.10.10 Evaluated values of gamma-ray intensities.

Table 3.10.11 Evaluated values for primary standard.

Gamma	ray	Intensity	Relative	Fatiration
Number	Energy (keV)	per decay (%)	(%)	Estimation
6	604.7	97.64±0.06	100.00±0.06	a)
7	795.8	85.52±0.05	87.59±0.05	b)

- a) Beta transition to the first excited state is neglected. These values are obtained from the 604.7 keV and 1167.9 keV gamma-ray intensities.
- b) These values are obtained from the four gamma transition intensities to the first excited state such as the 563.3 keV, 795.8 keV, 1038.5 keV and 1365.1 keV gamma rays. In the error estimation of the relative intensity the error of the 1167.9 keV gamma ray is not included.

Fig. 3.10.1 Decay scheme of 134 Cs.

Fig. 3.10.2 Intensity ratio of the 1168 keV gamma ray to the 605 keV one in the decay of $^{134}\mathrm{Cs.}$

Fig. 3.10.3 Comparison of relative intensities of strong gamma rays in the decay of ^{134}Cs .

3.11 ¹³³Ba

The long-lived nuclide ¹³³Ba decays to ¹³³Cs by electron capture and emits 9 low energy gamma rays. The decay scheme is shown in Fig. 3.11.1. Intensities of the 276, 303. 356 and 384 keV gamma rays were evaluated.

a) Relative intensities. Many observed values have been reported as shown in Table 3.11.1. Fig. 3.11.2 shows experimental values of the relative intensity of the 303 keV gamma ray. Deviations of three recent accurate values of Schötzig et al. (77Sc31), Gehrke et al. (77Ge) and Meyer (78Me) from those of Yoshizawa et al. (79Yo) are plotted in Fig. 3.11.3. This figure indicates that four measurements agree each other within their experimental errors. Therefore, the most accurate values of Yoshizawa et al. are adopted for four gamma rays and the average value of Schötzig et al., Gehrke et al. and Meyer shown in Table 3.11.2 is adopted for the 223 keV gamma ray.

b) Electron capture. Branching ratios of electron capture transitions which are obtained from gamma ray intensities are shown in Table 3.11.3. Branching ratios ε_3 and ε_4 correspond to the second forbidden transition $(1/2+\pm5/2+)$. Since the experimental values scattered each other and are not reliable. the branching ratios are estimated from log ft values of non-unique second forbidden transitions at neighbouring nuclei shown in Table 3.9.1. Assuming log ft = 12.4 for both transitions, one obtains branching ratios ε_3 and ε_4 shown in Table 3.11.4. The transitions to the ground state is an unique second forbidden one, the log ft value of which is about $13 \sim 14$. for example, ¹⁰Be and ²⁶A1. Assuming log ft = 13.4, one obtains the ratio in Table 3.11.4. These ratios are very small, but the values $\varepsilon_5 \pm \varepsilon_5$ were used for evaluation.

c) Internal conversion coefficients. Experimental values of K-shell coefficients and conversion ratios are summarized in Table 3.11.5 and 3.11.6, respectively. Theoretical ones are also in Table 3.11.7. The penetration effect for conversion electrons and the E2 mixings are not negligible for M1 transitions. In addition, many conversion electron measurements are available. Therefore experimental values are adopted. The adopted values of $\alpha_{\rm K}$ shown in the table were measured with Ge(Li) and Si(Li) detectors, and those of conversion ratios were with high resolution magnetic spectrometers. The average values of them are shown in Table 3.11.8 and Table 3.11.9. The final evaluated values of the conversion coefficients and the ratios are summarized in Table 3.11.10.

d) Evaluation of gamma-ray intensities. Sum of the 223. 276 303. 356 and 384 keV transition intensities and the electron capture branching ratios of ε_1 , ε_2 and ε_3 is normalized to 100 % per decay. One can obtain gamma-ray intensities per decay from this condition, the evaluated values of the relative gamma-ray intensities and the total internal conversion coefficients α . The final results are listed in Table 3.11.11.

			Re	lative inte	nsities (%)					
Number Authors Energy (keV)	1 53.2	2 79.6	3 81.0	4 160.6	5 223.1	6 276.4	7 302.9	8 356.0	9 383.9	Kef.
Hayward et al.	1.45	31.	9				44.9	100		54Ha
Craseman et al.	weak	48		0.1		weak	34	100		57Cr
Gupta et al.	7.3		45.5	0.4		3.3	22	100		58Gu
Koicki et al.						10	38.4	100	20	58Ko
Ramaswamy et al.	2.4	7	35			38		100	14	60Ra
Stewart, Lu					∿0.3	8	27	100	10	60St
Mann, Chaturvedi	2.5 ±1.0	52.	0±2.0			10.0 ±1.0	21.0 ±2.0	100	11.0 ±3.0	6 3Ma
Thun et al.						11.0	25.8	100.0	14.7	66Th09
Blasi et al.	3.8 ±0.8	3.8 ±0.4	53 ±4	1.1 ±0.3	0.7 ±0.3	11.0 ±0.7	30 ± 2	100	14.5 ±1.0	67B1
Gurfinkel, Notea	3.7 ±0.09	64.	7±4.2	1.2 ±0.05	0.80 ±0.42	11.6 ±0.17	29.7 ±0.29	100	14.1 ±0.26	67Gu
Alexander, Lau	3.3 ±0.5	65.	9±3.9	1.20±0.06	0.74 ±0.06	12.0 ±0.4	30.6 ±0.9	100	14.2 ±0.5	68A116
Bosch et al.	4.2 ±0.2	4.0 ±0.4	58.2±1.5	1.07±0.05	0.78 ±0.06	11.8 ±0.3	29.8 ±0.8	100	14.3 ±0.3	68Bo04
Donnelly et al.	3.16±0.39	5.48±0.71	52.0±6.8	0.99±0.10	0.72 ±0.08	11.62±0.82	29.4 ±2.1	100	14.3 ±1.0	68Do10
Notea, Gurfinkel	3.78±0.09	4.90±0.59	59.8±7.2	1.21±0.05	0.803±0.042	11.61±0.17	29.75±0.29	100	14.18±0.26	68No01
Schmidt et al.	3.54±0.05	3.9 ±0.2	52.4±1.0	1.16±0.05	0.74 ± 0.04	11.4 ±0.3	30.2 ±0.6	100	14.4 ±0.3	72Sc08
Inoue et al.				0.98±0.07	0.76 ±0.05	11.6 ±0.5	29.6 ±1.1	100.0	14.9 ±0.6	73In06
Legrand	3.2	3.7 ±0.4	56.1±5.7	1.4 ±0.2	0.66 ±0.02	11.35±0.25	29.4 ±0.6	100	14.3 ±0.3	73Le
McNelles, Campbel	1					11.43±0.23	29.29±0.59	100	14.47±0.32	73Mc18
Schötzig et al.	3.49±0.06	4.29±0.10	55.8±1.3	0.97±0.02	0.73 ±0.02*	11.41±0.14	29.43±0.33	100.0 ±0.9	14.33±0.13	77Sc31
Gehrke et al.	3.54±0.18	3.1 ±0.3	49.2±2.6	1.08±0.04	0.745±0.024*	11.7 ±0.4	29.76±0.30	100.0 ±1.0	14.36±0.14	77Ge
Meyer	3.48±0.07	3.77±0.09	51.2±0.4	1.05±0.03	0.71 ±0.02*	11.3 ±0.2	29.2 ±0.3	100.0 ±0.3	14.5 ±0.2	7 8Me
Yoshizawa et al.						11.53±0.06*	29.48±0.14*	100.0 ±0.4*	14.39±0.06*	79Yo

- 65 -

Table 3.11.1 Experimental values of relative gamma-ray intensities in the decay of ¹³³Ba.

 W=1 $W=1/\epsilon^2$

 Value
 Error

 Int.
 Ext.

 0.728*
 0.012*
 0.010

 0.726
 0.012

Table 3.11.2 Average values of relative intensities of 223.1 keV gamma ray.

Table 3.11.3 Experimental values of electron capture branches in the decay of ¹³³Ba.

\mathbf{X}	Elect	ron captur	e branches (\$)	
Authors Energy	r 1 v 48 keV	2 101 keV	3 324 keV	4 403 keV	R e f.
Stewart, Lu	76	11	13		60St
Blasi et al.	86 ± 4	14 ±6	<1.5		67B1
Hennecke et al.	80 ± 3	20 ±3	≦ 3	≦6.5	67He09
Alexander, Lau	88.8	6.5	4.7	∿0	68A116
Bosch et al.	82 ± 3	11 ±2	≦ 3	7 ± 3	68Bo10
Donnelly et al.	86 ±14	14 ±7	<14	<12	68Do10
Notea, Gurfinkel	71.6± 8.6	22.0±2.4	0.58±0.70	5.8±11.0	68No01
Schmidt, Fink	85.5± 1.5	14.5±0.5	<1	< 2	72Sc08
Awwad et al.	85 ± 5	6.5±0.4	0.9 ±1.2	8.2± 5.9	74Aw02
Schötzig et al.	86.5± 2.7	13.6±2.5	-0.3 ±0.3	0.2± 1.3	77Sc31

Table 3.11.4 Estimation of electron capture branches.

	Electro	n capture branch	es (%)
Item Energy	324 keV	403 keV	484 keV
log ft	12.4	12.4	13.4
log f	-0.429	-0.223	-0.0512
$T_1/2$	10.71 y	10.71 y	10.71 y
branch	0.005 %	0.008 %	0.0012

Gamma	ray		K-shell conversion coefficients						
Number	Energy (keV)	Mann, Chaturvedi 63Ma	Thun et al. 66Th09	Bosch et al. 68Bo04	Avignone et al. 70Av01	Avignone, Trueblood 71Av01	Freund 73Fr15	Ramaniah 75Ra17	
1	53.2			4.7 ±0.4					
2	79.6		1.36 ± 0.10	1.7 ± 0.4					
3	81.0		1.36 ± 0.05	1.34 ± 0.08	1.46 ± 0.05^{a}				
4	160.6		0.39 ± 0.13	0.19 ±0.02	0.21 ±0.02		0.205 ±0.007		
5	223.1			0.06 ±0.02		0.082±0.004	0.0743±0.0043*	0.092±0.01	
6	276.4	0.047	0.050±0.008	0.046±0.003					
7	302.9	0.036±0.004	0.037±0.005	0.038 ± 0.004^{b} *	$0.039 \pm 0.004^{b} \star$				
8	356.0	0.021±0.002		0.023±0.002*	0.020 ± 0.002^{b} *				
9	383.9	0.020±0.013	0.017±0.004	0.028±0.010*					

Table 3.11.5 Experimental values of K-shell internal conversion coefficients.

a) Obtained from the decay of ^{133}Xe .

b) Errors are estimated by us.

Gamma-r energy (keV)	ay	Mann, Chaturvedi ^{a)} 63Ma	Nieschmidt et al. 64Ni04	Hennecke et al. 67He09	Hendric, Avignone 67He10	Bosch et al. 68Bo04	Avignone et al. 70Av01	Törnkvist et al. 70ToOl	Awwad et al. 74Aw02
53.2	L/MN			3.1 ±0.3		······································			
79.6	K/L			6.4 ±1.2					
81.0	K/L			5.72±0.73					6.0 ±0.6
	K/LM		4.79±0.09		5.4±0.5	5.4±0.5			
	L/MN			3.6 ±0.4					
160.6	K/L			4.80±0.54				5.13±0.27	4.8 ±0.6
	K/LM					4.4±0.8	3.75±0.25		
	L/MN			4.5 ±0.5					
223.1	K/LM		7.4 ±0.7	7.82±0.81					
276.4	K/L			5.63±0.37*					5.5 ±0.5*
	K/LM	4.7±0.8				3.9	4.75±0.15		
	L/MN			3.8 ±0.4*					
302.9	K/L			6.95±0.56*					
	K/LM	5.3±2.0				6.1±0.2			
	L/MN			4.0 ±0.4*					
356.0	K/L			6.06±0.34*					6.29±0.24*
	K/LM	7.0±4.2			4.27±0.13	5.0±0.5			
	L/MN			3.9 ±0.4*					
383.9	K/L			6.05±0.43*					
	K/LM	6.0±5.0				5.0±1.0			
	L/MN			4.3 ±0.4*					

Table 3.11.6 Experimental values of K/L,K/LM and L/MN ratios.

a) Values deduced from α_{K} and $\alpha_{LM}^{}.$

- 68 -

Item				Va	lues			
Atomic number				-	5 5		·	
Energy (keV)		223.	1	276.4	302.	9	356.0	383.9
Multipolarity	-	E2	M1	E 2	E2	M1	E2	E2
·	α _r	9.18(-2)	8.44(-2)	4.62(-2)	3.47(-2)	3.77(-2)	2.11(-2)	1.68(-2)
	α.	9.49(-3)	1.03(-2)	4.93(-3)	3.74(-3)	4.56(-3)	2.32(-3)	1.87(-3)
		4.93(-3)	6.33(-4)	1.93(-3)	1.30(-3)	2.57(-4)	6.55(-4)	4.79(-4)
Conversion	α,	3.81(-3)	1.44(-4)	1.53(-3)	1.05(-3)	5.92(-5)	5.10(-4)	3.60(-4)
coefficients	α,	1.82(-2)	1.11(-2)	8.39(-3)	6.09(-3)	4.88(-3)	3.48(-3)	2.70(-3)
	κ/L	5.03	7.62	5.51	5.70	7.72	6.06	6.23
	MNO/L	0.25	0.26	0.25	0.25	0.26	0.25	0.25
	α	1.10(-1)	9,55(-2)	5.46(-2)	4.08(-2)	4.25(-2)	2.46(-2)	1.95(-2)
Gamma branch	1/(1+α)	0.901	0.913	0.948	0.961	0.959	0.976	0.981

Table 3.11.7 Theoretical values of internal conversion coefficients.

Gamma-ray	W=1		W=1		W=1/ε²	
(keV)	Value	Er	ror	Value	Err	or
		Int.	Ext.		Int.	Ext.
302.9	0.0385*	0.0028*	0.0005	0.0385	0.0028	0.0005
356.0	0.0215*	0.0015*	0.0015	0.0215	0.0015	0.0015

Table 3.11.8 Average values of K-shell internal conversion coefficients.

Table 3.11.9 Average values of K/L ratios.

Gamma-ray		W=1			$W=1/\epsilon^2$			
energy (keV)	Value	Error		Value Error		Value	Err	or
		Int.	Ext.	Ir	Int.	Ext.		
276.4	5.59*	0.31*	0.04	5.60	0.29	0.03		
356.0	6.18*	0.20*	0.12	6.21	0.19	0.10		

•

Table 3.11.10 Evaluated values of internal conversion coefficients.

Gamma-ray energy (keV)	α _K	K/L	K/LM	L/MN	α
223.1	0.074 ±0.004		7.8±0.8		0.084 ±0.005
276.4	0.046 ±0.003	5.6 ±0.3		3.8±0.4	0.056 ±0.004
302.9	0.0385±0.0028	7.0 ±0.6		4.0±0.4	0.045 ±0.003
356.0	0.0215±0.0015	6.18±0.21		3.9±0.4	0.0259±0.0018
383.9	0.028 ±0.010	6.1 ±0.4		4.3±0.4	0.0337±0.0012

Gamma	a ray		
Number	Energy (keV)	Relative intensity (%)	Intensity per decay (%)
6	276.4	11.53±0.06	7.15±0.03
7	302.9	29.48±0.14	18.28±0.08
8	356.0	100.0 ±0.4	62.00±0.14
9	383,9	14.39±0.06	8.92±0.04

Table 3.11.11 Evaluated gamma-ray intensities.

Fig. 3.11.1 Decay scheme of ^{133}Ba .

Fig. 3.11.2 Relative intensity of the 303 keV gamma ray to the 356 keV one in the decay of ¹³³Ba.

Fig. 3.11.3 Comparison of relative intensities of strong gamma rays in the decay of ¹³³Ba.

3.12 ¹³⁹Ce

The radioactive nuclide ¹³⁹Ce decays to ¹³⁹La and emits the 166 keV gamma ray. The decay scheme is simple as shown in Fig. 3.12.1. This gamma-ray intensity per decay was evaluated.

a) Electron capture transition to the ground state. Spins and parities are $3/2^+$ and $7/2^+$ for the ground states of ¹³⁹Ce and ¹³⁹La, respectively. This transition is a second forbidden one, and log ft values of second forbidden transitions are seen in Table 3.9.1. If one assums that the log ft value is the same to that of the transition ¹³⁷Cs $(7/2^+) \rightarrow ^{137}$ Ba $(3/2^+)$, i.e. log ft=12.5, the branching ratio ε_2 is $4x10^{-6}$. Therefore, this transition is negligible.

b) Internal conversion coefficient. Many experimental values of α_k and α are available as shown in Table 3.12.1 and Fig. 3.12.2. All the values of α_k and α after 1960 agree each other within experimental errors except both α_k and α values of Legrand et al. The value of Rytz is the result of international intercomparison measurements of 23 institutions. Therefore this value is adopted for the total internal conversion coefficients.

The theoretical values are listed in Table 3.12.2. The ratio E2/M1 is shown in Table 3.12.3 and the E2 component is very small. Therefore the experimental value of α is 6 %. smaller than the theoretical M1 value.

c) Evaluation of the 166 keV gamma ray intensity. The evaluated value of the intensity per decay was obtained from the experimental total internal conversion coefficients as shown in Table 3.12.4.

Author	α _K x10 ³	K/LMN	ax10 ³	Ref.
Pruett, Wilkinson	0.20 ±0.05	6.6 ±0.3		54Pr31
Mitchell, Hebb	0.22	7.0 ±0.3		54Mi56
Nussbaum, Van Lieshout	0.20 ±0.01			54Nu12
Kettelle et al.	0.22 ±0.01	5.7 ±0.3		56Ke23
Dzhelepov et al.		8.1 ±0.5		58Dz10
Jastrzebski		6.7		60Ja02
Taylor, Merritt			0.2514±0.0011	62Ta03
Geiger et al.		5.85±0.13		65G e 04
Hansen, Delabaye	0.209 ±0.027			67Ha45
Aristov, Bazhenov			0.254 ±0.006	71Ar43
Legrand et al.	0.2111±0.0026	6.30±0.30	0.2446±0.0012	73Le27
Morinaga, Hisatake	0.207 ±0.009			75Mo12
Hansen, Mouchel	0.2152±0.0033	5.84±0.17	0.2520±0.0050	75Ha
Plch et al.	0.214 ±0.002		0.251 ±0.002	75P1
Rytz			0.2502±0.0025*	77Ry

Table 3.12.1 Experimental values of conversion coefficients of the 166 keV gamma ray.

Item		Va	lue	
Atomic number		57	······································	
Energy (keV)		165	.85	
Multipolarity		M1	E2	
	a _k	2.26(-1)	2.51(-1)	
	a _{I r}	2.79(-2)	2.48(-2)	
Conversion	ata	1.93(-3)	2.30(-2)	
coefficients	a ₁ ,	4.10(-4)	2.21(-2)	
	α,	3.03(-2)	6.98(-2)	
	ĸŹL	7.46	3.60	
	MNO/L	0.26	0.26	
	α	0.264	0.339	
Gamma branch	$1/(1+\alpha)$	0.791	0.747	

Table 3.12.2 Theoretical values of internal conversion coefficients.

Table 3.12.3 Experimental values of the E2/M1 mixing ratio.

Author	(E2/M1)	E2(%)	Ref.
Knipper	-0,06	0.36	61Kn02
Grace et al.	<0.02	<0.040	62Gr17
Haag et al.	0.34±0.34	0.12±0.02	63Ha07,64Ha20

Table 3.12.4 Evaluation of the intensity per decay for the 166 keV gamma ray.

Item	Value
ε2	neglect
α	0.2502±0.0025
Υ 1	79.99 ±0.16 %

Fig. 3.12.1 Decay scheme of ¹³⁹Ce.

Fig. 3.12.2 Total conversion coefficient of the 166 keV transition in the decay of ¹³⁹Ce.

3.13 ¹⁸⁰mHf

The short-lived isomer ¹⁸⁰mHf with half-life of 5.5 hr emits 6 gamma rays. The decay scheme is shown in Fig. 3.13.1. Intensities of three cascade gamma rays of 215 keV. 332 keV and 443 keV were evaluated.

a) Relative gamma-ray intensities. Experimental values are listed in Table 3.13.1. Jardine and Geyrathi and D'auria measured them with Ge(Li) detectors. Other three measurements were performed with curved crystal spectrometers.

b) Internal conversion coefficients. Experimental and theoretical values of internal conversion coefficients are summarized in Table 3.13.2 and Table 3.13.3. Only a few experimental values are available, and these $\alpha_{\rm K}$ values are about 5~10 % smaller than the theoretical values. The gamma rays of 93, 215, 332 and 443 keV are E2 transition, but the 501 keV gamma ray is a E3/M2 mixing transition. Experimental mixing ratios are shown in Table 3.13.4. Theoretical total conversion coefficients with 10 % errors are adopted. For the 501 keV gamma ray the adopted value was obtained from the theoretical E3 and M2 coefficient and the experimental mixing ratio given by Krame et al. One experiment pointed out a E2 mixing of E2/M2 = 0.038+0.004 (71Kr) for the 501 keV transition, but this mixing is negligible for the internal conversion coefficient. Since the conversion coefficient is too large for the 93 keV gamma ray, we did not evaluate the intensity.

c) Evaluation of gamma-ray intensities. The unweighted average value of two Ge(Li) measurements is adopted for intensity ratio of the 501 keV gamma ray to 443 keV one. Intensities per decay of the 215 keV and 332 keV gamma rays are obtained from the total internal conversion coefficients.

Gamma	ray	ay Relative intensities								
Number	Energy (keV)	Edwards, Boehm	Reirson et al.	Jardine	Gujrathi, D'auria	Gehrke				
		61Ed01	70Re08,67Ne07	71Ja21	71Gu	72Ge24				
1	57.5	51.3±1.2	51.3±2.0		47.5±3.4	∿49				
2	93.3	17.6±0.4	18.0±0.5		19.5±1.7	15.5±0.8				
3	215.3	88.2±2.5	86.5±2.0		85.9±2.5	86.2±2.5				
4	332.3	100.0±4.2	100.0±2.5		100.0±4.2	100				
5	443.2	86.6±4.6	90.4±3.0	570±15*	84.7*	86.4±2.5				
6	500.7		13.6±1.2	100*	15.7±1.7*	15.1±0.8				

Table 3.13.1 Experimental values of relative gamma-ray intensities.

Authors G	Gamma-ray	Conversion coefficients					
	(keV)	α _K ×100	α _L ×100	K/L	MNO/L	α×100	Rer.
Edwards, Boehm	93.3	110 ±9	313 ±19	0.325±0.025	0.29±0.03		61Ed01
Gvozdev et al.			272				70Gv01
Edwards, Boehm	215.3	12.3 ±0.9		1.59 ±0.14			61Ed01
Gvozdev et al.				1.8 ±0.1			68Gv01
El-Nesr, El-Saya	d	13.1 ±0.2					68E102
Edwards, Boehm	332.3	3.8 ±0.3		2.60 ±0.23			61Ed01
Gvozdev et al.				3.1 ±0.2			68Gv01
Edwards, Boehm	443.2	1.89±0.17		4.3 ±0.6	0.39±0.09	2.49±0.22	61Ed01
Gvozdev et al.				3.8 ±0.2			68Gv01
El-Nesr, El-Saya	ıd	2.4 ±0.4					68E102
Edwards, Boehm	500.7	3.7 ±1.2					61Ed01
Gizon, Gizon		3.83±0.12	1.68±0.11	2.28 ±0.07			67Gill
Goldhaber, McKeo	wn	4.5 ±0.4		2.50 ±0.45			67Sc19
Gvozdev et al.				2.70 ±0.10			68Gv01
El-Nesr, El-Saya	ıd	9.5 ±2.5					68E102

Table 3.13.2 Experimental values of internal conversion coefficients.

Item Atomic number Energy (keV)				Values			
		72					
		93.3	215.3	332.3	443.2	500.7	
Multipolarity		E2	E 2	E 2	E2	E 3	M2
	ar	1.10(+0)	1.37(-1)	4.20(-2)	2.01(-2)	3.80(-2)	1.23(-1)
	α _{τ.}	1.13(-1)	1.56(-2)	5.16(-3)	2.57(-3)	5.55(-3)	1.93(-2)
Conversion	a _{T.a}	1.35(+0)	3.14(-2)	4.96(-3)	1.55(-3)	7.45(-3)	2.24(-3)
coefficients	a _{T.}	1.26(+0)	2.16(-2)	2.82(-3)	7.72(-4)	2.45(-3)	6.43(-4)
	α _{τ.}	2.73(+0)	6.85(-2)	1.29(-2)	4.89(-3)	1.55(-2)	2.22(-2)
	K/L	0.404	2.01	3.24	4.11	2.46	5.53
	MNO/L	0.30	0.30	0.30	0.30	0.30	0.29
	α	4.65(+0)	2.27(-1)	5.88(-2)	2.65(-2)	5.81(-2)	1.52(-1)
Gamma branch	1/(1+α)	0.177	0.815	0.944	0.974	0.945	0.868

Table 3.13.3 Theoretical values of internal conversion coefficients.

Table 3.13.4 Experimental values of E3/M2 mixing ratio for the 500.7 keV gamma ray.

Authors	δ(E3/M2)	E3	Ref.
Bodenstedt et al.	5.3±0.4	96.5±0.5 %	61Bo25
Krane et al.	5.3±0.3	96.6±0.4 %	71Kr

Table 3.13.5 Evaluation of the intensities per decay.

	Item	Value
	Y 6 / Y 5	0.180 ±0.010
α3	(theoretical)	0.227 ±0.023
α4	(theoretical)	0.059 ±0.006
α5	(theoretical)	0.0265±0.0027
CL 6	(theoretical)	0.061 ±0.006
	Υ 3	81.5±1.5 %
	Υ 4	94.4±0.5 %
	Ύs	82.1±0.7 %

Gamma	ray		
Number	Energy (keV)	Intensity per decay (%)	Relative intensity (%)
3	215.3	81.5±1.5	86.3±1.6
4	332.3	94.4±0.5	100.0±0.6
5	443.2	82.1±0.7	87.0±0.8

Table 3.13.6 Evaluated values of gamma-ray intensities.

Fig. 3.13.1 Decay scheme of ¹⁸⁰^mHf

- 79 -

3.14 ¹⁹⁸Au

The ¹⁹⁸Au nuclide emits a strong 412 keV gamma ray and two weak gamma rays. The decay scheme is shown in Fig. 3.14.1. The intensity per decay of the strong gamma ray was evaluated.

a) Beta-decay branches. The radioactive nuclide ¹⁹⁸Au decays mainly to the 412 keV excited state and weakly to the 1088 keV one in ¹⁹⁸Hg. In addition, the transitions to the ground states of ¹⁹⁸Pt and ¹⁹⁸Hg were reported as shown in Table 3.14.1. Since the log f_1t value of the unique first forbidden transition is usually about 9.88 as mentioned in Table 3.14.2, the electron capture transition to the ¹⁹⁸Pt ground state is estimated to be about 1.73x10⁻³ % as shown in Table 3.14.3. Therefore this transition is neglected.

b) Relative gamma-ray intensities. Experimental values of relative intensities are summarized in Table 3.14.4. All the values except Iwata and Yoshizawa were measured with NaI(Tl) detectors. Since these values scatter beyond experimental errors, the best values observed with a Ge(Li) detectors by Iwata and Yoshizawa were adopted.

d) Evaluation of the intensity per decay. The total internal conversion coefficient is obtained from the adopted value $\alpha_{\rm K}$ and K/L and the theoretical value of MNO/L. The final evaluated value of the 412 keV gamma-ray intensity is obtained from the total conversion coefficient α , the relative intensity γ_3^{\dagger} and the branching ratio of the weak beta transition β_3 .

Authors	Transition	Branch (%)	log ft	Ref.
Elliott et al.	. β ₃	0.025±0.005	12.3	54E104
Bashilov	ε1	<0.01	>9.1	56Ba90

Table 3.14.1 Experimental values of beta and electron capture branches.

Nucleus		Spin-pa	rity	
arent	Daughter	Initial	Final	log ft
7 2 Tm	172Yb	2 -	0+	9.8
⁰⁰ T1	²⁰⁰ Hg	2 -	0+	9.8
°²T1	²⁰² Hg	2 -	0+	9.9
°4T1	²⁰⁴ Pb	2 -	0+	10.1
⁰⁵₽Ъ	²⁰⁵ T1	5/2-	1/2+	11.8
⁰7Bi	207Pb	9/2-	13/2+	10.6
080;	208ph	5+	3-	12.5

Item	Value
log ft	9.9
Q	330 keV
log f	-0.25
t	1.55×10 ^{\$} day
T _{1/2}	2.6973 day
ε1	1.73×10 ⁻³ %

Table 3.14.3 Estimation of the electron capture transition intensity from ¹⁹⁸Au to ¹⁹⁸Pt.

Table 3.14.4 Experimental values of relative gamma-ray intensities.

、	Rel	ative intensit	:ies (%)		
Authors Energ (keV	r 1 y 411.8	2 675.9	3 1087.7	Ref.	
Cavanagh	100	1.43 ±0.10	0.33 ±0.07	51Ca24	
Hubet	100	1.4 ±0.1	0.25 ±0.05	51Hu18	
Elliot et al.	100	0.84 ±0.06	0.170 ±0.012	54E104	
Maeder et al.	100	1.3 ±0.2	0.25 ±0.02	54Ma19	
Dzhelepov et al.	100	1.11 ±0.05	0.26 ±0.02	55Dz41	
Volpe, Hinman	100	0.97 ±0.11	0.156 ±0.014	56Vo20	
Wapstra et al.	100	0.83 ±0.08		59Wa17	
Keeler, Connor	100	1.0	0.28	65Ke04	
Iwata, Yoshizawa	100.0±0.4*	0.841±0.003*	0.1664±0.0021*	80Iw	

Authors	α _K ×10 [™]	α _L ×10 ⁴	α _M ×10 ⁴	K/L	MNO/L	Ref.
Steffen et al. Hubert Huber et al.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	125±30	30±20			49St 51Hu18 52Hu
Connors et al.	250 ± 50	103 ± 1 120 ± 20	51- 1			525125 56Co
Kel'Man, Metskhvarishvili Wapstra et al. Hamilton et al. Vries et al.	281 ± 5 244 \pm 8 241 \pm 9	97± 4	31± 4	2.69±0.02	0.347±0.006 ^{a)}	59Ke20 59Wa17 60Ha 60Vr
Hultberg et al. Petterson et al. Wolfson Hamilton et al. Lewin et al.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					61Hu 61Pe07 61Wo 62Ha25 63Le11
Herrlande, Graham Parsignault Bergkvist, Hultberg Keeler, Connor Newbolt, Hamilton	283 ±10 302 ± 4* 299 ± 4 α _L 286 ±10	111± 6 α ₁ M ^{×10⁴=145±3}	MN ^{×10[*]=31±3}	2.79±0.07* ^{c)}		64He19 64Pa20 65Be07 65Ke04 65Ne
Paul Petterson et al. Dragoun et al. Sahota El-Nesr, Mousa Rao et al.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				O/N=0.21±0.03	65Pa08 65Pe 72Dr02 72Sa34 73E110 75Ra09

Table 3.14.5 Experimental values of conversion coefficients of the 412 keV transition.

a) Obtained from the ratio L:M:N:O=1:(0.252±0.004):(0.077±0.004):(0.018±0.002).

b) These values vary with shape factor. c) Obtained from the ratio $K:L_1:L_2:L_3=(6.87\pm0.07):(1.00\pm0.01):(1.01\pm0.01):(0.45\pm0.01).$

412 keV transition. W=1 $W=1/\epsilon^2$

Table 3.14.6 Average values of conversion coefficients of

Item	W=1			$W=1/\epsilon^2$			
	Average	E	rror	Average	Error		
	value	Int.	Ext.	value	Int.	Ext.	
α _κ ×10 ⁴	303.5*	5.3*	1.5	302.4	3.7	1.0	
κ̈́/L	2.85	0.06	0.06	2.83*	0.06*	0.06	

Table 3.14.7 Theoretical values of internal conversion coefficients.

Item		Value
Atomic number		80
Energy (keV)		411.80
Multipolarity		E2
	a _K	3.01(-2)
	α,	4.26(-3)
	α _L ,	4.49(-3)
Conversion		1.93(-3)
coefficients	ar	1.07(-2)
	К/́L	2.82
	MNO/L	0.32
	α	4.42(-2)
Gamma branch	$1/(1+\alpha)$	0.958

Table 3.14.8 Evaluation of the 412 keV gamma= ray intensity per decay.

tem	Value (%)	Ref.
α1	4.45 ±0.09	
Y 3 [†]	0.1668±0.0021	80Iw
β ₃	0.025 ±0.005	54Blo4
Υı	95.56 ±0.08	

Fig. 3.14.1 Decay scheme of ¹⁹⁸Au.

Fig. 3.14.2 K-shell internal conversion coefficient of the 412 keV transition in the decay of ¹⁹⁸Au.

3.15 ²⁰³Hg

A single gamma ray at 279 keV is emitted in the decay of ²⁰³Hg. Fig. 3.15.1 shows the decay scheme of this nuclide. The intensity per decay of the 279 keV gamma ray was evaluated.

a) Beta decay to the ground state. Upper limits of the ground state transition were reported as shown in Table 3.15.1. Since this transition is an unique first forbidden transition, the log ft value (>12) is larger compared with usual unique first forbidden transitions. The large log ft value is found to be log ft = 11.2 for ¹⁹⁸Au.

b) Weak gamma rays. The second excited state of ²⁰³Tl is at 680 keV. The decay energy of ²⁰³Hg is Q_{β} = 491 keV. Since no excited state below 680 keV was observed by nuclear reaction experiments, no weak gamma ray is expected in the decay of ²⁰³Hg.

c) Internal conversion coefficients. A lot of measurements for the conversion coefficients have been reported as shown in Table 3.15.2. Experimental values of the K-shell conversion coefficient are plotted in Fig. 3.13.2. Theoretical conversion coefficients are listed in Table 3.15.3. The experimental values cannot be accounted for by the M1+E2 multipole mixing, but these are explained by the penetration effect and the multipole mixing. The mixing ratio is determined to be $E2/M1=1.32\pm0.11$ ($E2=57\pm2\%$).

Experimental values were obtained from three kinds of measurements; gamma-ray intensity measurement, beta-ray spectrum measurement and beta-gamma coincidence measurement. Since there is no good intensity standards in this 279 keV region, the first one cannot expect reliable results. Accurate intensity determination of the continuous beta-ray spectrum is difficult with the beta-ray spectrometer. Therefore, we adopted three accurate experimental values observed by third method. The evaluated value of the total conversion coefficients is obtained from the unweighted mean of these values in Table 3.15.4.

d) Evaluation of gamma-ray intensity per decay. The beta decay branching to the ground state is neglected and no weak gamma ray is expected. Therefore, the evaluated value of the intensity per decay for the 279 keV gamma ray is obtained from the evaluated value of the total internal conversion coefficient as shown in Table 3.15.5.

Author -	Branch	Intensity (%)	log ft	Ref.
Marty	β2	< 4 x 10 ⁻³	> 12	55Ma40
Nolfson	β2	$< 3 \times 10^{-2}$		56Wo09

Table 3.15.1 Beta transition to the ground state. (Unique 1st forbidden)

Author	α _κ ×10 ³	K/L	K/LMN	L/MNO	α ×10 ³	Ref.
Saxon	180	3		> 12		48Sa30
Slätis, Siegbahn		3		≪12	247	495116
Wilson, Curran	185		3.71			51Wi22
Heath, Bell	230 ±10					52He18
Joh an s s on	210 ±10					52Jo23
Burford	158 ± 3		2.59±0.04		(219 ±4)	53Bu79
Metzger	163 ± 6	3.5		3.2		54Me08
Thulin, Nybö	154 ±15		2.78±0.20			54Th17
Wapstra et al.	141 ±15	3,34±0,10	2.55±0,05	3.5 ±0.3		54Wal2
Marty	205 ±20	3.15±0.15		4.5 ±1.5		5 5 Ma 40
Azuma	160			2.80		55Az54
Doerner, Weber	147 ± 2	3.29				55Do12
Bell, Skarsgard	140					56Be97
Nordling et al.	159 ± 4	3.24±0.05				56No26
O'Friel, Weber	150 ±10	3.2				56 0£03
Wapstra, Nijgh	164 ± 5	3.35±0.05				56Wa
Wolfson	130 ±10		2.75			56Wo09
Nijgh et al.	163 ± 3	3.39±0.06	2.60±0.06	3.28±0.10	(226 ± 4)	58Ni28
Peele	163 ± 6	i i				60Pe22
Ramaswamy, Jastram	195 ±14	,				60Ra04
Stockendal	160 ±15					60St21
Hurley, Ferguson	175 ± 4					61Hu15
Subba Rao	150 ±20	3.1				61Su05
Sujkowski	164 ± 4	3.65±0.26	2.75±0,19	3.09±0.21	(224 ± 4)	61Su10
Taylor	163.3± 1.7				(226.2±1.9)	62Ta06
Burmeister er al.	168 ± 8					63Bu09
Croft et al.	162 ± 3					63Cr14
Herrlander et al.	163 ± 3	3.37±0.08	2 .56± 0.06	3.16±0.08	(226.7±3)*	64He19
Taylor	164.2± 2.1				227.3±2.3*	64He19
Walther et al.					222 ±15	65Wa13
Rao Hnanonanda	158 ±24					65Ra12
Bosch et al.	140 ±30		2.4 ± 0.3			67Bo
Andersen	127	3.28±0.13		3.26±0.26		69An
Walz et al.					226.7±0.7*	71Wa
Walz et al.					224.0±0.9	71\a
Sahota	295 ±15					72Sa34
	305 ±15					
Hansen, Mouchel	165.3± 1.7	3.48±0.12	2.64±0.03	3.14±0.12	227.9±2.4*	74Ha29

Table 3.15.2 Experimental values of internal conversion coefficients for the 279 keV transition.

Item		Va	lue
Atomic number		8	31
Multipolarity		M1	E2
	ar	4.06(-1)	7.67(-2)
	α _I .	6.21(-2)	1.07(-2)
Conversion		6.21(-3)	2.40(-2)
coefficients	al.	4.68(-4)	1.23(-2)
	a _T	6.88(-2)	4.70(-2)
	ĸĬL	5.91	1.63
	MNO/L	0.31	0.32
	α	0.497	0.139
Gamma branch	$1/(1+\alpha)$	0.668	0.878

Table 3.15.3 Theoretical values of internal conversion coefficients.

Table 3.15.4 Average values of the total internal conversion coefficient.

<u></u>	w = 1			w = 1	/ε ²	
- <u></u> .	Error			Error		-
α —	Int.	Ext.	α -	Int.	Ext.	
0.2273*	0.0012*	0.0003	0.2268	0.0006	0.0002	

Table 3.15.5 Evaluation of gamma-ray intensity per decay.

Item	Value	
β2	Neglect	
Other gamma ray	Neglect	
Adopted value of α	0.2273±0.0012	
Adopted value of γ_1	81.48 ±0.08	

Fig. 3.15.1 Decay scheme of ²⁰³Hg.

Fig. 3.15.2 Total internal conversion coefficient of the 279 keV transition in the decay of ²⁰³Hg.
3.16 ²⁰⁷Bi

The long-lived nuclide ²⁰⁷Bi decays to ²⁰⁷Pb by electron capture and emitts five gamma rays. The decay scheme is shown in Fig. 3.16.1. Intensities per decay of the 570 keV and 1064 keV gamma rays were evaluated.

a) Electron capture and positron decay. This nuclide decays mainly to the 1633 keV excited state of ²⁰⁷Pb, and weakly to the 569 keV and 2339 keV states. Since the electron capture transition to the ground state is a 4th forbidden transition, this transition is neglected. Upper limit of positron decay was observed to be 0.5% by Miller et al (59Mil9).

b) Relative intensities of gamma rays. Experimental values are listed in Table 3.16.1. The most accurate value of Yoshizawa et al. is adopted for the 1064 keV gamma ray.

c) Internal conversion coefficients. Experimental and theoretical conversion coefficients are shown in Table 3.16.2 and Table 3.16.3, respectively. The experimental values are in good agreement with the theoretical values. We adopted the experimental values of the 570 keV transition.

d) Evaluation of intensities per decay. The intensity per decay of the 570 keV gamma ray is obtained from the total internal conversion coefficient of this transition and the relative intensity of the 897 keV gamma ray as shown in Table 3.16.4. The intensity per decay of the 1064 keV gamma ray is given by the relative intensity ratio of the 1064 keV to the 570 keV gamma rays.

Number Authors Energy (keV)	r 1 r 569.7	2 897.3	3 1064	4 1442	5 1770	Ref.
Alburger, Sunyar	100	0.16	. 87	0.16	8	55A126
Monahan	100		76 ±6			61Mo09
Donnely et al.	100		78.4 ±2.4			67Do09
Hedin, Backlin	100 ±2.0		74.0 ±2.0			69He19
Rao et al.	100	0.150±0.015	78.7 ±4.0	0.150±0.015	7.5 ±0.4	69R al 3
Jardin	100	0.14 ±0.02	75.5 ±2.3	0.15 ±0.02	6.95 ±0.20	74Ja28
Yoshizawa et al.*	100.0±0.4	0.122±0.013	75.79±0.25	0.132±0.005	7.026±0.029	79Yo

Table 3.16.1 Experimental values of relative gamma-ray intensities.

Gamma ray			Kleinheinz	Nooijien	Sen	Anderson	Baldinger	Redin	
Number Energ (keV)	Energy (keV)	, 	et al. 67K102	Krugten 67Va25	Rizvi 67Se15	Christensen 68An04	Hallen 69Ba53	Backlin 69He19	
1	569.7	α _K ×10 ² K/L α×10 ²	1.56±0.07	1.59±0.06	1.6 ±0.1 3.26±0.09	1.56±0.05 3.45±0.35 2.19±0.03*	1.5 ±0.3 3.00±0.15	1.55±0.05	
2	1064	α _K ×10² K/L α×10²	9.0 ±0.9		8.5 ±0.5 3.64±0.10	8.4 10.85	9.5 ±1.4 3.20±0.15	9.6 ±0.3	

Table 3.16.2 Experimental values of internal conversion coefficients.

Item		Val	ue
Atomic number	·	82	82
Energy (keV)		569.7	1063.6
Multipolarity		E 2	M4
	ar	1.58(-2)	9.70(-2)
	α1.	2.34(-3)	1.89(-2)
onversion		1.57(-3)	3.84(-3)
oefficients	a	5.42(-4)	1.72(-3)
	α,	4.45(-3)	2.45(-2)
	K∕L	3.55	3.96
	MNO/L	0.33	0.33
	α	2.17(-2)	1.30(-1)
amma branch	$1/(1+\alpha)$	0.979	0.885

Table 3.16.3 Theoretical values of internal conversion coefficients.

Table 3.16.4 Evaluation of intensities per decay.

Item	Value	Ref.
γ ₂ †	0.122 ±0.013 %	79Yo
Υ ₃ †	75.79 ±0.25 %	79Yo
Υ5+	7.026 ±0.029 %	79Yo
α1	0.0219±0.003	68An04
Υ1	$97.74 \pm 0.03 $ (a)	
Υ 3	74.0 ±0.3 % ^{b)}	
Y s	6.87 ±0.04 % ^{C)}	

 $\gamma_1 = 1/(1+\alpha_1+\gamma_2+)$ a)

b) Obtained from the relative intensity γ_3 +.

c) Obtained from the relative intensity γ_5 +.

Fig. 3.16.1 Decay scheme of ²⁰⁷Bi.

Fig. 3.16.2 Intensity ratio of the 1064 keV gamma ray to the 570 keV one in the decay of ²⁰⁷Bi.

References

- 3.1 ²²Na -

490r A. Ore and J. L. Powell, Phys. Rev. 75 (1949) 1696. B. T. Wright, Phys. Rev. 90 (1953) 159. 53Wr13 54Le R. D. Leamer and G. W. Hinman, Phys. Rev. 96 (1954) 1607. R. Sherr and R. H. Miller, Phys. Rev. 93 (1954) 1076. 54Sh P. F. Zweifel, Phys. Rev. 96 (1954) 1572. 542w W. E. Kreger, Phys. Rev. 96 (1954) 1554. 54Kr 55A1 R. A. Allen, W. E. Burcham, K. F. Chackett, G. L. Munday and P. Reasbeck, Proc. Phys. Soc. London A68 (1955) 681. 58Ko J. Konijin, B. Nooijen, H. L. Haredoorn and A. H. Wapstra, Nucl. Phys. 9 (1958) 296. M. K. Ramaswamy, Indian J. Phys. 33 (1959) 285. 59Ra 63Na Y. Nakayama and H. Hirata, Nucl. Phys. 40 (1963) 396. A. Williams, Nucl. Phys. 52 (1964) 324. 64Wi04 67Le07 H. Leutz and H. Wenninger, Nucl. Phys. A99 (1967) 55. 67Ka W. R. Kane and M. A. Mariscotti, Nucl. Instrum. Methods 56 (1967) 189. 68Va13 E. Vatai, D. Varga and J. Uchrin, Nucl. Phys. All6 (1968) 637. 682r L. N. Zyryanova and Yu P. Suslov, Conf. on Electron Capture and Higher Order Process in Nuclear Decays, Debrecen, Hungary, 12 (1968) 234. 69Mc M. F. McCann and K. M. Smith, J. Phys. A2 (1969) 392. M. J. Martin and P. H. Blichert-Toft, Nuclear Data Tables A8 (1970) 18. 70MaB1 70Wi A. Williams, Nucl. Phys. A153 (1970) 665. 71Me J. S. Merritt and J. G. V. Taylor, AECL-3912 (1971). M. L. Fitzpatric, K. W. D. Ledingham, J. Y. Gourlay and J. G. L. Lynch, 73Fi J. Phys. A6 (1973) 713. T. D. MacMahon and A. P. Baerg, Can J. Phys. 54 (1976) 1433. 76 Ma 38 76Az G. Azuelos and J. E. Kitching, Atomic Data and Nuclear Data Tables 17 (1976) 103. H. E. Bosch, J. Davidson and M. Davidson, Z. Phys. A280 (1977) 321. 77Bo10 - 3.2 ² Na -

49Ra E. R. Rae, Phyl. Mag. 40 (1949) 1155.
50Mi W. Mims, H. Halban and R. Wilson, Nature 166 (1950) 1027.
51C1 M. R. Cleland, J. Townsend and A. L. Hughes, Phys. Rev. 84 (1951) 298.
51Tu J. F. Turner and P. E. Cavanagh, Phil. Mag. 42 (1951) 636.
52B1 S. D. Bloom, Phys. Rev. 88 (1952) 312.
52S1 H. Slätis and K. Siegbahn, Ark. Fys. 4 (1952) 485.
60Ar K. P. Artamonova, L. V. Gustova, Yu. N. Podkopaef and O. V. Chubinskii, JETP 12 (1961) 1109.

- 60Ba R. Batchelor, A. J. Ferguson, H. E. Gove and A. E. Litherland, Nucl. Phys. 16 (1960) 38.
- 62Co A. V. Cohen and J. A. Cookson, Nucl. Phys. 29 (1962) 604.
- 62Mo J. E. Monahan, S. Raboy and C. C. Trail, Nucl. Phys. 33 (1962) 633.
- 65Sp08 E. Spring, Phys. Lett. 18 (1965) 132.
- 68Va06 J. Vanklinken, F. Pleiter and H. T. Dijkstra, Nucl. Phys. All2 (1968) 372.
- 70Le12 J. Lebowitz, A. R. Sayres, C. C. Trail and B. Weber, Nuovo Cim. A65 (1970) 675.
- 72De28 C. Detratz, Nucl. Phys. A188 (1972) 513.
- 72Me09 M. A. Meyer, J. P. L. Reinecke and D. Reitmann, Nucl. Phys. A185 (1972) 625.
- 72Ra21 S. Raman, N. B. Gove, J. K. Dickens and T. A. Walkiewicz, Phys. Lett. 40B (1972) 89.

- 3.3 ⁴⁶Sc -

- 49F105 R. G. Fluharty and M. Deutsch, Phys. Rev. 76 (1948) 182.
- 50M062 M. L. Moon, M. A. Waggoner and A. Roberts, Phys. Rev. 79 (1950) 905.
- 50So57 B. N. Sorensen, B. M. Dale and J. D. Kurbatov, Phys. Rev. 79 (1950) 1007.
- 53Wh06 J. A. Whalen, F. T. Porter and C. S. Cook, Phys. Rev. 89 (1953) 902.
 54St08 E. E. Sturcken, Z. O'Friel, O. F. M., and A. H. Weber, Phys. Rev. 93 (1954) 1053.
- 54Ke04 G. L. Keister and F. H. Schmidt, Phys. Rev. 93 (1954) 140.
- 54Ke28 G. L. Keister, Phys. Rev. 96 (1954) 855.
- 56Wo09 J. L. Wolfson, Can. J. Phys. 34 (1956) 256.
- 63Ba40 A. A. Bartlett, J. R. Keith and W. D. King, Bull. Am. Phys. Soc. 8 (1963) 482.
- 801w Y. Iwata and Y. Yoshizawa, submitted to Nucl. Instrum. Methods.

- 3.4 ⁵ ⁴Mn -

- 58Ka34 T. Katoh, M. Nozawa, Y. Yoshizawa and Y. Koh, J. Phys. Soc. Japan 13 (1958) 1419.
- 63Ra21 G. N. Rao, Nuovo Cim. 30 (1963) 507.
- 66Ha07 J. H. Hamilton, S. R. Amtey, B. Van Nooijen, A. V. Rammayya and J. J. Pinajian, Phys. Lett. 19 (1966) 682.
- 68Be01 D. Berenyi, D. Varga, B. Vasvari and E. Brucher, Nucl. Phys. A106 (1968) 248.
- 71Wa A. H. Wapstra and N. B. Gove, Nuclear Data Tables 9 (1971) 265.

- 3.5 ⁶⁰Co -

M. E. Rose, Phys. Rev. 76 (1949) 678. 49Ro M. A. Waggoner, M. L. Moon and A. Roberts, Phys. Rev. 78 (1950) 295. 50Wo09 52F14 C. Y. Fan, Phys. Rev. 87 (1952) 252. G. L. Keister and F. H. Schmidt, Phys. Rev. 93 (1954) 140. 54Ke04 58K13 K. Kamada, T. Teranishi and Y. Yoshizawa, J. Phys. Soc. Japan 13 (1958) 763. 55Wo44 J. L. Wolfson, Can. J. Phys. 33 (1955) 886. J. L. Wolfson, Can. J. Phys. 34 (1956) 256. 56Wo09 D. C. Camp, L. M. Langer and D. R. Smith, Phys. Rev. 123 (1961) 241. 61Ca05 62Fr13 W. F. Frey, J. H. Hamilton and S. Hultberg, Ark. Phys. 21 (1962) 383. E. Spring, Phys. Lett. 18 (1965) 132. 65Sp08 G. Murray, R. L. Graham and J. S. Geiger, Nucl. Phys. 63 (1965) 353. 65Mu03 S. Raman, Nuclear Data Sheet B2-5-59. 67Ra 68Ha03 H. H. Hansen and A. Spernol, Z. Phys. 209 (1968) 111. R. S. Hager and E. C. Seltzer, Nuclear Data Tables A4 (1968) 1. 68HaSe J. L. Wolfson and A. J. Collier, Nucl. Phys. All2 (1968) 156. 68Wo02 69Ra07 F. Rauch, D. M. Van Patter and P. F. Hinrichsen, Nucl. Phys. A124 (1969) 145. S. Raman, Z. Phys. 228 (1969) 387. 69Ra23 J. R. Van Hise and D. C. Camp, Phys. Rev. Lett. 23 (1969) 1248. 69Va20 70Di01 W. R. Dixon and R. S. Storey, Can. J. Phys. 48 (1970) 483. P. Rice- Evans and Z. Aung, Z. Phys. 240 (1970) 392. 70Ri20 72Tr V. F. Trusov, Nuclear Data Tables 10 (1972) 477. 72Le J. Legrand and C. Clement, Int. J. Appl. Radiat. Isotop. 23 (1972) 225. 73Fu M. Fujishiro, Nucl. Sci. Eng. 52 (1973) 474. 76Ca D. C. Camp and J. R. Van Hise, Phys. Rev. C14 (1976) 261. 77Lo B. A. Logan, W. R. Dixon, R. S. Storey and A. Ljubicic, Can. J. Phys. 55 (1977) 142.

- 3.6 ⁸⁵Sr -

52Em02	W. S. Emmerrich and J. D. Kurbatov, Phys. Rev. 85 (1952) 149.
52Su29	A. W. Sunyar, J. W. Mihelich, G. Scharff-Goldhaber, M. Goldhaber,
	N. S. Wall and M. Deutch, Phys. Rev. 86 (1952) 1023.
62A111	T. Alvager, H. Ryde and P. Thieberger, Ark. Fys. 21 (1962) 559.
62Sa12	A. R. Sattler, Phys. Rev. 127 (1962) 854.
66Va16	N. A. Vartanov, P. S. Samoilov and Yu. S. Tsaturov, Soviet J. Nucl.
	Phys. 3 (1966) 436, J. Nucl. Phys. (U.S.S.R) 3 (1966) 598.
71Bu08	I. F. Bubb, S. I. H. Naqvi and J. L. Wolfson, Nucl. Phys. A167 (1971)
	252.

- 74Va02 E. Vatai, A. C. Xenoulis, K. R. Baker, F. Tolea and R. W. Fink, Nucl. Phys. A219 (1974) 595.
- 71Wa A. H. Wapstra and N. B. Gove, Atomic Data and Nuclear Data Tables 9 (1971) 267.
- 71Go N. B. Gove and M. J. Martine, Atomic Data and Nuclear Data Tables 10 (1971) 205.

- 3.7 ⁸⁸Y -

Pe	W. C. Peacock and J. W. Jones, A. E. C. Report AECD-1812.
52Me 50	F. R. Metzger and H. C. Amacher, Phys. Rev. 88 (1952) 147.
60Pe23	P. W. Peelle, ORNL-3016 (1960) 110.
64Sh16	S. Shastry and R. Bhallacharyya, Nucl. Phys. 55 (1964) 397.
66Ha07	J. H. Hamilton, S. R. Amtery, B. Van Nooijen, A. V. Ramayya and
	J. J. Pinajian, Phys. Lett. 19 (1966) 682.
66Sa08	M. Sakai, T. Yamazaki and J. M. Hollander, Nucl. Phys. 84 (1966) 302.
67Za04	K. Zarnowiecki, Nucl. Instrum. Methods 55 (1967) 329.
71A106	C. J. Allan, Instrum. Methods 91 (1971) 117.
73Sc40	U. Schotzig, K. Debertin and H. M. Weiss, PTB Mitteilungen 83 (1973)
	307.
74Ar12	G. Ardisson, S. Laribi and C. Marsol, Nucl. Phys. A223 (1974) 616.
80Yo	Y. Yoshizawa, Y. Iwata, T. Kaku, T. Katoh, J. Ruan, T. Kojima and
	Y. Kawada, to be published in Nucl. Instrum. Methods.
	- 3.8 ^{• •} Nb -
54 Z a 05	P. P. Zarubin, Izv. Akad, Nauk SSSR, Ser. fiz. 18 (1954) 563.
63La06	L. M. Langer and D. E. Wortman, Phys. Rev. 132 (1963) 324.
65Co18	W. Collin, D. Daniel and H. Schmitt, Ann. Phys. (Germany) 15 (1965)
	383.
67Ca07	J. A. Cameron, I. A. Campbell, J. P. Compton, R. A. G. Lines and
	G. H. V. Wilson, Proc. Phys. Soc. 90 (1967) 1089.
67Ei03	N. A. Eissa, Z. Meligy, A. H. El Farrash and S. Girgis, Acta Phys.
	Acad. Sci. Hung. 23 (1967) 67.
69Fo01	C. Foin, J. Oms, J. Blachot and J. Crancon, Nucl. Phys. A123 (1969)
	513.
69Br29	S. M. Brahmava and J. H. Hamilton, Phys. Rev. 187 (1969) 1487.
72МеНо	L. M. Medsker and D. J. Horen, Nuclear Data Sheets, B8 (1972) 29.
72Su	T. Suzuki, Y. Nakahara and H. Umezawa, EANDC(J) 26L, I-C-4 (1972) 23.
74An 22	N. M. Antoneva, A. V. Barkov, A. V. Zolotavin, G. S. Katykhin,
	V. M. Makarov and V. O. Sergeev. Izv. Akad. Nauk SSSR. Ser. fiz. 38
	(1974) 1741.

- 97 -

- 3.9 ^{10 em}Ag -

53Pe16 M. L. Perlman, W. Bernstein and R. B. Schwartz, Phys. Rev. 92 (1953) 1236. M. A. Wahlgren and W. W. Meinke, Phys. Rev. 118 (1960) 181. 60Wa10 L. Frevert, Z. Phys. 169 (1962) 456. 62Fr07 64Ta13 H. W. Taylor and T. A. Eastwood, Can. J. Phys. 42 (1964) 2173. 65Fr01 L. Frevert, R. Schonberg and A. Flammersfeld, Z. Phys. 182 (1965) 439. 66Ki03 0. C. Kistner ane A. W. Sunyar, Phys. Rev. 143 (1966) 918. 68Kr04 T. I. Kracikova and B. Kracik, Czech. J. Phys. B18 (1968) 143. 71Ha17 J. H. Hamilton, S. M. Brahmavar, J. B. Gupta, R. W. Lide and P. H. Stelson, Nucl. Phys. A172 (1971) 139. 71Jo07 N. D. Johnson, J. H. Hamilton, A. F. Kluk and N. R. Johnson, Z. Phys. 243 (1971) 395. 710k01 K. Okano, Y. Kawase, S. Uehara and T. Hayashi, Nucl. Phys. A164 (1971) 545. W. D. Schmidt-Ott and R. W. Fink, Z. Phys. 254 (1972) 281. 72Sc42 73Si02 N. C. Singhal, N. R. Johnson, E. Eichler and J. H. Hamilton, Phys. Rev. C7 (1973) 774. R. A. Meyer, Report Lawrence Livermore Laboratory M-100. 78Me

- 3.10 ¹³⁴Cs -

54Ve09 J. Verhaeghe and J. Demuynk, Compt. Rend, 239 (1954) 1374.

- 55Ke04 G. L. Keister, E. B. Lee and F. H. Schmidt, Phys. Rev. 97 (1955) 451.
- 59Gi49 R. K. Girgis and R. Van Lieshout, Nucl. Phys. 12 (1959) 672.
- 60Ya03 Y. Yamamoto, Thesis, Osaka Univ. (1960).
- 63Sc09 O. J. Segaert, J. L. Demuunck, L. V. Dorikens-Vanpraet and M. Dorikens, Nucl. Phys. 43 (1963) 76.
- 63Tr05 P. N. Trehan, J. D. French and M. Goodrich, Phys. Rev. 131 (1963) 2625.
- 64Va06 W. Van Wijngaarden and R. D. Connor, Can. J. Phys. 42 (1964) 504.
- 65Br20 R. A. Brown and G. T. Ewan, Nucl. Phys. 68 (1965) 325.
- 66Ba57 E. Bashandy and Abd El-Haliem, ATKE 11-54 (1966) 316.
- 67Ral0 D. E. Raeside, J. J. Reidy and M. L. Wiedenbeck, Nucl. Phys. A98 (1967) 54.
- 68Ab01 A. Abdul-Malek and R. A. Naumann, Nucl. Phys. A106 (1968) 225.
- 68Nall T. S. Nagpal, Can. J. Phys. 46 (1968) 2579.
- 68HaSe R. S, Hager and E. C. Seltzer, Nuclear Data Tables A4 (1968) 1.
- 68Hs01 S. T. Hsue, M. U. Kim, L. M. Langer and E. H. Spejewski, Nucl.Phys. A109 (1968) 423, Erratum Nucl. Phys. A141 (1970) 674.
- 69Sil6 B. Singh, A. H. Kukoc and H. W. Taylor, Can. J. Phys. 47 (1969) 1863.
- 70Ho06 S. Hofmann, H. K. Walter and A. Weitsch, Z. Phys. 230 (1970) 37.

- 73St P. H. Stelson, S. Raman, J. A. McNabb, R. W. Lide and C. R. Bingham, Phys. Rev. C8 (1973) 368.
- 75Hi J. R. Van Hise, D. C. Camp and R. A. Meyer, Z. Phys, A274 (1975) 383.
- 77De K. Debertin, U. Schötzig and K. F. Walz, PTB Jahresbericht (1976) 160.
- 78Me R. A. Meyer, Report Lawrence Livermore Laboratory M-100.
- 80Yo Y. Yoshizawa, Y, Iwata, T. Kaku, T. Katoh, J. Ruan, T. Kojima and Y. Kawada, to be published in Nucl. Instrum. Methods.

- 3.11 ^{1 3 3}Ba -

R. W. Hayward, D. D. Hoppes and H. Ernst, Phys. Rev. 93 (1954) 916. 54Ha 57Cr B. Craseman, J. G. Pengra and I. E. Lindstrom, Phys. Rev. 108 (1957) 1500. 58Gu R. K. Gupta, S. Jha, M. C. Joshi and B. K. Madan, Nuovo Cim. 8 (1958) 48. 60Ra M. K. Ramaswamy, W. L. Skeel and P. S. Jastram, Nucl. Phys. 16 (1960) 619. M. G. Stewart and D. C. Lu, Phys. Rev. 117 (1960) 1044. 60St 6 3Ma K. C. Mann and R. P. Chaturvedi, Can. J. Phys. 41 (1963) 932. 64Ni04 E. B. Nieschmidt, C. E. Mandeville, L. D. Ellsworth and D. D. Bornemeier, Phys. Rev. 136 (1964) B597. J. E. Thun, S. Törnkvist, K. Bonde Nielsen, H. Snellman, F. Falk and 66Th09 A. Mocoroa, Nucl. Phys. 88 (1966) 289. P. Blasi, M. Bocciolini, P. R. Maurenzig, P. Sona and N. Taccetti, 67B1 Nuovo Cim. 50B (1967) 298. Hans J. Hennecke, J. C. Manthuruthil, O. Bergman and C. R. Cothern, 67He09 Phys. Rev. 159 (1967) 955. 68A116 P. Alexander and J. P. Lau, Nucl. Phys. A121 (1968) 612. H. E. Bosch, A. J. Haverfield, E. Szichman and S. M. Abecasis, Nucl. 68Bo04 Phys. A108 (1968) 209. D. P. Donnelly, J. J. Reidy and M. L. Wiedenbeck, Phys. Rev. 173 68Do10 (1968) 1192. A. Notea and Y. Gurfinkel, Nucl. Phys. A107 (1968) 193. 68No01 70Av01 F. T. Avignone, G. D. Frey and L. D. Hendrick, Phys. Rev. C1 (1970) 635. 70To01 S. Törnkvist, L. Hasselgren, D. Ström, J. -E. Thun and S. Antman, Nucl. Phys. A142 (1970) 238. 71Av01 F. T. Avignone and J. H. Trueblood, Phys. Rev. C3 (1971) 2011. 72Sc08 W. D. Schmidt-Ott and R. W. Fink, Z. Phys, 249 (1972) 286. 73Fr15 F. Freund, Z. Phys. 264 (1973) 259. 73In06 H. Inoue, Y. Yoshizawa and T. Morii, J. Phys. Soc. Japan 34 (1973) 1437. J. Legrand, Nucl. Instrum. Methods 112 (1973) 229. 73Le

- 73Mc18 L. A. McNelles and J. L. Cambell, Nucl. Instrum Methods 109 (1973) 241.
- 74Aw02 Z. Awwad, N. M. Ibrahim and M. R. El-Aasser, Atomkernenergie 24 (1974) 129.
- 75Ral7 K. Venkata Ramaniah and K. Venkata Reddy, Nuovo Cim. 26A (1975) 237.
- 77Sc31 U. Schötzig, K. Debertin and K. F. Walz, Int. J. Appl. Radiat. Isotop. 28 (1977) 503.
- 77Ge R. J. Gerhrke, R. G. Helmer and R. C. Greenwood, Nucl. Instrum Methods 147 (1977) 405.
- 78Me R. A. Meyer, in Table of Isotopes, 7th edition, Appendeces compiled by
 C. M. Lederer et al. (1978), Lawrence Livermore Laboratory (1978)
 M-100.
- 79Yo
 Y. Yoshizawa, T. Katoh, Y. Iwata, T. Kaku, Y. Iinuma, J. Ruan,
 T. Kojima and Y. Kawada, Japan Atomic Energy Research Institute
 JAERI-M 8196 (1979).

- 3.12 ¹³⁹Ce -

54Mi56	Α.	C.	G.	Mitchell	and E.	Hebb,	Phys.	Rev.	95	(1954)	727.
--------	----	----	----	----------	--------	-------	-------	------	----	--------	------

- 54Nul2 R. H. Nussbaum and R. Van Lieshout, Physica 20 (1954) 440.
- 54Pr31 C. H. Pruett and R. G. Wilkinson, Phys. Rev. 96 (1954) 1340.
- 56Ke23 B. H. Ketelle, H. Thomas and A. R. Brosi, Phys. Rev. 103 (1956) 190.
- 58Dz10 B. S. Dzhelepov, B. K. Preobrazhenskii, I. M. Rogachev and
 - P. A. Tishkin, Izv. Akad. Nauk SSSR, Ser. fiz. 22 (1958) 931.
- 60Ja02 J. Jastrzebski, J. Phys. Radium 21 (1960) 12.
- 61Kn02 A. Knipper, Ann. Phys. 6 (1961) 211.
- 62Gr17 M. A. Grace, C. E. Johnson, R. G. Scurlock and R. T. Taylor, Phil. Mag. 7 (1962) 1087.
- 62Ta03 J. G. V. Taylor and J. S. Merritt, Bull. Am. Phys. Soc. 7 (1962) 352, XA4.
- 63Ha07 J. N. Haag, D. A. Shirley and D. H. Templeton, Phys. Rev. 129 (1963) 1601.
- 64Ha20 J. N. Haag, Phys. Rev. 134 (1964) B509.
- 65Ge04 J. S. Geiger, R. L. Graham, I. Bergström and F. Brown, Nucl. Phys. 68 (1965) 352.
- 67Ha45 H. H. Hansen and M. Delabaye, Intern. At. Energy Agency, Vienna (1967) 361, CONF-661012 (1967).
- 71Ar43 E. A. Aristov and V. A. Bazhenov, Meas. Tech. (USSR) 14 (1971) 1883.
- 73Le27 J. Legrand, M. Blondel and P. Magnier, Nucl. Instrum. Methods 112 (1973) 101.
- 75 Mol2 A. Morinaga and K. Hisatake, J. Phys. Soc. Japan 38 (1975) 322.
- 75Ha H. H. Hansen and P. Mouchel, Z. Phys. A276 (1976) 303.
- J. Plch, J. Zderadcka and O. Dragoun, Int. J. Appl. Radiat. Isotop. 26 (1975) 579.

77Ry A. Rytz, Rapport BIPM-7714 (Bureau International Despoids et Mesures F-92310 Serves).

- 3.13 ^{180 m}Hf -

- 61Bo25 E. Bodenstedt, H. J. Körner, E. Gerdau, J. Radelff, C. Günther and G. Strube, Z. Phys. 165 (1961) 57.
 61Ed01 W. F. Edwards and F. Boehm, Phys. Rev. 121 (1961) 1499.
 67Gi11 J. Gizon and A. Gizon, Compt. Rend. 264B (1967) 1607.
 67Ne07 G. C. Nelson and E. N. Hatch, Z. Phys. 202 (1967) 293.
 67Sc19 G. Scharff-Goldhaber and M. McKeown, Phys. Rev. 158 (1967) 1105.
 68E102 M. S. El-Nesr and G. M. El-Sayad, J. Phys. Soc. Japan 24 (1968) 610.
 68Gv01 V. S. Gvozdev, V. N. Grigorev and Y. V. Sergeenkov, Yadern. Fiz. 8
- (1968) 3, Soviet J. Núcl. Phys. 8 (1969) 1.
- 70Gv01 V. S. Gvozdev, V. N. Grigorev and Y. V. Sergeenkov, Izv. Akad. Nauk SSSR Ser. fiz. 34 (1970) 1680, Bull. Acad. Sci. USSR Phys. Ser. 34 (1971) 1492.
- 70Re08 J. D. Reierson, G. C. Nelson and E. N. Hatch, Nucl. Phys. A153 (1970) 109.
- 71Gu S. C. Gujrathi and J. M. D'auria, Nucl. Phys. A161 (1971) 410.
- 71Ja21 L. J. Lardine, Nucl. Instrum. Methods 96 (1971) 259.
- 71Kr K. S. Krane, C. E. Olsen, J. R. Sites and W. A. Steyert, Phys. Rev. C4 (1971) 1906.
- 72Ge24 R. J. Gehrke, ANCR-1088 (1972) 392.

- 3.14 ¹⁹⁸Ag -

495t	R. M. Steffen, O. Huber and F. Humber, Helv. phys. Acta 22 (1949) 167.
51Ca24	P. E. Cavanagh, Phys. Rev. 82 (1951) 791.
51Hu18	P. Hubert, Compt. Rend. 232 (1951) 2201.
52Hu	O. Huber, F. Humbel, H. Schneider and A. de Shalit, Helv. phys. Acta
	25 (1952) 3.
52Si25	L. Simons, Phys. Rev. 86 (1952) 570.
54E104	L. G. Elliot, M. A. Preston and J. L. Wolfson, Can. J. Phys. 32 (1954)
	153.
54Ma19	D. Maeder, R. Müller and V. Wintersteiger, Helv. phys. Acta 27 (1954)
	3.
55Dz41	B. S. Dzhelepov, N. N. Zhukovskii, V. P. Prikhodtseva and
	Y. V. Kholnov, Izv. Akad. Nauk SSSR, Ser. fiz. 19 (1955) 271, Columbia
	Tech. Trans1. 19 (1956) 247.
56Ba90	A. A. Bashilov, Nucl. Phys. 1 (1956) 629.
56Co	D. R. Connors, W. C. Miller and B. Waldman, Phys. Rev. 102 (1956) 1584.

- 56Vo20 J. Volpe and G. Hinman, Phys. Rev. 104 (1956) 753.
- 59Ke20 V. M. Kel'Man and R. Ya. Metskhvarishvili, Zh. Eksp. Teor. Fiz. 36 (1959) 694, Soviet Phys. JETP 9 (1959) 486.
- 59Wal7 A. H. Wapstra, G. J. Nijgh, N. Salomons-Grobben and L. Th. M. Ornstein, Nucl. Phys. 9 (1959) 538.
- 60Ha J. H. Hamilton, W. F. Frey and S. Hultberg, Bull. Am. Phys. Soc. 5 (1960) 449.
- 60Vr C. de Vries, E. J. Bleeker and Mrs. N. Salomons-Grobben, Nucl. Phys. 18 (1960) 454.
- 61Hu S. Hultberg, D. J. Horen and J. M. Hollander, Nucl. Phys. 28 (1961) 471.
- 61Pe07 B. -G. Pettersson, J. E. Thun and T. R. Gerholm, Nucl. Phys. 24 (1961) 243.
- 61Wo J. L. Wolfson, Can. J. Phys. 39 (1961) 773.

62Ha25 J. H. Hamilton, R. V. Stockendal, D. C. Camp, L. M. Langer and D. R. Smith, Nucl. Phys. 36 (1962) 567.

- 63Lell W. H. G. Lewin, B. Van Nooijen, C. W. E. Van Eijk and A. H. Wapstra, Nucl. Phys. 48 (1963) 159.
- 64He19 C. J. Herrlander and R. L. Graham, Nucl. Phys. 58 (1964) 544.
- 64Pa20 D. Parsignault, Compt. Rend. 259 (1964) 1515.
- 65Ba07 K. -E. Bergkvist and S. Hultberg, Ark. Fys. 27 (1965) 321.
- 65Ke04 W. J. Keller and R. D. Connor, Nucl. Phys. 61 (1965) 513.
- 65Ne W. B. Newbolt, Thesis Nashville Vanderbilt U. 1964, W. B. Newbolt and J. H. Hamilton, Bull. Amr. Phys. Soc. 10 (1965) 244.
- 65Pa08 H. Paul, Nucl. Phys. 72 (1965) 326.
- 65Pe S. -G. Pettersson, L. Holmberg and T. R. Gerholm, Nucl. Phys. 65 (1965) 454.
- 72Dr02 O. Dragoun, B. Martin, D. Merkert and M. Vinduska, Nucl. Phys. A183 (1972) 390.
- 72Sa34 H. S. Sahota, Indian J. Phys. 46 (1972) 86.
- 73E110 M. S. El-Nesr and M. G. Mousa, Atomkernenergie 21 (1973) 207.
- 75Ra09 C. N. Rao, B. M. Rao, P. M. Rao and K. V. Reddy, Phys. Rev. C11 (1975) 1735.
- 80Iw Y. Iwata and Y. Yoshizawa, submitted to Nucl. Instrum. Methods.

- 3.15 ²⁰³Hg -

48Sa30 D. Saxon, Phys. Rev. 74 (1948) 849.
49S116 H. Slätis and K. Siegbahn, Phys. Rev. 75 (1949) 318.
51Wi22 H. W. Wilson and S. C. Curran, Phil. Mag. 42 (1951) 762.
52He18 R. L. Heath and P. R. Bell, Phys. Rev. 87 (1952) 176A.
52Jo23 S. A. E. Johansson, Ark. Fys. 3 (1952) 533.

A. O. Burford, Thesis Vanderbilt University, TID 15.684 (1953). 53Bu79 54Me08 F. R. Metzger, Private communication (1954). 54Th17 S. Thulin and K. Nubö, Ark. Fvs. 7 (1954) 289. 54Wa12 A. H. Wapstra, D. Maeder, G. J. Nijgh and L. Th. M. Ornstein, Physica 20 (1954) 169. T. Azuma, Bull. Naniwa University 3A (1955) 327. 55Az54 55Do12 R. K. Doerner and A. H. Weber, Phys. Rev. 99 (1956) 672. 55Ma40 N. Marty, Compt. Rend. 240 (1955) 291. 56Be97 R. E. Bell and H. M. Skargard, Can. J. Phys. 34 (1956) 745. C. Nordling, K. Siegbahn, E. Sokolowski and A. H. Wapstra, Nucl. Phys. 56No26 1 (1956) 326. Z. O'Friel and A. H. Weber, Phys. Rev. 101 (1956) 1076. 560f03 A. H. Wapstra and G. J. Nijgh, Nucl. Phys. 1 (1956) 245. 56Wa 56Wo09 J. L. Wolfson, Can. J. Phys. 34 (1956) 256. 58Ni28 G. J. Nijgh, A. H. Wapstra, L. Th. M. Ornstein, N. Salomons-Grobben, J. R. Huisenga and O. Almen, Nucl. Phys. 9 (1958) 528 & 545. R. W. Peelle, CRNL-3016 (1960) 116. 60Pe22 M. K. Ramaswamy and P. S. Jastram, Nucl. Phys. 15 (1960) 510. 60Ra04 60St21 R. Stockendal, Ark. Fys. 17 (1960) 579. J. P. Hurley and J. M. Ferguson, Nucl. Phys. 27 (1961) 75. 61Hu15 61Su05 B. N. Subba Rao, Proc. Ind. Acad. Sci. Sec. A 53 (1961) 244. Z. Sjkowski, Ark. Fys. 20 (1961) 243. 61Su10 J. G. V. Taylor, Can. J. Phys. 40 (1962) 383. 62Ta06 63Bu09 R. Burmeister, H. Graber, J. Schintlmeister and R. Weibrecht, Nucl. Phys. 42 (1963) 56. W. L. Croft, B. -G. Pettersson and J. H. Hamilton, Nucl. Phys. 48 63Cr14 (1963) 267. 64He19 C. J. Herrlander and R. L. Graham, Nucl. Phys. 58 (1964) 544. 65Ra12 M. Raja Rao and S. Jnanananda, Nucl. Instrum. Methods 36 (1965) 261. A. Walther, E. Baumgartner and P. Huber, Helv. phys. Acta 38 (1965) 65Wa13 514. 67Bo H. E. Bosch, E. Szichman, A. Baseggio and R. Dolinkue, Nucl. Instrum. Methods 52 (1967) 289. 69An V. Andersen, Risø report no. 195 (1969). 71Wa K. -F. Walz, H. M. Weiss and E. Funck, Jahresbericht der PTB (1971) 150. 72Sa34 H. S. Sahota, Indian J. Phys. 46 (1972) 86. H. H. Hansen and D. Mouchel, Z. Phys. 267 (1974) 371. 74Ha29

- 3.16 ²⁰⁷Bi -

55A126 D. E. Alburger and A. W. Sunyar, Phys. Rev. 99 (1955) 695.
59Mi19 C. H. Millar, T. A. Eastwood and J. C. Roy, Can. J. Phys. 37 (1959) 1126.

- 61M009 J. E. Monahan, S. Raboy and C. C. Trail, Phys. Rev. 123 (1961) 1373.
- 67Do09 D. P. Donnelly, H. W. Baer, J. J. Reidy and M. L. Wiedenbeck, Nucl. Instrum. Methods 57 (1967) 219.
- 67K102 P. Kleinheinz, R. Vukanovic, L. Samuelsson, D. Krumpotic, H. Lindstrom and K. Siegbahn, Nucl. Phys. A93 (1967) 63.
- 67Va25 B. Van Nooijen and H. Van Krugten, Phys. Lett. 25B (1967) 510.
- 67Se15 S. K. Sen and S. I. H. Rizvi, Nucl. Instrum. Methods 57 (1967) 227.
- 68An04 V. Anderson and C. J. Christensen, Nucl. Phys. All3 (1968) 81.
- 69Ba53 E. Baidinger and E. Haller, Helv. Phys. Acta. 42 (1969) 949.
- 69He19 G. Hedin and A. Backlin, Ark. Fys. 38 (1969) 593.
- 69Ra13 P. V. Rao, R. E. Wood, J. M. Palms and R. W. Fink, Phys. Rev. 178 (1968) 1997.
- 74Ja28 L. J. Jardine and C. M. Lederer, Nucl. Instrum. Methods 120 (1974) 515.
- 80Yo Y. Yoshizawa, Y. Iwata, T. Kaku, T. Katoh, J. Ruan, T. Kojima and Y. Kawada, to be published in Nucl. Instrum. Methods.

4. Evaluation of Half-lives

4.1 ²²Na

Experimental values are summarized in Table 4.1.1 and Fig. 4.1.1. Values before 1965 are rejected. Five values given by Anspach et al. (65An07, 68An01) scatter beyond their experimental errors. Merritt and Taylor (73Me) examined impurity. Their errors are three times of the standard deviations, though they did not estimate systematic errors. Since they continue the measurement, their newest value 950.63 ± 0.48 d (2.6027 ± 0.0013 y) is adopted for the evaluated value.

4.2 ²⁴Na

Experimental values are shown in Table 4.2.1 and Fig. 4.2.1. Values before 1968 are omitted. Since the errors of Lagoutine et al. (68Lal0) and Gentz et al. (76Ge06) are larger, their values are rejected. The difference between the values of Emery et al. (72Em01) and Merritt (78Me) are more than 20 times of their errors. The systematic error of Emery et al. seems to be underestimated. Therefore the value of Merritt, 14.965±0.002 h, is adopted.

4.3 ⁴⁶Sc

Nine experimental values are available, and these values are shown in Table 4.3.1 and Fig. 4.3.1. The values before 1963 are omitted because of old experimental technique and ambiguity of error estimation. Though the error of Anspach et al. (65An07) is very small, they did not estimate the systematic error. The errors of Hontzeas and Yaffe (63Ho17), Walker and Easterday (67Wa29) and Cressy (74Cr05) are more than four times larger compared with the error of Merritt (78Me). Therefore the value of Merritt, 84.79 ± 0.03 d, is adopted for the evaluated value.

4.4 ⁵⁴Mn

Half-life of ⁵⁴Mn has been reported by many authors as shown in Table 4.4.1 and Fig. 4.4.1. Experimental value before 1965 are rejected for evaluation. Since Anspach et al. (68An01) reported their fourth value in 1968 and Nerritt (78Me) gave new result in 1978. their values in 1965 and 1973 are omitted. The value given by Salisbury and Chalmers (65Sa09) has no error and the values by Fabry and Deworm (66Fa08) and by Hammer (68Ha17) have very large errors. The average value of Zimmer and Dahl (68Zi01) is 312.99±0.10 d which is larger than other remainders beyond the error. Therefore these values are also omitted. The unweighted average of six remainders is 312.3±0.2 d. Larger values among them were given by Vaninbroukx and Grosse (66Va26) and by Cressy (74Cr05), but these values agree with others within their experimental errors. Four other values converge in 312.1~312.21 d. Therefore, we adopt the value of Merritt (78Me) 312.21±0.05 d for the evaluated value.

4.5 ⁶⁰Co

Experimental values are listed in Table 4.5.1 and plotted in Fig. 4.5.1. The values before 1965 are rejected, because experimental errors are large and reliabilities are not good enough. Though the errors of Anspach et al. (65An07, 68An01) are small, their values are far from five other values except Harbottle et al. (73Ha60) whose value has a large error. Purpose of Harbottle et al. is to show possibility to determine a half-life from decay rate. Therefore both values of Anspach et al. and the value of Harbottle et al. are omitted. Since Merritt gave a new value (78Me), the old value (71MeB) is also rejected.

In the review article of Grinberg et al. (74Gr). the value of Lagoutine et al. (68La10) was rewritten as 5.272 ± 0.007 with the error of σ . Vaninbroukx and Grosse (76Va30) carefully measured and estimated the systematic error. Since their value deviates from other remainders beyond their error, their value is not adopted. The unweighted average of the corrected value of Lagoutine et al. and the values of Walz and Weiss (70Wal9). Rytz (73Ry) and two values of Merritt (78Me) is 1925.0 \pm 0.6 d (5.2705 \pm 0.0016 y). The errors of Lagoutine et al., Walz and Weiss, and Rytz are larger and followed periods are shorter compared with those of Merritt. Therefore the unweighted mean of two Merritt's values, 1924.6 \pm 0.3 d (5.2694 \pm 0.0008 y), is adopted for the final evaluated value. This value slightly deviates from the evaluated value of Grinberg et al. beyond their error.

4.6 ⁸⁵Sr

Experimental values of half-life are shown in Table 4.6.1 and Fig. 4.6.1. Values before 1962 are rejected for evaluation. Since Anspach et al. (65An07) do not seem to estimate the systematic error, their error is multiplied by 5. Emery et al. (72Em01) included the systematic error and Lagoutine et al. (72Lal4) took three times of the standard deviation. The error of Grotheer et al. (69Grl2) is about three times larger than three other values mentioned above, and his value deviates from other values beyond the error. Therefore. Grotheer's value is rejected. The unweighted mean of three values Emery et al., Lagoutine et al. and Merritt and Gibson (75MeA) is 64.82 ± 0.11 d. Finally the most accurate value of Merritt and Gibson, 64.84 ± 0.03 d, is adopted for the evaluated value. This value agrees with the evaluate value of Martin and Blichert Toft (70Ma) within their error.

4.7 ⁸⁸Y

Experimental values are listed in Table 4.7.1 and plotted in Fig. 4.7.1. These values are separated into two groups. One is the values of Wyatt et al. (61Wy01) and Grotheer et al. (69Gr12) and the other is the values of Anspach et al. (65An07, 68An01), Lagoutine et al. (75La16) and Bormann (76Bo19). The value of Wyatt et al. is rejected because the value is old. Three values of Anspach et al. are scattered beyond their error. Their two old values are rejected. Since their error does not include the systematic one, we multiply their error by a factor 5. Then the corrected value is 106.61±0.10 d. The errors

- 106 -

of Grotheer et al. and Bormann et al. are much larger than the error of Anspach. Hence. their values are not adopted. The unweighted average of the new corrected value of Anspach et al. and the value of Lagoutine et al., 106.6 ± 0.2 d, is adopted.

4.8 ⁹⁵Nb

Nine experimental values are summarized in Table 4.8.1 and Fig. 4.8.1. The values of earlier works before 1968 are rejected because of large errors. Since the difference between two values of Anspach et al. (65An07, 68An01) is about 4 times of their error, their old value is rejected. The error of the new value is multiplied by a factor 5. because their errors might not include systematic errors. Their value becomes 35.04±0.20 d. Since the error of this value and the error of Lagoutine et al. (68La10) are more than six times larger than the errors of three remainders the values of Anspach et al. and Lagoutine et al. (68Re04) and their value largely deviates from the values of Merritt and Taylor (70Me31) and Hansen et al. (76Ha51). Therefore, the unweighted average of Merritt and Taylor and Hansen et al., 34.98±0.02 d was taken for the evaluate 4 value.

4.9 ¹⁰⁸mAg

Four experimental values shown in Table 4,9,1 and Fig. 4.9.1 are available. Kistner and Sunyar (66Ki03) and Emery et al. (72Em01) determined the lower limit of the half-life. Vonach et al. (69Voll) obtained the half-life from the (n, 2n) reaction cross section and the strength of the produced ^{108M}Ag isomer. The error of this measurement is more than 40 %.

Harbottle (70Ha32) measured the half life with a proportional counter for 5 years. The error of the computer fitting is 5% but he did not consider the systematic error. For example, impurity such as ^{110m}Ag was not reported. About 0.1% impurity of ^{110m}Ag may give the systematic error of 3% for the half-life of ^{108m}Ag. The systematic error is not only the impurity of ^{110m}Ag. Therefore we adopted Harbottle's value 127±21 y with three times error.

4.10 ¹³⁴Cs

Experimental values of the half-life are listed in Table 4.10.1 and plotted in Fig. 4.10.1. The values before 1965 are rejected. The errors of Flynn et al. (65F102) and Lagoutine et al. (72La14) are a few times larger than that of Dietz and Pachucki (73Di01). Hence these values are not used. The value of Nerritt (78Me) agrees with that of Dietz and Packucki within the error. Therefore we adopted the unweighted average of these two values $754.1\pm1.4 d (2.065\pm0.004 y)$.

4.11 ¹³³Ba

Experimental values are listed in Table 4.11.1 and illustrated in Fig. 4.11.1. These values are divided into two groups of $7.2\sim7.8$ y and $10.3\sim11.3$ y. Values before 1968 are

- 107 -

omitted. Lagoutine et al. (68La10) reported a new result (74La). The same members of Reynolds et al. (68Re04) also gave a new result as Emery et al. (72Em01). Walz and Weiss (70Wa19) continued their experiment and a new result was given by Schotzig et al. (77Sc31). The error of Lloyd and Mays (73L101) is large. Therefore these four values are rejected. The error of Schotzig et al. is small but it does not seem to include the systematic error. Hence we rewrite their value as 10.74 ± 0.15 y with 3 σ . The unweighted average of four remainders are 10.67 ± 0.12 y where the external error is larger than the internal error. These two values of Emery et al. and Lagoutine et al. deviate from two other values beyond their errors. Finally we adopted the unweighted average of two new values of Merritt and Gibson (76Me) and Schötzig et al., 10.71 ± 0.11 y (3912±40 d).

4.12 ¹³⁹Ce

Six available experimental values are shown in Table 4.12.1 and Fig. 4.12.1. Four earlier values are rejected because of large errors. The error of Merritt et al. (75MeB) does not include the systematic error, but is three times of the standard deviation. The corresponding value of Vaninbroukx and Grosse (76Va03) is 137.66 ± 0.06 d with the standard deviation 0.02, plus the systematic error 0.04, which agrees well with the value of Merritt et al. The unweighted average of two values 137.66 ± 0.05 d is adopted for the evaluated value.

4.13 ¹⁸⁰mHf

Only two experimental values are available as shown in Table 4.13.1. Both values are 5.5 ± 0.1 hr. Burson et al. (51Bu50) measured chemically separated sample with a GM counter using separate isotope. Rao and Yaffe (63Ra14) measured chemically separated sample with a NaI(T1) detector. The effect of impurities of hafnium isotopes was not examined. Reliabilities of two experimental results are not so different. However, the result of Rao and Yaffe is adopted, because the result of Burson et al. is too old.

4.14 ¹⁹⁸Au

Many experimental values are reported upto date as shown in Table 4.14.1 and Fig. 4.14.1. Most of experimental errors are as small as 0.2 %, and deviations of these values from the average are less than 0.3 %. Values before 1969 are rejected. The values of Cabell and Wilkins (69Ca23) are omitted, because their new result (70Ca09) is published. The error of Cabell and Wilkins (70Ca09) is estimated to be the standard deviation and might not include the systematic error. Therefore, their error should be multiplied by a factor of 3, that is 2.6946 ± 0.0030 d. The error of Merritt and Gibson (77Me) is very small, and their error is the standard deviation and does not include the systematic error. They reported that the error given by impurity ¹⁹⁹Au was ±0.0001 d. Therefore, we rewrite their value as 2.6937 ± 0.0007 , where the error is three times of the standard deviation plus 0.0001 d. The unweighted average of four values is 2.6948 ± 0.0014 . Since the errors of

- 108 -

three values except Merritt and Gibson are more than three times larger than the corrected error of Merritt and Gibson, the value of Merritt and Gibson, 2.6937 ± 0.0007 d is adopted for the final evaluated value. This value agrees with the average of four values within the error and also with three other values.

4.15 ²⁰³Hg

Experimental values of the half-life are shown in Table 4.15.1 and Fig. 4.15.1. First the values before 1965 are rejected. Since the new value is reported (68An01), two old values of Anspach et al. (65An07) are also rejected. Since the error of Anspach et al. may be the standard deviation, their error is multiplied by a factor of 5. Then their value is rewritten as 46.60 ± 0.05 d. The errors of Vaninbroukx and Grosse (66Va26) and Gleason (67G105) are more than ten times and Lagoutine et al. (68La10) is five times larger than that of Merritt and Taylor (72MeZQ). The value of Lagoutine et al. largely deviates from other six values. Therefore, these values are rejected. Merritt and Taylor (72MeZQ) observed impurities of 60 Co and ^{110m}Ag and corrected their value. Their error does not include the systematic error. but they use three times of the standard deviation. The unweighted average of three values Anspach et al. (72Em01) deviate from the value of Merritt and Taylor beyond their errors. Their errors are larger than the error of Merritt and Taylor beyond their errors. Their errors are larger than the error of Merritt and Taylor. Finally, the value of Merritt and Taylor is adopted. This value agrees: well with the evaluated value of Martin and Blichert-Toft (70MaB1).

4.16 ²⁰⁷Bi

Only six experimental values are available. These values are shown in Table 4.16.1 and Fig. 4.16.1. The values scatter from 28 y to 50 y. Harbottle (59Ha20) and Rupnik (72Ru10) followed the decay of ²⁰⁷Bi with radiation detectors. Measuring the alpha decay of ²¹¹At, Neumann and Perlman (51Ne02) and Appelman (61Ap01) obtained the half-life of ²⁰⁷Bi from the half-life of ²¹¹At (7.2 h) and the genetic relation. Measuring the beta decay of ²⁰⁷Po, Sonsniak and Bell (59So12) obtained the half-life of ²⁰⁷Bi from the half-life of ²⁰⁷Po (5.8 h). The errors except for Harbottle and Yanokura et al. (78Ya) are large. The error of Harbottle seems too small considering his followed period. Yanokura et al. measured both decays of ²¹¹At and ²⁰⁷Po. and determined the half-life of ²¹¹At as 7.23±0.02 h. Their results are 33.4±0.8 y and 31.7±3.7 y which were obtained from the decays of ²¹¹At and ²⁰⁷Po, respectively. Since both values are consistent, the better value of 33.4±0.8 y are adopted. References

J. J. Livingood and G. T. Seaborg, Phys. Rev. 54 (1938) 391. 38Li 40Du05 L. A. DuBridge and J. Marshall, Phys. Rev. 58 (1940) 7. 48Po01 M. L. Pool and N. L. Krisberg, Phys. Rev. 73 (1948) 1035. 50Co69 J. W. Cobble and R. W. Atteberry, Phys. Rev. 80 (1950) 917. 50So55 A. K. Solomon, Phys. Rev. 79 (1950) 403. S. B. Burson, K. W. Blair, H. B. Keller and S. Wexler, Phys. Rev. 51Bu50 83 (1951) 62. W. S. Lyon, Phys. Rev. 82 (1951) 276. 51Ly10 H. M. Neumann and I. Perlman, Phys. Rev. 81 (1951) 958. 51Ne02 51Sr14 J. H. Sreb, Phys. Rev. 81 (1951) 469. M. Ter-Pogossian and F. T. Porter, Phys. Rev. 81 (1951) 1057. 51Te11 51Wi22 H. W. Wilson and S. C. Curran, Phil. Mag. 42 (1951) 762. 52Co01 J. M. Cork, D. W. Martin, J. M. LeBlanc and C. E. Branyan, Phys. Rev. 85 (1952) 386. J. M. Cork, J. M. Leblanc, D. W. Martin, W. H. Nester and M. K. Brice, 53Co23 Phys. Rev. 90 (1953)579. J. Kastner and G. N. Whyte, Phys. Rev. 91 (1953) 332. 53Ka21 53Lo09 E. E. Lockett and R. H. Thomas, Nucleonics 11 (1953) 14. 53St66 G. H. Stafford and L. H. Stein, Nature 172 (1953) 1103. 54Be61 R. E. Bell and L. Yaffe, Can. J. Phys. 32 (1954) 416. 55Ba10 E. W. Backofen and R. H. Herber, Phys. Rev. 97 (1955) 743. 55To07 J. Tobailem, J. Phys. Radium 16 (1955)48. 56Ei14 G. G. Eichholz and J. V. Krzyzewski, Can. J. Phys. 34 (1956) 1167. R. D. Evans, priv. comm. to Nuclear Data Tables (1956), see 70MaB1. 56Ev11 G. Herrmann and F. Strassmann, Z. Naturforsch. 11a (1956) 946. 56He77 56Jo24 K.-E. Johansson, Arkiv Fysik 10 (1956) 247. 56Ka S. Katcoff and H. Abrask, Phys. Rev. 103 (1956) 966. P. Kafalas and J. W. Irvine Jr., Phys. Rev. 104 (1956) 703. 56Ka33 56Lo31 E. E. Lockett and R. H. Thomas, Nucleonics 14 (1956) 127. 56Pe52 W. E. Perry and J. W. Dale, quoted in 56Lo31. C. Sastre and G. Price, Nucl. Sci. Eng. 1 (1956) 325. 56Sa75 56Sc87 R. P. Schuman, M. E. Jones and A. C. Mewherter, J. Inorg. Nucl. Chem. 3 (1956) 160, 57Ge07 K. W. Geiger, Phys. Rev. 105 (1957) 1539. 57Me47 W. F. Merritt, P. J. Campion and R. C. Hawkings, Can. J. Phys. 35 (1957) 16. H. Thiry, Bull. Soc. Roy. Sci. Liege 26 (1957) 29. 57Th11 H. W. Wright, E. I. Wyatt, S. A. Reynolds, W. S. Lyon and T. H. Handley, 57Wr37 Nucl. Sci. Eng. 2 (1957) 427. 58Ba J. G. Bayly, J. Inorg. Nucl. Chem. 5 (1958) 259. 58B192 A. R. Brosi and B. H. Ketelle, priv. comm. to Nuclear Data Tables (1958), see 70MaB1. 58Ca20 P. J. Campion and J. S. Merritt, Can. J. Phys. 36 (1958) 983.

J. E. Edwards, J. Inorg. Nucl. chem. 7 (1958) 336. 58Ed J. P. Keene, L. A. Mackenzie and C. W. Gilbert, Phys. Med. Biol. 58Ke26 2 (1958) 360. T. P. Loftus and R. M. Lee, priv. comm. to Nuclear Data Tables 58Lo61 (January 1958), see 70MaB1. H. H. Seliger and L. M. Cavallo, priv. comm. to Nuclear Data Tables 58Se53 (January 1958), see 70MaB1. 59Ca12 J. P. Cali and L. F. Lowe, Nucleonics 17 (1959) 86. L. Grigorescu and P. Sandru, Nucl. Sci. Abstr. 14 (1960) 390. 59Gr09 G. Harbottle, J. Inorg. Nucl. Chem. 12 (1959) 6. 59Ha20 A. Poularikas and R. W. Fink, Phys. Rev. 115 (1959) 989. 59Po64 59So12 J. Sosniak and R. E. Bell, Can. J. Phys. 37 (1959) 1. H. T. Easterday and R. L. Smith, Nucl. Phys. 20 (1960) 155. 60Ea J. Robert, J. Phys. Radium 21 (1960) 808. 60Ro22 60Wi10 R. G. Wille and R. W. Fink, Phys. Rev. 118 (1960) 242. 60Wo07 G. Wolf, Nucleonik 2 (1960) 255. 61Ap01 E. H. Appelman, Phys. Rev. 121 (1961) 253. 61Jo26 E. T. Jozefowicz, Nukleonika (Poland) 6 (1961) 79. 61Ka S. Katcoff, priv. comm. to Nuclear Data sheets (1961). 61Wy01 E. I. Wyatt, S. A. Reynolds, T. H. Handley, W. S. Lyon and H. A. Parker, Nucl. Sci. Eng. 11 (1961) 74. 62Mo21 J. E. Monahan, S. Raboy and C. C. Trail, Nucl. Instrum. Methods 17 (1962) 225. A. R. Sattler, Phys. Rev. 127 (1962) 854. 62Sa12 J. G. V. Taylor, Can. J. Phys. 40 (1962) 383. 62Ta06 63Di L. A. Dietz, C. F. Pachucki and G. A. Land, Analyt. Chem. 35 (1963) 797. S. G. Gorbics, W. E. Kunz and A. E. Nash, Nucleonics 21 (1963) 63. 63Go03 S. Honzeas and L. Yaffe, Can. J. Chem. 41 (1963) 2194. 63Ho17 63Ra14 C. L. Rao and L. Yaffe, Can J. Chem. 41 (1963) 2516. S. V. Starodubtsev, R. B. Begzhanov and S. L. Rakovitskii, Izv. Akad. 63St20 Nauk Uz. SSR, Ser. Fiz.-Mat. Nauk 7 (1963) 44. 64Ma14 W. H. Martin and D. M. Clare, Nucl. Sci. Eng. 19 (1964) 465. 65An07 S. C. Anspach, L. M. Cavallo, S. B. Garfinkel, J. M. Hutchinson and C. N. Smith, Natl. Bur. Stand. Misc. Publ. 260-9 (1965). 65F102 K. F. Flynn, L. E. Glendenin and E. P. Steinberg, Nucl. Sci. Eng. 22 (1965) 416. 65Sa09 S. R. Salisbury and R. A. Chalmers, Phys. Rev. 140 (1965) 305. J. P. Boulanger, CEA-R-2991 (1966); UCRL-Trans-10293 (1968). 66Bo33 66Fa08 A. Fabry and J. P. Devorm, EANDC-E-66 "U" (1966) 125. 66Ki03 D. C. Kistner and A. W. Sunyar, Phys. Rev. 143 (1966) 918. 66Va26 R. Vaninbroukx and G. Grosse, Int. J. Appl. Radiat. Isotop. 17 (1966) 41. G. I. Gleason, priv. comm. to Nuclear Data Tables (December 1967), see 67G105 70MaB1. 67Wa29 D. A. Walker and H. T. Easterday, Nucl. Instrum. Methods 48 (1967) 277.

68An01	S. C. Anspach, L. M. Cavallo, S. B. Garfinkel, J. M. Hutchinson and
	C. N. Smith, priv. comm. to Nuclear Data Tables (January 1968), see
	70MaB1.
68Go22	I. W. Goodier, Int. J. Appl. Radiat. Isotop. 19 (1968) 823.
68Ha47	J. W. Hammer, Z. Phys. 216 (1968) 355.
68La10	F. Lagoutine, Y. Le Gallic and J. Legrand, Int. J. Appl. Radiat. Isotop.
	19 (1968) 475.
68Re04	S. A. Reynolds, J. F. Emery and E. I. Wyatt, Nucl. Sci. Eng.
	32 (1968) 46.
68Zi01	W. H. Zimmer and R. E. Dahl, Nucl. Sci. Eng. 32 (1968) 132.
69Ca23	M. J. Cabell and M. Wilkins, J. Inorg. Nucl. Chem. 31 (1969)1229.
69Gr12	HH. Grotheer, J. W. Hammer and KW. Hoffmann, Z. Phys. 225 (1969) 293.
69M e	J. S. Merritt and J. G. V. Taylor, AECL-3333 (1969) 32.
69Vu04	A. Vuorinen and E. Kaloinen, Ann. Acad. Sci. Fennicae, Ser. A. VI
	No. 310 (1969).
69Vo11	H. Vonach, M. Hille and P. Hille, Z. Phys. 227 (1969) 381.
70C a 09	M. J. Cabell and M. Wilkins, J. Inorg. Nucl. Chem. 32 (1970) 1409.
70Co14	M. M. Costa Paiva and E. Martinho, Int. J. Appl. Radiat. Isotop.
	21 (1970) 40.
70Ha32	G. Harbottle, Radiochim. Acta 13 (1970) 132.
70MaB1	M. H. Martin and P. H. Blichert-Toft, Nuclear Data Tables A8 (1970) 1.
70Me31	J. S. Merritt and J. G. V. Taylor, AECL-3668 (1970).
70 Wa 19	K. F. Walz and H. M. Weiss, Z. Naturforsch. 25a (1970) 921.
71MeA	J. S. Merritt and J. G. V. Taylor, AECL-3912 (1971).
71MeB	J. S. Merritt and J. G. V. Taylor, AECL-4068 (1971).
72Em01	J. F. Emery, S. A. Reynolds, E. I. Wyatt and G. I. Gleason, Nucl. Sci.
	Eng. 48 (1972) 319.
72La14	F. Lagoutine, J. Legrand, C. Perrot, J. P. Brethon and J. Morel,
	Int. J. Appl. Radiat. Isotop. 23 (1972) 219.
72Me ZQ	J. S. Merritt and J. G. V. Taylor, AECL-4205 (1972) 21.
72Ru10	T. Rupnik, Phys. Rev. C6 (1972) 1433.
73Di01	L. A. Dietz and C. F. Pachucki, J. Inorg. Nucl. Chem. 35 (1973) 1769.
73En	P. M. Endt and C. Van der Leun, Nucl. Phys. 214 (1973) 42.
73H a6 0	G. Harbottle, C. Koehler and R. Withnell, Rev. Sci. Instrum. 44 (1973) 55.
73L101	R. D. Lloyd and C. W. Mavs, Int. J. Appl. Radiat. Isotop. 24 (1973) 189.
73Me	J. S. Merritt and J. G. V. Taylor, AECL-4657 (1973) 30.
73Ry	A. Rytz, Proces verbaux des seanees du Comite International de Poids
	et Mesures (1973) 40.
74Cr05	P. J. Cressy Jr., Nucl. Sci. Eng. 55 (1974) 450.
74Gr	B. Grinberg, J. P. Brethon, F. Lagoutine, Y. Le Gallic, J. Legrand,
	A. H. Wapstra, H. M. Weiss, W. Bambynek, E. De Roost, H. H. Hansen
	and A. Spernol, Atomic Energy Journal (1974) 516.
74La	F. Lagoutine, J. Legrand and C. Bac. Saclay, Rannort Annuel (1974) 16
74NDS	E. A. Henry, Nuclear Data Sheets 11 (1974) 495.

75La16	F. Lagoutine, J. Legrand and C. Bac, Int. J. Appl. Radiat. Isotop.
	26 (1975) 131.
75MeA	J. S. Merritt and J. G. V. Taylor, AECL-5315 (1975) 37.
75MeB	J. S. Merritt and J. G. V. Taylor and F. H. Gibson, AECL-5546 (1975) 32.
76Bo19	M. Bormann, HK. Fedderson, HH. Hölscher, W. Scobel and H. Wagener,
	Z. Phys. A277 (1976) 203.
76NDS	R. L. Bunting and J. J. Kraushaar, Nuclear Data Sheets 18 (1976) 87.
76Ge06	H. Genz, J. Reisberg, A. Richter, B. M. Schmitz, G. Schrieder,
	K. Werner and H. Behrens, Nucl. Instrum. Methods 134 (1976) 309.
76Ha51	H. H. Hansen, G. Grosse, D. Mouchel and R. Vaninbroukx, Z. Phys.
	A278 (1976) 317.
76Me	J. S. Merritt and F. H. Gibson, AECL-5696 (1976) 40.
76Va30	R. Vaninbroukx and G. Grosse, Int. J. Appl. Radiat. Isotop. 27 (1976)
	27 (1976) 727.
77Me	J. S. Merritt and F. H. Gibson, AECL-5802 (1977) 43.
77NDS	B. Harmatz, Nuclear data Sheets 21 (1977) 377.
77Sc31	U. Schötzig, K. Debertin and K. F. Walz, Int. J. Appl. Radiat. Isotop.
	28 (1977) 503.
78Me	J. S. Merritt, priv. comm. (November 1978).
78Ya	M. Yanokura, H. Kudo, H. Nakahara, K. Mivano, S. Ohya and O. Nitoh,
	Nucl. Phys. A299 (1978) 92.

	Half-li	fe	Error	No. T ₁ / ₂	Production &		
Authors	(y)	(d)	assignment	followed	separation	Method	Ref.
Merritt et al	2.58 ±0.03		-	0.8		4 прс	57Me47
Wyatt et al.	2.62 ±0.02		σ	1.5	Mg(n,α) chem	4πγіс	61Wy01
Anspach et al.	2.591 ±0.03		٥	2.6	Mg(p,2pn) chem	4πγic	65An07
	2.613 ±0.011		٥	0.5	Mg(p,2pn) chem	4πγic	
	2.603 ±0.001		۵	1.2	Mg(p,2pn) chem	4πγic	
	2.602 ±0.011		σ	0.5	Mg(p,2pn) chem	4πγic	
Anspach et al.	2.600 ±0.002		σ	1.2	Mg(p,2pn) chem	4πγic	68An01
Merritt, Taylor	(2.603 ±0.004)	950.7 ±1.3	3σ	1.4		4πγіс	73Me
Merritt	(2.6027±0.0013)	950.63±0.48	* 3σ			4πγіс	78Me
Martin,Blichert-T	oft 2.60 ±0.01	950 ±4	57Me47,	61Wy01, 65.	An07, 68An01		70MaB1
Evaluated value	2.6027±0.0013	950.6 ±0.5	78Me	<u> </u>			

Table 4.1.1 Half-life of ²²Na

Authors	Half-life (h)	Error assignment	No. $T_1/^2$ followed	Production & separation	Method	Ref.
Cobble, Atteberry	15.10 ±0.04		<u></u>	^{2 3} Na(n, y) chem	4πic	50Co69
Solomon	15.04 ±0.06		13	²³ Na(n,γ) chem	рс	50So55
Sreb	15.06 ±0.039					51Sr14
Lockett, Thomas	14.97 ±0.02		> 5	^{2 3} Na(n,γ)	electroscope	53Lo09
Tobailem	14.90 ±0.05		0.7	²³ Na(n,γ)	ic	55To07
Campion, Merritt	14.959±0.010		3∿8	²³ Na(n,γ) chem	4 πpc	58Ca20
Poularikas, Fink	15.00 ±0.06			²⁷ A1(n,α)	рс	59Po64
Wolf	14.953±0.013		4	^{2 3} Na(n,γ)	pc	60Wo07
Jozefowicz	15.05 ±0.03		6	^{2 3} Na(n,γ)	liquid scin	61Jo26
Wyatt et al.	15.05 ±0.02	σ	3.1	²³ Na(n,γ)	4πγic	61Wy01
Monahan et al.	15.05 ±0.05			^{2 3} Na(n,γ)	NaI	62Mo21
Lagoutine et al.	15.00 ±0.02	3σ+Σδ ;	2	²³ Na(n,γ)	ic,4 _π pc,NaI	68La10
Merritt, Taylor	14.965±0.010	3σ	10		4 _{πγ} ic	71MeA
Emery et a l.	15.030±0.003	σ+δ	> 10	²³ Na(n,γ) chem	NaI	72Em01
Gentz et al.	15.09 ±0.06			² ³ Na(d,p)		76Ge06
Merritt	14.965±0.002*	3				78Me
Martin, Blichert-Toft	15.00 ±0.04	50Co69,50So55 60Wo07,61Jo26	5,51Sr14,53 5,61Wy01,62	5L009,55T007,58Ca Mo21,68La10 and	20,59Po64, three others	70MaB1
Endt, Van der Leun	15.020±0.007	others 50Co69,50So55 60Wo07,61Jo26	5,51Sr14,53 5,61Wy01,62	5Lo09,55To07,58Ca 2Mo21,68Lal0 and	20,59Po64, three others	73En
Evaluated value	14.965±0.002	78Me				

Table 4.2.1 Half-life of ^{2*}Na

Authors	Half-life (d)	Error assignment	No. $T_1/_2$ followed	Production & separation	Method	Ref.
Schuman et al.	84.1 ±0.3	Ø	8	Ti(n,p) chem	рс	56Sc87
Geiger	83.89±0.12	2 0	5.5	⁴⁵ Sc(n,γ)	ic	57Ge07
Wright et al.	84.2 ±0.2	σ	3.8	⁴⁵ Sc(n,γ)	ic	57Wr37
Poularikas, Fink	85 ± 2			46Ti(n,p)	рс	59Po64
Hontzeas, Yaffe	84.0 ±0.9			⁵¹ V(p,3p3n) chem		63Ho17
Anspach et al.	83.80±0.03	a	2.8		4πγic	65An07
Walker, Easterday	84.3 ±0.4	σ			ic	67Wa29
Cressy	84.34±0.13	σ	> 3		NaI	74Cr05
Merritt	83.79±0.03*	3σ				78Me
Evaluated value	83.79±0.03	7 8Me				

Table 4.3.1 Half-life of ⁴⁶Sc

Authors	Half-life (d)	Error assignment	No. $T_1/_2$ followed	Production ቆ separation	Method	Ref.
Livingood. Seaborg	310 ±20					38Li
Stafford. Stein	324 ±11			⁵⁴ Fe(n.p) chem		53St66
Backofen, Herber	291 ± 1		0.35	Cr(d,xn) chem	AgI	55Ba10
Kafalas, Irvine	290 ± 6		0.4	Cr(d,xn) chem	NaI	56Ka33
Schuman et al.	278 ± 5	σ	2	⁵ ⁴ Fe (n,p) chem	GM	56Sc87
Wyatt et al.	313.5 ± 0.7	σ	2	Fe(n,p) chem	4πγic,NaI	61Wy01
Martin, Clare	303 ± 1		1	⁵ ⁴ Fe (n, p)	ic	64Ma14
Anspach et al.	311.9 ± 0.2	σ	1.3	chem	4πγic	65An07
•	311.9 ± 0.2	σ	1.5	chem	4πγic	
	312.6 ± 0.4	σ	1.6	chem	4πγic	
Salisbury, Chalmers	315 ±			⁵ ⁴ Fe (n,p)	NaI	65Sa09
Taylor, Merritt	312.4 ± 0.6	σ		chem	4πγic	65Ta10
Boulanger	312.2 ± 0.6		1.3		•	66Bo33
Fabry, Deworm	308 ± 5		2.6			66Fa08
Vaninbroukx, Grosse	312.4 ± 0.3	σ	> 2		NaI	66Va26
Anspach et al.	312.1 ± 0.3	σ	2.4	⁵⁴ Fe(n,p) chem	4πγic	68An01
Hammer	312 ± 5				NaI	68Ha47
Lagoutine et al	312.2 ± 0.9	3 σ+Σδ,		⁵³ Cr(d,n) chem	ic,4πpc,NaI	68La10
Zimmer, Dahl	313.10± 0.19	2σ ¹	2.56	⁵ ⁴ Fe (n, p)	NaI	68Zi01
·	312.93± 0.55	2σ	3.75	⁵ ⁴ Fe (n, p)	NaI	
	312.89± 0.42	2σ	2.55	⁵ ⁴ Fe (n,p)	NaI	
	312.96± 0.21	2σ	2.28	⁵ ⁴ Fe(n,p)	NaI	
Merritt, Taylor	312.16± 0.11	3σ	3.1		4πγic	7 3Me
Cressy	312.6 ± 0.8	σ	> 3		NaI	74Cr05
Merritt	312.21± 0.05*	3σ				78Me
Martin,Blichert-Toft	312.5 ± 0.5	61Wy01, 6	5An07, 65T	al0, 68An01, 68Lal	0, 68Zi01	70MaB1
Evaluated value	312.21± 0.05	78Me				

Table 4.4.1 Half-life of ⁵ ⁴ Mn

•

.

	Half-	life	Error	No. $T_1/_2$ Production &			_
Authors	(y)	(d)	assignment	followed	separation	Method	Ref.
Kastner, whyte	5.21 ±0.04			0.57		ic	53Ka21
Tobailem	5.27 ±0.07			0.02		ic	55To07
Evans	5.28 ±0.03			2		ic	56Ev18
Lockett, Thomas	5.20 ±0.03			0.85		electroscope	56Lo31
Perry, Dale	5.25 ±0.04			1.2	• •	ic	56Pe52
Geiger	5.24 ±0.03		2σ	1.3	°°Co(n,γ)	ic	57Ge07
Brosi, Ketelle	5.29 ±0.03			0.2			58B192
Keene et al.	5.33 ±0.04			0.23	⁵ ⁹ Co(n,γ)	ic	58Ke26
Loftus, Lee	5.29 ±0.02				⁵⁹ Co(n,γ)	electroscope	58Lo61
Seliger, Cavallo	5.26 ±0.03						58Se53
Gorbics et al.	5.263 ±0.003			0.61		ic	6 3Go0 3
Anspach et al.	5.242 ±0.008		σ	1		4πγίς	65An 07
Anspach et al.	5.259 ±0.003		σ	1,0	⁵ ⁹ Co (n ,γ)	ic	68An01
Lagoutine et al.	5.27 ±0.02		3σ+Σδ ;	0.19	°°Co(n,γ)	ic,4πpc,NaI	68La10
Merritt, Taylor	5.279 ±0.008	1928 ±3	30 ¹	0.7~2.0	chem	4πγіс	69Me
Walz, Weiss	5.2719±0.0011		σ+δ	0.6	chem	4πγіс	70Wa19
Merritt, Taylor	5.272 ±0.003	1925.7 ±0.9	3σ	0.7∿3		4πγіс,4πβγ	71 Me B
Harbottle et al.	5.24 ±0.21						73Ha60
Rytz	5.270 ±0.003			1.1		4πβγ	7 3 R y
Vaninbroukx, Grosse	5.283 ±0.002		σ	0.6∿2	°°Co(n,γ)	NaI	76Va30
	± .008		3.3σ+Σδ _i				
Merritt	5.2699±0.0012	1924.78±0.45	3σ 1			4πγic	78Me
	5.2688±0.0011	1924.39±0.40	* 3σ			4πβγ	
Martin, Blichert-Toft	5.26 ±0.01	(1921.1 ±3.7)	53Ka21,5 57Ge07,5 63Go03,6	5To07,56Ev1 8B192,58Ke2	8,56Lo31,56Pe52, 6,58Lo61,58Se53,		70MaB1
	5		050005,0	OATOI JOOLAI			_
Grinderg et al.	5.2721±0.0024	(1925.6 ±0.9)	68La10,6	9Me,70Wal9,	73Ky		74Gr
Evaluated value	5.2694±0.0008	1924.6 ±0.3	78Me				

Table 4.5.1 Half-life of ⁶⁰Co

JAERI - M 8811

Authors	Half-life (d)	Error assignment	No. $T_1^1/_2$ followed	Production & separation	Method	Ref.
DuBridge, Marshall	66			Rb(p,n) chem	ic	40Du05
Ter-Pogossian, Porter	65 ± 3		2.2	Rb(d,2n) chem	mag spect	51Te11
Herrmann, Strassmann	65.0 ±0.7			U(n,f) chem	NaI	56He77
Wright et al.	64.0 ±0.2	a	3.3	⁸⁴ Sr(n,γ) chem	NaI	57Wr37
Sattler	63.90±0.27		4	⁸ * Sr(n,γ)	NaI	62Sa12
Anspach et al.	65.19±0.13	σ	1.4	7	4πγіс	65An07
Grotheer et al.	66.6 ±0.6		0.8		NaI	69Gr12
Emery et al.	64.93±0.22	σ+δ	2.0	⁸ 4 Sr(n,γ)	NaI	72Em01
Lagoutine et al.	64.68±0.23	3σ+ Σδ;	3	⁸ 4 Sr (n,γ)	4πpc	72La14
Merritt, Gibson	64.84±0.03*	3ơ °	15		4πγіс	75MeA
Martin, Blichert-Toft	64.5 ±0.5	56He77, 57	Wr37, 62Sa	12, 65An07, 67G105		70Ma B1
Evaluated value	64.84±0.03	75MeA	·			

Table 4.6.1 Half-life of ⁸⁵Sr

Authors	Half-life (d)	Error assignment	No. $T_1^2/2$ followed	Production & separation	Method	Ref.
Wyatt et al.	108.1 ±0.3	σ	3.1	Sr(p,n) chem	4πγіс	61Wy01
Anspach et al.	106.52±0.03	σ	2.6	Sr(p,n) chem	4πγіс	65An 07
	106.67±0.03	σ	2.7	Sr(p,n) chem	4πγіс	
Anspach et al.	106.61±0.02*	σ	4.3	Sr(p,n) chem	4πγic	68An01
Grotheer et al.	108.4 ±0.9		0.5		NaI	69Gr12
Lagoutine et al.	106.6 ±0.4*	3σ+Σδ ;		^{8 8} Sr (p, n)	NaI	75La16
Bormann et al.	107.1 ±1.4	1		⁸ ⁹ Y (n, 2n)	NaI	76Bo19
Martin,Blichert-Toft	107 ±1	61Wy01, 65A	An07, 68An01			70MaB1
Bunting, Kraushaar	106.60±0.04	65An07, 68A	n01			76NDS
Evaluated value	106.6 ±0.2	68An01, 75I	_a16			

Table 4.7.1 Half-life of ⁸⁸Y

Authors	Half-life (d)	Error assignment	No. $T_1/2$ followed	Production & separation	Method	Ref.
Cork et al.	35.0 ±0.5			95 Zr(β) chem	GM	53Co23
Wyatt at al.	35.0 ±0.1	α	5	U(n,f) chem	4 _{πγ} ic	61Wy01
Anspach et al.	34.846±0.016	σ			$4\pi\gamma$ ic	65An07
Flynn et al.	35.8 ±0.5	σ	13	chem	2 _π pc	65F102
Anspach et al.	35.04 ±0.04	σ	4	⁹⁵ Zr(β ⁻) chem	ic	68An01
Lagoutine et al.	35.1 ±0.2	3σ+Σδ;	2	U(n,f) chem	ic,4πpc,NaI	68La10
Reynolds et al.	35.15 ±0.03	, σ ¹	3	⁹⁵ Zr(β) chem	4πγic	68Re04
Merritt, Taylor	34.98 ±0.02*	3σ			4πγic	70Me31
Hansen et al.	34.97 ±0.03*	σ+Σδ _i	4~9		NaI,Ge	76Ha51
Martin, Blichert-Toft	35.1 ±0.1	53Co23, 6	51Wy01, 65F	102, 68An01		70MaB1
		68Lal0, 6	58Re04 and	two others		
Evaluated value	34.98 ±0.02	70Me31, 7	76Ha51	·		

Table 4.8.1 Half-life of ⁹⁵Nb

Authors	Half-life (y)	Error assignment	No. T ₁ /2 followed	Production & separation	Method	Ref.
Kistner, Sunyar	> 5					66Ki03
Vonach et al.	310±132				(n,2n) cross sec	69Vo11
Harbottle	127± 7*	σ	(5y)	Ag(n,γ)	pc	70Ha32
Emery et al.	> 50		(3.5y)	$Ag(n,\gamma)$ chem	Nal	72Em01
Evaluated value	127± 21	70Ha32				

Table 4.9.1 Half-life of ^{100m}Ag

Authors	Half-life (y)	Error assignment	No. T ₁ /2 followed	Production & separation	Method	Ref.
Merritt et al.	2.19 ±0.02	<u></u>	2, 3	Cs(n,γ)	4πрс	57Me47
Geiger	2.07 ±0.02	2σ	0.8		ic	57Ge07
Bayly	2.15 + 0.08 - 0.04			Cs(n,γ)		58Ba
Edwards	2.26 ±0.05		3	Cs(n, y)	mass spect	58Ed
Easterday, Smith	2.05 ±0.02			-	ic	60Ea
Wyatt et al.	2.07 ±0.02	σ	1.6	¹³³ Cs(n,γ) chem	4 _{πγ} ic	61Wy01
Dietz et al.	2.046±0.004					63Di
Flynn et al.	1.99 ±0.02	đ	2.1		2 πрс	65F102
Lagoutine et al.	2.058±0.012 (751.7±4.4)	30	1.5	¹³³ Cs(n,γ)	4 π pc	72La14
	2.05 ±0.02					
Dietz, Pachucki	2.062±0.005 (753.1±1.8)*	3σ	4.9	¹³³ Cs(n,γ) chem	mass spect	73Di01
Merritt	(2.067±0.006) 755.1±2.1*	3σ				78Me
Evaluated value	2.065±0.004 754.1±1.4	73Di01,	78Me			

Table 4.10.1 Half-life of ¹³⁴Cs

•

- 123 -

Authors	Half-life (y)	Error assignment	No. $T_1/2$ followed	Production & separation	Method	Ref.
Katcoff, Abrask	7.2 ±0.5					56Ka
Katcoff	7.2 ±0.3					61Ka
Wyatt et al.	10.7 ±0.2	σ	0.4	$Ba(n,\gamma)$ chem	4πγіс	61Wy01
Lagoutine et al.	7.8 ±0.1	3σ+Σδ	0.04	^{1 3 2} Ba(n, y)	ic,4πpc,NaI	68La10
Reynolds et al.	10.66 ±0.12	σ	0.4	Ba(n,γ) chem	4πγіс	68Re04
Walz, Weiss	10.352±0.040	σ+δ	0.3	chem	4πγic	70Wa19
Emery et al.	10.9 ±0.1	σ+δ	0.20	Ba(n,γ) chem	NaI	72Em01
Lloyd, Mays	11.3 ±0.7		0.4			73L101
Lagoutine et al.	10.35 ±0.15	3σ+Σδ		^{1 3 2} Ba(n,γ)	ic,4πpc,NaI	74La
Merritt, Gibson	10.67 ±0.15*	3σ ¹		chem	4πγic	76Me
Schötzig et al.	10.74 ±0.05*	σ	1		4πγic	77Sc31
Henry	10.5 ±0.1	61Wy01, 6	8Re04, 70W	Val9, 72Em01, 73L10)1	74NDS
Evaluated value	10.71 ±0.11	76Me, 775	Sc31			· · · · · · · · · · · · · · · · · · ·

Table 4.11.1 Half-life of ¹³³Ba

.

Authors	Half-life (d)	Error assignment	No. $T_1/2$ followed	Production & separation	Method	Ref.
Pool, Krisberg	140 ±1		8	La(d,2n) chem	ic	48Po01
Wille, Fink	140 ±10					60Wi10
Anspach et al.	137.5 ±0.3	σ	1.2		4πγіс	65An07
Emery et al.	137.2 ±0.4	α+δ	2.6	La(p,n) chem	NaI	72Em01
Merritt et al.	137.65±0.07*	3σ	10		4πγіс	75MeB
Vaninbroukx, Grosse	137.66±0.02*	σ	2	Obtained from	NaI	76Va30
	±0.13	4.3σ+Σδ _i		TRC-Amersham		
Evaluated value	137.66±0.05	75MeB,76V	/a30			

Table 4.12.1 Half-life of ¹³⁹Ce

Table 4.13.1 Half-life of ^{180 M}Hf.

Authors	Half-lıfe (h)	Error assignment	No. T1/2 followed	Production & separation	Method	Ref.		
Burson et al.	5.5±0.1		8	¹⁷⁹ Hf(n,γ) chem	GM	51Bu50		
Rao, Yaffe	5.5±0.1*			Ta(p,2p) chem	NaI	63Ra14		
Évaluated value	5.5±0.1	63Ra14						
Authors	Half-life (d)	Error assignment	No. T ₁ , followe	2 Pro ed se	Production & separation		Method	Ref.
-----------------------	-------------------	-------------------------------------	---------------------------------	------------------------	----------------------------	--------------------	-------------------	-----------
Lockett, Thomas	2.697 ±0.003		3.7	197	Au(n,γ)		electroscope	53Lo09
Bell, Yaffe	2.699 ±0.003	σ+δ	10	197	Au(n,γ)		electroscope	54Be61
Tobailem	2.686 ±0.005		1	197	Au(n,γ)		ic	55To07
Johansson	2.697 ±0.005		2.6	197	Au(n,γ)		NaI	56Jo24
Sastre, Price	2.694 ±0.006		9	197	Au(n,γ)		GM	56Sa75
Keene et al.	2.704 ±0.004		11				ic	58Ke26
Grigorescu, Sandru	2.696 ±0.004		6	197	Au(n,γ)		GM	59Gr09
Robert	2.699 ±0.004		1.9	197	Au(n,γ)		calorimeter	60Ro22
Starodubtsev et al.	2.687 ±0.005							63St20
Goodier	2.695 ±0.007		7	197	Au(n,γ)	chem	ic	68Go22
Lagoutine et al.	2.697 ±0.005	3σ+Σδ _i		197	Au(n,γ)		ic,4πpc,NaI	68La10
Reynolds et al.	2.693 ±0.005	σ	3.2	197	$Au(n,\gamma)$		GM	68Re04
Cabell, Wilkins	2.701 ±0.008			197	$Au(n,\gamma)$		NaI	69Ca23
	2.688 ±0.028			197	Au(n,γ)		NaI	
	2.670 ±0.028			197	Au(n,γ)		NaI	
Vuorinen, Kaloinen	2.695 ± 0.002			107				69Vu04
Cabell, Wilkins	2.6946±0.0010		6.7	197	Au(n,γ)		NaI	70Ca09
Costa Paiva, Martinho	2.696 ±0.004	σ+δ _τ +δi ^ω ,	10.6	197	Au(n,γ)		NaI	70Co14
Merritt, Gibson	2.6937±0.0002*	σ	14	197	Au(n,γ)		4πγіс	77Me
Martin, Blichert-Toft	2.697 ±0.005	53Lo09, 5 59Gr09, 6	4Be61, 5 0Ro22, 6	55To07, 5 63St20, 6	56Jo24, 58Go22,	56Sa75, 68La10,	58Ke26, 68Re04	70MaB1
Harmatz	2.696 ±0.002	53Lo09, 5 69Vu04, 7	4Be61, 5 0Ca09, 7	56Jo24, 6 70Co14	50Ro22,	68La10,	68Re04,	7 7 N D S
Evaluated value	2.6937±0.0007	77Me						

Table 4.14.1 Half-life of ¹⁹⁸Au

a) δ_{τ} and δ_{i} mean uncertainties in the resolving time and due to impurities, respectively.

Authors	Half-life (d)	Error assignment	No. $T_1/_2$ followed	Product: separat	ion & tion	Method	Ref.
Lyon	46.5						51Ly10
Wilson, Curran	45.9 ±0.2		2	Hg(n,γ)		рс	51Wi22
Cork et al.	47.9 ±0.2		> 1	²⁰² Hg(n,γ)			52Co01
Eickholz, Krzyzewski	46.91 ±0.14		5	Hg(n,γ)		ic	56Ei14
Thiry	47.1 ±0.2		3	Hg(n,γ)		GM	57Th11
Wright et al.	45.4 ±0.5	σ	4	Hg(n,γ)	chem	ic	57Wr37
Cali, Lowe	47.2 ±0.7		2~6	Hg(n,γ)		рс	59Ca12
Taylor	46.8 ±0.2		2	²⁰² Hg(n,γ)		NaI,pc	62Ta06
Anspach et al.	46.56 ±0.02		4.8	Hg(n,γ)	chem	4πγίς	65 An 07
-	46.577±0.008		5.1	Hg(n,γ)	chem	4πγіс	
Vaninbroukx, Grosse	46.70 ±0.21	. σ	> 2			NaI	66Va26
Gleason	46.64 ±0.27		2			NaI	67G105
Anspach et al.	46.600±0.010		3	Hg(n,γ)	chem	ic	68An01
Lagoutine et al.	47.0 ±0.1	3σ+Σδ ;		202 lig(n, γ)		ic,4πpc,NaI	68La10
Emery et al.	46.76 ±0.08	σ+δ	2	Hg(n, y)	chem	NaI	72Em01
	46.75 ±0.09	α+δ	2	Hg(n,γ)	chem	NaI	
Merritt, Taylor	46.60 ±0.02*	3σ	9.0			4πγic	7 2MeZQ
Martin, Blichert-Toft	46.59 ±0.05	51Wi22, 5	2Co01, 56	Eil4, 57Thl	1, 57Wr:	37, 59Cal2	70MaB1
		62Ta06, 6	5An07, 67	G105, 68An0	l, 68La]	10	
Evaluated value	46.60 ±0.02	7 2Me ZQ					

Table 4.15.1 Half-life of ²⁰³Hg

Authors	Half-life (y)	Error assignment	No. $T_1/_2$ followed	Production & separation	Method	Ref.
Neumann, Perlman	≃ 50		(2.75y)	²⁰⁹ Bi(α , 2n) ²¹¹ At \rightarrow	GM	51Ne02
Harbottle	30.2±0.5		(280d)	²⁰⁹ Bi(p,3n) ²⁰⁷ Po +	ic	59Ha20
Sosniak, Bell	28 ± 3	σ+δ		209 Bi(α , 2n) 211 At +	NaI	59So12
Appelman	38 ± 3	2σ			pc,ic	61Ap01
Rupnik	38 ±4		(0.5y)		NaI	72Ru10
Yanokura et al.	33.4±0.8*	σ		²⁰⁹ Bi(α,2n) ²¹¹ At → ²⁰⁹ Bi(p,3n) ²⁰⁷ Po →	Ge	78Ya
Evaluated value	33.4±0.8	78Ya				

Table 4.16.1 Half-life of ²⁰⁷Bi

Fig. 4.1.1 Half-life of ²²Na.

- 129 -

Fig. 4.3.1 Half-life of 46 Sc.

Fig. 4.4.1 Half-life of ^{54}Mn .

- 130 -

Fig. 4.6.1 Half-life of ⁸⁵Sr.

Fig. 4.7.1 Half-life of ⁸⁸Y.

Fig. 4.8.1 Half life of ⁹⁵Nb.

JAERI - M 8811

Fig. 4.9.1 Half-life of 108 Mag.

Fig. 4.10.1 Half-life of ^{134}Cs .

- 133 -

Fig. 4.11.1 Half-life of ¹³³Ba.

Fig. 4.12.1 Half-life of ¹³⁹Ce

Fig. 4.14.1 Half-life of ¹⁹⁸Au.

Fig. 4.15.1 Half-life of ²⁰³Hg.

Fig. 4.16.1 Half-life of ²⁰⁷Bi.