1093 NEANDC(J)<u>−69</u>∕U INDC(JAP) -56/L

JAERI-M 9318

. EVALUATION OF NEUTRON NUCLEAR DATA FOR 233 U IN THERMAL AND **RESONANCE REGIONS** February 1981 Yasuyuki KIKUCHI

日本原子力研究所 Japan Atomic Energy Research Institute

この報告書は、日本原子力研究所が JAERI-M レポートとして、不定期に刊行している 研究報告書です。入手、複製などのお問合わせは、日本原子力研究所技術情報部(茨城県 那珂郡東海村)あて、お申しこしください。

JAERI-M reports, issued irregularly, describe the results of research works carried out in JAERI. Inquiries about the availability of reports and their reproduction should be addressed to Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, Japan.

Evaluation of Neutron Nuclear Data for ²³³U in Thermal and Resonance Regions

Division of Physics Tokai Research Establishment JAERI

Yasuyuki KIKUCHI

(Received January 22, 1981)

The thermal and resonance cross sections of ²³³U were evaluated for JENDL-2. The cross sections below 1 eV are given as point-wise data and were evaluated by the use of the measured fission and capture cross sections. The resolved resonance parameters are derived up to 100 eV. The parameters were obtained by using NDES so as to reproduce the measured total and fission cross sections. The cross sections from 100 eV to 30 keV are represented by the unresolved resonance parameters. The fission and capture resonance integrals calculated from these parameters are 771 and 138 barns, respectively, which agree with the measured data within the quoted errors.

Keywords; ²³³U, evaluation, JENDL-2, thermal cross sections, resonance parameters

|

JAERI-M 9318

²³³Uの熱中性子および共鳴領域核データの評価

日本原子力研究所東海研究所物理部

菊池 康之

(1981年1月22日受理)

²³³Uの熱中性子および共鳴断面積の評価をJENDL-2のために行った。1 eV以下の 断面積は核分裂と捕獲断面積の実験値より評価し、ポイント・ワイズ・データとして与え た。分離共鳴パラメータは全断面積と核分裂断面積の実験値を再現するようNDESコー ドシステムで評価し100 eVまで与えた。100 eV-30 k eVの間は非分離共鳴パラメー タを与えた。これらの共鳴パラメータから計算された核分裂および捕獲共鳴積分はそれぞ れ771 bと138 b であり、誤差の範囲内で実験値と一致している。

Contents

1.	Introduction	1
2.	Thermal Cross Sections	2
3.	Resolved Resonance Parameters	3
3	.1 Status of Measured Data	3
3	.2 Deduction of Complete Sets of Parameters	3
3	.3 Evaluation of Parameters	5
4.	Unresolved Resonance Parameters	8
5.	Discussion	9
6.	Conclusions 1	0
	Acknowledgment 1	1
	References1	1

E

次

1.	序	論	1
2.	熱中	性子断面積	2
3.	分離	共鳴 パラメータ	3
	3. 1	測定データの現状	3
	8. 2	パラメータの完全化	3
į	3. 3	パラメータの評価	5
4.	非分	離共鳴パラメータ	8
5.	議	益	9
6.	結	<u>验</u> 	10
謝	辞		11
参え	ぎ 文献		11

1. Introduction

In the thorium fuel cycle, 233 U has an essential role as a main fissile material. In spite of its importance, there still remain large uncertainties in the evaluated nuclear data of 233 U. For example, McNeamy and Jenkins¹⁾ pointed out from their benchmark tests that the cross sections of 233 U in ENDF/B-IV had some errors in the epithermal region.

Considering such a situation, the cross sections of 233 U were evaluated in the full energy range for JENDL-2. As 233 U is expected to be used in a thermal breeder reactor because of its high n-value in the thermal energy region, the thermal and resonance cross sections, as well as the cross sections for fast neutrons, were carefully evaluated.

In the evaluation for JENDL-2, the thermal and resonance cross sections were evaluated by the present author, and the cross sections in the higher energy range were evaluated by Asano and Matsunobu. The outline of the evaluation for full energy range will be published²⁾ elsewhere. Hence this report describes detailed evaluation procedure and gives the numerical results in the thermal and resonance regions.

The cross sections below 1 eV, given as point-wise data, are described in Chapter 2. The cross sections are represented by the resolved resonance parameters between 1 and 100 eV and by the unresolved resonance parameters between 100 eV and 30 keV. The evaluations of both parameters are described in Chapters 3 and 4, respectively.

- 1 -

2. Thermal Cross Sections

The cross sections below 1 eV are given as point-wise data, for the cross section values cannot be reproduced satisfactorily with the singlelevel resonance parameters in this energy range because of interference effects among levels.

The fission cross section was evaluated on the basis of recently measured data by Pschenichny et al.³⁾, Deruytter and Wagemans⁴⁾, Weston et al.^{5,6)} and Cao et al.⁷⁾ The capture cross section was also evaluated on the basis of measured data by Weston et al.⁵⁾ The evaluation was made by using NDES (Neutron Data Evaluation System)⁸⁾. In this system, numerical experimental data are displayed in a graphic form on a cathoderay tube, and any point on the graph can be recorded in the computer memory by using a cross-hair cursor. Thus the evaluation with the eye-guide method can be made easily with this system.

The elastic scattering cross section was calculated from the resonance parameters with assuming the effective scattering radius of 9.93 fm which was obtained from analyses of the unresolved resonance parameters as will be described later. The 2200 m/s values of the evaluated cross sections agree with the values recommended by Lemmel⁹⁾ within the quoted errors. The total cross section given as a sum of the partial cross section agrees with the recent measurements^{3,10,11,12)} within their scatter.

The cross sections thus evaluated are given in Table 1. The evaluated cross section curves are compared with the measured data in Figs. 1 \sim 4.

-2 -

3. Resolved Resonance Parameters

3.1 Status of Measured Data

The resonance parameters measured after publication of BNL-325 2nd edition¹³⁾ were surveyed through CINDA-76/77 and CINDA-78¹⁴⁾. The status of the measured data is shown in Table 2. The measured resonance parameters were stored in the REPSTOR system¹⁵⁾, and were compared with one another.

The measurements of the resonance cross sections were also surveyed through CINDA-76/77 and CINDA-78. The survey was restricted to data whose numerical values were available in NEUDADA file, since the energy points are very numerous in these data of the resonance cross sections. The status of the measured data is shown in Table 3.

3.2 Deduction of Complete Sets of Parameters

A total of 8 sets of the measured resonance parameters were examined. In the present work, only the parameters for the single-level Breit-Wigner formula were considered because of limitation in the processing codes. Thus the sets deduced by de Saussure et al.¹⁸⁾ and Cao et al.⁷⁾ were omitted. The sets by Felvinci and Melkonian¹⁷⁾ and by Sauter and Bergen²⁰⁾ were also abandoned, because these parameters were very discrepant from the remaining ones. Finally we considered the parameter sets deduced by Nizamuddin and Blons¹⁶⁾, by Kolar et al.¹¹⁾, by Ryabov et al.¹⁹⁾ and by Bergen and Silbert²¹⁾ in the present work.

All the necessary parameters were not given by the experimenters as seen in Table 2. In order to calculate the resonance cross sections, the parameters not given by the experimenters were estimated as follows:

a) Nizamuddin and Blons¹⁶⁾

They gave the parameters for 169 levels, 33 of which are artificial

- 3 -

levels deduced to partially compensate the interfernce effects among levels. They gave Γ , Γ_f and $\sigma_0 \Gamma_f$ for the real levels, and Γ and $\sigma_0 \Gamma_f$ for the artificial levels. Taking account of the relation

$$\sigma_0 \Gamma_f = \frac{2\pi}{\lambda^2} g \frac{\Gamma_n \Gamma_f}{\Gamma}, \qquad (1)$$

we had for the real levels

$$\Gamma_{n} = 2g\Gamma_{n} = (\sigma_{0}\Gamma_{f}) \quad \lambda^{2}\Gamma/\pi\Gamma_{f}, \qquad (2)$$

$$\Gamma_{\gamma} = \Gamma - \Gamma_{f}.$$
(3)

The values of Γ_{γ} were found to be 39 meV for all the real levels. For the artificial levels, $\Gamma_{\rm f}$ was obtained by assuming the same value of Γ_{γ} as the real levels,

$$\Gamma_{\rm f} = \Gamma - \Gamma_{\gamma} \ (=39 \ {\rm meV}), \tag{4}$$

and $\boldsymbol{\Gamma}_n$ was obtained from Eq. (2).

b) Kolar et al.¹¹⁾

They gave Γ and $2g\Gamma_n^{\circ}$ from their transmission measurements. By assuming Γ_{γ} = 39 meV according to Nizamuddin and Blons, we obtained

$$\Gamma_{n} = 2g\Gamma_{n} = 2g\Gamma_{n}^{\circ} \sqrt{E},$$

$$\Gamma_{f} = \Gamma - \Gamma_{n} - \Gamma_{\gamma}.$$

c) Ryabov et al.¹⁹⁾

They gave $2g\Gamma_n$ and Γ from their measurements on the total, fission and capture cross sections, but detailed information was not available. Assuming $\Gamma_{\gamma} = 39$ meV, we obtained

$$\Gamma_{n} = 2g\Gamma_{n},$$

$$\Gamma_{f} = \Gamma - \Gamma_{n} - \Gamma_{\gamma}$$

d) Bergen and Silbert²¹⁾

They obtained $2g\Gamma_n^{\circ}$ and Γ_f from the measurements of the fission and capture cross sections by using the underground nuclear detonation as a neutron source. By assuming $\Gamma_{\gamma} = 45$ meV as they assumed in their analysis, we had

$$\Gamma_{n} = 2g\Gamma_{n} = 2g\Gamma_{n}^{\circ}\sqrt{E}$$
$$\Gamma = \Gamma_{f} + \Gamma_{\gamma} + \Gamma_{n}.$$

3.3 Evaluation of Parameters

3.3.1 Comparison of Parameter Sets

The four sets of the parameters above mentioned were compared with one another and with the parameters of ENDF/B-IV. It is difficult, however, to compare each quantity of the parameters with one another directly, because a quantity is correlated with the others in the analysis. For example the value of Γ_n is dependent on the value of Γ_γ , when it is deduced from the transmission measurements.

In the present work, the areas of each resonance and the calculated cross sections were compared. For compaison of the fission or capture area, we calculated A_f and A_c defined as

$$A_{f} = 2g \frac{\Gamma_{n}\Gamma_{f}}{\Gamma}$$
, $A_{c} = 2g \frac{\Gamma_{n}\Gamma_{\gamma}}{\Gamma}$.

Table 4 compares the values of A_f and A_c summed up over levels located in adequate energy ranges. The areas calculated from the parameters of Nizamuddin and Blons¹⁶⁾, Kolar et al.¹¹⁾ and ENDF/B-IV agree well with one another within the error of 20 %, while the areas of Bergen and Silbert²¹⁾ are very large and those of Ryabov et al.¹⁹⁾ are extremely small.

- 5 -

The total, fission and capture cross sections were calculated from these 5 sets with the RESENDD code²⁷⁾ and are compared with one another in Figs. 5 \sim 7, respectively. The set of Bergen and Silbert gives the largest values for all the cross sections. Small resonances seem to be missed in the set of Ryabov et al.

3.3.2 Initial Guess Prameters

From the comparisons mentioned above, we omitted the parameter sets of Bergen and Silbert and of Ryabov et al., because Bergen and Silbert deduced parameters from the larger cross sections than the recently measured ones, and Ryabov et al. missed small resonances. As to the remaining two sets, we concluded that the set of Nizamuddin and Blons was more reliable, because their parameters were deduced not only from the high resolution measurements of the fission cross section by Blons²⁶⁾ but also from the transmission measurements by Kolar et al.¹¹⁾ from which the parameters of Kolar et al. were deduced. Thus the set of Nizamuddin and Blons was adopted as the initial guess parameters. In the energy range below 6 eV, where Nizamuddin and Blons did not give the parameters, the recommended data in BNL-325 3rd edition²⁸⁾ were adopted as the initial guess.

3.3.3 Modification

The cross sections were calculated from the initial guess parameters with assuming the effective scattering radius of 9.93 fm. The calculated total and fission cross sections agree well with the measured data within their scatters in most of energy range. It should be noted that the calculated capture cross section agrees well with the measured data

- 6 -

of Weston et al.⁶⁾, though the resonance parameters were deduced without considering the capture data. This suggests applicability of the parameters of Nizamuddin and Blons.

In some energy ranges, however, agreement was not satisfactory between the calculated and measured cross sections. The resonance parameters were modified so as to reproduce the measured data in such energy ranges by displaying the calculated cross sections and the measured data on a cathode ray tube with NDES. Figures 8 and 9 show improvement of agreement in total and fission cross sections, respectively, by modification of the resonance parameters.

The parameters of the lowest five levels were further modified so as to reproduce the measured data of fission and capture resonance integrals.

3.3.4 Background Cross Section

Even after modifying the resonance parameters, the calculated fission cross section failed to reproduce the measured data in limited energy ranges particularly in valleys between resonances. This is caused by the interference among resonances and cannot be resolved even by adoption of the artificial levels. The multi-level formula is essentially required for such a fissile nuclide as ²³³U. In the present work, however, the discrepancies were corrected by applying a positive or negative background cross section to the fission cross section. This work was made also by using NDES. No background correction was applied to the capture and elastic scattering cross sections. Figure 10 shows the fission cross sections calculated with and without the background cross section as well as the measured data in the energy range between

- 7 -

13 and 16 eV. The background fission cross section is tabulated in Table 5.

3.3.5 Results

The evaluated resonance parameters are listed in Table 6 with the measured data and the evaluated ones in BNL-325 2nd and 3rd edition and in ENDF/B-IV. The calculated total, fission and capture cross sections are shown with the measured data in Figs. 11 \sim 13, respectively. Satisfactory agreement is observed in full energy range, when the background cross section is applied.

4. Unresolved Resonance Parameters

The unresolved resonance parameters were deduced by the ASREP $code^{29}$ so as to reproduce the total, fission and capture cross sections evaluated by Asano and Matsunobu²⁾ on the basis of measured data. The total cross section was evaluated by averaging the data of Pattenden et al.²⁴⁾ and Kolar et al.¹¹⁾ The fission cross section was taken from the measerements by Blons²⁶⁾. The capture cross section was evaluated on the basis of the measured data of Weston et al.⁶⁾ and of Hopkins and Diven³⁰⁾ by the aid of the statistical model calculation.

First we searched for the s- and p- wave strength functions, the fission widths and the effective scattering radius so that the global trends of the total, fission and capture cross sections might be well reproduced. The observable level spacing (D_{obs}) and the radiation width (Γ_{γ}) were fixed to be 0.68 eV and 39 meV, respectively. The energy dependence of the level spacing was calculated with the level density parameters given by Gilbert and Cameron.³¹⁾ The ratio of the s- wave to

- 8 -

p- wave strength function was fixed to be 0.79 as obtained from the optical model calculation, and the spin dependence of the fission widths was also fixed as expected³²⁾ from the channel theory of fission. The effective scattering radius of 9.93 fm was obtained as the results of this search. The strength functions and fission widths thus determined were used as the initial guess parameters in the next step.

Then we searched for the s- and p- wave strength functions and the fission widths with fixing the other parameters so as to reproduce the total, fission and capture cross sections at each energy point. The ratios of s- wave to p- wave strength function and of the fission widths for each spin state were also fixed in this search.

The unresolved resonance parameters thus obtained are given in Table 7 with the calculated cross sections. The energy dependence of the strength functions and the fission widths are shown in Fig. 14 as the ratios to the initial guess values. The fluctuations are considerably large below 1 keV and there seem to exist tendencies to increase with increasing energy in both strength functions and the fission widths.

5. Discussion

The point-wise cross sections were calculated from the resonance parameters and the background cross sections in the energy range from 10^{-5} eV to 30 keV. The fission and capture resonance integrals were calculated from these cross sections by numerical integration, and are compared with the measured data in Table 8. The calculated values agree with the measured data within the quoted errors. This suggests applicability of the present data to thermal reactor calculations.

The same values of the effective scattering radius are used

- 9 -

JAERI-M 9318

in the thermal, resolved resonance and unresolved resonance regions. This suggests the consistency of the evaluation in these three energy regions.

6. Conclusions

The thermal and resonance cross sections of ²³³U were evaluated for JENDL-2. The cross sections below 1 eV were given as point-wise data, and the resonance cross sections were represented by the resonance parameters and the background cross sections.

The resolved resonance parameters were evaluated by useing NDES where the calculated resonance cross sections could be compared immediately with the measured data in the graphical form. The background corrections were made on the fission cross section in the very restricted energy regions where the calculation could not reproduce the measured data because of the strong interference among levels. The unresolved resonance parameters were obtained up to 30 keV so as to reproduce the evaluated total, fission and capture cross sections. No background correction was applied in the unresolved resonance region.

The evaluated cross sections agree very well with the measured data, and the calculated resonance integrals reproduce the measured data within the quoted errors. Hence the presently evaluated data are expected to be applicable to the thermal reactor calculations in the thorium fuel cycle.

-1 0 -

Acknowledgment

The author wishes to thank T. Nakagawa for his aid to use NDES. He also acknowledges N. Asano and H. Matsunobu for his discussion on the evaluation of the cross sections in the unresolved resonance region. Careful typewriting by H. Terakado is much appreciated.

References

- 1) MCNEAMY, S. R. and JENKINS, J.: Nucl. Sci. Eng., <u>65</u>, 441 (1978)
- 2) ASANO, N., KIKUCHI, Y. and MATSUNOBU, H.: To be submitted to J. Nucl. Sci. Technol.
- 3) PSHENICHNY, V. A., BLANOVSKY, A. I., GNIDAK, N. L. and PAVLENKO, E. A.: "Measurement of the Energy Dependence of η for ²³³U in the Region 0.02-1 eV", INDC(CCP)-111/U, p. 23 (1978)
- 4) DERUYTTER, A. J. and WAGEMANS, C.: Nucl. Sci. Eng., <u>54</u>, 423 (1974)
- 5) WESTON, L. W., GWIN, R., DE SAUSSURE, G., INGLE, R. W., TODD, J. H., CRAVEN,
 C. W., HOCKENBURY, R. W. and BLOCK, R. C.: Nucl. Sci. Eng., <u>42</u>, 143 (1970)
- 6) WESTON, L. W., GWIN, R., DE SAUSSURE, G., FULLWOOD, R. R. and HOCKENBURY, R. W.: Nucl. Sci. Eng., 34, 1 (1968)
- 7) CAO, M. G., MIGNECO, E., THEOBALD, J. P. and MERLA, M.: J. Nucl. Energy, <u>24</u>, 111 (1970)
- 8) NAKAGAWA, T.: J. At. Energy. Soc. Jpn., 22, 559 (1980) [in Japanese]
- 9) LEMMEL, H. D.: "Nuclear Cross Sections and Technology", Proc. Conf., Washington
 D. C., Mar. 3-7, 1975, Vol. 1, p. 286, NBS Special Publication 425 (1975)
- 10) BROOKS, F. D., JOLLY, J. E., SCHOMBERG, M. G. and SOWERBY, M. G.: "Eta and Neutron Cross Sections of ²³⁹Pu and ²³³U", AERE-M-1709 (1966)
- 11) KOLAR, W., CARRARO, G., NASTRI, G.: "Nuclear Data for Reactors", Conf. Proc., Helsinki, 15-19 June 1970, Vol. 1, p. 387, IAEA (1970)
- VERTEBNY, V. P., VLASOV, M.F., KOLOTY, V. V., PASECHNIK, M. V., PSHENICHNY,
 V. A., URIN, V. N. and FEDOROVA, A. F.: YFI-16, p. 8, (1973) [in Russian]

-11 -

- 13) STEHN, J. R., GOLDBERG, M. D., WIENER-CHASMAN, R., MUGHABGHAB, S. F., MAGURNO, B. A. and MAY, V. M.: "Neutron Cross Sections, Vol III, Z=88 to 98", BNL-325, 2nd Edition, Supplement No. 2 (1965)
- 14) IAEA: CINDA 67/77, An Index to the Literature on Microscopic Neutron Data, IAEA, (1977) and CINDA 78, Supplement 5 to CINDA 67/77
- 15) NAKAGAWA, T: To be published as JAERI-M report
- 16) NIZAMUDDIN, S. and BLONS, J: Nucl. Sci. Eng., <u>54</u>, 116 (1974)
- 17) FELVINCI, J. P. and MELKONIAN, E.: "Neutron Cross Section Technology", Proc. Conf., Knoxville, March 15-17, 1971, p. 855, CONF-710301 (1971)
- 18) DE SAUSSURE, G., PEREZ, R. B. and DERRIEN, H.: "Nuclear Data for Reactors", Conf. Proc., Helsinki, 15-19 June 1970, Vol. 2, p.757, IAEA (1970)
- 19) RYABOV, Yu. V., SO DON SIK, CHIKOV, N. and YANEVA, N.: Sov. J. Nucl. Phys., <u>13</u> 255 (1971)
- 20) SAUTER, G. D. and BOWMAN, C. D.: Phys. Rev., <u>174</u>, 1413 (1968)
- 21) BERGEN, D. W. and SILBERT, M. G.: Phys. Rev., 166, 1178 (1968)
- 22) ADLER, D. B. and ADLER, F. T.: Proc. Conf. Breedings Economics and Safety in Large Fast Power Reactors, ANL, Oct. 7-10, 1963, p. 695, ANL-6792 (1963)
- 23) REICH, C. W. and MODRE, M. S.: Phys. Rev., 111, 929 (1958)
- 24) PATTENDEN, N. J. and HARVEY, J. A.: Nucl. Sci. Eng., 17, 404 (1963)
- 25) MOORE, M. S., MILLER, L. G. and SIMPSON, O. D.: Phys. Rev., 188, 714 (1960)
- 26) BLONS, J.: Nucl. Sci. Eng., <u>51</u>, 130 (1973)
- 27) NAKAGAWA, T. and NARITA, T.: "RESENDD", unpublished
- 28) MUGHABGAB, S. F. and GARBER, D. I.: "Neutron Cross Sections, Vol. 1, Resonanc Parameters", BNL-325, 3rd Edition (1973)
- 29) KIKUCHI, Y.: To be published as JAERI-M report.
- 30) HOPKINS, J. C. and DIVEN, B. C.: Nucl. Sci. Eng., <u>12</u>, 169 (1962)
- 31) GILBERT, A. and CAMERON, A. G. W.: Can. J. Phys., <u>43</u>, 1446 (1965)
- 32) KIKUCHI, Y. and AN, S.: J. Nucl. Sci. Technol., 7, 157 (1970)

-1 2 -

Table 1 Cross sections of ²³³U below 1 eV

Energy (eV)	Total (b)	Fission (b)	Capture (b)	Elastic scattering (b)
0.00001	29283	27000	2270	12.7
0.0001	9233	8500	720	12.7
0.001	2940	2700	227	12.7
0.01	935	850	72.0	12.7
0.02	667	603	50.8	12.7
0.0253	588	530	45.3	12.7
0.03	545	491	41.2	12.7
0.04	472	423	36.6	12.7
0.05	421	375	33.4	12.7
0.06	388	344	30.6	12.6
0.07	356	314	28.8	12.6
0.08	335	295	27.9	12.6
0.09	316	276	27.1	12.6
0.1	301	261	26.9	12.6
0.11	288	249	26.4	12.6
0.13	266	228	27.1	12.5
0.14	261	220	28.4	12.5
0.15	254	213	28.4	12.5
0.16	247	207	27.5	12.5
0.18	239	201	25.6	12.5
0.2	232	197	23.0	12.4
0.25	211	181	17.6	12.4
0.3	196	169	14.0	12.3
0.4	172	148	11.5	12.1
0.5	157	134	10.5	11.9
0.6	147	125	10.2	11.8
0.7	139	117	10.2	11.6
0.8	140	118	10.9	11.4
0.9	148	125	12.1	11.2
1.0	162	137	13.8	10.0

Interpolation law: log - log

Author	Year	Ref.	E _{min} (eV)	E _{max} (eV)	No. of levels	Formula [*]	Quantities	Measured
Nizamuddin	74	16	6	124	169	B – W	$E, \Gamma, \Gamma_f, \sigma_0^{\Gamma}_f$	σ _f
Felvinci	71	17	1.55	29.54	36	B – W	E, ^r f	fragment K.E
Kolar	70	11	2.5	53	72	B – W	E, [,2g[° T ⁿ T	σ _T
			2.5	93	85	A – A	μ,ν,G',Η'	
de Saussure	70	18	-2.8	64	70	A – A	$\mu, \nu, G^{f}, H^{f}, G^{c}, H^{c}$	σ _f ,σ _c
Cao	70	7	-2.8	65	72	A – A	μ, ν, G^{f}, H^{f}	σ_{f}
Ryabov	70	19	1.8	20.6	13	B – W	μ,ν,2gΓ _n	σ _T ,σ _c ,σ _f
Sauter	68	20	1.59	30.8	30	B - W	$E, \Gamma, g\Gamma, g\Gamma, g\Gamma n^{\Gamma}\gamma$	σ _s ,σ _c
Bergen	68	21	20.6	62.7	68	B – W	E,2g ^r ,°, ^r , ^r , ^r	σ _f ,σ
			20.5	62.7	54	R - M	E,2g ^Γ , [°] , ^Γ , [†] **,	

* B - W: Single-level Breit-Wigner formula,

- A A: Multi-level farmula by Adler and Adler²²⁾,
- R M: Multi-level farmula by Reich and Moore²³⁾.
- ** Three fission channels were assumed.

14

Quantities	Author	Year	Ref.	E _{min} (eV)	E _{max} (eV)	Laboratry
Total	Kolar	70	11	0.68	750	Gee1
	Brooks	66	10	0.04	11	Harwell
	Pattenden	63	24	0.07	8,800	ORNL
	Moore	60	25	0.02	20	MTR
Fission	Deruytter	74	4	1.0	30	Geel
	Blons	74	26	6.0	30,000	Saclay
	Сао	70	7	0.7	3,000	Geel
	Bergen	68	21	10	2,850,000	LASL
	Weston	68	6	0.4	2,000	ORNL, RPI
	Brooks	66	10	1.0	11	Harwell
	Moore	60	25	0.02	960	MTR
Capture	Weston	68	6	0.4	2,000	ORNL, RPI

Table 3 List of measured resonance cross sections of 233 U

Energy Interval (eV)	*	Nizamuddin ¹⁶⁾	Kolar ¹¹⁾	Ryabov ¹⁹⁾	Bergen ²¹⁾	ENDF/B-IV
2 - 5	Ac		0.61	0.40		0.54
	Ac		0.05	0.15		0.12
5 - 10	A _f	1.23	1.47	0.47		1.21
	Ac	0.30	0.30	0.14		0.29
10 - 20	A _f	9.34	8.27	6.08		7.44
	Ac	1.33	1.38	0.89		1.37
20 - 30	A _f	10.82	11.91		18.6	10.46
	Ac	1.20	1.31		2.75	1.22
30 - 40	A _f	8.87	10.51		13.4	8.18
	Ac	0.88	0.91		1.95	0.94
40 - 50	A f	7.03	7.62		8.3	5,80
	Ac	1.14	1.13		1.73	1.33
50 - 60	^A f	14.26			19.2	12.57
	A _c	1.21			1.90	1.10

Table 4 Fission and capture areas integrated over energy intervals

* $A_f = 2g\Gamma_n\Gamma_f/\Gamma$, $A_c = 2g\Gamma_n\Gamma_\gamma/\Gamma$

E _n (eV)	⁰ f (barns)	En (eV)	^σ f (barns)	En (eV)	^ơ f (barns)
1.0	0.0	2.85	0.0	14.0	0.0
2.38	0.0	2.90	2.7	14.2	-4.94
2.41	-1.84	3.01	6.3	14.4	-8.6
2.47	-28.0	3.29	6.3	14.6	-11.23
2.50	-28.8	3.45	0.0	14.8	-14.23
2.59	-15.9	3.7	0.0	15.0	-19.37
2.70	-6.7	3.8	-5.05	15.2	0.0
2.76	-1.33	4.0	-9.52	59.0	0.0
2.80	0.0	4.19	-5.33	59.4	-2.81
		4.36	0.0	59.8	-2.65
				60.2	0.0
				100	0.0

Interpolation law: linear-linear

-17-

•

Table 6Resonance parameters of ^{233}U

ENERGY LEV 1	J TOTAL WIOTH (MEV.)	NEUTRON WIOTH * (MEV)	Gamma W10th (MeV)	FISSION WIOTH	MISCELLANEOUS **	REFERENCE
-2.81 -2.81	.2.5 754.5 2.5 725.5	4.5 4.5	30.0 1.0	720.0 720.0	i = 0 L = 0	JENOL-2 ENOF-B-4
0.17 0.17 ± 0.02 0.272 0.17 ± 0.02	2.5 100.0 3 1 100 ±20 2.5 233.7 100 ±20	0.0002 ^A 0.0002± 0.0002 0.00462 ^A 0.00020±0.00004	40-0 40 ±10 37.7 40 ±10	60.0 60 ±15 196.0 60 ±15	L = 0 WCO= 0.0005±0.0005 L = 0 WCO= 0.00049±0.00010	JENOL-2 BNL325(2) ENOF-B-4 BNL325(3)
1.45 1.55 ± 0.05 1.451 1.55 ± 0.02 1.59	2.5 530.11 (2) 650 ±200 2.5 594.75 600 ±50 645	0.11 P 0.17 ± 0.01 0.1127 P 0.165± 0.010	30.0 50 ±30 66.34 45 ±20	500.0 600 ±200 528.3 555 ±80	L = 0 WGO= 0.14 ± 0.01 L = 0 WGO= 0.133± 0.008 WHS= 0.00605 WGM= 0.050	JENOL-2 BNL325(2) ENOF-B-4 BNL325(3) 68SRUTER
1.55	2.5 260.334	G.334	50.0	210.0	L = 0	71FELV1NCH JENOL-2
1.78 ± 0.01 1.782 1.79 ± 0.01 1.74	(3) 260 ±30 2.5 273.44 260 ±30 255	" 0.31 ± 0.04 0.3467 " 0.34 ± 0.04	40 ±10 49.29 40 ±10	220 ±30 223.8 220 ±30	WGO= 0.23 ± 0.03 L = 0 WGO= 0.25 ± 0.03 WWS= 0.0259 WGM= 0.28	BNL325(2) ENOF-B-4 BNL325(3) 685AUTER
1.79 ± 0.01 1.79	330 ±50 240	^A 0.35 ± 0.04			Kon- 0.20	70RYABOV 71FELVINCH
2.17 2.17 ± 0.01 2.15	2.5 125.03 170 ±20 180	0.03 P 0.072	10.0	115.0 115 ±20	L = 0 WGO= 0.048	JENOL-2 BNL325(3) 71FELVINCH
2.29 2.30 ± 0.01 2.279 2.29 ± 0.01 2.29	2.5 110.17 3) B6 ±12 2.5 101.82 75 ±10 95	0.17 ^A 0.18 ± 0.03 0.1935 ^A 0.17 ± 0.03	50.0 40 ±10 45.15 40 ±10	60.0 46 ± 7 56.48 35 ± 5	$L = 0$ $WG0= 0.12 \pm 0.02$ $L = 0$ $WG0= 0.11 \pm 0.02$ $WH5= 0.0432$ $WH5= 0.19$	JENOL-2 BNL325(2) ENOF-B-4 BNL325(3) 68SRUTER
2.30 2.32 ± 0.02 2.27	500 60 ±20 70	^A 0.17 ± C.04			WGO= 0.012	70KOLAR 70RYABOV 71FELVINCH
3.49 3.415 3.49 ± 0.07 3.49 3.30	2.5 500.07 2.5 465.34 500 ±200 700 550	0.07 0.07681 ⁹ 0.07	45.0 0.06425 (45)	455-0 465-2 455 ±200	L = 0 L = 0 WCO= 0.037 WCO= 0.089	JENOL-2 ENOF-B-4 BNL325(3) 70KOLAR 71FELVINCH
3.62 3.66 ± 0.02 3.616 3.66 ± 0.01 3.61	2.5 185.1 3 230 ±30 2.5 155.49 185 ±20 180	0.1 0.141± 0.013 0.0931 0.12 ± 0.02	50.0 53 ±15 45.6 50 ±15	135.0 180 ±20 109.8 135 ±20	L = 0 WCO= 0.074±0.007 L = 0 WCO= 0.063±0.011 WWS= 0.0156 WCM= 0.15	JENOL-2 8NL 325(2) ENOF-8-4 8NL 325(3) 68SRUTER
3.66 3.68 ± 0.02 3.60	130 220 ±40 180	^A 0.13 ± 0.02			WGO= 0.040	70KOLAR 70RYABOV 71FELVINCH
4.76 4.81 ± 0.03 4.748 4.76 ± 0.01 4.72 4.77 4.82 ± 0.03	2.5 900.31 2.9 900 ±200 2.5 858.11 2.9 900 ±100 995 1000 600 ±280	0.31 ^A 0.28 ± 0.07 0.2997 ^A 0.24 ± 0.07 ^A 0.25 ± 0.07	45.0 70 ±30 28.91 (45)	855.0 800 ±200 828.9 855 ±100	L = 0 WCO= 0.13 ± 0.03 L = 0 WCO= 0.11 ± 0.03 WWS= 0.00874 WCM= 0.39 WCO= 0.186	JENOL -2 BNL325(2) ENOF-8-4 BNL325(3) 685AUTER 70KOLAR 70KYABOV
4.75 5.89 5.95 ± 0.07 5.865 5.89 ± 0.02 5.77 5.89 5.86 5.89	900 2.5 320.133 (3) 380 ±110 2.5 340.63 350 ±70 300 350 350 350 350 320	0.13282 P 0.15 ± 0.05 0.143 P 0.17 ± 0.03	39.0 80 ±40 39.69 (45)	281-0 300 ±100 300-8 320 ±50 281	L = 0 WG0- 0.06 ± 0.02 L = 0 HG0= 0.070± 0.012 WH5= 0.00367 HG0= 0.060 GFS= 26	71FELVINCH JENDL-2 BN.325(2) ENOF-B-4 BN.325(3) 68SAUTER 70K0LAR 71FELVINCH 74NIZAMUODIN
6.27 6.27	2.5 538.062 538	6-178-2	39.0	499.0	L = 0 GFS= 12	JENOL-2 74NIZAMUOOIN-A
6.64 6.64	2.5 500.313 500	0.31264	39.0	461.0	L = 0 GFS= 57	JENOL-2 74NIZAMUDOIN-R
6.363 6.42 ± 0.D2 6.40 6.44	2.5 757.23 600 ±75 650 500	0.1839 ⁹ 0.22 ± 0.11	1-85 (45)	745.2 570 ±75	L = 0 WGO= 0.087±0.04 WGO= 0.086	ENOF-8-4 BNL325(3) 70KOLAR 71FELVINCH
6.82 6.82 ± 0.05	2.5 138.796 3 1 190 ±30	0.79645 ⁹ 0.89 ± 0.08	39.0 53 ±15	99.0 140 ±20	L = 0 WGO= 0.34 ± 0.03	JENDL-2 BNL325(2)

ENERGY (EV)	J TOTAL WIOTH (MEV)	NEUTRON WIDTH*	Gamma WIOTH (Mev)	FISSION WIOTH (MEV)	MISCELLANEOUS**	REFERENCE
6.79 6.81 ± 0.02 6.77 6.81 6.85 ± 0.04 6.75 6.82	2.5 172.88 150 ±30 210 170 ±60 150 138 ±10	0.9207 ^A 0.78 ± 0.12 ^A 0.61 ± 0.12	43.26	128.7 108 ±20 99 ± 6	L = 0 HGO= 0.30 ± 0.05 HW5= 0.1338 HGO= 0.380 CFS= 110 ±12	ENOF-B-4 BNL32513) 685RUTER 70K0LRR 70RYRBOV 71FELVINCH 74NIZRHUDOIN
7.5 7.60 \pm 0.07 7.49 \pm 0.02 7.48 \pm 0.02 7.46 7.50 7.46 7.50	2.5 200.028 3) 200 ±50 2.5 183.28 170 ±30 135 200 200 200	0.028 P 0.041± 0.014 0.02374 P 0.038± 0.007	39.0 48 ±15 35.56 48 ±15	161.0 150 ±50 147.7 120 ±30	L = 0 HCO= 0.015±0.005 L = 0 HCO= 0.015±0.003 HHC= 0.0122 HCO= 0.014 CF5= 5	JENOL-2 - BNL 325(2) ENOF-8-4 BNL 325(3) 685AUTER 70KOLAR 71FEL VINCH 74NI ZAHUOO IN
7.80	500				WGO= 0.012	70KOLAR
8.0	2.5 2039.08	0.08	39.0	2000-0	L = 0	JENOL-2
8.33	500				WGO= 0.010	70KOLAR
8.64 8.75 ± 0.07 8.582 8.67 ± 0.02 8.67 8.68 8.64	2.5 339.05 500 ±200 2.5 421.14 380 ±50 745 390 248	0.05 0.06 ± 0.03 0.0722 0.038± 0.019	39.0 40 ±20 45.77 40 ±20	300.0 500 ±200 375.3 340 ±60 209	L = 0 WCO= 0.020± 0.010 L = 0 WCO= 0.013± 0.007 WWS= 0.00631 WCO= 0.024 GFS= 5	JENOL-2 BNL325(2) ENOF-8-4 BNL325(3) 68SRUTER 70K0LAR 74N1ZRHUD0IN
9.26 9.30 ± 0.10 9.237 9.26 ± 0.02 9.17 9.25 9.33 9.26	2.5 298.12 3) 250 ±50 2.5 334.05 300 ±50 240 ±50 250 350 298	0.12 0.11 ± 0.03 0.16:1 0.13 ± 0.03	39.0 50 ±20 47.99 50 ±20	259.0 200 ±50 286.8 250 ±50	L = 0 WC0= 0.035± 0.010 L = 0 WC0= 0.043± 0.010 WHS= 0.00667 WC0= 0.039 CFS= 15	JENOL-2 BNL325(2) ENOF-8-4 BNL325(3) 685AUTER 70KOLAR 71FELVINCH 74NIZAMUDOIN
9.71 9.68 ± 0.02 9.66 9.71	2.5 500.06 600 ±50 650 500	0.06 A 0.13	39.0 { 45 }	461-0 555 ±50	L = 0 WGO= 0.042 WGO= 0.041 GFS= 4	JENOL-2 BNL 325(3) 70KOLAR 74NIZAMUODIN-A
$\begin{array}{c} 10.39 \\ 10.45 \pm 0.10 \\ 10.35 \\ 10.37 \pm 0.02 \\ 10.30 \\ 10.38 \\ 10.50 \pm 0.06 \\ 10.35 \\ 10.39 \end{array}$	2.5 316.662 3 340 ±50 2.5 335.38 320 ±30 280 320 270 ±90 350 315 ±20	1.6618 A 1.55 ± 0.13 1.731 A 1.66 ± 0.08 A 1.5 ± 0.3	57.0 80 ±40 52.35	258.0 260 ±30 281.3 260 ±30 2858 ±16	L = 0 HGO= 0.48 ± 0.04 L = 0 HGO= 0.515± 0.025 HHS= 0.1182 HGO= 0.520 GFS= 172 ± 2	JENOL-2 BNL325(2) ENOF-B-4 BNL325(3) 605AUTER 70KOLAR 70RYABOV 71FELVINCH 74NIZAMUDOIN
10.86 10.86 ± 0.04 11.00 10.86	2.5 1000.01 350 350 1000	B-606-3 A 0-073	39.0	961.0	L = 0 HGO= 0.022 HGO= 0.022 GFS= 1	JENOL-2 BNL325(3) 70KOLAR 74NIZAMUDOIN-A
$\begin{array}{c} 11.31 \\ 11.5 \\ 11.28 \\ 11.28 \\ 11.31 \\ \pm 0.02 \\ 11.30 \\ 11.32 \\ 11.20 \\ 11.31 \end{array}$	2.5 439.2 2.5 553.03 2) 325 ±60 220 350 350 218	0.2 0.20 ± 0.07 0.3067 0.20 ± 0.07	39.0 (45) 33.42	400.0 350 ±150 519.3 280 ±60	L = 0 WGO= 0.06 ± 0.02 L = 0 WGO= 0.059± 0.021 WMS= 0.00682 WGO= 0.060 GFS= 8	JENOL-2 BNL325(2) ENOF-8-4 BNL325(3) 685RUTER 70KOLAR 70KOLAR 71FELVINCH 74NIZAMUDOIN
11.89 12.05 ± 0.04 11.81 12.05 11.69 11.89	2.5 2000.5 900 200 900 200 200 200 200	0.5 9 0.30 ± 0.05	39.0	1961.0	L = 0 HGO= 0.086±0.014 HHS= 0.0345 HGO= 0.090 GFS= 129	JENOL-2 BNL325(3) 685RUTER 70KOLRR 71FELVINCH 74NIZAMUOOIN-R
12.22	500					71FELVINCH
12.79 12.9 ± 0.1 12.74 12.81 ± 0.03 12.74 12.61 12.85 ± 0.08 12.73 12.79	2.5 310.446 2.5 339.62 310 ±15 295 300 340 ±120 300 309 ±20	1.4457 A 1.4 ± 0.2 1.46 A 1.4 ± 0.1 A 1.3 ± 0.4	55.0 (45) 40.86	254.0 260 +30 297.3 265 ±20 254 ±16	L = 0 HG0= 0.40 ± 0.06 L = 0 HG0= 0.39 ± 0.03 HH5= 0.0786 HG0= 0.408 GFS= 122 ± 3	JENOL-2 BN.325(2) ENDF-8-4 BN.325(3) 685RUTER 70KOLAR 70KOLAR 70KYABOV 71FELVINCH 74NIZAHUDDIN

ENERGY (EV)	J	TOTAL WIDTH (MEV)	NEUTRON WIDTH*	CAMMA WIOTH (MEV)	FISSION WIOTH (MEV)	MISCELLANEOUS**	REFERENCE
13.45 13.43 13.45 ± 0.06 13.45 13.45	2.5 2.5	144.056 900.54 165 150 144 ±40	5.619-2 0.3361 ^A 0.055	39.0 240.5	105.0 659.7 120 105	L = 0 L = 0 HCO= 0.015 WGO= 0.015 GFS= 4 ± 1	JENDL - 2 ENDF - B - 4 BNL 325(3) 70K0LAR 74NI ZAMUDD IN
$\begin{array}{c} 13.73 \\ 13.8 \pm 0.2 \\ 13.73 \\ 13.74 \pm 0.03 \\ 13.54 \\ 13.74 \\ 13.9 \pm 0.1 \\ 13.66 \\ 13.73 \end{array}$	2.5	255.309 212.29 320 ±40 345 380 ±130 320 255 ±24	D.30863 ^R 0.41 ± 0.07 0.1852 ^R 0.39 ± 0.05 ^R 0.33 ± 0.07	39.0 (45) 4.501	216.0 320 ±40 207.6 270 ±40 216	L = 0 HG0= 0.11 ± 0.02 L = 0 HG0= 0.11 ± 0.01 HH5= 0.0267 HG0= 0.106 GFS= 25 ± 1	JENDL -2 BNL325121 ENDF-B-4 BNL325131 6BSAUTER 70KOLAR 70RYABOV 71FELVINCH 74NIZAMU0DIN
13.95		1000				CFS≐ 15	74NIZAMUODIN-A
14.22		490				GFS= 2	74NIZAMUDOIN-A
15.33 15.3 15.35 ± 0.03 15.26 15.35 15.34 15.33	2.5 2.5	122.464 243.25 235 ±30 260 90 240 122 ±22	0-46448 1-012 9 0-47 ± 0-06	30.0 66.94 (45)	92.0 175.3 190 ±20 92 ±25	L = 0 L = 0 WGO= 0.12 ± 0.02 WWS= 0.155 WGO= 0.120 GFS= 30 ± 6	JENDL-2 ENDF-8-4 BNL325(3) 685RUTER 70KOLAR 71FELVINCH 74NIZAMU00IN
15.47 15.47	2.5	255-473 255	0.47292	39.0	215.0	L = 0 GFS= 34	JENDL-2 74NIZAMUDDIN-A
$\begin{array}{r} 15.5 \pm 0.1 \\ 15.54 \pm 0.03 \\ 15.51 \\ 15.5 \pm 0.1 \\ 15.84 \end{array}$		225 ±25 225 200 ±60 250	$\begin{array}{c} A \\ P \\ 0.90 \pm 0.12 \\ A \\ 0.425 \pm 0.060 \end{array}$	(45) (45)	170 ±20 180 ±25	WGD= 0.23 ± 0.03 WGD= 0.11 ± 0.02 WGO= 0.108	BNL325(2) BNL325(3) 70K0LAR 70RYA80V 71FELVINCH
15.82 15.82	2.5	200.02 200	0.02	39.0	161.0	L = 0 GFS= 6	JENDL-2 74N1ZAMUDOIN-A
$\begin{array}{c} 16.2 \\ 16.4 \pm 0.2 \\ 16.15 \\ 16.29 \pm 0.06 \\ 16.14 \\ 16.26 \\ 16.13 \\ 16.02 \end{array}$	2.5 2.5 (2)	426.896 530.72 530 ±70 395 600 200	0.89638 A 1.2 ± 0.3 1.018 A 1.35 ± 0.10	39.0 (45) 36.1 (45)	387.0 600 ±200 493.6 485 ±70	L = 0 WCO= 0.30 ± 0.08 L = 0 WCO= 0.334± 0.025 HH5= 0.0367 WCO= 0.334 PCC 0.025	JENOL-2 BNL325(2) ENOF-8-4 BNL325(3) 685AUTER 70KOLRR 71FELVINCH
$\begin{array}{c} 16.56\\ 16.7 \pm 0.2\\ 16.5\\ 16.59\pm 0.03\\ 16.49\\ 16.59\\ 16.59\\ 16.59\\ 16.59\\ 16.5\\ 16.5\\ 16.5\\ 16.5\\ \end{array}$	2.5	219.706 213.59 172 ±20 225 150 650 ±130 300 219 ±20	0.70587 ^R 0.41 ± 0.12 0.589 ^R 0.48 ± 0.03 ^R 1.16 ± 0.25	39.0 (45) 40.6 (45)	180.0 100 ±40 172.4 127 ±20	L = 0 HGO= 0.10 ± 0.03 L = 0 HGO= 0.118± 0.007 HHS= 0.0513 HGO= 0.118 GFS= 46 ± 2	JENOL-2 BNL325121 ENDF-B-4 BNL325131 BSRJ125(3) BSRJ17ER 70K0LAR 70K0LAR 70R7HB0V 71FELV1NCH 74N12AMUD01N
17.28		1500				GFS= 22	74NIZAMUDOIN-A
17.63		900				GFS= 5	74NIZAMUOOIN-R
17.97 18.1 ± 0.2 17.93 18.01 ± 0.03 17.91 18.01 18.2 ± 0.2 17.93 17.97	2.5	208.32 159.76 205 ±30 160 250 200 ±50 200 208 ±20	0.32005 A 0.30 ± 0.09 0.2612 A 0.42 ± 0.03 A 0.26 ± 0.09	39.0 (45) 30.5 (45)	169 .0 160 ±30 129 .0 160 ±30	L = 0 HGO= 0.07 ± 0.02 L = 0 HGO= 0.099± 0.007 WH5= 0.0181 HGO= 0.099	JENOL-2 BNL 325(2) ENDF-B-4 BNL 325(3) 685AUTER 70KOLAR 70RYABOV 71FELVINCH 74NIZAMUODIN
18.28 18.28	2.5	.379+015 379	0.015	39.0	340.0	L = 0 GFS≃ 9	JENDL-2 74NIZAMUODIN-A
18.48 18.6 ± 0.3 18.46 18.50 ± 0.06 18.41 18.50 18.47 18.48	2.5	135-158 257-0 225 ±30 160 250 250 135 ±16	0.15834 ^P 0.17 ± 0.09 0.1809 ^P 0.23 ± 0.03	39-0 (45) 66-22 (45)	96.0 120 ±60 190.6 180 ±30 96	L = 0 HCO= 0.04 ± 0.02 L = 0 HCO= 0.054± 0.007 HHS= 0.0119 HCO= 0.061 CFS= 8 ± 4	JENOL -2 BNL 325(2) ENDF-8-4 BNL 325(3) B859UTER 70K0LAR 71FELVINCH 74NIZAMUDDIN
18.96 19.1 ± 0.2	2.5	317.754	1.7538 A 1.7 ± 0.2	22.0 (45)	294.0 270 ±40	L = 0 HGO= 0.39 ± 0.04	JENOL-2 BNL325(2)

.

ENERGY (EV)	J	TOTAL WIOTH (MEV)	NEUTRON WIDTH*	Canma W10th (MeV).	FISSION WIDTH (MEV)	MISCELLANEOUS**	REFERENCE
18.87 18.99 ± 0.03 18.90 18.98 19.0 ± 0.2 18.91 18.96	2.5	310.71 300 ±20 325 270 300 ±130 300 316 ±20	1.756 ^R 1.74 ± 0.08 ^A 1.6 ± 0.3	44.25 (45)	264-7 253 ±20 294 ±18	L = 0 HGO= 0.399± 0.018 HHS= 0.1323 HGO= 0.406 GFS= 113 ± 2	ENOF-B-4 BNL325(3) 6859UTER 70K0LAR 70R7ABOV 71FELVINCH 74N1ZAMUDOIN
19.40		500				WGO= 0.060	70KOLAR
19.63 19.63	2.5	2500+39 2500	0.39487	39.0	2461.0	L = 0 GFS= 26	JENOL-2 74N1ZAMUOO[N-A
19.94		400				WGO= 0.018	70KOLAR
$\begin{array}{c} 20.59\\ 20.8 \pm 0.2\\ 20.53\\ 20.54 \pm 0.03\\ 20.58\\ 20.57\\ 20.64\\ 20.6 \pm 0.2\\ 20.52\\ 20.59\end{array}$	2.5	364.773 466.62 450 ±40 615 450 ±110 450 ±110 400 364 ±25	0.77279 ^A 1.1 ± 0.2 1.078 ^R 1.17 ± 0.08 ^R 1.3 ± 0.2	39.0 (45) 57.94 (45) 45	325.0 420 ±50 407.6 404 ±40 360 325	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	JENCL-2 BNL325(2) ENDF-8-4 BNL325(3) 68BERCEN 68SRUTER 70KOLAR 70RYABOV 71FELVINCH 74NIZAMUDOIN
21.47		400				WGO= 0.038	70KOLAR
21.58 21.58	2.5	2000 •59 2000	0.58669	39.0	1961-0	L = 0 GFS= 35	JENOL-2 74NIZAMUOD[N-A
21.86 22.1 ± 0.3 21.90 ± 0.04 21.88 21.90 ± 0.04 21.88 21.91 21.90 21.75 21.86	2.5 2.5	255.062 248.75 250 ±25 255 250 200 254 ±20	1.0621 ^A 0.9 ± 0.3 1.094 ^A 1.2 ± 0.3	39.0 (45) 52.46 (45)	215.0 180 ±50 195.2 204 ±25 200 215	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	JENOL-2 BNL325(2) ENDF-8-4 BNL325(3) 688ERCEN 685RUTER 70K0LAR 71FELVINCH 74NIZAMUDOIN
22.34 22.5 ± 0.3 22.24 22.35 ± 0.04 22.35 22.35 22.37 22.28 22.28 22.34	2.5 2.5	415.332 441.35 450 ±50 390 350 480 412 ±30	3.3317 ^R 3.3 ± 0.5 3.424 ^R 3.4 ± 0.2	48.0 (45) 47.03 40	364.0 370 ±60 390.9 407 ±50 350 364 ±21	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	JENOL-2 BNL325(2) ENDF-8-4 BNL325(3) BNL325(3) 685RUTER 70K0LAR 71FELVINCH 74NIZAMUDOIN
22.9 22.84 22.93 ± 0.04 22.96 22.93 22.89 22.89 22.9	2.5 2.5	692.554 980.13 730 ±50 700 760 692	0.55448 0.8837 ^A 0.85 ± 0.08	39.0 0.04498 (45)	653.0 979.2 684 450 653	L = 0 L = 0 WC0= 0.18 ± 0.02 WC0= 0.18 WC0= 0.178 CFS= 30	JENDL-2 ENDF-B-4 8NL325131 680ERCEN 70K0LRR 71FELV1NCH 74N1ZRHUD01N
23.75 24.0 ± 0.3 23.67 ± 0.04 23.78 23.62 23.77 23.67 23.75	2.5 2.5	453.554 555.29 450 ±50 945 450 640 453 ±30	0.55419 ^A 1.0 ± 0.4 0.4704 ^A 0.6D ± 0.15	39.0 (45) 30.62	414.0 600 ±300 524.2 385 ±40 390	$\begin{array}{rrrr} L &=& 0 \\ WG0=& 0.20 \pm 0.08 \\ L &=& 0 \\ WG0=& 0.12 \pm 0.03 \\ WG0=& 0.22 \\ WW5=& 0.0334 \\ WG0=& 0.124 \\ GFS=& 28 \pm 1 \end{array}$	JENDL-2 BN.32512) ENDF-B-4 BN.32513) 68BERCEN 68SRUTER 70K0LRR 71FELVINCH 74NIZRMUDDIN
24.3 24.25 24.26 ± 0.04 24.26 24.28 24.3	2.5 2.5	1000.52 549.61 700 700 1000	0.51997 0.2894 ^A 0.48 ± 0.04	39.0 40.92 (45)	961.0 508.4 654 530 961	L = 0 L = 0 HCO= 0.098± 0.008 HCO= 0.105 HCO= 0.088 GFS= 27	JENOL-2 ENOF-B-4 BNL325(3) 68BERGEN 70KOLAR 74NIZAMUDOIN
24.64					200	₩GO= 0.01	68BERGEN
25.25 25.5 ± 0.3 25.13 25.28 ± 0.04 25.27 25.20 25.30 25.20 25.20	2.5 2.5	274.74 356.09 315 ±30 270 320 380 274 ±25	0.73993 [#] 1.0 ± 0.3 0.8086 [#] 0.88 ± 0.09	39.0 (45) 45.68	235.0 330 ±100 309.6 290 ±30 260 235	$\begin{array}{llllllllllllllllllllllllllllllllllll$	JENOL-2 8N,325(2) ENOF-B-4 BN.325(3) 68DERCEN 68SAUTER 70KOLAR 71FELVINCH 74N1ZAMUDDIN

ENERGY (EV)	J TOTAL WIDTH (Mev)	NEUTRON WIDTH * (MEV)	GAMMA WIDTH (MEV)	FISSION WIOTH (MEV)	MISCELLANEOUS **	REFERENCE
25.78 25.85 25.85 ± 0.04 25.75 25.72 25.89 25.89 25.86 25.78	2.5 660.522 2.5 629.59 600 ±200 75 900 360 660	0.52169 D.5686 ^A 0.8 ± 0.2	39.0 43.62 (45)	621.0 585.4 554 ±200 340	L = 0 L = 0 WG0= 0.16 ± 0.04 WG0= 0.10 WH5= 0.00267 WG0= 0.152 GFS= 25	JENOL-2 ENOF-B-4 BNL325(3) 688EROEN 685RUTER 70KOLAR 71FELVINCH 74NIZAMUDOIN
26.08				200	₩GO≃ 0.05	68BERGEN
26.25 26.30 ± 0.04 26.30 26.33 26.25	2.5 495.239 150 150 495	0.23872 9 0.035	39 .0 45	456.0 105 100 456	L = 0 HGO= 0.007 HGO= 0.035 HGO= 0.007 GFS= 11	JENOL-2 BNL325(3) 688ERGEN 70K0LAR 74NIZAMU00IN
26.62 26.57 26.65 ± 0.04 26.65 26.53 26.66 26.54 26.54 26.62	2.5 260.359 2.5 438.68 300 250 300 480 260 ±24	0.35778 0.6029 ^A 0.70 ± 0.18	39.0 45.48 (45)	221 .0 392.6 254 300	L = 0 L = 0 WGO= 0.14 ± 0.04 HGO= 0.17 HKS= 0.0404 WGO= 0.098 GFS= 15 ± 1	JENOL-2 ENOF-8-4 ØNL325(3) 688EROEN 685R01ER 70K0LAR 71FELVINCH 74NIZAMUD01N
26.98 27.00 27.1 27.04 ± 0.04 27.05 27.15 26.98	2.5 592.154 2.5 364.91 600 ±50 600 592	0.15398 0.05224 ^A 0.17	39.0 (45) 59.96	553.0 433 304.9 540 ±50 200 553	L = 0 WG0= 0.104 L = 0 WG0= 0.033 MG0= 0.015 WG0= 0.032 GFS= 7	JENOL-2 BNL325(2) ENDF-8-4 BNL325(3) 688ERCEN 70KOLAR 74NIZAHUDOIN
27.76 27.84 27.74 27.76	2.5 900.508 2.5 690.75 900	0.5083 0.1209	39.0 0.2301	861.0 690.4 800 861	L = 0 L = 0 WGO= 0.135 GFS= 23	JENOL-2 ENOF-B-4 680ERCEN 74NIZRMUDOIN
28.07 28.09 ± 0.04 28.00 28.05 28.05 28.07	2.5 168.028 800 168	2.784-2 R 0.027± 0.010	39-0	129.0 130 129	L = 0 WGO= 0.0051±0.0019 WGO= 0.007 WGO= 0.102 GFS= 1	JENOL-2 BNL 325(3) 688ERCEN 70KOLAR 74NIZAMUOOIN
28.28 28.26 28.38 ± 0.04 28.32 28.38 28.17 28.28	2.5 230.233 2.5 653.61 170 220 230 ±30	0.23343 0.7386 ^A 0.50 ± 0.15	39.0 54.77	191.0 598.1 250 191	L = 0 L = 0 WCO= 0.094±0.028 WCO= 0.105 WGO= 0.038 GFS= 9 ± 1	JENOL-2 ENDF-8-4 BNL325C 3) BOBERGEN 70KOLAR 71FELVINCH 74NIZAMU001N
28.85	<u></u>			320	HGO= 0-135	68BERGEN
29.04 29.2 ± 0.4 29.05 29.07 ± 0.04 29.12 28.76 29.11 29.00 29.04	2.5 541.764 2.5 457.64 530 ±40 505 530 540 540 ±40	1.7641 A 1.6 ± 0.3 1.469 A 1.8 ± 0.2	39.0 (45) 44.17 (45)	501.0 460 ±150 412.0 484 ±40 290 501	$ \begin{array}{ccccc} L &= & 0 \\ \text{HGO} = & 0.3\text{D} \pm 0.06 \\ L &= & 0 \\ \text{HCO} = & 0.33 \pm 0.04 \\ \text{HCO} = & 0.338 \\ \text{HHS} = & 0.0616 \\ \text{HGO} = & 0.352 \\ \text{GFS} = & 74 \pm 1 \end{array} $	JENOL -2 BNL 325(2) ENOF-8-4 BNL 325(3) 688ERCEN 685RUTER 70KOL.RR 71FELVINCH 74NLZRMUDDIN
29.58 29.56 29.61 ± 0.04 29.59 29.65 29.55 29.54 29.58	2.5 112.138 2.5 152.27 200 ±50 250 160 112	0.13826 0.1199 9 0.3 ± 0.1	39.0 33.25 (45)	73.0 118-9 155 ±50 150 73	L = 0 L = 0 WCO= 0.055± 0.01B WCO= 0.073 WCO= 0.036 GFS= 4	JENOL-2 ENOF-8-4 SNL 3251 3 1 68BERCEN 70KOLAR 71FELVINCH 74NI ZAMUODIN
30.35 30.36 30.39 ± 0.04 30.30 30.43 30.35	2.5 396.154 2.5 261.06 400 ±50 400 396	0.15384 0.1034 ^A 0.13 ± 0.03	39.0 59.26 (45)	357.0 201.7 355 ±50 130 357	$\begin{array}{rcl} L &= & 0 \\ L &= & 0 \\ HG0 = & 0.024 \pm 0.005 \\ HG0 = & 0.02 \\ HG0 = & 0.028 \\ GFS = & 6 \end{array}$	JENOL-2 ENDF-8-4 BNL325(3) 688ERGEN 70KOLAR 74N1ZAMUDDIN
30.72 30.71 30.75 ± 0.04 30.73 30.76 30.79 30.72	2.5 261.627 2.5 345.42 260 ±30 445 250 261 ±21	0.62701 0.694 9 0.8 ± 0.2	37.0 46.23 (45)	224.0 298.5 214 ±30 260 224 ±23	$L = 0$ $L = 0$ $WG0= 0.14 \pm 0.04$ $WG0= 0.215$ $WW5= 0.0647$ $WG0= 0.114$ $GFS= 23 \pm 1$	JENDL-2 ENDF-B-4 9NL325131 68BER0EN 68SRUTER 70K0LRR 74NIZAMU00IN

ENERGY (EV)	J	TOTAL NIDTH (MEV)	NEUTRON WIDTH* (MEV)	GAMMA WIDTH (MEV)	FISSION WIDTH	MISCELLANEOUS**	REFERENCE
$\begin{array}{r} 31.33\\ 31.2 \pm 0.4\\ 31.39\\ 31.39 \pm 0.04\\ 31.35\\ 31.44\\ 31.33\end{array}$	2.5 2.5	325.298 443.33 450 ±70 550 325	0.29827 ^R 0.8 ± 0.2 0.5567 ^R 0.71 ± 0.07	39.0 (45) 46-37 (45)	286-0 400 ±150 396-4 404 ±70 230 286	L = 0 HGO= 0.15 ± 0.04 L = 0 HGO= 0.127± 0.013 HGO= 0.10 HGO= 0.126 GFS= 11	JENDL-2 BNL325(2) ENDF-8-4 BNL325(3) 68BERCEN 70K0LAR 74N12AMUDD1N
31.69 31.66 31.69	2.5	600.465 600	0.46464	39.0	561 •0 200	L = 0 HGO= 0.075 GFS= 18	JENOL-2 688ERCEN 74N1ZAMUODIN-A
32.01 32.3 ± 0.4 31.98 32.05 ± 0.04 32.04 32.09 32.01	2.5 2.5	217.951 234-36 330 ±50 350 217 ±20	0.95107 ^A 1.1 ± 0.2 1.004 ^A 1.64 ± 0.08	39-0 40-46 (45)	178.0 200 ±70 192.9 284 ±50 170 178	L = 0 HGO= 0.19 ± 0.03 L = 0 HGO= 0.290± 0.014 HGO= 0.30 HGO= 0.278 GFS= 32 ± 1	JENOL -2 BNL325(2) ENOF-B-4 BNL325(3) 688ERCEN 70KOLAR 74N1ZAHUDOIN
33.14 33.01 33.14 ± 0.04 33.11 33.18 33.14	2.5 2.5	740.719 796.17 900 ±150 1000 740	D.71939 1.173 ^A 1.26 ± 0.10	39-0 42-1 (45)	701.0 752.9 853 ±150 750 701	L = 0 L = 0 HGO= 0.21B± 0.017 HGO= 0.27 HGO= 0.218 GFS= 27	JENDL-2 ENDF-8-4 BNL325(3) 688ERCEN 70KOLAR 74N12AMUD01N
33.67					500	WGO≖ 0-11	68BERGEN
33.95 34.04 34.02 ± 0.04 34.05 34.02 33.95	2.5 2.5	1301-79 572-06 1000 1000 1300	1.786 0.6648 ^A 1.35 ± 0.14	39.0 45.9	1261 .0 525 .5 480 1261	L = 0 L = 0 ₩C0= 0.23 ± 0.02 ₩C0= 0.155 ₩C0≃ 0.228 GFS= 67	JENDL-2 ENDF-8-4 BNL325(3) 68BERCEN 70KOLAR 74NIZAMUDDIN
34.51 34.9 ± 0.5 34.47 34.55 ± 0.04 34.55 34.55 34.58 34.51	2.5 2.5	648.192 659.88 630 ±50 600 647 ±44	1.1924 ^R 1.7 ± 0.4 1.431 ^R 2.2 ± 0.4	48.0 43.85 (45)	\$99.0 700 ±200 614.6 \$83 \$83 ±50 \$50 \$59	$\begin{array}{l} L &= & 0 \\ WG0^{=} & 0.29 \pm 0.07 \\ L &= & 0 \\ WG0^{=} & 0.37 \pm 0.07 \\ WG0^{=} & 0.37 \\ WG0^{=} & 0.206 \\ GFS^{=} & 42 \\ \end{array}$	JENOL-2 BNL325(2) ENOF-8-4 BNL325(3) 68BERCEN 70KOLAR 74N1ZAHUDOIN
35.25 35.17 35.20 ± 0.04 35.27 35.20 35.25	2.5 2.5	395.238 346.61 500 500 395	0-2383 0.07792 9 0.20	39.0 27.33 (45)	356-0 319-2 455 450 356	L = 0 L = 0 WGO= 0.034 WGO= 0.114 WGO= 0.034 CFS= 8	JENOL-2 ENDF-8-4 BNL325(3) 68BERCEN 70KOLAR 74NIZAMUDDIN
35.62					300	WGD= 0.024	68BERGEN
35.75 35.44 35.89 ± 0.04 35.96 35.75 35.75	2.5 2.5	900.683 815.69 1100 ±400 1500 900	0.68306 0.7456 ^R 1.4 ± 0.2	39-0 50-74 (45)	861.0 764.2 1100 ±400 750 861	L = 0 L = 0 HGO= 0.23 ± 0.03 HGO= 0.14 HGO= 0.264 GFS= 24	JENDL-2 ENDF-8-4 BNL325(3) 688ERCEN 70KOLAR 74NIZAMUODIN
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.5 2.5	197.798 236.42 170 ±20 170 197 ±20	0.79785 0.9 ± 0.3 0.926 1.07 ± 0.13	39.0 45.99	158.0 270 ±60 189.5 110 ±20 110	$\begin{array}{llllllllllllllllllllllllllllllllllll$	JENDL-2 BNL325(2) ENDF-8-4 BNL325(3) BNL325(3) 688ERCEN 70K0LAR 74N1ZAMUDDIN
37.2 37.20	2.5	420-094 420	9.369-2	39.0	381-0	L = D GFS= 3	JENDL-2 74NIZAMUDOIN-R
37.48 37.44 37.50 ± 0.04 37.51 37.55 37.48	2.5 2.5	395.697 383.81 420 ±20 430 395	0.69679 0.6705 ^R 0.78 ± 0.11	39.0 42.74	356 -0 340 - 4 380 ±20 380 356	L = 0 L = 0 WG0= 0.127± 0.018 WG0= 0.21 WG0= 0.128 GFS= 22	JENOL-2 ENDF-8-4 BNL325(3) 68BEROEN 70KOLAR 74NIZAMUODIN
39-08					200	WGO= 0.055	68BERGEN
39.33 39.33 39.40 ± 0.05 39.32 39.42 39.33	2.5 2.5	686.794 361.21 775 ±100 850 686	0.794 0.4117 ¶ 1.1 ± 0.2	39.0 37.5 (45) 45	647.0 343.3 729 ±100 250 647	L = 0 L = 0 ₩C0 [∞] 0.175±0.032 ₩C0 [∞] 0.056 ₩C0 [∞] 0.170 GFS= 25	JENOL-2 ENDF-8-4 BHL325(3) 688EROEN 70KOLAR 74NIZAMUODIN
39.56					250	NGO= 0.055	688ERGEN

.

•

ENERGY (EV)	J	TOTAL WIDTH (MEV)	NEUTRON WIDTH *	Camma Wibth (MeV)	FISSION WIDTH (MEV)	MISCELLANEOUS**	REFERENCE
39.83 39.86 39.94 ± 0.05 39.89 40.00 39.83	2.5 2.5	445.266 1390.8 580 ±70 600 445 ±10	0.26599 D.6714 ^P D.49 ± 0.10	39.D 58.16 (45′)	406.0 1332.0 535 ±70 600 406	L = 0 L = 0 HGO= 0.078±0.016 HGO= 0.145 HGO= 0.074 GFS= 8 ±1	JENDL-2 ENDF-B-4 BNL325(3) 688ERGEN 70KDLAR 74NIZAMUDDIN
40.41 40.3 40.50 ± 0.05 40.49 40.50 40.41	2.5 2.5	901-062 1250-1 650 ±70 600 900	1.0616 1.173 ^R 0.9 ± 0.2	39.0 38.95 (45)	861-0 1210-0 604 ±70 650 861	L = 0 L = 0 WGO= 0.14 ± 0.03 WGO= 0.175 WGO= 0.112 GFS= 33	JENDL-2 ENDF-B-4 BNL325(3) 680ER0EN 70K0LAR 74NIZAMUDDIN
41.03 41.02 41.06 ± 0.05 41.06 41.15 41.03	2.5 2.5	175.34 165.28 225 ±75 300 175 ±22	0.34 0.3171 ^A 0.59 ± 0.03	39.0 49.96 { 45 }	136.0 115.0 179 ±75 190 136	L = 0 L = 0 WG0= 0.092± 0.005 WG0= 0.091 WG0= 0.094 QFS= 9 ± 1	JENDL-2 ENDF-B-4 BNL325(3) 688ERCEN 70KOLAR 74NIZAMUOOIN
41.79 41.75 41.79	2.5	392.035 392 ±30	3.534-2	39.0	353.0 150 353	L = 0 WGO= 0.009 CFS= 1	JENDL-2 688ERCEN 74NIZAMUODIN
42.09 42.27 42.09 ± 0.05 42.16 42.05 42.09	2.5 2.5	592.137 210.82 700 ±100 800 592	0.13727 0.06233 ^R 0.24 ± 0.02	39.0 46.46 (45)	553.0 164.3 655 ±100 350 553	L = 0 L = 0 WGO= 0.037± 0.003 WGO= 0.035 WGO= 0.040 CF5= 4	JENDL-2 ENDF-B-4 BNL325(3) 688ERGEN 70KOLAR 74NIZAMUDOIN
42.62 42.62 42.68 ± 0.05 42.66 42.72 42.62	2.5 2.5	209.77 206.71 230 ±30 230 209 ±27	0.77 0.6792 ¶ 1.0 ± 0.2	57.0 45.93 (45)	152.0 160.1 274 ±30 140 152 ±22	L = 0 L = 0 WGO= 0.15 ± 0.03 WGO= 0.19 WGO= 0.138 GF5= 20 ± 1	JENDL-2 ENDF-B-4 BNL325(3) 50BERREN 70KOLAR 74N1ZAMUODIN
43.5 43.46 43.57 ± 0.05 43.53 43.62 43.50	2.5 2.5	341.4 333.54 290 ±40 330 341 ±32	0.4 0.4226 ^A 0.52 ± 0.07	20-0 43-82 (45)	321.0 289.3 244 ±30 240 321 ±40	L = 0 L = 0 WGO= 0.079± 0.011 WGO= 0.093 WGO= 0.072 OFS= 13 ± 1	JENOL-2 ENOF-B-4 BNL325(3) 68BERCEN 70KOLAR 74NIZAMUODIN
44.10		300				GFS≖ 2	74NIZAMUODIN-A
44.52 44.52 44.70 ± 0.10 44.58 44.75 44.52	2.5 2.5	519.3 501.48 1000 ±200 1100 1060	0.3 0-2881 ° 0.70 ± 0.07	19-0 10-29 [45]	500.0 490.9 954 ±200 660 1041	L = 0 L = 0 HGO= 0.11 ± 0.01 HGO≈ 0.086 HGO= 0.114 GFS= 28 ± 4	JENOL-2 ENDF-8-4 BNL325(3) 688ERGEN 70KOLAR 74NIZAMU00IN
45.25 45.25	2.5	138.025 138	0.025	39.0	99.0	L = 0 GFS= 1	JENOL-2 74N1ZAMUOO[N-R
45.45 45.38 45.45	2.5	150.025 150 ±15	0.025	39.0	111-0 180 111	L = 0 WGO= 0.006 OFS= 1	JENOL-2 68BERGEN 74NIZAMUDOIN
46.1 46.03 46.18 ± 0.05 46.16 46.23 46.10	2.5 2.5	192.39 165.78 210 ±40 250 192 ±30	0.39 0.466 ⁹ 0.66 ± 0.D5	39.0 50.51 (45)	153.0 114.8 164 ±20 150 153	L = 0 L = 0 HGO= 0.097±0.007 MGO= 0.105 HGO= 0.090 GFS= 11 ± 1	JENDL-2 ENDF-B-4 BNL325131 68BERGEN 70KOLAR 74NIZAMUOOIN
46.53 46.72 46.70 ± 0.05 46.71 46.73 46.53	2.5 2.5	245.08 245.0 230 ±30 200 245	0.08 1.7 -5 9 0.075± 0.008	39.0 45.0 (45)	206.0 200.0 185 ±30 200 206	L = 0 L = 0 WCO= 0.011± 0.001 WGO= 0.01 WGO= 0.012 GFS= 2	JENDL-2 ENDF-B-4 BNL325(3) 68BERGEN 70KOLAR 74N IZAMUODIN
47.16 47.05	2.5	857.76	0.7458	53.81	803.2 400	L = 0 WGO= 0.075	ENDF-B-4 600ERGEN
47-22 47-23 47-37 ± 0.05 47-36 47-38 47-22	2.5 2.5	507.88 308.88 470 ±40 470 507 ±50	0.88 0.2897 ° 0.98 ± 0.06	39.0 40.19 (45)	468.0 268.4 424 ±40 220 468	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	JENDL-2 ENDF-8-4 BNL325(3) 68BERCEN 70KOLAR 74NIZAMUDDIN
48.68	2.5	172.6	1.6	40.0	131-0	L = 0	JENOL-2

ENERGY (EV)	J	TOTAL WIDTH (MEV)	NEUTRON WIDTH * (MEV -)	CAMMA WIOTH	FISSION WIDTH (MEV)	MISCELLANEOUS **	REFERENCE
48.66 48.79 ± 0.05 48.76 48.83 48.68	2.5	233-38 208 ±20 200 171 ±22	2.566 A 2.B ± 0.3	66.81 (45)	164.0 160 ±20 175 131	L = 0 HCO= 0.40 ± 0.04 HCO= 0.445 HCO= 0.362 CFS= 40	ENOF-B-4 BNL 325(3) 688ERCEN 70K0LAR 74N I ZAMUOO IN
49.1 49.12 49.32 ± 0.05 49.30 49.35 49.10	2.5 2.5	516-5 223-98 270 ±25 300 516	0.5 0.1477 ^A 0.34 ± 0.02	39.0 11.53 (45)	477.0 212.3 225 ±25 200 477	L = 0 L = 0 HGO= 0.048± 0.003 HGO= 0.050 HGO= 0.048 GFS= 14 ± 1	JENOL-2 ENOF-8-4 BNL325(3) 608ERCEN 70KOLAR 74NIZAHUDOIN
50.4 50.32 50.55 ± 0.05 50.48 50.60 50.4	2.5	1100.84 813.01 996 ±50 1100 1100	0.84 0.6602 R 1.27 ± 0.05	39.0 0.45 (45)	1061.0 811.9 950 ±50 900 1061	L = 0 L = 0 WC0= 0.179± 0.007 WC0= 0.184 WC0= 0.172 GFS= 25	JENOL-2 ENOF-B-4 BNL 325(3) 688ERGEN 70KOLAR 74NJ ZAMUDOIN
51.0 51.00	2.5	500-114 500	0.114	39.0	461-0 461	L = 0 GFS= 3	JENDL-2 74NIZAMUDDIN
51.03 51.40 ± 0.10 51.23 51.45	2.5	441-23 355 ±50 400	0.1581 P 0.14 ± 0.02	18-77 (45)	422.3 310 ±50 260	L = 0 WGO= 0.0195± 0.003 WGO= 0.021 WGO= 0.019	ENOF-8-4 8NL 3251 3) 6BBERGEN 70KOLAR
51.85 51.85	2.5	150-021 150	0.021	39.0	111-0 111	L = 0 GFS= 0.5	JENOL-2 74NIZAMUOOIN
52.1 52.07 52.11 ± 0.05 52.06 52.15 52.10	2.5 2.5	280.055 266.34 290 ±30 300 280	0-055 0-05029 ¶ 0-14 ± 0-02	39.0 32.39	241.0 233.9 245 ±30 300 241	L = 0 L = 0 WC0= 0.0194± 0.003 WG0= 0.016 WG0= 0.023 GFS= 1.5	JENOL-2 ENOF-B-4 BNL325(3) 688ERCEN 70KOLAR 74N12AMU00IN
53.03 53.04 53.17 ± 0.05 53.17 53.03	2.5 2.5	240.47 391.27 240	0.47 0.8944 A 1.39	39.0 42.88	201.0 347.5 290 290 201	L = 0 L = 0 WGC= 0.19 WGC= 0.19 GFS= 12	JENDL-2 ENDF-8-4 BNL 325(3) 68BERGEN 74N I ZAMUDO I N
53.32 53.54 ± 0.05 53.54 53.32	2.5	360 • 44	0-44 ^R 0-40	39.0	321.0 300 300 321	L = 0 HGO= 0.055 HGO= 0.055 GFS= 12	JENOL-2 8NL325(3) 68BERGEN 74NIZAMUOOIN
53.94 53.94	2.5	230.198 230	0.19788	39.0	191-0	L = 0 GFS= 4 ± 2	JENDL-2 74NIZAMUDOIN-A
54.05 54.0 54.15 ± D.05 54.15 54.05	2.5 2.5	501 - 3 411 - 97 500 ±100	1.3 1.477 ^R 2.2	39.0 41.29	461-0 369-2 400 400 461	L = 0 L = 0 HGO= 0.30 HGO= 0.30 CFS= 36 ± 3	JENDL-2 ENDF-B-4 BNL325(3) GBBERGEN 74NIZAMUDDIN
54.41 54.41	2.5	295.096 295	9.550-2	39.0	256.0	L = 0 GFS= 2	JENDL-2 74NIZAHUDDIN-A
54.78 54.78 54.89 ± 0.05 54.89 54.78	2.5 2.5	264.1 291.19 263 ±20	1.1 1.468 ^A 2.4	39.0 50.72	224.0 239.0 320 320 224	L = 0 L = 0 ₩GD≈ 0.33 ₩GO= 0.33 GFS≈ 25.5	JENDL-2 ENDF-B-4 BNL325(3) 68BERGEN 74NIZAMUODIN
55.2 55.2D	2.5	490.137 490	0.13703	39.0	451.0	L = 0 GFS= 3	JENDL-2 74NIZAMUODIN-A
55.95 55.92 55.81 ± 0.05 55.81 55.95	2.5 2.5	862 • 678 862 • 45 860 ± 85	2.6782 2.166 8 1.7	39-0 46-68	821.0 813-6 500 500 821	L = 0 L = 0 WGO= 0.23 WGO= 0.23 GFS= 60 ± 8	JENDL-2 ENDF-B-4 BNL32513) 68BERGEN 74NIZAMUDDIN
56.04 56.18 ± 0.05 56.18	2.5	321.84	0.1852 P 1.5	52.85	268+8 300 300	L = 0 WGO= 0.20 WGO= 0.20	ENOF-8-4 BNL 325 (3) 688ERGEN
56.44 56.39 56.58 ± 0.05 56.58 56.44	2.5 2.5	374.04 501.77 373 ±70	1.04 1.614 ⁹ 2.6 ± D.2	42.0 55.76	331.0 444.4 450 450 331	L = 0 L = 0 WGO= 0.34 ± 0.03 WGO= 0.34 CFS= 24 ± 6	JENDL-2 ENDF-B-4 BNL325(3) 688ERGEN 74NIZAMUODIN
56.88	2.5	1501-25	1.2454	39.0	1461-0	L = 0	JENDL-2

ENERGY (EV)	J	TOTAL WIDTH	NEUTRON WIDTH*	Ganna Width (MeV)	FISSION WIDTH	MISCELLANEOUS**	REFERENCE
56.08		1500				GFS= 20	74NIZAMUODIN-A
57.48 57.48 57.55 ± 0.05 57.55 57.48	2.5 2.5	782.36 1013.8 780 ±6D	2.36 3.945 A 5.6 ± 0.7	49.0 37.6	731.0 972.3 900 900 731	L = 0 L = 0 WG0= 0.74 ± 0.09 WG0= 0.74 GFS= 53 ± 2	JENOL-2 ENDF-8-4 BNL 325(3) 68BERGEN 74NIZAMUODIN
58-10 58-18	2.5	1301-51 1300	1.5075	39.0	1261 -0	L = 0 GFS= 33	JENOL-2 74N1ZAMUODIN-A
58.52 58.5 58.54 ± 0.05 58.54 58.54 58.52	2.5 2.5	225.56 413.3 225 ±30	0-56 1-086 9 1-76	39.0 41.11	186 •0 371 •1 350 350 186	L = 0 L = 0 WGO= 0.23 WGO= 0.23 GFS= 13 ± 1	JENOL-2 ENDF-8-4 BNL 325(3) 608ERQEN 74N1ZAMUODIN
59.35 59.35 ± 0.05 59.35 59.10	2.5	345 •0 295	0-00478 ^P 0-069	45.0	300.0 300 300 256	L = 0 WGO= 0.009 WGO= 0.009 GFS= 1	ENDF-8-4 BNL 325(3) 68BERGEN 74NIZAMUODIN
60.38 60.38 ± 0.05 60.38 60.01	2.5	545 . 38 220	0.2722 A 0.35	45.01	500.1 500 500 181	L = 0 HGO= 0.045 HGO= 0.045 GFS= 0.6	ENDF-8-4 BNL325(3) 68BERGEN 74NIZAMUODIN
60-42		1700				CFS= 4	74NIZAMUDDIN-A
60.95 61.07 61.07 ± 0.05 61.07 60.95	2.5 2.5	940.87 334.79 940	0.67 0.4432 ° 0.63	39.0 45.65	901 -0 286 -7 280 280 901	L = 0 L = 0 WGO= 0.08 WGO= 0.08 GFS= 18	JENDL-2 ENDF-8-4 BNL 325(3) 68BERGEN 74NI ZAMUDO I N
61.38 61.5 61.50 ± 0.05 61.50 61.38	2.5 2.5	401.45 509.96 400 ±40	1.45 1.644 A 2.8	39.0 51.42	361.0 456.9 40D 400 361	L = 0 L = 0 WC0= 0.36 WC0= 0.36 OFS= 31 ± 1	JENDL-2 ENOF-8-4 BNL325(3) 66BERGEN 74NIZAMUDOIN
62.59 62.72 62.72 ± 0.05 62.72 62.59	2.5 2.5	213.5 400.91 135 ±26	1.5 0.1582 ^A 2.3	52.0 85.65	160.0 315.1 165 165 83	L = 0 L = 0 WGO= 0.29 WGO= 0.29 GFS= 22 ± 1	JENDL-2 ENDF-B-4 BNL 325 (3) 68BERGEN 74N I ZAMUOD I N
63.49 63.49	2.5	1000+2 1000	0.2	39.0	961-0	L = 0 GFS≐ 9	JENOL-2 74NIZAMUODIN-A
64.03 64.03	2.5	370•763 370 ±55	0.76317	39.0	331.0 331	L = 0 GFS= 14 ± 2	JENOL-2 74NIZAMUDDIN
64.44 64.44	2.5	240-466 239 ±43	1-4662	39.0	200.0 200	L = 0 GFS≖ 25 ± 2	JENOL-2 74NIZAMUODIN
65.09 65.09	2.5	238.593 238 ±20	0.59289	39.0	199.0 199	L = 0 GFS= 10	JENOL-2 74NIZAMUODIN
65.49 65.49	2.5	630-479 630 ±44	0.47853	39.0	591-0 591	L = 0 GFS= 9 ± 1	JENDL-2 74NIZAMUDO1N
66.56 66.56	2.5	770.641 770 ±60	0.64077	39.0	731.0 731	L = 0 GFS= 12 ± 1	JENOL-2 74NIZAMUDDIN
67.3 67.30	2.5	940+396 940	0.39572	39.0	9D1 •0 901	L = 0 GFS= 7.4	JENOL-2 74NIZAMUDOIN
67.98 67.98	2.5	333-469 333 ±52	0.46914	39.0	294-0 294	L = 0 GFS= 8 ± 1	JENDL-2 74NIZAMUDDIN
69.23 69.23	2.5	1002.3 1000	2.3044	39.0	961-0 961	L = 0 GFS= 42	JENOL-2 74NIZAMUODIN
70.19 70.19	2.5	534-989 533 ±35	1.9892	46.0	487.0 487	L = 0 GFS= 34	JENDL-2 74NIZAMUODIN
71.75 71.75	2.5	349-246 349 ±74	0.24608	39.0	310.0 310	L = 0 GFS= 4 ± 1	JENDL-2 74NIZAMUDOIN
72.22 72.22	2.5	800.52 800 ±132	0.5204	39.0	761 -0 761	L = 0 GFS= 9 ± 1	JENOL-2 74NIZAMUOOIN
73.43 73.43	2.5	126-707 125 ±39	1.707	39.D	86.0 86	L = 0 GFS= 21 ± 1	JENOL-2 74NIZAMUDDIN -
74.03	2.5	514-762	4.762	39.0	471.0	L = 0	JENOL-2

ENERGY (EV)	J	TOTAL WIDTH (MEV)	NEUTRON WIDTH *	Crima Wioth (MeV)	FISSION WIDTH (MEV)	MISCELLANEOUS **	REFERENCE
74.03		510 ±50			471	OFS= 78 ± 2	74NIZAMUDDIN
75-0 75-00	2.5	258.673 258	0.67293	39.0	219.0 219	L = 0 GFS= 10	JENOL-2 74N1ZAMUDOIN
75.49 75.49	2.5	293.255 290 ±30	3.255	39.0	251-0 251	L = 0 GFS= 49 ± 1	JENOL-2 74NIZRMUODIN
76.77 76.77	2.5	872.551 872 ±200	0.55086	39-0	833.0 833	L = 0 GFS= 9	JENOL-2 74NIZAMUDDIN
78.18 78.18	2.5	571.981 570 ±44	1-9814	39-0	531.0 531	L = 0 GFS= 31 ± 1	JENDL-2 74NIZRMUODIN
78.46 78.46	2.5	900.375 900	0.37478	39-0	861.0	L = 0 GFS= 6	JENOL-2 74N1ZRMUD01N-R
79.0 79.00	2.5	1200.69 1200	0.68408	39.0	1161-0	L = 0 GFS= 11	JENDL-2 74NIZAMUODIN-A
79.78 79.78	2.5	598.536 596 ±60	2.5356	39.0	557.0 557	L = 0 GFS= 39 ± 2	JENDL-2 74NIZRMUDDIN
81.47 81.47	2.5	1301.6 1300	1.5992	39.0	1261 -0 1261	L = 0 CFS= 25 ± 3	JENOL-2 74NIZAMUDDIN
82.35 82.35	2.5	741.721 740	1.7214	39.0	701-0 701	L = 0 GFS= 26	JENOL-2 74NIZAMUDOIN
82.78 82.78	2.5	137•128 135 ±20	2.1278	39.0	96-0 96	L = 0 GFS= 24 ± 1	JENOL-2 74NIZRMUDDIN
84.75 84.75	2.5	815+475 815 ±80	0.47454	39.0	776•0 776	L ≐ 0 GFS= 7	JENDL-2 74NIZAMUODIN
85.22 85.22	2.5	400.791 400 ±60	0.79108	39.0	361-0 361	L = 0 GFS= 11 ± 1	JENOL-2 74NIZAMUDDIN
85.73 85.73	2.5	590.35 590	0.34957	39.0	551-0 551	L = D GFS≃ 5	JENDL-2 74NIZRMUDDIN
86.78 86.78	2.5	295.076 295	7.616-2	39.0	256.0	L = 0 OFS= 1	JENOL-2 74NIZAMUDOIN-A
87.13 87.13	2.5	150,359 150 ±40	0.3587	39-0	111.0 111	L = 0 GFS= 4 ± 1	JENDL-2 74N1ZAMUODIN
87.7 87.7	2.5	88.012 88	1.199-2	39.0	49.0 49	L = 0 GFS= 0.1	JENDL-2 74NIZAMUDO[N
88.89 88.89	2.5	344.14 342 ±35	2.1396	39.0	303 .0 303	L = 0 GFS= 28 ± 1	JENDL-2 74NIZAMUDDIN
89.76 89.76	2.5	558.588 558	0.588	39-0	519.0 519	L = 0 GFS= 8	JENOL-2 74NIZAMUODIN
9D.55 90.55	2.5	260.256 253 ±30	7.2564	39.0	214.0 214	L = 0 GFS= 89 ± 1	JENOL-2 74NIZAMUDOIN
91.72 91.72	2.5	740.59 74D	0.58993	39-0	701 •0 701	L = 0 GFS= 8	JENOL-2 74NIZAMUODIN
92.67 92.67	2.5	518-298 517 ±70	1.2977	39.0	478.0 478	L = 0 GFS= 17 ± 1	JENOL-2 74NIZAMUDDIN
93.25 93.25	2.5	590.38 590	0.38024	39.0	551.0	L = 0 GFS= 5	JENOL-2 74N1ZAMUDOIN-A
93.77 93.77	2.5	105-6 104 ±40	1.5997	39.0	65•0 65	L = 0 GFS= 14 ± 1	JENOL-2 74NIZAMUDOIN
95.22 95.22	2.5	102-654 101 ±40	1.6539	39.0	62.0 62	L = 0 GFS= 14 ± 1	JENDL-2 74NIZAMUDDIN
95.42 96.42	2.5	1603.31 1600	3.3119	39.0	1561.0 1561	L = 0 GFS= 44	JENDL-2 74N1ZRMUDDIN
97-81 97-81	2.5	233.759 229 ±38	4 - 7586	39.0	190 .0 190	L = 0 GFS= 53 ± 2	JENDL-2 74NIZAMUOOIN
98-58 98-58	2.5	316.971 315 ±84	1.9708	39.0	276-0 276	L = 0 GF5= 23 ± 1	JENDL-2 74NIZAMUDDIN
99.3 99.30	2.5	541.385 540 ±200	1.3858	39.0	501 -0 5D1	L = 0 GFS= 17 ± 2	JENOL-2 74NIZAMUDDIN
99.95	2.5	542.626	2,6256	39.0	501.0	L = 0	JENDL-2

ENERGY (EV)	J	TOTAL WIDTH (MEV)	NEUTRON WIDTH * (MEV)	CAMMA WIOTH (MEV)	FISSION WIDTH (MEV)	MISCELLANEOUS**	REFERENCE
99.95		540 ±:00			501	GFS= 32	74N1ZRMUODIN
101 -29 101 -29	2.5	100D-24 1000	0.24082	39.0	961-0 961	L = 0 GFS= 3	JENOL-2 74N1ZAMUOD[N
102-89 102-89	2.5	226.517 225 ±55	1.5167	39-0	186-0 186	L = 0 GFS= 16 ± 1	JENOL-2 74NIZAMUODIN
104.79 104.79	2.5	46140-6 500 ±60	1 -5581	39.0	46100-0 461	L = 0 GFS= 18 ± 1	JENOL-2 74NIZAMUOOIN
105.23 105.23	2.5	430-088 430 ±50	8.813-2	39.0	391-0	L = 0 CFS≈ 1	JENDL-2 74NIZAMUODIN-A
105.95 105.95	2.5	192 .4 37 190 ±20	2-4368	39.0	151 -0 151	L = 0 GFS= 24 ± 1	JENOL-2 74NIZAMUODIN
106.51 106.51	2.5	273.034 270 ±30	3-0341	39.0	231.0 231	L = 0 GFS= 32 ± 1	JENOL-2 74NJZAMUODIN
106.95 106.95	2.5	327.869 325 ±30	2.8694	39.0	286-0 286	L = 0 GFS= 31 ± 2	JENOL-2 74NIZAMUODIN
107.83 107.83	2.5	351.479 350 ±60	1 - 4788	39.0	311.0 311	L = 0 GFS= 16 ± 1	JENOL-2 74NIZAMUODIN
108-2 108-20	2.5	400-822 400	0.82178	39.0	361.0	L ≈ 0 GFS= 9	JENOL-2 74NTZRMUDOIN-A
108.64 108.64	2.5	220.402 220 ±20	0.40228	39.0	181.0 181	L = 0 GFS= 4	JENDL-2 74NIZAMUDDIN
109-36 109-36	2.5	419.045 415 ±43	4-D449	39.0	376.0 376	L = 0 GFS= 44 ± 1	JENOL-2 74N [ZRMUDO]N
109-98 109-98	2.5	520.815 520 ±50	0.81499	39.0	481-0 481	L = 0 GFS= 9	JENOL-2 74NIZAMUODIN
110-88 110-88	2.5	409.234 404 ±49	5.2344	39.0	365•0 365	L = 0 GFS= 56 ± 1	JENOL-2 74NIZAMUDDIN
112.53 112.53	2.5	12D3-37 120D	3.3662	39.0	1161.0 1161	L = 0 GFS= 38	JENOL-2 74NIZAMUDDIN
113.55 113.55	2.5	1003-78 1000	3.7796	39.0	961-0 961	L = 0 GFS= 42	JENOL-2 74N1ZAMUDDIN
114-24		678				CFS= 28	74NIZAMUDDIN-A
114.56		234 ±20			195	GFS= 19	74NIZAMUDDIN
115.80		128 ±35	· · · · · · · · · · · · · · · · · · ·		89	GFS= 3	74NIZAMUDDIN
117.00		745			706	OFS= 5	74NIZAMUDD1N
117.92		341 ±50	·····		302	GFS= 66	74NIZAMUDDIN
119.45		110 ±30			71	GFS= 10	74NIZAMUDOIN
120.03		962			923	GFS= 14	74NIZAMUODIN
121.19		4D5 ±5D			366	GFS= 12	74NIZAMUODIN
122.05		46			7	OFS= 5	74NIZAMUODIN
122.67		180 ±20	· · · · · · · · · · · · · · · · · · ·		141	CFS= 5	74NIZAMUDD1N
123.70		707				GFS= 6	74NIZAMUDDIN-A
124.12		260 ±50			221	OFS= 39	74NIZAMUDDIN

.

- * Mark A denotes that the value is $2g\Gamma_n$
- ** Symbols in miscellaneous column

L : orbital angular momentum of incident neutrons WGO: $2g\Gamma_n^{\bullet}$ WW5: $g\Gamma_n^{\Gamma}\Gamma_{\gamma}/\Gamma$ WGM: $g\Gamma_n^{\Gamma}$ GFS: $\sigma_0^{\Gamma}\Gamma_f$

E _n (keV)	^S 0 (×10 ⁻⁴)	^s 1 (×10 ⁻⁴)	Γ _f (2 ⁺) (meV)	Γ _f (3 ⁺) (meV)	Γ _f (1) (meV)	Γ _f (2 ⁻) (meV)	Γ _f (3) (meV)	Γ _f (4 ⁻) (meV)	D _{obs} (eV)	⁰ t (barns)	σ _f (barns)	σ _c (barns)
0.1	0.79	1.00	1014	416	915	624	843	624	6.80	44.97	27.84	4.44
0.15	0.81	1.03	1186	486	1070	730	985	730	6,80	39.77	23.76	3.35
0,25	0.96	1.21	1148	471	1037	707	954	707	6.80	37.49	21.63	3.10
0.35	0.85	1.08	2263	928	2042	1393	1880	1393	6.80	31.24	17.24	1.46
0.45	0.61	0.77	2050	841	1850	1261	1703	1261	6.79	24.32	10.87	1.00
0.55	0.86	1.08	851	349	768	524	707	524	6.79	27.50	12.54	2.24
0.65	1,11	1.41	1397	573	1261	860	1161	860	6.79	30.43	15.77	1.90
0.75	0.87	1.11	1227	503	1108	755	1019	755	6.79	25.59	11,43	1.53
0,85	1.10	1.39	1477	606	1333	909	1227	909	6.79	27.95	13.67	1.57
0.95	0.87	1.10	1298	532	1171	799	1078	798	6.79	24.11	10.22	1.30
1,5	0.91	1.15	1694	695	1529	1042	1407	1042	6.78	22.14	8.74	0.895
2.5	0.95	1.20	1572	645	1419	967	1306	967	6.77	20.22	7.01	0.746
3.5	0.92	1,16	1716	704	1549	1056	1425	1056	6.76	18.79	5.83	0.573
4.5	0.93	1,18	1870	767	1688	1151	1554	1151	6.74	18.13	5.33	0.484
5.5	0.85	1.07	1761	722	1589	1084	1463	1084	6,73	17.08	4,40	0.417
6.5	0.95	1.21	2196	901	1982	1351	1824	1351	6.72	17.25	4.68	0.367
7.5	0.94	1.19	2111	866	1905	1299	1753	1299	6.70	16.85	4.33	0.347
8.5	0.99	1.25	2363	969	2133	1454	1963	1454	6.69	16.77	4.34	0.315
9.5	1.01	1,28	2379	976	2147	1464	1976	1464	6.68	16.62	4.24	0.303
10	0.95	1.20	2121	870	1914	1305	1762	1305	6.67	16.23	3.86	0.302
15	0.96	1,21	2123	871	1916	1306	1764	1306	6.61	15.50	3.35	0.253
20	0.99	1.25	2098	861	1894	1291	1743	1291	6,55	15.08	3.11	0.231
25	1.00	1.26	1821	747	1644	1121	1513	1121	6.49	14.73	2.87	0.233
30	1.00	1.27	1709	701	1542	1052	1420	1052	6.43	14.46	2.29	0.229

Table 7 Unresolved resonance parameters and calculated cross sections of 233 U. Fixed parameters: R = 9.93 fm and Γ_{γ} = 39 meV.

Table 8 Fission and capture resonance integrals(barns)

	Present	ENDF/B-IV	BNL-325 ²⁸⁾
Fission	771	763	764 <u>+</u> 13
Capture	138	135	140 <u>+</u> 6
	- <u> </u>		

-29-

JAERI-M 9318

JAERI-M 9318

Fig.2 Fission cross sections of 233 U in the energy range from 0.01 to 3 eV.

-30-

-31-

-32-

Fig.6 Comparison of fission cross sections of ²³³U calculated from various sets of resonance parameters.

-33-

Fig.7 Comparison of capture cross sections of ²³³U calculated from various sets of resonance parameters.

Fig.9 Example of improvement: Fission cross sections of ²³³U displayed on the cathode ray tube. The solid line is calculated from the final parameters, the dashed line from the initial guess parameters. The cross points are the measured data by Blons.

Fig.ll Total cross sections of ²³³U. The solid and dash-dotted lines are calculated from the present resonance parameters with and without the background cross section, respectively. The dotted line represents the value of ENDF/B-IV.

-37-

-38-

JAERI-M 9318

(g)

-39-

JAERI-M 9318

Fig.12 Fission cross sections of ²³³U. The solid and dash-dotted lines are calculated from the present resonance parameters with and without the background cross section, respectively. The dotted line represents the value of ENDF/B-IV.

JAERI-M 9318

-41-

-42-

JAERI-M 9318

-43-

Fig.13 Capture cross sections ²³³U. The solid and dotted lines represent the present values and those of ENDF/B-IV, respectively.

JAERI-M 9318

-45-

(e)

-46-

-47--

Fig.14 Energy dependence of strength function and fission width of ²³³U in unresolved resonance region. This figure gives the ratios of the finally adopted values to the energy-independent initial guess values.

日立高速印刷納

İ