JAERI-M 9 5 2 3

NEANDC(J)-73/AU INDC(JAP)-60/G

1980年核データ討論会報告 1981年6月 シグマ研究委員会

> 日本原子力研究所 Japan Atomic Energy Research Institute

この報告書は、日本原子力研究所が JAERI-M レポートとして、不定期に刊行している 研究報告書です。入手、複製などのお問合わせは、日本原子力研究所技術情報部(茨城県 那珂郡東海村)あて、お申しこしください。

JAERI-M reports, issued irregularly, describe the results of research works carried out in JAERI. Inquiries about the availability of reports and their reproduction should be addressed to Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, Japan.

1.20

JAERI - M 9523

1980年核データ討論会報告

日本原子力研究所 シグマ研究委員会

(1981年5月19日受理)

シグマ研究委員会主催の核データ討論会が、1980年12月10・11日の両日、原研東海研 究所において開催された。この討論会の主題は (1)JENDL-2の現状報告と次期評価ずみ 核データ・ライブラリーJENDL-3のスコープ, (2)共分散ファイルの解説、需要および評 価法の2つから成っている。本報告書はその報文集である。

討論会世話人:飯島俊吾•田中茂也•五十嵐信—•浅見哲夫•菊池康之⁺ 編 集 者 :田中茂也••飯島俊吾••浅見哲夫

+日本原子力研究所

* 日本原子力事業株式会社

JAERI-M 9523

Proceedings of 1980 Seminar on Nuclear Data

Japanese Nuclear Data Committee Japan Atomic Energy Research Institute (Received May 19, 1981)

A seminar on nuclear data was held on December 10 and 11, 1980 at Tokai Research Establishment, JAERI, by Japanese Nuclear Data Committee (JNDC). The seminar could be grouped under the following two main headings: (1) the status of JENDL-2 and the scope of the next evaluated nuclear data library, JENDL-3, and (2) explanation, demand and evaluation methods on covariance file. Papers presented at the seminar and the records of discussions are given in the present proceedings.

Keywords: Proceedings, JENDL-2, Status, JENDL-3, Scope, Evaluated Data, Data Library, Covariance File, Nuclear Data

Organizing Committee: S. Iijima(NAIG), S. Tanaka(JAERI), S. Igarasi(JAERI), T. Asami(JAERI), Y. Kikuchi(JAERI). Editors: S. Tanaka(JAERI), S. Iijima(NAIG), T. Asami(JAERI)

İİ ·

目 次

開会	会の辞		均	甜甲子男	· • • • • • •	Vİİ
1. JE	NDL-2とその積分テスト		(座長:	石黒幸雄)	1
1. 1	JENDL-2の現状			中川庸雄	•••••	1
1. 2	JENDL-2 による JUPI TER 実験解析		亀井孝信,	金城勝哉	•••••	32
1. 3	コメント:ZPPR-3の詳細解析による JEN	DLー2 のテニ	スト			
			亀井孝信,	吉田 正	<i>,</i> .	46
1.4	鉄の非弾性散乱断面積評価の問題点			山野直樹	••••	50
1. 5	コメント:ベンチマークテストに基づくJEN	NDL-2予備	版の修正			
	飯島俊吾	,関雄二,	山本正昭,	西 裕士	•••••	60
2. Cov	variance File の概要と討議		(座長:	中嶋龍三)	65
2.1	Covariance File の概要			神田幸則	••••	65
3. Co	variance File への要求 —— 感度解析への適	用	(座長:	亀井孝信)	81
3.1	感度解析手法と一般化摂動論			三谷 浩	•••••	81
3. 2	コメント:崩壊熱の感度解析			吉田 正	•••••	94
3. 3	共分散行列法による中性子断面積測定の誤差	評価		小林捷平	•••••	100
3. 4	ドシメトリーにおける Covariance の効果			中沢正治	•••••	113
3.5	コメント:アンフォールディング法における	共分散		関本 博	•••••	124
4. Cov	varianceの評価		(座長:	椙山一典)	130
4. 1	核データの理論計算における Covariance 評	価		菊池康之	•••••	130
4. 2	TOF 法による散乱断面積測定におけるエネノ	ルギー依存誤	差	田中茂也	••••	141
4. 3	中性子捕獲断面積測定における誤差評価			藤田薫顕	•••••	148
4.4	中性子二重微分断面積とr線生成断面積の誤	差と共分散		岩崎 信	••••	153
4.5	核データ評価の立場から	浅野則雄,	川合将義,	松延広幸	•••••	169
4.6	関数で表わされた核データの共分散行列			川合将義	•••••	179
4. 7	²³⁵ U(n,f)の評価核データと共分散	栯	直之原雄二,	神田幸則		191
5. JE	CNDL-3のスコープ		(座長:原	〔田吉之助〕) • • • • • •	199
5.1	JENDL-3のスコープ		Ŧ	ā十嵐信—	•••••	199
閉会の	D辞			山室信弘	•••••	199

Contents

Kineo TSUKADA vii **Opening Address** JENDL-2 and its Integral Tests (Chairman: Yukio ISHIGURO) 1. 1.1 Present Status of JENDL-2 Tsuneo NAKAGAWA 1 1.2 Analysis of the JUPITER Experiments with JENDL-2 Katsuya KINJO and Takanobu KAMEI •••• 32 1.3 Comment: Test of JENDL-2 by a Detailed Analysis of ZPPR-3 Experiments Takanobu KAMEI and Tadashi YOSHIDA 46 1.4 Problems in Evaluation on Inelastic Scattering Cross Section of Iron Naoki YAMANO •••• 50 1.5 Comment: Revisions recommended for Preliminary JENDL-2 Data based on Benchmark Test Results Shungo IIJIMA, Yuji SEKI, Masaaki YAMAMOTO and Hiroshi NISHI 60 2. On Covariance File (Chairman: Ryuzo NAKASIMA) 2.1 On Covariance Files of Evaluated Nuclear Data Yukinori KANDA 65 3. Requests for Covariance File (Chairman: Takanobu KAMEI) 3.1 Sensitivity Analysis Method and Generalized Perturbation Theory Hiroshi MITANI •••• 81 3.2 Sensitivity Analysis of Decay Heat Tadashi YOSHIDA 94 3.3 Evaluation of Experimental Uncertainties with Covariance Matrices in the Measurement of Neutron Cross Sections Katsuhei KOBAYASHI 100 3.4 Influences of the Covariance Matrices over Reactor M. NAKAZAWA Neutron Dosimetry 113 3.5 Comment: Covariance Used in Unfolding Methods Hiroshi SEKIMOTO ···· 124

4.	Evaluation of Covariance	(Chairman: Kazusuke SUGIYAMA)					
4.1 Evaluation of Covariance in Theoretical							
	Calcualtion of Nuclear Data	Yasuyuki KIKUCHI 13	0				
4.2	2 Energy Dependent Errors in	the TOF Mesurement					
	of Scattering Cross Sectior	s Shigeya TANAKA 14	1				
4.3	4.3 Comments on the Error Matrix in Neutron Capture						
	Cross Section Measurements	Yoshiaki HUJITA 14	8				
4.4	4.4 On the Covariances of the Cross Sections for						
	(n,xn) and $(n,x\gamma)$ Reactions	Shin IWASAKI 15	3				
4.5	5 From the Standpoint of Nucl	ear Data Evaluation					
	N. ASANO,	H. MATSUNOBU and Y. KAWAI 16	9				
4.6	Covariance Matrices of Nucl	ear Data Expressed by					
	Mathematical Functions	Masayoshi KAWAI 17	8				
4.7	Evaluated Nuclear Data and	its Covariances					
	of ²³⁵ U(n,f) Yuji	UENOHARA and Yukinori KANDA 19	1				
-							
5.	Scope of JENDL-3	(Chairman: Kichinosuke HARADA)					
5.1	Scope of JENDL-3	Sin-iti IGARASI 19	9				
Summa	ry Talk	Nobuhiro YAMAMURO 19	19				

۷

. •

開会の辞

Opening Address

Kineo TSUKADA

塚 田 甲子男

シグマ研究委員会ではこの12月に研究会を行うのがこの数年間の恒例になっているようである。 今回はJENDLを主題にして討論会を開く事になった次第であるが、思えばJENDL作成の作業 を開始してから既に7~8年になる。関係する皆さんの絶大な努力によってこの作業も定着し、 シグマ研究委員会の主題の一つとなり、核データ・センターの主業務となるに至った。また、国 際的な場でもENDF/Bなどとならんで高く評価されていると聞いている。最近、ENDF/B-Vの利用については色々な制約を受けるようになり、西ヨーロッパ諸国でもヨーロッパ自身の核 データ・ファイルをつくろうという動きが一部にあるようである。我々は早晩このような事態が 起るであろうと予測していたわけである。

今回の研究会の最大の目標はJENDL-3のスコープをどこにおくか議論することにある。これについては、シグマ研究委員会では小委員会をつくってこの一年間検討を重ねて来たわけであるが、その結論について皆さんに積極的に討論して貰いたい。JENDL-2の積分テストの結果なども聞いてコメントを頂いたりして、その参考にして頂きたい。

また,特に Covariance の評価などをどう JENDL-3以後に反映させるかについて討論を行 うため、その基本的な事項からこの機会に勉強しようというのも、この討論会の目的の一つであ る。Covariance の評価をライブラリーに取り入れる事はマンパワーの点などからいっても充分 分析する余地がある。

終りに,核データの必要性は今後ますます拡大していくと思われるが,JENDL作成に当って はいたづらにENDF/Bのあとを追うだけでなく,ユニークなものにすべく一層工夫を重ねて頂 きたい。エネルギー範囲の拡大も一つの方向であろう。また,核データを必要とするコミュニテ ーも拡大しているか,まだ我々の活動の存在が充分に知られていない分野も多いので,利用開発 にはなお一層の努力が必要であろう。

*日本大学原子力研究所, Atomic Energy Research Institute, Nihon Univ.

Vİİ

• • ×

1. JENDL-2とその積分テスト

1.1 JENDL-2の現状

中川庸雄

JENDL-2の作成は1977年から始められた。JENDL-1の欠点を改良し,さらに格納核種 数を100数十核種に増し,高速炉はもとより,熱中性子炉,核融合炉,遮へいの分野へと拡げる ことがJENDL-2作成の目的である。現在,構造材や重核の重要核種を中心にファイル化が完 了している。全核種のファイル化は1981年に終了する予定である。ここでは重要核種を中心に JENDL-2のデータの現状を紹介する。

Present Status of JENDL-2

Tsuneo NAKAGAWA[†]

The evaluation and compilation work for JENDL-2 was started in 1977. The purpose of JENDL-2 is to modify the defects of JENDL-1 and to extend the application fields of JENDL to thermal reactor, fusion and shielding fields as well as fast reactor calculation. The number of nuclides of which data are stored in JENDL-2 will be increased to a hundred and a few tens. The data of important nuclides such as structural materials and heavy nuclides have been compiled already. The compilation of all the data will have been completed in 1981. In this report, the present status of JENDL-2 is discussed, especially the data of important nuclides.

1. はじめに

日本独自の評価ずみデータライブラリーJENDLの第1版は1977年に公開になった。¹⁾ JENDL-1の特徴としては次の点が挙げられる。

- (1) フォーマットは ENDF/B フォーマット²⁾を採用している。
- (2) 高速炉の設計計算に使用することを編集の主目的としている。
- (3) 格納されたデータは全部で72 核種のデータである。
- (4) それらのデータは 10^{5} eV から15 MeV または20 MeV の中性子エネルギー範囲で評価されている。

JENDL-1はベンチマークテストによっていくつかの問題点が指摘された。 シグマ委員会の

日本原子力研究所 Japan Atomic Energy Research Institute

-1-

二年報には次の5点が主な問題点として挙げられている。

(1) ²³⁹Puと²³⁵Uの核分裂比を過小評価している。

(2) Cr, Fe, Ni の全断面積を数 100 keV から数 MeV の領域で過大評価している。

(3) Cr, Fe, Ni の全断面種の微細構造を無視している。

(4) Cr, Fe, Ni の非弾性散乱断面積を過小評価している。

(5) Fe, Niの捕獲断面積に改良の余地が残っている。

この他にもJENDL-1にはいくつかの問題点があった。例えば、評価値と実験値との比較が 十分に行なわれていないデータがあるとか、ENDF/B-Wの評価値をそのまま採用したデータ があるとか、あるいは二次中性子の角分布データやスペクトルデータのように十分な評価を行な っていないものが格納されているという点がそれである。

ここでは、以上のようなJENDL-1の問題点がJENDL-2 でどのように改良されたかという 観点から話をまとめてみた。従って構造材のCr, Fe, Niの3核種と、重核のU, Pu核種につ いて重点的に報告する。さらにFP核種の評価にふれ、最後にJENDL-2のファイル化の現状 を示す。

·2. JENDL-2計画の概要

JENDL-2作成の主目的は次の2つに分けられる。1つはJENDL-1に見られた問題点を 改良し、データの質を向上させることである。重要核種においては、新たな実験データが数多く 報告されており、JENDLに最新の評価値を格納する立場からもJENDL-1の見直しと、再評 価が必要になっている。またJENDL-1では評価データのエネルギー範囲が10⁻⁵ eV から15MeV あるいは20 MeV と核種によってまちまちであったのを20 MeV に統一することになった。第2点 は格納するデータの核種数を増加することである。JENDL-1では72核種であった核種数を一 気に100数十核種にすることになった。これはJENDL-2の応用分野を高速炉の設計計算はも とより、熱中性子炉、核融合炉そして遮へいの分野へと拡張することをねらったためである。そ して応用分野を広げるためには、JENDL-1の場合評価が手薄すであった熱中性子エネルギー 領域のデータや、高エネルギー領域のしきい反応のデータの質の向上についても努力する必要が 生じた。

JENDL-2計画は1977年に格納核種の選定を終了し、実質的ファイル作成作業に着手した。 当初JENDLの改訂は3年周期で行なうことになっていたので1977年の時点では1977~1978 年度がデータの評価とファイル化、そして1979年度にベンチマークテストを行ない、1979年度 末(1980年3月)にJENDL-2を公開するというスケジュールが組まれた。しかし残念なが ら現時点(1980年12月)においてもファイル編集が完了していないため、JENDL-2の完成 は1981年度にならざるを得ない。

JENDL-2 に格納する核種の中で Cr, Fe, Ni, ²³⁵ U, ²³⁸ U, ²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Pu の重要 8 核種については, 1979 年秋までにファイル化を終了している。この 8 核種のデータの他は JENDL-1 あるいはENDF/B-Nのデータを使用した JENDL-2B による JUPI TER の解 析結果については当討論会の席上亀井孝信氏から報告される。また, 8 核種の評価には国際ベン

-2-

4) チマーク炉心によるベンチマークテストの結果が反映されている。この点については飯島俊吾氏 が報告する。

3. 構造材核種のデータ

注) 構造材核種のうちCr, Fe, Niのデータ について述べる。データの評価に当っては JENDL -1の欠点として指摘されていた点の改良に,特に注意が払われた。ここでは全断面積の評価と 非弾性散乱断面積の評価について説明する。この他には捕獲断面積や共鳴領域のデータが改良さ れている。

3.1 全断面積

JENDL-1では全断面積をどう評価していただろうか? その様子をFig.1に示す。これは Fe の全断面積を2 MeV から4 MeV の範囲で見た図である。 構造材核種では,図のように,か なり高エネルギー領域においても微細構造が測定されている。これらの測定値に対して JENDL -1の評価値は実線のカーブである。 微細構造を全く取り入れておらず,平均断面積を再現する ように決めた光学模型ポテンシャルによる計算値を評価値としたものである。この図の範囲では うまく平均断面積を再現しているが,全エネルギー領域の平均断面積を光学模型で再現すること はできず,数 100 keV から数MeV 付近では測定値の平均値より高目の評価値となっていた。

JENDL-1は微細構造を無視していたため自己遮へい効果が分離共鳴領域より上で無視され る結果となり、これが遮へい計算などにかなりの誤差をもたらすことが指摘されていた。。また、 数 100 keV から数MeV 付近での過大評価は、中性子漏洩が重要となる外部炉心やブランケットで の中性子束の計算に多大の影響を与え、鉄の反射体を用いた ZPR-3-54 炉心に見られるように k_{eff} の計算値の傾向が他の ENDF/B-N などの評価値からのものと全く逆になるという現象を 生じていたのである。

一方 Fig. 1 の中に点線で示した ENDF/B-W の評価値は高分解能の測定値を eye-guideで なぞり評価値としたものである。上記のような JENDL-1 の欠点を解決するには, ENDF/B-W で行ったように信頼するに足る高分解能の測定値を用いた eye-guideによる評価が必要となっ た。そこで, gye-guideを計算機を用いて機械的に実行できるようにするために,以下に示す 中性子核データ評価システム(NDES)⁸⁾を開発した。

NDES は TSS 環境下において, 会話型式で動くプログラムである。Fig. 2 は NDES を TSS ターミナル(TEKTRONIX-4014)で使用しているところを示したものである。NDES を使うと, TSS ターミナルの cathode ray tube 上に実験データや評価ずみデータを表示で きる。そのグラフ上に与えたいデータの位置を cross-hair cursorを用いて順次示していくこ とにより, その位置を機械的に読み込ませて eye-guide を行うことができ, 読み込んだデータ

注)評価を担当された方々は次の通りである。

Cr ……浅見(原研), Fe ……飯島(NAIG),山越(船研), Ni ……菊池(原研), 関根(原研への特別研究生,現在は日立).

- 3 -

は最終的には END F/B フォーマットで出力することができる。さらに NDES は、光学模型による全断面積の評価,核分裂断面積の評価,共鳴パラメータの評価,スプライン関数を用いたデータの fitting などに使用できる。現在は角分布データや二次中性子スペクトルの評価にも使えるようにするための改良が進められている。この改良により、ルジャンドル多項式を用いたデータの fitting や角分布データの 3 次元表示が可能になる予定である。

NDESを用いた eye-guide の例を Fig. 3 に示す。 900 keV から1 MeV の間の鉄の全断面 積である。点線が JENDL-1 のデータである。それに対して,主に Carlson and Cerbone⁹⁾ の測定値をなぞったのが JENDL-2 の評価値である。JENDL-2 ではこのようにして測定値に 見られる微細構造を評価値にとり入れたし,また,Fig.3のエネルギー領域では,点線の JENDL-1 のデータと比べて JENDL-2の平均値は約 1 バーン程小さくなっているので, JENDL-1 で指摘されていた全断面積の問題点を完全に解消することができた。Fig.4 は同じ ようにして評価した Ni の全断面積を示したものである。実験データは JENDL-2 で採用 した Cierjacks et al.¹⁰⁾を示した。JENDL-2 データは測定値の中にかくれてしまっている。破 線の ENDF/B-Wが JENDL-2 と異った構造をもっているのは,採用した実験データの違い によるものである。

3.2 非弹性散乱断面積

JENDL-1の構造材核種の非弾性散乱断面積が過小評価であるとの指摘を受けてJENDL-2 の評価では,光学模型ポテンシャルの改良をし,さらに計算値を測定値で修正し,より測定値に 忠実な評価値とする努力がなされた。

非弾性散乱断面積は主に計算で求めるので、光学模型から求まる複合核形成断面積の大きさが 非弾性散乱断面積の大きさを決定する大きな要素となる。JENDL-2の評価に用いた光学模型 ポテンシャルパラメータは川合将義氏¹¹⁾によって決められたものである。パラメータの決定には 低エネルギーでの中性子強度関数 S₀, S₁ および核半径 R の測定値を再現し、かつ高エネルギー 領域での全断面積のエネルギー依存性を再現するようにする、いわゆるSPRT法が採用された。 高エネルギー領域での全断面積を再現させるパラメータの決定に当っては前述の NDES が用いら れた。Fig. 5 は全断面積の再現性を示したものである。上から天然の Ti, Cr, Ni, Fe につい て示している。実線が川合氏の求めたパラメータから計算した全断面積である。 Ni の低エネル ギー領域で計算値が高目になっている他はかなり良い一致を示している。

川合氏の求めたポテンシャルパラメータの妥当性を見るため弾性散乱の角分布データの測定値 と計算値を比べてみる。Fig.6はNiの例を示したものである。300 keVから14 MeVの間の比 較である。同じくCrの例をFig.7に示す。500 keVから14 MeVの間の実験データとの比較で ある。いずれの核種においても弾性散乱の角分布が良く再現されていることがわかる。この光学 模型パラメータは、弾性散乱の角分布データと、今問題にしている非弾性散乱断面積、および捕 獲断面積の計算に使われた。計算は光学模型と統計模型とを組み合せたコード CASTHY¹²を用 いて行った。

非弾性散乱断面積の例としてNiのデータをFig.8に示す。点線で示されているJENDL-1の評価値は5MeV前後にあるBroder et al.¹⁸のデータと比較して見ても確かに過小評価されて

- 4 -

いた。それに対して実線がJENDL-2の評価値である。JENDL-2の評価値は3MeVから10 MeVの間で最大0.1 バーン程度補正を入れてCASTHYの計算値を高くしてある。それにしても 計算値自体JENDL-1と比べてかなり改良されているし、最終評価値とした実線のカーブは測 定値と一致し、JENDL-1で指摘されていた問題点が改良されたことを示している。 破線は ENDF/B-Nの評価値である。10MeV以上でJENDL-2と大きく傾向を異にするが、測定値 がないため、どちらが良いかはこの図からは言えない。

他のCr, Feでも全非弾性散乱断面積で見る限りJENDL-2では大幅な改良がなされたと言 える。しかし遮へいの立場からJENDL-2のデータを検討していた山野直樹氏からFeの非弾性 散乱断面積について重大な欠点があることが指摘された。¹⁴⁾ Fig. 9 は ⁵⁶Fe の第 1 レベルの断面積 である。2 MeV 以下には Perey et al.¹⁵⁾によるかなりの点の測定値がある。JENDL-2では 彼等のデータを NDESを用いてeye - guide で評価した。Fig. 9 は 2 MeV 以上のデータを示し たものである。2 MeV 以上では CASTHY の計算値を 17%高目にして評価値とした。しかし, 実線で示した JENDL-2 のデータは 4 MeV を越えると過小評価になっていることがわかる。 Ni の例で見たように鉄の場合も全非弾性散乱断面積は良く測定値を再現しているかに見えたが それは連続レベルへ行く非弾性散乱部分が高エネルギー側では圧倒的になり,一本一本の断面積 が小さくなっていく部分の寄与がかくれてしまっていたのである。参考として Fig. 9 には ENDF/B-N の評価値を破線で示してある。現在, この問題をどう処理するか,つまり実験デ ータをなぞるようなカーブを引いて評価値とするか,あるいは coupled channel 理論に基づく 計算をするかを検討中である。いずれの方法を採るにしろ,JENDL-2 が完全公開になる段階 までには、この問題は解決されていなければならない。

最後にJENDL-2における非弾性散乱レベルの取り扱いについて述べる。Table 1 は鉄の非 弾性散乱レベルを示したものである。1列目は天然鉄のデータとしてファイル化された33本の非 弾性レベルの通し番号である。この表は33本のレベルと鉄同位体のレベルとの対応を示している。 例えば1から4番までのレベルは⁵⁷Feの1から4番目のレベルに対応し、5番目は⁵⁶Feの1番 目のレベルに対応することを示している。右端の列はレベルのエネルギーである。JENDL-2 ではCASTHYの計算の際、20本の⁵⁴Feのレベル、27本の⁵⁶Feのレベルと13本の⁵⁷Feのレベ ルを考慮した。⁵⁸Fe は0.3%と存在比が小さいので無視した。一方40本までしか分離レベルは 取り扱えないというENDF/Bフォーマットの制限がある。このため、計算に考慮したレベルを すべて分離レベルとしてファイル化することはできない。JENDL-2ではレベルエネルギーの 近いレベルはーまとめにし、断面積を加え合せて、あたかも1本のレベルであるかのようにして ファイル化した。例えば⁵⁴Fe および⁵⁶Feの4番目と5番目のレベルはレベルエネルギーが 2.9417 MeVから2.9590 MeVの狭い範囲にある。そこで4本のレベルの断面積を加えて天然鉄の 19番目のレベルとしてファイル化することができた。この"grouping"の手法は Niのデータに対し てもなされている。"grouping"の必要性は参考文献5で指摘されたものである。

- 5 -

4. 重核(U, Pu)のデータ

注) ここでは重要5核種,つまり²³⁵U,²³⁸U,²³⁹Pu,²⁴⁰Puと²⁴¹Puのデータについて述べる。 JENDL-2のための評価の特徴としては以下の4点が挙げられる。

(1) JENDL-1の問題点として挙げられていた²³⁹Puと²³⁵Uの核分裂比を改良するため、

²³⁵ Uの核分裂断面積を中心とした同時評価を行った。¹⁶⁾

(2) ν の測定に標準値として使われる²⁵²Cfの ν_{P} の値をSmithの推奨値¹⁷⁾で統一した。

(3)理論計算に使用する光学模型のポテンシャルパラメータを5核種間で統一化を図った。

(4) JENDL-1 では²³⁵U,²³⁸U,²⁴⁰Puの共鳴パラメータはENDF/B-Wの評価値を採用していたが、JENDL-2のための独自の評価を行った。

このように断面積の同時評価, 252 Cfの ν_P や, ポテンシャルパラメータの統一が行なわれており, JENDL-2の評価は一口に言って「核種間の consistency を重視した評価である」と言える。

4.1 断面積の同時評価

ここで言う同時評価とは、²³⁵ Uの核分裂断面積との相対値として測定されている多くの測定値 を利用し、絶対測定で求められている測定値と相互に矛盾がないような評価値を求める方法であ る。Fig. 10 は同時評価の流れを示したものである。同時評価は、①²³⁵ Uの評価担当者が²³⁵ U の核分裂断面積を求めることから始まる。次に²³⁵ Uの核分裂断面積 σ_f (U-235)が求まると、 ②²³⁵ U との相対値として測定されていた他の核のデータ σ_x (other)は

$$\sigma_x^{\rm D}(\text{other}) = \left[\frac{\sigma_x(\text{other})}{\sigma_f(\text{U}-235)}\right]_{e_{xp}} \times \sigma_f(\text{U}-235)$$
(1)

として本来の断面積の形にすることができる。そこで、③ σ_x^D (other)は絶対測定で求められて いるデータ σ_x (other)と比較できる。比較の結果両者に食い違いがあれば、④ σ_x^D (other)を 求めるのに使った σ_f (U-235)をどう修正すればより絶対測定値に近づけられるかという情報が 得られる。この情報は相対測定と絶対測定の両方が存在する量全部から得られることになる。次 にこの新たな情報を考慮に入れて²³⁵Uの核分裂断面積を再評価する。 つまり①のステップにも どる訳である。以上の①から④のステップを繰り返し、③のステップで満足すべき一致を σ_x^D (other)と σ_x (other)の間で見ることができたとき評価は終了する。こうして²³⁵Uの核分

注)	評価を担当されたのは次の方々である。
	共鳴パラメータ
	²⁴⁰ Pu······瑞慶覧(日立), ²⁴¹ Pu······菊池(原研)
	連続領域
	²³⁵ U ······松延(住友), ²³⁸ U ······神田(九大), ²³⁹ Pu ······川合(NAIG),
	²⁴⁰ Pu·····村田(NAIG), ²⁴¹ Pu·····菊池(原研)

- 6 -

裂断面積と、相対測定がある何種類かのデータの間で矛盾の少ない評価値が得られる。

JENDL-2のための評価で行った Fig. 10 の流れを全部示すことはできないので、 ここでは 最終的に得られた²³⁵Uと²³⁹Pu の核分裂断面積を示す。Fig. 11 は 100 keV から 1.1 MeV まで の²³⁵Uの核分裂断面積である。実線がJENDL-2の評価値である。続いてFig. 12 は²³⁹Puと ²³⁵Uの核分裂断面積の相対測定値である。実線で示したカーブは相対値に対するJENDL-2の 評価値である。この実線の値にFig. 11 の²³⁵Uの核分裂断面積を乗じると、Fig. 13の実線のカ ーブが得られる。この図は10keV から20 MeV までの²³⁹Pu の核分裂断面積を示したものである。 実験データはすべて絶対測定値である。今回の評価値は 1 MeV 以下で高目の値を採用している。 この他いくつかの断面積データの図を Fig. 14 から Fig. 18 まで示す。

4.2 共鳴パラメータの評価

共鳴パラメータ評価については主に²³⁸Uを例にして示す。²³⁸Uの場合JENDL-1では ENDF/B-Nのデータを採用しており、JENDL-2で始めて独自の評価値をファイル化したも のである。

まず,評価に当っては過去の測定データを集め,整理するのが第一段階である。その作業は共 鳴パラメータの格納検索コード REPSTOR¹⁸⁾を使って行った。Fig. 19 は REPSTORで整理し た²³⁸Uの共鳴パラメータの例である。 このように過去の測定値を並べて見ると,共鳴エネルギ ー, Γ_n , Γ_r ともに測定値間にかなりのバラツキがあることがわかる。JENDL-2ではこれら のデータを次のような手法で評価した。

共鳴エネルギー

共鳴パラメータを導く基になる測定量(transmission 等)は主に Time – of – flight法によっていることに着目した。そうすると、エネルギー E(eV)は飛行距離 L(m)と飛行時間 t(sec) および初期時間遅れ to(sec)で、

$$E = \left(\frac{72.2977 L}{t - t_0}\right)^2$$
(2)

と表わすことができる。このことから、もししまたは to に 4L, 4to の系統的な誤差があった とすると、それらがエネルギーに与える影響 4E は、

$$\Delta E = \frac{2 \Delta L}{L} E + \frac{2 \Delta t_0}{72.2977 L} E^{3/2}$$
(3)

であることがわかる。²³⁸Uの共鳴パラメータ評価では最も確からしい共鳴エネルギーの測定値 としてOlsen et al.¹⁹⁾によるORNLの最新のデータを採用した。 そして他の測定者の共鳴エ ネルギーとのずれを調べてみた。

Fig. 20 はその一例として Colombia 大学の Rahn et al.²⁰⁾のデータと Olsen et al.の比較 を示したものである。横軸は共鳴エネルギーで縦軸は Rahn et al. の共鳴エネルギーと Olsen et al. の共鳴エネルギーの差である。こうして見ると, エネルギーが高くなるにつれて

- 7 -

Rahn et al.のエネルギーはOlsen et al.のそれに比べてどんどん小さくなっていくことがわ かる。両者のずれは4keVでは約1.5 eV になっている。Fig. 19 のデータに最小自乗法で3式を適 合してみると、実線のカーブ(中央の線)が得られる。カーブの係数から $\Delta L = -4.45$ cm, $\Delta t_0 = 0.0149 \mu sec$ という値が得られる。ほんのわずかな誤差でも高エネルギー側でのエネル ギーのずれが大きくなることがわかる。以上のようにして過去の主な測定による共鳴エネルギー の系統的な誤差を調べ、補正した後、測定値間の平均値を取って評価値とした。

$\Gamma_n \geq \Gamma_\gamma$

核分裂幅が無視できる²³⁸Uの場合,4種類のresonance areaが次式で表わされることに注目 した。

$a_1 = c_1 \Gamma_n , \qquad ,$	thin	sample	transmission,	(4)
$a_2 = c_2 \sqrt{\Gamma_n (\Gamma_n + \Gamma_\gamma)} ,$	thick	sample	transmission,	(5)
$a_3 = c_3 \Gamma_n \Gamma_{\gamma} / (\Gamma_n + \Gamma_{\gamma}),$	thin	sample	capture,	(6)
$a_4 = c_4 \Gamma_n^2 / (\Gamma_n + \Gamma_{\gamma}) ,$	thin	sample	scattering.	(7)

そこで、1本の共鳴レベルに対するおのおのの測定値から4種類の area を求める。この際1本 のレベルだけに注目するので c1 から c4 の係数を無視した量(ここではそれらを A1 から A4と書 く)を実際は求める。さらにそれらの平均値(< A1 > から< A4 >)を求めると最も確からしい $\Gamma_n \geq \Gamma_r$ の組は、

$$I = w_1 \left(\langle A_1 \rangle - \Gamma_n \right)^2 + w_2 \left(\langle A_2 \rangle - \sqrt{\Gamma_n \left(\Gamma_n + \Gamma_\gamma\right)} \right)^2 + w_3 \left(\langle A_3 \rangle - \frac{\Gamma_n \Gamma_\gamma}{\Gamma_n + \Gamma_\gamma} \right)^2 + w_4 \left(\langle A_4 \rangle - \frac{\Gamma_n^2}{\Gamma_n + \Gamma_\gamma} \right)^2$$

を最小にすることが期待できる。ここで w_1 から w_4 は各 area に対する重みである。従って最小 自乗法により Γ_n と Γ_r を同時に決定することが可能である。

(8)

例を1つ示す。Fig.21は²³⁸Uの36.67 eVにある s 波共鳴のデータである。横軸に捕獲幅, 縦軸に中性子幅を採っている。図の中の十字形は誤差棒をつけてプロットした測定値である。上 記の4つの resonance area の各平均値から求まる $\Gamma_n \ge \Gamma_{\gamma}$ の関係式が4本の実線のカーブで 示されている。8式による最小自乗法で $\Gamma_n \ge \Gamma_{\gamma}$ を求めるというのは、4本のカーブの交点の位 置を求めることに対応している。この共鳴の場合は $\Gamma_n = 33.3 \text{ meV}$, $\Gamma_{\gamma} = 23.5 \text{ meV}$ という値 が求まった。

²³⁸ U の場合は以上の方法で全共鳴の共鳴エネルギーと中性子幅および捕獲幅を求めた。 J ENDL-2 の共鳴パラメータを使って計算した全断面積と測定値との比較例を Fig. 22 に示す。 10 eV から50 eV の間のデータである。実効核半径や、負のエネルギー領域にある共鳴からの寄与 分についても別に評価をし、計算に考慮されている。実線で示したカーブが計算値である。非常 によく実験データを再現しているのがわかる。

- 8 -

次に核分裂断面積の大きい核種の例として²³⁵ Uのデータを Fig. 23 に示す。50 eV から60 eVの 間の核分裂断面積をプロットした図である。実線のカーブはすでに評価を終えた共鳴パラメータ から求めた断面積である。この場合は、計算値と測定値との一致が良くなく、所々大きい食い違 いが見える。この食い違いは、計算において、single-levelの Breit-Wigner 公式を用いてお り、核分裂チャンネルの干渉効果が全く考慮されていないことによるものである。従ってこの食 い違いは共鳴パラメータをどう変えても改良される見込みがない。JENDL-2 ではこのような場 合は補正量としてバックグラウンドデータを評価しファイル化した。Fig. 24 は前図と全く同じ エネルギー領域のデータを示している。今度はバックグラウンドデータを加えて補正し、さらに 300°Kのドップラー効果を入れて計算した値を実線のカーブで示した。こうして、実験データと の良い一致を見ることができた。

5. **FP** 核種のデータ

FP 核種の評価はシグマ委員会核データ専門部会の中の FP 核データ ワーキンググループによって行われている。今までの評価作業の流れを示すと次のようになっている。

1975年: 28 核種の評価を終了

この評価では、光学模型のポテンシャルパラメータなどの系統性をつかみ、その結果を使い、 主に CASTHY¹²⁾を使った計算で評価値を求めた。(n, 2n)等のしきい反応については考慮し ておらず、ファイル化されているのは σ_{tot} , σ_{el} , σ_{cap} , σ_{inel} の4種類の断面積と、角分布デー タ、二次中性子スペクトルのデータだけである。共鳴パラメータが測定されている核では主に BNL-325の第3版²²⁾からパラメータを採用しファイル化してある。28核種の評価値は JENDL-1に格納されている。

1977年: 34 FP 核種の評価を終了

28核種のデータ評価終了後,ほぼ同じ手法を使って新たに34核種の評価を行った。この評価で は非分離共鳴領域の断面積データとしてstrength function model から求めた断面積が一部 採用されている点が前回の28核種の評価と異なる点である。34核種の評価が終ったのはJENDL -1が公開になったのと同じ1977年であったが、この時点ではベンチマークテストが終了して いなかった事などから、このデータはJENDL-1には格納されなかった。ベンチマークテスト は1978年に行われており、その結果いくつかの問題点が指摘された。このベンチマークテスト については1978年核データ研究会の席上、西村秀夫氏によって報告されている。²³⁾

1979年:NdとSmの再評価²⁴⁾

ベンチマークテストで問題点が指摘されたこと、またJENDL-1の28核種や、その後の34核 種の評価の後、新たな参考にすべき実験データがいくつか報告されていることなどから再評価の 作業が始められた。Fig. 25 に示したのは参考文献 25 から引用した¹⁵³ Euの中性子捕獲断面積の 図である。JENDL-1のデータ評価の時点では Konks et al.²⁶⁾のデータだけが利用できた。

- 9 -

その後測定が増えており再評価の必要性を示している。また評価手法に関してもここ数年間で進歩がみられている。従ってこの再評価では測定値はもとより、評価手法や理論計算の数々のパラ メータについても新たな検討が加えられている。1979年にはNdとSmの同位体のデータ評価 を行った。

1980年:全核種のデータの再評価

さらに1980年になってNd, Sm以外の核の再評価,並びにFP としての生成量が比較的大き いにもかかわらず未だ評価をしていない核についての新たな評価という大きな仕事に着手した。 1981年にはJENDL-2に格納するデータの評価が完成する予定である。

6. むすび

JENDL-2のデータとして,評価およびファイル化を終了している構造材および重核の重要 核種のデータを中心にして話しをした。JENDL-2の完成は当初の予定より遅れて1981 年に なる見込みである。最後に1980年11月末時点でのファイル化の現状をTable 2 に示す。 References

- 1) Igarasi, S., Nakagawa, T., Kikuchi, Y., Asami, T. and Narita, T: "Japanese Evaluated Nuclear Data Library, Version 1, --- JENDL-1 --- JAERI-1261(1979)
- 2) Garber, D., Dunford, C. and Pearlstein, S.: "Data Formats and Procedures for the Evaluated Nuclear Data File, ENDF", BNL-NCS-50496 (1975).
- 3) Japanese Nuclear Data Committee: J. At. Energy Soc. Japan, 21 (1979) 840.
- 4) Kikuchi, Y., Narita, T. and Takano, H.: J. Nucl. Sci. Technol. 17 (1980) 567.
- 5) Kawai, M., Yamano, N. and Koyama, K.: "Request for Evaluating Neutron Cross Section of Structural Material for Shielding Application", proc. of the International Conf. on Nuclear Cross Sections for Technology, held at Knoxville(1979), 586.
- 6) Kikuchi, Y., Hasegawa, A., Hojuyama, T., Sasaki, M., Seki, Y., Kamei, T. and Otake, I.: "Benchmark Tests of Japanese Evaluated Nuclear Data Library (JENDL)", proc. of the International Conf. on Nuclear Cross Sections for Technology, held at Knoxville(1979), 581.
- 7) Irving, D.C. and Straker, E.A.: "Evaluation of the Cross Sections of Iron: ENDF/B MAT 1101", ORNL-TM-2891 (1970).
- 8) Nakagawa, T.: J. At. Energy Soc. Japan, 22 (1980), 559.
- 9) Carlson, A.D. and Cerbone, R.J.: Nucl. Sci. Eng. 42 (1970) 28.
- 10) Cierjacks, S., Forti, P., Kopsch, D., Kropp, L., Nebe, J. and Unseld, H.: "High Resolution Total Neutron Cross-Sections Between 0.5-30 MeV", KFK-1000 (1968).
- 11) Kawai, M.: "Determination of Spherical Optical Model Parameters for Structural Materials", contribution to 1979 NEANDC Topical Discussions.
- 12) Igarasi, S.: private communication.
- 13) Broder, D.L., Gamalii, A.F., Lashuk, A.I. and Sadokhun, I.P.: "Inelastic Neutron Scattering (n,n'γ) by Fluorine, Iron, Cobalt, Nickel and Tantalum Nuclei", proc. of Second International Conf. on Nuclear Data for Reactors, held at Helsinki(1970), vol. 2, 295.
- 14) Yamano, N.: contribution to this meeting.

- 11 -

- 15) Perey, F.G., Kinney, W.E. and Macklin. R.L.: "High Resolution Inelastic Cross Section Measurements for Na, Si and Fe", proc. of the Third Conf. on Neutron Cross Sections and Technology, held at Knoxville(1971), 191.
- 16) Matsunobu, H., Kanda, Y., Kawai, M., Murata, T. and Kikuchi, Y.: "Simultaneous Evaluation of the Nuclear Data for Heavy Nuclides", proc, of the International Conf. on Nuclear Cross Sections for Technology, held at Knoxville(1979), 715.
- 17) Smith, J.R.: "Status of ²⁵²Cf v and its Impact on Thermal Reactor Parameters", proc. of Symposium on Nuclear Data Problems for Thermal Reactor Applications, held at Brookhaven National Laboratory, BNL-NCS-25047 (1979), 5.
- 18) Nakagawa, T: to be published.
- 19) Olsen, D.K., de Saussure, G., Perez, R.B., Difilippo, F.C., Ingle, R.W. and Weaver, H.: Nucl. Sci. Eng. <u>69</u> (1979) 202.
- 20) Rahn, F., Camarda, H.S., Hacken, G., HavensJr., W.W., Liou, H.I., Rainwater, J., Slagowitz, M. and Wynchank, S.: Phys. Rev. <u>C6</u> (1972) 1854.
- 21) Kikuchi, Y., Nakagawa, T., Matsunobu, H., Kawai, M., Igarasi, S. and Iijima, S.: "Neutron Cross Sections of 28 Fission Product Nuclides Adopted in JENDL-1", JAERI 1268 (1980).
- 22) Mughabghab, S.F. and Garber, D.I.: "Neutron Cross Sections, vol. 1, Resonance Parameters", BNL 325, 3rd Edition, vol. 1 (1973).
- 23) Nishimura, H., Watanabe, T., Nakagawa, T. and Kikuchi, Y.: "Integral Test of the JENDL-FP Data File", proc. of the 1978 Seminar on Nuclear Data, JAERI-M 8163 (1979) 136.
- 24) Iijima, S., Watanabe, T., Yoshida, T., Kikuchi, Y. and Nishimura, H.: "Fission Product Neutron Cross Section Evaluations for JENDL and the Integral Tests", proc. of the Specialists' Meeting on Neutron Cross Sections of Fission Product Nuclei, held at Bologna(1979), 317.
- 25) Mizumoto, M., Asami, A., Nakajima, Y., Kawarasaki, Y., Fuketa, T. and Takekoshi, H.: J. Nucl. Sci. Technol. 16 (1979) 711.
- 26) Konks, V.A., Popov, Yu.P. and Fenin, Yu.I.: Sov. J. Nucl. Phys. 7 (1968) 310.

- 12 -

討 論

Q:山室 信弘(東工大)

1. Ni の非弾性散乱の実験データが 5 MeV 附近にありましたが、 14 MeV 附近のデータがない ようですが、実験が難かしいのでしょうか。データ評価上必要な点と考えますが。

2. 重核評価の際²³⁵U(n,f)を同時評価したそうですが最小二乗法などが適用されていますか。 A:中川 庸雄(原研)

1. JENDL-2とENDF/B-Ⅳのデータが高エネルギー側で大きく食い違っている。 どちら がより正しいかを知る上で是非測定値が欲しいが,私の捜した所ではデータが見つからなかっ た。測定が難かしいのかどうかは私は知らない。

2. 最小二乗法は使っていない。評価担当者間の議論を重ね,最終評価値を導き出した。

Q:川合 将義(NAIG)

主要構造材の全断面積の共鳴構造が考慮されたことは歓迎すべきことである。しかし、全ての ものに分解能の良好な測定データが期待できないので、データの無いものについては、非分離共 鳴パラメータの形で格納する必要があると考えられるが、今後どのようにするか尋ねたい。例え ば、ABBN セットの Ta や Mo などでは、相当高エネルギーまで、共鳴の自己遮蔽因子が用意さ れていますが、その計算に必要と考えられるか。

A:中川 庸雄(原研)

指摘の通りだと思う。非分離共鳴パラメータは重核の重要5核種と²³² Thにだけ現在は与えられている。Ta などは、1 keV までかなりの数の分離パラメータを与えてあるが、1 keV 以上ではすぐなめらかな断面積になっている。JENDL-3 では当然非分離共鳴パラメータを多くの核に与えていくべきだろう。

Q:塚田甲子男(日大)

point - by - point に特定の author の data を信じて data を選ぶ際, 原論文にさかのぼっ て systematic error を check しているか。

A:中川 庸雄(原研)

eye-guideを行う全エネルギー領域を一つの測定だけでカバーできない場合が多い。従って 何種類かの測定値を使うことになるので、それらの間のsystematic なずれについては十分検討 している。

Q:飯島 俊吾(NAIG)

JENDL-1 で測定値があったにもかかわらず、測定とずれているものがある。例えばNiの σ_{inel} など。何故そうとったのか。

A:中川 庸雄(原研)

計算値と測定値の比較を十分には行なっていなかったためである。JENDL-1の評価,編集の最終段階では時間的余裕がなかった事が原因である。JENDL-2ではこの点慎重に評価,編集を行っている。

- 13 -

コメント:田中 茂也(原研)

オープニング・トークで話のあった英,独,仏を中心とする Evaluation Coordination に関 する第一回会合は NEA Data Bank で行われた。その Summary Record によると file 化は 先ず,既存の評価 ずみデータを選択して集めると いう方法で行なわれることになった。その席で JENDL-2 データが注目され,特に JENDL-2 B 中の Pu-239 データは最優先候補となった ことをここでコメントしておきたい。

JAERI-M 9523

Table 1 Inelastic levels of elemental iron

In order to distingush cross sections of highly excited levels from those of continuum level, the "grouping" technique was adapted. The first column shows the sequential numbers of inelastic levels of elemental iron, the 2-nd, 3-rd and 4-th columns those of Fe-54, Fe-56 and Fe-57. Iron-58 was neglected in the calculation of the inelastic scattering cross sections because its abundance is only 0.33 %. The 5-th column gives level energies in MeV.

No.	54 _{Fe}	56 _{Fe}	57 _{Fe}	level energy (MeV)
1			1	0.0144
2			2	0.1366
3			3	0.3667
4			4	0,7067
5		1		0.8468
6			5	1.008
7			6	1,198
8		, ,	7	1.2651
9			8	1.3568
10	1			1,4082
11			9	1.6277
12			10	1,7257
13			11 + 12	1.975 \sim 1.989
14		2		2.0851
15			13	2,117
16	2			2.5382
17	3			2.5613
18		3		2.6575
19	4 + 5	4 + 5		$2.9417 \sim 2.9590$
20	. –	6 + 7		$3.1200 \sim 3.1299$
21	6			3.1661
22	7			3.2952
23	8	8 + 9		3.3450 ∿ 3.3880
24		10 + 11		$3.4453 \sim 3.4493$
25		12 + 13 + 14		3,6009 ~ 3,6070
26		15 + 16		3.7480 ∿ 3.7558
27	9	17 + 18		3,8320 ∿ 3,8565
28	10 + 11 + 12	19		4.033 ∿ 4.072
29		20 + 21		$4.1003 \sim 4.1200$
30	13 + 14	22 + 23		$4.263 \lor 4.302$
31		24 + 25		$4.3950 \sim 4.4010$
32		26		4.4584
33		27		4.5100
continuum	15 + 16 + 17 + 18 + 19 + 20 + continuum	continuum	continuum	

Table 2 Present status of JENDL-2 compilation work

Given are the nuclides which will be stored in JENDL-2. The nuclides of which data have been compiled are marked with 'X'.

nuclide	nuclide	nuclide	nuclide
н х	Cr - 53	Hf	U - 238 X
D	Cr - 54	Ta - 181 X	Np - 237
He - 4	Mn - 55	РЪ	Np - 239 X
Li - 6 X	Fe X	Pb - 204	Pu - 236 X
Li - 7	Fe - 54	Pb - 206	Pu - 238 X
Be - 9	Fe - 56	РЪ - 207	Pu - 239 X
B - 10 X	Fe - 57	Pb - 208	Pu - 240 X
B - 11	Fe - 58 X	Th - 228	Pu - 241 X
C - 12 X	Co - 59	Th - 230	Pu - 242 X
F - 19	Ni X	Th - 232 X	Am - 241 X
Na - 23 X	Ni - 58	Th - 233	Am - 242g X
A1 - 27 X	Ni - 60	Th - 234	Am - 242m X
Si X	Ni - 61	Pa - 231	Am - 243 X
Ca - 40	Ni - 62	Pa - 233 X	Cm - 242 X
Ti	N1 - 64	U - 232	Cm - 243
V - 51	Cu	U - 233 X	Cm - 244 X
Cr X	Cu - 63	U - 234 X	Cm - 245 X
Cr - 50	Cu - 65	U - 235 X	
Cr - 52	FP [*]	U – 236 X	

* about 70 FP nuclides will be stored in JENDL-2.

- 16 -

Fig. 2 TSS terminal and NDES.

Fig. 4 Total cross section of nickel.

Fig. 5 Comparison of experimental and calculated total cross sections.

Fig. 6 Comparison of experimental and calculated differential elastic scattering cross sections of nickel.

21

Fig. 7 Comparison of experimental and calculated differential elastic scattering cross sections of chromium.

- 22 -

JAERI-M 9523

Fig. 11 Fission cross section of 235 U.

Fig. 12 \cdot Fission Cross section ratio of ^{239}Pu to $^{235}\text{U}.$

- 24 -

- 25 -

- 26 -

Fig. 20 Example of systematic discrepancies of resonance energies.

- 27 -

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DIERGY (EV 3	Ļ	NEBTRON WIGTH	R. N-WEDTHEOT	GHER N-HIDTHII	CANNA HEDTH	MISCELLANEOUS	REFERENCE
200- 1.5 </td <td>397.56 : 0.20</td> <td>0</td> <td></td> <td>0.30 ± 0.05</td> <td></td> <td>(25)</td> <td></td> <td>CPRC64</td>	397.56 : 0.20	0		0.30 ± 0.05		(25)		CPRC64
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	390.4		+.55 ± 0.62			11.5 ±13.6 ± 1.50		RSCHAR66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	397.6 397.63 ± 0.17	0	6.3 ± 0.6 6.33 ± 0.5	0-32 0-32 ± 0-03		(20) (25,2) (5,2)		GLA5568 C98898020
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	397.6		6.4 ± 0.3			25.2 = 5.2		ROHR70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	397.39 ± 0.35	0	4.1 1 0.3	0.30 ± 0.03		22 * 6		RRHN72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	397.62 * 0.01	0	5-05 ± 0-22 6-58 ± 0-30	0.33 + 0.02		(25.2)		OLSEN77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	397.321: 0.075	0	5.93 : 0.37	0133 2 0102		(23.5)		HRSTE78
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	397.580± 0.010	a	* 6.05 ± 0.28	0.30 ± 0.02		{ 23.831 { 24 }		OLSEN79 IN968.111990
$0.0.5$ 1 0.04 ± 0.02 1.5	397.58 ± 0.02	٥	5-12			24.4		PRESENT
	400-5	1	• 0.04 ± 0.02		1.5	(20)		QLASS68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	407.64 ± 0.36	1	• 0.079• 0.011	_	2.7 21.4	1 23 6 3		RRW72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	408.08 + 0.31		0.15 ± 0.07	0.0074± 0.0035		1 23-3 1		POURTHRNS77
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	408.210± 0.160 408.15 ± 0.23	ı	"0.07900±0.02700 0.0907			(23.5)		OLSEN79 PRESENT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	418 -10		80 .50					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	412 0.7	٥	17 ± 3	0.85		18 ±6	GT + 42	ROSENGO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	408-5		21.5 ± 5			(23.2)	5 • 145	HDX/0N62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	411	~	8-0 ± 2-0	0.40 ± 0.10		27		FIRM63
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	410.8	u	14.23 ± 1.10	U-33 1 U-03		25 1 26.61 ± 3.96		ASCHAR66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	410.2	n	± 0.3			± 1.40		0.05558
		J				± 1.3		0065700
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	410-22 ± 0.18 410-2		20.6 ± 1.0 19.9 ± 0.5	1.02 ± 0.05		[22.6 ± 1.4 22.5 ± 1.4		CARREROTO ROHRTO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	410.7 + 0.45	c	20 23	0.04 - 0.10		25 # 4		MALECK 172
	410-24 ± 0.01	a	19-56 + 0-58	0.34 1 0.10		(22.6)		RRHN72 DLSEN77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41D-12 ± 0.31	n	20.6 ± 0.8	1-02 ± 0.04		24.4 ± 0.6		POORTHRNS77
410.24 $\cdot 0.02$ 0 19.8 0.59 ± 0.05 1 22 $\cdot 1$ MMACLIFEGO 413.5 1 0.05 ± 0.02 1.8 (20 ± 1 0.49568 413.5 1 0.05 ± 0.02 1.8 (20 ± 1 0.49568 415.5 1 0.05 ± 0.02 1.8 (20 ± 1 0.49568 423.6 1 0.05 ± 0.02 1.7 120 ± 8 0.4 ± 3 0.48568 422.5 1.6 $\pm 2.4.3.0$ 1.7 120 ± 8 0.4 ± 3 0.67 20 ± 8 0.4 ± 3 0.67 435.5 3.2 ± 1.4 0.15 ± 0.07 (27 ± 1 0.49566 700 ± 8 0.4 ± 3.00 0.407 (27 ± 1 0.40860 434.19 ± 0.25 7.87 ± 1.0 ± 0.07 (27 ± 1 ± 0.70 RGMAR64 434.10 ± 0.20 ± 0.5 0.50 ± 1.46 0.455 ± 0.70 RGMAR64 434.10 ± 0.25 0.50 ± 0.27 ± 0.67 RGMAR64 RGMAR64 434.10 ± 0.20 0.55 0.50 0.02 23.5 ± 3.7 1.6172 434.10 ± 0.20 <td>410.210: 0.010</td> <td>ă</td> <td>19.55 ± 0.57</td> <td></td> <td></td> <td>1 23.711</td> <td></td> <td>OLSEN79</td>	410.210: 0.010	ă	19.55 ± 0.57			1 23.711		OLSEN79
413.5 I 0.05 + 0.02 1.6 (20) 0.05 + 0.02 0.05 + 0.02 1.8 (20) 1 0.05588 415.5 I 0.05 + 0.02 1.8 (20) I 0.05588 423.0 I 0.05 + 0.05 1.7 120 I 0.05588 435 6.7 0 14 13 0.67 20 16 01.4 17 100062 435 3.2 1.4 0.15 ± 0.07 (23.2) 1 75 700062 434.5 0.22 0 0.40 ± 0.07 (23.2) 1 6.70 780764 434.5 0.20 25.0 25.5 3.7 71 0.045086 434.6 10.20 9.5 ± 0.02 12.55 13.7 71 0.455086 43.6 10.1 0.42 ± 0.05 20 23.5 ± 3.7 71 0.455070 43.6 10.3 0.42 ± 0.05 20 23.5 ± 3.7 71 0.455070 43.6 10.3 0.42 ± 0.05 20.2 23.5 ± 3.7 0.455070 0.455070	410.05 x 0.12 410.21 x 0.02	0	19.8	0.59 ± 0.08		1 24 1 22.5		NAKAJIMABO PRESENT
415.5 1 0.05 ± 0.02 1.8 120 0.25568 423.0 1 0.65 ± 0.05 1.7 120 0.25568 435 ± 0.7 0 14 ± 3 0.67 20 ± 8 61 ± 35 75 705062 432.5 16.2 ± 3.0 1.7 120 1.7 120 1.7 120 1.7 120 1.7 120 1.7 120 1.7 120 1.7 120 1.7 120 1.7 120 1.7 120 1.7 120 1.7 120 1.7 120 1.7 120 1.7 120 1.7 1.7 120 1.7	413-5		0.05 ± 0.02		1.8	(20)		QLASS68
423.0 1 4 0.05 ± 0.05 1.7 1.20 1.20 1.7 1.20 1.1 1.10 1.23 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 $1.10.10$ $1.10.10$ $1.10.10$	415.5	ī	0.05 ± 0.02		1.8	(20)		0,95568
435 ± 0.7 0 14 ± 3 0.67 20 ± 8 $Gf + 39$ S + 75 R05062 432.5 16.2 ± 3.0 0.15 ± 0.07 (23.2) (27.1) $F10062$ 435 0.20 0.40 0.40 0.47 (23.2) (27.1) $F10062$ 434.19 0.20 0.3 ± 0.20 0.46 ± 0.07 (23.5) 0.7 (23.5) 0.662 434.19 0.20 0.3 ± 0.20 0.45 ± 0.07 (23.5) 0.7 0.8587 434.61 0.20 0.42 ± 0.05 26.5 ± 3.7 0.85877 0.85877 434.61 0.5 0.5 0.50 ± 0.02 $(23.5) \pm 0.3$ 0.858777 0.858777 437.7 ± 0.4 0.5 ± 0.5 0.50 ± 0.02 $(23.5) \pm 0.5$ 0.50 ± 0.02 $(23.5) \pm 0.5$ 0.50 ± 0.05 $(23.5) \pm 0.5$ 0.50 ± 0.05 $(23.5) \pm 0.5$ 0.50 ± 0.05 $(23.5) \pm 0.5$ 0.50 ± 0.05 $(23.5) \pm 0.5$ 0.50 ± 0.05 $(23.5) \pm 0.5$ 0.50 ± 0.05 $(23.5) \pm 0.5$ 0.55877 0.558777 0.558777 0.558777	423.0	1	0.05 ± 0.05		1.7	[20]		0.05568
display construction con	435 ± 0.7	0	14 . 3	0.67		20 • 8	61 - 39	ROCENCO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		·		••••			S = 75	RUDEROU
	432.5		3.2 ± 1.4	0.15 ± 0.07		(23.2)		MOXON62 FIRK63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	434-19 = 0-25	۵	797 • 10	0.40 ± 0.07		{ 25 } }		GRRC64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	134.5		± 0.20			± 1.46		HOLIMHINGG
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	434.2 434.10 ± 0.20	Q	- 10.3 ± 0.5 9.6 ± 0.4	0.50 0.45 ± 0.02		(20) (26.5 ± 3.7)		GLASS68 CORPORTO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	434-1		10.1 ± 0.5			26.5 \$ 3.7		ROHR70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	433.7 ± 0.4	0	0 11	0.42 ± 0.05		20 • 2		RRHN72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	434.07 ± 0.01	a	9.53 ± 0.32	0.50 ± 0.02		(23.5)		OLSEN77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	433.689± 0.084	0	8.71 ± 1.07			(21.5)		HRSTE78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	434.040± 0.010 433.85 ± 0.13	ŭ	A'23 & 0'3A	0.50 ± 0.05		C 23-291 C 24 1		DLSEN79 N9KRJ(1980
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	434.04 ± 0.02	0	9.76			24.1		PRESENT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	440.0	1	0.31 = 0.06	0.000.000	10-1	(20 1		GL. ASS68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	439.49 ± 0.40 439.71 ± 0.39	t	U.45 ± 0.10	0.0221 0.005	4.7 ± 2.1	(24.54 ± 0.85)		CARRARO70 RAHN72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	439.9 ± 0.2	1	0.285+ 0-01P		9.4 ± 0.9	(235)		CORVITS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	439.61 ± 0.35	•	0.28 ± 0.02	0.013+ 0.001				POORTHRNS77
448.4 1 ¹	439-740± 0-080 439-75 ± 0-16	1	*0.28500±0.03700 0.289			{ 23.5 } 23.6		OLSEN79 PRESENT
448.39 ± 0.14 1 0.0422 0.011 (23.5) 0.5588 448.39 ± 0.14 1 0.0422 0.011 (23.5) 0.5588 448.352 ± 0.36 0.0594 0.025 0.0024 0.0012 0.0024 0.0012 0.0024 0.0012 448.350 ± 0.310 10.0462 0.0112 (23.5) 0.5588 0.55877 446.50 ± 0.33 (0.0462 23.9 PRESENT PORTMARS77 446.50 ± 0.33 (0.0462 23.9 PRESENT PORTMARS77 446.51 1.4 ± 0.4 5 ± 2.9 NOX0452 PORTMARS77 455 0.2 ± 0.1 0.010 ± 0.005 (27 1) PORTMARS7 454.12 ± 0.42 0.45 ± 0.10 14.0 (20 1) 0.45558 453.77 ± 0.42 0.46 ± 0.1 0.022 ± 0.005 (24.64 ± 0.85) PORTMARS77 454.18 ± 0.4 0 0.022 ± 0.005 (24.64 ± 0.85) PORTMARS77 454.18 ± 0.4 0 0.455 ± 0.022 0.005 (23.5) PORTMARS77 454.4 ± 0.4 0.455 ± 0.022 0.020 ± 0.001 (23.5) PORTMARS77 PORTMARS77 454.18 ± 0.4 0	448.4		1 0.03 • 0.02	·	2.5	(20)		0.05559
448-322 ± 0.30 0.050± 0.075 0.0024± 0.0012 123.51 D00R1M48577 448-350 ± 0.310 10.0462 23.9 PRESENT 456 ± 0.8 0.7 ± 0.3 0.033 (24.6) G1 + 25 R05EN60 446-30 ± 0.310 1.4 ± 0.4 S + 2.9 N00N62 FIRM63 455 ± 0.8 0.2 ± 0.1 0.010± 0.005 (27 1 FIRM63 455 ± 0.25 ± 0.2 ± 0.10 0.022± 0.005 (27 1 D0064 454.1 ± 0.42 0.45 ± 0.10 0.022± 0.005 (28.64 ± 0.85 1) D0064 454.1 ± 0.42 0.45 ± 0.10 0.022 ± 0.005 (24.64 ± 0.85 1) CARRMOTO 454.1 ± 0.4 0 0.022 ± 0.005 (24.54 ± 0.85 1) CARRMOTO 454.1 ± 0.4 0 0.022 ± 0.005 (23.5 1) CARRMOTO 454.1 ± 0.4 0 0.45 ± 0.022 0.020 ± 0.001 (23.5 1) PO0R1M48577 454.08 ± 0.020 0.41500±0.04100 0.016 ± 0.003 (24 1) PO0R1M48577	448.39 ± 0.14	i	0.042± 0.011		213	1 23.5 1		OLSEN77
448-50 ± 0.33 (0.0462 23.9 PRESENT 456 ± 0.8 • 0.7 ± 0.3 0.033 (24.6 f Gf = 25 R052N60 446-51 1.4 ± 0.4 5 = 2.9 N0X0952 FR663 1000952 FR663 455 ± 0.25 ± 0.2 ± 0.1 0.010± 0.005 (27 1 FR663 D07664 454.4 1 0.45 ± 0.10 0.022 ± 0.005 (23.5 1 D07664 453.72 ± 0.42 0.46 ± 0.1 0.022 ± 0.005 (24.64 ± 0.85 1 Greener070 454.08 ± 0.02 0 0.415± 0.022 0.001 (23.5 1 0.56N77 454.08 ± 0.360 0.415± 0.022 0.020 ± 0.001 (23.5 1 P087179 454.050± 0.350 0.41500±0.04100 0.020 ± 0.003 (23.5 1 P0987179 454.04 ± 0.28 0.016 ± 0.003 (24 1 P0987199 P087199	448-360± 0.310		0.04200±0.025	0.00241 0.0012		(23.5)		POORTHANS77 OLSEN79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	448-50 ± 0.33	(0-0462			23.9		PRESENT
446.1 1.4 ± 0.4 0.4 ± 0.4 N0X0N62 455 0.2 ± 0.1 0.010± 0.005 (27 ± 1) FLM53 454.17 ± 0.25 0.2 ± 0.10 0.402± 0.005 (25 ± 1) DPAPC64 454.17 ± 0.25 0.45 ± 0.10 14.0 (20 ± 1) DLASS68 453.72 ± 0.42 0.46 ± 0.1 0.022± 0.005 (24.64 ± 0.85 ± 1) CARCARTOTO 454.1 ± 0.4 0 0.022± 0.005 (23.5 ± 1) RPARTOTO 454.08 ± 0.02 0.415± 0.022 (23.5 ± 1) 0.558/77 454.050 ± 0.050 0.415± 0.020 0.202± 0.001 (23.5 ± 1) PDORTMACTT 454.04 ± 0.28 0.016± 0.003 124 ± NARQLIFERO	456 ± 0.8	•	0.7 ± 0.3	0.033		[24.6]	GT • 25 5 • 2.9	ROSENGO
153 0.12 10.11 0.1010 0.002 0.002 1 CRN63 154.17 10.02 10.002 10.002 1 CRN63 CRN670 454.17 1 0.45 0.101 14.0 (20) CRN670 CRN670 454.1 1 0.45 0.02 0.005 (24.64 0.85 CRN6700 454.1 10.4 0 0.02 0.005 (24.64 0.85 CRN6700 454.1 10.4 0 0.02 0.005 (23.5) CRN6777 Referring 454.08 10.02 0.4156 0.420 0.020 0.001 Referring CRN6777 454.050 0.350 0.4150 0.420 0.020 0.001 POORTMARS77 DLSEN77 454.04 10.28 0.016 0.003 (24.1 NextureNex	446-1		1.4 ± 0.4	0.010+ 0.000				NOXON62
454.4 1 0.45 ± 0.10 14.0 (20) 0.85568 453.72 ± 0.42 0.46 ± 0.1 0.022 ± 0.005 (24.64 ± 0.85 ±) 0.458070 454.1 ± 0.4 0 0.022 ± 0.005 (24.64 ± 0.85 ±) Revent72 454.08 ± 0.02 0 0.415± 0.022 (23.5 ±) 0.568777 453.05 ± 0.36 0.415± 0.020 0.020 ± 0.001 (23.5 ±) 0.56877 454.04 ± 0.28 0.016± 0.003 (24 ±) 9.56879	+53 +54-17 ± 0.25		u-2 \$ U-1	0.02 ± 0.005		(27) I (25) I		F (RR6J GARC64
454.1 ± 0.4 0 0.02 ± 0.005 (24.64 ± 0.05 i CHARMOND 454.1 ± 0.4 0 0.02 ± 0.005 RR472 454.08 ± 0.02 0 0.415± 0.022 (23.5 i) RR477 453.95 ± 0.36 0.415± 0.020 0.201± 0.001 PORTMERT7 454.05 ± 0.350 0.415± 0.020 0.020± 0.001 (23.5 i) PORTMERT7 454.04 ± 0.28 0.016± 0.003 (24 i) HARQUIRED	454.4	1	0.45 ± 0.10	0.022+ 0.00≤	14-0	(20)		QLASS68
454.08 ± 0.02 0 0.415± 0.022 (23.5) 0.5677 453.95 ± 0.36 0.435± 0.020 0.020± 0.001 PORTHRES77 0.5677 454.050± 0.050 0.41500±0.04100 (23.5) D.5677 0.5677 454.050± 0.050 0.41500±0.04100 (23.5) D.5677 0.5677 454.050± 0.250 0.016± 0.003 (24.1) HRGUINEED 0.5677	454.1 1 0.4	٥	0	0.02 ± 0.005		τ ∠4.54 ± 0.85 i		RANN72
454.050±0.050 10.41500±0.04100 (23.5) 0.52479 0.52479 0.52479 0.52479 0.52479 0.52479	454.08 ± 0.02 453.95 ± 0.16	a	0.415± 0.022 0.435± 0.029	0-020+ 0-001		(23.5)		OLSEN77 POORTHENS77
	454.050± 0.050		0.41500±0.04100	0.005- 0.003		(23.5)	•	OL SEN79
	+34.U4 I U.28			0.0108 0.003		1 24 1		1940(11940)

Fig. 19 Output of REPSTOR.

- 29 -

JAERI-M 9523

- 30 -

Fig. 25 Capture cross section of 153_{Eu} .

1.2 JENDL-2によるJUPITER実験解析

亀井 孝信, 金城 勝哉**

大型高速増殖炉の核設計手法の評価に必要なデータを得ることを目的とした大型炉の臨界実験 (JUPITER実験)が日米共同研究により、米国のZPPR実験装置を用いて行なわれた。この 実験の解析はJENDL-2 ライブラリーを使用して、PNCの委託の下に、FBEC 東芝、日立、 三菱、富士で現在行われている。本報告はこれ迄に得られたZPPR-9実験の解析結果をまとめ たものである。

得られた主要な結論は次のように要約できる。

- (i) JENDL-2はZPPR-9体系のkarrを約0.7%過少評価する。
- (ii) ²³⁵U(n, f), ²³⁹Pu(n, f), ²³⁸U(n, r)の反応率分布の予測精度は径方向についてはか なり良好である。軸方向に関しては炉心中心から遠ざかるにつれ,計算値が測定値より早く減 少する傾向が見られる。また, ²³⁸U(n, f)に於いてはこの傾向は特に顕著である。
- (iii) 制御棒価値は炉心中心で約8%過少評価している。また、その計算値(C)と測定値(E)の比(C/E)の空間依存性はかなり大きい。(約7%変動)
- (V) JENDL-2によるナトリウム・ボイド反応度は実測値よりやや正側の値を与える。

Analysis of the JUPITER Experiments with JENDL-2

Katsuya KINJO^{*}, Takanobu KAMEI^{**}

A series of critical experiments has been performed in ZPPR on the cooperative program between Japan and US to provide useful data for the nuclear designing of a large LMFBR. The experiments are called "Jupiter Experiments". Analyses of these experiments are being carried out at FBEC, Toshiba, Hitachi, Mitsubishi, and Fuji under the sponsership of PNC by using JENDL-2 library. This report summarizes the analysis results in Japan on ZPPR-9 experiments.

The main points of the conclusion and observations from the analyses are summarized below;

i) The calculation underpredicts the $k_{\mbox{eff}}$ of ZPPR-9 core by about 0.7 % with JENDL-2.

*)日本原子力事業株式会社, Nippon Atomic Industry Group Co., Ltd.

**)動力炉核燃料開発事業団, Power Reactor and Nuclear Fuel Development Corporation

ii) The reaction rate distribution of $^{235}U(n,f)$, $^{239}Pu(n,f)$ and $^{238}U(n,\gamma)$ are predicted very well in radial direction, and the error is less than 2-3 %. On the other hand, as for the axial reaction rate distribution, calculated values decrease more rapidly than the experimental values as the axial elevation increases. This tendency is more conspicuous in $^{238}U(n,f)$ reaction.

iii) Control rod worth is under-predicted by about 8 % at core center. And a large space dependency has been observed for the ratio of calculation to experimental value in JENDL-2. (about 7 % variation) iv) JENDL-2 predicts sodium void reactivity toward more positive than experimental value.

1. はじめに

JUPITER^{*} 実験は PNC と米国 DOE との間の契約に基づいて日米共同で成された大型高速 炉用炉物理実験であり、米国 ANL 国立研究所の ZPPR 装置を使って、1978年4月から約1年 6ヶ月の間行なわれた。このJUPITER 実験には ZPPR-9と-10の2つの Phase がある。 ZPPR-9炉心は大型炉の基礎的な炉物理実験データを得る為のものであり、その炉心体積は約 4600 ℓ である。また、ZPPR-10炉心は炉心形状を実機のものに近づけた六角形状で、かつ、 体系内に制御棒チャネルを設けた炉心体積が約4600~6400 ℓ の炉心である。Fig. 1 にこれら両 体系の断面図を示す。

この JUPITER 実験の解析は日米両国で各々独立に進められ,我が国では PNC の委託の下 に、FBEC,東芝,日立,三菱,富士の各社で鋭意行なわれている。この解析作業の第一段階と して、すでに ZPPR-9実験解析は終了し,現在,ZPPR-10実験の解析作業を遂行中である。

本報告では、ZPPR-9実験に関して、JENDL-2を用いて行なった我が国の解析結果*の現 状を、ENDF/B-Nを使用した米国の結果と対比しながら、論じる。

2. 使用ライブラリーと解析モデル

解析計算に使用したライブラリーは,JENDL-2 の完成時期との関係で,高速炉の核特性を 決定する上で重要な主要8核種(²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, Fe, Cr, Ni)に JENDL-2のものを,残る核種はJENDL-1(但しJENDL-1にも収納されていないものは ENDF/BN) のものを使用した。解析計算にはこれらのライブラリー・ファイルをPROF-GROUCH-G2⁽¹⁾及びTIMS-1⁽²⁾コードを用いて処理し,ABBN型⁽³⁾の70群ライブラリーと したものを使用した。

*) Japanese-United States Program of Integral Tests and Experimental Researchの略

- 33 -

 ^{**)} ZPPR-9の実験解析は山本,西,西山(FBEC),亀井,吉田(東芝),畦倉,川島,漆原(日立),
 具瀬,関(三菱),中村,青木(富士)氏らによって遂行された。

解析計算に於いては、まず最初に上記の手順で得られた ABBN 型ライブラリーを用いて、積分 型輸送理論コード SLAROM⁽⁴⁾により、炉心内各領域毎の実効断面積(70 群)を求めた。そして 更に16~18群或いは7群に群縮約を行ない、臨界性、反応率分布、制御棒価値等の核特性の解析 を行なった。これらの解析に於ける基準計算モデルは Benoist の定義による非等方拡散係数を 用いた拡散計算とし、それに更に実験解析の観点から輸送補正、メッシュサイズ補正等種々の補 正を施し、詳細化を図っている。主要核特性量に対する基準計算は以下の通りである。

(i)反応率分布:7群XYZ 拡散計算

(ii)制御棒価値:7群XY拡散計算

(iii)ナトリウム・ボイド反応度:16群 X YZ 拡散計算

(IV)ドップラー及びサンプル反応度:18群 XY, RZ 拡散係数

以下、各核特性毎に解析結果について論じる。

3. 解析結果

(1) 臨界性

Table 1 に Z PPR - 9 体系の k_{eff} の計算値を示す。補正後の J ENDL - 2 による計算値(C) の実験値(E) に対する比(以後これをC/E 値と呼ぶ)は0.9930で,実測値を0.7%過少評価している。この0.7%という過少評価幅は炉心設計の観点からはやや大き過ぎると考えられる。尚, ENDF/B N を使用した ANL の C/E 値は0.9836 であり,実測値を約1.6% 過少評価している。

(2) 反応率分布

ZPPR-9に於ける反応率分布の測定はフォイル放射化法により、²³⁹Pu (n, f)、²³⁵U(n, f)、²³⁸U(n, f)及び²³⁸U(n, r)に対し、かなり詳細に行なわれている。

Figs.2~5 にこれら反応率分布の解析結果(C/E値)の主要なものを示す。これらの図から JENDL-2の反応率分布の予測精度に関して次のように要約できる。

(i) ²³⁵U(n, f), ²³⁸U(n, 7), ²³⁹Pu(n, f)分布は径方向についてはかなり良い精度で予測で きる。但し軸方向については上記いずれの反応に於いても、計算値は測定値よりやや急激に減少 する。その結果軸ブランケット上端では8~15%の過少評価となる。

(ii) 上記軸方向の過少評価の傾向は 238 U (n, f) に於いては最も顕著で、軸ブランケット上端 での C/E 値は 0.7 ~ 0.3 程度に迄なる。

(iii) 上記反応率分布のデータから算出した炉心中心近傍の主要反応率比のC/E値は、C/E $(\sigma_{f}^{49}/\sigma_{f}^{25}) = 0.974$, C/E $(\sigma_{f}^{28}/\sigma_{f}^{25}) = 0.962$, C/E $(\sigma_{c}^{28}/\sigma_{f}^{49}) = 1.060$ であった。

 $\sigma_{f}^{49} \sigma_{f}^{25}$ 値が約3%過少評価である事から、中性子スペクトラムの高エネルギー側の値が測定と 計算でかなり異なっている可能性がある。また、 $\sigma_{c}^{28} \sigma_{f}^{49}$ 値を約6%過大評価しており、大型炉の核設計に際してはこの事を考えに入れておく必要がある。

尚,米国の ENDF/B-N による結果は反応率分布に関しては、上記(i),(ii)で示した JENDL-2 の傾向と非常に良く似ている。また、反応率比に関しては、 $\sigma_{\rm f}^{49}/\sigma_{\rm f}^{25}$ の C/E 値は 0.98 であり JENDL-2 の結果とほぼ類似であるが、 $\sigma_{\rm f}^{28}/\sigma_{\rm f}^{25}$ 及び $\sigma_{\rm c}^{28}/\sigma_{\rm f}^{9}$ のC/E 値はそれぞれ 0.92, 1.09

であり、JENDL-2による結果よりも測定からのずれがやや大きい。

(3) 制御棒価値

ZPPR-9 に於ける制御棒価値の実験は Fig. 6 に示したような位置で種々の制御棒パターンに 対して行なわれた。これらの一連の制御棒価値実験の狙いは次の3つに大別できる。すなわち, (i)制御棒価値C/E値の炉心内位置依存性を調べるもの,(ii)制御棒断面の大きさ依存性を調べる もの,(iii)制御棒間の干渉効果を調べるもの,である。

Figs. 7,8及びTable 2にこれらの目的別にまとめた解析結果を示す。Fig.7より判るよう にJENDL-2では、炉心中心のC/E値は0.92と約8%制御棒価値を過少評価している。そし て、炉心中心から離れるに従がいC/E値が増加し、炉心外端では炉心中心より約7%大きくな っている。こうした大きな空間依存性は¹⁰B sample worth にも見られる。炉心設計の観点か らはこうしたC/E値の空間依存性は小さい方が望ましく、その点ではENDF/B-N による結 果(C/E値の空間依存性は約2.5%)の方が扱いやすい。このC/E値の空間依存性が生じる原因 が核計算の近似にあるのか、核データに起因するのかは現在の所不明である。

Fig.8は制御棒断面の大きさ依存性を調べたものである。同図よりJENDL-2のC/E値は、 先の場合と同様、ENDF/B-NによるC/E値より、制御棒Size に関する依存性が強いことが 判る。このような制御棒Size 依存性は核データからよりも、むしろ核特性計算モデル上の近似か ら生じていると考えられる。

Table 2 は共存する制御棒からの干渉を受けた状態での着目制御棒の反応度価値を示したもの である。同表に見られるように日本の結果は1ケースを除いてC/E値は良好である。また,ANL の結果はすべてのケースに於いて、計算値は実測値を良く再現している。

(4) ナトリウム・ボイド反応度

ZPPR-9に於ける Na ボイド反応度実験は、炉心中心から除々に広領域(97 drawers)迄, 段階的に Na のボイド領域を広げて行き各ステップ毎の反応度を測定するいわゆる広領域ボイド 実験と drawer oscillation 法による単一 drawer の Na void worth traverse がある。ここ では前者の広領域ボイド実験に関する解析結果を述べる。

Table 3 に JENDL-2 及び ENDF/B-Nを使用した時の解析結果を示す。 この表より、 JENDL-2 による Na-void 反応度は"より正側"の数値を与えることが判る。そして、その 傾向はボイド領域が"より広領域"になる程顕著である。他方、ENDF/B-N による結果はか なり良い精度で実測値を再現している。上述のように、JENDL-2 による Na void 反応度が "より正側"になる懸念は既に JENDL-2 のベンチマークテスト⁽⁵⁾ に於ける ZPR-II-48 と 49 の k_{eff} の傾向から感じられていた事である。

(5) ドップラー反応度及び物質反応度価値

ドップラー反応度の測定は炉心中心にドップラーサンプルチューブを挿入して,オシレイション法で測定されている。Table 4 に UO2 サンプルドップラー反応度に関する解析結果を示す。 同表から,298°K からのドップラー反応度に対するC/E 値は JENDL-2 を使用した場合 800°K

- 35 -

近辺まではほぼ 1.00 であるが、 900[°]~1000[°]K 近辺では 1.06 にとび上かっている。 実は、今回 解析に使用した SLAROM コードは自己遮蔽因子の内挿ルーティンにやや難点があり、他の計算 例⁽⁾からも判断して上述の C/E 値の温度依存性は上記内挿ルーティンを改良すればなくなる性 質のものであると考えられる。

ANL での ENDF/B-Ⅳを使用した C/E 値は 0.90~0.95 であり, 解析は過少評価する傾向 を持っているが,日本のような温度依存性は見られない。

ZPPR-9に於いては物質反応度価値の測定も数多くなされている。Table 5 に炉中心近傍で の物質反応度価値の解析結果を示す。同表では²³⁹Pu,²³⁵UのJENDL-2使用による解析結果 は6~10%過大評価になっている。他方 ENDF/B-Ⅳ使用による ANL の結果は, これらの核 種の反応度価値を15~20%過大評価している。また²³⁸Uに関しては日米双方とも16~17%の過 大評価になっている。Fe, Ni, Mo, Mn に関しても,日米双方とも測定値との一致が良くない。 尚,物質反応度価値に関しては測定及び解析の上で種々難かしい問題を抱えている事から,上記 結果からただちに核データの特質を論議する事はできない。

4. おわりに

JENDL-2 ライブラリーを使用して行なった ZPPR-9 実験の詳細な解析作業を通じて、

JENDL-2 ライブラリーの持っている特徴をかなり良く把握することができた。 これらの特徴 については個々の核特性項目毎に述べてきたが、以下にそれらのうち特に重要なものをまとめる。 (i) JENDL-2 は Z PPR-9 体系の実効増倍率を約0.7%過少評価する。

(ii) ²³⁵ U (n, f), ²³⁹ Pu (n, f), ²³⁸ U (n, r)の反応率分布の予測精度は径方向についてはかなり 良好である。軸方向に関しては炉心中心から遠ざかるにつれ,計算値が測定値より早く減少する 傾向が見られる。またこの傾向は ²³⁸ U (n, f) に於いて特に顕著である。

(iii) $\sigma_c^{28} / \sigma_f^{49}$ の C/E 値は 1.06 とやや大きく、大型高速炉の核設計に際しては、この事を考慮に入れておく必要がある。

(Ⅳ)制御棒価値は炉心中心で約8%過少評価している。また、制御棒価値C/E値の空間依存性は かなり大きい。

(V)JENDL-2によるナトリウム・ボイド反応度は実測値よりやや正側の値を与える。

(VI)ドップラー反応度の予測精度は良好である。但し、核計算の際の自己遮蔽因子の内挿ルーチンの改良は望まれる。

今後, ZPPR-10の詳細解析及び ZPPR-9の topics study 等を通して得られる情報が JENDL-3の評価作業に於いて考慮される事を期待する。

- 36 -

参考文献

- HASEGAWA, A., To be publised. See also TAKANO, H., et al., JAERI Fast Group Constants Systems Part I, JAERI-1195 (1970)
- (2) TAKANO, H., et al., TIMS-1 : A Processing Code for Production of Group Constants of Heavy Resonant Nuclei, JAERI-1267 (1980)
- (3) BONDARENKO, I.I., et al., Group Constants for Nuclear Reactor Calculations, Consultants Bureau, New York (1964)
- (4) NAKAGAWA, M., TSUCHIHASHI, K., SLAROM;高速炉の非均質系炉心解析コード, JAERI-M 5916(1974)
- (5) KIKUCHI, Y., et al., J. Nucl. Sci. Technol. 17(7) pp.567-570 (1980)
- (6) TAKANO, H., et al., Private Communication

謝 辞

本実験解析の遂行に当り、Jupiter 計画遂行日本側責任者の井上晃次氏(PNC)には多大の 御支援と御協力を得た事に対し深く感謝の意を表します。また、実験データの入手の点で白方、 池上両氏(PNC)に、解析結果の検討に於いては飯島(東芝)、瑞慶覧(日立)の両氏に深く感 謝の意を表します。

討論

Q:菊池康之(原研)

うまく合わない諸量,特に C/R Worth について今後どう検討して行くか? ¹⁰B,¹¹B共に核 データは変更していないのにかえって測定値との一致が悪くなっている case がある。

A: 亀井孝信(NAIG)

これ迄ややなおざりにされた感のあるスペクトラムに関する測定値をも有効に利用し、計算値 と測定値の差異を調べ、その差異が、各着目特性の測定と計算との差異とどのように関連してい るか調べる必要がある。その他、制御棒価値については解析は2次元XY近似に依っているので 軸方向への中性子漏洩量に関する補正方法等核計算手法自体の誤差についても検討する必要があ る。

Q:竹田敏一(阪大)

²³⁸Uの fission rate distributionの径方向分布として示された値は X方向か或いは Y 方向か? また, その差異はどの程度であったか?

A:亀井孝信(NAIG)

図に示したのは X方向分布である。また²³⁸U fission rate distribution に関する X方向分 布形と Y方向分布形の差異は小さく,差異の最も顕著な位置でも,その差異は2%程度であった。 Q:五十嵐信一(原研)

炉物理実験の精度はどの位詳しく取られているのか? k_{eff}の C/E で 0.3%の精度が望ましいとのことであるが核 データの精度から言うとかなりきびしいと思う。もし 1%の誤差があるとした時燃料棒本数でどの位の差が出るのか?

- 37 -

A:亀井孝信(NAIG)

炉物理実験の精度は着目特性毎に異なっているが、k_{eff}に関しては余剰反応度の測定精度は非 常に高く0.04% *A*k 程度である。また装荷体系の原子数密度に関する情報も非常に詳細であり、 解析に使った原子数密度は実体系のものと殆ど差異はないと考える。また、実証炉体系でk_{eff}に 1%の誤差があるとして、その誤差を炉心体積で補償するとすれば、炉心体積で約5~8%程度 変動させる必要がある。

Q:佐々木誠(PNC)

炉中心反応率の絶対値で測定と解析の対比を行なった事があるか?

A:亀井孝信(NAIG)

ZPPR-9及び-10では炉中心反応率の絶対測定はなされていない。

JAERI-M 9523

Table 1 ZPPR-9 C/E Value for Keff

Calculated Keff

Base	Calcula	ation .			0.9916
(XYZ	Diff.,	Aniso.	D , 7	Groups)	•

Corrections

Group Collapsing	-0.0011
Mesh Effect	+0.0005
Transport Effect	+0.0031
Corrected K _{eff}	0.9941
Experimental Keff	1.001061 ±0.00037
<u>C/E</u>	0.9930

ANL Results (ENDF/B-IV)

Corrected	K_{eff}	•••••	0.9845
С/Е	••••		0.9836

Table 2 Cor	ntrol Rod	Worth,	Interference	Effect
-------------	-----------	--------	--------------	--------

		JENDL-2	ANL
Rod	Reference Group	Worth & (C/E)	C/E
CR(1)		2.51 (<u>0.91</u>)	1.01
CR(1)	CR(2 ~ 7)	0.26 (<u>0.62</u>)	1.03
CR(1)	CR(9,11,13,15,17,19)	5.36 (<u>0.96</u>)	0.99
CR(13)		1.29 (<u>0.94</u>)	1.00
CR(13)	CRP(9,11,15,17,19)	1.68 (<u>1.00</u>)	1.02
CR(13)	CR(9,11,15,17,19)	3.97 (<u>1.00</u>)	1.00

*) ANL results were obtained by using ENDF/B-IV .

	Cumulative						Step (JENDL-2)			Step (ANL*)
Void Configuration	Exp. (¢)	Base Calc.(¢)	Correc E.P./F.O.P	Group Collapse	Corrected Calc.(¢)	C/E	Exp. (¢)	Corrected Calc.(¢)	C/E	C/E
9 Drawer ±8in	3.03 ± 0.05	3.29	1.022	0.981	3.30	1.09	3.03	3.30	1.09	1.00
37 Drawer ±8in	11.56 ± 0.04	13.46	(1.03)	0.981	13.60	1.18	8.53	10.30	1.21	1.10
97 Drawer ±8in	29.39 ± 0.02	34.90	(1.05)	0.981	35.95	1.22	17.83	22.35	1.25	1.12
97 Drawer ±16in	37.26±0.01	45.59	1.08 ₇	0.978	48.47	1.30	7.87	12.52	1.59	1.22
97 Drawer ±20in	31.68 ± 0.02	40.26	(1.10)	0.973	43.09	1.36	-5.58	-5.38	0.964	1.02
97 Drawer ±27in	24.44 ± 0.02	33.66	1.127	0,968	36.72	1.50	-7.24	-6.37	0.880	0.90

Table 3 Comparison of Calculated and Experimental Large Sodium Void Worth-Normal Drawer

* ANL results were obtained by using ENDF/B-IV

JAERI-M 9523

	Fxp		C/E
$T = {}^{\circ}K$	(¢/Kg)	JENDL-2	ANL (ENDF/B-IV)
298.0	-0.951	1.02	1.06
487.5	-0.0277	0.98	0.92
644.4	-0.0440	1.01	0.93
794.0	-0.0586	1.00	0.90
935.4	-0.0662	1.06	0.95
1087.0	-0,0763	1.06	0.94

Table 4 ZPPR-9 UO₂ Sample, Doppler Reactivity

Table 5 Summary of C/E Values for Small Sample Reactivity in ZPPR-9 Assembly

		(Co:	re Center)	
Principal	Material	C/E		
Nuclide	Worth (Ih/Kg)	JENDL-2	ANL*	
Pu239	60.47	1.06	1.15	
Pu240	4.18	0.98	1.11	
U235	44.43	1.10	1.19	
B-10	-689.4	1,12	1.08	
Na	-4.00	1.03	0.87	
Fe	-1.60	1.16	1.36	
Cr	-2.13	0.99	1.29	
Ni	-2.37	1.24	1.36	
Мо	-5.23	1.22	1.49	
SS	-2.07	1.01	1.13	
Mn	-3.67	2.03	2.07	
U238	-3.03	1.16	1.17	
	U238 Doppler Sample	(1.02)	(1.06)	

* ANL results were obtained by using ENDF/B-IV.

_ _ 41 -

- 42 -

Sectional Views of ZPPR Assemblies 9 and 10

Fig. 2

235 U Fission Rate C/E Values for Axial Traverse Measurement of ZPPR-9

Fig. 3

239 Pu Fission Rate C/E Values for Axial Traverse Measurement

Axial	•				
Eleva	tion				
(Cm)					
83.9	0.893	•0.873	°0.893	•0.887 •0.865	
76.3	0.929	• 0.904	•0.917	+0.937 +0 919 *0.813 *C	829 76.3
6 8 .7	0.944	01 0 .0*	•0.959	•0.943•0.920•0.864•0	68.7
61.0	0.976	•0.945	•0.973	•0.978 •0.955 •0.897 •0	876 61.0
53.4	1.006	•0.984	•1.012	•1.026 •0.983 •0.943 •0	
48.3	0.975	•0.947	•0 968	•0969 0945 -0958 •(026 450
43.3	0.963	•0.958	•0 964	•0.977 •0 939	40.0
38.2	0.983	* 0.958	•Q982	•0.941 •0 910 *0.953*0	912 38.2
33.1	0.983	*0. 96 6	•0.98 I	•0.977•0971 •1.009•(30.6
22.9	0.994	•0.96B	•0 994	•1.002 •0.991 •0.967•0	934
15.3	0.995	•0.975	•0983	•0.997 •0.992 •0.967 •0	939
7.7	1.000	•0.976	•1.001	•0.993•0.992•0.981 •0	2931
149	/49	149/39	149/33	 49/26 49/ ₃₀ 49/ ₂₈ 49/ ₂₄	-Matrix Position
					Line

238 U Capture Rate C/E Values for Axial Traverse Measurement

Fig. 5

238 U Fission Rate C/E Values for Axial Traverse Measurement

Fig. 6 Control Rod Positions for ZPPR-9 Rod Worth Measurements

Fig.7 C/E Distribution of CR Worths (One and Two-Rod Exp.)

1.3 コメント: ZPPR-3の詳細解析によるJENDL-2のテスト⁺

亀井 孝信,吉田 正*

JENDL-2の高速炉の炉心解析への適用性評価作業の一環として,現在ZPPR-3 炉心での 制御棒価値及び反応率分布の解析を行なっている。本報告は1980年12月時点迄に得られた結果 をまとめたものである。

JENDL-2による制御棒価値の計算値は過少評価(1~10数%)される傾向にあり、制御棒本数が増加したケースではその過少評価の傾向は特に顕著である。

Test of JENDL-2 by a Detailed Analysis of ZPPR-3 Experiments

Takanobu KAMEI^{*}, Tadashi YOSHIDA^{*}

Detailed analyses of ZPPR-3 experiments are now being performed on control rod worths and reaction rate distributions to confirm the applicability of JENDL-2 to fast reactor core analyses. The present report describes the results obtained by December, 1980. The control rod worth is underpredicted by about 1-16 % with JENDL-2. Control rod worth tends to be much underpredicted when the numbers of control rods inserted are increased.

JENDL-2 ライブラリーの高速炉の炉心解析への適用性評価作業の一環として,現在ZPPR-3 炉心での制御棒価値及び反応率分布の解析を行なっている。現在,上記解析のうち,制御棒価値 の解析を遂行中であり,得られた結果はまだ暫定的なものであるが,ここにその結果を示し, JENDL-2 の適用性評価の一助としたい。

ZPPR-3 炉心に於ける制御棒価値の測定はPhase 1B 炉心でかなり詳細に行なわれている。 このPhase 1B 炉心は米国のデモ・プラントの E.O.C.(End of Life)の模擬体系であり、炉 心体積は約2400 ℓ である。Fig. 1 に Phase 1B 炉心の XY 断面図を示す。この炉心での制御棒実 験は Fig. 1 で CRP と記された箇所に模擬制御棒が挿入されて行なわれている。挿入される制御 棒の種類は H, I, Jの3種類あり、各タイプの装荷¹⁰B 重量はそれぞれ 0.79、1.85、1.21 kg となっている。制御棒価値実験に際しては、これら模擬制御棒の挿入位置は各タイプ毎に定まっ ていて、typeH は CRP # 2、3、4、5、6、7 に、type I は 8、10、12、14、16、18 に、また type J は

⁺⁾ 本研究は JENDL-2 積分評価ワーキング・グループの作業の一環として、日本原子力研究所よりの 委託により行なわれた。

^{•)} 日本原子力事業株式会社, Nippon Atomic Industry Group Co., Ltd

9, 11, 13, 15, 17, 19 に挿入される。

この実験に対する解析は、先のJUPITER実験解析で用いたのと同一のJENDL-2B 70群 ライブラリーを用いて行なわれた。解析では積分型輸送理論コードSLAROM⁽¹⁾により板状プレー トを均質化した定数(70群)を用いた。また、拡散係数としてはBenoistの定義による非等方性 拡散係数を用いた。そして、これらの定数を1次元円筒モデルで25群に縮約し、2次元XY25群 モデルで制御棒価値の計算を行なった。このようにして得られた計算値は更に、メッシュ補正や 輸送理論補正等を施して最終の解析値を得る事になるが、ここでは暫定的に、JENDL-1 に対 して行なった前回の解析の際の補正値や、他の計算結果から推定した補正因子を適用する。得ら れた解析結果をTable 1 に示す。尚、同表には、参考の為JAERI-FAST 2 (JF-2) 及び JENDL-1 による結果⁽²⁾も併せて示す。この表より、JENDL-2 による結果は少数本制御棒挿 入時には測定との一致は良好であるが、多数本挿入時にはかなりの過少評価になり、Case № 15 では16%の過少評価になっている事が判る。今後この過少評価の原因を詳細に検討して行く必要 がある。

参考文献

- NAKAGAWA, M., TSUCHIHASHI, K., SLAROM;高速炉の非均質系炉心解析コード, JAERI-M 5916 (1974)
- (2) 亀井孝信,飯田正明,JENDL-1ライブラリーによるZPPR-3 炉心の解析,JAERI-M
 8163(1979)

討論

Q:佐々木誠(PNC)

JENDL-1とJENDL-2の解析手法が異なっていると思うので、単純に両者の制御棒価値の C/E値の比較はできないのではないか。例えばJENDL-2のC/E値の悪さはセル計算法によ るのでは?

A:亀井孝信(NAIG)

Table I の C/E 値を求めた時の JENDL-1 と JENDL-2 に於ける解析モデル上の差異としてはエネルギー群数の取り方の違い,セル計算に於けるバックリングの取り方の違い等があるが, これらの差異は上記 C/E 値の傾向を顕著に異ならせるものとは思えない。

		No.	Measured	0 55	C/E [*] Values			
NO.	Control Kod Positions Inserted	C.R.	Worth	Pett	JF-2	JENDL-1	JENDL-2	
		1	1 9/	×10 ⁻³	0.96	0.97	0.97	
	8 (Type-1)	-	1.74	5.51	0.50	0.57	0.57	
- 2	2 (Type-H)	1	2.02	3.51	1.00	0.98	0.98	
3	2,8	2	3,58	3.51		0.96	0.97	
4	Type-I in CRP-1	1	4.14	3.51	0.96	0.96	0.99	
5	8,14	2	4.24	3.51	0.97	1.02	0.97	
6	2,5	2	4.26	3.51	0.99	0.98	0.97	
7	2,4,6	3	6,51	3.52	0.99	0.98	0.99	
8	2,4,6,10,14,18	6	14.33	3.54	0.97	0.99	0.96	
9	8,10,12,14,16,18	6	14.88	3.54	0.97	0.96	0.97	
10	2,3,4,5,6,7,10,14,18	9	20.75	3.55		0.97	0.95	
11	2,4,6,8,10,12,14,16,18	9	22,65	3.55		1.00	0.95	
12	8,9,10,11,12,13,14,15,16,17,18,19	12	28.96	3.57	0.99	1.00	0.94	
13	2,4,6,9,10,11,13,14,15,17,18,19	12	28.99	3.57		0.97	0.92	
14	2,3,4,5,6,7,8,10,12,14,16,18	12	30.12	3.57		0.96	0.93	
15	All except CRP-1	18	44.76	3.61	·	0.97	0.84	
C/	C/E*値の平均及び分散(1σ) 0.98±0.01 0.98±0.02 0.95±0.04							

Table 1 C/E Values for control rod worth of ZPPR-3 phase 1B core

*) C/E : Calculated / Experimental

JAERI-M 9523

- 48

 $\Box = CRP$

P = POISON ROD

• = Pu I W/o SPIKE

Fig. 1 ZPPR assembly 3, phase 1B, reference core

JAERI-M 9523

- 49 -

1.4 鉄の非弾性散乱断面積評価の問題点

山野直樹

JENDL-2の積分テストの一環として,鉄の高エネルギー領域における透過実験の解析を行った。その結果,非弾性散乱断面積が2MeV以上で過小評価となっており,再評価が必要である 事が明らかとなった。また,高速中性子スペクトルに対する非弾性散乱断面積の角度分布の影響 は⁵⁶Felst.levelを除いて顕著でない事が示された。

Problems in Evaluation on Inelastic Scattering Cross Section of Iron

Naoki YAMANO*

Benchmark test of iron data in JENDL-2 has been performed for shielding applications. Experimental data are retrieved from LLL pulsed sphere experiments. Some anomalous C/E - values are observed in the leakage spectra above 2 MeV. It is pointed out that the inelastic scattering cross sections above 2 MeV are underestimated. Fast neutron spectra are not much affected by the angular anisotropy of inelastic scattering cross section except for 56 Fe first level.

1. はじめに

核融合ニュートロニクス及び遮蔽解析で問題となる鉄の14MeV中性子透過実験¹⁾の解析によっ てJENDL-2の適用性評価を行う事を目的とした。実験体系をFig.1及び2に示す。この実験 は鉄球表面から漏洩する中性子を測定しているもので、ENDF/B-Ⅲ、N及びVの評価に用いら れている体系である。測定された中性子スペクトルはnet currentと関係づけられ、スペクトル 形成過程として非弾性散乱の寄与が大きい。そのため核データにおける非弾性散乱断面積とその 角度分布についての評価を行った。JENDL-2では非弾性散乱断面積の角度分布はすべて重心 系等方で与えられている。一方ENDF/B-Nでは⁵⁴Fe 1st level及び連続レベルを除いた他 のレベル全てに非等方性のデータが収録されているため、ENDF/B-N に収録されているレベ ル全てを重心系等方に置換えたものと、⁵⁶Fe 1st levelのみ重心系等方として処理した群定数 を作成し、中性子スペクトルに与える影響を一次元S_N計算コードによって検討した。

* 住友原子力工業株式会社, Sumitomo Atomic Energy Industries, Ltd.

- 50 -

2. 群定数処理

群定数作成はRADHEAT-V4²⁾コードシステムFAIR-CROSS モジュールを使用した。 FAIR-CROSS モジュールは核 データを忠実に群定数化する事を目的としており,非弾性散乱の 非等方性についても、各レベル毎に処理されるようになっている。また、今回の目的の為に、重 心系等方のオプションも付加しており、任意のレベルに対して重心系等方との置き換えを可能と した。RADHEAT-V4コードシステムの一つの特徴として、散乱の角度依存性を散乱角の函数 として厳密に定義し、統一的に用いている。これは有限項 Legendre 函数展開法による誤差を群 定数から輸送計算に至るまで除く事を目的としており、角度依存性の評価に対して非常に有効な 手段となるシステムである。

群定数は測定のエネルギー分解能を考慮して 0.2 MeVの等エネルギー間隔の群構造とし, 15 MeV から1 MeV まで 70 群で作成した。 非弾性散乱の角度依存性の中性子スペクトルに対する 寄与も合せて検討するため Table 1 に示す 3 種類の群定数を ENDF/B-N mat No. 1192 より作 成し, JENDL-2 mat No. 2600 より一種類の群定数を作成した。角度依存性は S₁₆ で表現して いる。

3. 解析

輸送計算は一次元S_N計算モジュールDIAC³⁾を用いて行なった。体系は球形状でモデル化し、 線源エネルギー分布として 13.65 MeV を中心とした正規分布を与えた。測定値との比較を Fig3 及び4 に示す。ENDF/B-N では9~11 MeV 付近を除いて一致は良い。また ⁵⁶ Fe 1 st level を重心系等方と置換した場合は0.9 mfp 透過で 11~13 MeV 間で+35%~-10%, 4.8 mfp 透過 で+8%~-18%の差異が生じる。しかし他の非弾性散乱レベルの非等方性を重心系等方に置換し た場合、中性子スペクトルにはほとんど影響を与えない。一方 JENDL-2 では中性子スペクト ルを 2~13 MeV 間で明らかに過小評価している。

4. 議論

JENDL-2がスペクトルを過小評価する原因として、非弾性散乱断面積を過小評価している 事が考えられる。Fig.5 に⁵⁶Fe 1st level の断面積を示す。JENDL-2 は ENDF/B-N に 比べ高エネルギー領域で明らかに過小評価となっている。その差は10 MeV 以上で約50 mb であ る。Table 2 及び3 に ENDF/B-N より作成した群平均断面積と JENDL-2 の比を示す。 全 断面積及び弾性散乱断面積は両者とも大きな差が生じておらず、数%の差異で中性子スペクトル に一桁以上の違いが現れる事は考えられない。また(n, r) 反応等他の反応については ENDF/ B-N と JENDL-2 は大きく異なるが、断面積の絶対値が小さいため問題とはならない。

Fig.6に11.4~11.6 MeV 間に非弾性散乱によって散乱される確率を示した。散乱されるエネル ギー範囲は JENDL-2を用いて計算した中性子スペクトルの谷となる部分である。ENDF/B−N に比べ JENDL-2 は過小評価となっている事が示されている。 この実験体系では、中性子スペ

- 51 -

クトル形成過程として非弾性散乱が大きな寄与を占めるため数mb~数十mb 程度の値であって も無視出来ないと考えられる。図中にはどのレベルを励起するかのエネルギー範囲を合せて示し てある。これより⁵⁶Fe 1st level の寄与がもっとも大きい事が理解出来る。そのため、

Coupled Channel Optical Model⁴を用いて $0^+ - 2^+ - 4^+ \sigma$ Coupling を行い、 $2^+ \sim \sigma \sigma_{in} \sigma$ 計算値⁶⁾ 求め、JENDL-2 を修正した ad - hoc ライブラリー⁶⁾によって、中性子スペクトルがど の程度変化するかを調べた。Fig.7に入射中性子エネルギーを14.0 MeV と固定した場合の二次 中性子スペクトルを示す。JENDL-2ではENDF/B-Ⅳに比べ明らかに過小評価となっている が, ad -hoc ライブラリーでは 11.2~12.4 MeV の範囲 でENDF/B-Ⅳ のすべてのレベルを重 心系等方としたものとほぼ一致している事が示されている。しかし11.2 MeV 以下では、よりエ ネルギー準位の高いレベルとの反応になるため、JENDL-2と ad-hoc ライブラリーの差異は ない。 12.4 MeV 以上の寄与については、JENDL-2 には ⁵⁷Fe の低いエネルギー準位を収録し ているが、ENDF/B-Wでは⁵⁷Feの寄与を無視しているため、図に示すような差異が生じてい る。Fig.8にad-hoc ライブラリーによる中性子スペクトルと他の群定数による結果の比較を示 す。図中、JENDL-2(test)と書かれたものがad-hoc ライブラリーによる結果である。これ より11 MeV 以上における中性子スペクトルは大幅に改善されるが、それ以下のエネルギー領域 では他の非弾性散乱レベルの寄与となるためJENDL-2の結果に一致する。Fig.7 に示すよう に数mb~十数mbの非弾性散乱の寄与を無視出来ない事が確認された。そのため、高エネルギー 領域の非弾性散乱断面積は Coupled Channel Optical Model を用いた詳細な評価が必要であ ろう。

非弾性散乱の角度依存性の寄与については,⁵⁶Felst levelの寄与については考慮する必要があると考えられるが、他のレベルについては重心系等方近似が適当であると思われる。

5. 結 言

以上の議論により、JENDL-2の鉄の非弾性散乱断面積は高エネルギー領域で再評価が必要 である。汎用性を持つ核データの評価は、炉心解析、遮蔽、核融合ニュートロニクスなど、各分 野においての積分テストが不可欠であり、その解析手法は可能な限り単純で、解析手法の誤差の 除去を容易に行なえるものである必要がある。その観点から群定数処理は出来るだけ厳密に行う 必要があり、今回の解析ではその点についての配慮がなされている。また米国ではENDFの評 価に今回の解析と同様な手法が用いられており、有効な評価手法である事が確認された。

信頼度の高い核データの作成には、断面積測定と評価 - ベンチマーク実験の測定 - ベンチ マーク問題の解析と評価の各分野間で緊密な情報交換が必要であり、その協力体制を早急に確立 する必要があると考えられる。

参考文献

1) Hansen, L.F. et al. : Nucl. Sci. Eng. 60, 27 (1976).

2) Koyama, K. et al. : Preprint 1977 Annu. Meeting of AESJ, F33, (1977).

3) Yamano, N. et al. : J. Nucl. Sci. Technol. 16, 919 (1979).

4) Tamura, T. et al. : Rev. Modern Phys. 37, 679 (1965).

5) Kikuchi, Y. et al. : Private communication.

6) Nakagawa, T. et al. : Private communication.

討 論

Q:山室 信弘(東工大)

非弾性散乱角分布のスペクトルへの影響について簡単に述べて下さい。

A:山野 直樹(住原工)

ENDF/B-Nにおいて全てのレベルを重心系等方としたものと、ENDF/B-Nオリジナルとの差異は、0.9 mfp 透過で最大 35%、4.8 mfp で最大 18%である。但し、この差異が生じる エネルギー範囲では中性子スペクトルの絶対値が小さいため、重心系等方近似が不適当であると は思われない。

Q:山室 信弘(東工大)

ベンチマークテストによる修正要求を受けて σ_c^{28} の3%の修正はどのように実施されますか。 A:神田 幸則(九大)

今回の σ_c^{28} の評価は log – log 図上で eye – guide で行った。 3 %の修正は実験値のばらつき 内で充分可能であった。

Q:田中 茂也(原研)

透過スペクトルに対する実験値と計算値の不一致に対して、非弾性散乱の直接過程を結合チャンネル理論で計算したとき、first 2^+ level、 2 phonon states 、 3^- level に対する結合を考慮した程度でギャップはうめられるか。

A:菊池 康之(原研)

JUPITER による試計算の結果,かなり効果はあると思われる。

Ň0.	Node 名	核データ	Mat.No.	非弹性散乱処理
1	70 G	ENDF∕B-N	1192	すべての非弾性散乱レベルを忠実に処理
2	51	ENDF∕B-№	1192	⁵⁶ Fe 1st. level を重心系等方処理
3	AL L	ENDF∕B−N	1 192	すべての非弾性散乱レベルを重心系等方処理
4	JD-2	JENDL-2	2600	すべての非弾性散乱レベルを重心系等方処理

Table 1 作成群定数と非弾性散乱処理

- 53 -

TOT	AL		Natural	<u>Iron</u>
IE	ENERGY RANGE (MeV)	ENDF/B-IV	JENDL-2*	<u> </u>
1	15.0 - 14.8	2.4877+	0.984	
2	14.8 - 14.6	2.5079	0.983	
3	14.6 - 14.4	2.5277	0.981	
4	14.4 - 14.2	2.5457	0.981	
5	14.2 - 14.0	2.5632	0.980	
6	14.0 - 13.8	2.5797	0.982	
7	13.8 - 13.6	2.5967	0.984	
8	13.6 - 13.4	2.6176	0.986	
9	13.4 - 13.2	2.6357	0.988	•
10	13.2 - 13.0	2.6577	0.989	
11	13.0 - 12.8	2.6833	0.988	
12	12.8 - 12.6	2.7059	0,989	
13	12.6 - 12.4	2.7325	0,988	
14	12.4 - 12.2	2.7540	0.989	
15	12.2 - 12.0	2.7849	0.987	
16	12.0 - 11.8	2,8155	0.984	
17	11.8 - 11.6	2.8430	0.983	
18	11.6 - 11.4	2.8681	0.982	
19	11.4 - 11.2	2.8948	0.980	
20	11.2 - 11.0	2.9255	0.977	
20	1112 1110			
		*		- i- the matic values
ELA	STIC	dat	a are given	in the facio values
		to E	NUC/D-1V.	*
IE	ENERGY RANGE (MeV)	ENDF/B-IV	JENDL-2	JENDL-2(test)
		· · · · · · · · ·	1 477	1 001
1	15.0 - 14.8	1.0985	1.077	1.031
2	14.8 - 14.6	1.1156	1.0/3	1.028
3	14.6 - 14.4	1.1310	1.0/1	1.027
4	14.4 - 14.2	1,1500	1.065	1.022
5	14.2 - 14.0	1,1654	1.063	1.020
6	14.0 - 13.8	1,1807	1.062	1.020
7	13.8 - 13.6	1,1979	1.060	1.019
8	13.6 - 13.4	1.2148	1.058	1.01/
9	13.4 - 13.2	1.2287	1.046	1.018
10	13.2 - 13.0	1.2430	1.058	1.017
11	13.0 - I2.8	1.2647	1.051	1.012
12	10 0 10 /		1 0/6	
13	12.8 - 12.6	1,2875	1.045	1.006
	12.8 - 12.6 12.6 - 12.4	1.2875 1.3080	1.045	1.006
14	12.8 - 12.6 12.6 - 12.4 12.4 - 12.2	1.2875 1.3080 1.3227	1.045 1.039 1.039	1.006 1.001 1.001
14 15	$12.8 - 12.6 \\ 12.6 - 12.4 \\ 12.4 - 12.2 \\ 12.2 - 12.0$	1.2875 1.3080 1.3227 1.3355	1.043 1.039 1.039 1.038	1.006 1.001 1.001 1.001
14 15 16	12.8 - 12.6 $12.6 - 12.4$ $12.4 - 12.2$ $12.2 - 12.0$ $12.0 - 11.8$	1.2875 1.3080 1.3227 1.3355 1.3515	1.045 1.039 1.039 1.038 1.042	1.006 1.001 1.001 1.001 1.005
14 15 16 17	12.8 - 12.6 $12.6 - 12.4$ $12.4 - 12.2$ $12.2 - 12.0$ $12.0 - 11.8$ $11.8 - 11.6$	1.2875 1.3080 1.3227 1.3355 1.3515 1.3709	1.045 1.039 1.039 1.038 1.042 1.049	1.006 1.001 1.001 1.001 1.005 1.012
14 15 16 17 18	12.8 - 12.6 $12.6 - 12.4$ $12.4 - 12.2$ $12.2 - 12.0$ $12.0 - 11.8$ $11.8 - 11.6$ $11.6 - 11.4$	1.2875 1.3080 1.3227 1.3355 1.3515 1.3709 1.3904	1.045 1.039 1.039 1.038 1.042 1.049 1.055	1.006 1.001 1.001 1.001 1.005 1.012 1.019
14 15 16 17 18 19	12.8 - 12.6 $12.6 - 12.4$ $12.4 - 12.2$ $12.2 - 12.0$ $12.0 - 11.8$ $11.8 - 11.6$ $11.6 - 11.4$ $11.4 - 11.2$	1.2875 1.3080 1.3227 1.3355 1.3515 1.3709 1.3904 1.4120	1.045 1.039 1.039 1.038 1.042 1.049 1.055 1.053	1.006 1.001 1.001 1.005 1.012 1.019 1.018
14 15 16 17 18 19 20	12.8 - 12.6 $12.6 - 12.4$ $12.4 - 12.2$ $12.2 - 12.0$ $12.0 - 11.8$ $11.8 - 11.6$ $11.6 - 11.4$ $11.4 - 11.2$ $11.2 - 11.0$	1.2875 1.3080 1.3227 1.3355 1.3515 1.3709 1.3904 1.4120 1.4397	1.045 1.039 1.039 1.038 1.042 1.049 1.055 1.053 1.041	1.006 1.001 1.001 1.005 1.012 1.019 1.018 1.007
14 15 16 17 18 19 20	12.8 - 12.6 $12.6 - 12.4$ $12.4 - 12.2$ $12.2 - 12.0$ $12.0 - 11.8$ $11.8 - 11.6$ $11.6 - 11.4$ $11.4 - 11.2$ $11.2 - 11.0$	1.2875 1.3080 1.3227 1.3355 1.3515 1.3709 1.3904 1.4120 1.4397	1.045 1.039 1.039 1.038 1.042 1.049 1.055 1.053 1.041	1.006 1.001 1.001 1.005 1.012 1.019 1.018 1.097

Table 2 ENDF/B-N及びJENDL-2による鉄の群定数 の比較(全断面積及び弾性散乱断面積)

* data are given in the ratio values to ENDF/B-IV.

+ unit of cross section in barns.

Table 3 ENDF/B-N及びJENDL-2による鉄の群定数 の比較(不弾性散乱断面積)

Group avarage cross sections with ENDF/B-IV and JENDL-2.

(n,gamma)		Natural Iron		·
IE	ENERGY RANGE (MeV)	ENDF/B-IV	JENDL-2*	
1 50	15.0 - 14.8 5.2 - 5.0	•+ 2.0148 E-4 5.2195 E-4	0.527 3.151	
(n, 2n)		*data to ENI read	are given in th DF/B-IV. as 2.0148 x 10	e ratio values 4
IE '	ENERGY RANGE (MeV)	ENDF/B-IV	JENDL-2*	
1 5 10 15	15.0 - 14.8 $14.2 - 14.0$ $13.2 - 13.0$ $12.2 - 12.0$	+ 5.5572 E-1 4.4681 E-1 2.4277 E-1 3.8285 E-2	0.978 0.974 1.088 2.195	

*
data are given in the ratio values
to ENDF/B-IV.

<u>(n,p)</u>

IE_	ENERGY RANGE (MeV)	ENDF/B-IV	JENDL-2
		+	
1	15.0 - 14.8	1.1059 E-1	0.958
5	14.2 - 14.0	1.2335 E-1	0.999
10	13.2 - 13.0	1.2979 E-1	1.016
15	12.2 - 12.0	1.2575 E-1	0.971
20	11.2 - 11.0	1.1504 E-1	0.988
30	9.2 - 9.0	8.9288 E-2	1.014

*
data are given in the ratio values
to ENDF/B-IV.

(n,alpha)

IE	ENERGY RANGE (MeV)	ENDF/B-IV	JENDL-2*
1	15 0 1/ 9	2 77/2 8 2+	2 005
Ē	15.0 - 14.0	3.//42 E-2	2.905
5	14.2 - 14.0	3.903/ E-2	2.000
10	13.2 - 13.0	3.9802 E-2	2.340
12	12.2 - 12.0	3./250 E-2	2.1/5
20	11.2 - 11.0	3.2826 6-2	2.1/8
30	9.2 - 9.0	2.0061 E-2	2.505

* data are given in the ratio values to ENDF/B-IV.

⁺unit of cross section in barns.

** (n,d) . (n.T) . (n.He) . (n.n'alpha) and (n,n'p) reactions are given in ENDF/B-IV, but not given in JENDL-2.

- 55 -

ŀ

Fig. 1 Experimental configulation of LLL Pulsed Sphere Program

Fig. 2 Geometry of spherical target

Fig. 3 Comparisons of neutron leakage spectra at 120 deg for 0.9 mfp of iron

Fig. 4 Comparisons of neutron leakage spectra at 120 deg for 4.8 mfp of iron

- 57 -

Fig. 5 Inelastic scattering cross sections of ⁵⁶Fe first level in ENDF/B-IV and JENDL-2

Fig. 6 Inelastic group to group transfer cross sections with ENDF/B-IV and JENDL-2

- 58 -

Fig. 7 Inelastic group to group transfer cross sections with ENDF/B-W and JENDL-2

Fig. 8 Comparisons of neutron leakage spectra at 120 deg for 4.8 mfp of iron

1.5 コメント:ベンチマークテストに基づくJENDL-2予備版の修正

飯島 俊吾, 関 雄二, 山本 正昭, 西 裕士

1979年9月にJENDL-2の予備版(JENDL-2A)が作成され、一連のベンチマークテスト が行なわれ、臨界量、増殖比等の予測が充分でないことが判明した。原型炉クラスの炉心につい ての感度解析に基づいて上記ベンチマークテスト結果を解釈し、評価データの定量的修正案を JENDL評価グループに提示した。この案に略沿って評価データの修正が行なわれ、11月に JENDL-2Bが作成され、JUPITER実験解析に使用されることとなった。本コメントでは修 正の経緯と修正前後の炉物理的結果について述べる。

Revisions recommended for Preliminary JENDL-2 Data based on Benchmark Test Results

S. IIJIMA^{*}, Y. SEKI^{**}, M. YAMAMOTO^{***} and H. NISHI^{***}

A preliminary version of JENDL-2 was completed in August 1979, and an integral test was performed using international benchmark experiments for FBR. It was revealed that the prediction of criticality and breeding ratio was not satisfactory. The adjustment of JENDL data was proposed to the evaluation group of JNDC, based on the benchmark results and a sensitivity analysis performed previously for a proto-type fast reactor. The evaluation group has taken this proposal into account to complete JENDL-2B file, which was adopted for the analysis of JUPITER experiment series. The present comment gives the discussions concerning the cross section adjustment, and the neutronics results before and after the adjustment.

- 60 -

^{*)} 日本原子力事業㈱, NAIG

^{**)} 三菱原子力㈱, MAPI

^{***)} FBR エンジニアリング会社, FBR Eng.

1. 経緯

1979年9月にJENDL-2の予備的版JENDL-2Aが作成され,一連の国際ベンチマーク炉 心実験による積分テストがJNDCのワーキンググループで行なわれた。その主要な結果を Table1に示す。これから判るように,固有値を2~3%過小評価し,²³⁹Pu(n,f)/²³⁵U(n,f) は3%過小評価,²³⁸U(n, r)/²³⁹Pu(n,f)は10%過大評価,²³⁸U(n,f)/²³⁵U(n,f)は良好, という結果であった。

しかし, Pu 炉心と U 炉心の固有値予測の相対的なずれは従来よりも著しく小さくなり, 炉物理 側からの判断として, 全体としてこの予備版は大変素姓が素直であり, 本格化したデータファイ ルであること, しかし臨界量, 増殖比の予測精度に関連して, データの若干の系統的修正が可能 であろうという見解を持った。

我々はJENDL-2をJUPITER 実験解析,ひいては大型炉設計に用いる使用者の立場から, 筒単な感度解析により,JENDL 評価グループにJENDL-2Aの定量的修正の提案を行なった。

2. 評価データ修正の提案

Table 2 は原型炉,実証炉級炉心の固有値に対する主要な感度係数を示す。感度係数は MAPI 日立,NAIGが夫々独立に各々の群定数ライブラリーを用いて以前に求めた値を用いたが,各機 関による著しい差は無かったことを確認している。蛇足乍ら感度係数の定義は次のようである。

$$K = K_0 + \sum_{i} \left(\frac{\partial K / K}{\partial \sigma_i / \sigma_i} \right) \frac{\Delta \sigma_i}{\sigma_i}$$

i は核種, 反応, エネルギー群を表わす。Table 2 では, 固有値, 増殖比に大きな影響を与える ²³⁹ Pu, ²³⁸ Uの(n, f), (n, γ) 反応について丈示している。

Table 1 と Table 2 の検討から次のような修正を提案した。

- (1) $\nu \sigma_{f}^{25}$ を3%増大させる。これによりU炉心の固有値を1.5%増大させる。
- (2) σ_f⁴⁹ / σ_f²⁵ を 2 ~ 3% 増大させる。これにより、Pu 炉心固有値を 2.5% 大きくさせて Pu、U 炉心固有値予測のずれを解消すると共に、²³⁹ Pu (n, f) / ²³⁵ U (n, f) 反応率比の 3% 過小評 価を修正する。
- (3) σ_c²⁸ を 3 %減少させる。前記の(2)と併せて,²³⁸U(n, γ)/²³⁹Pu(n, f)の10%過大評価を 解消する。同時に、固有値は更に 0.6%増大し、略1.00の予測値が得られることになるであろう。
- (4) ²³⁸U(n,n')を10%減少させる。これによって、²³⁸U/²³⁹Pu(又は²³⁵U)原子数比が大きい炉心(低富化度炉心)に対して固有値をより過小評価する傾向を解消する。
- (5) $\sigma_f^{28} \sigma_f^{25}$, $\sigma_f^{40} / \sigma_f^{25}$ は変化させない。

3. 結果

JENDL評価グループはこの提案を受けてデータ改訂を行ない, 1979年11月に JENDL-2Bを完成した。改訂の要点は次のようであった。

(i) Cf 標準値の改訂に伴なう ν 値の改訂 (~0.6% 増加)。

(ii) 上記提案の(1), (3), (4), (5)。

(前) 上記提案の(2)については評価グループは困難と判断した。

この JENDL-2B を用いてベンチマークテスト,および JUPI TER 計画第1 炉心 (ZPPR-9 炉心), MOZART 炉心解析を行なった結果を Table 1 に示した。

Table 1 で改訂前と改訂後の炉心特性予測を比較すると、当然乍ら著しく改良されていること が判る。この結果、JENDL-2B は JUPITER 実験解析、および大型炉設計の標準定数として PNC、FBR エンジニアリング会社で採用されることとなった。

4. 残された問題点

JENDL-2Bでは炉特性予測上,次の問題が残っている。

(1) ナトリウムボイド反応度

ベンチマーク炉心の Z PR III - 49 は、Z PR III - 48 の全炉心からナトリウム丈を除去した炉心で ある。固有値の計算値はIII - 48 炉心で K = 1.0005, III - 49 炉心で、K = 1.0055 であり、全ボイ ド炉心を 0.5% 4k 丈、正の反応度方向に過大評価している。このことは、炉心中心近傍のボイド 反応度に対してもあてはまると考えられる。(JUPITER 実験解析で確かめられた。 亀井氏の 報告参照)

(2) ¹⁰ B 反応度

Pu 反応度に相対的な値として、ベンチマーク炉心の¹⁰B 中心サンプル反応度を約10%過小評価する傾向が明瞭にある。JUPITER 実験解析では B₄C 制御棒価を 5-10%過小評価する結果になっているが、中心サンプル反応度は逆に絶対値で 12%、Pu と相対的には 6%の過大評価の結果であった(亀井氏の報告参照)。JUPITER 解析のこの結果は若干理解に苦しむ所があるが、要注意点である。

(3) 反応率比, 増殖比

JUPI TER 解析の結果,特に注意する点は,²³⁸U(n,r)/²³⁹Pu(n,f)比が3%,²³⁸U(n,r) /²³⁹Pu(n,f)比が6%の過大評価,²³⁸U(n,f)/²³⁹Pu(n,f)比が測定法によって0~8% の差はあるが過大評価となっていることである。これはJENDL-2 予備版改訂のさいに, $\sigma_t^{49}/\sigma_t^{25}$ 比を増大させなかったことが大きな原因と見られる。微視的立場は別として,炉物理的 には、²³⁸U(n,r)/²³⁹Pu(n,f)比の6%過大評価は最大の問題点の一つである。

積分実験の解釈には、群定数作成法、解析法上の曖昧さが無いとは云えないので、今後の JUPITER実験等の解析、及び群定数処理法の研究を含めて綜合的に判断すべきものである。 しかし同時に、積分実験自身は一般に極めて精度が良いものであり、積分テストによるdiscrepancy は基礎データファイルに対する充分な"警告"として受けとめることが今後も必要である。
	JENDL-1	JENDL-2A (Aug. 1979)	JENDL-2B (Nov. 1979)
Criticality, K :			
VERALLA (Pu)	0.986	0.972	0.992
VERA1B (U)	1.008	0.980	0.995
ZPRIII-48 (Pu)	1.000	0.976	1.000
FCAV-2 (U+Pu)	0.996	0.968	0.991
MZA (Pu)	1.003	0.972	0.994
MZB-1 (Pu)	0,998	0.967	0.991
ZEBRA-3 (Pu)	0.982	0.963	0.998
JUPITER-1 (Pu)	-	_	0.993
U core (AV.) ^{*1)}	1.006(±0.9%)	0.976(±1.0%)	0.999(±0.9%)
Pu core (AV.) ^{*2)}	0.996(±0.6%)	0.972(±0.5%)	0.996(±0.5%)
Reaction rate ratios	at core center :		
F ²⁸ /F ²⁵ *3)	0.94∿0.97	$0.98 {}^{\circ} 1.00$	1.0±0.05 ^{*4)}
F ⁴⁹ /F ²⁵ *3)	0.97	0.97	0.98
C ²⁸ /F ⁴⁹ *3)	1.05	1.10	1.06 *4)

Table 1 Selected Results of Integral Tests of JENDL. The Calculation-to-Experiment Ratios.

*1) Average over 6 cores, *2) Average over 14 cores

*3) Mainly for ZPPR-2, MZA, MZB-1, *4) For JUPITER-1 (ZPPR-9).

Energy	Energy	23	⁹ Pu	238 _U			
Group	Range	vof	σ _{nγ}	σηγ	$^{\sigma}$ in		
1	> 1.0 MeV	+0.067	0	0	-0.023		
2	0.1 - 1.0 ^{MeV}	+0.18	-0.01	-0.047	-0.006		
3	10 - 100 KeV	+0.14	-0.017	-0.082	0		
4	1 - 10 ^{KeV}	+0.057	-0.018	-0.048	0		
5	< 1 KeV	+0.036	-0.013	-0.032	0		
Sum		+0.48	-0.056	-0.21	-0.03		

Table 2 Sensitivity coefficients to criticality^{*)} in a Prototype or Large Fast Reactor

*) $\frac{\partial K}{K} / \frac{\partial \sigma}{\sigma}$

- 64 -

2. Covariance Fileの概要と討議

2.1 Covariance Fileの概要

神田幸則*

最近,核データの分野で話題になっている covariance file (共分散ファイル) について解説 した。統計学における共分散の概念,実験値及び評価値にこれをどのように適用するのか,測定 値から評価値を求める際に用いられる数学的方法,データ間の相関はどのように考慮されるか等 について述べた。今後,実際に共分散ファイルを作成するための問題点を指摘した。

On covariance files of evaluated nuclear data

"Yukinori KANDA*

The topics on the covariance files of the evaluated nuclear data are reviewed; what are the covariances in the statistics, how to apply them to the experimental and evaluated nuclear data, what mathematical method are applicable to deduce them in evaluating the nuclear data from the experimental values, and how to take account of correlations among the data. The problems to be discussed in constructing the covariance files are pointed out.

1. はじめに

測定値に誤差を与えるのは実験者にとって当然の手続きとなっている。これら測定値を使って 核データを評価する際には、これら誤差を重要な資料として評価値を決めている。しかし、従来、 評価値に与えられた誤差は単なる目安の程度であった。それが、ENDF/Bで誤差のファイル化 を試みるようになり、関心が高まった。"誤差ファイル"は英語では"Error file"であるため、 これが error のある file と解されるので"Covariance file"と称するようになった。それ以来 評価の話題には"Covariance" はつきものとなった。これは統計学に出てくる共分散である。 ファイル化されるのは共分散それ自身であるから、呼び名としても正確な表現になっている。

本報告では、高い関心が持たれながら、何となくわかったようなわからないような共分散, covariance について解説し、今後、評価済み核データに共分散行列をファイル化するための問 題点を明らかにすることを目的とする。更に進んだ、実際に共分散行列を作る方法にはどんな試

* 九州大学, Kyushu University

- 65 -

みがなされているかについては言及しない。本報告の内容をもっと詳述し、具体的方法をも含めた報告は別に公表する予定である。

2. Covarianceとは何か

2.1 2次元正規分布

covariance は統計学の概念であって、2確率変数に相関がある場合、その相関の強さを表わす量である。¹⁾

確率変数 X と Yがあって、その変量をそれぞれ x と y とする。考え易くするために、x と y は 離散的であって、x_i及び y_i(i = 1, 2, ……n)とし、おのおのの平均値を m_x 及び m_y とする。 m_x と m_y は次のごとく与えられる。

$$m_{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$
$$m_{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_{i}$$

x とy に対する分散 (variance) $\sigma_x^2 \ge \sigma_y^2$ はそれぞれ次のように定義される。 $\sigma_x \ge \sigma_y$ はそれぞれ x とy の標準偏差である。

$$\sigma_{x}^{2} = \frac{1}{n} \sum_{i}^{n} (x_{i} - m_{x})^{2}$$
$$\sigma_{y}^{2} = \frac{1}{n} \sum_{i}^{n} (y_{i} - m_{y})^{2}$$

xとyに相関がある場合を議論するために共分散(covariance) cov(x,y)及び相関係数 (correlation coefficient) $\rho(x, y)$ を定義する。

$$\operatorname{cov} (\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i}^{n} \{ (\mathbf{x}_{i} - \mathbf{m}_{\mathbf{x}}) (\mathbf{y} - \mathbf{m}_{\mathbf{y}}) \}$$
$$\rho = \frac{\operatorname{cov} (\mathbf{x}, \mathbf{y})}{\sigma_{\mathbf{x}} \sigma_{\mathbf{y}}}$$

分散と共分散の間には次の関係があり,

 $\sigma_{\rm x}^2 = \, {
m cov}$ (x, x), $\sigma_{\rm y}^2 = \, {
m cov}$ (y, y)

以後、両者を区別せずに共分散と総称することにする。

測定値の誤差を扱う誤差論では、測定対象の物理量を確率変数とみなし、測定で得られる値を 変量と考え、しかも、その確率分布を正規分布と仮定して取扱う。考えているXとYについても 正規分布を仮定すると、2次元正規分布となる。その確率密度関数f(x,y)は次の如く与えら れる。

f (x, y) =
$$\frac{1}{2\pi \sigma_x \sigma_y \sqrt{1-\rho^2}} \exp \{-\frac{1}{2}Q(x, y)\}$$

- 66 -

Q (x, y) =
$$\frac{1}{1 - \rho^2} \left\{ \frac{(x - m_x)^2}{\sigma_x^2} - 2 \frac{\rho (x - m_x) (y - m_y)}{\sigma_x \sigma_y} + \frac{(y - m_y)^2}{\sigma_y^2} \right\}$$

これを3次元の図にすると図1のごとくなる。同図は図中に示したパラメータを仮定して描いた。 この3次元の図を最上から見て等高線を描くと図2の線となる。この図の点線は $\rho = 0.6$ で描い たが、他のパラメターを固定して、 $\rho = 0$ 、すなわちxとyに相関がないとして描くと、同図中 の実線となる。

図2中に示した x の回帰直線とは、Y = y とした時の x の期待値が y と共にどのように変化するかを示すもので、

$$\mathbf{x} = \mathbf{m}_{\mathbf{x}} + \frac{\sigma_{\mathbf{x}} \,\rho}{\sigma_{\mathbf{y}}} \,(\mathbf{y} - \mathbf{m}_{\mathbf{y}})$$

で与えられる。yを固定した時に得られるxについての正規分布の平均値がyの変化に伴って描 く x - y 面上の軌跡である。この直線は, x と y に相関がある場合, y の値が変化したら x の平 均値はどれ丈の変化をするかを示している。逆に y の回帰直線は同様に

$$y = m_y + \frac{\sigma_y \rho}{\sigma_x} (x - m_x)$$

で与えられる。

相関がない場合($\rho = 0$)は、xとyとは無関係に変化するので、xの回帰直線はy軸に平行で、 yの値に関係なくxの平均値は一定である。図2に実線で各回帰直線を示した。相関係数 $\rho = 1$ の場合は、xとyは完全に相関があり、xとyの回帰直線は一致して、図2に一点鎖線で示すご とくなる。 $\rho = -1$ の場合のxとyの回帰直線を図2に二点鎖線で示した。

相関が強くなると、xを固定した場合 y の分布は巾の狭い正規分布となる。これは図2で、y 軸に平行な x = 一定の直線が等高線で切取られる長さを調べれば理解出来る。x と y を逆にして も同様の結果となる。

2.2 核データの covariance

評価済み核データの誤差を表わすために共分散を用いるにあたり,どの量に相関があるかを明 確にしておく必要がある。

第一に、エネルギーを幾つかに分割した各区間の断面積の相関がある。第二に、測定された断面積相互の相関がある。これには種々の内容がある。 $\sigma_f(^{238}U)$ が $\sigma_f(^{235}U)$ を基準として測定されればこの間に強い相関があるし、 $\sigma_f(^{238}U)$ を全く同じ方法で測定した2つの測定の間にも相関が考えられる。第三に、全断面積 σ_t は部分断面積の和という性質があるから、この関係から部分断面積相互に相関を考える必要がある。

- 67 -

2.2.1 断面積の covariance の性質

相関は2確率変数の間で考えられるもので、断面積の場合はエネルギーを分割した区間相互に 相関を考える。図3のごとく、中性子エネルギーをn個に分割したとすると、 $E_1 \ge E_2$ における それぞれの断面積 $\sigma_1 \ge \sigma_2$ の相関を共分散 C_{12} ,相関係数 ρ_{12} で表わす。各々の区間相互にこれ に対応する量をとると全体は行列となる。これを共分散行列(covariance matrix)及び相関 行列(correlation matrix)という。

共分散行列

 $E_{1} = \begin{bmatrix} E_{1} & E_{2} & \cdots & E_{n} \\ C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & \vdots \\ C_{n1} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$ $R_{1} = \begin{bmatrix} E_{1} & E_{2} & \cdots & E_{n} \\ 100 & \rho_{12} & \cdots & \rho_{1} \\ \rho_{21} & 100 & \cdots & \rho_{2} \\ \vdots & \vdots & \vdots \\ \rho_{n1} & \rho_{n2} & \cdots & 100 \end{bmatrix}$

対角要素 C_{ii} は分散 σ_i^2 であり、相関係数は通常%で表わすので、 $\rho_{ii} = 100$ である。 今迄の説明から明らかなように $C_{ij} = C_{ji}$ 、 $\rho_{ij} = \rho_{ji}$ である。

2.2.2 測定データの covariance

評価済み核データの共分散が議論されるようになり、その作成にあたっては、測定値に実験者 が共分散を与えていないとその推定が困難であるため、実験者側へ測定値に測定者による共分散 をつけるよう要望が出された。これに応える実験結果が最近報告されつつある。その一例を引用 した。 63 Cu (n, α) 60 Co の断面積を 3.5~9.9 MeV で σ_{f} (238 U)を標準にして測定した

Winkler, Smith 及び Meadows²⁾の報告である。表1は断面積比の測定における誤差の要因を 書き並べたもので、このうちS_r, S_d, S_f, S_a, S_{sc} はエネルギー区間相互で ρ = 100%, S_n, L_i, S_{n,D}, S_{sb} は ρ =50%として共分散を求める。なお、各誤差要因の各エネルギーにおける値は表 2に示される様なものである。上記の7因子以外は相関がないとして求めた相関行列を表3に示 した。

評価に使われる測定データすべてにこのような相関係数が与えられていると,評価に際して考慮すべき相関は測定相互のもののみでよくなる。この相関の要因も,各実験者の揚げている項目から選択しうる。

しかし、今後の実験すべてに、このような相関行列が与えられることを期待することは出来ない。現に、Smith 及び Meadow³はこの⁶³Cu(n, α)断面積測定にはこのように相関行列を示しているが、同時に発表している⁶⁶Zn(n, p)⁶³Cuの断面積測定では、相関行列を与えも議論もしていない。

2.2.3 測定データ相互の関係

同じ反応断面積についての2つの実験 AとBがあるとき,それぞれの実験における共分散行列要 要素を C_{ij}^{A} と C_{ij}^{B} で表わし,両実験相互の相関を表わす共分散行列要素を C^{AB} で表わすと,全 体の共分散行列は表4に示したように表わすことが出来る。表の中で実線で囲んだ部分が各実験 の共分散行列で,点線で囲んだ部分が実験相互の相関を表わす共分散行列である。同じ実験者が 反応 Xと Yを測定したときも,上と同様な関係が得られる。

これらを組合わせると,要素数が非常に大きな共分散行列が得られる。後述するような数学的 方法で,この行列を使って評価値の共分散を求めることが出来る。

2.2.4 covariance と評価値

核データに与えられた共分散の意味を考えるために、典型的な場合を模型化して図4に示した。 ここの議論では、共分散行列の対角要素は分数、非対象要素は共分散として区別する。図4に示 した共分散行列は実験値に対して与えられたものとする。対応するσ-Eの図の点線は標準偏差 で決められる巾である。図に示していないがσの測定値はこの巾の真中にある。以下、各々の場 合に評価値を求めることを議論してみる。

同図中(a)では、分散が大きい、すなわち誤差の大きな実験であるから、評価値は測定値から離 れて決めてもよい。しかし、共分散が大きいのでエネルギー区間相互の相関が強く一区間でσを 測定値から離れて評価すると、隣の区間もその方向に同様に離れた値にしなければならない。結 局、共分散が大きいということはσのE依存性の不確実さは小さいことを意味している。したが って、評価値は実線のように、測定値のEについての傾向を保存して決めるのが妥当である。

同図中(b)は分散は大きいのは(a)と同じだが,共分散は小さい点が違う。この場合は,評価値は 同図のように決めてもよい。以下(c)(d)も同様の考察が可能である。

図 5 には 2 組の測定値がある場合を例示した。同図(a) は σ の E 変化は精度よく求まっているが, σ の値は精度がよくない測定 A と, E は一点の測定だが精度がよい測定 B がある例である。 σ の 値は測定 B の値に近く, $\sigma - E$ の曲線の形は測定 Aを採用するのが妥当であろう。

同図(b)では、測定 Aは σ の精度は悪いが σ -E 曲線の形の精度がよく、測定Bは σ の精度は良いが、 σ -E 曲線の形の精度はよくない例である。評価値は、曲線の形は測定 Aにより、 σ の値は測定Bによって決める。

以上の議論は測定値から評価値を出す場合を考察した。しかし、この議論は、評価値に与えら れた共分散の意味を理解するのに役立つ。

3. 評価と共分散

3.1 数学的取扱い

同一エネルギー点で測定された複数個の測定値から評価値を求める場合は、単なる平均或いは 重みを付けて平均する等の方法が用いられる。断面積のエネルギー変化のような場合は、或る関 数を測定値にあてはめる最小二乗法が用いられる。両者は数学的には同等の操作である。統計学 の分野で発展させられた方法が核データの共分散を求めるために応用された。Perey⁴⁾が具体例 によってこれを示した。Pereyが応用した相関を考慮した最小二乗法を理解するために簡単な方

- 69 -

法を比較しながら述べる。

3.1.1 簡単な最小二乗法

n個の測定値 d_i ($i = 1, \dots, n$) があって、これに m個の変数 h_j ($j = 1, \dots, n > m$)の関数 f ($h_1, h_2 \dots h_m$) をあてはめるには、次のようにして求められる χ^2 が最小になるような h_i を決める。

 $\chi^{2} = \sum_{i}^{n} \{ d_{i} - f_{i} (h_{1}, h_{2}, \dots, h_{m}) \}^{2}$

これは最も簡単な最小二乗法である。平均の場合は最も単純な平均に対応する。 これを共分散の観点からみると、測定値の共分散行列が次のように書けることになる。

具体例として、次の様なデータがあったとする。

$$d_1 = 2.75 \pm 1.28$$

 $d_2 = 2.5 \pm 1.0$
 $d_3 = 3.0 \pm 0.8$

 $d_1 \ge d_2$ の間にのみ相関があって、相関係数 $\rho = 0.6 \ge t$ る。このデータを単純平均するという ことは共分散行列として

 2.75 ± 1.05

である。

3.1.2 重み付き最小二乗法

を用いることを意味する。

各測定データの重み $w_i = (i = 1, \dots n)$ を考慮した最小二乗法では最小にすべき χ^2 は次の如く与えられる。

$$\chi^2 = \sum_{i}^{n} w_i \{ d_i - f_i (h_1, h_2, \dots, h_m) \}^2$$

重み w_i は分散 σ² の逆数が用いられる。この場合の共分散行列を示す。

 $\begin{pmatrix}
\sigma_1^2 & 0 & 0 & \cdots & 0 \\
& \sigma_2^2 & 0 & \cdots & 0 \\
& & \sigma_3^2 & \cdots & 0 \\
& & & & \vdots \\
& & & & & \sigma_m^2
\end{pmatrix}$

- 70 -

これは重み付き平均に対応する。 3.1.1 で示した具体例によると共分散行列は次のように与え られる。

$$\begin{pmatrix} 1.282 & 0 & 0\\ 0 & 1.02 & 0\\ 0 & 0 & 0.82 \end{pmatrix}$$

この重み付き平均の結果は

2.90 ± 0.97

である。

3.1.3 相関を考慮した最小二乗法⁵⁾

Perey⁴⁾が与えた形を引用する。求めようとする物理量 Dの測定データをベクトルD⁰, その共 分散行列を V, あてはめようとする関数のパラメターの値をベクトル P, その共分散行列を M, Vと Mの相関を表わす行列を Cとして, D⁰ と P に合うように新たに求めるパラメターの値をベ クトル P'とする。P' によって求まる結果が D'であるとすると,次の量を最小にするように P' を求める。t は転置を意味する。

$$\chi^{2} = \begin{pmatrix} P - P' \\ D^{0} - D' \end{pmatrix}^{t} \cdot \begin{pmatrix} MC \\ C^{t}V \end{pmatrix}^{-1} \cdot \begin{pmatrix} P - P' \\ D^{0} - D' \end{pmatrix}$$

全体の共分散行列は

$$\left(\begin{smallmatrix} M & C \\ C^t & V \end{smallmatrix}\right)$$

である。これはあらかじめPが与えられている上に更に D⁰の測定 データでそれを修正する過程 を扱っている。

もし, MとVに相関がなくCが0の場合は

$$\chi^{2} = (P - P')^{t} \cdot M^{-1} \cdot (P - P') + (D^{0} - D') \cdot V^{-1} \cdot (D^{0} - D')$$

で共分散行列は

$$\begin{pmatrix} M & 0 \\ 0 & V \end{pmatrix}$$

を与えられる。これらの形は312で与えられた式を一般化した形となっている。

3.1.1に示した具体的数値を代入すると、共分散行列は

$$\begin{pmatrix} (1.28^2) & 0 & 0 \\ 0 & 1.0^2 & 1.0 \times 0.8 \times 0.6 \\ 0 & 1.0 \times 0.8 \times 0.6 & 0.8^2 \end{pmatrix}$$

となる。これを用いて D'を求めると

2.80 ± 0.71

となる。

上に示した行列表示の式は展開すると2次形となり、3.1.2で示した重み付き最小二乗法と同 じ形になることがわかる。 3.2 評価核データの共分散

Perey⁴⁾は3.13に述べた方法を,飛行時間法で測定した共鳴エネルギーの評価に適用した例 を示した。共鳴エネルギーのように不連続で,しかも測定量は飛行距離と飛行時間と数が少なく, 各々の誤差も考え易い場合の取扱いは明確である。しかし,断面積の如く連続に変化する量は, このようには扱えず,数学的方法が用いられる様にするための手続きが幾つか考えられる。研究 段階にあり確定的なものはない。

評価済み核データに共分散を与える目的からは、それらをどのようにして出すかが一番重要な 問題であるが、上記の如き段階で、各方法の羅列となり統一的に論ぜられない上に本稿の目的か らはずれるのでここではこれ以上述べない。

今後の問題としては、測定データ相互の相関を考えようとすると、測定値の数、反応の数が増 せばそれ丈行列の行や列の数が大きくなり、現在の計算機の容量では扱い切れない点が指摘され る。また、測定相互の相関を定量的に決める問題がある。

3.3 共分散の表現

共分散をファイルに入れているのは ENDF/B で version W では軽い核の数核種, version V では重い核まで拡張されたようである。ENDF/B に共分散を入れるにあたっては、従来の Format は変更しないで入れる方針がたてられた。その詳細はここに述べないが、測定データ 及び評価法との結びつきで極めて秀れた方式だと思われる点について述べる。

²³⁹Puの評価値の表現法を例として示す。

 σ_{f} (以後, X_i と表わす)を10^{-b}eVからESまでは絶対値測定を用いて絶対値として評価した。 その値を A_i とする。 ESから20 MeVまでは²³⁵ Uの σ_{f} を標準とした相対測定を用いて評価した。この評価値を R_i とする。 σ_{r} (以後 Z_i と表わす)は10⁻⁵eVから20 MeVまでをα値の測定値を用いて評価し、この値を α_{i} とする。いずれも、このエネルギー区間で測定値はこの種類が多い。標準となった²³⁵ Uの σ_{f} を Y_i と表わす。iはエネルギー区間を表す添字である。

 $A_i \ge A_j$ の相対共分散を $< dA_i \cdot dA_j >$ で表わす。 A_i , R_i 及び α_i の相互には相関はない とする。

 10^{-5} eV からESの間で直接評価されるのは A_i , α_i であり, 求めるべき断面積は X_i と Z_i である。

$$X_i = A_i$$
, $Z_i = \alpha_i X_i$

必要な共分散は

ESと20MeVの間での評価法に従うと

 $X_i = R_i Y_i$, $Z_i = \alpha_i X_i$

の関係でX;とZ;を求める。関係する共分散は

 $< dX_i \cdot dX_j > = < dR_i \cdot dR_j > + < dY_i \cdot dY_j >$ $< dX_i \cdot dZ_i > = < dR_i \cdot dR_j > + < dY_i \cdot dY_j >$

- 72 -

 $< dX_{i} \cdot dY_{j} > = < dY_{i} \cdot dY_{j} >$ $< dZ_{i} \cdot dZ_{j} > = < d\alpha_{i} \cdot d\alpha_{j} > + < dR_{i} \cdot dR_{j} > + < dY_{i} \cdot dY_{j} >$ $< dZ_{i} \cdot dY_{i} > = < dY_{i} \cdot dY_{i} >$

となる。

結局、以上、全エネルギー領域を通じて必要な共分散は、

 $< dA_i \cdot dA_j >, < dR_i \cdot dR_j >, < d\alpha_i \cdot d\alpha_j >, < dY_i \cdot dY_j >$ の4つになる。これ丈ですべてが表現できる利点は図6で見ることができる。

これらはいずれも直接測定値と結びついた共分散であって、測定された量それ自身を評価し、 その共分散を求めておけばよい。これを、最終的な σ_i 又は σ_r としての共分散を与えておくと、 R_i とか α_i に新しい測定値が出た場合に、まず、R_i、 α_i を評価し、更に X_i、Z_iの評価値を修 正し、その共分散も求めるという手続きが必要である。しかし、上に示した方法では、この場合 R_i と α_i の評価をし直すのみでよい点に優れた所がある。ENDF/B で採用したこの方法は、測 定データをよく知った上での判断でこの考え方は共分散のみならず、断面積の表現方法としても 考えるべきである。

4. むすび

評価済み核データに与えられる共分散行列は評価値の不確実さの大きさのみならず,形の不確 実さも表わすことが出来る。これは,また,逆に核データの精度を与えるものであるから,一部 のエネルギー領域の修正をしようとすれば,他の領域にも影響が及ぶことを定量的に示している。

新しい測定値或いは積分実験との比較によって、核データの修正をする際にはこの共分散行列 を用いて、相関を考慮した最小二乗法によって定量的に取扱うことが出来る。したがって、新し い測定がなされた時には、今迄の評価値をその値で修正して継続的な評価が出来る。特に、 ENDF/Bで採用した表示法では、絶対測定による評価、相対測定による評価を別の共分散で表

わしているので、評価が測定量それ自身と直接結びつき、新しい測定による修正を容易かつ合理的に行える利点がある。

一般的には、このように共分散行列の利点も多いが、具体的に共分散のファイルを作成するに は次のような問題点がある。まず、評価と同時に共分散行列も求めるのが望ましいが、この方法 が確立されていない。評価値を求めた後で共分散行列を作る方法もあるが、測定値が相当数ない とこの方法は使えない。方法が確立しても、相関を定量的に決めるのは困難で、ここに任意性が ある。これをどのように定量的に決めて行くかが評価の中心となる。実験方法の検討のみならず、 個々の実験装置まで考えて相関係数を求める必要があり、相当煩雑な仕事となる。

具体的に計算する際に問題となるのは、計算機の容量である。前述した最小二乗法に表われる 行列は、各測定データ、各反応すべてを含めると相当の大きさになる。2核種、2反応、10測定 データで平均20エネルギー点の測定としても800×800の行列となる。実際には10⁴×10⁴程度に なろう。これを計算する手法が必要となる。

共分散行列の利点を活用するためには上に指摘した幾つかの問題の解決が必要である。

- 73 -

参考文献

- 1) 詳しくは確率論,統計学に関する書物にある。
- G. Winkler, D.L. Smith, and J.W. Meadows; Nucl. Sci. Eng. <u>76</u> (1980) 30.
- 3) D.L. Smith and J.W. Meadows ; ibid. p.61.
- F.G. Peray ; Proc. of Int. Conf. on Neutron Physics and Nuclear Data for Reactors and other Applied Purposes, at Harwell. (1978), OECD Nuclear Energy Agency, p.104.
- 5) 最近の統計学の書物にある。
- F.G. Perey ; "The Data Covariance Files for ENDF/B-V", ORNL-TM-5938, ENDF-249 (1977).

討 論

Q:佐々木 誠(動燃)

1. Covariance Matrixをエネルギーワイズに与えず,数学的に取扱い易いよう,他の(ex共鳴パラメータ)パラメータで与えられないのか。

2. 積分データ or JENDL-2Bの様に, benchmark test の結果を条件に入れ, covariance matrix に反映できるか。

A:神田 幸則(九大)

1. 式で表わせれば、そのような方法が可能である。その例は共鳴であろう。

2. 可能である。

Q:菊池 康之(原研)

cross section の covariance は群を仮定しないといけない。これは, basic file としての JENDL と, philosophy として,矛盾しないか。

A:神田 幸則(九大)

矛盾するかしないかは、philosophy の内容によるが、現在行われている方法は現実的な解決 法として用いられていると理解する。評価値に誤差を与えるためのファイルを作るという要請と 実際にそれを求め、表現するという対応がこの形式で妥協したと考える。核データがすべて式で 表わせれば表現法も変わるであろう。

Q:田中 茂也(原研)

covariance matrix を与える話に関連して, partial cross sections を最小二乗法にお いて求めるべきパラメータとみなすと、これらの covariance matrix は計算によって求まる という Poenitz 流の方法があるが、そのようなお話をされようとしたのか。

- 74 -

A:神田 幸則(九大)

私の話は、ご指摘の Poenitz の方法に至る前の話である。最近、評価に関心のある人は皆が口 にする covariance matrix をより深く、より統一的に理解するためにまとめた。 それを、ど のようにして具体的に求め、更に発展させるかについては話していない。Poenitz の方法は今後 の発展を志向した一方法である。

Q:中沢 正治(東大・工)

実験値に covariance が十分つけられてこないので、これに余り期待は出来ないと述べられたが、実際は、実験者に期待する以外に方法は余りないのではないでしょうか。

A:神田 幸則(九大)

評価する側からすれば全くその通りである。しかし、実験者が必ずしもそこまでの理解がない 場合、また理解があっても covariance を求める手続きを面倒がった場合など、全測定に今後 covariance がつくと期待は出来ないと言いたかった。

大いに covari ance の必要性を強調して実験者につけさせることと、又、ない場合は評価者が 推算する覚悟も必要だと思う。

Q:原田吉之助(原研)

定められたエネルギー点で、いくつかの断面積データがある時、それらの間の相関を考えて評価値を出すことを考えると、最終的 covariance 処法は二度使わねばならないのか? A:神田 幸則(九大)

それは必要ない。表4のmatrixの要素として、すべてを入れて処理すればよい。

Table 1 測定データに対する誤差の例

Source of Error	Symbol	Resulting Uncertainty ^a (%)
Counting statistics and reproducibility	S _c	0.7 to 7.5
Irradiation geometry	Sg	1.7 to 2.0
Gamma-ray detector efficiency	S_{γ}	1.5
Uranium deposit, mass, and isotope content	Sd	1.0 to 1.3
Extrapolation correction for fissions and correction for finite thickness of the deposit	Sf	0.2 to 1.5
Neutron source characteristics: $^{7}Li(p,n)$ reaction D(d,n) reaction	S _{n,Li} S _{n,D}	1.5 0.5 to 3.0
Correction for activity induced in the sample by neutron background (empty gas cell yield)	S _{sb}	1.0 to 2.0
Correction of fissions for neutron background and neutron scattering Due to the tantalum cup, ${}^{7}Li(p,n)$ source Due to gas-cell components, $D(d,n)$ source	S _{fb,Li} S _{fb,D}	0.1 to 0.3 0.3 to 2.4
Correction for neutron absorption in the copper sample	Sa	1.2 to 1.9
Correction for neutron scattering by the sample and fission chamber components	S _{sc}	2.2 to 2.5

The Principal Sources of Uncertainty in the Measured (n,α) -to-Fission Cross-Section Ratios²)

^aExcept for data points with $E_n \leq 4.0$ MeV.

表1の各項目の値と相関の大きさ(一部のみ引用) Table 2

\overline{E}_n (MeV)	Sc	Sq	Sγ	S _d	Sf	S _{n,Li}	S _{n,D}	Ssb	S _{fb,Li}	S _{fb,D}	Sa	Ssc
3.560	50	3.0	1.5	1.0	0.5	1.5			Negligible		1.8	2.2
3.800 ^a	10.5	3.0	1.5	1.0	0.2	1.5			Negligible		1.8	2.2
4.065	4.7	2.0	1.5	1.0	1.5	1.5			Negligible		1.8	2.2
4.361	3.8	2.0	1.5	1.0	0.7	1.5			0.1		1.8	2.2
4.656	3.6	2.0	1.5	1.0	1.0	1.5			0.1		1.8	2.2
4.954	2.4	2.0	1.5	1.0	1.2	1.5			0.1		1.9	2.2
5.120	6.5	1.7	1.5	1.3	1.0		0.5	1.0		0.8	1.9	2.5
5.185	6.7	2.0	1.5	1.0	0.2		0.5	1.0		0.4	1.9	2.2
5.268	7.5	1.7	1.5	1.3	1.0	1.5			0.3		1.9	2.2
5.455	6.8	1.7	1.5	1.3	1.0		0.5	1.0		0.8	1.9	2.5
			•	1				1		1		:
Type of Error ^b	uc	uc	c(100)	c(100)	c(100)	c(50)	c(50)	c(50)	uc	uc	c(100)	c(100)

Error Matrix for the $\sigma_{(n,\alpha)}/\sigma_f$ Cross-Section Ratios 2)

Note: The symbols for the different error contributions are defined in Table I. A horizontal dash means that that particular

source of error does not apply. The errors are expressed in percent. ^aErrors are for the average of the two measurements reported in Table II. ^bError contributions labeled as "c" or "uc" were considered to be correlated or uncorrelated, respectively. If they were considered to be only partly correlated, the assumed percentage of correlation is given in parentheses.

Table 3 測定データの共分散の例。表1及び表2の値を用いて求めた共分散(一部のみ引用)

Data Point Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Energy (MeV)
1	100	2	4	5	5	5	3	3	3	3	5	5	4	5		3.56
2		100	17	19	20	23	14	13	13	14	21	24	18	24		3.80
3			100	37	39	45	28	23	26	27	39	43	36	43		4.07
4				100	42	48	29	26	28	29	44	48	38	48		4.36
5	\				100	50	31	26	29	30	45	50	40	49		4.66
6	1					100	35	30	33	34	51	56	46	56		4.95
7							100	22	21	24	36	. 40	32	40		5.12
8	1							100	18	21	33	37	28	37		5.19
9									100	20	30	33	27	33		5.27
10	ļ									100	35	39	31	39		5.46
11											100	62	47	62		5.68
12	ļ											100	52	69		5.86
13	1												100	52		5.87
14	ļ													100		6.07
•																•
			Та	able 4	1 実	験及て	が反応(の相互	に相関	目があ	る場合	合の共	分散行	「列の	例	
						E	xperim	ænt A		1	Exper	iment	В			
					E ₁	E2		En	E	1 E ₂			E _m			

2) The Relative Covariance Matrix for the Measured Cross-Section Ratios

- 77 -

.

Fig. 1 2次元正規分布の密度関数。図中に示した値を用いて描いてある。

Fig. 2 2次元正規分布の等高線。Fig.1と同じ値に仮定している。実線は相関がない場合 (ρ=0), 点線は相関がある場合(ρ=0.6)。線はいずれも,内側から最高値の 0.8, 0.6, 0.4及び0.2等高線である。実線の直線は, ρ=0.6の場合の回帰曲線であ る。ρ=1のときの回帰曲線を一点鎖線で, ρ=-1のときの回帰曲線は二点鎖線で表 わした。

Fig. 3 断面積の共分散を表わすためのグループ分け。

Fig. 4 共分散の大小関係と断面積の傾向を説明するための図。詳しくは本文を参照。

Fig. 5 測定が2つある場合の関係を説明するための図。詳しくは本文を参照。

				235 _U			
			σ _f		σ _Υ		σ _f
			10 ⁻⁵ eV-ES	ES-20MeV	10 ⁻⁵ eV-ES	ES-20MeV	ES-20MeV
239 _{PU}	σf	10 ⁻⁵ eV I ES	⟨ dXi •dXj 〉		⟨ dXi •dZJ 〉		
		ES I 20MeV		⟨ dXi •dXj 〉		⟨ dXi•dZj ⟩	⟨ dXi • dYj 〉
	σ _Υ	10 ⁻⁵ eV I ES			⟨ dZi•dZj ⟩		
		σ _Υ	σY	ES 1 20MeV			

Fig.6 エネルギー区間で評価法が異る場合に必要な共分散行列。詳しくは本文を参照。

3. Covariance Fileへの要求——感度解析への適用

3.1 感度解析手法と一般化摂動論

三谷浩*

感度解析の現状について簡単に述べ、反応率の比に対する一般化摂動法について Usachev の 論文に従って詳しく説明し、数値計算例を示してある。

Sensitivity Analysis Method and Generalized Perturbation Theory

Hiroshi MITANI[†]

The present status of sensitivity analyses is briefly reviewed. The generalized perturbation method for reaction rate ratios is given in accordance with the paper of Usachev, and numerical examples are also shown.

1. はじめに

感度解析の手法は炉物理の分野では種々の積分量,例えば,実効増倍係数,反応率の比,反応 度価値,等が断面積にどのように依存するのかを調べるために広く用いられてきた。これは積分 量に含まれる断面積或は群定数を単位量だけ変化させた時の積分量の変化,すなわち,感度係数 を計算することによって定量的に調べられる。これを計算するには二つの方法がある。1つは断 面積或は群定数を単位量だけ増加させた時と増加させない時のそれぞれの積分量を計算し,両者 の差より直接感度係数を求める方法である。もう1つは摂動論によって求める方法である。通常 は計算時間が短縮されることと計算精度の問題から後者の摂動論が用いられている。

実効増倍係数については通常の摂動論によって、体系のパラメータが変化した時の実効増倍係数の変化が計算できる。しかし、反応率の比や反応度価値については、体系のパラメータが変化した時、1次の摂動論の範囲内でも、体系のスペクトラムやインポータンスの変化を取り入れなければならず、通常の摂動論が適用できない。反応率の比についてはUsachev(1964)¹⁾によってlife-cycle インポータンスを用いる新しい摂動公式が与えられた。一方、反応度価値についてはGandini(1967) により上記の方法を拡張し、life-cycle 中性子束を併用する摂動公式

*日本原子力研究所, Japan Atomic Energy Research Institute

- 81 -

が与えられた。これらの方法を総称して通常一般化摂動法と呼んでいる。感度係数の計算ではこの一般化摂動法による計算が中心的な課題となる。

その後一般化摂動法は種々の方面で応用されるように拡張されてきた。Gandini (1969)³⁾ に より燃焼状態で体系のパラメータを変化させた時の核種の濃度組成の変化が計算できる時間依存 の核種場に対する摂動公式が与えられた。この方法は高速炉におけるアクチノイド核種の評価に 及ぼす断面積の不確定さの影響を調べるのに応用されている。一方, 遮蔽や核融合炉ブランケッ トの問題では,外部中性子源のある系で体系のパラメータの変化が検出器の応答にどのように影 響するかを調べることになる。Goldstein(1972)⁴⁾ により遮蔽の問題では中性子ストリーミン グはエネルギー的には断面積の小さいところ,例えば,共鳴断面積のすそのところで大きくなる ことからエネルギー・チャンネル理論が提起された。これと同じことは中性子ストリーミングの 空間的な問題でも起きることから,空間チャンネル理論がWilliams et al.(1977)⁵⁾ によって 提出され,FFTFの中性子遮蔽の問題が解析された。この他にFiens(1972)⁶⁾ を始めとして多 くの研究がある。一方,核融合炉ブランケットの問題ではCom & Stacey(1973)⁷⁾が⁷ Li か らのトリチウムの生成について感度解析を行ったのが最初である。

原子炉の燃焼の問題では、核種の濃度組成の時間的変化と中性子束の時間的変化が複雑に絡み 合っている。Gandiniの核種場の時間依存の方法をさらに発展させて、中性子場と核種場が結合 した時間依存の系について感度解析を行う新しい方法がWilliams (1979)⁸によって提出され た。このような非線型問題については種々の系について感度解析を行う方法が開発されている。 軽水炉の燃料装荷の最適問題に関連して Becker (1977)⁹が、安全性に直結した熱水力学の問 題についてOblow(1978)¹⁰が、レーザによる慣性閉込め核融合の問題についてGreenspan (1980)¹¹⁾がそれぞれ感度解析の方法を発表している。これらを総合した連立非線型方程式で記 述される系についての一般論がCacuci et al. (1980)¹²⁾によって提出された。

感度解析の手法が最近10年間に急速に発展し多くの方面に利用されるようになったのはStacey を始めとし、ORNLの人々を中心としてアメリカで勢力的に研究されてきたためと思われる。 感度解析に関連して、 インポータンスおよび摂動論の教科書やレビューは、Lewins (1965, 1968)^{13),14)}, Otsuka (1972)¹⁵⁾, Stacey (1974)¹⁶⁾, Greenspan (1976)¹⁷⁾, Weisbin et al. (1980)¹⁸⁾, Cacuci et al. (1980)¹⁹⁾, 等がある。

2. 感度係数

炉物理で取扱う積分量は一般にエネルギーの関数である断面積の汎関数と考えなければならない。しかし,通常多群近似の方法で取扱うことができるので群定数の関数と近似できる。この時 には積分量は一般に

 $Q_i = Q_i (x_1, x_2, \dots, x_n)$ (1)

と表示される。ただし、 x_j (j = 1, ..., n)は群定数である。この群定数を微少量だけ変化させ

* Fast Flux Test Facility (1980年2月に臨界)

- 82 -

た時の積分量の変化は(1)式のテイラー展開で1次のオーダまで取ると

$$\frac{\delta Q_i}{Q_j} = \sum_{j=1}^n S_{i,j} \frac{\delta X_j}{X_j}$$
(2)

となる。ここで、Siiiは積分量iの群定数jによる感度係数と呼ばれ次式で与えられる。

$$S_{i,j} = \frac{x_j}{Q_i} \left(\frac{\partial Q_j}{\partial x_j} \right) = \left(\frac{\partial Q_i}{Q_i} \right)_j / \left(\frac{\partial x_j}{x_j} \right)$$
(3)

たゞし($\delta Q_i / Q_i$)_iは群定数 j のみを変化させた時の積分量 i の変化を表わし、一般に摂動論で 計算される量である。尚、積分量 Q_i の誤差(二乗平均誤差)は(2)式から直接計算することがで きる。

$$<\left(\frac{\delta Q_{i}}{Q_{i}}\right)^{2} > = \sum_{j=k}^{n} \sum_{k=1}^{n} S_{i,j} S_{i,k} < \left(\frac{\delta X_{j}}{X_{j}}\right) \left(\frac{\delta X_{k}}{X_{k}}\right) >$$

$$(4)$$

こ、で<…>は統計平均を行うことを意味する。右辺の<($\delta x_j / x_j$)($\delta x_k / x_k$)>は群定数 j と kの共分散を表わす。

上記のことから炉物理の分野で感度係数を用いて定量的評価が行われる主なものは

- 1) 積分量が断面積にどのように依存するか,
- 2) 積分量の誤差評価,
- 3) 群定数(パラメータ)の要求精度の評価,
- 4) 群定数の修正評価

であろう。尚、項目2)、3)、4)、の計算では群定数の共分散マトリックスが必要となる。

3. 反応率の比に対する一般化摂動法

感度解析は摂動論の1つの応用分野と考えられているが、むしろ炉物理では感度解析を進める ために種々の積分量を評価する摂動論が開発されて来たと考えるべきであろう。一般化摂動法も 炉物理のこのような要求から生まれてきた新しい摂動法である。事実 Usachevが反応率の比や 増殖比に対する摂動公式を求めた動機は、Moorhead (1961)²⁰⁾が臨界量と増殖比の推定で断面 積の誤差がどの程度影響するか、また要求される精度でこれらの積分量を評価するためには、断 面積の精度がどの位いでなければならないかを推定した時の厖大な数値計算の必要なことに刺戟 されたためである。

未臨界体系或は外部中性子源がある非斎次方程式で記述される系で、中性子束の一次汎関数で 表わされる積分量に対する摂動公式はMarchuk & Orlov(1961)²¹⁾の随伴関数の理論で与えられ た。しかし臨界体系では外部中性子源がないのでこの公式は用いることができない。Usachevは life-cycle インポータンスなる概念を導入して反応率の比に対する新しい摂動公式を求めた。 その後この公式は変分法でも微分法でも求められている。こゝではUsachevの方法について説 明する。

最初に臨界にある体系を考える。この系の中性子束および随伴中性子束は次の方程式で記述さ

れる。

$$(A - \lambda F) \phi = 0,$$
 (5)
 $(A^* - \lambda F^*) \phi^* = 0$ (6)

こゝで, A は吸収, もれ, などによる中性子の消滅を表わす作用素, F は核分裂による中性子の 生成を表わす作用素, 入は体系の固有値である。この体系で次の反応率を測定する場合を考える。

R= < *S* Ø> (7) この反応率は体系に含まれているある核種のある反応率であっても良いし,計数管或は箔による 測定であっても良い。

次に上記の体系で、体系のパラメータ、例えば、ある核種の断面積を微少量だけ変化させたと する。これは作用素に

 $\delta P = \delta A - \lambda \delta F$

(8)

なる変化を与え、体系はもはや臨界ではなくなる。制御棒を移動させ再び臨界すると、この時の 制御棒の移動は制御棒の反応度較正が行われていれば、実効増倍係数或は固有値の変化として δλF で表わされる。したがって、上記のすべての操作は作用素の変化として1次のオーダの範 囲内で

 $\delta \mathbf{Q} = \delta \mathbf{A} - \lambda \delta \mathbf{B} - \delta \lambda \mathbf{B}$

= $\delta P - \delta \lambda B$ (9) となる。この摂動系での中性子束及び随伴中性子束は (A' - $\lambda' F'$) $\phi' = 0$ (10)

$$(A' - \lambda' F') \phi' = 0 \tag{11}$$

で記述される。また再臨界条件は次式で与えられる。

$$\langle \phi^* \delta \Omega \phi' \rangle = 0$$

摂動系と無摂動系での反応率の変化は

 $\delta \mathbf{R} = < \delta \Sigma \phi > + < \Sigma \delta \phi >$

(13)

(12)

となり、1次のオーダの変化でも中性子スペクトラムの変化を計算しなければならない。この目 的のために Usachev は反応率に対する life-cycle インポータンスなる概念を新しく導入した。

こ、でまず中性子のライフ・サイクルを考える。このライフ・サイクルとは中性子が核分裂で 生まれ、吸収、もれ、などで消滅するまでを言う。今、臨界係数を考え、この系である中性子サ イクルを選び出し、これを第0番目のサイクルとする。このサイクルで起こる反応に対して同じ サイクルに属する中性子が寄与するインポータンスを ϕ_0^* とする。次に1つ前のサイクルを第1 番目のサイクルとすると、このサイクルに属する中性子で核分裂により第0番目のサイクルの中 性子を生み出し、そのサイクルの反応に寄与するインポーダンス ϕ_1^* が考えられる。同様にサイ クルを順次さかのぼって行くことにより、第n番目のサイクルに属する中性子の第0番目のサイ クルの反応に寄与するインポータンス ϕ_n^* を考えることができる。これらのインポータンスは Usachev が物理的考察から導いた次の方程式系に従う。

 $A^*\phi_0^* = \Sigma$

- 84 -

(14)

$$A^{*}\phi_{1}^{*} = \lambda F^{*}\phi_{0}^{*}$$
(15)

$$\vdots$$

$$A^{*}\phi_{n}^{*} = \lambda F^{*}\phi_{n-1}^{*}$$
(16)

$$\vdots$$

$$\phi_{\infty}^{*} = \gamma \phi^{*}$$
(17)

こゝで(17式の φ^{*}は通常の出力レベルに対するインポータンスである。この式の関係は、(14~(16) 式が(6)式を遂次近似法で解く時にソース項の初期値として∑を用いたものの各項に等しいことか ら結論される。次に(14~(16)式の両辺にφを掛けて積分し、(5)式を用いると

$$< \Sigma \phi > = < \phi_0^* \lambda F \phi > = < \phi_1^* \lambda F \phi > = \cdots$$
$$= < \phi_n^* \lambda F \phi > = \cdots = \gamma < \phi^* \lambda F \phi >$$
(18)

が得られる。これから

 $\gamma = \frac{\langle \Sigma \phi \rangle}{\langle \phi^{*} \lambda F \phi \rangle} \tag{19}$

となる。こゝで life-cycleインポータンスの値を Fig ·1 に示す。これは, ZPR-3 № 12 の炉 心中央での ²³⁹ Puの核分裂率に対する値でありエネルギー群 7 の空間分布である。このインポー タンスの収束は速く, サイクルが11で通常のインポータンスと同じ空間分布になっている。

次に反応率に対する摂動公式を求める。まず始めに10式を変形して次のようにする。

 $A' \phi' - \lambda (F' - F) \phi' - (\lambda' - \lambda) F \phi' - (\lambda' - \lambda) (F' - F) \phi'$

$$-\lambda F(\phi' - \phi) = \lambda F \phi$$
⁽²⁰⁾

上式に ϕ_0^* を掛け、(14式に ϕ' を掛けて各々積分し、(18式の関係を利用すると
 $S \otimes \phi$ > が求まる。 これを(13式に代入すると

$$\delta R = <\delta \Sigma \phi > - <\phi_0^* \delta Q \phi' > + <\phi_n^* \lambda F (\phi' - \phi) > 21)$$

が求められる。この式の右辺第3項には非摂動系と摂動系の中性子束の差が直接入ってきている。
これでは摂動公式として不都合である。 $\phi_0^* が \Sigma$ に依存するのでこの項も Σ に依存することにな

る。まずこの第3項が Σ に依存しないようにすることを考える。一般的に[16式に ϕ を掛け, [20式 に ϕ_n^* を掛けて積分し両者の差を取ると次の漸化式が得られる。

$$\langle \phi_{n-1}^{\star} \lambda F (\phi' - \phi) \rangle = -\langle \phi_{n}^{\star} \delta Q \phi' \rangle + \langle \phi_{n}^{\star} \lambda F (\phi' - \phi) \rangle$$

$$(n = 1, \dots)$$
(22)

上式を順次の1式に代入して行き、最後にの1式の関係を用いると、

$$\delta \mathbf{R} = \langle \delta \boldsymbol{\varSigma} \phi \rangle - \sum_{n=0}^{\infty} \langle \phi_n^* \delta \mathbf{Q} \phi' \rangle + \gamma \langle \phi^* \lambda \mathbf{F} (\phi' - \phi) \rangle$$
⁽²³⁾

が得られる。上式の右辺第2項は無限個の和を取るようになっている。この各々の積分項 < $\phi_n^* \delta_Q \phi' > \iota, \phi_n^* \to r \phi^*(n \to \infty)$ と再臨界条件の12式から明らかなようにn が大きくな ると減少し零に収斂している。即ち、今、選び出したサイクルへのより遠いサイクルからの寄与 はだんだん小さくなっている。またこれらの無限個の和は発散しない。しかし、 $\int_{n=0}^{\infty} \phi_n^*$ は発散 するので、この ϕ_n^* を漸近値との差 $\psi_n^* = \phi_n^* - r \phi^*$ で置き換える。このように置き換えても個々 の積分項の値が変らないことは再臨界条件から明らかであり、また $\sum_{n=0}^{\infty} \phi_n^*$, res は発散しない。

- 85 -

この場合には23式は

$$\frac{\delta R}{R} = \frac{\langle \delta \Sigma \phi \rangle - \langle \psi^* \delta Q \phi' \rangle}{\langle \Sigma \phi \rangle} + \frac{\langle \phi^* \lambda F (\phi' - \phi) \rangle}{\langle \phi^* \lambda F \phi \rangle}$$

$$(24)$$

$$\psi^{*} = \sum_{n=0}^{\infty} \psi^{*}_{n} = \sum_{n=0}^{\infty} (\phi^{*}_{n} - \gamma \phi^{*})$$
(25)

となる。24式の右辺第3項は反応率の種類に関係しない量となり、中性子束の出力レベルに関係 している。従ってこの量を消去するためには反応率の比を物理量と考えねばならない。こゝで反 応率の比

$$R = \frac{\langle \Sigma_1 \phi \rangle}{\langle \Sigma_2 \phi \rangle} \tag{26}$$

を考えると、これに対する摂動公式は次式で与えられる。

$$\frac{\delta R}{R} = \frac{\langle \delta \Sigma_1 \phi \rangle - \langle \psi_1^* \delta Q \phi \rangle}{\langle \Sigma_1 \phi \rangle} - \frac{\langle \delta \Sigma_2 \phi \rangle - \langle \psi_2^* \delta Q \phi \rangle}{\langle \Sigma_2 \phi \rangle}$$

$$(27)$$

上式が Usachev によって最初に提出された摂動公式である。この式に含まれている作用素の 変化 ∂Qは(9)式から明らかなように、体系のパラメータを変化させた成分と再臨界に調整した成 分とから成り立っている。ここで(18式の関係から明らかなようにψ*とゅは直交する。即ち、

 $<\psi^{*}\lambda F \phi > = 0$ (28) が成り立つ。従って、(9)式より δQ のうち再臨界に調整した成分は1次のオーダの範囲内で消え てしまい、 ℓ 7式の δQ は δP で置き換えてよい。これから反応率の比に対する摂動公式は、

$$\frac{\delta R}{R} = \frac{\langle \delta \Sigma_1 \phi \rangle - \langle \psi_1^* \delta P \phi \rangle}{\langle \Sigma_1 \phi \rangle} \frac{\langle \delta \Sigma_2 \phi \rangle - \langle \psi_2^* \delta P \phi \rangle}{\langle \Sigma_2 \phi \rangle}$$
(29)

となる。

以上の摂動公式の導出から、炉物理量としては反応率の比を考えねばならないこと、再臨界条件 が成り立つていること及び"k-rest"の条件が成り立つていることが大切である。

最後に上記の理論をより具体的に理解するために数値計算の結果を示す。Fig.2に²³⁹ Puの核 分裂率に対する Usachevのインポーダンス或は残差インポータンスを示す。これから任意の場所 で任意の群の断面積を変化させた時にこの摂動が²³⁹ Puの炉心中央での核分裂率にどのように影 響するかが直接理解できる。また、炉心中央に近い所からの寄与が大きく、中心からほゞ 25cm 以上はなれた点からの寄与は符号が変る。これは体系の一部分或は全体で摂動を加えると体系の スペクトルが変化し、その系の反応の均衡がくずれてくるが、これは臨界性を変えないように規 格化しているためである。Fig.3 に²³⁸ Uの核分裂率に対する残差インポータンスを示す。 この 場合には 3 群の値が大きく、7、11群の値が極端に低くなっている。これは²³⁸ U の核分裂は threshold 反応であり、この場合に 5 群までしか値がないために、直接反応に寄与する群からの 影響が大きく、その他の群からの影響が小さくなることを表わしている。 ²³⁹ Pu と²³⁵ Uの核分裂率の比の感度係数を Fig・4 に示す。 反応率の感度係数は直接カウンター或は箔の断面積を変化させた効果と体系の群定数を変化させた効果の和で与えられる。Fig・4 から直接カウンター或は箔の断面積を変化させた効果が大きく,体系の群定数を変化させた効果 は無視できる程度である。特に後者の効果は反応率の比で二つの断面積が類似していればいる程 小さくなる。反応率のみについて考えると体系の群定数を変化させた効果は 10~30 %程度であ る。また、この炉心は大型炉の模擬心であり、Na が混入されているためにその散乱断面積が大 きい13群で中性子束が低下している影響があらわれている。エネルギーの高い群では ²³⁹ Puの核 分裂率が ²³⁵ U のそれよりも大きく、エネルギーの低い群では逆になっている。したがって、 ²³⁸ Uの非弾性散乱断面積を増加させると低エネルギーに減速される中性子がふえるので、²³⁵ U の核分裂率の増加する割合が ²³⁹ Pu のそれよりも大きく、感度係数が負になる。

²³⁸ U と²³⁵ U の核分裂率の比の感度係数を Fig.5 に示す。²³⁸ Uの非弾性散乱断面積の感度係数 が大きいのは,低いエネルギーに減速される中性子が増えると,²³⁸ Uの核分裂率が減少し²³⁵ U のそれが増加する二つ効果が重なってくるためである。また,²³⁹ Pu の核分裂断面積を増加させ ると²³⁸ U の捕獲断面積を増加させた場合と全く同じ傾向を示している。一般に核分裂断面積を 増加させることはその群での吸収断面積を増加させることと、核分裂で生まれてくる中性子を増 加させることの二つの効果がある。前者は捕獲断面積を増加させることと全く同じであるが、後 者の効果は中性子スペクトラムを変化させないので反応率は変らない。即ち、核分裂断面積を増 加させることが反応率に与える影響と実効増倍率に与える影響は全く異なっている。

4. あとがき

Usachev (1964)によって展開された反応率の比に対する一般化摂動法について詳しく説明した が,他の方法について、特に最近の発展まで取り入れて説明することができなかった。しかし炉 物理的に最も興味深いのはUsachev の論文であり、life-cycle インポータンスを導入すること によって新しい摂動法を見い出すことができたその苦心のあとが良く解るような気がする。最近 ではORNLを中心としてアメリカで種々の問題について感度解析手法が開発されているが、理論 的研究が先行しコードの開発整備が遅れているように思われる。これが今後の課題であろう。

- 87 -

参考文献

- 1) Usachev, L.N. : J. Nucl. Energy, Part A/B, 18, 571 (1964)
- 2) Gandini, A. : ibid., 21, 755 (1967)
- 3) Gandini, A. : Nucl. Sci. Eng., <u>35</u>, 141 (1969), <u>38</u>, 1 (1969)
- Goldstein, H. : Fourth Int. Conf. Reactor Shielding, Paper No.D-2, Paris, France (1972)
- 5) Williams, M.L., Engle, W.W. : Nucl. Sci. Eng., 62, 92 (1977)
- Fiens, D. : Proc. Conf. on New Developments in Reactor Phys. and Shielding, Kiamesha Lake, Now York. Sept. (1972), CONF-720901, p.541.
- 7) Cohn, R., Stacey, W.M. : Nucl. Fusion, 13 185 (1973)
- 8) Williams, M.L. : Nucl. Sci. Eng., 70, 20 (1979)
- 9) Becker, M. : ibid., 62, 296 (1977)
- 10) Oblow, E.M. : ibid., 68, 322 (1978)
- 11) Greenspan, E. : ibid., 74, 185 (1980)
- 12) Cacuci, D.G., et al. : ibid., 75, 88 (1980)
- 13) Lewins, J. : "Importance : The Adjoint Function", Pergamon Press, New York (1965)
- 14) Lewins, J. : "Developments in Perturbation Theory", Advan. Nucl. Sci. Technol., 4, 309 (1968)
- 15) Otsuka, M. : "Genshiro Butsuri (Reactor Physics)", Kyoritsu Shutsupan, Tokyo (1972) (in Japanese)
- 16) Stacey, W.M. : "Variational Methods in Nuclear Reactor Physics", Academic Press, New York (1974)
- 17) Greenspan, E. : "Developments in Perturbation Theory", Advan. Nucl. Sci. Technol., 9, 181 (1976)
- 18) Weisbin, C.R., et al. : "Sensitivity and Uncentainty Analysis of Reactor Performance Parameters", Plenum Press, New York (1980)
- 19) Cacuci, D.G., et al. : "Developments in Sensitivity Theory", Proc. Conf. 1980 Advances in Reactor Physics and Shielding, p.692 (1980)
- 20) Moorhead, T. : SM-18/15 (1961)
- 21) Marchuk, G.I., Orlov, V.V. : Neutron Physics of Soviet, p.24 (1961)

討 論

Q:飯島 俊吾(NAIG)

Life cycle importanceの意味をもう一度説明して頂きたい。

又、 ϕ_{in} (n→∞)とした時,臨界炉では発散しないか。

A:三谷 浩(原研)

中性子のlife cycleは、核分裂で生まれることによって始まり、体系から漏れたり吸収され ることによって終る。今、臨界にある体系である中性子のサイクル(零サイクルとする)を選び 出しこの中性子がある反応にどれだけ寄与するかを表わすインポータンスが定義できる。同様に このO-サイクルの中性子はその前のサイクルの中性子が核分裂を起こして生まれて来たものな ので、その一つ前のサイクルに属する中性子のO-サイクルでの反応への寄与を表わすインポー タンスが定義できる。同様に、nケ前のサイクルに属する中性子で0番目のサイクルでの反応に 寄与するインポータンスも定義できる。このようにlife importance を定義するのは、ある摂動 を体系に加えた時にその効果を測定するとすれば無限個前のサイクルまでさかのぼって考慮しな ければならないことを意味している。

次に、 ϕ_{in} ($n \rightarrow \infty$)は発散せずに通常のインポータンスと同じ空間分布に従いある比例定数 だけ異なる。

Q:飯島 俊吾(NAIG)

時間依存の核種場に対する摂動論はアクチニド生成に対する感度解析の他に, FP 崩壊熱の感 度解析への適用も興味あるが,時間依存核種場の摂動論は,どのように行なうのか説明して欲し い。

A:三谷 浩(原研)

時間依存の摂動法は、インポータンスの保存則と随伴方程式の終端条件を適当に組み合わせて 導かれるが、詳しくは参考文献 3)を見ていただきたい。

Q:川合 将義(NAIG)

群定数調整に、一次摂動近似を適用してまずいところはないか。

A:三谷 浩(原研)

特にまずいと思った経験はない。それよりも、一次摂動法が適用できない時には非線型最小二 乗法を用いねばならず、二次の摂動計算が必要になり、群定数調整が現実的でなくなる。

Q:竹田 敏一(阪大)

一般化摂動による Reaction rate の摂動式の中には $\delta Q = \delta A - \lambda \delta B$ という関係式が使用されているが、どうして $\delta \lambda$ の項も δQ に表われていないのか。

A:三谷 浩(原研)

再臨界操作も含めたオペレータの変化は御指摘の通り $\delta Q = \delta A - \lambda \delta B - \lambda \delta B$ となります。しかし摂動公式で用いる residual life -cycle importance $\psi^* = \sum_{n=0}^{\infty} (\varphi_n^* - \tau \phi^*) d$,

- 89 -

 $<\psi^* B \phi>= 0$ なる直交条件を満たすので、一次のオーダの範囲内では $\delta Q = \delta A - \lambda \delta B$ として良い。この場合には δQ は加えた摂動のみを表わしている。

Q:中沢 正治(東大・工)

Sensitivityの正負は、Q及び $\frac{dx}{x}$ の物理的内容によって変ると思うが、これは予め物理的に予測できないか。

A:三谷 浩(原研)

 $Q \geq \frac{Ax}{x}$ の関係で物理的に予測がつくが、計算を行ってみて初めてその内容を吟味しなければならない場合も多い。

Q:五十嵐 信一(原研)

この講演の中でcovariance はどのように使われていたのか。その効果は定量的にどの位か。 A:三谷 浩(原研)

積分量の誤差評価を行う時に

$$\left(\frac{\delta Q_{i}}{Q_{i}}\right)^{2} = \sum_{j \ k} \sum_{k} S_{ij} \quad \left(\frac{\delta x_{j}}{x_{j}}\right) \quad \left(\frac{\delta x_{k}}{x_{k}}\right) \quad S_{ik}$$

なる関係で covariance が必要になるが、この講演では、その係数 S_{ij} 、 S_{ik} の計算方法について 述べ、特に covariance との関係については、定量的な言及ができなかった。

Q:菊池 康之(原研)

life cycle inportance を導入するのは,精度向上のためか,又は,本質的に必要な事か。A:三谷 浩(原研)

本質的に必要なことと思う。数値計算的にはiteration methodに相当するが現在これに代る 有効な方法はない。

- 91 -

- 92 -

3.2 コメント:崩壊熱の感度解析

吉田 正*

シグマ委崩壊熱評価ワーキンググループが最近完成した総和計算用データライブラリーの preliminary version を用い,²³⁵Uの短冷却時間での崩壊熱を計算したところ,崩 壊熱 β 線成分の過大評価, r線成分の過小評価が明らかになった。 感度解析的 な手法でその原因を調べたところ,短寿命 FPの decay schemeを,全て無条件で,平均放出 β , $r 線 = ネルギ - E_{\beta}$, E_r の計算に用いることに問題があること,これらの E_{β} , E_r を全て理論 値でおきかえると,計算と測定の極めて良い一致が得られることが明らかとなった。

Sensitivity Analysis of Decay Heat

T. YOSHIDA*

Decay heat of 235 U was calculated on the basis of a preliminary version of the JNDC Decay Data Library for summation calculations. It was shown that the library overestimates the β -ray component of the decay heat and largely underestimates the γ -ray component. The origin of these misestimations was examined with the aid of a simple sensitivity analysis. As a result, inappropriateness of published decay schemes to use in average released energy calculations was suggested. Adoption of theoretical values of the average β - and γ -ray energies for shortlived FPs essentially removed the above drawbacks of the preliminary JNDC Library.

1. はじめに

シグマ委員会崩壊熱評価ワーキンググループは、最近崩壊熱総和計算用データライブラリーの preliminary versionを完成し(以下JNDC Lib.と略記), 1980年の秋から暮にかけてこれ を用いて試計算を行い、ライブラリーの適用性評価と問題点の摘出を行った。その過程で、極く 初歩的な意味での感度解析的な方法を用いたところ、これが有効であったので、ここにコメント

*) 日本原子力事業(株), NAIG 総合研究所
 Nippon Atomic Industry Group Co, Ltd.,
 NAIG Nuclear Research Laboratory

- 94 -

する。

2. JNDC ライブラリーによる短冷却時間崩壊熱曲線

Fig. 1 及び 2 に, ²³⁵ U熱中性子瞬時照射後 1000 秒までの崩壊熱の β 線及び r 線成分を示す。 JNDC Lib. (図中の細実線(A))は、測定値及び他の既存のライブラリーと比べても、 β 線成分 を過大に、r 線成分を大幅に過少評価した。そこで、この過大、過少評価がどの核種のデータに よってもたらされる分を知る為、感度解析を行った。まず、Fig. 1, 2の JNDC曲線の冷却時間 依存性は、他のライブラリー計算値に比し特に遜色はないことから、核分裂収率と各核種の半減 期は一応妥当なものと考え、変動パラメータを uncertainty、感度係数ともに大きな¹⁾、平均放 出 β , r 線エネルギー、 \overline{E}_{β} , \overline{E}_{γ} に限った。JNDC Lib. に収納された短寿命核種は、次の三つ のカテゴリーに分けられる。

Class I: \overline{E}_{β} , \overline{E}_{r} , $t_{1/2}$ が測定値から決められるもの(約90 FPs)。

Class II: t_{1,0} が測定値から決まるもの(約 100 FPs)。

Class Ⅲ: 測定データの全くないもの(約200FPs)。

この各々のカテゴリーについて、その \overline{E}_{β} , \overline{E}_{r} データの ²³⁵ U 熱中性子瞬時照射後の崩壊熱に対 する解度解析を行った。

3. 感度解析

まず、上記の三つのクラスのうち、 \overline{E}_{β} 、 \overline{E}_{r} 、データの信頼性が最も低いと考えられるのは、Q 値を質量公式に、Q値に対する比 \overline{E}_{β} /Q、 \overline{E}_{r} /Qを理論的推定³⁾に頼ったClass I、II である と考えた。 \overline{E}_{β} /Q、 \overline{E}_{r} /Qを計算する際には、親核の β 崩壊で直接feed される、子核の最も低 いレベルのエネルギーQ₀₀が重要な役割をはたす。⁴⁾ Class IIではt_{1/2}測定値を使って、Class II ではClass II で決めた値を外挿して、それぞれ核種毎にQ₀₀値を決定している。そこで、崩壊 熱 β 線成分が過大、r線成分が過少評価となっている点を考慮し、 \overline{E}_{ρ} が小さく、 \overline{E}_{r} が大きくな るようQ₀₀値を一律にうごかし、崩壊熱がどう変動するかを見た(Fig.3)。但し、Fig.3中の BのケースのQ₀₀値1.5MeVは、かなり大きくやや非現実的であって、1.0MeV 強程度が採りう る限度である。仮りに1.5MeV を採っても、II で述べた過大、過少評価は冷却時間10 sec以上で はあまり改善されない。そこで、Class I、IIの \overline{E}_{ρ} 、 \overline{E}_{r} は、崩壊熱のJNDC Lib・値と測定 値の不一致の主な要因ではないと結論した。

次に、Class I の核種のうち、 β 、r成分のどちらかへの寄与が3%以上の核を選び、JNDC Libの \overline{E}_r 値を、測定との一致のより良い田坂ライブラリー(Fig.1, 2の破線、文献 5))の \overline{E}_r 値でおきかえると、崩壊熱r線成分をどう変動するかを見た(Fig.4)。すると、Fig.4中の 17 核種の変動丈で、冷却時間 50秒でのr崩壊熱が 12%も大きくなることが判った。更に、この17 核種の大半は、JNDC Lib 丈が最近の測定データに基いた \overline{E}_{β} , \overline{E}_r の計算値を採用し、田坂 ライブラリーでは理論的推定値を充てている。JNDC Lib の測定ベースの値も次のように考え ると十分信頼出来るものではないことが判る。まず、 β 崩壊の大局的理論によると、子核の励

- 95 -

起エネルギーの関数としては、子核へ direct β -transition の確率密度を与える β strength function (遷移確率と終状態レベル密度の積)は、子核のisobaric analog stateにピークを もつ。⁴⁾ このことは、子核の励起エネルギーとともに遷移確率も増加することを意味する。一方、 on - line 質量分析機と Ge 検出器による r スペクトルの intensity balance 分から決められ た β , r 遷移スキームでは、高い励起レベルに由来する r 線に検出もれがあると高いレベルへの direct β -transition が見落され、その分だけ低エネルギーレベルの β 遷移が強調される。こ のようにして \overline{E}_{β} が過大に、 \overline{E}_{r} が過少に評価される可能性は大いにありうる。実際 Hardy らは、 数値実験により短寿命 FP でのこの種の検出もれの可能性を指摘し、その割合を定量的に評価し ようと試みている。

4. **E**_{*β*}, **E**_{*γ*} 理論的推定値にもとずく崩壊熱計算

以上の考察から、特に短寿命の核種については、最近 publish されるようになった β 、 r 遷移 スキームに基く E_{β} , E_{r} 値より、理論的推定値の方が信頼性が高いことも考えられる。そこで、 Q値が 5 MeV 以上の全核種の E_{β} , E_{r} を、理論的推定値でおきかえ、 β , r 崩壊熱の計算を行った。結果は Fig・1, 2 の太い実線 Bとして示されている。測定との一致の改善は明瞭である。 ²³⁵ U の他, ²³⁹ Pu, ²⁴¹ Pu についても同様の計算を行ったが、測定値との一は極めて良い。

5. 結果

 $\overline{\mathbf{E}}_{\beta}$, $\overline{\mathbf{E}}_{r}$ 値の感度解析から出発した以上の検討から,高Q値短寿命の核種では,完全なものであ るという保証のない遷移スキームから算出した $\overline{\mathbf{E}}_{\beta}$, $\overline{\mathbf{E}}_{r}$ 値よりも,理論推定によった $\overline{\mathbf{E}}_{\beta}$, $\overline{\mathbf{E}}_{r}$ 値 の方が信頼性が高い場合もあることが判った。実際のところ,通常の遷移スキームは $\overline{\mathbf{E}}_{\beta}$, $\overline{\mathbf{E}}_{r}$ の 計算の為に作成されたものではなく,測定されたレベルの構造に関する情報を,判っている範囲 で(普通低エネルギー側から)体系的にまとめ上げたものである。従って,高エネルギー側のデ ータが揃わず,空白になっていても,それなりの意義がある。これを, $\overline{\mathbf{E}}_{\beta}$, $\overline{\mathbf{E}}_{r}$ の計算に用いる のは一種の流用であり,今回の結論は,この流用は常に妥当なわけではない,という点にある。 また, $\overline{\mathbf{E}}_{\beta}$, $\overline{\mathbf{E}}_{r}$ の理論値での置き換え後は,三つの親核種の崩壊熱 β , r線成分の各々について, JNDC Libが測定値を非常に良く再現する事実は,JNDC Lib に収められている核分裂収率, 分枝比,半減期等のデータが妥当なものであることを示している。

なお, ロスアラモスの T.R. England よりの私言(1980年12月付) によると新しい ENDF /B-V の崩壊データによる 235 U に対する試計算でも, I で述べたJNDC Lib での崩壊熱 β 線 成分の過大評価, r線成分の過小評価と極めて類似した問題に逢着している由である。

*) ⁹⁶Yは除外した。この重要な核種については別に詳細に論ずる必要がある。

参考文献

- 1) F. Schmittroth, R.E. Schenter, Nucl. Sci. Eng., <u>63</u>, 276 (1977)
- 2) M. Uno, M. Yamada, 6th Int. Conf. on Atomic Masses, Michigan State Univ. (1979)
- 3) T. Yoshida, Nucl. Sci. Eng., 63, 376 (1977)
- 4) 吉田 正, 原子力学会誌, <u>18</u>, 611 (1976)
- 5) K. Tasaka, Nuclear Data Library of Fission Products for Decay Power Calculation, NUREG/CR-0705 (1979)
- 6) J.C. Hardy, et al., Phys. Lett., 71B, 307 (1977)
- 7) T. Yoshida, R. Nakashima, submitted to J. Nucl. Sci. Technol.

Fig. 3 Sensitivity of ²³⁵ U Decay Heat (thermal neutron burst) on Parameter Q_{00} Adopted in Calculations of E_{β} and E_{γ} for Class I, II Nuclides.

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Jsoto-Jamma-energy release	J:JNDC (Oct. 1980)
$pe \frac{gattitta}{6} = \frac{5\%}{10.6}$	T:Tasaka(5)
	E:ENDF/B-IV
Se F	J = 1.5 E = 1.5 T
** Br	$J \rightleftharpoons 1.2 T$
⁸⁷ Br	J = E > T
⁸⁸ Br	$J \gtrsim T > E$
⁸⁹ Kr	$J \rightleftharpoons T \rightleftharpoons E$
⁹⁰ Kr	$J \rightleftharpoons T \lesssim E$
⁹⁰ Rb	$J \rightleftharpoons \frac{3}{4}T \rightleftharpoons E$
⁹¹ Rb	J≒ 1.3 T
⁹⁴ Sr	J = T = E
⁹⁵ Sr	J ≒ 0.5 T
⁹⁸ Zr	J=0.0, $T=0.67$ MeV
⁹⁸ Nb	$J \rightleftharpoons T_{3}$
⁹⁹ Nb	$J \rightleftharpoons T \rightleftharpoons E$
135 Te	$J \rightleftharpoons 0.4 T \rightleftharpoons 0.4 E$
¹³⁶ Te	$J \rightleftharpoons 1.3 T \rightleftharpoons 1.3 E$
¹³⁶ I ^m	$J \rightleftharpoons E$
¹³⁶ I Þ -	J≳E≒T
137 I	$J \Rightarrow 0.3 E \Rightarrow 0.3 T$
¹³⁷ Xe	$J \rightleftharpoons E \rightleftharpoons T$
¹³⁹ Xe	$J \rightleftharpoons E \rightleftharpoons T$
140 Xe	$J \rightleftharpoons 0.8 T \rightleftharpoons 0.8 E$
¹⁴⁰ Cs	$J \rightleftharpoons E \rightleftharpoons T$
141 Cs	$J \doteq 0.4 T \doteq 0.3 E$
143 Ba	$J \doteq 0.3 T \doteq 0.2 E$
144 La	$J \rightleftharpoons E \rightleftharpoons 0.7 T$
$\int JNDC (\Box) \rightarrow Tasaka (\uparrow)$: 11 % increase

Fig. 4 Important Nuclides in gamma-ray Component of ²³⁵ U Decay Heat after an Instantaneous Irradiation of Thermal Neutron (Class I Nuclide)

4

3.3 共分散行列法による中性子断面積測定の誤差評価

小林捷平*

従来の実験誤差は各誤差要素の単純自乗和として与えられることが多く,これでは実験誤差表 示が不十分である。そこで,実験データ間の相関関係を記述している共分散を考慮した実験誤差 の解析手法と特徴について述べる。

中性子断面積の測定において、その実験誤差を共分散行列の形で与えておくことが如何に重要 であるかが示されている。非対角行列要素をもつ共分散行列が如何にして作られ、また、それら の誤差行列から如何にして実験値の標準偏差が導かれるかが示される。こうした誤差解析の手法 が具体例によって説明され、Cf-252のスペクトル平均断面積測定、これらの複数データから最 尤値を得る方法、及び電子線型加速器を用いた飛行時間分析法によるエネルギー依存断面積測定 の場合が取り上げられる。

> Evaluation of Experimental Uncertainties with Covariance Matrices in the Measurement of Neutron Cross Sections

Katsuhei KOBAYASHI*

Experimental uncertainties obtained previously have been generally given with sum of square of the each error elements. This is due to lack of the detailed information in the experimental uncertainties and inadequacy of the error presentation. The uncertainty analysis with covariances describing the correlation between the experimental data is given.

In the measurement of neutron cross sections, it is demonstrated how important is that the experimental uncertainties are given in the form of a covariance matrix. It is shown how the covariance matrix with non-diagonal elements can be generated and how the experimental uncertainties can be combined to obtain their standard deviations. The uncertainty analysis is explained by using the following examples; measurement of the Cf-252 spectrum-averaged cross sections, method to obtain the best value from these results, and measurement of the energy dependent cross section by a linac TOF technique.

*) 京都大学原子炉実験所, Research Reactor Institute, Kyoto Univ.

1. 序

原子炉の安全性や経済性を評価する上で、より信頼度の高い中性子断面積が要求される。中性 子断面積データが持つ不確かさも上手な実験や新しい測定法、注意深い解析法によって少なくで きる。一般に、従来の実験誤差は単純に各誤差要素の二乗和で与えられることが多かったが、こ れでは、それらのデータが持つ重要な情報や不確かさに見られる相関関係が見逃がされがちであ り、これでは誤差評価は不十分といえる。そこで実験データのもつ信頼度とその誤差を如何に正 しく評価するかという観点から、共分散法の導入による誤差解析の見直しと実験誤差評価法に関 ^{1)~3} このことは、最近、特に大型計算機の普及と共に感度解析法が広く取り入 れられるようになって、計算入力となるデータの不確かさへの関心が高まり、信頼度の高いデー タを得ることを目的として、データ間に存在する誤差相関の関係が注目され始めたためである。 幾つかの実験データから評価値を求める際、しばしば問題とされる事は、従来、実験者達がデ ータの不確かさについて必ずしも十分な情報を示さず、誤差に関する論議を尽していないことで ある。このような場合、実験値間に存在する相関関係を考慮した共分散法による誤差解析の取扱

いが難しくなる。そこで、ここでは分散、共分散法による実験データの誤差解析法に触れ、実測 によって得られた具体的な数値を基に、共分散法による誤差評価の例を紹介する。これによって 実験者は誤差評価を如何にして行い、その結果を如何にまとめ表示すべきか、また評価者は共分 散法によって各データからの評価値を如何にして求めるかを理解する上で有益となる誤差解析の 概要と手法について記述を試みる。

2. 2 変数の分散,共分散,相関

まず基本的な2~3の点について思いを新たにしてみたい。2変量x, y を考える時, 共変動 を表わす統計量の1つが共分散であり

$$S_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x}) (y_i - \overline{y})$$
(1)

で与えられる。x-y座標系では第1,第3象限に分布するデータの共分散は正に,第2,第4象 限では負に寄与する。2変量の和の分散は共分散項の存在により一般に元の分散の和とは等しく ない。つまり

$$S_{xy}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left\{ (x_{i} + y_{i}) - (\overline{x} + \overline{y}) \right\}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2} + \frac{1}{N} \sum_{i=1}^{N} (y_{i} - \overline{y})^{2} - \frac{2}{N} \sum_{i=1}^{N} (x_{i} - \overline{x}) (y_{i} - \overline{y})$$
(2)

右辺第3項が共分散項で、その値の比較は各変量の標準偏差で規格値した相関係数として、次式 で示される。

- 101 -

$$\mathbf{r}_{xy} = \frac{\operatorname{Cov}(\mathbf{x}, \mathbf{y})}{\operatorname{Var}(\mathbf{x}) \cdot \operatorname{Var}(\mathbf{y})} = \frac{\sum_{i=1}^{N} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{y}_i - \overline{\mathbf{y}})}{\sqrt{\sum_{i=1}^{N} (\mathbf{x}_i - \overline{\mathbf{x}})^2} \sqrt{\sum_{i=1}^{N} (\mathbf{y}_i - \overline{\mathbf{y}})^2}}$$

相関係数は $-1 \le r_{xy} \le 1$ の範囲にあり、

(3)

r_{xy} = -1の場合: y = -ax +b (a > 0)の関係が成立し、負の完全相関があることを示す。

 $\mathbf{r}_{xy} = 0$ の場合: 2変量間に相関は存在しないことを意味する。

 $-1 < r_{xy} < 1$ の場合: 2変量の同時分布の複雑な形を一般的に記述することは難しい。 データ間の相関を考える場合,特に断らない限り又は他の条件が持ち込まれない限り,ここでは $r_{xy} = 1$ を適用する。

3. 共分散行列法の要請

ある1つの測定対象について多数回の測定を行えば確かに確立密度関数を求めることは可能と なり、その分散を求めることも容易である。しかし、どの測定の場合でも必ずしも測定データが 多くとれるとは限らないばかりか、繰返し測定では系統的な誤差が見落されがちとなる。そこで 実験データに対して信頼度の高い評価値とその誤差を如何にして求めるかが重要な課題である。 即ち、各誤差要素のもつ不確かさを考えた信頼性のある誤差解析を包括的に行うことが重要とな る。

米国のCSEWG が中心となって評価核データをまとめて行く中で、多くの利用者側からの要請 もあってORNLのF.G. Perey らが中心となりENDF/Bシステムに実験データの誤差相関を考 えた共分散マトリックスが取り入れられることとなった。その結果は ENDF/B-Vの File 33 (Covariance File)に収録されている。ここには中性子断面積の精度と相関関係のデータが示 されているが、角度分布(File 4)とエネルギー分布(File 5)については、データの誤差と相 関関係を表わすフォーマットが未定のため、後まわしとなったようである。

共分散行列は互のデータ間の誤差がどのように影響し合い、どの断面積の測定値、評価値、デ ータ処理法に不十分な点が存在するかを見極める上で有益な情報を提供する。共分散法によるデ ータの解析と評価、スペクトル・アンフォールディングに適用される計算コードとしてSTAY' $^{(4)}$ SL, BOLIK, DANTE 等がある。ENDF/B システムの多群断面積の誤差は共分散ファイ ル処理コード PUFF を使って求められた。その結果、断面積、標準偏差、共分散、相関係数マ トリックス等が COVERX フォーマット 8) として与えられている。

4. 誤差評価 — ²⁵² Cf スペクトル平均断面積測定の場合²⁰

未知の中性子断面積は、一般に既知の中性子断面積の比として求められることが多い。

-102 -

²⁷A ℓ (n, α)²⁴Na 及び¹¹⁵In(n, n')¹¹⁵^mIn反応等の断面積は Reactor Dosimetry に関連す るしきい反応断面積として、カルテゴリー1 に属するものであり、²⁵²Cf スペクトル平均断面積 ¹⁰⁾として著者らの他、最近Mannhart が絶対測定を行っている。

しきい反応iの反応率は次式で与えられる。

$$P_{i} = \frac{A_{i}}{N_{i} \varepsilon_{i}} \prod_{\ell} k_{i}^{\ell}$$
(4)

ここで、 A_i は計数率、 ϵ_i は検出効率、 N_i は試料の原子核数、 k_i^ℓ は実験上の補正項を示す。し きい反応 i と j の測定に対して反応率の比は断面積の比として、 R_{ij} を次式で定義する。

$$R_{ij} = \frac{\sigma_j}{\sigma_i} = \frac{P_j}{P_i}$$
(5)

ここに示したi, jに対応する具体例をTable 1に示す。この表は ${}^{27}A\ell$ (n, α) 24 Na 及び 115 In (n, n') 115m In 反応断面積に対する ${}^{27}A\ell$ (n, p) 27 Mg 及び 24 Mg (n, p) 24 Na 反応断面 積測定 ${}^{9)}$ における誤差要因毎の誤差をパーセント表示している。表中,下線及び肩文字を附した データはお互の間に相関のあることを示す。

(4)式を偏微分して

$$\left(\frac{dP_{i}}{P_{i}}\right) = \left(\frac{dA_{i}}{A_{i}}\right) - \left(\frac{dN_{i}}{N_{i}}\right) - \left(\frac{d\varepsilon_{i}}{\varepsilon_{i}}\right) + \Sigma\left(\frac{dk_{i}}{k_{i}^{\ell}}\right)$$
(6)

を得る。これを便宜上,次式で表わす。

$$\delta \mathbf{P}_{i} = \delta \mathbf{A}_{i} - \delta \mathbf{N}_{i} - \delta \varepsilon_{i} + \Sigma \delta \mathbf{k}_{i}^{\ell}$$
⁽⁷⁾

(5)式でそれぞれi = 1, 3, j = 2, 4 とおくと, 同様にして

$$\delta R_{12} = \delta P_2 - \delta P_1, \quad \delta R_{34} = \delta P_4 - \delta P_3 \tag{8}$$

以上の結果より、断面積比の分散(Var)、共分散(Cov.)は次のようになる。

Var (
$$\delta R_{12}$$
 , δR_{12}) = $< \delta P_1 \delta P_1 > + < \delta P_2 \delta P_2 > -2 < \delta P_1 \delta P_2 >$

 $\operatorname{Var}\left(\delta R_{34}, \delta R_{34}\right) = <\delta P_3 \delta P_3 > + <\delta P_4 \delta P_4 > -2 < \delta P_3 \delta P_4 >$ (9)

 $Cov (\delta R_{12}, \delta R_{34}) = < \delta P_1 \delta P_3 > + < \delta P_2 \delta P_4 > - < \delta P_1 \delta P_4 > - < \delta P_2 \delta P_3 >$

ここで、ブラケットは各誤差要素の分散の和を示し、Table 1 の数値を用いた計算法をTable 2 に示す。この表の右端には各ブラケットの計算結果を与えている。また表中 $< \delta \epsilon_i \delta \epsilon_j >$ 欄に示した左端の数値は誘導放射能のガンマ線測定時において検出効率間に存在する相関係数(後述の付録参照)である。よって(9)式より次の結果を得る。

- 103 -

従って, 共分散行列(誤差ファイル)は

$$\begin{pmatrix} 11.20 & -1.39 \\ -1.39 & 19.00 \end{pmatrix}$$

由関係数の定義に従

となり,相関係数の定義に従えば,

 $r_{11} = r_{22} = 1.00$

$$r_{12} = r_{21} = \frac{-1.39}{\sqrt{11.20}} = -0.10$$

最終結果として得られる誤差及び相関係数行列は、次のようになる。

標準偏差 相関係数行列(×100) σ_2 {²⁷ Al(n, p)}/ σ_1 {²⁷ Al(n, a)}: 3.35% (100 σ_4 {²⁴ Mg(n, p)}/ σ_3 {¹¹⁵ In(n, n')}: 4.36% (100 -10 100)

なお、共分散値を無視すると、(9)式において $\langle \delta P_i \delta P_j \rangle$ のクロスターム($i \neq j$)がなくなり (主として従来の方法)、

 $\langle \delta P_1 \ \delta P_1 \rangle + \langle \delta P_2 \ \delta P_2 \rangle = 9.69 + 13.69 \rightarrow 4.84\%$

 $<\delta P_3 \ \delta P_3>+<\delta P_3 \ \delta P_4>=14.78+17.40 \rightarrow 5.67\%$

となる。これは各データが持つ情報が十分活用されていないために生じた不適切な解析結果によ るためである。

2),11) 5. 誤差評価 ―― 複数のデータから最大値を得る場合

前節では異なる測定対象のデータ間に相関関係が存在する場合の一例について考察したが、こ こでは同一測定対象に対し幾つかの測定データ間に相関関係が存在する場合について、共分散法 による実験誤差評価法を考えてみる。これは、いわゆる best valve を得る方法として評価者に とって興味深い問題であろうと思われる。

ここに示す方法はデータ間の共分散を最小にするよう、共分散行列の非対角行列要素も重率と 12) 6) して含めた最小自乗法である。これは、いわゆる Bayes' Theoremによるもので、DANTE や STAY'SL⁴⁾ プログラムでは、既にこうした計算が行えるようになっている。これらのプログラ ムでは最大値と共分散マトリックスが共に計算が可能である。

ここでは、まず対象となる評価値(例えば中性子断面積の評価結果)をベクトル表示で次のように示す。

$$\mathbf{P} = (\mathbf{P}_i) = (\mathbf{P}_1 \cdots \mathbf{P}_n), \quad i = 1 \sim n \tag{10}$$

Pの誤差を表わす共分散行列をMとすると、この**P**とMは計算に先き立って与えられるものである。次に(P_i)を求める実験データのセットを次のように与える。

$$D^0 = (d_i^0), \quad i = 1 \sim m$$

(11)

その共分散行列をV, D^0 に対応する評価値を $D = (d_i)$ とする(例えば direct measurement では $d_i = P_i$, ratio measurement では $d_i = P_i / P_j$), P に代る新しい値をP'とすると, D^0 データをfit するモデルは次式で与えられる。

$$\mathbf{D}' = \mathbf{D} + \mathbf{G} \left(\mathbf{P}' - \mathbf{P} \right) \tag{12}$$

 $G \operatorname{kim} \times n$ 行列の要素 $g_{ij} = \partial d_i / \partial P_j$ である (direct measurement では G 要素は 1 又は 0 と なる。

11), 12) \mathbf{P}' は次式の χ^2 を最小にする値として決定される。

$$\chi^{2} = (\mathbf{P} - \mathbf{P}')^{\dagger} \mathbf{M}^{-1} (\mathbf{P} - \mathbf{P}') + (\mathbf{D}^{0} - \mathbf{D}')^{\dagger} \mathbf{V}^{-1} (\mathbf{D}^{0} - \mathbf{D}^{1})$$
(13)

ここで、 $N = GMG^{t}$ の定義に従うと、新たなベクトルP'の解とその共分散行列M'は次式で与えられる。

$$\mathbf{P}' - \mathbf{P} = \mathbf{M}\mathbf{G}^{\mathsf{t}}(\mathbf{N} + \mathbf{V})^{-1} \quad (\mathbf{D}^0 - \mathbf{D})$$
(14)

(15)

$$\mathbf{M} - \mathbf{M}' = \mathbf{M}\mathbf{G}^{\mathrm{t}}(\mathbf{N} + \mathbf{V})^{-1}\mathbf{G}\mathbf{M}$$

ここに示した誤差解析法に従って具体的に数値を使って計算を行ってみる。その例題として、 前節に示した実験データの他,著者らが行った3回の²⁷ A ℓ (n,p) 27 A ℓ (n, α)反応断面積 比の測定結果⁹⁾について,上記手法を適用し最大値の算出を試みる。Table 3 に 3 回の実験結果 とそれらの共分散列を示す。(14式を適用するに当り,測定値,評価値として**P**=**D**=(4.87),そ の誤差を大き目に8%,即ち**M**=(64)と選ぶと

従って、(14式は

$$P' = P = (64) (1 1 1 1) \begin{pmatrix} \\ N + V \end{pmatrix}^{-1} \begin{pmatrix} 4.797 - 4.87 \\ 4.892 - 4.87 \\ 4.936 - 4.87 \end{pmatrix}$$

ててで,

$$\mathbf{N} + \mathbf{V} = \begin{pmatrix} 64+11.20 & 64+4.64 & 64+4.64 \\ 64+4.64 & 64+19.14 & 64+4.64 \\ 64+4.64 & 64+4.64 & 64+28.45 \end{pmatrix}$$

P' - P = -0.0230

従って、P'=4.847, M'も同様にして(15式より

$$M-M' = (64) (1 1 1 1) \left(N+V\right)^{-1} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} (64)$$

従って, M'=7.4506。即ち誤差として2.73%を得る。

- 105 -

以上の結果, Table 3 に示された最終結果は 4.847±0.132(2.73%)となる。これを相加平均によって求めた結果では 4.875±0.216(4.43%)となる。

6. 誤差評価 ---- 多群エネルギー依存断面積測定の場合

エネルギー依存断面積は、しばしば標準断面積に対する相対値として求められ、よく知られた 既知断面積に規格化されることが多い。このような場合、問題となる系統的な誤差は大別して、 規格化とエネルギー依存曲線の形状の不確かさに起因している。特に後者に伴う誤差はエネルギ ーE_i 点の断面積の変化に対し、エネルギーE_j 点の結果にどの程度影響が現われるかという点 で注目される。これを数値で示そうとするものが多群エネルギー依存断面積測定の相関係行列で ある。

著者らは電子線型加速器を用いた飛行時間分析法によって¹⁰B(n, α)反応に対する²³²Th (n, r)反応断面積を測定し、その結果を24keVの定点測定値に規格化することによって、1 keVから408 keV領域の²³²Th(n, r)反応断面積を求めた。¹³⁾ ここでは、これらの実験デー タを基に各エネルギー群断面積間の相関係行列と標準偏差を求める手順を考えてみる。まず、誤 差解析の基になる実験誤差要因とそれぞれのエネルギーグループ毎の誤差をTable 4 に示す。 各誤差要因の間には相関はなく、表中肩文字を付したデータ間に相関が存在するとした。この場 合¹⁰B(n, α)反応のエネルギー群間の相関係数はSmithが作成した行列値¹⁴⁾ そ引用したが、他 は完全相関を仮定した。

¹⁰B(n, α)反応断面積に対する²³²Th(n, r)反応断面積は次式で与えられる。

$$\frac{\sigma_{i}(Th)}{\sigma_{i}(B)} = \frac{C_{i}(Th)}{C_{i}(B)} \frac{\varepsilon_{i}(B)}{\varepsilon_{i}(Th)} \frac{S_{i}(Th)}{S_{i}(B)} \frac{\phi_{i}(B)}{\phi_{i}(Th)} \frac{\mu_{i}(\ell)}{\ell}$$
(16)

ここで、 σ_i 、 C_i 、 ϵ_i 、 S_i 、 ϕ_i はそれぞれエネルギー群iに対する捕獲断面積、計数率、検出 効率、断面積補正項、中性子束である。(16式の結果を24 keVに規格化して書き直すと

$$\sigma_{i} (Th) = \frac{\sigma_{i}(B)C_{i} \varepsilon_{i} S_{i} \prod_{\ell} k_{i}(\ell) \sigma_{24} (Th)}{\sigma_{24}(B)C_{24} \varepsilon_{24} S_{24} \prod_{\ell} k_{24}(\ell)} = \frac{P_{i}}{P_{24}}$$
(17)

(18)

ここで、添字 24 は 24 keV を含むエネルギーグループを意味する。また便宜上 C_j =C_j (Th) /C_j(B), $\epsilon_j = \epsilon_j(B) / \epsilon_j$ (Th), S_j=S_j (Th) /S_j(B)とし、 $\phi_i(B) / \phi_i$ (Th) = $\phi_{24}(B) / \phi_{24}$ (Th) を仮定した。

先の4節の場合と同様に、117式を偏微分し次の関係式を得る。

 $\delta \sigma_{i}$ (Th) = $\delta P_{i} - \delta P_{24}$

$$\mathcal{Z} \subset \mathcal{C}, \quad \delta \mathbf{P}_{i} = \delta \mathbf{C}_{i} + \delta \varepsilon_{i} + \delta \mathbf{S}_{i} + \delta \sigma_{i} (\mathbf{B}) + \delta \sigma_{24} (\mathbf{Th}) + \Sigma \delta \mathbf{k}_{i} (\mathcal{L}) \\ \delta \mathbf{P}_{24} = \delta \mathbf{C}_{24} + \delta \varepsilon_{24} + \delta \mathbf{S}_{24} + \delta \sigma_{24} (\mathbf{B}) + \Sigma \delta \mathbf{k}_{24} (\mathcal{L})_{\circ}$$

$$= 1 \sim 12$$
, $j = 1 \sim 12$,

i

これらの計算を行う原理は4節のTable 2に示した方法と同様である。こうして得られた12行 ' 12列の相関係数行列,並びにそれぞれの標準偏差をTable 5に示す。非対角行列要素の相関係数 は何れも0.8を上回っており,データ間の相関が大きいことを示す。この実験の場合は断面積の 規格化を行った定点測定値の誤差が全体に影響しているためと思われる。

7. 結 び

実験データ間に存在する相関関係に注目し、具体的な数値を引用しながら、共分散法による誤 差解析の方法と結果について紹介した。ここでは、その手法の理解に重点をおいたことから、デ ータセットを一部限定したこともあるが、実験データが多くても原理的には同じである。こうし た計算を行うためのコードとして既にSTAY'SLやDANTE等が作成されており、日本でもやが て使用できるようになろう。

共分散行列法の適用は誤差解析を行う上で,誤差の性質の理解と各種実験データ間の不確かさ を記述する誤差ファイルの作成に役立つ。実験データの評価結果に誤差ファイルが付くと,デー タの信頼性が高まるのみならず,原子炉の核設計計算スペクトル unfolding 等における計算結 .果の信頼性,不確かさの評価に極めて有用な情報を与えてくれる。

共分散行列法は評価者が実験データの評価を行う上で非常に有益な情報を与えることになろう。 こうした点から、今後、実験者にはそのデータの持つ誤差ファイル(相関係数行列)を提示して おくことが要望されるようになろう。

最後に、本文をまとめるに当り、PTB (Physikalisch – Technische Bundesanstalt)の Dr · W · Mannhartに負うところが大きかった。ここに深甚の意を表したい。

付 録 ガンマ線検出効率と相関係数行列

ガンマ線検出効率を $\varepsilon_i = a E_i^b$ 式で近似する。標準ガンマ線源による各エネルギーと、これに 対する検出効率の最小自乗処理によって定数a, bを決定する。上式の偏微分形は $\delta \varepsilon_i = E_i^b \delta a + a E_i^b \ell_n E_i \delta b$ ($i = 1 \sim 3$)。 $E_1 = 0.336 \text{ MeV}(^{115 \text{ m}} I n), E_3 = 1.368 \text{ MeV}$ (²⁴ Na)を例にとると、本文の場合同様、検出効率に対する分散、共分散は次のように求まる。

Var(ϵ_1 , ϵ_1) = $\langle \delta \epsilon_1 \delta \epsilon_1 \rangle$ = 4.996 Var(ϵ_3 , ϵ_3) = $\langle \delta \epsilon_3 \delta \epsilon_3 \rangle$ = 1.129 Cov(ϵ_1 , ϵ_3) = $\langle \delta \epsilon_1 \delta \epsilon_3 \rangle$ = 1.897

共分散行列:

		標準偏差	相関	系数
(4.996	1.897	> { ^{2.23} %	(1.00	
1.897	1.129/	- 1 _{1.06 %}	0.80	1.00/
同様に行えば3	つのガンマ級	泉エネルギーに対し	て	

* 33 Braunchweig, Federal ≷epublic of Germany

-107 -

E _i	ε _i %	相関係	数行列(>	< 100)
^{115 m} In (0.336)	$arepsilon_1 \pm 2.23$	/ 100		
²⁴ Mg (0.844)	$\epsilon_2 \pm 1.39$	95	100)
²⁴ Na (1.368)	$\epsilon_3 \pm 1.06$	\ 80	94	100 /

を得る。

参考文献

- 1) Perey, F.G. : ORNL/TM-5938 (1977).
- Mannhart, W. and Perey, F.G. : Proc. of 3rd ASTM-EURATOM Symp. on Reactor Dosimetry, Ispra (1979) in print.
- 3) Wagschal, J.J., et al. : ibid. (1979) in print.
- 4) Perey, F.G. : ORNL/TM-6062 (1977).
- 5) Petilli, M. : "BOLIK A program for integral data evaluation", 近々 publish される予定。
- 6) Petilli, M. :CNEN-RT/FI(79)7 (1979).
- 7) Weisbin, C.R., et al. : ORNL/TM-4847 (1975).
- 8) Drischler, J.D. and Weisbin, C.R. : ORNL-5318 (1977).
- 9) Kobayashi, K. and Kimura, I.: 2)の参考文献に同じ。
- 10) Mannhart, W. and Alberts, W.G. : Nucl. Sci. Eng., 69, 333 (1979).
- Perey, F.G. : Proc. Int. Conf. on Neutron Physics and Nuclear Data for Reactors and Other Applied Purposes, Harwell, CONF-780921, p.104 (1978).
- 12) Dragt, J.B. et al. : Nucl. Sci. Eng., 62, 117 (1977).
- 小林 捷平:日本原子力学会,昭和 55 年分科会, E-14 及び Kobayashi, K et al ・ 投稿予定
- 14) Smith, J.D. : ORNL/TM-7221, by private communication from F.G. Perey of ORNL (1980).

討 論

Q:浅野 則雄(住原工)

異った測定における partial error 間の相関係数は、どのように定量化されたか。

例えば、 $<\delta\epsilon_i \cdot \delta\epsilon_r >= 0.94 \times 1.06 \times 1.39$

相関係数

A:小林 捷平(京大炉)

これについては、本文の付録として示したガンマ線検出効率と相関係数行列の説明を御参照下 さい。

Uncertainties	Symbol	Run 27	-1	Run -	- 2 24
due to (%)		- Al(n,α)	- AI(n,p)	<u> </u>	- Mg(n,p)
I.D. No.		1	2	3	4
Counting statistics	A _i	1.6	2.0	1.0	3.2
Efficiency	٤ <mark>،</mark>	1.06	1.39	2.23	1.06
Geometrical factor	k ^G i	2.0	2.0	2.0	2.0
Half life	k ^T i	<u>0.4</u> ^a	0.5	0.8	<u>0.4</u> ^a
Mass determination	N _i	<u>0.1^b</u>	<u>0.1^b</u>	0.1	0.2
Back scattering	k ^B i	0.7	1.0	1.0	0.7
Irradiation time	k ^{IR}	_0.3 ^C	0.5	0.4	<u>0.3^C</u>
Gamma ray attenuation	k ^S i	0.5 ^d	0.5	1.0	<u>0.5^d</u>
Gamma ray intensity	k ^{IN} i	<u>0.1^e</u>	1.0	1.0	<u>0.1^e</u>
Others	k ^R i	1.0	1.0	1.0	1.0

Table 1 平均断面積測定における実験誤差とその要因

ー, a, b, c, d, e は相関のあることを示す。

Table3 3回の実験データと共分散行列

Run No.	Measurement: D ^O	Covariance matrix: V
1	4.797	11.20
2	4.892	4.64 19.14
3	4.936	4.64 4.64 28.45

Table 2 分散,共分散	唄の計算
----------------	------

< \$P _i \$P _j }	<deigej> <green <green="" <green<="" th=""><th>$\begin{pmatrix} G \\ j \end{pmatrix} < \delta \kappa_{i}^{B} \delta \kappa_{j}^{B} < \delta N_{i} \delta h$</th><th>Nj < 6k^T 6k^T;</th><th><لانا المرامين المرامين المرامين المرامين المرامين المرامين المرامين المرامين المرامين المرامين المرامين المرام مرامين المرامين h><th><ۇk^s ۇk^s›</th><th><لانا الله الله (kin second second second second second second second second second second second second second</th><th></th><th>٤</th></green></deigej>	$\begin{pmatrix} G \\ j \end{pmatrix} < \delta \kappa_{i}^{B} \delta \kappa_{j}^{B} < \delta N_{i} \delta h$	Nj < 6k ^T 6k ^T ;	<لانا المرامين المرامين المرامين المرامين المرامين المرامين المرامين المرامين المرامين المرامين المرامين المرام مرامين المرامين <ۇk ^s ۇk ^s ›	<لانا الله الله (kin second second second second second second second second second second second second second		٤	
< 8 P1 8 P1>		(quadrati	c sum of all	uncertair	ty contri	butions)	=	9.69
< 6 P1 6 P2>	0.94x1.06x1.39 + 2.0x2	.0+0.7x1.0+0.1x0	.1				=	6.09
< 5P1 6P3>	0.80×1.06×2.23 + 2.0×2	.0+0.7x1.0					=	6.59
< 5P1 5P4>	1.00x1.06x1.06 + 2.0x2	.0+0.7x0.7	+ 0.4x0.44	0.3x0.3 4	0.5x0.5	0.1x0.1	=	6.12
< 8P2 8P2>							Ξ	13.69
< 5P2 5P3>	0.95x1.39x2.33 + 2.0x2	.0+1.0x1.0					=	7.94
< 5P2 5P4>	0.94x1.39x1.06 + 2.0x2	.0+1.0x0.7					=	6.08
< & P3 & P3>							=	14.78
< 6P3 6P4>	0.80x2.23x1.06 + 2.0x2	.0+1.0x0.7		•	·		= _.	6.59
< 804 804 >							=	17.40
	·			<u>.</u>	*	· · · · · · · · · · · · · · · · · · ·	<u> </u>	

•

- 110 -

Table 4 ²³² Th (n, r) 反応断面積測定における実験誤差とその要因

a), b), c), d)は相関のあることを示す。

Uncertainties (%) due to	Symbol	J	2	3	Energ 4	y Gr 5	oup 6	7	8	9	10	11	12	Error in the group including 24 keV
$10_{B(n,\alpha)}$ cross section	σ _i (B)	1.6 ^{a)}	1.3 ^{a)}	.73 ^{a)}	.56 ^{a)}	.45 ^{a)}	. 32 ^{a)}	.23 ^{a)}	.22 ^{a)}	.22 ^{a)}	.22 ^{a)}	.22 ^{a)}	.22 ^{a)}	0.32 ^{a)}
Counting statistics	C,	2.03	1.44	1.59	1.53	1.66	1.70	1.69	1.66	1.64	1.86	1.78	1.50	1.70
Background subtraction	k ₁ (1)	0.6	0.6	0.61	0.63	0.66	0.70	0.75	0.80	0.90	1.15	1.3	1.50	0.70
Dead time correction	k _i (2)	0.03	.028	.026	.024	.023	.022	.022	.022	.022	0.02	0.02	0.02	0.022
Energy dependency of detection efficiency	ε _i	1.0 ^{b)}	0.9 ^{b)}	.85 ^{b)[·]}	.80 ^{b)}	.80 ^{b)}	.75 ^{b)}	.70 ^{b)}	.70 ^{b)}	.65 ^{b)}	.60 ^{b)}	.55 ^{b)}	.50 ^{b)}	0.75 ^{b)}
Correction of neutron scatt. & self-shield	s _i	1.8	1.7	1.7	1.7	1.6	1.6	1.6	1.7	2.0	2.3	2.6	4.2	1.6
Neutron flux normaliza- tion	k _i (3)	0.1 ^{c)}	0.1 ^{c)}	0.1 ^{c)}	0.1 ^{c)}	0.1 ^{c)}	0.1 ^{c)}	0.1 ^{c)}	.0.1 ^{c)}	0.1 ^{c)}	0.1 ^{c)}	0.1 ^{c)}	0.1 ^{c)}	0.1 ^{c)}
Shift in energy axis	k _i (4)	0.5	0.3	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.3	0.6	1.6	0.1
Other systematic errors	k _i (5)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5
Other systematic errors Normalization of ²³² Th	k _i (6)	1.0 ^{d)}	1.0 ^{d)}	1.0 ^{d)}	1.0 ^{d)}	1.0 ^{d)}	1.0 ^{d)}	1.0 ^{d)}	1.0 ^{d)}	1.0 ^{d)}	1.0 ^{d)}	1.0 ^{d)}	1.0 ^{d)}	0.5 ^{d)}
(n,γ) to 24 keV value	σ ₂₄ (Th)													8.65
Uncertainty element		δ ^P l	δP2	^{δΡ} 3	^{δΡ} 4	^{δΡ} 5	^{δΡ} 6	^{δΡ} 7	^{δΡ} 8	^{δΡ} 9	^{δΡ} 10	^{δΡ} 11	^{δΡ} 12	δΡ ₂₄

- 111 -

Group No.	Energy upper	(keV) lower	Standard dev. (%)		Corre	elati	on mat	trix	(x 1	000)			<u></u>	
٦	408	247	9.64	1000			•								
2	247	150	9.46	911	1000		•								
3	150	90.7	9.42	904	923	1000									
4	90.7	55.0	9.40	904	922	923	1000								
5	55.0	33.4	9.40	903	921	922	924	1000							
6	33.4	20.2	9.39	900	918	921	922	922	1000						
7	20.2	12.3	9.40	899	917	920	922	922	921	1000					
8	12.3	7.43	9.41	897	915	918	920	920	919	919	1000				
9	7.43	4.50	9.48	891	909	912	914	914	913	913	911	1000			
10	4.50	2.73	9.62	878	896	899	901	900	900	900	898	892	1000		
11	2.73	1.66	9.71	869	887	890	892	892	891	891	890	884	871	1000	
12	1.66	1.00	10.35	816	832	835	837	837	836	836	835	829	817	810	1000

Table 5 ²³² Th (n, r) 反応断面積測定における標準偏差と相関係数行列

JAERI-M 9523

3.4 ドシメトリーにおけるCovarianceの効果

中沢正治*

原子炉ドシメトリーの高精度化及び不確定性解析に必要な3種類の物理量(反応率測定値,ド シメータの反応断面積及び推定スペクトル)の共分散について,その必要性,現状及び問題点に ついて概説した。特に前2者の物理量については,誤差の伝播が全く等価であるにも拘らず,断 面積精度が特に劣っているので,その誤差評価手法を明確にし共分散表現にすること及び誤差自 身を小さくする事が望まれるとした。又,断面積及びスペクトルの共分散成分を無視することは 殆んど不可能であるどころか,スペクトルの誤差の場合には極めて必要且つ望ましい効果を与え ることを数値例により示し,当面の約10年間程度は,この方向への研究を進めるべきであると 結論した。

Influences of the Covariance Matrices over Reactor Neutron Dosimetry

M. NAKAZAWA*

Present status and influences of three covariance matrices being used in reactor neutron dosimetry have been reviewed. Those are the uncertainties of the measured reaction-rate values, dosimeter reaction cross-section values and guess spectra, and are essential to the uncertainty analysis of the present dosimetry results.

Immediate needs are stated to establish the evaluation method of covariance matrices of the cross-section curves and to decrease their uncertainties, which have rather low accuracies than the measured reaction-rate values although these two have the same influences to the final results.

Conclusive remarks have been said that we can't go forward without covariance matrices of cross-section and guess-spectrum at least in the next 10 years, and interesting comments are given through numerical unfolding results that the covariance matrices of guess spectra have generally very favorable influences of dosimetry results which make larger the initial error of the calculated reaction-rate and make lower the final uncertainty of integral dose values.

* 東大工, 原子力工学研究施設, Nucl. Eng. Res. Lab., Univ. of Tokyo

- 113 -

1. 緒 言

原子炉ドシメトリーの分野では、3成分の誤差が寄与し、それぞれに共分散表現が必要である。 1)2) この必要性について、 J1法 に基づいて定量的表現を与えると以下の通りである。つまり

 $R_i = \int \sigma_i(u) \phi(u) du (i = 1, n) \\ bI = \int W(u) \phi(u) du \\ exめる問題で, R_i, \sigma_i(u) \\ 及び \phi(u)$ の推定値 $\phi_0(u)$ は既知とする。

このとき,

$$I = \int \{ W(u) - \sum_{i=1}^{N} C_i \sigma_i(u) \} \phi_0(u) du + \sum_{i=1}^{n} C_i R_i$$
(1)

但し、 $\Delta R_{ic} = \int \Delta \sigma_i(u) \phi_0(u) du$ であり、

 $\Delta R_{ic} \Delta R_{jc} = \iint \Delta \sigma_{i} (u_{1}) \Delta \sigma_{j} (u_{2}) \phi_{0} (u_{1}) \phi_{0} (u_{2}) \ \mathcal{C} \mathcal{B} \mathcal{S}_{\circ}$

以上より、(2)式において3成分 $\Delta R_i \Delta R_j$, $\Delta \sigma_i (u_1) \Delta \sigma_j (u_2)$ 及び $\Delta \phi_0 (u_1) \Delta \phi_0 (u_2)$ の必要なことが分る。又, I という量は、例えば構造材に対する中性子照射量(1 Me V 又は 0.1 Me V 以上の中性子束、或いはdpa値など)を表わしており、原子炉の耐用年数、寿命等を決 定する極めて重要な量であり、従ってその不確性 $\Delta I (1\sigma)$ は、寿命の安全因子、余裕を決める 量になる。(簡単に言えば、10⁻⁶の確率で安全であるためには、I-4.75× ΔI の照射量に抑える 必要があるとして使用する。)

これらの共分散の3成分についてその必要性,評価の現状,見通し等について自分自身の現状 認識を含めて,まとめたものが表1である。特に,強調すべき点は,(2)式を見て分るように, $\overline{AR_i AR_j} \ge \overline{AR_{ic} AR_{jc}}$ は,全く等価な形で(AI)²に寄与しているにも拘らず,現状精度に は大きな差違がみられ,ドシメトリー断面積の精度向上が切に望まれる次第である。なお、スペ クトルの不確定性 $\overline{A\phi_0(u_1) A\phi_0(u_2)}$ の寄与の仕方については,後述するが、この精度がよくな れば $R_i \ge \sigma_i(u)$ などは不要になる(つまり計算による線量評価によりドシメトリーの目的は十 分達せられる) という面のあることを補足しておく。

2. 共分散評価方法論上の問題

表1の評価の現状にまとめたように、反応率についての共分散は、殆んど評価方法論的に問題 のないところである。これは、今回の小林捷平氏の報告³⁾にも見かれる通りであり、誤差原因を 検討していくことにより、実用上、余り問題のない精度で共分散行列が得られている。但し、細 かな点ではやや問題も残されており、1つは、ガンマ線検出器の効率の誤差評価⁴⁾であり、もう 1つは、原子炉出力のゆらぎの問題等である。これらは、いずれも、或る関数値の誤差評価に関 連する問題であるが、この問題は、断面積とかスペクトルの誤差を考える際の本質的な問題とも同

- 114 -

ーである。このような関数の誤差については,従来の有限次元の確率・統計では扱い切れない部 分があり,これは本来,無限次元の確率・統計等,即ち確率過程論を用いる必要があり,且つこ れを土台としたデータ評価の統計的手法が不可欠となるのである。

簡単な例題を示すと以下の通りである。

「 $1 \sim 10 \text{ MeV}$ の領域で, 誤差±10%」と表示された断面積 $\sigma(u)$ の〔 $E_1 \sim E_2$ 〕 領域($1 < E_1 < E_2 < 3 \ge \sigma$) での反応率として, $\sigma = \int_{u_1}^{u_2} \sigma(u) du$ の誤差 $\Delta \sigma \varepsilon x \delta$ でみよう。

$$(\Delta \overline{\sigma})^{2} = \int_{u_{1}}^{u_{2}} du \int_{u_{1}}^{u_{2}} du' \overline{\Delta \sigma(u) \Delta \sigma(u')}$$
(3)

となるが、ここで、

(a) $\pm 10%$ と表示された誤差が、エネルギー的に全く無相関であり、任意のエネルギー点で ± 10 %誤差をもつとした場合、つまり $\Delta \sigma(u_1) \Delta \sigma(u_2) = (0.1)^2 \sigma(u_1) \delta(u_1-u_2)$ のとき、(3)を用いて計算すると、

$$\Delta \overline{\sigma} / \overline{\sigma} = 0.1 / \sqrt{|u_2 - u_1|} = 0.1 / \sqrt{\ell_1 \frac{E_2}{E_1}}$$
(4)

となる。これは、dimension的にもややおかしくなるほか、 $E_1 = 1 \text{ MeV}$ 、 $E_2 = 10 \text{ MeV}$ とする と $\Delta \overline{\sigma} / \overline{\sigma} = 6.6\%$ となり、最初の $\pm 10\%$ の誤差表示と矛盾してしまう。

(b) ±10%との表示,エネルギー的に完全に相関がある場合,つまり $\sigma(u)$ の曲線の形は,完全に 正しく評価されているが絶対値のみ±10%だけ上下すると見做したとき,これは $\Delta \sigma(u_1) \Delta \sigma(u_2)$ =(0.1)² $\sigma(u_1)\sigma(u_2)$ より,(3)を用いて

 $\Delta \overline{\sigma} / \overline{\sigma} = 0.1 \tag{5}$

となる。このときは、エネルギー群をどんなに幅狭くしても土10%の誤差のままとなる。

以上の通り(a), (b)の2種の解釈が可能となる。つまり偶然誤差と系統的誤差が合成されたま、、 ±10%の誤差があると表示することは、不十分な表現であることが分る。そして、もしこれを使 用するとすれば、誤差表示のために与えられた群構造を更に細分化することは不可能であるとし なければならない。(参考のため、このような不十分な形ではあるが、ドシメトリー断面積の誤 差評価の例をTable 2 に示す。⁵⁾これはSAND-II Monte-Carlo アンフォールディングコー ドに使用されているものである。)

以上の混乱を解決するためのポイントは、エネルギー分解能 Δu の概念を入れて偶然誤差を表現することであるという点については、先回の核データ研究会にて指摘した通りである。 っまり、今の例で言えば、1~10 MeV 領域において系統的誤差 $\epsilon_1 %$ 、偶然誤差は Δu の分解能で $\epsilon_2 %$ と表示 すべきである。又、偶然誤差については、 $\epsilon_2 \cdot \sqrt{\Delta u} = -$ 定の形で群構造変換が可能であることも既に説明した通りである。そして、この様な観点から実測される反応断面積値は、図 1 のような表示がなされるべきであると言える。又、定量的表現としては、

$$\frac{\varDelta \sigma (u_1) \varDelta \sigma (u_2)}{\sigma (u_1) \cdot \sigma (u_2)} = \varepsilon_1^2 (u_1, u_2) + \varepsilon_2^2 \cdot \varDelta u \cdot \delta (u_1 - u_2)$$
(6)

の形にまとめられるべきと思われる。

- 115 -

このような表示方法上の混乱は、ENDF/B-Vのドシメトリファイルにも見られており、共分 散の形で与えられてはいるが、偶然誤差と系統的誤差が区別されていないため、群構造を変えて 使用することが出来ないということになる。JENDL-IF等の共分散評価の際に、是非考慮してい ただきたい点であるとともに、ドシメトリーファイルの誤差ファイルについての国内版が望まれ る由縁でもある。

以上,断面積曲線の誤差表示について問題点を示してきたが,これは中性子スペクトルの誤差 表示のほか,一般的に関数で与えられる物理量の誤差表示に共通の問題であることは容易に類推 し得るものと思われる。簡単な例を示すと,或る棒の質量分布の問題であるが,これは空間分解 能を原子とか原子核サイズにとって表示すれば殆んどの点で零で,局所的にとび出したような形 になり,日常的に使う分布形とは異質のものになってしまうことを想像してもよいと思われる。 この分布は,より空間分解能を悪くしたスムーズな曲線に±10%の誤差幅をつけても,到底表示 し切れないものになることは確かである。

今一つの共分散評価方法論上の問題は、ミクロ断面積を群定数化する際に発生し、追加される $^{(6)}$ 誤差のことであり、これは、次のように書ける。

$$\overline{\sigma}_{g} = \int_{u_{g}} \sigma \phi d u / \int_{u_{g}} \phi d u$$
(7)

. とするとき

$$\Delta \overline{\sigma}_{g} = \frac{1}{\int_{u_{g}} \phi du} \left\{ \int_{u_{g}} \Delta \sigma \cdot \phi du + f \quad (\sigma - \overline{\sigma}_{g}) \Delta \phi du \right\}$$
(8)

の第2項で表わされる成分のことであり,重みスペクトルφ(u)の不確定性によって生じる項である。この項のみについて,群定数の共分散の形に記すと

$$\overline{\varDelta \sigma_{g} \cdot \varDelta \sigma_{k}} = \frac{1}{\int \limits_{u_{g}} \phi \mathrm{d} u \int \limits_{u_{k}} \phi \mathrm{d} u} \int \limits_{u_{g}} \mathrm{d} u_{1} \int \limits_{u_{k}} \mathrm{d} u_{2} \{\sigma(u_{1}) - \overline{\sigma}_{g}\} \{\sigma(u_{2}) - \overline{\sigma}_{k}\} \overline{\varDelta \phi(u_{1})} \varDelta \phi(u_{2})$$

(9)

となり、 $\Delta \phi(u_1) \Delta \phi(u_2)$ をどのように与えるかによって、群定数には、極めて大きな共分散が 入る可能性があるという点である。ここで $\overline{\Delta \phi(u_1) \Delta \phi(u_2)}$ の意味を考えてみると次のように なろう。このような群定数を用いて、計算しようとする場のスペクトルを $\varphi(u)$ とすると、この $\varphi(u)$ と重みスペクトル $\phi(u)$ の差が $\Delta \phi$ を与える。つまり

$$\Delta \phi (u_1) \Delta \phi (u_2) = \{ \phi (u_1) - \phi (u_1) \} \{ \phi (u_2) - \phi (u_2) \}$$
(10)

であり、 *4ϕ*は、 この*ϕ*(u)で作られた群定数の適用可能な範囲を*ϕ*(u) ± *4ϕ*(u)として表示して いるとも解釈できよう。この成分を如何に考えるかは、 更に検討が必要であり、中性子スペ クトル形成の確率過程論が重要になることは明らかである。又、若干、この過程を想像してみて も、或る程度の相関が存在するわけであろうことは類推される。ドシメトリーにおいては、この *4ϕ*(u)を推定スペクトルの誤差として考慮しているが、その定量的評価には、やはり多くの問題 が残されているのが現状である。

- 116 -

3. ドシメトリーにおける共分散の効果の具体例

東大の弥生炉の炉心中央における放射化箔測定値を、NEOPAC コード ⁷⁾によりUnfolding した結果を、表 3 にまとめて示す。この結果より注目される点を以下に箇条書きに示す。

- (i) 推定スペクトルぬ(u)に、正の共分散を入れた場合、初期反応率計算値 R⁰ の誤差は大きくなる。これにより、初期 x² 確率値が 1.6 %から 41 %と増加し、入力データセットは妥当なものと評価されることになる。通常、初期 x² が 1.6 %のように少さければ、入力データの誤差のいずれかに過少評価成分があると判断し、再検討の必要を生ずるが、これがスペクトルの共分散成分の追加により解消され、而も最終結果をみると、反応率の一致の程度は妥当であり、特に積分的評価量(Total -flux, DPA など)の精度が良くなるという効果を生じている。極めて望ましい方向への効果であり、このスペクトルの共分散成分の評価が望まれる。
- (ii) (2)式にて示したように、 R_i 及び R_{ic} の共分散成分は、係数 $C_iC_j \times ($ 共分散)の形で寄与す るので、これらの共分散の効果は、 C_iC_j の正負及び大きさによって変化する。係数 C_i とほ ぼ同じ意味を有するSensitivityを見ると、この値はWindow-function W(E)の与え方によ って、又、スペクトルの共分散の有無によって、正負のいずれの値をもとり得ていることが 分る。実際、この値は、与えられた問題に応じて変化すると考えられ、従って、共分散 $\overline{AR_i AR_j}$ 又は $\overline{AR_{ic} AR_{jc}}$ を無視することは、最終結果 I の誤差の過大又は過少評価のいずれにもなると いうのが具体的な結論である。つまり、これらの共分散成分を無視すると過少評価(危険な評 価)になることもあり得るということである。
- (III) なお、 R_i , R_{ie} の対角成分は、必らず4I にプラス側に寄与するので、この評価が重要であ ることは当然である。従って、反応断面積の群間の相関成分(但し、同一核種、つまり $4\sigma_i(u_1) 4\sigma_i(u_2)$)は、これが正である場合には、 $4R_i$ 。を増加させ、4I にプラス側に寄 与するので、無視できない成分であると言うことも出来る。

以上,具体例に依りその効果を説明したが,いずれも,共分散成分が極めて重要であり,無視 できないという結論に結びつくばかりであった。逆に言うと,ドシメトリーにおける不確実性解 析の今後の研究テーマの1つとしても,反応断面積及び推定スペクトルの共分散が評価されなけ ればならないと言えよう。しかも,反応断面積測定値における正の系統的誤差成分とか,推定ス ペクトルにおける正の共分散などの無視できない成分は,いずれも極めて現実的に有り得る成分 なのであり,その重要性は,反応率測定における共分散評価に比べ数倍~数十倍以上もあると言 えよう。(つまり,それだけのMan-powerを注ぐ価値があるということである。)

4. まとめ

ドシメトリーの将来についての簡単な予測を行なうと図2のようになる。(勿論,私見である。) 約10年前に,Ge(Li)検出器が出現し、又、標準ガンマ線源の供給体制が出来てきたので、こ の10年間で反応率測定自身の問題は、殆んど解決されてきた。又、これから、高温用ドシメータ の開発とか、新しいDamage Monitor又は、検出器の摂動効果、光核反応効果の研究⁸⁾などは、

- 117 -

当分続くであろうが、例えばr線用Ge検出器に対応するような中性子スペクトロメータの出現 により、現状のドシメトリーが不要になることは、これから10年先以上のことと予測される。従 って、この面から抜本的な解決策が出ることは10年以上先の話であり、それ迄の間は、不確定性 評価をつめていくことにより、精度向上に努力する以外はないであるう。つまりベンチマーク場 を用いた精度維持或いは断面積の修正、ドシメトリーファイルの完備等の作業ということになる。

他方,大型計算機の進歩は継続的に進みそうであるし,又,核反応理論の革命的な前進もいつ かはもたらされるであろうが,最大の疑問は,「いつ頃になったら中性子の断面積を測定せずに 済むようになるであろうか? ガンマ線の断面積のように計算で求められるようになるであろう か?」ということであり,又「原子炉計算で求められるスペクトルなどは,いつ頃,実測値とか Unfolding を不要にするであろうか?」という点である。このようなことが,ない限り,ドシ メトリーは,やはり現状の努力を続けていく以外にはないのであり,現状の手法により,出来る だけ明確な評価を,つまり平均値のみ評価する「点推定」から分散も評価する「区間推定」⁹へ 進め,更には,確率分布迄も評価する「分布推定」へと進めていく以外にはないのであろうと思 われる。

以上,見た通り,ハード及びソフトのいずれにおいても,現在の研究方向,特に共分散を明確 にとり入れた評価法の確立を目指した研究は,今後も最低10年以上は,続けられねばならない分 野であり,当面の戦略についての議論を継続していく必要があると結論できる。

参考文献

- Nakazawa M., & Sekiguchi A., "A New Data Processing Technique for Reactor Neutron Dosimetry", Proc. of the II-nd ASTM-Euratom Sympo. on Reactor Dosimetry (Palo Alto 10/3-7, 1977) NOREG/CP-0004 Vol.3
- 2) 谷口武俊,中沢正治,関口 晃, "J1法による放射化箔データの処理" 日本原子力学会, 昭和54年秋の分科会 A39
- 3) 小林捷平,当報告書に含まれている。
- 4) 中沢正治, 関口 晃, "Ge(Li)検出器光電ピーク効率のフィッティングとその誤差" 日本原子力学会,昭和55年秋の分科会B43
- 5) McErloy, W.N., & Kellog, L.S., "Fuels and Materials Fast-Reactor Dosimetry Data Development and Testing", Nucl. Technology Vol.25 (1975) p.180
- 6) 中沢正治, 関口 晃, " Reactor Dosimetry における断面積の不確定性" JAERI-M 8769 (1980) p.66
- 7) 佐々木誠,鈴木惣十他" J 1型アンフォールディングコードの開発" 日本原子力学会 秋の分科会 E-2
- Verbinski, V.V., et al., "Photointerference Corrections in Neutron Dosimetry for Reactor Pressure Vessel Lifetime Studies", Nucl. Sci. & Engng. 75 (1980) p.159
- 9) 吉村 功著 数理統計学(培風館,昭44) p.77

- 118 -

討 論

Q:浅見 哲夫(原研)

ENDF/B-Vの Dosimetry File を使用する立場での問題点は?

データ点のエネルギー間隔が大きすぎるとのことだが。

A:中沢 正治(東大)

問題点は Dosimetry File の Error Fileの内容にあり,共分散形式で表現されている点は 良いことだが,そのために偶然誤差及び測定或いは評価上のエネルギー分解能の成分がかくされ てしまう点に問題がある。そのため、与えられている共分散(かなりエネルギー群幅が大きい) の群幅を変更する際に,正確な取扱いができず,もし群幅を狭くして使用すると誤差を過少評価 することになる。

Q:川合 将義(NAIG)

実験データ中の誤差は、本来は統計誤差と考えられるが、報告されている系統誤差とは何か?

A:中沢 正治(東大)

系統的誤差成分は、その原因が明確になれば補正項に転ずるので消えてしまい得る成分ではあ るが、人智、労力の有限性のための補正し切れない成分が残る。例えば重さの読み取り誤差につ いて説明すると、個人差があり、ある偏り(系統的誤差)は避けられず、それを評価して誤差項 に追加することになるが、校正を同一人で行なうとか、多人数で読み取って分布をとるなどすれ ば、系統的誤差ではなくなり、校正誤差又は偶然誤差に転ずると言えよう。

物	理 量	反応率測定値	反応度断面積	推定スペクトル			
(2)団	での表現	$\overline{\varDelta R_{i} \ \varDelta R_{j}}$	$\overline{\varDelta R_{ic} \ \varDelta R_{jc}}$	$\overline{\varDelta \phi_0 (u_1) \varDelta \phi_0 (u_2)}$			
	評価手法	はゞ確立されている。	やゝ問題点はあるが評価可能 ENDF/B-V は不十分。	仮説的なものしかない。 従って殆んど未確立。			
現状	精度	±2~±4%	±5~±30%	±30~±100 %(?)			
	必要性	必要	<i>Δ</i> R _i ・ <i>Δ</i> R _j と同程度の精度が必要 従って、現状では最も必要度が高い。	余り良い精度で求められると,ドシメトリ ーの意味がなくなる。 精度は悪くてもよいから共分散成分が欲し い。			
見通し	、及び問題点	検出効率とか,照射履歴のような 関数量の誤差評価に問題点は残っ ているが,実用上はほゞ問題なし。 測定屋さんが。いつも丁寧に評価 するようマニュアル化することが 必要。	測定値或いはモデル計算から評価すると きの方法論の確立が必要。 見通しは極めて有望である。 特に,群間の正の共分散値(系統的誤差) に重点を置くべきである。	輸送計算における近似とか使用した断面積 の共分散が評価される迄不可能。 極めて挑戦的な問題であるので多いに頑張 ろう。			

Table 1 ドシメトリーにおいて必要な共分散の現状

- 120 -

JAERI-M 9523

Table 2

SAND-II-Evaluated Cross-Section Error Assignment

Reaction						Pe	rcent Stand	lard Devia	tion Uncert	ainty					
⁶ Li(<i>n</i> , tot. ⁴ He) ¹⁰ B(<i>n</i> , tot. ⁴ He) ²³ Na(<i>n</i> , γ) ²⁴ Mg(<i>n</i> , β) ²⁷ Al(<i>n</i> , α)	0.5 0.5 1 0 0	1 1 2 0 0	1 1 8 0 0	10 7 8 0 0	10 10 10 0 0	20 20 10 0 0	20 20 10 0 0	20 20 10 0	20 20 10 0 0	20 20 10 50 30	20 20 10 50 20	20 20 10 10 6	20 20 10 10 6	20 20 10 10 10	20 20 10 10 10
${}^{27} Al(n, p)$ ${}^{28}Si(n, p)$ ${}^{31} P(n, p)$ ${}^{32}S(n, p)$ ${}^{34}S(n, a)$	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 50 100 0	30 0 6 20 0	10 0 12 8 0	8 50 12 8 50	8 50 12 8 50	8 15 10 8 25	8 15 10 8 15	20 15 10 8 10	20 15 10 8 10
${}^{36}Cl(n, \alpha)$ ${}^{45}Sc(n, \gamma)$ ${}^{46}Ti(n, \beta)$ ${}^{47}Ti(n, \beta)$ ${}^{48}Ti(n, \beta)$	0 2 0 0 0	0 4 0 0 0	0 8 0 0	0 10 0 0 0	0 10 0 50 0	0 10 0 50 0	0 15 50 50 0	30 15 50 50 0	20 15 25 15 50	20 15 20 15 50	30 15 20 15 25	30 15 10 15 15	30 15 10 15 15	30 15 20 15 15	30 15 20 15 15
${}^{54}Fe(n, p)$ ${}^{55}Mn(n, \gamma)$ ${}^{56}Fe(n, p)$ ${}^{58}Fe(n, \gamma)$ ${}^{58}Ni(n, p)$	0 0.8 0 8 0	0 2 0 8 0	0 8 0 28 0	0 8 0 15 0	30 10 0 15 0	30 10 0 15 20	30 15 0 15 10	10 15 0 15 5	10 15 8 15 5	8 15 8 15 5	8 15 8 15 6	7 15 6 15 6	7 15 6 15 6	10 15 15 15 10	10 15 15 15 10
⁵⁸ Ni(n. 2n) ⁵⁹ Co(n, α) ⁵⁹ Co(n, γ) ⁶⁰ Ni(n, β) ⁶³ Cu(n, α)	0 0 4 0 50	0 0 5 0 50	0 0 10 0 50	0 0 10 0 50	0 0 10 0 50	0 0 10 0 50	0 0 10 50 50	0 0 10 50 50	0 0 10 50 50	0 30 10 50 50	0 15 10 15 25	0 10 10 10 10	0 10 10 10 10	30 10 10 10 10	20 10 10 10 10
$^{63}Cu(n, \gamma)$ $^{63}Cu(n, 2n)$ $^{64}Zn(n, p)$ $^{90}Zr(n, 2n)$ $^{115}In(n, n')$	5 0 0 0	5 0 0 0 0	10 0 0 0	10 0 0 0 0	10 0 50 0 30	10 0 50 0 20	10 0 50 0 10	10 0 50 0 10	10 0 15 0 10	10 0 15 0 8	10 0 15 0 8	• 10 0 15 0 8	10 0 15 0 8	10 8 15 30 10	10 8 15 15 10
	2.5 0 0.5 1.4 0	5 0 4 5 0	5 0 5 8 0	5 0 6 8 0	5 0 6 8 0	10 0 7 10 30	17 0 7 10 25	17 0 7 10 20	17 0 7 10 10	17 0 7 10 10	17 0 7 10 10	17 0 7 10 10	17 30 7 10 10	17 30 7 10 10	17 15 7 10 10
${}^{235} U(n, f)$ ${}^{237} Np(n, f)$ ${}^{238} U(n, f)$ ${}^{238} U(n, \gamma)$ ${}^{239} Pu(n, f)$	0.5 16 0 1.5 0.5	8 10 0 5 8	8 10 0 8 8	8 10 0 8 8	7 20 30 8 7	6 5 30 8 6	4 4 4 8 5	3 3 3 8 5	3 3 3 8 5	3 3 3 8 5	4 4 4 8 6	6 10 6 8 8	6 10 6 8 8	10 10 10 10 10	10 10 10 10 10
SAND-II [*] Group No.	1-162ª	162-226	226-361	361-406	406-440	440-455	455-463	463-471	471-481	481-491	491-501	501-521	521-551	551-571	571 -62 1
Energy ^b Bounds (MeV)	1 ⁻¹⁰ -4 ^{-7^b}	4-7-1-5	1-5-1-2	1-2-1-1	1 ⁻¹ -6 ⁻¹	6 ⁻¹ -1.4	1.4-2.2	2.2-3.0	3,0-4.0	4.0-5.0	5.0-6.0	6.0×5.0	8.0-11.0	11.0-13.0	13.0-18.0

JAERI-M 9523

*SAND-II group numbers. *SAND-II group energy bounds: Note: $1^{-10} = 1 \times 10^{-10}$ MeV, etc.

1 121 I

211

	(実測値)	(φ₀ に分散	女のみ考慮)	(φ ₀	に共分散あり)	(Sensiti	ivity)		
1	R _m	R⁰ _c ∕R _m	$R_c R_m$	$\Delta \left(R_{c}^{0} \nearrow R_{m} \right)^{*}$	$(R_c / R_m)^*$	$\frac{\Delta \ln I_1}{\Delta \ln R_c}$	$\frac{\mathcal{\Delta} \ln I_1}{\mathcal{\Delta} \ln R_e^*}$	$\frac{\Delta \ln I_2}{\Delta \ln R_c}$	$\frac{\underline{J \ln I_{2,}}}{\underline{J \ln R_{c}^{*}}}$
⁵⁵ Mn (n, 7)	1.10 ×10 ⁹ (±5.8%)	0.802±13.0%	0.934±8.5 %	± 23.6 %	0.955±8.2%	- 0.043	0.015	0.466	0.315
⁵⁶ Fe (n,p)	$1.27 imes 10^8$ (±6.1)	0.773±22.5	0.897±9.9	±27.1 %	0.905 ±9.9	- 0.014	-0.0048	-0.0030	0.056
²⁷ A <i>l</i> (n,p)	3.87×10^{8} (±8.4)	0.953±21.1	0.997 ± 12.5	± 27.0	1.032 ± 12.3	- 0.0023	0.014	0.0049	0.061
²⁴ Mg (n, p)	$1.51 imes 10^8$ (± 3.1)	0.785 ± 27.2	0.959±12.4	±29.4	0.957 ± 12.1	- 0.0051	-0.0021	-0.0028	0.034
²³ Na (n, 7)	$7.85 imes 10^7$ (±2.7)	0.928±12.4	1.063 ± 6.6	±23.1	1.092 ± 6.4	0.069	0.218	-0.175	0.239
¹¹⁵ In (n, n')	$1.99 imes 10^{10}$ (±3.2)	0.914±172	0.949±9.3	±24.9	0.973 ± 9.1	0.249	0.248	-0.032	0.096
¹⁹⁷ Au (n, 7)	$2.91 imes10$ 10 (±3.2)	0.718±127	0.896±7.3	± 23.2	0.888±6.4	0.643	0.487	-0.069	0.107
(x²確率値)		(1.6%)	(47%)	(41%)	(31%)				
Total $flux(I_1)$			$2.06 imes 10^{11} (\pm 4.5\%)$		$2.01 \times 10^{11} (\pm 4.2\%)$		1		
DPA (I ₂)			$7.40{ imes}10^9$ ($\pm15.4\%$)		$8.12 \times 10^{9} \ (\pm 11.5\%)$				

Table 3 初期スペクトルの共分散の効果及び Sensitivity の計算例

ぬに分散のみ考慮……対角成分のみに30%の誤差

としたときの Unfolding 結果

ぬ に共分散あり……対角成分に 30 %,非対角成分に 21 %の誤差 ↓ とし

 $R_{c}^{0} = 初期スペクトルによる計算値, 又(*)印は <math>\phi_{0}$ に共分散ありとしたときの結果。

以上より① 初期スペクトルの正の非対角成分は $\frac{\Delta R_c}{R_c}$ を大きくし、最終値 $\frac{\Delta I}{I}$ を小さくする傾向のあることが分る。

② 又、R。に対する Sensitivity(これはRm に対するものと同じ)は、正負の値をとり、且つ Window Function (I1, I2 に対応するもの)及び Φ の誤差の与え方によって符号が変化することが分る。 JAERI-M 9523

- 122

- 則定エネルギー	分解能	偶然誤差	系統的誤差行列
E_1	ΔE_1	ε _{r1}	ε ₁₁ ε ₁₂
E ₂	⊿E₂	ε _{r2}	ϵ_{12} ϵ_{22}
i	1	1	

Fig. 2 ドシメトリー研究の将来についての予測

3.5 コメント:アンフォールディング法における共分散

関本 博

中性子スペクトルに関する事前分布(通常最確値と共分散で決定される)と積分量の実験値 (誤差として共分散を含む)とで定義される汎関数を最小化することにより、多くの種類のアン フォールディング法を導出することができる。ここではこの汎関数の型から、FERDOR、 SPECTRA、J-1、STAYSL、CRYSTAL BALL、SAND-ILといった一般によく知ら れている方法を分類し、理論的に比較検討してみる。

Covariances Used in Unfolding Methods

Hiroshi SEKIMOTO*

The minimization of the functionals defined by the prior knowledges (most probable functions and covariances) and integral data (with their covariances) of neutron spectrum can derive many unfolding methods. The form of these functionals classifies the widely-used methods : FERDOR, SPECTRA, J-1, STAYSL, CRYSTAL BALL, SAND-II and others. The methods are derived systematically and compared each other theoretically.

1. 一般論

放射化量やパルス波高分布といったいくつかの積分量 C_i (i = 1, …, I)の測定値から、中性 子のスペクトルといった微分量 $\phi(x)$ を求める操作を一般にアンフォールディングとよんでいる。 ここで ϕ と c との間には次の関係がある。

 $c = \int r(\mathbf{x}) \phi(\mathbf{x}) d\mathbf{x}$.

(1)

ここで $r_i(x)(i = 1, ..., I)$ は放射化断面積等であるわけだが、一般に応答関数とよばれている。(1)式は一般に解くことができない。このため ϕ の推定値 ϕ^G を用いることが多い。

 $\phi \ge r$ の事前分布を $\pi(\phi, r)$ とし、実験により得られた尤度を $p(c \mid \phi, r)$ とすると、 事後分布 $\pi(\phi, r \mid c)$ はベイズの方法により

* 東京工業大学, 原子炉工学研究所, Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology.

- 124 -

$$\pi(\phi, \vec{r} \mid \vec{c}) \propto p(\vec{c} \mid \vec{\phi}, r) \pi(\phi, \vec{r})$$
(2)

という具合に求まる。 $\phi \ge \mathbf{r}$ の事前分布が独立な場合には更に

$$\pi(\phi, \vec{r} \mid \vec{c}) \propto p(\vec{c} \mid \phi, \vec{r}) \pi(\phi) \pi(\vec{r})$$
(3)

と書ける。

ここで(3)式の右辺を正直に変形していくのはかなり面倒な仕事である。(3)式の最確値だけな ら $J = - \ln \pi (\phi, \vec{r} \mid \vec{c})$ (4)

を最小にする ϕ , r を求めるのが簡単である。これは最尤法と呼ばれている。さて(3)式の右辺の それぞれの分布の型は必ずしもよくわかっていない。すべて正規分布であるとすると、これは最 小2 乗法と同じ型となり、線型の正規方程式を解けばよいことになる。解が推定量の線型量にな っている場合、共分散も簡単に計算できる。

2. 代表的な従来の方法

従来の方法の多くは r の分散を無視しているので、ここでも r が正確にわかっている場合について、従来の方法に対応する J に関して説明する。なお以下の議論で、わかりやすいように、推定値にG、実験値にM、正確な値にE の上添字をつけることにする。

2.1 0階線型

事前分布及び尤度が正規分布の場合, J は次のような形となる。

$$J_{0} = \int \int \left(\phi(\mathbf{x}) - \alpha \phi^{\mathbf{G}}(\mathbf{x}) \right) \phi^{\mathbf{G}^{-1}}(\mathbf{x}, \mathbf{y}) \left(\phi(\mathbf{y}) - \alpha \phi^{\mathbf{G}}(\mathbf{g}) \right) d\mathbf{x} d\mathbf{y}$$
$$+ \left(\overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{c}}^{\mathbf{M}} \right)^{+} \left(\overrightarrow{\mathbf{c}}^{\mathbf{M}^{-1}} \left(\overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{c}}^{\mathbf{M}} \right) \right) .$$

ここで ϕ^{G} 及び $\stackrel{i}{c}^{M}$ はそれぞれ ϕ 及び $\stackrel{i}{c}$ の共分散であり、 α はスペクトルの正規化のために導入されたパラメータである $\binom{2}{2}$ この考え方に従う方法は非常に多く、FERDOR⁽³⁾ RADAK⁽⁴⁾, SPECTRA⁽⁵⁾, RFSP⁽⁶⁾, DANTE⁽⁷⁾, J-1⁽⁸⁾, STAY'SL⁽⁹⁾といった方法をあげることができる。

(5)

(7)

この解は次のように求まる。

$$\phi(\mathbf{x}) = \alpha \phi^{\mathbf{G}}(\mathbf{x})^{\mathrm{T}} \quad \vec{\lambda}^{\mathrm{T}} \quad \int \phi^{\mathbf{G}}(\mathbf{x}, \mathbf{y}) \quad \vec{\mathbf{r}}^{\mathrm{E}}(\mathbf{y}) \mathrm{d}\mathbf{y} \quad , \tag{6}$$

 $\vec{c} = \vec{c}^{M} - \vec{c}^{M} \vec{\lambda} .$

-ここでα及び λ は次式より求まる。

$$\alpha = \frac{\overrightarrow{c} \ \mathbf{G}^{\mathrm{T}} \ \overrightarrow{\overline{\lambda}} \ \overrightarrow{c}^{\mathrm{M}}}{\overrightarrow{c} \ \mathbf{G}^{\mathrm{T}} \ \overrightarrow{\overline{\lambda}} \ \overrightarrow{c}^{\mathrm{G}}}$$
(8)

$$\lambda = \vec{\Lambda} (\vec{c}^{M} - \alpha \vec{c}^{G}) , \qquad (9)$$

但し

$$\vec{c}^{G} = \int \vec{r}^{E}(\mathbf{x}) \phi^{G}(\mathbf{x}) d\mathbf{x} \quad . \tag{10}$$

$$\vec{\hat{A}} = (\vec{\hat{C}}^{M} + \vec{\hat{C}}^{Q})^{-1}$$
(11)

ここで C^{α} $d \alpha c^{\alpha}$ に対する共分散であり,

$$\vec{\tilde{C}}^{G} = \int \vec{f r}^{E}(x) \boldsymbol{\varphi}^{G}(x, y) \vec{r}^{E}^{T}(y) dx dy$$
(12)

で与えられる。解(6),(7)の共分散はそれぞれ次のように求まる。

$$\boldsymbol{\varphi} (\mathbf{x}, \mathbf{y}) = \boldsymbol{\varphi}^{\mathbf{G}} (\mathbf{x}, \mathbf{y})$$

$$- \int \boldsymbol{\varphi}^{\mathbf{G}} (\mathbf{x}, \mathbf{u}) \overrightarrow{\mathbf{r}}^{\mathbf{E}} \overset{\mathbf{T}}{(\mathbf{u})} d\mathbf{u} \overrightarrow{\boldsymbol{\Lambda}} \int \boldsymbol{\varphi}^{\mathbf{G}} (\mathbf{y}, \mathbf{v}) \overrightarrow{\mathbf{r}}^{\mathbf{E}} (\mathbf{v}) d\mathbf{v}, \qquad (13)$$

$$\overrightarrow{\mathbf{C}} = \overrightarrow{\mathbf{C}}^{\mathbf{M}} - \overrightarrow{\mathbf{C}}^{\mathbf{M}} \overrightarrow{\boldsymbol{\Lambda}} \overset{\mathbf{Z}}{\mathbf{C}} . \qquad (14)$$

2.2 1階線型

 ϕ / ϕ^{G} の微分量が正規分布に従うとすると、J は次のように書ける。

$$J_{1} = \mathcal{I} \mathcal{I} \frac{d}{dx} \left(\frac{\phi(x)}{\phi^{G}(x)} \right) D^{G^{-1}}(x, y) \frac{d}{dy} \left(\frac{\phi(y)}{\phi^{G}(y)} \right) dx dy + (\vec{c} - \vec{c}^{M})^{T} \vec{\overline{C}}^{M^{-1}} (\vec{c} - \vec{c}^{M}) .$$
(15)

ここで D^G は d / dx (ϕ / ϕ ^G) の事前分布の共分散である。CRYSTAL – BALL⁽¹⁰⁾ がこれに 属する。

この解は次のように求まる。

$$\phi(\mathbf{x}) = \alpha \phi^{\mathbf{G}}(\mathbf{x}) + \overline{\lambda}^{\mathrm{T}} \phi^{\mathbf{G}}(\mathbf{x}) f \mathbf{E}(\mathbf{x}, \mathbf{y}) \mathbf{q}(\mathbf{y}) d\mathbf{y},$$
(16)
$$\vec{\mathbf{c}} = \vec{\mathbf{c}}^{\mathrm{M}} - \vec{\overline{\mathbf{C}}}^{\mathrm{M}} \mathbf{\lambda}.$$
(17)

ててで

$$\vec{q}(x) = \int \vec{r}^{E}(y) \phi^{G}(y) dy , \qquad (18)$$

$$E(x,y) = \int D^{G}(z,y) dz . \qquad (19)$$

 $\alpha, \overline{\lambda} k(8), (9) 以下の式を使って計算できる。担し<math>\vec{c}^{G} k(12)$ 式のかわりに $\vec{c}^{G} = \int \int \vec{q} (x) D^{G}(x, y) \vec{q}(y) dx dy$ (20)

より求める。

d/dx (ϕ/ϕ^{G})の事後分布の共分散は次のように求まる。

$$D(x, y) = D^{G}(x, y) - \int D^{G}(x, u) \vec{q}^{T}(u) du \vec{A} \int D^{G}(y, v) \vec{q}(v) dv .$$

(21)

(26)

cの共分散は(14)式と同じである。

2.3 **Φ**, Dの簡単な仮定

- 共分散*Φ*, Dの関数形はよくわかっていないのが普通である。通常は*δ*-関数を使った

$$\boldsymbol{\Phi}(\mathbf{x},\mathbf{y}) = \mathbf{w}_{\mathbf{0}}(\mathbf{x})\,\boldsymbol{\delta}(\mathbf{x} - \mathbf{y}) , \qquad (22)$$

$$D^{G}(x, y) = w_{1}(x) \delta(x - y)$$
(23)

が仮定される。このとき解(6),(16)はそれぞれ

$$\phi(\mathbf{x}) = \alpha \phi^{\mathbf{G}}(\mathbf{x}) + \vec{\lambda}^{\mathrm{T}} \mathbf{w}_{0}(\mathbf{x}) \vec{\mathbf{r}}^{\mathrm{E}}(\mathbf{x}) , \qquad (24)$$

$$\phi(\mathbf{x}) = \alpha \phi^{\mathbf{G}}(\mathbf{x}) + \vec{\lambda}^{\mathrm{T}} \mathbf{w}_{1}(\mathbf{x}) \phi^{\mathbf{G}}(\mathbf{x}) \mathbf{f}^{\mathbf{q}}(\mathbf{y}) d\mathbf{y}$$
(25)

のようになる。 (24) 式は解を応答関数 \vec{r}^{E} で展開した形になっている。 $\vec{r}^{E}(x)$ は一般に $\phi^{E}(x)$ とは無関係な複雑な構造を持っている。このため 0 階線型の解にはこの構造が解に現われ,不自 然な振動を有することが多い。これに対し $\int \vec{q}(y) dy$ はなめらかな関数になっており,1 階線型 に対する解 (25) の方が 0 階線型に対する解 (24) よりなめらかで自然な場合が多い。

2.4 対数型

今迄の方法だと Ø(x) が負の値をとる場合がある。このようなことをさけるため、Jとして次のような量を考える場合もある。

$$J_{L} = \int \int \ell n \left(\frac{\phi(x)}{\alpha \phi^{G}(x)} \right) L^{G^{-1}}(x, y) \ell n \left(\frac{\phi(y)}{\alpha \phi^{G}(y)} \right) dx dy$$
$$+ \sum_{i, j} \ell n \left(\frac{c_{i}}{c_{i}^{M}} \right) N_{ij}^{M^{-1}} \ell n \left(\frac{c_{j}}{c_{j}^{M}} \right).$$

- 127 -

ここで L^G(x, y) は ln 〔 $\phi/\alpha \phi^{G}$ 〕の事前分布の共分散である。 2 項目は線型の場合と同様の項でおきかえても正の解を得ることができる。

 J_L は非線型であり、今迄のように簡単な形で解を求めることはできない。SAND- $\Pi^{(11)}$ は繰り返し法を使って解いている。摂動をとって線型の式を導出し、それを解く方法も研究されている。

3. あとがき

通常 τ は断面積であることが多く、今回の討論会での話題の中心となるべきところであるが、 あまりに長くなるので τ の分布については扱わなかった。 τ の分布を考えた場合(1)式を介して式 が非線型となる。これを解くには摂動法を使うのが一般的である。担し0階線型ではもはやαを 導入することはできない。また1階線型では解が求まらない。

ここではアンフォールディング法として一般に広く使用されているコードで用いられている方 法についてまとめたが、 $\pi(\phi^G)$ 、 $\pi(\vec{r})$ 、 $p(\vec{c} \mid \phi, \vec{r})$ には色々なものが考えられ、多数 の方法が存在する。またここでは確率統計に基づく方法について述べたが、これ以外の特殊な方 法も多数存在する。

参考文献

- LINDLEY, D.V., Introduction to Probability and Statistics from a Bayesian Viewpoint, Cambridge University Press, England (1965).
- (2) SEKIMOTO, H., Nucl. Sci. Eng., 68, 351 (1978).
- (3) BURRUS, W.R. and VERBINSKI, V.V., Nucl. Instrum. Methods, <u>67</u>, 181 (1969).

KENDRICK, H. and SPERLING, S.M., "An Introduction to the Principles and Use of the FERDOR Unfolding Code", GA-9882, Gulf Radiation Technology (1970).

- (4) GRIMSTONE, M.J., "The RADAK User's Manual, "AEEW-M 1455, Atomic Energy Establishment, Winfrith (1976).
- (5) GREER, C.R., HALBLEIB, J.A. and WALKER, J.V., "A Technique for Unfolding Neutron Spectra from Activation Measurements", SC-RR-67-746, Sandia Laboratories (1967).
- (6) FISCHER, A. and TURI, L., "The RFSP Programme for Unfolding Neutron Spectra from Activation Data", INDC(HUN)-8/u, International Atomic Energy Agency, Vienna (1972).

- 128 -

- (7) PETILLI, M., "The Unfolding Code DANTE and Its Applications", in TRUBEY, D.K., "A Review of Radiation Energy Spectra Unfolding", Proc. Seminar-Workshop, Oak Ridge, Tennessee, April 12-13, 1976, ORNL/RSIC-40, Oak Ridge National Laboratory (1976).
- (8) NAKAZAWA, N. and SEKIGUCHI, A., "A New Data Processing Technique for Reactor Neutron Dosimetry", Proc. 2nd. ASTM-Euratom Symp. Reactor Dosimetry, Palo Alto, California, October 2-7, 1977.
- (9) PEREY, F.G., "Uncertainty Analysis of Dosimetry Spectrum Unfolding", Proc. 2nd ASTM-Euratom Symp. Reactor Dosimetry, Palo Alto, California, October 2-7, 1977.
- (10) STALLMANN, F.W., Number. Math., <u>15</u>, 297 (1970). KAM, F.B.K. and STALLMANN, F.W., "CRYSTAL BALL-A Computer Program for Determining Neutron Spectra from Activation Measurements", ORNL-TM-4601, Oak Ridge National Laboratory (1974).
- (11) MCELROY, W.N., BERG, S., CROCKETT, T. and HAWKINS, R.G., "A Computer Automated Iterative Method for Neutron Flux Spectra Determination by Foil Activation", AFWL-TR-67-41, Air Force Weapons Laboratory (1967).

BERG, S., "Modification of SAND-II", BNWL-855, Battle-Pacific Northwest Laboratories (1968).

OSTER, C.A., McELROY, W.N. and MARR, J.M., "A Monte Carlo Program for SAND-II Error Analysis", HEDL-TME 73-20, Hanford Engineering Development Laboratory (1973).

OSTER, C.A., SIMONS, R.L., ODETTE, G.R., MCELROY, W.N. and LIPPINCOTT, E.P., "Solution Weighting for the SAND-II Monte Carlo Code", in TRUBEY, D.K., "A Review of Radiation Energy Spectra Unfolding", Proc. Seminar-Workshop, Oak Ridge, Tennessee, April 12-13, 1976, ORNL/RSIC-40, Oak Ridge National Laboratory (1976).

(12) SCHMITTROTH, F., Nucl. Sci. Eng., 72, 19 (1979).

- 129 -

4. Covarianceの評価

4.1 核データの理論計算における Covariance 評価 菊 池 康 之⁺

核データの理論計算におけるコバリアンスの問題を、エネルギー群間のコバリアンスに限定し、統計モデルの場合について、モデル化の近似に起因するものと、パラメータの誤差によるものと に分けて議論した。さらに¹⁰⁰Ruの例について計算例を示した。

Evaluation of Covariance in Theoretical Calculation of Nuclear Data

Yasuyuki KIKUCHI[†]

Covariances of the cross sections are discussed on the statistical model calculations. Two categories of covariance are discussed : One is caused by the model approximation and the other by the errors in the model parameters. As an example, the covariances are calculated for 100 Ru.

1. 序論

核データの評価において理論計算が用いられる事が多い。この場合得られた断面積はエネルギ ー区間や反応間に相関を生じる。また計算に用いられるパラメータの系統性から異核種間でも相 関を生じる。評価データのコバリアンスを与えるにはこれらを考慮しなくてはならない。計算に おけるコバリアンスの評価は、使用されるモデルに依存する問題で一般的に議論するのは困難で ある。ここでは統計モデルに限定し、エネルギー群間のコバリアンスを、モデルの近似に起因する ものとパラメータの誤差に起因するものに分けて議論した。この議論はGruppelaar等¹⁾に負う 所が大きい。さらに統計モデルの内最も簡単な強度関数モデルについて¹⁰⁰Ruの例を計算した。

2. 一般論

断面積のコバリアンスとは一見奇妙な表現である。コバリアンスは母集団またはその標本に対して定義されるものであり、一方断面積はある真値であって標本とは関係ない。しかし断面積の 真値は不明であるので、その評価値(今回の議論ではモデルによる計算値)を推定値とする時、 真値は統計における標本のごとく推定値の周辺に統計的確率を持って分布すると考えられる。したがって真値(σ_{tr})と計算値(σ_{cal})の間の誤差(4σ)も統計分布をするが、この内統計平均した期待値が0になるものを統計的誤差($4\sigma_{st}$)と定義し、その期待値が0にならないものを

+ 日本原子力研究所, Japan Atomic Energy Research Institute

- 130 -

系統誤差(**4**0_{svs})と定義する。

モデル計算値における系統誤差は計算の基になる近似(モデル化)の限界によるもので、この 場合あるエネルギー領域では必ず過大評価または過小評価になる。例えば統計モデル計算では直 接捕獲が効く数 MeV 以上で 必ず捕獲断 面積を過小評価する。他にも変形核に球型光学モデル を適用した場合、強度関数モデルにおけるパラメータのエネルギー依存性の無視等が例挙できる。 また不適当なパラメータの無意識の使用も系統誤差を生む。例として &の不十分な打切りを挙げ ておく。系統誤差は統計的性質が弱いので、エネルギー的には独立であると近似しうる。すなわ ち

$$\langle \Delta \sigma_{\rm sys}(E1) \bullet \Delta \sigma_{\rm sys}(E2) \rangle \approx \langle \Delta \sigma_{\rm sys}(E1) \rangle \langle \Delta \sigma_{\rm sys}(E2) \rangle \qquad (1)$$

の関係が成立すると考えられる。ここにく >は統計平均を表わす。

一方統計的誤差は、モデルの持つ統計的近似によるものと、パラメータの持つ統計的誤差によ るものとに分けられる。これらについては3章で詳しく議論する。統計的誤差はその定義より

$$\langle \Delta \sigma_{\rm st}({\rm E}) \rangle = 0$$
 (2)

が成立する。

以上の議論を数式化してコバリアンスを定義する。

$$\sigma_{cal} - \sigma_{tr} = \Delta \sigma = \Delta \sigma_{st} + \Delta \sigma_{sys}$$
(3)

$$cov (\sigma(E1), \sigma(E2))$$

$$= \langle (\sigma_{cal} (E1) - \sigma_{tr} (E1)) (\sigma_{cal} (E2) - \sigma_{tr} (E2)) \rangle$$

$$= \langle (\sigma_{st} (E1) + \Delta \sigma_{sys} (E1)) (\Delta \sigma_{st} (E2) + \Delta \sigma_{sys} (E2)) \rangle$$

$$= \langle \Delta \sigma_{st} (E1) \Delta \sigma_{st} (E2) \rangle + \langle \Delta \sigma_{sys} (E1) \Delta \sigma_{sys} (E2) \rangle$$

$$= \langle \Delta \sigma_{st} (E1) \Delta \sigma_{st} (E2) \rangle + \langle \Delta \sigma_{sys} (E1) \rangle \langle \Delta \sigma_{sys} (E2) \rangle$$

$$= \langle \Delta \sigma_{st} (E1) \Delta \sigma_{st} (E2) \rangle + \langle \Delta \sigma_{sys} (E1) \rangle \langle \Delta \sigma_{sys} (E2) \rangle$$
(4)

3. 統計的誤差によるコバリアンス

本章では統計的誤差によるコバリアンスについて述べる。全てのモデルについて考慮する事は できないので, Gruppe laar ¹⁾ や Schmittroth ²⁾ 等の議論に基づき,統計モデルの場合につ いて考察する。

3.1 モデル化による誤差とコバリアンス

統計モデルにおいては、考慮しているエネルギー区間内のレベル数が十分多く、その平均値を 用いる事を仮定している。しかし実際の適用においてはこの仮定が必ずしも満されない場合が多 く、その統計変動により統計的誤差を生じる。ここではその誤差についてエネルギー群間で相関 を持つものについてのみ考える。

- 131 -

3.1.1 非分離共鳴領域における共鳴パラメータ、レベル間隔の変動

a) 共鳴パラメータの変動

共鳴パラメータの統計変動は、そのエネルギー群から他の群へは伝播しないのでコバリアン スとして考える必要はないが、その群の分散としては重要である。またエネルギー的に重りの ある群を考えれば当然コバリアンスに効いてくる。

b) レベル間隔の変動

ある群でのレベル間隔(レベル数)の変動は隣接する群のレベル数に影響するので、断面積 間にも相関を生じる。あるスピン・パリティーのレベルからの寄与のみ考えるとi群とj群の コバリアンスは

$$\operatorname{Cov}(\sigma_{i}, \sigma_{j}) = \sigma_{i} \sigma_{j} \frac{\operatorname{Cov}(n_{i}, n_{j})}{\langle n_{i} \rangle \langle n_{j} \rangle}, \qquad (5)$$

ここでi 群のレベル数n;の平均値は

 $\langle n_i \rangle = \Delta E_i / D$

その分散は Dyson – Mehta's random matrix approximation を仮定すると次式で与えられる。

$$V_{ar}(n_i) = \frac{2}{\pi^2} (\ln \langle n_i \rangle + 2.18)$$
(6)

したがって隣接する2群のコバリアンスは

$$Var(n_1 + n_2) = Var(n_1) + Var(n_2) + 2 cov(n_1, n_2)$$

の関係より求められ

Cov
$$(n_1, n_2) = -\frac{1}{\pi^2} (\ln \frac{\langle n_1 \rangle \langle n_2 \rangle}{\langle n_1 \rangle + \langle n_2 \rangle} + 2.18)$$
 (7)

隣接する3群(n₁ n₂ n₃)の間では

Cov
$$(n_1, n_3) = \frac{1}{\pi^2} \ln \frac{\langle n_1 \rangle + \langle n_2 \rangle + \langle n_3 \rangle}{\langle \langle n_1 \rangle + \langle n_2 \rangle + \langle n_3 \rangle} \cdot \langle n_2 \rangle$$
 (8)

3.1.2 非弾性散乱レベルの変動

非弾性散乱を考慮する際に、低エネルギーのレベルはエネルギー、スピン、パリティーが知られ ているが、ある程度高エネルギーになるとそれらが実験的には分らなくなり、連続レベルの仮定 をしてレベル密度パラメータで取り扱うのが普通である。この連続レベル領域におけるレベル数、 スピン、パリティーの変動は断面積におけるエネルギー群間のコバリアンスに寄与する。

a) レベル数の変動

捕獲断面積は以下の式で表わされる。

- 132 -

$$\sigma_{n,\gamma}(E) = \frac{\pi}{k^2} \sum_{J} \pi g_{J} \sum_{\ell j} \frac{T_{\gamma} T_{1}}{T_{\gamma} + \sum_{i=1}^{P} T_{i} + \sum_{i=p+1}^{NE} T_{i}}$$
$$= \frac{C(E)}{\alpha_{E} + A_{E} (\varepsilon_{p+1} \cdots \varepsilon_{NE})}$$

ここに T_rは γ -ray transmission coefficient, T_iは i 番目のレベルの neutron transmission coefficient である。NE は入射エネルギーE で励起しうるレベルの最大を 表わす。今 p 番目のレベルまでが分離レベルで, p+1~NE 番目までが非分離で連続レベル として扱われているとする。したがって NE も A_Eも統計的にしか知る事はできない。入射エ ネルギーが十分高ければ $\alpha_{E} \ll A_{E}$ なので,

(9)

$$\frac{\operatorname{Var}(\sigma)}{\langle \sigma \rangle^2} \doteq \frac{\operatorname{Var}(A_{\rm E})}{\langle A_{\rm E} \rangle^2}$$
(10)

$$\frac{\operatorname{cov}(\sigma_{i} \sigma_{j})}{\langle \sigma_{i} \rangle \langle \sigma_{j} \rangle} \doteq \frac{\operatorname{cov}(A_{Ei} A_{Ej})}{\langle A_{Ei} \rangle \langle A_{Ej} \rangle}$$
(11)

故に断面積の分散,共分散を知るには A E のそれらを知ればよい。

$$A_{E} \equiv \sum_{i=p+1}^{NE} T_{i}(E) = \sum_{i=p+1}^{NE} a_{E}(\varepsilon_{i})$$
$$< A_{E} \geq = \int_{\varepsilon_{p}}^{E} a_{E}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon$$
$$< NE \geq = p + \int_{\varepsilon_{p}}^{E} \rho_{0}(\varepsilon) d\varepsilon$$

ここで $\rho_0(\varepsilon)$ はレベル密度である。非分離領域におけるレベル数の期待値はN = <NE > -P = = $\int_{\varepsilon_p}^{E} \rho_0(\varepsilon) d\varepsilon$ で与えられる。A E の二乗の期待値は

$$\langle A_{E}^{2} \rangle \Rightarrow \int_{\varepsilon_{p}}^{\varepsilon} a_{E}^{2}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon + \frac{N-1}{N} \{\int_{\varepsilon_{p}}^{\varepsilon} \rho_{0}(\varepsilon) a(\varepsilon) d\varepsilon \}^{2}$$

で与えられるので,

$$\frac{\operatorname{Var}(A_{\rm E})}{\left^{2}} = \frac{\int_{\varepsilon_{\rm p}}^{\varepsilon_{\rm p}} a_{\rm E}^{2}(\varepsilon) \rho_{0}(\varepsilon) \,\mathrm{d}\varepsilon}{\left\{\int_{\varepsilon_{\rm p}}^{\varepsilon_{\rm p}} a_{\rm E}^{2}(\varepsilon) \rho_{0}(\varepsilon) \,\mathrm{d}\varepsilon\right\}^{2}} - \frac{1}{N}$$
(12)

- 133 -

A_Eのコバリアンスを考えるに当り、2つのエネルギー点E1,E2(E1>E2)に対応する非 分離レベル数の期待値をN1,N2とすると、下図の関係より

 $E_{p} \qquad E_{2} \qquad E_{1}$ $P \qquad P+N2 \qquad P+N1$ $N = \int_{\varepsilon_{p}}^{E_{1}} \rho_{0}(\varepsilon) d\varepsilon$ $N = \int_{\varepsilon_{p}}^{E_{2}} \rho_{0}(\varepsilon) d\varepsilon$ $N = \int_{\varepsilon_{p}}^{E_{2}} \rho_{0}(\varepsilon) d\varepsilon$ $(A_{E_{1}}, A_{E_{2}}) = \frac{N2}{N1} \int_{\varepsilon_{p}}^{E_{1}} a_{E_{1}}(\varepsilon) a_{E_{2}}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon$ $(A_{E_{1}}, A_{E_{2}}) = \frac{N2}{N1} \int_{\varepsilon_{p}}^{E_{1}} a_{E_{1}}(\varepsilon) a_{E_{2}}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon$ $Cov (A_{E_{1}}, A_{E_{2}}) = \frac{N2}{N1} \int_{\varepsilon_{p}}^{E_{1}} a_{E_{1}}(\varepsilon) a_{E_{2}}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon$ $(A_{E_{1}}, A_{E_{2}}) = \frac{N2}{N1} \int_{\varepsilon_{p}}^{E_{1}} a_{E_{1}}(\varepsilon) a_{E_{2}}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon$ $(A_{E_{1}}, A_{E_{2}}) = \frac{N2}{N1} \int_{\varepsilon_{p}}^{E_{1}} a_{E_{1}}(\varepsilon) a_{E_{2}}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon$ $(A_{E_{1}}, A_{E_{2}}) = \frac{N2}{N1} \int_{\varepsilon_{p}}^{E_{1}} a_{E_{1}}(\varepsilon) a_{E_{2}}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon$ $(A_{E_{1}}, A_{E_{2}}) = \frac{N2}{N1} \int_{\varepsilon_{p}}^{E_{1}} a_{E_{1}}(\varepsilon) a_{E_{2}}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon$ $(A_{E_{1}}, A_{E_{2}}) = \frac{N2}{N1} \int_{\varepsilon_{p}}^{E_{1}} a_{E_{1}}(\varepsilon) a_{E_{2}}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon$ $(A_{E_{1}}, A_{E_{2}}) = \frac{N2}{N1} \int_{\varepsilon_{p}}^{E_{1}} a_{E_{1}}(\varepsilon) a_{E_{2}}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon$ $(A_{E_{1}}, A_{E_{2}}) = \frac{N2}{N1} \int_{\varepsilon_{p}}^{E_{1}} a_{E_{1}}(\varepsilon) a_{E_{2}}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon$ $(A_{E_{1}}, A_{E_{2}}) = \frac{N2}{N1} \int_{\varepsilon_{p}}^{E_{1}} a_{E_{1}}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon$

故に

$$\frac{\operatorname{Cov}\left(\sigma_{E1}, \sigma_{E2}\right)}{\langle\sigma_{E1}\rangle, \langle\sigma_{E2}\rangle} = \frac{N2}{N1} \frac{\int_{\varepsilon_{p}}^{E1} a_{E1}(\varepsilon) a_{E2}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon}{\int_{\varepsilon_{p}}^{E1} a_{E1}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon \cdot \int_{\varepsilon_{p}}^{E2} a_{E2}(\varepsilon) \rho_{0}(\varepsilon) d\varepsilon} - \frac{1}{N1}$$
(14)

b) レベルのスピン, パリティーの変動

励起レベルのスピン・パリティーと基底状態のスピン・パリティーとの関係は断面積に影響 がある。非分離の連続レベルでは統計分布を仮定するが、実際にはシェル効果等で偏よったス ピン、パリティーの現われる事が多い。 Schmittroth²¹はこれをモンテカルロ法で計算し、 最大20~30%の誤差の生じる事を示した。この誤差は当然エネルギー群間で強い相関を持 つ。

3.2 パラメータの誤差による断面積のコバリアンス。

計算で用いられるパラメータの誤差は、その計算結果である断面積に強い相関を持つ誤差を与 える。本節ではまず、パラメータが独立に与えられる場合を考え、次にパラメータが断面積のフ ィットで決められている場合について考える。

- 134 -
3.2.1 独立のパラメータによるコバリアンス

パラメータがN個の独立量 (P_1, \dots, P_N) とすると

$$\operatorname{Cov} (\sigma(E 1) \ \sigma(E 2)) = \sum_{k=1}^{N} \frac{\partial \sigma(E 1)}{\partial P_{k}} \cdot \frac{\partial \sigma(E 2)}{\partial P_{k}} \operatorname{Var} (P_{k})$$
(15)

の関係が成立する。パラメータの独立性の議論は仲々難しい問題であるが,別種の実験から求め られた場合等は独立と考えられる。

パラメータの分散としては,n本の共鳴レベルから求められた時には

a)S-波強度函数

Porter Thomas 分布を仮定して

$$Var(S_0) = \frac{2}{n}S_0^2$$

b) レベル間隔

Var (D) =
$$\frac{4-\pi}{\pi n} n^2$$
 : Wigner 一分布
= $\frac{8}{\pi^2 n^2} D^2$: Dyson-Mehta 分布

3.2.2 パラメータが独立でない場合

一般に一つのパラメータの決定において,他のパラメータが仮定される事が多くパラメータ同 志は独立ではない。この場合には

$$\operatorname{Cov} (\sigma(E1), \sigma(E2)) = \sum_{k, \ell} \frac{\partial \sigma(E1)}{\partial P_{k}} \cdot \frac{\partial \sigma(E2)}{\partial P_{\ell}} \operatorname{Cov} (P_{k}, P_{\ell})$$
(16)

となり,パラメータ間のコバリアンスを知る必要が生じる。特に断面積を最小自乗法でフィット してパラメータを求めると,パラメータの分散はフィットした実験値の分散に関係してくる。

このような場合の取扱いは極めて複雑であるが、一つの方法として、フィッティングを初期値 の修正と考える事が有望と思われる。すなわち

初期のパラメータセット:T, コバリアンス: $M(n_t \times n_t)$ フィットする断面積 :R, ":V $(n_r \times n_r)$ 計算された断面積 : \overline{R}

断面積の感度係数 :G(n_r×n_t)

とする。ただし $\delta T = G \delta T$ 。

この時最小自乗法によって得られた最適パラメータT'とそのコバリアンスM'は以下の式より 求められる。

$$(M^{-1} + G^{T}V^{-1}G)(T' - T) = G^{T}V^{-1}(R - \overline{R})$$
(17)

$$M' = (M^{-1} + G^{T} V^{-1} G)^{-1}$$
(18)

- 135 -

4. 強度函数モデルでの一例

統計的誤差によるコバリアンスを, ¹⁰⁰Ruの低エネルギー領域において計算した。計算モデルは最も簡単な統計モデルである強度函数モデルを用いた。¹⁰⁰Ruの共鳴レベルは230.5 eVで 一本解析されているのみであるが, 他のRu同位体からの系統性から, JENDL-2の評価では 以下の平均パラメータが用いられている。

 $S_0 = 0.2 \times 10^{-4}$

$$S_1 = 4.55 \times 10^{-4}$$

- $S_2 = 0.6 \times 10^{-4}$
- $\Gamma_{\gamma} = 1.25 \text{ meV}$
 - $D_{obs} = 344 \text{ eV}$

これらのパラメータから, 3.1.1節で述べたレベル数の変動によるコバリアンスと, 3.2.1節で 述べたパラメータの誤差によるコバリアンスを計算した。群構造はABBN 25群を採用した。群 構造を Table 1に示す。

4.1 非分離共鳴レベル数の変動によるコバリアンス

 $D_{obs} = 344 \text{ eV}$ より13群~15群内の平均レベル数は各々7.76,3.57,1.66本である。 (5),(7),(8)式より cov(σ_i, σ_j)/< $\sigma_i > < \sigma_j >$ を計算した結果をTable 2に示す。このケースにおいて隣接群間のコバリアンスは各群の分散と同程度である事,1群隔たると1桁小さくなる事が分る。

4.2 パラメータの誤差によるコバリアンス

強度函数モデルに必要なパラメータは S_0 , S_1 , S_2 , S_γ である。 ¹⁰⁰Ru は分離共鳴レベルが 少なく,他の核との系統性や, σ_{tot} , σ_c フィット等でこれらを求めている。したがってパラメ ータの独立性にも問題はあるが、一応独立と仮定しかつ各々の標準偏差を

 S_1 : 20% , S_1 : 50% , S_2 : 100% , S_{γ} : 20% と仮定する。

一方感度係数d σ/dp はパラメータを10%変化させてASREPで計算して求めた。 その感 度係数をFig.1に示す。100eV以上ではS₇の係数が大きい事,中性子に関しては1 keV~ 100 keV でS₁の係数が最大である事が分る。

これらを用い(15) 式より求めた cov (σ_i , σ_j)/< σ_i >< σ_j >をTable 3 に示す。またそのパラメータ毎の成分を9 群からの伝播、15 群からの伝播の形で Figs. 2.3 に示す。9 群からの伝播は S₇ による寄与が大きいのに対し、15 群からの伝播は S₁ による寄与が大きい事が分る。しかしこれらは各パラメータの分散の仮定によるものである事に注意する必要がある。

5. 結 語

本報文において、モデル計算におけるコバリアンスについて統計モデルを例として考察した。

評価に用いられるモデルとしては、その他にも光学模型、蒸発模型、前平衡模型等があり、それ ぞれのモデル化における近似と実際の核の状態との間で統計的誤差、系統誤差の原因を検討しな くてはならない。

一方パラメータの誤差に起因するコバリアンスについても、パラメータの誤差の評価、その独 立性の検証には多くの不確定性が残る。またモデルによりパラメータの数や種類も異なるので、 モデルをエネルギー毎に連結した場合の両者にまたがるコバリアンスの評価は極めて困難であろ う。さらにパラメータを断面積実験値のフィットから求めた場合には、実験値からの誤差の伝播 を考えなくてはならず、問題はさらに複雑となる。その上数多くのパラメータの中には意識せず に固定されているhidden parameters もあるはずで、その寄与は系統誤差としてコバリアンス に効くが、意識されていないのだから評価しょうがない。

以上の状況を考えると、一見簡単そうに思われる"モデル計算におけるコバリアンス評価"も 非常に困難な問題である。評価されたコバリアンスの誤差評価が必要となるであろう。このよう な大きな誤差を持つコバリアンスがJENDLにファイル化されると真値として一人歩きを始め る訳であり、核データ評価者としては正直に言って非常に怖い気がする。

謝 辞

本報告の作成について、有益な助言と示唆をいただいた飯島俊吾氏(NAIG)に感謝します。

参考文献

- Gruppelaar, H. : Nuclear Theory in Neutron Nuclear Data Evaluation, Vol.II, p.61, IAEA-190 (1976)
- 2) Schmittroth, F. : HEDL-TME73-79 (1973)

討 論

Q:五十嵐 信一(原研)

今の講演では、Strength function model という簡単な model を扱っているので一見簡 単そうに見えたが、統計模型の式を直接使って $T_{\ell}^{j}(E)$ fitting parameter として扱うとその 数が多過ぎて扱えなくなるであろう。それに比べると optical model を start にして parameter 間の variance matrix を作り、それを base にして $T_{\ell}^{i}(E)$ 間の variance matrix を求 め、それから cross section 間の variance matrix を求めて行く方が良いのではないか。 A:菊池 康之 (原研)

一般的にはそうである。しかし Strength function model はそのパラメータと断面積間の 関係が解析的に表現されているので、例としては分りやすい。

Group	E _{max} (keV)	E _{min} (keV)
7	465	215
8	215	100
9	100	46.5
10	46.5	21.5
11	21.5	10
12	10	4.65
13	4.65	2.15
14	2.15	1.0
15	1.0	0.465
	ţ	

Table 1 Group structure of ABBN set

Table 2 Covariance matrix due to fluctuation of level numbers in unresolved resonance region $(Cov(\sigma_i, \sigma_j) / <\sigma_i > <\sigma_j > \text{ for } ^{100}\text{Ru})$

			(×10 ⁻²)
i	13	14	15
13	1.42	-1.12	-0.193
14		2.75	-3.94
15			9.87

- 138 -

	,							(×10 ⁻²)		_
	7	8	9	10	11	12	13	14	15	
7	6.56	5.98	3.88	2.81	2.44	1.75	1.58	1.59	1.48	-
8		5.49	3.74	2.85	2.56	1.94	1.80	1.80	1.60	
9	-		3.25	2.98	2.88	2.39	2.30	2.27	1.92	
10				3.04	3.16	2.88	2.85	2.78	2.19	
11					3.56	4.35	4.82	3.59	2.61	
12						3.97	4.29	4.09	2.77	
13							4.69	4.49	2.99	
14								4.63	3.02	
15									2.36	

Table 3 Covariance matrix due to variances of parameters. $(Cov(\sigma_i, \sigma_j)/\langle \sigma_i \rangle \langle \sigma_j \rangle$ for ¹⁰⁰Ru)

Sensitivity coefficients of the capture cross section of $^{100}\mathrm{Ru}$ concerning the change of $S_0,\ S_1,\ S_2$ and S_γ

- 140 -

4.2 TOF法による散乱断面積測定におけるエネルギー依存誤差

田中茂也+

高速中性子の散乱断面積をTOF法で標準断面積と比較測定する際における,散乱中性子のエネルギーに依存する断面積の誤差の原因を述べている。その原因として,持に検出効率に由来するものと、タイム・スペクトル上の非分離ピークを,unfoldingを行う際に生ずるものとを簡単な例によって分析している。さらに,後者の場合には,断面積間の相関を議論している。

Energy Dependent Errors in the TOF Measurement of Scattering Cross Sections

Shigeya TANAKA[†]

This report decribes origions of neutron-energy dependent errors in the TOF measurement of scattering cross sections obtained by comparison with a standard cross section. Two origins are analyzed by using simple examples; one is derived from detector efficiency, and the other is generated in the case of unfolding of unresolved peaks in a time spectrum. In this case, correlations among cross section errors are discussed.

1. 散乱断面積を求める式

静電型加速器によって単色中性子を発生し、散乱中性子をTOF法で分析し、中性子の散乱断面積を求める場合の断面積への誤差の伝播を考えてみる。一般に、Fig.1に示すようなgeometry で測定する際に、求めようとする散乱断面積 $\sigma_i(\theta)$ に対応するスペクトル上のピークの計数 $C_i(\theta, E_i)$ は

$$C_{i}(\theta, E_{i}) = \Phi_{i} N_{i} \sigma_{i}(\theta) \eta (E_{i}) \frac{S}{L^{2}}$$
(1)

で与えられる。ここで

● : +ンプルの位置での中性子束の積分値

N: : サンプル中の原子数

η(E_i): 検出器の効率

- S : 検出器の有効面積
- L :飛行距離

+ 日本原子力研究所, Japan Atomic Energy Research Institute

i : サンプルの種類を識別する添字 である。水素の散乱断面積との比較測定においては、

$$\sigma_{\rm S}(\theta) = \mathbf{k} \ \sigma_{\rm H}(\theta_0) \ \frac{C_{\rm S}(\theta, \mathbf{E}_{\rm S})}{C_{\rm H}(\theta_0, \mathbf{E}_{\rm H})} \ \frac{\eta(\mathbf{E}_{\rm S})}{\eta(\mathbf{E}_{\rm H})}$$
(2)
$$\mathbf{k} = \frac{\boldsymbol{\Phi}_{\rm H} \mathbf{N}_{\rm H}}{\boldsymbol{\Phi}_{\rm S} \mathbf{N}_{\rm S}}$$
(3)

H,Sはそれぞれ水素および測定しようとするサンプルに対応する添字を示す。しかし、(2)式は まだ厳密な式ではない。サンプル中での多重散乱,サンプルと中性子源とが張る有限の立体角な どの補正を行う必要がある。それらの補正係数 f(θ)を考慮すると,厳密な式として

$$\sigma_{\rm S}(\theta) = \mathbf{k} \ \mathbf{f}(\theta) \ \sigma_{\rm H}(\theta_0) \frac{C_{\rm S}(\theta, \mathbf{E}_{\rm S})}{C_{\rm H}(\theta_0, \mathbf{E}_{\rm H})} \frac{\eta(\mathbf{E}_{\rm S})}{\eta(\mathbf{E}_{\rm H})}$$
(2)'

を得る。

2. エネルギーに依存する uncertainty

(2)['] 式において、凡ての量に伴う uncertainty を考慮することはここでは行わないことにす る。若し、注意深い測定を行えば、サンプルの位置での中性子束の積分値の比 φ_{H}/φ_{S} に伴う 誤差は、他の原因に起因する誤差に比べて無視できるように小さくおさえることができる。サン プル中の原子数も、通常充分に正確に与えることができるから、ここではkに対する誤差は無視 する。標準断面積 $\sigma_{H}(\theta_{0})$ も充分正確な値が与えられている。補正係数 f(θ)に対しては、その uncertainty は一般に無視できない。特に弾性散乱の角度分布の極小値附近においては、多重 散乱の補正が充分精密に行われないことが多い。しかし、この問題にはここでは立入らないこと にする。ここではエネルギーE_S に依存する uncertainty を生む主なる原因として、検出器の 効率およびピークの計数に関連した uncertainty を考慮する。

2.1 検出効率の uncertainty の影響

(2)['] 式において E_{s} と E_{H} とは一般に違った値を採る。仮りに求めるものが弾性散乱の微分断面積であっても、水素による散乱では、その反跳が大きいために、散乱中性子はエネルギーを失って、 $E_{s} > E_{H}$ なる関係にある。求めるものが非弾性散乱断面積の場合には、たまたま $E_{s} = E_{H}$ の場合もあり、そのときには(2)['] 式は検出効率を含まないものとなる。

$$\eta(\mathbf{E}) \neq \eta(\mathbf{E}_{\mathbf{H}}) = \mathbf{R}(\mathbf{E}) \tag{4}$$

とおいて, R(E)の uncertainty のエネルギー依存性を調べてみる。実際の測定によって求め た検出効率のエネルギー依存性は Fig. 2 のようなものである。ここで勾配のあまり急な範囲は 大きな誤差をもたらすので使用されない。そこで、いま簡単のために直線的であると仮定する。

$$\eta$$
 (E_i) = a + bx_i

 $\mathbf{x}_{i} = \mathbf{E}_{i} - \mathbf{E}_{H}$

とおける。ここでi は各測定点に対する添字である。最小自乗法によって回帰直線を

$$\eta(\mathbf{E}) = \widetilde{\mathbf{a}} + \widetilde{\mathbf{b}}\mathbf{x}$$

求めたとすると,

$$R(E) = 1 + \frac{\widetilde{b}}{\widetilde{a}} \quad x = 1 + \widetilde{\alpha} x$$

とおけば、R(E)のvariance $\sigma(R(E))$ は

$$\sigma^{2} (\mathbf{R} (\mathbf{E})) = \sigma^{2} (1 + \widetilde{\alpha}_{\mathbf{X}}) = \mathbf{x}^{2} \sigma^{2} (\widetilde{\alpha})$$
(5)

となる。ここで $\sigma(\alpha)$ はベクトル ($\widetilde{\overline{b}}$)の共分散マトリックスと(4)式とを用いて計算され、 ある一定値をとる筈である。従って R(E)の variance は x すなわち E – E_Hに比例した値を採

ある一定値をとる苦である。従って KE/の val lance は X 9 なりち E E_H に比例した値を採 る。従って、求める散乱の断面積も $\sigma(R(E))$ のE が E_H から遠ざかる程大きな uncertainty を 持つことになる。

2.2 スペクトルの Peeling – off に伴う共分散

(2)または(2)¹ 式におけるC_S(θ , E_S) は、スペクトル上のピークが充分に他のピークと分離 していれば取扱いは非常に簡単である。その場合には独立した統計誤差を与えてやればよい。し かし、ピークが他のピークから充分に分離しない場合には pee ling – off (unfolding)の方法 でピークの計数を estimate しなければならない。(Fig.3参照)各ピークに対応して標準的 なピークの形が与えられれば、以下のようにして、最小自乗法によって各ピークの計数を求める ことができる。

時間スペクトル上の毎チャンネル毎の計数をSnとすると

$$S_n = F_{n1} a_1 + F_{n2} a_2 + \dots + F_{n,jmax} a_{jmax}$$
, (6)

ここでF_{nj}はピークの標準形を与えるもの、添字jはスペクトル上のピークの番号である。通常 F_{ni}は充分分離するピークを与えるような他のサンプルを用いて実験的に求められる。

$$\sum_{n} F_{n,j} = 1$$
(7)

と規準化しておくと、a、がいま求めようとする各ピークに対する計数を与える。

$$\mathbf{S} = \left(\begin{array}{c} S_{1} \\ S_{2} \\ \vdots \\ S_{nmax} \end{array}\right), \quad \mathbf{F} = \left(\begin{array}{c} F_{11} & F_{12} & \cdots & F_{1 \ jmax} \\ F_{21} & F_{22} \\ \vdots \\ F_{nmax, 1} & F_{nmax, \ jmax} \end{array}\right)$$

- 143 -

$$\mathbf{a} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \vdots \\ \mathbf{a}_{jmax} \end{pmatrix}$$

とおくと(6)式は

$$\mathbf{S} - \mathbf{F} \mathbf{a} = 0 \quad . \tag{6}$$

実際のスペクトルの測定値を y_n とし, $y_n = S_n + \varepsilon_n$ とおくと

$$\sum_{n} \varepsilon_{n}^{2} = (\mathbf{y} - \mathbf{F}\mathbf{a})^{\mathrm{T}} \mathbf{G}_{y} (\mathbf{y} - \mathbf{F}\mathbf{a})$$

の最小値を求めればよい。ここで $\mathbf{G}_{y}^{-1} = \mathbf{C}_{y}$ は y の covariance で、今の場合対角型である。 正準方程式

$$2 \mathbf{F}^{\mathrm{T}} \mathbf{G}_{\mathrm{v}} (\mathbf{y} - \mathbf{F} \mathbf{a}) = 0$$

の解は

$$\widetilde{\mathbf{a}} = (\mathbf{F}^{\mathrm{T}} \mathbf{G}_{\mathrm{v}} \mathbf{F})^{-1} \mathbf{F}^{\mathrm{T}} \mathbf{G}_{\mathrm{v}} \mathbf{y}$$

~aの共分散マトリックスは

$$\mathbf{C}_{\widetilde{\mathbf{a}}} = \mathbf{G}_{\widetilde{\mathbf{a}}}^{-1} = (\mathbf{F}^{\mathrm{T}} \mathbf{G}_{\mathrm{y}} \mathbf{F})^{-1}$$

で与えられる。

次に, ピーク間の相関の様子を見るために,最も簡単な例に対して計算を行ってみる。Fig. 4のような2コのピークに対するスペクトルが観測され,ピークの標準形はいづれも同じで各チャンネルの値が 1/16,2/16,3/16,4/16,3/16,2/16,1/16で与えられたとする。すなわち

$$\mathbf{F} = \frac{1}{1 \ 6} \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 3 & 0 \\ 4 & 0 \\ 3 & 1 \\ 2 & 2 \\ 1 & 3 \\ 0 & 4 \\ 0 & 3 \\ 0 & 2 \\ 0 & 1 \end{bmatrix}$$
$$\mathbf{a} = \begin{pmatrix} 1 \ 6 \times 2 \\ 1 \ 6 \times 3 \end{pmatrix} = \begin{pmatrix} 3 \ 2 \\ 4 \ 6 \end{pmatrix}$$

- 144 -

と与えられる。**y**の誤差として,計数の統計誤差を採ると**G**_yとしては対角型であり,その要素は 1/2, 1/4, 1/6, 1/8, 1/9, 1/10, 1/11, 1/12, 1/9, 1/6, 1/3 となる。従って

$$\mathbf{G}_{\widetilde{\mathbf{a}}} = \mathbf{F}^{-1} \ \mathbf{G}_{\mathbf{y}} \ \mathbf{F} = \frac{1}{1 \ 6^2} \begin{pmatrix} 5.6 \ 6 & 1.0 \ 1 \\ 1.0 \ 1 & 4.6 \ 6 \end{pmatrix},$$
$$\mathbf{C}_{\widetilde{\mathbf{a}}} = \mathbf{G}_{\widetilde{\mathbf{a}}}^{-1} = 1 \ 0.0 \begin{pmatrix} 4.6 \ 6 & -1.0 \ 1 \\ -1.0 \ 1 & 5.6 \ 6 \end{pmatrix} = \begin{pmatrix} 6.9^2 & -1 \ 0.2 \\ -1 \ 0.2 & 7.5^2 \end{pmatrix}$$

を得る。従来は off-diagonal element を無視して,

 $\widetilde{a}_1 = 3 \ 2 \pm 6 \ 9$ $\widetilde{a}_2 = 4 \ 6 \pm 7.5$

としていたわけである。しかし実際にはこの例でみられるように,当然一方のピークを過小に評価すれば,他方は過大評価となるといったマイナスの相関を持っていることが判る。

あとがき

この報告では、散乱中性子のエネルギーに依存する uncertainty を生む主なる原因として、 検出器の効率および非分離ピークの計数に関する uncertainty を考えた。サンプル中での中性 子の多重散乱、中性子数の減衰などの補正の不完全さによる uncertainty に触れなかったが、 それらは通常無視できないものであることをここで強調しておきたい。特に弾性散乱と第1励起 準位への非弾性散乱との断面積間の、これらの原因による相関に対しては注意を要する。

Fig. 1 Geometry of the TOF measurement. T: target for neutron generation, S: scatterer as a sample, D: neutron detector with efficiency η(E) and effective area S, L: flight path, S.B.: shadows bar, S.T.: shield tank, θ: scattering angle, A.B.: proton or deuteron beam from an accelerator.

Fig. 2 An example of energy dependence of detector efficiency. Open circles and crosses are observed values. The curve was drawn by eye-guide.

Fig. 3 An example of time spectrum with unresolved peaks. Open circles show observed counts. Curves are peaks estimated by the peeling-off method.

Fig. 4 An artificial example of the peeling-off method. Open circles show observed values. Peaks with solid and dashed lines are those obtained by the peeling-off method.

4.3 中性子捕獲断面積測定における誤差評価

藤田薫顕

非分離領域における中性子捕獲断面積測定法が簡単に説明され,誤差マトリックス作成に関す るコメントを行った。

Comments on the Error Matrix in Neutron Capture Cross Section Measurements

Yoshiaki FUJITA

Experimental methods of KeV neutron cross section measurements are briefly explained and some comments are presented for preparation of the error matrix.

1. はじめに

中性子捕獲断面積の誤差マトリックスを検討するのに次の二つの場合がある。その一つは,い わゆる評価活動におけるものであり,他の一つは,測定者が当人の測定についての誤差を検討す る場合のものである。ここでは後者の場合について若干のコメントを行なう。

捕獲断面積の測定には、熱中性子に対するものや、共鳴パラメータを求めるもの、非分離領域 で平均断面積を求めるもの、或る中性子スペクトルにより平均化された断面積を求めるものなど がある。熱中性子に対するものは、非分離領域における平均断面積(統計的変動についての平均 の意)に比べて十分精度良く測定されているので、これは標準断面積の一種と見なし、非分離領 域での平均断面積測定を想定して話しを進めることにする。2において捕獲断面積測定の要点を のべ、3において上記のコメントに入る。

2. 捕獲断面積の測定法

中性子の流れから捕獲によって中性子が減少する割合を測定する方法と,捕獲事象の割合と中 性子の流れの割合を測定する方法に分けられる。

先ず,前者は中性子透過率の測定によって全断面積の絶対測定ができるように,捕獲断面積の 絶対測定に用いられる。いわゆる球殻透過法であって,点状等方的な中性子源に,これから相当 な距離をおいて中性子検出器を配する。測定物質で球殻状の試料をつくり,中性子源をその中心

* 京都大学原子炉実験所, Research Reactor Institute, Kyoto Univ.

にして球殻を置く。中性子検出器は球殻の外にあり、その形状や検出効率に種々の注文があるが、 球殻の置かれた場合と取り去られた場合の計数の比から捕獲断面積の絶対測定が可能となる。1 に近い透過率では効果的な測定にはならなく、透過率を適当に下げるのに厚い球殻を必要とする。 捕獲断面積に較べて散乱断面積が大きい場合には多重散乱の補正が大きくなる。原理的にはすぐ れた方法にもかかわらず、補正量が大きく、測定精度を良くするのには種々の困難がある。実際 の測定には、アイソトープによるガンマ線源を用いた(γ, n)中性子源が用いられることが多 い。

次に,捕獲事象の割合と中性子の流れの割合を測定する方法であるが,捕獲事象は即発ガンマ 線を測定するとか,捕獲による生成物を放射能測定とか化学分析などによって測定することによ って検知される。捕獲事象と中性子束,捕獲断面積などの関係は次式のようになる。

$$C_{\mathbf{Y}}(\mathbf{E}) = \varepsilon_{\mathbf{Y}}(\mathbf{E}) \boldsymbol{\phi}(\mathbf{E}) \mathbf{N}_{\mathbf{Y}} \boldsymbol{\sigma}_{\mathbf{Y}}(\mathbf{E})$$

(1)

ててで

- C : 捕獲事象に比例した測定量
- ε : 捕獲事象の検出効率
- N : 測定試料の原子核数
- σ : 捕獲断面積
- E : 中性子エネルギー
- X : サフィックスとして測定試料を指す。

 $C_{X}(E)$ を測定し N_{X} が既知としても、この測定だけでは $\phi(E)$ と $\varepsilon_{X}(E)$ が知られていないので、 $\sigma_{Y}(E)$ の値を求めることはできない。

 ϕ (E)と $\varepsilon_{\rm X}$ (E)の測定において、何らかの基準となるべき中性子断面積を選んでこれを測定手法に取り入れると、測定が容易になったり、測定の信頼度を増す場合がある。この場合は標準断面積に基づく相対測定ということになる。反対に何らの基準となるべき断面積を用いずに ϕ (E)、 $\varepsilon_{\rm X}$ (E)が決められると絶対測定となる。

 ϕ (E)の測定の場合,いわゆる Black Detector を用いると標準断面積を用いていないことにな る。関連粒子法などによって中性子の発生が完全に捕えられるとこれも Black Detectorの一種 である。逆に、H、⁶Li, ¹⁰B などの薄いシンチレーターやガスカウンターを用いての測定で は、 ϕ (E)と中性子検出に用いた反応断面積の積を測定したことになるので、この反応断面積を与えな ければ ϕ (E)を決定することはできない。即 反応断面積を標準とした相対測定ということになる。

 $\varepsilon_{x}(E)$ の測定に関して、この値は試料の種類Xには依存するが、中性子のエネルギには依存し なく、依存したとしてもその度合が低く、十分な信頼度でもってこれを評価できるような測定法 が選ばれている。従って、測定のエネルギEにて $\varepsilon_{x}(E)$ を測定しなくても、測定の容易な熱中性 子 E_{th} に対するものとか、捕獲の非常に大きな共鳴のあるエネルギE_Rに対しての測定を行ない、 $\varepsilon_{x}(E_{th})$ 又は $\varepsilon_{x}(E_{R})$ を求め、これによって $\varepsilon_{x}(E)$ を推測してもよい。熱中性子に対する 標準断面積を用いると ε (E_{th})を容易に測定することができるが、この場合は相対測定になる。 ϕ (E_{th})が既に求められている場合、例えば放射化法において、半減期や分岐比、測定器の検

- 149 -

出効率が十分信頼おける場合には ϵ (E_{th})の絶対測定がなされるわけである。測定試料が E_R で大きな捕獲共鳴をもつ場合には、入射中性子がすべて捕獲されるので ϕ (E_R)が既知なら ϵ (E_R)を求めることができる。これを Saturated Resonance 法という。

以上,捕獲断面積測定の要点を述べたが,誤差評価にあたっては,先ず標準断面積の使用についての整理が必要であり,次に C_x , ϕ (E), ε_X (E),場合によっては N_X についての誤差検討を要する。さらに(1)式を厳密に記す必要がある。前記のものは十分に薄い試料について成立つものであり,多重散乱の効果を考えなければならない。

3. 個々の測定における誤差マトリックスの作成に関して

1. 標準断面積

共通の標準断面積を用いることによって測定結果間に広い範囲での相関関係が生じるし,標準 断面積の精度よりも良い結果を得ることはできない。従って,測定者としては,できるだけ標準 断面積を用いない絶対測定を望む。しかしながら,測定装置の性能等種々の条件を検討し,標準 断面積の使用を決めるが,この場合には,測定値の公表にあたって,用いた標準断面積の値が明 示される。

スペクトル**ゆ**(E)の測定に標準断面積を用いたとすると、次のような関係になる。

$$\sigma_{\rm X}({\rm E}) = {\rm k} ({\rm E}) \sigma_{\rm S}({\rm E})$$

ここで σ_X は測定すべき捕獲断面積, σ_S (E) は用いた標準断面積, k (E) は測定によって求め られる直接的な値である。 σ_X (E) の誤差マトリックスの推定にあたり, 測定者は, σ_S (E) の誤 差マトリックスは与えられたものとして, k (E) の誤差マトリックスを検討する。普通は, σ_S (E) のマトリックスと k (E) のマトリックスには相関がないので, その合成は容易である。

測定者は、 $\sigma_{X}(E)$ の結果をもって何らかの物理的考察を行なうのであり、k(E)とその誤差マトリックスを求めるのは、考察を行なう前の一つの手順に過ぎない。しかも、マトリックスの対角要素のみで十分な場合が多い。しかしながら、k(E)と $\sigma_{S}(E)$ の誤差マトリックスを区分しておくことは、測定者から評価者に情報を正しく受渡す意味から必要とされることである。

2. 捕獲事象の検出効率 e_x(E)の問題

捕獲によって生じた核の数を放射化分析的に或は質量分析的に測定し、 ε_X を決めることができる。この場合、 ε_X の測定誤差はそれぞれの手法においての誤差であり、例えば熱中性子にて ε_X の測定を行ない、これをもってエネルギ依存断面積の規格化をした場合には、この操作に伴う誤差マトリックスの内容は明瞭である。

エネルギ依存の断面積曲線は、通常、即発ガンマ線により捕獲事象を測定することによって求 められる。この場合には、次にみるように $\varepsilon_{X}(E)$ の誤差マトリックスを決めるのに種々の問題が ある。即発ガンマ線の測定法に少し深入りする。

複合核が励起され、これから発生するガンマ線のスペクトルが十分には知られていない。しか も、このスペクトルは入射中性子のエネルギによって変化する。例えば、s 波捕獲によるものと p 波捕獲によるものとではスペクトルが或る程度異なる。既知とされるものは、ただ一つのカス ケードにて発生するガンマ線のエネルギの和が複合核よりの中性子の分離エネルギと入射中性子 の持込んだエネルギの和に等しいということだけである。このようなカスケードに対する未確定 さを考慮して即発ガンマ線が測定されるが、具体的には次の三種の検出器が用いられている。そ の一つは、大きな液体シンチレータで捕獲に伴い何らかのガンマ線が出ると、必ず計数の得られ る検出器である。実際には低波高のノイズやバックグランドを弁別しなければならず、捕獲事象 の検出効率を100%とするわけにはいかない。この弁別の度合いが、中性子のエネルギや試料 の種類によって微妙に左右され誤差を生じる。他の二つのものは、ガンマ線の検出効率がそのガ ンマ線のエネルギに比例するものであり、そのうちの一方は Moxon-Rae 検出器といって検出 器が金物的にそのような効率をもっているが、他方は信号の波高をも測定し、これを用いてデー タ処理上の操作によって所期の効率をもたせる方であって、Pulse Height Weighting Technique と呼ばれている。これらの検出器を用いると、大型シンチレータのようにガンマ線のスペク トルによって捕獲事象の検出効率が変化する問題は一応避けられているが、モノ・アイソトープ 試料にしか応用できないという欠点をもっている。

さて,ガンマ線スペクトルの変化に伴う ϵ_{X} (E)の不明確さは,A. Paulsen ⁽¹⁾の調査によると, 各測定者は次のように考えている。

Liquid Scinti	llator Tanks	\pm 5 %
Moxon – Rae	Detectors	\pm 3 %

Pulse Height Weighting Techniques $\pm 1\%$

他方、これら3種の検出器により²³⁸U(n,r)の断面積を測定した結果の比較をFig.1にしてある。これはW.P.Poenitz⁽²⁾の論文より採用した。例えば、MACKLIN/MOXONは点線で示され、13%程度の差があるが上に列記したそれぞれの精度では説明しにくい。同じ図に p 波捕獲の割合が示されているが、これによって、ガンマ線スペクトルの変化が影響しているのではないかと推測される。

以上のように、即発ガンマ線測定による断面積曲線の誤差評価には、マトリックスの対角要素 の値についてもさらに検討を要す問題があり、エネルギ間での誤差相関を明確にするのは、これ 以上の難問である。

3. 種々の補正と誤差評価

補正には、多重散乱や自己遮蔽、ガンマ線の減衰、散乱中性子の影響、測定系の死時間など多 くの補正がある。補正量の決定には相当主観的要素が入り込んでいるのではないかと思われる。 例えば、多重散乱による補正量を計算によって求めた結果、解析的に求めたものは10%の補正、 モンテカルロ法で求めたものは15%であったとする。これから、何%の補正をしてその信頼度 をどのように考えるのかについて判断を下すのには主観的要素が入らざるを得ない。

以上,非分離領域の平均断面積曲線測定を想定し,誤差マトリックスの作成についてのコメントを行なった。

参考文献

- Paulsen, A. : Proc. of the International Specialists Symposium on Neutron Standards and Applications, NBS SP493 (1977)
- (2) Poenitz, W.P. : Proc. of the International Conference on Nuclear Cross Sections for Technology, Knoxville, NBS SP594 (1979)

Fig.l Differences obtained for the 238 U(n,x) cross section measured with prompt-X-detection techniques and the black-resonanse normalization.

DESAUSSURE (Large Scintillator) /MOXON (Moxon-Rae)
 MACKLIN (Pulse Height Weighting) /MOXON (Moxon-Rae)

4.4 中性子二重微分断面積とγ線生成断面積の誤差と共分散

岩崎 信*

最近,核融合炉ニュートロニクスの分野で要求の高い中性子二重微分断面積(σ(n,xn))やγ 線生成断面積の実験値の誤差について検討し,共分散成分の重要性について考察する。又,これ らの断面積について角度,エネルギー,そして核種の異なる実験値間の相関あるいは共分散につ いて討論する。

On the covariances of the cross sections for (n,xn) and (n,xy) reactions

Shin IWASAKI*

Uncertainties of neutron double differential corss sections $(\sigma(n,xn))$ and γ ray production cross sections are evaluated considering the covariance terms. The covariances or correlation between cross sections of these reactions are also discussed.

1. はじめに

高速中性子に対する二重微分断面積や, γ線生成断面積の重要性は, 最近の核融合炉ニュート ロニクスの研究¹⁾ により強く指摘されている。これらの断面積の研究は,特に前者に関して, 一,二歩踏み出したのが現状で,これから大きく発展しなければいけない分野である。

ここでは、これらの断面積の誤差について、実験者の立場で、分散、共分散成分を考慮して考 察する。又、エネルギーの異なる断面積の間の共分散についても討論する。

これらの断面積については、色々の測定法があるが、ここでは、一例として、東北大ダイナミ トロン加速器で行なわれてきた実験^{2),3)}に基づいて述べる。

2. 二重微分断面積の測定とその誤差,共分散

2.1 断面積の測定

断面積の測定は、パルス中性子源と飛行時間法によって行なわれる。0°方向に放出されたパ

* 東北大工学部, Dept. Nucl. Eng., Tohoku Univ.

- 153 -

ルス中性子を1モル程度の量の,円筒状又は中空円筒状^{*)}の測定対称物質(サンプル)にあて, サンプルから数m離れた所で,シールドされた中性子検出器(液体シンチレーション検出器)に よって,散乱中性子束を飛行時間の関数として計測する。図1に実験配置を示す。測定にはバッ クグランドがあるのでこれを差引く。普通はサンプルの無い状態での計数値をバックグランドと 見做す事が多いが,場合によっては,これだけでは正しくない時もある。得られた時間スペクト ルを,時間とエネルギーの関係からエネルギースペクトルに変換し,さらに中性子のエネルギー に対して定まった検出器の検出効率で補正する。さらに,サンプルが有限であるため,サンプル 内で,入射あるいは放出中性子束の減衰や,多重散乱が起るので,これについての補正も行う。 これ以外の細かな補正が必要な場合もある。

断面積の絶対値を決めるには、入射中性子束を初めとして、いくつかの量の絶対値を知らねば ならない。しかし一般にこの事は容易ではない。良く用いられる方法は、いわゆる標準断面積に 規格化するやり方である。中性子散乱実験に於いては、水素の散乱断面積を用いる。すなわち、 水素を含んだサンプル(ポリエチレン等)について、同じ実験配置で散乱実験を行い、実験値の 比から絶対値を求める。

2.2 断面積の導出

散乱角度 θ で、中性子検出器で得られる。単位時間当りの中性子計数 (Y(θ)) は次式で表わ される。

 $Y(\theta) = N \cdot \sigma(\theta) \cdot \Omega \cdot \phi \cdot \varepsilon \cdot F \cdot G$

(1)

ててで,

- N サンプル中の原子数
- $\sigma(\theta)$ 散乱微分断面積
- *Ω* サンプルに対して検出器が張る立体角
- ∮ 単位時間当りサンプルに入射する中性子数

F 減衰と多重散乱に対する補正係数

G その他の補正

 $Y(\theta)$ の値は、サンプルのある時の計数 $Y_{F}(\theta)$ から、サンプルの無い時の計数を差引いたものである。この2回の測定は、別の中性子源モニタの計数値で規格化する。

 $Y(\theta) = Y_{F}(\theta) - Y_{B}(\theta)$ ⁽²⁾

(1)式より, サンプル(S) について,

$$\sigma_{\rm S}(\theta) = Y_{\rm S}(\theta) \cdot \left(N_{\rm S} \,\mathcal{Q}_{\rm S} \,\phi_{\rm S} \,\varepsilon_{\rm S} \,F_{\rm S} \,G_{\rm S}\right)^{-1} \tag{3}$$

同様に水素の散乱実験より,角度θ^{'**)}について,

*) 多重散乱や中性子減衰効果を減らすため。

**) $\theta \ge \theta'$ は、いつも同じにはとれない、水素の散乱は前方のみである。

- 154 -

$$\sigma_{\rm H}^{\prime}(\theta') = \Upsilon_{\rm H}^{\prime}(\theta') \cdot (N_{\rm H}^{\prime} \, \mathcal{Q}_{\rm H}^{\prime} \, \phi_{\rm H}^{\prime} \, \varepsilon_{\rm H}^{\prime} \, F_{\rm H}^{\prime} \, G_{\rm H}^{\prime})^{-1}$$
(4)

簡単のため、 $\phi_{\rm S} = \phi_{\rm H}$, $\mathcal{Q}_{\rm S} \simeq \mathcal{Q}_{\rm H}$, $G_{\rm S} = G_{\rm H} = 1$ として, (3), (4)より,

$$\sigma_{\rm S}(\theta) = \frac{{\rm Y}_{\rm S}(\theta)}{{\rm Y}_{\rm H}(\theta')} \cdot \frac{{\rm N}_{\rm H}}{{\rm N}_{\rm S}} \cdot \frac{\varepsilon_{\rm H}}{\varepsilon_{\rm S}} \cdot \frac{F_{\rm H}}{F_{\rm S}} \cdot \sigma_{\rm H}(\theta')$$
(5)

所で我々は、二重微分断面積を求めたいので、エネルギーの巾を 4E とすると、

$$\frac{d^{2}\sigma}{d \mathcal{Q} dE} = \sigma_{s}(\theta, E)$$

$$= \frac{1}{\mathcal{A}E} \cdot \left[\sum_{i}^{\mathcal{A}E} \{ Y_{s}(\theta, E_{i}) / (\varepsilon_{s}(E_{i}) \cdot F_{s}(E_{i})) \} \right]$$

$$\times \{ Y_{H}(\theta', E') / (\varepsilon_{H}(E') \cdot F_{H}(E')) \}^{-1}$$

$$\times \frac{N_{H}}{N_{s}} \cdot \sigma_{H}(\theta', E')$$
(6)

(ΔE) ここで、 \sum_{i}^{ℓ} は、巾 ΔE に属する計数の和を表わす。(6)式は複雑なので、 ΔE の中では、 ε_{s} や F_sはあまり変化しないとして、平均値 $\overline{\varepsilon_{s}}$ 、F_sにおきかえると、

$$\sigma_{\rm S}(\theta, \overline{\rm E}) = \frac{\overline{\rm Y}_{\rm S}}{\rm Y_{\rm H}} \quad \frac{\varepsilon_{\rm H}}{\overline{\varepsilon}_{\rm S}} \quad \frac{\rm F_{\rm H}}{\overline{\rm F}_{\rm S}} \quad \frac{\rm N_{\rm H}}{\rm N_{\rm S}} \quad \frac{\sigma_{\rm H}}{{\rm \Delta \rm E}}$$
(7)

となる。ここで、 $Y_{S} = \sum_{i}^{(dE)} \{ Y_{S}(\theta, E_{i}) \}$.

2.3 断面積の誤差評価

前節で、断面積の表現が得られたが、それぞれの因子の誤差 δY_S 、 $\delta \epsilon_H$, ……から、断面積の誤差 $\delta \sigma_S(\theta, E)$ を評価する。付録に示してある事を参照して、(A-10) 式にならえば、誤差の相対値は、

$$\frac{\delta \sigma_{\rm S}(\theta, \overline{\rm E})}{\sigma_{\rm S}(\theta, \overline{\rm E})} = \frac{\delta \overline{\rm Y}_{\rm S}}{\overline{\rm Y}_{\rm S}} + \frac{\delta \varepsilon_{\rm H}}{\varepsilon_{\rm H}} + \frac{\delta F_{\rm H}}{F_{\rm H}} + \frac{\delta N_{\rm H}}{N_{\rm H}} + \frac{\delta \sigma_{\rm H}}{\sigma_{\rm H}} - \frac{\delta \gamma_{\rm H}}{\sigma_{\rm H}} - \frac{\delta \overline{\varepsilon}_{\rm S}}{\overline{\varepsilon}_{\rm S}} - \frac{\delta \overline{\rm F}_{\rm S}}{\overline{\rm F}_{\rm S}} - \frac{\delta N_{\rm S}}{N_{\rm S}} - \frac{\delta \Delta E}{\Delta E}$$
(8)

となる。従って、相対分散は (A-11) 式より、

- 155 -

$$\frac{\langle \delta \sigma_{\rm S}^2 \rangle}{\sigma_{\rm S}^2} = \left[\frac{\langle \delta \overline{\rm Y}_{\rm S}^2 \rangle}{\overline{\rm Y}_{\rm S}^2} + \frac{\langle \delta \varepsilon_{\rm H}^2 \rangle}{\varepsilon_{\rm H}^2} + \frac{\langle \delta F_{\rm H}^2 \rangle}{F_{\rm H}^2} + \dots + \frac{\langle \delta A E^2 \rangle}{A E^2} \right] + 2 \cdot \left[\frac{\langle \delta \overline{\rm Y}_{\rm S} \cdot \delta \varepsilon_{\rm H} \rangle}{\overline{\rm Y}_{\rm S} \cdot \varepsilon_{\rm H}} + \dots + \frac{\langle \delta N_{\rm S} \cdot \delta A E \rangle}{N_{\rm S} A E} \right]$$
(9)

(9)式の最初の〔〕の中は、分散のみの項であるが、これが通常良く使用されている、誤差の伝 播法則である。しかし、これは各因子が完全に独立である場合にのみ正しい。すなわち、正確に 誤差(分散)を評価するためには、後の〔〕の項(共分散成分)を考慮すべきである事を(9)式 は示している。

共分散成分は,因子間に相関がなければ,零であるから(9)式の中で,明らかに無相関,あるい は非常に小さいと思われるものを除くと,

(10) 式を見てわかる様に、共分散成分にマイナスの符号のついたものがある。これは(7)式に於いて、分母と分子にある因子間の共分散であり、偏微分によって出てきたものである。全体として正になるか、負になるかは、共分散の中味を調べて初めてわかる。(10) 式を次の様に、相関係数 r ii を用いて表現してみる((A-12) 式参照)。

$$(10) \vec{\chi} = 2 \cdot \left[r \left(\varepsilon_{H} \sigma_{H} \right) \frac{\langle \delta \varepsilon_{H} \rangle \langle \delta \sigma_{H} \rangle}{\varepsilon_{H} \sigma_{H}} - r \left(\overline{\varepsilon}_{S} \sigma_{H} \right) \frac{\langle \delta \varepsilon_{H} \rangle \langle \delta \sigma_{H} \rangle}{\overline{\varepsilon}_{S} \sigma_{H}} + r \left(\overline{F}_{H} \sigma_{H} \right) \frac{\langle \delta \overline{F}_{H} \rangle \langle \delta \sigma_{H} \rangle}{F_{H} \sigma_{H}} - r \left(\varepsilon_{H} \overline{\varepsilon}_{S} \right) \frac{\langle \delta \varepsilon_{H} \rangle \langle \delta \overline{\varepsilon}_{S} \rangle}{\varepsilon_{H} \varepsilon_{S}} - r \left(\overline{F}_{S} F_{H} \right) \frac{\langle \delta \overline{F}_{S} \rangle \langle \delta F_{H} \rangle}{\overline{F}_{S} F_{H}} - r \left(N_{H} N_{S} \right) \frac{\langle \delta N_{H} \rangle \langle \delta \overline{N}_{S} \rangle}{N_{H} N_{S}} \right]$$
(11)

 $| r(a, b) | \leq 1$ であり,正の相関があればプラス,負の相関があればマイナスになる。 以下分散,共分散の各項について調べてみる。

分散成分 (*)統計的誤差, **)系統的誤差)
A.<
$$\delta$$
 Y $_{\rm S}$ >, $<\delta$ Y $_{\rm H}$ >

a. 統計誤差

b. モニタ計数での規格化に伴う誤差

) **)

*)

c. サンプル無しで評価できないバックグランドによる誤差

- d. Y_Hの場合,炭素⁺⁾の非弾性散乱などのバックグランドの評価に伴う誤差 **) e. その他
- B. $\langle \delta N_{\rm S} \rangle$, $\langle \delta N_{\rm H} \rangle$
 - a. 散乱体のサイズ,重量測定の誤差
 - b. 散乱体物質の密度の不均一に伴う誤差 **)
 (粉末化合物など)
- C. $\langle \delta \overline{\varepsilon}_{\rm S} \rangle \langle \delta \varepsilon_{\rm H} \rangle$

検出効率(相対値の場合も含めて)の決定の仕方には色々ある。我々は,あるモデルに基づい てモンテカルロ計算により求める。さらに色々の中性子源の角度分布の測定をおこなって,相 対値について検証する。

- a. 計算に用いているモデルの不正確さに基づく誤差(モデル誤差) **) b. 計算に用いている入力データ(断面積,シンチレータの発光特性,
 - エネルギ損失,波高のディスクリレベル,等)のもっている誤差に

基づく誤差

- c. モンテカルロ計算の統計誤差
- D. $\langle \delta \overline{F}_{S} \rangle$, $\langle \delta F_{H} \rangle$

これも基本的にCと同様にモンテカルロ計算により求める。従ってCと同じ項目となる。

a. モデル誤差	**)
b. データ誤差	**)
c. 統計誤差	*)
E. $<\delta$ $\sigma_{\rm H}(\theta)>$	
a. 水素の断面積(微分断面積)そのものの誤差	* *)
b. 測定角度の誤差に基づく誤差	**)

- F. $<\delta \Delta E >$
 - a. TOF 法に於けるシステムの時間分解能(エネルギー巾, パルス
 - 巾等) 4 t のもたらす誤差
 b. 飛行距離 ℓの誤差に基づく誤差

**) **)

**)

**)

**)

*)

これらの項目について,我々で行った実験の例で考えてみると表1.の様になる。担しこの数値は 厳密なものではない。というのは,上で述べた誤差について,すべてを正しく評価する事はむず かしい。特にモンテカルロ計算で求めている量に関しては,簡単な推定の方法がない。モンテカ ルロ計算を色々とやって推定はできるが,手間がかかる。ここでは,近似的な解析的表現を使っ て,諸量の誤差を推定した。この1例が付録2に述べてある。この方法では,評価しきれないも のもあるが,ここでは無視した。

+) ポリエチレンサンプルに含まれる炭素

- 157 -

共分散成分	
G. $<\delta \varepsilon_{\rm H} \delta \sigma_{\rm H}>$, $<\delta \overline{\varepsilon}_{\rm S} \delta \sigma_{\rm H}>$	r 値
検出効率の計算の中に入っている水素の断面積を通じての相関	0.66
H. $<\delta$ F _H δ $\sigma_{\rm H}>$	
F _H の中に入ってくる水素の断面積を通じての相関	0.70
I. $<\delta \ \varepsilon_{\rm H} \ \delta \ \overline{\epsilon}_{\rm S}>$	
計算に用いているデータ(断面積,ディスクリレベル,中性子エネルギー	等)
を通じての誤差の相関	0.84
J. $\langle \delta F_H \delta \overline{F}_S \rangle$	
モデル誤差を通しての相関	0.50
K. $\langle \delta N_{\rm H} \delta N_{\rm S} \rangle$	
測定器、測定法が共通であることによる相関	1. 0

以上以外のものは,いずれも相関性が低いとして無視した。相関の値を推定する事も分散の場合 と同様,容易ではない。ここではやはり解析的式を用いて推定した。

表1と、上の相関係数を用いて、相対的な共分散行列が作れる。それの一例を表2に示す。表 2の値を用いて、これを(11)式に代入して、全体の相対分散の値は、

分散成分のみ 8.9% 分散と共分散 7.9%

となり、共分散を考慮すると1%程度誤差が小さくなる。これは、測定が相対測定である事による。

2.4 断面積間の共分散

二重微分断面積は、核種(k)、入射中性子エネルギー(E_i),放出二次中性子エネルギー(E_j) と、放出角(θ_{ℓ})がきまると、一つの値 σ_{k} (E_i, E_i, θ_{ℓ})が定まる。簡単のため、

$$\sigma_{k} (E_{i}, E_{j}, \theta_{\ell}) = \sigma_{k i j \ell}$$
(12)

と表わす。

今,一例として,核融合炉ブランケットの模擬としてLi -C 体系を考え,その中心で14 MeV 中性子を発生させた時のブランケット内でのトリチウム(t)生成量を評価する問題を考える。ト リチウム生成量 (R_t) は, ⁶Li (n, α) t, ⁷Li ($n, n' \alpha$) t の t - 生成反応断面積と共に,中 性子分布を決める ⁶Li, ⁷Li 及び ¹²C の二重微分断面積が与えられればきまる量である。

$$R_{t} = R_{t} (\sigma_{6_{L_{i}}(n,t)} \alpha, \sigma_{7_{L_{i}}(n,n't)} \alpha; \sigma_{6_{L_{i}}(n,X_{n})}, \sigma_{7_{L_{i}}(n,X_{n})}, \sigma_{12_{C}}(n,X_{n})$$
(13)

デザインパラメータR₁が、5ツの断面積の内、3ツの二重微分断面積の不確定さ($\partial \sigma_{k,i,j,\ell}$) にどう影響されるか、という感度解析の問題を考える。一次の摂動論を用いると、

$$\delta R_{t} = \sum_{k,i,j,\ell} \frac{\partial R_{t}}{\partial \sigma_{kij\ell}} \cdot \delta \sigma_{kij\ell}$$
(14)

- 158 -

担し, $k = {}^{6}Li$, ${}^{7}Li$, ${}^{12}C$, $E_{i}, E_{j} = 0 \sim 15 \text{ MeV}$, $\theta_{\ell} = 0 \sim 180^{\circ}$ 我々は, R_{t} の分散の値 が知りたいので, 相対分散を求めると,

$$\frac{\langle \delta R_{t}^{2} \rangle}{R_{t}^{2}} = \sum_{k,i,j,\ell} \sum_{k'_{i}i'_{j}j'_{\ell}\ell'} P_{k,i,j,\ell} P_{k'i'_{j}j'_{\ell}} \frac{\langle \delta \sigma_{k_{ij}\ell} \delta \sigma_{k'i'_{j}\ell'} \rangle}{\sigma_{k_{ij}\ell} \sigma_{k'i'_{j}\ell'}}$$
(15)

 $\mathcal{Z}\mathcal{Z}\mathcal{C}, \quad \mathbf{P}_{k_{ij}\ell} = (\partial \mathbf{R}_{t} / \mathbf{R}) / (\partial \sigma_{k_{ij}\ell} / \sigma_{k_{ij}\ell})$ (16)

は、感度解析において sensitivity profile と呼ばれる量である。この様に R_tの分散を評価するには、個々の断面積の分散 $< \delta \sigma_{kij\ell}^2 >$ だけでなく、共分散成分の値を知らなければならない。 共分散は、すべての核種、エネルギー、角度(kij \ell)の組合せが存在し、その数は膨大なものになる。この様な共分散は今まで求められた事はないが、その重要性については指摘されている⁴⁾。

ここでは、これらの成分の具体的な評価はおこなわずに、前節で述べてきた事をふまえて、定 性的に考察するにとどめる。一般に共分散を考える場合には、それぞれの実験データが、どのよ うにして得られたものかが問題である。すなわち、別の実験グループのデータか、同じグループ のか、同じグループの場合は、その実験条件、実験装置、解析法が同じかどうかがわかれば共分 散の評価が可能となる。一般に別のグループの行った実験値は、互に相関性が無いと考えるのが 妥当であろう。担し規格化などで、共通成分が有りうる。

ここでは、同じグループの実験値について考える。

A. $< \delta \sigma_{kij\ell} \delta \sigma_{kij'\ell} >$

これは同じ実験で、同じ角度で、放出エネルギーE_jのみが違う場合である。 $\varepsilon_{\rm H}$, N_H, N_S, F_H, 4E, $\sigma_{\rm H}$ はそのまま共通項(分散)として残る。 $<\delta(\varepsilon_{\rm S})_{\rm j}\delta(\overline{\epsilon_{\rm S}})_{\rm j'}>, <\delta(\overline{F_{\rm S}})_{\rm j}$ $\delta(F_{\rm S})_{\rm j'}> や < \delta(\varepsilon_{\rm H})_{\rm j'}\delta(\varepsilon_{\rm S})_{\rm j}>, <\delta(\varepsilon_{\rm H})_{\rm j}, \delta(\overline{\epsilon_{\rm S}})_{\rm j'}>$ の項が値をもってくる。 B. $<\delta\sigma_{\rm k_{ij}\ell}, \delta\sigma_{\rm k_{ij}\ell}>$

これは同じ実験で、角度 (θ_{ℓ}) も違う場合である。これもAと同様に、 $\varepsilon_{\rm H}$, N_H, N_S, F_H, 4E, $\sigma_{\rm H}$ は共通である。 $<\delta(\overline{\epsilon}_{\rm S})_{j\ell}\delta(\varepsilon_{\rm S})_{j'\ell'}>$ も相関性が高い。 $<\delta(\overline{\rm F}_{\rm S})_{j\ell}\delta\overline{\rm F}_{\rm S})_{j'\ell'}>$ も、モデルやパラメータの共通性がある。

C. $\langle \delta \sigma_{\mathbf{k}_{1}} \rangle_{\ell} \delta \sigma_{\mathbf{k}_{1}'} \rangle_{\ell} \rangle$

これは、入射エネルギー(E_i)をかえて測定した時の実験値間の相関である。一連のシリーズで、エネルギーを変えて行った場合には、やはり $\varepsilon_{\rm H}$,N_H…… $\sigma_{\rm H}$ 等は,同様に共通性をもっている。しかし別な中性子源を使ったり、別のシリーズの実験の場合は、共通性が低下する。

D. $< \delta \sigma_{kii\ell} \delta_{k'ii'\ell'} >$

これは,違う核種についての場合である。よく同じ実験システムで,同じ配置で,サンプル だけを交換して測定する場合が多いので,そのような核種間のデータでは共通性が高い。一方 別なシリーズの実験では独立性が高くなる。

3. ア線生成断面積の測定とその分散,共分散

3.1 断面積の測定

この断面積の測定は、前にのべた中性子断面積の測定と非常に似ている(図2)。但しTOF 法は使用できないので、NaI (T ℓ) 検出器や Ge(Li)検出器で波高分布を測定し、エネルギ -スペクトルを得る。パルス中性子源は、散乱中性子が作るバックグランドと、求める発生γ線 とを区別して、バックグランドを減らすために用いている。又、発生γ線の角度分布には、特殊 な性質(後述)があるので、測定は通常一角度でのみ行なわれる。中性子の場合の様な、断面積 の標準というものがない^{*)}ので、断面積の絶対値を決めるためには、入射中性子束や、検出効 率等の絶対値を独立に求めてやらねばならない。

実際のγ線のスペクトルを見ると、はっきりとピークが分離できる成分の他に、連続的に分布 した非分離の成分があることがわかる(図3)。γ発熱等の計算を行う場合には、この非分離成 分も評価しなければならない。この成分の断面積を求めるには、測定スペクトルを、測定器の応 答関数を用いて、アンフォールディングする手法がとられている³⁾。

3.2 断面積の導出

測定された波高分布のうちのピーク成分について解析する。ピークサーチとフィッテングの手続きによって、ピークの面積(Y_γ)を求める。測定角 θ での γ 線生成断面積は、中性子の場合と同様、

$$\sigma(E_{\gamma}, \theta) = \frac{Y_{\gamma}(\theta)}{N_{n}N_{s}\varepsilon_{\gamma}\Omega F_{n}F_{\gamma}} \cdot C$$
(16)

ここで、 *φ* 。 サンプルに入射した中性子数

- N。 サンプルの原子数
- ε_{γ} γ 線のピーク検出効率
- Ω 検出器がサンプルに対して張る立体角
- F。 サンプル中での中性子の減衰や多重散乱効果に対する補正
- F_γ サンプル中でのγ線の減衰効果に対する補正
- C その他の補正

 ϕ_n については、中性子源モニタ(NE 213等)で測定した値から、サンプルに入射した値を推定 する。

$$\phi_{n} = \frac{N_{M}}{\varepsilon_{M}} \cdot \frac{\Omega_{S}}{\Omega_{M}} \cdot \frac{\sigma(\theta_{S})}{\sigma(\theta_{M})}$$
(17)

ここで, N_M モニターの計数

*) ⁵⁶ Feの846.8 keV, ⁹⁴ Zr と⁹² Zrの918 keV と936 keV そして, ⁷ Liの478 keV 等精度よく測定されたものを標準値にする場合もある。⁵⁾ €_M モニタ検出器の中性子検出効率 Q_{s} サンプルの立体角

- $\sigma(\theta_s)$ 中性子源反応の微分断面積
- $\sigma(\theta_{\rm M})$

" θ_{s}, θ_{M} サンプル及びモニターの角度

である。

次に角度積分断面積について考える。核理論によれば二次γ線の角度分布の異方性は大きくな い。実際ニュートロニクスや遮蔽の計算では、ほとんど角度分布を考慮しない。従って実用的な 断面積としては、全立体角について積分された断面積で良いことになる。

放出 γ 線の角度分布は、 90° 対称であり、偶数次のルジャンドルの多項式で表現される⁵⁾。 そしてほとんどの場合、第2項までで充分であるとすると、

$$\sigma_{\gamma}(\theta) \cong \frac{1}{4\pi} \left(a_0 + a_2 P_2 \left(\cos \theta \right) \right)$$
(18)

 $P_2(\cos \theta) = 0$ となる角度 $\theta_N(55^\circ, 125^\circ)$ で測定された断面積は,

$$\sigma_{r} \left(\theta_{N} \right) = a_{0} / 4 \pi \tag{19}$$

だから、角度積分断面積は、

$$\sigma_{\gamma} = \frac{1}{4 \pi} \int_{0}^{2\pi} d\varphi \int_{-1}^{1} (a_{0} + a_{2} P_{2} (\cos \theta)) d\cos \theta$$
$$= a_{0} = 4 \pi \sigma_{\gamma} (\theta_{N})$$
(20)

となり、一角度だけの測定で簡単に角度積分断面積を求める事ができる。

3.3 断面積の分散

3.2 で、中性子の場合と同様に、因子の積、商で表現が与えられた。各項の分散についての議 論は、大体中性子の場合と同様であるので、ここでは重複をさけるため、γ線の場合に特有な問 題に限定する。又、定量的な評価は省略する。

A. $\langle \delta Y_{r}^{2}(\theta) \rangle$

統計的誤差に加えて、ピークフィッティング等の手続きに伴う誤差がある。

B. $<\delta^2 \phi >$

最も大きい誤差は、中性子検出効率 ϵ_M で、モンテカルロ計算(05s コード)による。中 性子源反応の微分断面積は,推奨値⁶⁾を用いており,しかも比の形で使うので誤差は小さい。 $C_{\cdot} < \delta^2 \varepsilon_{\gamma} >$

測定対称のE, は, 0.5~8 MeV である。いくつかの標準γ線源を用いて、E, の関数と して絶対効率を決める。しかし普通標準線源は、3.5 MeV 位までしか存在しないので、3.5

- 161 -

MeV 以上については別な方法をとる。桧野らは、 $^{35}C_{\ell}(n, \gamma)$ 反応から γ 線を観測し、文献にある分岐比を用いて、相対的効率を求め、これを 3.5 MeV 以下の値に規格化している。 0.5~8MeV の範囲を2つに分け、3 MeV 以下については、

$$\ell n \varepsilon_{r} (E_{r}) = a_{1} + a_{2} \ell n (E_{r})$$
(21)

3 MeV 以上については,

$$\ell n \varepsilon_{\gamma} (E_{\gamma}) = a'_{1} + a'_{2} E_{\gamma}$$
(22)

というあてはめ関数を用いて、最小自乗法で係数 $a_1 \sim a_2'$ を求め、最終的に 2 つのカーブを スムースにつなぐ様に係数値を決めている。上に述べた事情から、 3 MeV 以上の範囲のパラ メータは、それ以下の場合よりも大きな系統誤差をもつ。

D. $\langle \delta^2 F_{\gamma} \rangle$

普通モンテカルロ計算によって評価されるので、モデル誤差、パラメータ誤差や統計誤差が ある。パラメータの値は、中性子の場合にくらべてはっきりしているので、その誤差は小さい。 以上は、ピークとして分離されたγ線についてであったが、次に非分離連続成分のγ線の場合の 断面積の誤差を考える。

E. 全体から分離成分を差引く時の誤差で,統計誤差の他に,レスポンスの不確定さに基づく系統誤差がある。

F. アンフォールデイングの手続きに基づく誤差,即ちアンフォールデイングの方法そのものに 基づく誤差と,使用したレスポンスの不確定さに基づく系統誤差がある。

こうした誤差(F について)に関しては今までほとんど議論されたこともなく,数値として明か にしてある例はない。使用しているコード(FERDOR)⁷⁾にも考慮されていない。こうした検 討はこれからの課題である。

次に角度積分された断面積の誤差であるが、これは前節で述べた角度分布の近似式がどれだけ 正しいかということと、測定角度θが持っている広がりに基づく誤差が考えられる。

最後に共分散成分について考えてみると、(16)、(17)そして(20)式をながめてみても、お互い に相関の強い因子は見られない。これは中性子の場合と違って、断面積の規格化を行っていない ことが大きな原因である。

全体をまとめてみると、 桧野³⁾は、 分散を評価してみて、 数MeV 以上の高速中性子に 対する *γ*線生成断面積の誤差は、 断面積が小さい (~mb) ため、 結局統計 誤差が大きな部分を占めて いて、 全体として、

と推定している。

3.4 断面積間の共分散

 $\gamma線生成断面積は、 3.2 の議論から、<math>\theta$ について考えないとすると、核種(R)、入射中性子 エネルギー(E_i)と放出 γ 線のエネルギー(E_{ri})が与えられると値がきまる。

- 162 -

$$\sigma_{\mathbf{k}}(\mathbf{E}_{i}, \mathbf{E}_{\gamma_{i}}) = \sigma_{\mathbf{k}_{i}}$$

(23)

従って、中性子の場合と同様、k,i,jのすべての組合わせについての共分散を考える事になる。 A. $< \delta \sigma_{k_{ij}} \delta \sigma_{k_{ij}'} >$

これは同じ実験で、 γ 線のエネルギーが違う場合だが、統計誤差と F_n 、 F_γ 以外はすべて、 ほぼ1の相関をもっていると考えられる。

B. $<\delta \sigma_{k_{1}} \delta \sigma_{k_{1}'} >$

これは入射中性子のエネルギーの違う場合である。これらが、一連の実験として行われた場合は、Aと同様 α 相関性がある。但し中性子源の強さ ϕ については、少し相関性が小さくなる。 C. $< \delta \sigma_{k_{i,i}} \delta \sigma_{k'_{i,i'}} >$

これは入射エネルギーは同じだが,核種が違う場合,同じ実験シリーズで行われた場合には, やはり相関性が高くなる。

4. まとめ

中性子二重微分断面積や, γ線生成断面積の測定と,その実験値の誤差(分散)の評価と,断 面積間の共分散に関して,簡単な考察を行った。

これらの断面積は,一般に断面積が小さく(数mb/sr.),誤差の大きな部分を,統計誤差 で占められているのが現状である。しかし成るべく確度の高いデータが要求されている現在*), 他の誤差成分も軽視できない。特に断面積導出にあたっては,各因子間の共分散も考慮する必要 がある。

断面積間の共分散については、その重要性がだんだん認識されてきつつある。しかし2.4でも 述べた様に、すべての組合わせ(核種,エネルギー,角度)について考えると大変な数になる。 この表現をどうするかが、今後の課題といえよう。さし当っては、実験者としては、自分の実験 方法について、断面積の導出法について、そして誤差(分散)の値とその導出過程について、で きるだけ詳述することが大事であろう。

付録A. 分散,共分散の表現

ある物理量y が、測定量 x_1 , x_2 , …… x_n の関数 f (x_1 , …… x_n) で定義されているとき、 測定量のもっている誤差 δx_1 , δx_2 , …… δx_n が与えられた場合、物理量y の誤差 δy は、

$$\delta \mathbf{y} \approx \sum_{i} \frac{\partial \mathbf{f}}{\partial \mathbf{x}_{i}} \cdot \delta \mathbf{x}_{i}$$
 (A-1)

で与えられる。yの標準偏差 ⊿y は

$$\Delta y = \sqrt{\langle \delta y^2 \rangle} = \sqrt{V(y)} \quad . \tag{A-2}$$

< >は期待値をあらわし、Vは分散(Variance)を表わす。

*) 10%以下

$$V(\mathbf{y}) = \langle \delta \mathbf{y}^{2} \rangle$$

$$= \langle \sum_{i, j} \frac{\partial f}{\partial x_{i}} \cdot \frac{\partial f}{\partial x_{i}} \delta \mathbf{x}_{i} \delta \mathbf{x}_{j} \rangle$$

$$= \sum_{i, j} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} \langle \delta \mathbf{x}_{i}, \delta \mathbf{x}_{j} \rangle$$
(A-3)

(A-3)式の右辺のカッコは共分散である。

$$\operatorname{Cov} (\mathbf{x}_{i} \cdot \mathbf{x}_{j}) = \langle \delta \mathbf{x}_{i} \ \delta \mathbf{x}_{j} \rangle \qquad (A-4)$$

共分散は i 行 j 列で、その対角成分が分散 $< \delta x_i^2 >$ である様ないわゆる共分散行列を形成する。 もし因子 $x_i \ge x_i$ が互に独立ならば、すなわち相関がないならば、

$$Cov(\mathbf{x}_{i}, \mathbf{x}_{j})_{uncorr} = Cov(\mathbf{x}_{i}, \mathbf{x}_{j}) \delta_{ij} \quad . \tag{A-5}$$

又,完全に相関がある場合には,

$$Cov(x_i, x_j)_{corr(+1)} = \sqrt{V(x_i)} \sqrt{V(x_j)}$$
(A-6)

さらに

$$r_{ij} = \frac{Cov(x_i, x_j)}{\sqrt{V(x_i)}\sqrt{V(x_j)}} = \frac{\langle x_i, x_j \rangle}{\langle x_i \rangle \langle x_j \rangle}$$
(A-7)

を相関係数と称する。 r_{ij} は、-1から+1までの間の値をとり、 x_i と x_j の相関の度合を表現する。

今, y が特別な場合で,因子 x iや z jの積の分数の形で与えられている時を考える。

$$y = \frac{\prod_{i=1}^{n} x_{i}}{\prod_{j=1}^{m} z_{j}}$$
(A-8)

y の誤差 δy を求めると、 (A-1) より,

$$\delta \mathbf{y} = \sum_{i=1}^{n} \frac{\prod_{k=1}^{n(k \neq i)} \mathbf{x}_{k}}{\prod_{j=1}^{m} \mathbf{x}_{j}} \delta \mathbf{x}_{i} - \sum_{j=1}^{m} \frac{\prod_{i=1}^{n} \mathbf{x}_{i}}{\mathbf{z}_{i} \prod_{\ell=1}^{m} \mathbf{z}_{\ell}} \delta \mathbf{z}_{j}$$
(A-9)

この式の両辺を y で割ると,

$$\frac{\delta y}{y} = \frac{\delta x_1}{x_1} + \frac{\delta x_2}{x_2} + \dots - \frac{\delta z_1}{z_1} - \frac{\delta z_2}{z_2} \dots$$
(A-10)

- 164 -

従って相対分散は,

$$\frac{\nabla (\delta y)}{y^2} = \frac{\langle \delta y^2 \rangle}{y^2}$$

$$= \left\{ \frac{\langle \delta x_1^2 \rangle}{x_1^2} + \frac{\langle \delta x_2^2 \rangle}{x_2^2} + \dots + \frac{\langle \delta z_1^2 \rangle}{z_1^2} + \frac{\langle \delta z_2^2 \rangle}{z_2^2} + \dots \right\}$$

$$+ 2 \left\{ \frac{\sum_{i,j} \langle \delta x_i \delta x_j \rangle}{x_i x_j} + \frac{\sum_{i,j} \langle \delta z_i \delta z_j \rangle}{z_i x_j} - \frac{\sum_{i,j} \langle \delta x_i \delta z_j \rangle}{z_i z_j} \right\} \quad (A-11)$$

相関係数の表現を用いると、上式の第2項は、

$$\{ \} = 2 \left\{ \sum_{i,j}^{n} \mathbf{r}_{ij}(\mathbf{x}) \frac{\langle \delta \mathbf{x}_{i} \rangle \langle \delta \mathbf{x}_{j} \rangle}{\mathbf{x}_{i} \mathbf{x}_{j}} + \sum_{i,j}^{n} \mathbf{r}_{ij}(\mathbf{x}) \frac{\langle \delta \mathbf{z}_{i} \rangle \langle \delta \mathbf{x}_{j} \rangle}{\mathbf{z}_{i} \mathbf{z}_{j}} - \sum_{i,j}^{n,m} \mathbf{r}_{ij}(\mathbf{x},\mathbf{z}) \frac{\langle \delta \mathbf{x}_{i} \rangle \langle \delta \mathbf{z}_{j} \rangle}{\mathbf{x}_{i} \mathbf{z}_{j}} \right\}$$
(A-12)

付録B 解析的な式の場合の分散,共分散の評価

ここでは一例として、中性子検出効率 $\varepsilon_{\rm H}$ 及び $\overline{\varepsilon_{\rm S}}$ について考える。 $\varepsilon_{\rm H}$ の表現として簡単 $\ell^{*)}$

$$\varepsilon_{\rm H} = \frac{E_{\rm H} - B}{E_{\rm H}} \cdot (1 - e^{-t \Sigma_{\rm H}(E_{\rm H})})$$
(B-1)

と仮定する。 $\varepsilon_{\rm H}$ の系統的誤差 $\delta \varepsilon_{\rm H}$ は、中性子エネルギーの誤差 $\delta E_{\rm H}$ 、バイアス値の誤差 δB 及び断面積の誤差 $\delta \Sigma_{\rm H}$ できまる(検出器の厚さの誤差 δ t は無視する)、

$$\delta \varepsilon_{\rm H} = \frac{-{\rm B}}{{\rm E}_{\rm H}^2} \,\delta {\rm E}_{\rm H} \,(1 - {\rm e}^{{\rm t}\Sigma_{\rm H}}) - \frac{1}{{\rm E}_{\rm H}} \,\delta {\rm B} \,(1 - {\rm e}^{-{\rm t}\Sigma_{\rm H}}) + \frac{{\rm E}_{\rm H} - {\rm B}}{{\rm E}_{\rm H}} \,({\rm t} \,{\rm e}^{-{\rm t}\Sigma_{\rm H}}) \,\delta \Sigma_{\rm H} \qquad ({\rm B} - 2)$$

同様に、 $\delta \epsilon_{s}$ についても (B-2) と同じ表現ができる。

^{*)} J.L. Fowler は、 * に対して非常に複雑な式を提案しているが、⁸⁾ ここでは簡単のため省略して考える。

参考文献

- 1) 例えば, IAEA Advisory Group Meeting on Nuclear Data for Fusion Reactor Technology, Vienna, Austria, 11-15 Dec., 1978.
- Iwasaki, S. et al., Proc. Int. Conf. on Nuclear Cross Section for Technology, NBS Sp. Pub. 594, p.73 (Knoxville, 1979).
- 3) 桧野, 東北大学大学院工学研究課博士課程学位論文, 738号(1979)
- Constantine, G., Proc. Advis. Group Meet. Nucl. Data for Fusion Reactor Tech., IAEA-TECDOC 223, p.11 (Vienna, 1978).
- 5) Van Heerden, I.J., Proc. Int. Conf. on Neutron Phys. and Nucl. Data, OECD/NEA, p.160 (Harwell, 1978).
- 6) Liskien, H., Paulsen, A., Nucl. Data Table, 11 (7) p.569 (1973).
- 7) Harris, L. Jr. et al., GA-9882 (1970).
- 8) Fowler, J.L. et al., Nucl. Instr. Meth., 151 p.175 (1980).

討論

Q:飯島 俊吾(NAIG)

各測定者は、誤差マトリックスを発表論文に添えることができますか。

A:藤田 薫顕(京大炉)

可能だと思いますが,対角要素の見積りにさえ問題のある状況ですから非対角要素については 信頼性の低いものしか出来ないと思います。

ただ測定者からみると、マトリックスを添付しても直接のメリットはないわけですし、添付す る習慣なりが定着するとは考えられません。評価者なり、積分実験者なりが動く必要があると思 います。

Q:飯島 俊吾(NAIG)

1) 測定値の covariance を出すのは、非常に厄介なことですか。

ii) KeV capture cross section の最近の測定は、設計理論計算とshape が良く合っている。
 ということは測定値の covariance と理論計算の covariance の間に強い"相関"があると言って良いのだろうか。どう考えますか。

A:小林 捷平 (京大炉)

i) covariance を算出するデータ数にもよるが、数が少ない場合には手計算も可能で、それ程 厄介なこととは思わない。

※1)私なりの意見では(私は答えたように記憶していないが),実験値と計算値の傾向に一致がみられることと、両者間に相関があることとは全く別のことだと思います。(単純に考えれば両者間に相関はない)

Table	1	中性子二重微断面積の誤差	(分散)	の一例

⁹³Nb (n,Xn) 反応, $E_i = 15.4$ MeV, $\overline{E} = 2.0 \sim 1.2$ Me V²⁾

の場合

and the second design of the s					A
項	目	誤差(%)	項	E	誤差 (%)
Y _S	а	5~12	$\varepsilon_{\rm h}$	а	2
	b	· < 0. 5		b	
	с	$1 \sim 2$		с	2
Y _h	а	2	F _s	а	
	b	< 1		b	3
	с	< 1		с	
	d	< 2	F _h	а	
N _s	a	< 0.5		b	2
N _h	а	< 0. 5		С	
Ē	а		$\sigma_{\rm h}$	а	$1 \sim 2$
0	ь	2		b	
		2	ΔE	а	3~6
	С	2		b	

Table 2 中性子二重微分断面積の相対共分散行列の一例

⁹³Nb (n,Xn)反応, $E_i = 15.4 \text{ MeV}, \overline{E} = 5 \text{ MeV}, \theta = 30^{\circ 2}$ の場合

	Ϋ́ς	Y _h	N s	N _h	 ΔE
\overline{Y}_{S}	5.5 x 5.5				
Y _h	0	3.2 x 3.2			
N _s	0	0	0.5 x 0.5		
N _h	0	0	0.9 x 0.5 x 0.5 *)	0.5 x 0.5	
E	0	0	0	0	3.0 x 3.0

	ε _s	$arepsilon_{ m h}$	σ _h	F _h	F _s
ε _s	2.8 x 2.8				
$arepsilon_{ m h}$	0.84 x 2.8 x 2.8 ^{*)}	2.8 x 2.8			
$\sigma_{\rm h}$	0.66 x 2.8 x 1.1*)	0.66 x 2.8 x 1.1	1.1 x 1.1		
F _h	0	0	0.7 x 1.1 x 2.0	2.0 x 2.0	
F _s	0	0	0	0.5 x 2.0 x 3.0 *)	3.0 x 3.0

*印は全体として分散にマイナスで寄与する成分

- 167 -

Fig. 1 σ(n,Xn)測定のための実験配置、 2)より

Fig. 2 σ(n, X γ) 測定のための実験配置.
 3)より

Fig. 3 図2配置で測定されたγ線の波高分布 500chより上に連続成分が存在する ことがわかる. 3)より

4.5 核データ評価の立場から

浅野 則雄*, 川合 将義**, 松延 広幸*

From the Standpoint of Nuclear Data Evaluation

N. ASANO^{*}, H. MATSUNOBU^{*} and Y. KAWAI^{**}

Some correlations exist between the errors in different experimental data and it is desirable to take account of them in the nuclear data evaluation. As an example, we tried to evaluate the fission cross section of ²³⁵U in two energy groups in consideration of the correlations between the errors of experimental data. The method used for the evaluation is illustrated here briefly and the procedure of evaluation is shown for the convenience of explanation.

1. はじめに

核データの評価を行う場合,一般に,箇々の測定データの誤差は考慮しても,異ったデータ間の誤差の相関は考慮していないのが実情である。その理由として,誤差の相関を考慮した適当な 核データの評価法の確立が遅れていることと,それに必要な測定データのcovariance 評価がい まだ十分でないことが挙げられる。ここでは,その試みとして,少数エネルギー群における核分 裂断面積の評価を例に,誤差の相関を考慮した核データの評価法,およびその手順について一例 を紹介する。

2. 測定データの誤差相関を考慮した最小自乗法

核データ評価に用いられる最小自乗法としては、箇々の測定データの誤差(variance)を "weight"に考慮するものが一般的であるが、ここに示す最小自乗法は、Bayes theorem¹⁾ に基づくもので、測定データ間の相関誤差(covariance)をも"weight"として考慮するも のである。

感度解析において微分データを積分データに "adjust"する場合,しばしばこの方法が用い

* 住友原子力工業(株), Sumitomo Atomic Energy Industries, Ltd.

** 日本原子力事業(株), NAIG 総合研究所, NAIG Nucl. Res. Lab., Nippon Atomic Industry Groups Company.

- 169 -

られる。今, 微分データと積分測定データをそれぞれ column vector $P(p_1, p_2, \dots, p_n)$ と $D^{0}(d_1^{0}, d_2^{0}, \dots, d_m^{0})$ で表わし、 Pから計算された積分データを $D(d_1, d_2, \dots, d_m)$ と すると、 DのPに対する依存性は sensitivity matrix Gによって以下の様に表わされる。

$$(\mathsf{D}' - \mathsf{D}) = \mathsf{G}(\mathsf{P}' - \mathsf{P}) \tag{1}$$

プライム符号は、"adjustment"後の最確値を意味し、次の χ^2 を最小にするものである。

$$\chi^{2} = (\mathbf{P} - \mathbf{P}')^{t} \quad \mathbf{M}^{-1} \ (\mathbf{P} - \mathbf{P}') + (\mathbf{D}^{0} - \mathbf{D}')^{t} \ \mathbf{V}^{-1} \ (\mathbf{D}^{0} - \mathbf{D}')$$
(2)

ここで、MおよびVはそれぞれPとD⁰の covariance matrix であり、それらの非対角要素が 各データにおける測定間の相関を表わしている。従って、測定された積分データを最も良く再現 する微分データ、すなわち、(2)式で与えられる χ^2 を最小にする最確値 P'は、(2)式を P' につい て偏微分したものを0 と置き、MとVが対称行列であることに留意すれば得られ、

$$\mathbf{P}' = \mathbf{P} + \mathbf{M}\mathbf{G}^{\mathsf{t}} (\mathbf{N} + \mathbf{V})^{-1} (\mathbf{D}^{\mathsf{0}} - \mathbf{D})$$
(3)

ここで、NはDのcovariance matrix に相当するもので次式で定義される。

$$N \equiv G M G^{t}$$

 $\mathbf{P} = (\boldsymbol{\sigma}_{1})$

また、P'の covariance matrix M'も(3)と同様な式で与えられ、

$$\mathbf{M}' = \mathbf{M} - \mathbf{M} \mathbf{G}^{\mathrm{t}} \left(\mathbf{N} + \mathbf{V} \right)^{-1} \mathbf{G} \mathbf{M}$$
(4)

以上は、微分データを積分データに"adjust"する場合の話しであるが、積分データの代わり に微分データをDにとれば、微分評価データを実験データに"fitting" することができる。そ の場合、DはPと一対一に対応するため、Gの各要素は0か1の値となり、D⁰ は微分測定デー タを成分に持つことになる。今回の断面積評価に用いた方法がこの場合に相当し、結果として、 測定データの誤差相関を考慮した新評価値P¹とそのcovariance matrix M¹ が得られる。

次に、この場合の最小自乗法についてより理解を深めるため、測定間の相関の度合により新評価値が何の様に変化するか、すなわち P¹ のV に対する依存性を簡単なケースについて調べて見る。例として、thermal の或る反応断面積を2つの測定値から評価する場合を考える。

 $\mathbf{M} = (\mathbf{m})$

(3)式における各 vector および 各 matrix は, この場合,

$$D^{0} = \begin{pmatrix} (\sigma_{th}^{0})_{1} \\ (\sigma_{th}^{0})_{2} \end{pmatrix}, \quad V = \begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix}$$
$$D = \begin{pmatrix} \sigma_{th} \\ \sigma_{th} \end{pmatrix}, \quad G = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$N = GMG^{t} = \begin{pmatrix} m & m \\ m & m \end{pmatrix}$$
ててで,

 σ_{th} : thermal における評価値の first guess m : σ_{th} の分散 (variance) (σ_{th}^{0})_i : 測定 - i の測定値 v_{ii} : 測定 - i と測定 - j の間の共分散 (covariance)

従って新評価値 **P'**は,

$$\mathbf{P}'_{=}(\sigma'_{th}) = (\sigma_{th}) + (m)(1\ 1)\left\{\binom{m\ m}{m\ m} + \binom{v_{11}\ v_{12}}{v_{21}\ v_{22}}\right\}^{-1}\left\{\binom{(\sigma_{th}^{0})_{1}}{(\sigma_{th}^{0})_{2}} - \binom{\sigma_{th}}{\sigma_{th}}\right\}$$
$$= \frac{\frac{1}{v_{11}}(1 - \frac{c}{v_{22}})(\sigma_{th}^{0})_{1} + \frac{1}{v_{22}}(1 - \frac{c}{v_{11}})(\sigma_{th}^{0})_{2} + \frac{1}{m}(1 - \frac{c^{2}}{v_{11}\ v_{22}})\sigma_{th}}{\frac{1}{v_{11}}(1 - \frac{c}{v_{22}}) + \frac{1}{v_{22}}(1 - \frac{c}{v_{11}}) + \frac{1}{m}(1 - \frac{c^{2}}{v_{11}\ v_{22}})}$$
(5)

$$(c \equiv v_{12} = v_{21})$$

i) 2 つの測定の間に相関が無い場合(c = 0)

$$\sigma_{th}' = \frac{\frac{1}{v_{11}} (\sigma_{th}^0)_1 + \frac{1}{v_{22}} (\sigma_{th}^0)_2 + \frac{1}{m} \sigma_{th}}{\frac{1}{v_{11}} + \frac{1}{v_{22}} + \frac{1}{m}}$$

もし, m \gg v₁₁ or v₂₂ であるならば,

$$\sigma_{\rm th}' \approx \frac{1}{(\frac{1}{v_{11}}) + (\frac{1}{v_{22}})} \left\{ (\frac{1}{v_{11}}) (\sigma_{\rm th}^0)_1 + (\frac{1}{v_{22}}) (\sigma_{\rm th}^0)_2 \right\}$$

これは、分散だけを"weight"に考慮した場合の最確値を与える式で、新評価値 σ'_{th} はそれ ぞれの測定値の分散の逆数を"weight"にした重み付き平均となっている。 ii) 測定間に何らかの相関がある場合(c ≤ 0)

この場合は c に対する依存性を解析的に示すことが困難なため,実際の値を(5)式に代入して 調べて見る。実験データとして, Pshenichnyj et al.²⁾ と Weston et al.³⁾の thermal における核分裂断面積の測定値を引用した。

Measurements	$(\sigma_{th}^0)_i$ (b)	Vv _{ii} (b)
1.Pshenichnyj et al.	5 2 4.6	4.4
2.Weston et al.	5 2 1.4	7.8

- 171 -

first guess σ_{th} は、両者の算術平均をとり、分散mについては σ_{th} の10%の2乗とした。 これらの値を代入してcを0~v₂₂の間で変化させた場合の新評価値 σ'_{th} の変化の様子をFig. 1に示した。比較のため、mの値が σ_{th} の1%および0.5%の2乗である場合の計算結果も一 諸に示した。この図で興味深い点は、c<v₁₁の領域において新評価値 σ'_{th} は両測定値の間に 在るのに対して、 $v_{11} < c < v$ の範囲では両者の外へ出てしまうことである。感覚的には、2 つの測定値を基に評価を行った場合、両者の間に入る様な評価結果が"reasonable"である 様に思われるのだが、この例によれば両者の誤差相関を考慮すると必ずしもそうでないことに なる。同じ様な例は、Perey が行った¹²Cの共鳴エネルギーの評価結果⁴⁾においても見受け られる。また、新評価値 σ'_{th} はmの値が小さくなる程 first guess σ_{th} 寄りの値となるこ とから、"fitting"において、MはPの、VはD⁰の"weight"として考慮されていること が判る。

3. ²³⁵Uの核分裂断面積の評価

ここでは,評価方法およびその手順の一例を示すと言う観点から煩雑な計算は避け,エネルギ ー群数が2群でそれぞれの群に2つの実験データが存在する場合について評価を試みた。この場 合,(3)および(4)式における各 vector および各 matrix は以下の様になる。

$$P = \begin{pmatrix} \sigma_1 \\ \sigma_2 \end{pmatrix}, \quad M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$

$$D = \begin{pmatrix} P \\ P \end{pmatrix}, \quad G = \begin{pmatrix} E \\ E \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$N = G M G^{t} = \begin{pmatrix} M & M \\ M & M \end{pmatrix}$$

$$D^{0} = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, \quad A_{\ell} = \begin{pmatrix} (\sigma_{\ell}^{0})_{1} \\ (\sigma_{\ell}^{0})_{2} \end{pmatrix}$$

$$V = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad B_{\ell\ell'} = \begin{pmatrix} (v_{\ell\ell'})_{11} & (v_{\ell\ell'})_{12} \\ (v_{\ell\ell'})_{21} & (v_{\ell\ell'})_{22} \end{pmatrix}$$

$$(\mathbf{v}_{\ell\ell'})_{ij} = \langle (\varDelta \sigma^0_{\ell})_i \cdot (\varDelta \sigma^0_{\ell'})_j \rangle$$

ててで,

 σ_i : i - 群の ffrst guess m_{ij}: i - 群と j - 群の first guess の共分散 $(\sigma_{\ell}^0)_i$: データ・セット ℓ の i - 群における測定値 $(\mathcal{A} \sigma_{\ell}^{0})_{i}$: データ・セット ℓ のi ー群の測定誤差(total error) ($v_{\ell\ell'})_{ij}$ は、データ・セット ℓ のi ー群とデータ・セット ℓ' のj ー群との間の共分散を意味 するが、異った測定間に相関が有るとか無いとかと言う話しは、それぞれの測定で実際に測られ る量、例えばターゲットの質量とか中性子束とか、の測定誤差(partial error)における相関 の問題に帰着するので、ここでは異なる partial error 間の相関は無いものとし、共分散 ($v_{\ell\ell'})_{ij}$ を次の様に取扱った。

$$(\mathbf{v}_{\ell\ell'})_{ij} = \sum_{\mathbf{k}} \mathbf{K}_{\ell\ell'\mathbf{k}} (\varDelta \sigma_{\ell\mathbf{k}})_{i} \cdot (\varDelta \sigma_{\ell'\mathbf{k}})_{j}$$
$$(\varDelta \sigma^{0}_{\ell})_{i} = \left\{ \sum_{\mathbf{k}} (\varDelta \sigma_{\ell\mathbf{k}})^{2}_{i} \right\}^{\frac{1}{2}}$$

ててで,

 $(\Delta \sigma_{\ell k})_i$: データ・セット ℓ の i 一群における k —th partial error

 $K_{\ell\ell'k}$: データ・セット $\ell \geq \ell'$ における k-th partial error 間の相関係数 , 実験データとしては, Gwin et al.⁵⁾ と Czirr and Sidhu⁶⁾のデータを引用し, partial error に関しては Kon'shin et al.⁷⁾ がこれらのデータについて行った誤差解析の結果を引 用した。これを Table 1 に示す。誤差の要因は全部で11 に分類されており, Kon'shin 等は, 2 つの測定は Normalization (k = 10) においてのみ相関し, 完全相関であるとしている。す なわち,

$$\begin{cases} K_{1,2,10} = 1 \\ K_{1,2,k \ge 10} = 0 \end{cases}$$

Table 1における数値を基に $(v_{\ell\ell'})_{ii}$ を計算した結果得られた Vを以下に示す。

$$\mathbf{V} = \begin{pmatrix} (\mathbf{v}_{11})_{11} & (\mathbf{v}_{11})_{12} & (\mathbf{v}_{12})_{11} & (\mathbf{v}_{12})_{12} \\ (\mathbf{v}_{11})_{21} & (\mathbf{v}_{11})_{22} & (\mathbf{v}_{12})_{21} & (\mathbf{v}_{12})_{22} \\ (\mathbf{v}_{21})_{11} & (\mathbf{v}_{21})_{12} & (\mathbf{v}_{22})_{11} & (\mathbf{v}_{22})_{12} \\ (\mathbf{v}_{21})_{21} & (\mathbf{v}_{21})_{22} & (\mathbf{v}_{22})_{21} & (\mathbf{v}_{22})_{22} \end{pmatrix}$$
$$= \begin{pmatrix} 15.57 & 13.37 & 0.4705 & 0.4064 \\ 13.37 & 1.148 & 0.4041 & 0.3490 \\ 0.4705 & 0.4041 & 0.8539 & 0.7218 \\ 0.4064 & 0.3490 & 0.7218 & 0.3425 \end{pmatrix} \times 10^{-3}$$

first guess としては、1 -群と2 -群のエネルギー範囲をそれぞれ10 - 20 keVと20 - 30 keVに選んでいるので、1 -群に15 keV、2 -群に25 keV におけるJENDL-2の評価値を とった。covariance matrix **M**については、分散だけ、すなわち対角要素だけを考慮して、 1 -、2 -群ともfirst guess の10%の2乗とした。

$$\mathbf{P} = \begin{pmatrix} \sigma_1 \\ \\ \sigma_2 \end{pmatrix} = \begin{pmatrix} 2.5 & 0 & 0 \\ \\ 2.1 & 9 & 4 \end{pmatrix}, \quad \mathbf{M} = \begin{pmatrix} m_{11} & m_{12} \\ \\ \\ m_{21} & m_{22} \end{pmatrix} = \begin{pmatrix} 0.0625 & 0 \\ \\ \\ 0 & 0.0480 \end{pmatrix}$$

評価結果を実験データと共にFig.2に示す。比較のため、測定間の相関を考慮しない場合、 すなわち、Vの非対角要素を全て0にした場合についても計算を行い一諸に示した。それぞれの 場合における新評価値P'とそのcovariance matrix M は以下の通りである。

i) 測定間に相関が無い場合

$$\mathbf{P}' = \begin{pmatrix} \sigma_1' \\ \sigma_2' \end{pmatrix} = \begin{pmatrix} 2.4 \ 4 \ 6 \\ 2.1 \ 0 \ 6 \end{pmatrix} , \quad \mathbf{M}' = \begin{pmatrix} 5.0 \ 7 & 0 \\ 0 & 2.5 \ 0 \end{pmatrix} \times 10^{-3}$$

ii) 測定間に相関が有る場合

$$\mathbf{P}' = \begin{pmatrix} 2.452\\\\\\2.160 \end{pmatrix} , \quad \mathbf{M}' = \begin{pmatrix} 6.10&5.24\\\\\\5.24&4.50 \end{pmatrix} \times 10^{-3}$$

測定間に相関が無い場合の新評価値は、前にも述べた様に、各測定値の分散の逆数を"weight" にした重み付き平均で与えられるため、両群とも分散の小さい Gzirr and Sidhu のデータ寄り の値となっている。しかしながら、相関を考慮した場合は、互いの独立性が軟化するために相関 の程度に応じて分散の大きい Gwin et al. のデータに引き寄せられる格好となる。特に2-群に おいて、新評価値が両測定値よりも大きな値となったのは、先の新評価の共分散に対する依存性 の所で述べた様に、共分散の値が両分散の間に入ったためであろうと思われる。参考のため、1 - 群と2-群における測定データの covariance matrix V_1 および V_2 を以下に示す。

$$\mathbf{V}_{1} = \begin{pmatrix} (\mathbf{v}_{11})_{11} & (\mathbf{v}_{12})_{11} \\ (\mathbf{v}_{21})_{11} & (\mathbf{v}_{22})_{11} \end{pmatrix} = \begin{pmatrix} 1 \ 5.5 \ 7 & 0.4 \ 7 \ 0 \ 5 \\ 0.4 \ 7 \ 0 \ 5 & 0.8 \ 5 \ 3 \ 9 \end{pmatrix} \times 10^{-3}$$
$$\mathbf{V}_{2} = \begin{pmatrix} (\mathbf{v}_{11})_{22} & (\mathbf{v}_{12})_{22} \\ (\mathbf{v}_{21})_{22} & (\mathbf{v}_{22})_{22} \end{pmatrix} = \begin{pmatrix} 1.1 \ 4 \ 8 & 0.3 \ 4 \ 9 \ 0 \\ 0.3 \ 4 \ 9 \ 0 & 0.3 \ 4 \ 2 \ 5 \end{pmatrix} \times 10^{-3}$$

果たして、1 - 群においては $(v_{12})_{11} < (v_{11})_{11}$ or $(v_{22})_{11}$ であるのに対して、2 - 群では $(v_{11})_{22} > (v_{12})_{22} > (v_{22})_{22}$ であることが判る。

4. おわりに

今回の評価では、時間が限られていたせいもあって大掛りな計算は行えず、精々電卓でできる 程度の内容に止ったが、当初の誤差の相関を考慮した評価法およびその手順の一例を示すと言う 目的は果せたものと信ずる。今後に残された問題としては、Fig 1に示されている様な特異点 の存在と共分散(covariance)との関係,および測定データの範囲から外れた評価結果の妥当 性について検討を加えることが挙げられる。また、ここで示した評価法をさらに発展させて、実 際の評価に適応させるための検討も重要な課題である。実際の評価ではエネルギー群数や取扱う 実験データの数も非常に多くなるため、これらを処理するための計算コードの開発も必要である。 さらに、信頼できる covariance matrix ∨を求めるには、それぞれの測定データに関する詳細 な誤差解析を必要とするため、断面積測定に係わる誤差の要因とその程度、および異った測定間 の相関を定量化するに十分な情報は不可欠である。従って、以上の情報が実験を行う側から得ら れる様な体勢が、核データ評価の立場から望まれる。

参考文献

- 1) Dragt, J.B. et al., Nucl. Sci. Eng., 62, 117 (1977)
- 2) Pshenichnyj, V.A. et al., "Measurement of the Energy Dependence of η for ²³³U in the Region 0.02-1eV", INDC(CCP)-111/U, p.23 (1978)
- 3) Weston, L.W. et al., Nucl. Sci. Eng., 34, 1 (1968)
- 4) Perey, F.G., Proc. Int. Conf. on Neutron Physics and Nuclear Data for Reactors and Other Applied Purposes, Harwell, CONF-780921, p.104 (1978)
- 5) Gwin, R., Nucl. Sci. Eng., 59, 79 (1976)
- 6) Czirr, J.B. and Sidhu, G.S., Nucl. Sci. Eng., 60, 383 (1976)
- 7) Kon'shin, V.A. et al., "Evaluation of the ²³⁵U Fission Cross-Section in the Energy Range 0.1 KeV-20 MeV", INDC(CCP)-148/L (1980)

討 論

Q:小林 捷平 (京大炉)

- j) Table 1のデータ間で Full correlation が存在するのは Normalization に対するもののみではないと思う。例えば Mass determination のデータについても Full correlationが考えられると思うが如何でしょうか。
- ii) 何の目的のために、Fig.2中のようなFirst guess の試みをされたのでしょうか。
- A:浅野 則雄(住友原工)
- 文献には、mass determination を含め、他の誤差要因についても詳細な記述が無いので、
 ここでは全面的に Kon'shin 等の誤差解析結果を引用している。Kon'shin 等は mass determination に関しては、相関が無いとしている。
- ii) P'のMに対する依存性を見るために試みた。将来,評価済核データのcovariance 評価を ここで述べた方法で行う場合,first guess の covariance matrix M はどの程度の信頼性 があれば良いのか,またそれによって新評価値P' がどの程度影響を受けるのかを調べる目的 で試みた。しかしながら、今回のやり方は、この目的のためには適切でなく、計算結果の精度 にも問題があることが、後で判明したので、Proceedings においては削除した。

Table 1

	Experimental Data set	Gwin et	: al.	Çzirr &	Sidhu				
	Energy Group	1	2	1	2				
	Energy Range (keV)	10 - 20	20 - 30	10 - 20.	20 - 30				
	Measured Values (b)	2.48±0.12	2.13±0.11	2.42±0.09	2.09±0.06				
k	Errors associated with	(Δσ _{1k}) ₁ (%)	(Δσ _{1k}) ₂ (%)	(^{Δσ} 2k) ₁ (%)	(Δσ _{2k}) ₂ (%)				
1	Mass Determination	0.5	0.5	0.5	1.5				
2	Extrapolation to zero pulse height	0.5	0.5	0.3	0.3				
3	Lost of fission	0.3	0.3	0.5	0.5				
4	Scattering in chamber, foil backing and structure	1.5	1.5	0.9	0.9				
5	Neutron attenuation in air	0.3	0.3	0.3	0.3				
6	Neutron flux determination	2.5	2.5	2.0	2.0				
7	Detector background	0.5	0.5	0.3	0.3				
8	Detector efficiency	2.0	2.0	0.4	0.4				
9	Geometrical factor	0.2	0.2	-	_				
10	Normalization	2.8*	2.8*	2.8*	2.8*				
11	Counting statistics	2.0	2.0	1.0	1.0				

Experimental Data of Fission Cross Section and Partial Errors for ²³³U

* Full correlation $(K_{1,2,10} = 1.0)$

Fig. 1 Dependence of evaluated value (d'th) on covariance (C).

JAERI-M 9523

4.6 関数で表わされた核データと共分散行列

川 合 将 義*

核データは、多項式などの関数を用いて表わされることもよくある。Fitting 係数や係数の共 分散行列は、一般に最小二乗法によって決めることができる。当報告では、実験データの間にあ る相関も考慮した場合の最小二乗法について述べる。一つは、条件なしの単純な最小二乗法であ る。もう一つは、核データ評価のためPerey によって紹介されたものであるが、Fitting 係数の 初期推定値とその共分散行列で与えられる拘束条件がついたものである。得られたFitting 係数 とその共分散行列とから核データの誤差伝播についても示す。

例として、12-15 MeV の中性子による ²³⁹ Puの核分裂当り放出される即発中性子数 ν_p を 1 次式で Fit した。実験データ間の相関は、結果に有意な影響を与えた。また、拘束条件の重要 性を示すとともに、核データ評価の際にこの条件を実験データの重みづけに用いることが可能で あろうという見解を与える。

Covariance Matrices of Nuclear Data Expressed by Mathematical Functions

Masayoshi KAWAI^{*}

Nuclear data are often expressed by mathematical functions such as polynomials. The fitting parameters and their covariance matrices can be calculated with a least square method. This report comments two kinds of least square method taking correlation among experimental data into consideration: one is a simple least square method and another is a method with restrictive condition expressed by initial guess parameters and their covariance matrices. The latter was introduced for nuclear data evaluation by Perey. The dispersion of parameter error to the nuclear data error is also shown.

As an example, prompt fission neutron number v_p of ²³⁹Pu was fitted with a linear function in the energy range between 12 and 15 MeV. The correlations in the experimental data significantly affected the fitting parameters and their covariance matrices. This report gives some com-

* 日本原子力事業株式会社, Nippon Atomic Industry Group Co., Ltd.

ments about the restrictive condition for least square method. This condition may be used for weighting certain reliable data in the nuclear data evaluation.

1. 緒 言

評価済み核データの共分散行列は、原子炉の核特性の評価や群定数の調整などで重要である。 一方、核データのエネルギー依存性を、ある簡単な関数で表わす例がしばしば見られる。例えば、 $\nu_p(E)$ は1次~4次の多項式で与えられていることが多い。その多項式の各係数は、重みづけ最 小二乗法によって評価されている。しかし、これまでの評価では、実験データ間に存在する相関 が必らずしも十分に考慮されているとは言い難い。また評価値に対する実験データの相関の影響 も小さくないと思われる。従って、ここでは関数 fit により評価データを求める場合、実験デー タに含まれるエネルギーの誤差とともに実験データ間の相関を考慮した最小二乗法について検討 を行った。そして、得られる係数の共分散行列を用いて、異なるエネルギーの核データの間の共 分散関係も示した。特に、一般的な共分散行列の求め方として、条件づけ最小二乗法の適用を Perey¹⁾が報告している。彼の報告では、与える拘束条件の意味が明確には記されていないの で、下記の例題を通じて考察した。

例として、²³⁹Puの12~15 MeVの中性子による ν_p (E)を次式で評価する問題をとりあげた。実験データの共分散行列は、実験者が与えている統計誤差と系統的誤差、標準値の誤差とから作成した。評価値は、単純な重みづけ最小二乗法から一般的な条件づけ最小二乗法までの方法で得たが、それらの結果から実験データ間の相関の影響や、Pereyの方法における条件の意味が理解されよう。また、当報告は、核データの評価における測定データの扱い方、特に測定誤差の重要性について、理解の一助になることを目的としている。

2. Fitting の手法

求めるべき核データの評価値 y をパラメータ $\{a_r\}$ と独立変数 x の関数 f $(x; a_0, a_1, \dots, a_p)$ として与える。今, 測定データが $(x \pm 4x, y \pm 4y)$ で与えられたとすると, 真値 $(\overline{x}, \overline{y})$ に対し Taylor 展開 1 次まで考慮して次式で表わせる。

$$\overline{\mathbf{y}} = \mathbf{f}\left(\overline{\mathbf{x}}, \overline{\mathbf{a}}_{0}, \overline{\mathbf{a}}_{1}, \dots, \overline{\mathbf{a}}_{p}\right)$$
(1)

$$y = y + \frac{\partial f(x)}{\partial x} (x - x) + \sum_{r=0}^{p} \frac{\partial f(a_r)}{\partial a_r} (a_r - a_r) + 0(2)$$
(2)

$$\cong y + \sum_{r} \frac{\partial f}{\partial a_{r}} (a_{r} - a_{r}) \pm dy \pm \frac{\partial f(x)}{\partial x} dx$$
(3)

ここで、a_rが求めるべきパラメータである^{*}。そこで、このパラメータの値とそのパラメータの 誤差(分散及び共分散)を最小二乗法によって求める。

測定者mが与える測定データを $\{x_{im} \pm dx_{im}, y_{im} \pm dy_{im}; i = 1, \dots I_{m}\}$ で表わす。 $dx_{im}, dy_{im} d, (x_{im}, y_{im})$ の誤差であるが,通常その中には統計誤差と系統的誤差が含ま れている。前者は,測定点毎に独立な量であるが,後者は測定手法上の共通要素に含まれる誤差 であり、従って、この系統誤差を通じて、異なる測定データの間には相関が生じる。従って、誤 差を以下の如く分散 σ^2 (y_k)と共分散 cov ($y_k, y_{k'}$)に分けて記述する。その時、(3)式に基 づいて独立変数 x の誤差を y の誤差への伝播として考慮する。

$$\sigma^{2} (\mathbf{x}_{k}) = \sigma^{2} (\mathbf{x}_{k, \text{ stat}}) + \sigma^{2} (\mathbf{x}_{c})$$

$$\operatorname{cov} (\mathbf{x}_{k}, \mathbf{x}_{k'}) = \sigma^{2} (\mathbf{x}_{k})$$

$$\sigma^{2} (\mathbf{y}_{k}) = \sigma^{2} (\mathbf{y}_{k, \text{ stat}}) + \sigma^{2} (\mathbf{y}_{c}) + \left\{ \frac{\partial f(\mathbf{x}_{k})}{\partial \mathbf{x}} \right\}^{2} \sigma^{2} (\mathbf{x}_{k}) + \sigma^{2} (\mathbf{y}_{0}) \right\}$$

$$\operatorname{cov} (\mathbf{y}_{k}, \mathbf{y}_{k'}) = \sigma^{2} (\mathbf{y}_{c}) + \left(\frac{\partial f(\mathbf{x}_{k})}{\partial \mathbf{x}} \right) \left(\frac{\partial f(\mathbf{x}_{k'})}{\partial \mathbf{x}} \right) \sigma^{2} (\mathbf{x}_{c}) + \sigma^{2} (\mathbf{y}_{0}) \right\}$$

$$(4)$$

但し、 σ^2 ($\mathbf{x}_{k,stat}$)、 σ^2 ($\mathbf{y}_{k,stat}$):測定値 k の統計誤差 σ^2 (\mathbf{x}_c)、 σ^2 (\mathbf{y}_c) : \mathbf{x} 、 \mathbf{y} に関する系統誤差

 σ^2 (y₀): y の規格化の標準値の誤差

例えば、 $\sigma^2(y_c)$ は同一測定者の与えている異なるエネルギー間のデータ間の相関を表わし、 $\sigma^2(y_0)$ は異る測定者の与えるデータ間の相関を表わすと考えても良い。

簡単のため、測定データやパラメータセットなどを行列表示で以下の如くまとめる。実験デー タは、ペクトル形で、

$$D^{exp} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_M \end{bmatrix} \qquad Y_m = \begin{bmatrix} y_{1m} \\ y_{2m} \\ \vdots \\ y_{Im} \end{bmatrix}$$
(5)

その共分散行列は,

$$V \equiv \begin{bmatrix} V_{11} & \cdots & V_{1M} \\ V_{M1} & \cdots & V_{MM} \end{bmatrix} V_{mm'} = \begin{bmatrix} (V_{mm'})_{1} & \cdots & (V_{mm'})_{1, Im} \\ (V_{mm'})_{Im, I} & \cdots & (V_{mm'})_{Im, Im} \end{bmatrix}$$
(6)
$$(V_{mm'})_{ij} = \sigma^{2}(y_{im}) \delta_{ij} \delta_{mm'} + \operatorname{cov}(y_{im}, y_{jm}) \cdot (1 - \delta_{ij} \delta_{jm})$$

*) 正確には、独立変数 xも決定すべき量であるが、議論を簡単化するために視点をパラメータ $\{a_r\}$ に対してのみ置く。

である。さらに、パラメータの推定値をP,対応する計算値をDで与えると、最適値 P,Dは次 式を満たす。

$$\mathbf{D} - \overline{\mathbf{D}} = \mathbf{G} \left(\mathbf{P} - \overline{\mathbf{P}} \right) \tag{7}$$

但し,

$$P \equiv \begin{bmatrix} a_{0} \\ \vdots \\ a_{p} \end{bmatrix} \quad \overline{P} \equiv \begin{bmatrix} \overline{a}_{0} \\ \vdots \\ \overline{a}_{p} \end{bmatrix}$$
(8)
$$G \equiv \begin{bmatrix} g_{1} \\ \vdots \\ g_{M} \end{bmatrix} \quad g_{m} = \begin{bmatrix} \frac{\partial f(x_{1m})}{\partial a_{0}} & \dots & \frac{\partial f(x_{1m})}{\partial a_{p}} \\ \vdots & \vdots \\ \frac{\partial f(x_{1m})}{\partial a_{0}} & \dots & \frac{\partial f(x_{1m})}{\partial a_{p}} \end{bmatrix}$$
(9)
$$D = \begin{bmatrix} D_{1} \\ \vdots \\ D_{m} \end{bmatrix} \quad D_{m} = \begin{bmatrix} f(x_{1m}) \\ \vdots \\ f(x_{1m}) \end{bmatrix}$$
(10)

また, Mをパラメータ Pの共分散行列とすると, 異なる x の間の核データの計算値の間には, 次 式の共分散関係が存在する。

$$\operatorname{cov}\left(f(x_{i}), f(x_{j})\right) = g(x_{i}) \,\overline{M} \, g^{t}(x_{j}) \tag{11}$$

但し, 添字 t は転置ペクトルを意味する。結局, 問題は上の P と Mを如何に求めるかということ にある。

さて、パラメータPとその共分散行列Mを求める一般的な手法として最小二乗法があるが、 Fitting の良し悪しを判定する χ^2 の取り方によって 2 種類に大別される。

a) 条件なし最小二乗法

実験公式を求めたりする場合に良く用いられる手法であり、 X²LSF は次式の如く与える。

$$\chi^{2}_{\text{LSF}} = (D^{\text{exp}} - \overline{D})^{t} V^{-1} (D^{\text{exp}} - \overline{D})$$
(12)

最適解 \overline{P} に対する χ^2_{LSF} の極値条件: $\frac{\partial \chi^2_{LSF}}{\partial (\overline{P}-P)} = 0$ から得られる特性方程式を解いて, \overline{P} は次式の如く与えられる。

$$\overline{P}_{LSF} = \left(G^{t}V^{-1}G\right)^{-1} \cdot G^{t}V^{-1}\left(D^{exp}-D\right) + P$$
(13)

今, 関数 f(x) について多項式を考えると GP = D であり,

$$\overline{P}_{LSF} = \left(G^{t} V^{-1} G \right)^{-1} G^{t} V^{-1} D^{exp}$$
(14)

となる。その時、パラメータPの共分散行列は、次式で与えられる。²⁾

$$\overline{M}_{LSF} = \frac{\chi^2 L_{SF}}{n - p - 1} \left[G^{\dagger} V^{-1} G \right]^{-1}$$
(15)

但し, n は実験値の総数である。上式に現われるスカラー量 χ^2_{LSF} / (n-p-1) はパラメータ (p+1ケ) \overline{P} の誤差が核データ y の誤差に伝播する時の重みを与える。

普通よく使用される重みづけ最小二乗法は,(12)式において実験データの共分散行列Vの非対 角要素を全て零とおき,対角要素の値に重みを与えたものである。

b) 条件づき最小二乗法(Perey の手法)

Fitting の際, パラメータの最適値 P は, 最初に与える推定値 P のある範囲内にしか存在しな いという条件のもとにパラメータを最小二乗法で求めるやり方である。炉物理の分野では, 求め るべきパラメータ P に 微分データを, D に積分データを対応させて群定数の調整³⁾ などに用いら れている。Perey¹⁾ は核データの共分散行列を求める手法としてこの条件づき最小二乗法を採 用した。

先づ、パラメータ Fitting の評価としての χ^2 は次式で与える。

$$\chi^{2} = (D^{exp} - D)^{t} V^{-1} (D^{exp} - D) + (\overline{P} - P)^{t} M^{-1} (\overline{P} - P)$$
(16)

ここに Mは, パラメータ Pの共分散行列であり, P 同様, 評価者が与える。(16)式の右辺第2項 がパラメータの拘束条件である。行列 M, V ともに対称行列として, (16)式で与える χ^2 の極 値条件と(7)式のパラメータに対する核データの線形性とから,最適パラメータとその共分散行列 P, Mは次式の如く求まる。

$$\overline{P} = MG^{t} (N + V)^{-1} (D^{exp} - D) + P$$
(17)

$$\overline{\mathbf{M}} = \mathbf{M} - \mathbf{M} \mathbf{G}^{\mathsf{t}} (\mathbf{N} + \mathbf{V})^{-1} \mathbf{G} \mathbf{M}$$
(18)

但し,

$$N \equiv G M G^{t}$$
(19)

Nは,(11)式から明らかな如く、パラメータPの誤差による核データの計算値Dの誤差を表わす 誤差伝播の行列である。

この条件づき最小二乗法では、最初のパラメータの推定値とその共分散行列 Mをどのように与 えるかが問題となる。Perey¹¹の²³⁸ U や C の共鳴パラメータの評価においては、2 通りのや り方が例示されている。1 つは、実験データの単純平均値をP に与え、共分散行列 Mには大きな 値を与えて拘束条件を緩くしたものである。また、1 つは、3 件の実験データがある場合、その うちの1 件の実験データとその共分散行列を適用し、残る2 件の実験データについて最小二乗法 による Fitting を行ったものである。すなわち、P, Mについて厳格な採り方が定まっている訳 でなく、ある程度評価者の任意性がある。

Fig. 1 には、条件のない場合とある場合の最小二乗法に用いられる χ^2 のパラメータ依存性を例示する。条件のない場合の χ^2 は、破線で示すが、これは実験データに対する Fitting

だけを示し、 \overline{P}_{LSF} で最小となる。条件づき最小二乗法は、一点鎖線で示す拘束条件がついた分だけ χ^2 が高くなり、 \overline{P} で最小となる。また、拘束条件からくる χ^2 の寄与は、初期パラメータ P で最小である。従って、拘束条件として P = \overline{P}_{LSF} , $M = \overline{M}_{LSF}$ を与えた場合、図から理解さ れる如く $\overline{P} = P_{LSF}$ である。(14)、(15) 式を(17) 式に代入しても同じ結果が得られる。一方、 \overline{M} は、次式で与えられる。

$$\overline{M} = \left(\frac{n-p-1}{n-p-1+\chi^2_{LSF}}\right) \overline{M}_{LSF}$$
(20)

即ち,同一の解を与える条件が附加された分,見掛け上の統計性が良くなり,相関行列の値が小 さくなる。しかし,これは同一のデータを重ねて勘定したことに相当すると思われる。従って, この場合の共分散行列は \overline{M}_{LSF} を採った方が正しいと考えられる。また,条件づき最小二乗法で 求まった \overline{P} , \overline{M} を再び拘束条件とおいてFitting の手続きに入れ,繰返し計算で収斂するまで続 けた場合,(7)式の線形性が成り立つ限り \overline{P} は \overline{P}_{LSF} に近づき, \overline{M} は計算の都度小さくなって行く。 結局,このくり返し計算は,実験データの多重数え上げとなっていて,統計的に正しい手法と言 い難い。さらに,拘束条件を非常に緩くとった場合には,最適値 \overline{P} は実験データのみで殆んど定 まる。即ち,この場合も $\overline{P} = \overline{P}_{LSF}$ の値を得よう。

一方,評価者が求めるパラメータの値について特別の意向を有している例が時々ある。例えば, $\nu_p(E)$ のthermal ralue については別に評価した値を採りたいことがある。その時には,初期 推定パラメータに評価者が望む値を入れ,Mで与えた拘束条件のもとに解けば,かなり容易に望 むパラメータセットとその共分散行列を得ることができる。それに対し,通常の最小二乗法では, 測定データの重みに評価者の意向を反映させられるだけで,条件づけ最小二乗法に比べるとかな りまだるっこいと言える。

3. 計算例: $\nu_{p}(E) = a + b E$

関数 fitting して核データを評価する例として、²³⁹ Pu の12~15 MeV の $\nu_p(E)$ をとりあげ、評価の手続きを示す。評価の対象となるエネルギー域では以下の実験がある。

a) Soleilhac et al.⁴⁾ (1969)

◦ 12 MeV タンデム加速器,液体シンチレータ使用

- 。系統誤差: σ^2 (ν_c) = 0.5%
- ο 標 準 値:ν_n(Cf-252)=3.782
- b) Hopkins Diven $^{5)}$ (1963)
 - 2.5 MeV ヴァンデグラフ加速器,液体シンチレ−タ使用

 - ◦標準値: $\nu_{\rm D}$ (Cf-252) = 3.771±0.030

^{*} 実験データと求めるべきパラメータは同じ物理量(E_{j} , Γ_{n}) であるため、 $D \ge P$, $V \ge M$ は1対 1 に対応できる。

c) Smirenkin 5⁶⁾ (1958)

◦標準値: ν_n (Pu-239, thermal)=2.91

各実験データは、Table 1に示す。これらの実験データは標準値が異なっているので、JENDL - IIの重核データの評価⁷⁾に用いた値で再規格化する必要がある。即ち、

 $\nu_{\rm p}$ (Cf -252) = 3.757 ± 0.009

 $\nu_{\rm p}$ (Pu - 2 3 9, thermal) = 2.875 ± 0.007

その結果、(5)、(9)式の行列は下記の如くなる。

$$D^{exp} = \begin{bmatrix} Y_{1} \\ Y_{2} \\ Y_{3} \end{bmatrix} \begin{bmatrix} 4.654 \\ 4.742 \\ 4.817 \\ 4.906 \\ 4.964 \\ 5.015 \\ 4.924 \\ 4.653 \end{bmatrix}, G = \begin{bmatrix} \frac{\partial}{\nu} & \frac{\partial}{\nu} \\ \frac{\partial}{a} & \frac{\partial}{\nu} \\ \frac{\partial}{b} \end{bmatrix} = \begin{bmatrix} 1.0, 12.41 \\ 1.0, 12.88 \\ 1.0, 13.34 \\ 1.0, 13.84 \\ 1.0, 14.31 \\ 1.0, 14.79 \\ 1.0, 14.5 \\ 1.0, 15.5 \end{bmatrix}$$
(21)

"但し, $Y_1 = Soleilhac(6点)$, $Y_2 = Hopkins(1点)$, $Y_3 = Smirenkin(1点)$

また, 共分散行列 V は, (14) 式を用いて計算するが, エネルギー分解能からくる誤差は, Soleilhac による

$$\nu_{\rm p}({\rm E}) = 2.7707 + 0.153{\rm E}$$

(22)

(24)

の関係式を便宜的に用いて求めた。また、エネルギーに関する系統誤差 σ^2 (E_c) は無視する。 Soleilhac と Hopkins – Diven の実験データは、いずれもCf – 252を標準としているので、 両者の相関は、

cov
$$(\nu_i, \nu_j) = \sigma^2 (Cf - 252) = (0.24\%)^2 \nu_j \nu_j$$
 (23)

で与える。従って、Vの値は下記の如く得られる。

	9.90-4							7
	8.28-4	1.12-3						
	8.28-4	8.64-4	1.1 2 - 3					
V =	8.51-4	8.88-4	8.88-4	1.057 - 3				
v –	8.39-4	8.76-4	8.76-4	9.01-4	1.086-3			
	8.39-4	8.76-4	8.76-4	9.01-4	8.90-4	1.059-3		
	1.32-4	1.4 4 - 4	1.44-4	1.4 4 - 4	1.44-4	1.44-4	4.349-2	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.605-2

(対称行列)

以上の準備のもとに計算条件を下記の如く選んで最小二乗法によりパラメータ a, b および相 関行列を求める。

(1) 条件なし最小二乗法:(14),(16)式に(21),(24)式を代入。

(ii) 条件なし最小二乗法:実験データの相関を無視。(24)式の行列の中の非対角要素を全て 零と置く。

(iii) 条件づけ最小二乗法:上の(i), (ii)の結果がSmirenkin の低いデータに引張られて、やや 過小評価傾向であり、それを是正するための条件づけを行ったもの。パラメータの初期値は、 Soleilhac が与えている (22) 式の値を与える。また、拘束条件をきつくするため、Mについ ては(i)で得た \overline{M}_{LSF} の4分の1倍の値を採り、(17)、(18) 式から \overline{P} , \overline{M} を求める。

(V) 条件づけ最小二乗法: パラメータの初期値としてさらに大きい ν_p の値を与える $P^1 = (2.80, 0.153)$ を与える。それ以外の条件は(iii)と同じである。

(V) 条件なし最小二乗法:(|)において過小評価の原因となっていたSmirenkin のデータを除 外して計算する。

以上の条件のもとに得た計算結果をTable 2にまとめる。先づ, χ² の値については,

Smirenkin のデータとの近さが決定的な要素となっており、(V)、(ii)、(iii)、(iv)の順で大きくなっている。(i)はSmirenkin のデータがないので当然であるが、(ii)は実験データの相関を無視しているため、相関を与える実験データ全体のエネルギー依存性に強く束縛されることなく評価曲線が求まるためである。係数 a , b の相関係数は、V の相関を考慮した場合、-95.4%、無視した場合 -99.6%とかなり強い逆相関性を示す。(i)、(ii)の係数の誤差を比較した場合、V の相関がある場合の方が値が小さい。しかし、 ν_p の信頼巾におきかえた場合には、(ii)の方が小さくなっている。

Fig.2に(i),(ii)の結果を示す。(i)の方は、Soleilhacのデータとほぼ平行であり、その実験 データのエネルギー相関を保っていることがわかる。一方、相関を無視した(ii)は、右下の Smirenkinのデータに引かれて高エネルギー側でやや低くなっており、Soleilhacのデータに 比べるとエネルギー勾配がややゆるくなっている。破線は、(i)の結果の信頼巾(1 σ)である。

Fig.3は、拘束条件の影響を見たものである。実線は、(i)の条件なし最小二乗法の結果である。それに対し、破線で示す如くやや高目の初期条件を与えて条件づき最小二乗法で得た結果が一点鎖線である。一点鎖線はいずれも直線より高いところを走っており、拘束条件の影響が認められる。図において、(V)の結果はやや過大に感じられるが、(iii)の結果は、ほぼ合理的な値と見做し得る。

現実の評価では、ここに与えたSmirenkinのデータの如く、他のデータとの一致があまり良くないデータは評価の対象から除かれることが多い。Fig.4には、データをそのようにとり条件なし最小二乗法で得た(V)の結果を、全データを含む(I)の条件なし最小二乗法の結果と比較して示す。この場合、(III)と(V)の結果は良く一致している。このことからも条件づき最小二乗法の有効性がわかる。また、パラメータの相関係数の値には、Table2に見る如く非常に近い値を得ている。但し、相関行列Mの値については、両者で3倍の違いが見られることと、初期推定値が異なるのに条件づき最小二乗法で得るMは全く同じ値を与えていることについては考え直さねばならない問題である。

結局,統計的に意味のあるパラメータ Pと相関行列 Mを得るためには,最初に与えるべきMの 値についても一応データの統計性を考慮して与える必要がある。勿論,初期値の信頼巾を決定す る作業そのものが評価であり,その中に評価者の意図を反映させることができる。従って,それ を用いた条件づき最小二乗法で得る共分散行列は,実験データの統計性とともに評価者の意図も 含んだものと言える。尚,Mに実験データの統計性を十分に反映させる意味からすると,Perey が行った第2番目のやり方が象徴的なものと考えられる。即ち,全実験データの中から着目する データをとり出し,それから初めに与えるべきPとMを求め,次いで残りのデータに最小二乗法 を適用するものである。多項式近似の如く評価値が線形表示されている場合には,最終的には条 件なし最小二乗法と等価になると思われるが,非線形表示の場合には,興味深い手法と考えられ る。

4. 結び

核データをある関数で fit するためのパラメータとその共分散を得る手法として,実験データ も考慮した最小二乗法について検討を行い,例として²³⁹Puの12-15 MeVの中性子による即 発分裂中性子数 ν_p(E)をとり上げて計算を行った。その結果,実験データ間の相関が評価値に少 なからぬ影響を与えることがわかった。また,最小二乗法には,拘束条件がつかないものとつい たものがあり,後者においては評価者の意図を直接評価値に反映させることができる点,評価手 法上かなり魅力的なものである。尚,当報告の例題で用いた実験データの相関は,大雑把に統計 誤差と系統誤差および共通因子としての標準試料とに区分して計算したが,実際のより厳密な評 価では,誤差要因を詳細に検討し,各々の共通要素とから相関係数を導く必要があり,その算定 方法を検討することが重要となる。

また、関数 Fitting によって得られたパラメータの相関行列から異なるエネルギーの核データ 間の相関を誤差伝播の形で与えることが可能であり、炉物理分野の要求にも答えることも可能で ある。しかし、関数で記述すること自体、非常に強い相関を仮定したものなので、関数の形は、 ある程度物理的に説明できるものが望ましい。

参考文献

- 1) Perey, F.G., Proc. of Int. Conf. on Neutron Physics and Nuclear Data for Reactors and Other Applied Purpose, Harwell, p.104 (1978).
- Draper, N.R. and Smith, H., "Applied Regression Analysis", John Willey & Sons, Inc., N.Y., (1966).
- 3) 三谷 浩, "積分測定量を用いた群定数修正の基礎的研究", JAERI-M 5767 (1974).
- 4) Soleilhac, M. et al., J. Nucl. Energy, 23, 575 (1969).
- 5) Hopkins, J.C. and Diven, B.C., Nucl. Sci. Eng., <u>48</u>, 433 (1963).
- 6) Smirenkin, G.N. et al., Atomnaya Energiya, 4, 188 (1958).
- 7) Matsunobu, H. et al., Proc. of Int. Conf. on Nuclear Cross Sections and Technology, Knoxville, p.715 (1979).

討 論

Q:五十嵐 信一(原研)

川合さんが「iterate してはいけないと言う」意見は fitting formala が完全にlinear である 場合に言えることで、一般関数については言えないのではないか。

A:川合 将義(NAIG)

一般関数の場合,(7)の式の如く線形化が成立する限りこの手法が適用でき,ここでの議論がそのままあてはまる。パラメータ決定ということだけに限れば,一般関数の場合も線形化してくり返し計算を続ければ,実験データによくfit する結果を得よう。但し,その場合の共分散行列は,当報告の形式のものがそのまま適用できるとは思わない。

Q:岩崎 信(東北大)

結果が初期パラメータ(イニシアルゲス)に左右されるというのは、あまり良くわからない。 くり返し計算が必要ではないか。

A:川合 将義(NAIG)

ここで与える拘束条件の初期パラメータの性格は、名前こそ推定値とつづいているが、その変 動領域が定まっているため、Fig.1に示す如く最適値が左右される。

くり返計算は、実験データの多重回計数ということになり、統計計算上誤りとなる。もし、く り返し計算を進めると得られる共分散行列は限りなく少さくなる。統計的には、初期条件は、別 の実験データで作成することが正しいと言える。

Author	E _n (MeV)	νp	^{∆v} stat
69 Soleilhac et al	12.41 ± 0.08	4.685	0.014
	12.88±0.08	4.774	0.016
	13.36±0.075	4.849	0.016
	13.84 ± 0.075	4.939	0.012
	14.31 ± 0.07	4.997	0.014
	14.79±0.07	5.048	0.013
63 Hopkins-Diven	14.5 ±1.0	4.942	0.119
58 Smirenkin et al	15.5 ±0.5	4.71	0.20

Table 1 Experimental Data of vp for 239Pu

計算条件	$\overline{\mathbf{P}} = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$	м	√σ ² (a)	√g ² (b)	$\frac{\operatorname{cov}(a,b)}{\sqrt{\sigma^2}(a)\sigma^2(b)}$	Δν(1σ)	x ²
(i) 条件なし最小二乗法	(2.7713) (0.1518)	$\begin{pmatrix} 1.7027-2 & -1.1601-3 \\ -1.1601-3 & 8.6823-5 \end{pmatrix}$	0,131	0.009	-0.954	∿0.040	10.6
(jj) 条件なし最小二乗法 実験データの相関無視	(2.8333) (0.1481)	$\begin{pmatrix} 2.3833-2 & -1.7461-3 \\ -1.7461-3 & 1.2841-4 \end{pmatrix}$	0.219	0.016	-0.996	0.014∿0.033	6.0
(jjj) 条件づき最小二乗法: P ^t =(2.7707, 0.1530)	$\binom{2.7709}{0.1526}$	$\begin{pmatrix} 2.9513-3 & -2.0109-4 \\ -2.0109-4 & 1.5050-5 \end{pmatrix}$	0.054	0.004	-0.954	∿0.017	11.0
(Ⅳ) 条件づき最小二乗法 P ^t =(2.80, 0.153)	(2.7912) (0.1526)	$\begin{pmatrix} 2.9513-3 & -2.0109-4 \\ -2.0109-4 & 1.5050-5 \end{pmatrix}$	0.054	0.004	-0.954	∿0.017	13.7
(V) 条件なし最小二乗法Smirenkinのデータ除外	$\binom{2.7656}{0.1529}$	$\begin{pmatrix} 9.6321-3 & -6.571-4 \\ -6.571-4 & 4.933-5 \end{pmatrix}$	0.098	0.007	-0.953	∿0.032	5.7

Table 2 最小二乗法の計算条件と²³⁹Puの12-15 MeVの vpのFitting 結果

(註) $v_p(E) = a + bE$; E = 12 - 15.5 MeV

- 188 -

JAERI – M 9523

Fig.2 実験データ中の相関の影響

JAERI-M 9523

4.7²³⁵U(n.f)の評価核データと共分散

植之原 雄二 神田 幸則*

実験データをもとに、有限要素法で用いられている"roof function *を組みいれた最小二乗 法を、²³⁵U(n,f)反応の励起関数とその共分散の評価に応用することを試みた。その結果、こ の方法は核データとその共分散の評価に有効なことがわかった。

Evaluated nuclear data and its covariances of ²³⁵U(n,f)

Yuji UENOHARA and Yukinori KANDA

We have tried to apply the least square method combined with the "roof function" used in the finite element method to evaluate the excitation function and its covariances of the $^{235}U(n,f)$ reaction based on the experimental data. It is expected from these results that this method is useful to evaluate nuclear data and its covariances.

1. 序 論

評価核データの共分散は,評価に用いた実験データの誤差および共分散とともに評価の方法に も大きく依存する。評価の方法にある数学的手法が存在するならば,それに従って評価核データ の共分散は導出できるし,また統計学的手法に従うならば,元来共分散は統計学的概念であるの で,容易に評価核データの共分散も定義できる。核データの評価に関しては,確立された数学的 手法は存在しないといってよい。理由は,実験データが不足しているために数学的処理が困難な 点にあると思われる。ところが,共分散を評価するためには数学的処理,特に統計学的手法に従 った方法でなければ共分散の定義にあった量であるかどうかという疑問が残る。ところで,核デ ータの中でも²⁵⁵Uや²³⁶Uの(n,f),(n,r)反応の断面積は,比較的データはそろっている がそれらを表現する式が不備なために,評価法が確立され得ない点が見られる。実験データが少 ない核データは,仕方ないにしても実験データの多い核データに関しては,評価法に統計学的手 法,即ち最小二乗法の適用が充分可能であると思われる。ここでは,²³⁵Uの(n,f)反応断面 積を例に,有限要素法で用いられる"roof function"を用いた最小二乗法による核データと その共分散の評価例を示した。

* 九州大学, Kyushu Univ.

2. 方 法

2.1 最小二乗法

最小二乗法は、ここで特に強調する必要もなく、古来一般的に広く用いられている手法である。 最小二乗法、特に線形最小二乗法は、多くのテキストで解説されていて、その記述にも様々なも のがあるが、行列を用いたものが一番簡潔で一般的である。以下にそれを示すと、¹⁾

$$y = \varphi \Theta \qquad (2.1.1)$$

$$x^{2} = (y - \varphi \Theta)^{T} V^{-1} (y - \varphi \Theta) \qquad (2.1.2)$$

$$\Theta = (\varphi^{T} V^{-1} \varphi)^{-1} (\varphi^{T} V^{-1} \varphi) \qquad (2.1.3)$$

$$M = (\varphi^{T} V^{-1} \varphi)^{-1} \qquad (2.1.4)$$

- y ; 実験データベクトル
- 0; デザイン行列
- 0; パラメータベクトル
- $\hat{\Theta}$; x²を最小にする最適なパラメータ
- V ; 実験データの共分散行列
- M; $\tilde{\Theta}$ の共分散行列

デザイン行列のについてもっと詳細に説明すると,

 $\mathbf{y}_{i} = \phi_{i1} \theta_{1} + \phi_{i2} \theta_{2} + \dots + \phi_{ip} \theta_{p}$

と実験値が表現できるならば、 ϕ_{ij} がoのi,j 成分となる。たとえば、断面積 σ がエネルギーの一次関数ならば

$$\sigma_i = aE_i + b$$

となり、 $\phi_{i1} = E_i$, $\phi_{i2} = 1$ で、 $\theta_1 = a$, $\theta_2 = b$ とおくと、

$$y = \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \vdots \\ \sigma_n \end{pmatrix} \qquad \phi = \begin{pmatrix} E_1 & 1 \\ E_2 & 1 \\ \vdots \\ \vdots \\ E_n & 1 \end{pmatrix} \qquad \phi = \begin{pmatrix} a \\ b \end{pmatrix}$$

このように表現できる。

最小二乗法は,表現が簡潔であり,また一般に広く用いられている手法であるから核データおよびその共分散の同時評価には最適と思われるが,最小二乗法を評価に適用するためには,少くとも以下にあげる2つの条件が必要である。

1)統計的処理ができる程度のデータが必要

2) 実験データをよく表現するのが必要

1)に関しては、評価者は無力であり、より本質的な問題である。2)に関しては、本来ならば実 験データをよく再現する理論式または実験式が存在すれば解決できる。式が非線形であれば、非 線形最小二乗法を適用するだけで本質的に最小二乗法を用いることに変わりはない。ところが、 現在断面積を表わす適当な式が存在しないので、単純な、たとえばべき級数等で表わすことを試 みても励起関数のように複雑な変化をするものは、とてもべき級数程度では表わすことができな いのが現状である。従って、評価に最小二乗法を適用するのに最良の方法は、よい理論の確立が 最も本質的であるが、理論を全く考慮せず、唯実験データによく合うという条件を満足させるだ けのものを見出すことは可能である。

2.2 有限要素法の導入²⁾

有限要素法の本質は内挿法である。従って,励起関数の場合ならば,全エネルギー領域にわた ってよく合う関数を設定する必要はなく,狭いエネルギー領域で有効な内挿法を導入するだけで よい。

ここで最も簡単な場合を考えるとそれは一次関数による内挿である。

$$f(x) = \frac{(x - x_2)}{(x_1 - x_2)} f_1 + \frac{(x - x_1)}{(x_2 - x_1)} f_2$$
(2.2.1)

具体的に核データの評価に有限要素法を用いることを考えると、まず励起関数f(E)がなめ らかに変化するエネルギー領域でn個のエネルギー点 E_i (i = 1, 2, …… n)を任意に設定し、 そのエネルギー点での断面積 σ_i (i = 1, 2, …… n)が既知である場合、 E_i , E_{i+1} の間の断 面積は式(2.2.1)で定義するならば、この時励起関数f(E)は次のように明確に定義できる。

 $f(E) = \sum_{i=1}^{n} \Delta_{i}(E) \sigma_{i}$ (2.2.2.)

$$\mathcal{A}_{i}(E) = \begin{cases} \frac{(E - E_{i+1})}{(E_{i} - E_{i+1})} & E_{i} < E < E_{i+1} \\ 0 & E > E_{i+1}, & E < E_{i-1} \\ \frac{(E - E_{i-1})}{(E_{i} - E_{i-1})} & E_{i-1} < E < E_{i} \end{cases}$$
(2.2.3)

 $f(E) \ge A_i(E) \ge 0$ 関係は図1に示す。

ここで問題になるのは σ_i の値が不明な点である。式(2.2.2)を見ると σ_i の線形和になっているので容易に線形最小二乗法が適用できる。従って実験データが存在するならば、 σ_i は容易に求めることができる。(2.1)で述べた最小二乗法の方式にこれをあてはめると以下のようになる。

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \mathcal{A}_1(E^1) & \mathcal{A}_2(E^1) \cdots \mathcal{A}_p(E^1) \\ \mathcal{A}_1(E^1) & \mathcal{A}_2(E^2) \cdots \mathcal{A}_p(E^2) \\ \vdots & \vdots & \vdots \\ \mathcal{A}_1(E^-) & \mathcal{A}_2(E^n) \cdots \mathcal{A}_p(E^n) \end{pmatrix} \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_p \end{pmatrix}$$

- 193 -

y, :エネルギーE^eで求めた断面積の実験データ

さらに実験データの共分散行列Vを決定すると、自動的に、評価値とその共分散行列が求まる。

2.3 評価値およびその共分散行列の計算

実際に計算する場合に最後に残る問題は、実験値の共分散行列Vの決定である。Vの構成を簡 単に図2に示すと、斜線部分は、ある実験で求めたデータの共分散行列で空白の部分は異なった 実験データ間の共分散行列を表現している。実際文献等から入手できる情報は、Vの対角成分 (標準偏差の二乗)のみであり、本来なら図2の斜線部分は、実験者が出すのが妥当である。図 2の空白部は、大まかに言うと0とみなされるが、詳細に考慮すると、共通の標準断面積の使用、 実験方法の類似性等による相関のために必ずしも0になるとは限らない。

ここでは、形状測定を行ない他の実験者による一点の絶対測定における結果に規格化した場合 に生じる共分散のみを考慮している。この場合Vの成分は以下のようにして決定した。

形状測定によって求めた断面積 σ_i^e , σ_j^m は次のように,式(2.3.1)で表現できる。

$$\begin{cases} \sigma_{i}^{\ell} = \frac{R_{i}^{\ell}}{R_{i}^{\ell}} & \sigma_{i}^{\ell} \\ \sigma_{j}^{m} = \frac{R_{j}^{m}}{R_{j}^{m}} & \sigma_{j}^{m'} \end{cases}$$
(2.3.1)

i,j,i',j'; エネルギーを示す添字。i',j'は規格化したエネルギー点を示す。

R; 形状測定における規格化する前の測定値

 ℓ , m, ℓ' , m'; 実験を示す添字。 ℓ' , m'は引用した標準断面積を求めた実験を示す。 $\sigma_{i'}^{\ell'}$, $\sigma_{j'}^{m'}$; 標準断面積

式(231)の対数の微小変動量は以下のようになる。

$$\frac{\Delta \sigma_i^{\ell}}{\sigma_i^{\ell}} = \frac{\Delta R_i^{\ell}}{R_i^{\ell}} - \frac{\Delta R_{i'}^{\ell'}}{R_{i'}^{\ell'}} + \frac{\Delta \sigma_{i'}^{\ell'}}{\sigma_{i'}^{\ell'}}$$
(2.3.2)
$$\frac{\Delta \sigma_j^{m}}{\sigma_j^{m}} = \frac{\Delta R_j^{m}}{R_j^{m}} - \frac{\Delta R_{j'}^{m}}{R_{j'}^{m}} + \frac{\Delta \sigma_{j'}^{m'}}{\sigma_{j'}^{m'}}$$
(2.3.3)

式(2.3.2)と式(2.3.3)の積の平均は,規格化による共分散のみを考慮すると以下のよう になる。

$$\frac{\langle \Delta \sigma_{i}^{\ell} \ \Delta \sigma_{j}^{m} \rangle}{\sigma_{i}^{\ell} \ \sigma_{j}^{m}} = (1 - \delta_{ii'}) (1 - \delta_{jj'}) \delta_{ij} \ \delta_{\ell m} \frac{\sqrt{\langle \Delta^{2} R_{i}^{\ell} \rangle \langle \Delta^{2} R_{j}^{m} \rangle}}{R_{i}^{\ell} R_{j}^{m}} + (1 - \delta_{ii'}) (1 - \delta_{jj'}) \delta_{\ell m} \ \frac{\sqrt{\langle \Delta^{2} R_{i'}^{\ell} \rangle \langle \Delta^{2} R_{j'}^{m'} \rangle}}{R_{i'}^{\ell'} R_{j'}^{m'}} + \delta_{\ell' m'} \ \delta_{i'j'} \ \sqrt{\frac{\langle \Delta^{2} \sigma_{i'}^{\ell'} \rangle \langle \Delta^{2} \sigma_{j'}^{m'} \rangle}{\sigma_{j'}^{\ell'} \sigma_{j'}^{m'}}}$$
(2.3.4)

- 194 -

計算は, Ref (3)からRef (9)の²³⁵ U(n,f)反応断面積に関する実験データを用いた。評価した励起曲線とその標準偏差は図3と図4に,実線と破線でそれぞれ示している。評価値の共分散行列は相関係数行列の形で表1と表2に示している。また計算するにあたってなめらかな変化を励起曲線に期待するためにエネルギーと断面積を対数に変換して計算した。

3. 結 論

図3および図4を見ると,評価した励起曲線は実験値の分布を比較的よく再現していて有限要 素法の手法を最小二乗法に導入することは有効であることがわかった。エネルギー領域の両端, 特に低エネルギー側で励起曲線の変化に実験値の分布と一致しない傾向がみられるが,これにつ いては必要とするエネルギー領域の両端にダミーのエネルギー領域を追加するか,実験値の共分 散行列をもっと詳細に決定することで解決できると思われる。また,もっとなめらかな変化をす る励起曲線を求めるためには,式(223)にもっと高次の関数を用いることが必要であろう。

参考文献

- 1) B.R. Martin ; "Statistics for Physicists", Academic Press Inc (1971)
- 2) F. Schmitroth and R.E. Schenter; Nucl. Sci. Eng.: 74 168 (1980)
- 3) W.P. Poenitz; Nucl. Sci. Eng.: 53 370 (1974)
- 4) J.B. Czirr and G.S. Sidh ; Nucl. Sci. Eng.: 57 18 (1975)
- 5) J.B. Czirr and G.S. Sidh ; Nucl. Sci. Eng.: 58 371 (1975)
- 6) O.A. Wasson ; "The ²³⁵U Neutron Fission Cross Section Measurement at the NBS Linac." 76ANL
- 7) P.H. White ; J. Nucl. Energ.: <u>19</u> 325 (1965)
- 8) D.H. Barton, et al.; Nucl. Sci. Eng.: 60 369 (1976)
- 9) W.P. Poenitz; Nucl. Sci. Eng.: 64 894 (1977)

Table 1 Vの非対角要素が0の場合の評価値の相関係数行列

					****	B																									
	1*	1	.00E	+01()	(EV)	r 10	00																		-						
	5+	9	.00E	+00()	1EV) 1	s - (55	100																							
	3*	8	.00E	+00()	IEV)	. 3	24	-37	100																						
	4.	7	. 00E	+00()	EV)		-8	12	-32	100																					
*	5.	6	. 00E	+00()	EV)		1	-1	4	-13	100																				
*	6.4	š	.00E	+000	FV)		ō	ō	ò	1	~13	100																			
	7.	ĩ	SOF	+00(EV)		õ	ŏ	ŏ	ō	10		100																		
-		1	005	+00 (1	10.07 ·		ō.	Ň	Ň	ň	Ň	ň		100																	
	0-	-	505	+00(4647		Ň	Ň	Ň	Ň	ž	Ň	-21	-2/	100																
1	10.	1		1001	16 1/ 1		Χ.		š	Ň	Ň	Ň		~ 24	100	100															
	10+	3	. 00E	+00(r	IEVJ I		×.		Ň	Ň	Ň		-1	-	-34	100	100														
	11*		- 30E	100(7	IEV) 4		Ň	Š	Ň	Ň	, v	Ň			10	~ 30	100														
*	12=	2	.002	+000	16 7 3 1		2	0	0		0			0	-1	2	-13	100													
*	13*	1	. 50E	+000	4EV3 - 4	8	0	0	0	0	0	0	0	0	0	0	2	-14	100												
*	14#	1	.00E	+00()	(EV) I	r	0	0	a	0	0	0	0	0	0	0	0	4	-29	100	•										
	15 *	9	.00E	-01()	IEV) +	•	0	0	0	0	0	0	0	0	0	0	0	-2	16	-56	100	•									
*	16*	8	.00E	-01()	(EV) 4	k - 1	0	0	0	0	0	0	0	0	0	0	0	1	-8	28	-50	100									
	17*	7	.00E	-01()	IEV) 4	b	0	0	0	0	٥	0	0	0	0	0	0	0	2	-8	14	-29	100	۰.							
•	18+	6	.00E	-01()	IEV) I	•	0	0	0	0	0	0	0	0	Ο.	0	0	٥	0	1	-2	4	-16	100	1 L						
	19*	5	.00E	-01 ()	EV) +	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	-15	100	· .					
*	±05	-4	.50E	-01()	IEV) 4	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	-13	100					
*	21*	4	.00E	-01()	EV) :	t	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	-37	100				
	22*	3	.00E	-01 ()	EV) a		0	Ó	ō	0	ō	0	Ó	0	0	Ő	0	0	Ó	0	Ó	0	0	0	-1	10	-27	100			
	23*	2	.00E	-01 (EV) I		0	ŏ	ŏ	õ	ō	ŏ	ō	ō	ō	ō	0	ō	ō	ó	Ó	0	ò	ō	0	-1	3	-12	100		
* 3	24.8	1	50E	-01 (EV)		õ	ŏ	õ	ō	ő	ŏ	ō	ŏ	õ	ō	ō	õ	ō	ō	ō	Ō	ō	õ	ō	ō	0	- 3	-27	100	
*	25.	-i	005	-01 (1	EV)		õ	ŏ	ŏ	ō	ŏ	ō	õ	ŏ	õ	õ	ŏ	õ	ŏ	ŏ	ō	ō	ŏ	ō	ŏ	õ	ō	ō	- 7	-28	100
		•					-	·	•	•	v	•	v	·	v	•	•	•	•	•		•	-	•	•	-		•	•		

Table 2 Vの非対角要素が0でない場合の評価値の相関係数行列

# 1# 1.00E+01(MEV) #	100																						•		
<pre># 2* 9.00E+00(MEV) *</pre>	-63	100																							
# 3* 8.00E+00(MEV) *	41	-48	100														•								
# 4# 7.00E+00(MEV) #	-10	26	-27	100																					
* 5* 6.00E+00(MEV) *	6	0	16	-6	100																				
* 6* 5.00E+00(MEV) *	7	6	10	10	-1	100																			
# 7* 4.50E+00(MEV) #	4	3	11	- 8	9	8	100														•				
* 8* 4.00E+00(MEV) *	6	5	18	12	14	14	0	100																	
* 9# 3.50E+00(MEV) *	5	4	13	9	11	11	16	1	-100																
# 10# 3.00E+00(MEV) #	3	3	12	8	10	9	10	22	-12	100															
# 11= 2.50E+00(MEV) #	1	Ī	6	4	4	3	6	6	15	-18	100														
# 12# 2.00E+00(MEV) #	2	2	10	6	8	6	9	15	8	23	-12	100													
# 13# 1.50E+00(MEV) #	2	1	8	5	6	5	7	11	9	11	14	-10	100												
# 14# 1.00E+00(MEV) #	2	2	10	7	8	6	9	14	11	18	9	22	-10	100									•		
* 15* 9.00E-01(MEV) *	-1	-1	-5	-3	-4	-3	-4	-7	-5	-6	-3	-8	5	-42	100										
# 16# 8.00E-01(MEV) #	8	. 8	34	22	27	21	31	49	35	34	18	29	23	30	-14	100									
* 17* 7.00E-01(MEV) *	1	1	6	4	5	4	6	9	6	10	6	9	7	9	-3	18	100								
# 18# 6.00E-01(MEV) #	1	1	ž	3	3	2	ž	6	ŝ	10	6	9	8	10	-5	13	-1	100							
* 19* 5.00F-01(MEV) *			Å	Ĩ.	ŝ	Ĩ.	5	9	6	7	4	6	ŝ	6	- 2	18	17	-38	100		•				
* 20* 4.50F-01(MEV) *	ī			Ĺ	2	3	ŝ	8	6	Á	3	Š	4	Ś	-2	17	13	13	-9	100					
+ 21+ 4 00F-01(MEV) +	5	,	Ř	5	7	5	B	12	ō	, ,	5	8	7	8	-3	25	20	ō	24	-10	100				
+ 22+ 3 00E-01(MEV) +	1	1	Ř	5	ż	ŝ	7	11	Ŕ	ò	ŝ	Ā	Å	8	-3	24	18	- L	14	25	-1	100			
* 33* 2 00E-01(MEV) *	1	1	7	ĩ	š	ž	Å	10	7	8	2	7	š	7	-2	21	16	ż	15	12	25	3	100		
+ 3/+ 1 50E-01(MEV) +	1		ć		í		š	Ř	Ś	Ă	3	Ś	í	Ś	-2	16	12	2	11	11	14	18	-5	100	
- 24- 1.201-01(MEV) -		4	1	ž	- <u>-</u>		ĩ	Ă	5	š	ž	í	ĩ	í	-1	14	11	5		- Q	14	11	17	-17	100
= 23+ 1.002-01(MEV) +	1	1	-		2	-	-	Ŷ				-	5	-	- 1	1-	••								

JAERI-M 9523

- 196 -

Fig.1 "roof function " $\boldsymbol{\varDelta}_i$ (E)

Fig.2 実験データの共分散行列Vの構成

Fig.4 Vの非対角要素が0でない場合の励起曲線

- 198 -

5. JENDL-3のスコープ

5.1 JENDL-3のスコープ

五十嵐 信一*

我が国の評価ずみ核データライブラリー,JENDL,はその第1版を1977年に公開し,高速炉 の分野で多くの成果をあげた。JENDL-2も主要核種のデータ編集を終えて,すでにJUPITER 計画に用いられて良い成果を得ている。シグマ委員会ではこれらの成果を踏えて,より汎用の JENDL-3を1985年までに作成することを目標にして計画を進めている。ここではシグマ委員 会の議論や利用者の要望などから,JENDL-3のあるべき姿について得た大まかな内容を紹介 する。

Scope of JENDL-3

Sin-iti IGARASI*

Japanese Nuclear Data Committee (JNDC) and JAERI Nuclear Data Center (JAERI/NDC) have continued to make efforts to compile Japanese Evaluated Nuclear Data Library (JENDL) and to improve it for extensive use in various fields. The first version of JENDL, JENDL-1, was released at 1977, which was made mainly for fast breeder reactors. The second version, JENDL-2, is now being compiled to use it for thermal reactors, shielding problems, fusion researches, fuel-cycle problems and safety analyses as well as for fast breeders.

JNDC felt that further extension and improvements of JENDL might be necessary, and organized an ad-hoc committee in March 1980 for preparation of the third version of JENDL, JENDL-3. The ad-hoc committee has made survey of important neutron data and has discussed them from the viewpoint of extensive data use in various fields of endeavors. Meanwhile, the committee held small meetings to listen to various opinions of specialists in the field of shielding, fast breeder, nuclear fusion and accelerator breeding, and made a questionnaire survey for JENDL-3. Considering the results of the survey and estimating the manpower for the JENDL-3 evaluation work, the committee proposes to JNDC the following recommendation for the JENDL-3 plan.

* 日本原子力研究所, Japan Atomic Energy Research Institute

1. 序 言

シグマ研究委員会が発足して以来十余年の才月をかけて昭和52年に我が国の評価ずみ核データ ライブラリーの第1版,JENDL-1¹⁾が公開された。JENDL-1は高速炉を主たる対象とし, 72 核種のデー タを収納した。核種数から言っても,対象の広さから言っても,JENDL-1 は 汎用のライブラリーからは程遠いものであったが,我々の手による評価ずみ核データとして,そ のよりどころの確かさから国内的には大いに利用され,多くの成果をあげることができた。

JENDL-1 を足がかりとして,高速炉のみならず,他の分野の研究開発にも利用できるより 汎用の核データライブラリーを目指してJENDL-2 の作成が行なわれている。これについては, この核データ討論会ですでに中川氏から話があった²⁾ JENDL-2 は約 170 核種の 20 MeV 以下 のエネルギー範囲のデータを収納し,高速炉,遮蔽計算,安全性解析,核融合研究開発などの分 野を対象としている。

JENDL-2はJENDL-1に比べると、エネルギー範囲も核種数も大きく増していて、適用分野も広く、かなり本格的汎用核データライブラリーである。しかし、ガンマ線生成の核データや高エネルギー核反応の断面積、あるいは熱中性子炉を対象とした核データに不満足または欠けた所がある。これらの核データ以外にもJENDL-2ではなお不足している核種やデータの精度不足と言った問題がある。また、最近のENDF/B-Vの非公開に見られるように、外国製の核データライブラリーを従来のように安易には使えない時代になりつつある。

シグマ研究委員会および核データセンターでは以上のような背景を考慮して、JENDLの第3 版、JENDL-3を質的に高い内容の汎用ライブラリーとするため、各方面の意見を聞き、 JENDL-3のあるべき姿を検討する小委員会を置き、約1年にわたって種々の問題を検討して きた。この検討小委員会はシグマ委員会の運営委員会における討議の結果、1979年11月の運営 委員会において原田氏を委員長として正式に発足した。核データセンターでは検討事項の準備の ため、遮蔽、高速炉、核融合、加速器増殖の各分野の専門家の意見を聞き、JENDL-3に対す る利用分野の要望の把握につとめた。その結果、各分野で必要としている核データと必要とする 時期についての概略をつかむことができ、特にJENDL-3としては動力炉建設の計画を重要な 目安と考え、その実証炉の安全審査が1985年末頃であるので、少くともその裏付け計算には間 に合うような計画にすることとした。

JENDL-3検討小委員会では核データセンターの粗案を基に多方面から検討が加えられ、 JENDL-3の対象範囲、データの種類とその問題点、評価方法、人手の問題などが議論された。 また、共分散データファイル、荷電粒子反応データ、線量測定用データなどの特殊データファイ ルの扱いについてなど、具体的問題についても意見を交わした。この時の結論として、アンケー ト調査により、広く利用者の意見を求めることになり、その結果を基にしてJENDL-3のイメ ージを作って行くことになった。

* 小委員会のメンバーは,

原田吉之助(委員長),木村逸郎,山本正昭,飯島俊吾,石黒幸雄, 関 泰,田中茂也,浅見哲夫, 五十嵐信一 この報告では、アンケート調査結果の概略と、それを踏まえた核種選定、核データ評価作業の 見積などについて、現時点でのJENDL - 3 に関する見解を述べる。

2. アンケート調査

JENDL - 3検討小委員会は,JENDL - 3に対する利用者の要望を把握するために,以下に 述べる項目についてアンケート調査を行うことにし,これを受けて核データセンターでは評価ず み核データの使用経験のある約80名を対象に回答を依頼した。このアンケート調査への回答は49 件であった。以下に結果の概略を述べる。

2.1 JENDL - 3 に新たに収納すべき核種

この項目への回答は38件あった。JENDL - 2に収納を予定されている核種を除くと、*)

²H, ³H, N(¹⁴N), ¹⁷O, ¹⁸O, Mg, P, S, Cl, Ar, K, Zn,

Kr,Cd,In,Sn,Sb,¹³⁴Cs,Ba,Dy,Hf,W,Bi,²³²U,²⁵²Cf 等が挙げられている。これらの核種に対する希望件数を図1に示した。

反応を指定したものには、

⁵⁹Ni (n, α), ³⁹K(n, p), ⁵⁸Fe (n, r), ⁶⁰Co(n, r), ¹³⁴Cs (n, r) 等があった。不安定核種の核データの要望も多く,

⁸⁰Se, ⁸⁵Br, ⁸⁸Sr, ⁹⁴Nb, ¹⁰³Ru, ¹⁰⁵Rh, ¹²⁶Te, ¹³⁵I, ¹⁴⁸, ¹⁴⁸m, ¹⁴⁹Pm, ¹⁴³, ¹⁴⁹Pr, ¹³⁴, ¹³⁵, ¹³⁶Xe, ¹⁵³Sm, ¹⁵², ¹⁵⁴Eu, ¹⁸², ¹⁸³Ta, ²²⁹, ²³¹Th, ²³²Pa

等が対象になっていた。

図1に挙げた核種の主な要望理由は以下のようである;

(1) N, 14 N :

環境放射能評価,再処理施設の臨界安全計算, "N(n,p)"Cによる"Cの生成,など。 (2) W:

核融合炉遮蔽材、ドシメトリー、高温ガス炉の構造材、など。

(3) Cd :

原子炉の制御棒設計、検出箔、放射化計算、など。

(4) Sb :

もんじゅ中性子源、誘導放射能評価、など。

(5) Mg :

溶融塩炉、ドシメトリー、遮蔽設計、など。

(6) S :

遮蔽材,高速炉スペクトル測定,など。

* JENDL-2の予定では²H, In, Cd, Sb, Hf は除いていたが、最終的にはこれらの核種は収納されることになった。

(7) ²·H :

核融合解析、トリチューム生成評価、炉設計、など。

(8) Ar :

環境放射能評価、など。

(9) K :

溶融塩炉、遮蔽材、など。

(10) In :

PWR 制御材,ドシメトリー,検出箔,など。

2.2 収納核データの種類についての要望

この項目への回答は33件あった。主な核データとしては、

(1) ガンマ線生成の核データ;断面積,その角度分布,およびガンマ線スペクトル,など。

(2) 中性子生成の核データ; 断面積, その角度分布, 放出中性子のスペクトル, 二重微分断面積, など。

(3) 非弾性散乱データ;高い励起準位まで含めた準位ごとの角度分布,二重微分断面積,など。

(4) 誘導放射能計算用データ;放射化断面積,同位元素生成断面積,など。

(5) 荷電粒子放出反応データ;中性子照射損傷用データ,など。

(6) 熱中性子散乱データ

などである。特に, 遮蔽計算, 核融合研究などではガンマ線生成データと反応断面積の放出粒子 のエネルギーと角度ごとの分布であるいわゆる二重微分断面積が強く要望されている。

2.3 収納核データの質(精度)に関する要望

回答は19件あった。精度については詳しく要望したものも若干あったが,一般的には定量的要求が困難であるようである。逆に,精度の定義を明確にせよと言った意見や,精度はさし当り余り問題ではなく,必要なデータを揃えることの方が重要であると言う意見もあった。

この討論会でも共分散データを含む精度の問題が取りあげられたが、今後とも折にふれて検討 して行く必要のある問題である。

2.4 特殊な反応データに関する要望

回答は11件で、かなり集中した要望内容になっている。特に、酸素の(α, n)反応の断面積 と中性子スペクトルは燃料輸送キャスクの設計、アクチナイドからの高エネルギーαによる中性 子発生の評価などに必要な核データとして要望が多く、次いで⁹Be(r, n)反応のデータが中 性子源の設計に必要として要望件数が多かった。

2.5 共分散データを必要とする核種と反応

回答は 12件で, ¹²C, Na, Fe についての要望が多かった。その他ではドシメトリーに用いられる反応断面積間の相関や,異なるドシメーター間の相関を要求したものが多かった。

- 202 -

2.6 JENDL - 3に関する要望と意見

この項へは 21 件の回答があり,JENDL-3の利用度を高めるために,核種,反応の種類をで きるだけ多くすること, 10~14 MeV 反応データの精度を良くすること,完成の期限を厳守する こと,などの意見と要望があった。

3. JENDL-3のデッサン

アンケート調査の回答を検討した結果,核データセンターの見解として次のような粗案を JENDL-3検討小委員会に提出した。

3.1 新たに収納を予定する核種

JENDL-3の作業の中には、すでにJEND-2に収納されている核データの見直し、再評価 も含まれており、データの質の向上を考えると、その作業量はかなり大きなものになる。従って、 JENDL-3に新たに加える核種は必要最小限に止めざるを得ない。それらは2.1に挙げた中か ら選ぶとして、

N, Mg, S, Ar, K, W

の6 核種位である。また,特別に反応だけを指定されているものについて,特に重要と思われる ⁵⁹Ni (n, α), ⁵⁸Fe (n, r), ⁶⁰Co (n, r)

は別ファイルとして、これらの反応データのみを収納することを考えるべきである。

3.2 収納核データの種類

JENDL-3の特長の1つとして、ガンマ線生成核データを収納することが挙げられる。アン ケートへの回答にも最も多く要望されているので、これは是非実現しなければならない。差し当 り、

Li, C, O, Na, Al, Si, Ca, Cr, Fe, Ni, Cu, Nb, Mo, Pb,

²³⁵ U, ²³⁸ U, ²³⁹ Pu

などについてはガンマ線生成データの収納を行う予定である。

中性子生成データの要望も強く、特に個々の反応データよりも、それらの総和としてのデータ を要求している場合が多い。JENDL - 3のファイルの構成から言うと、個々の反応データの評 価値が必要であり、またこれらのデータが満足されていれば、総和はすぐ求まる。従って、個々 の反応の断面積、角分布、スペクトルの評価がJENDL - 3の重要な作業の1つになる予定であ る。

この関連では非弾性散乱のデータの要求も強く、特に高い励起準位を励起する非弾性散乱の角 度分布、スペクトルなどが求められている。これらのデータは準位構造のデータとも関連してく るので、その情報も十分に考慮した評価が望まれる。また、準位の密集した範囲ではどうしても 準位密度を用いることになるので、その研究も必要になるし、スペクトルと放出中性子の散乱角 との関係から、いわゆる二重微分断面積のデータも必要になってくる。JENDL-3では利用者 の要望に応えるために、これらの作業にも重点を置くべきである。 放射化断面積,同位元素生成断面積,荷電粒子放出断面積はJENDL-3のファイルの構造と も関係するので,収納可能なデータを除き,別ファイルとして扱う方が良いと考える。

3.3 共分散および特殊ファイル

この討論会では共分散に関する話題が1つの中心であった。JENDL-3ではこれらの議論を 良く検討したうえでその扱い方を考えても遅くはないと考えている。また、ドシメトリーファイ ルのような特殊ファイルについては、例えば大学などでまとめられたものがあれば、それを JENDL-3の特殊ファイルとして利用者の便に提供していただくなどの全国的な協力体制で行 なうのが良いと考えている。二重微分断面積のファイル化も同様な考えで行えることを希望して いる。

以上のような考察を基に,JENDL - 3 で取りあげる核種と各ファイルの作業内容の大まかな 目安を表1に示した。ここにはFPのデータは除いてある。この作業を完成させるのに必要なマ ンパワーは粗く見積って約36人年である。JENDL - 3 を完成させるには現在のシグマ委員会の メンバーだけでは不十分なので,新しい人員の確保が急務である。

4. JENDL-3 作業計画

JENDL-3 ではJENDL-2に比べて核種数を大幅に増すと言うことは行なわない方針である。 その代り、質の向上に重点を置く。特に 20MeV までの核反応のデータ、非弾性散乱のデータ、 ガンマ線生成の核データの評価には力を入れなければならない。JENDL-2まではしきい反応のデ ータ評価にはあまり重点を置かなかったし、非弾性散乱断面積の角度分布にも十分な考慮を払っ てはいなかった。JENDL-3ではこれらの核データを従来用いてきたよりも合理的な核模型を 使って計算し、評価値を求める方針である。そのために、多くの計算コード類の整備を行う必要 があり、シグマ研究委員会の核データ専門部会では昭和 55 年と 56 年の2 年にわたって計算コー ド類の整備を行うことになっている。

整備するコード類は核反応断面積を計算するGROGI,GNASH,チャンネル結合法によって 非弾性散乱断面積を計算するCHUCK4,JUPITER1,直接反応の断面積を計算するDWBA2, DWUCK4などである。ガンマ線生成の核データを求めるには、GROGI,CASTHY2, CAPTR1などが用いられる。JENDL-3の核データ評価にはこれらが効率良く、合理的に使 われなければならない。そのためには各コード間の関係が良く把握されていなければならない。 現在、これらの作業が進行中である。

JENDL-3の核データ評価作業が全面的に行われるのは昭和57,58の両年度である。そして、ベンチマークテストを経て公開されるのが59年度末を予定している。図2にはこの作業の流れ図を示した。また、図3には各作業の年度ごとの関係が示されている。

5. むすび

JENDL-3作成についてその概要を述べた。利用者からの要望と現実のマンパワーとのバラ

- 204 -

ンスをどこに置くかはなお不確定な要素を含んでいる。ここに述べた内容は現実に即して無理の ない範囲でJENDL-3を実現させようとするものである。しかし、完成までにはなお4年ある。 この間の評価者の老令化など目に見えないマンパワーの自然減が作業のブレーキになりそうであ る。JENDL-3を完成させるにはどうしても新しいマンパワーの導入が必要である。これをど うするかをシグマ委員会はもっと真剣に考えるべき時であると思う。

参 考 文 献

 Igarasi, S., Nakagawa, T., Kikuchi, Y., Asami, T. and Narita, T. : "Japanese Evaluated Nuclear Data Library, Version-1 --- JENDL-1 ----", JAERI-1261 (1979).

2) 中川庸雄: "JENDL - 2のStatus", 1980 年核データ討論会報告,

討 論

Q:八谷雅典(三造)

NEA から申込まれているENDF 作成の国際協力にどう対処していくのか? A:五十嵐信一(原研)

9月に開かれた第23回NEACRP 会合の席上で英国の Campbell 氏から,西独,仏のメンバ ーに非公式の話としてヨーロッパでの評価ずみ核データライブラリーを持つことを検討する ad hoc な会合を持ちたいと提案があり,これが口火となってヨーロッパの共通ライブラリーを作る 方向に話が進んでいるようである。最近,NEA Data Bank から,日本のJENDL-2 とか, データ処理コードの提供の可能性について問い合せがあった。我々としては協力することにやぶ さかではないが,何にぶんまだ流動的なのでJENDL-3 を捨てても参加すべきであるなどとは考 えていない。むしろ,JENDL に有利な話でないといけないと思うし,そうあるような協力なら 可能であると考えている。今の所は出来る範囲の協力はする,と言う態度である。 表1 JENDL-3格納予定核種

JENDL-3に格納する核種のうち、特殊ファイルとして扱われるものを除いた核種と そのデータファイル、およびファイル作成の際の作業程度を示す。

核種欄: 元素記号と質量数。天然元素は質量数部分をブランクにした。天然に存在 する核種で基底状態が放射性のものには右肩に米をつけた。

存在率又は寿命欄: Yoshizawa et al.の核図表を使用した。

天然存在率が0でない核種はすべて拾った。

File欄: File 1, 評価に用いた方法,参考文献等,一般事項。

 $\overline{\nu}$, $\overline{\nu}_{\rm D}$, $\overline{\nu}_{\rm d}$, FP yield data $\mathfrak{S}_{\rm o}$

File 2, resonance parameters.

File 3, cross sections.

File 4, 放出中性子の角度分布.

- File 5, 放出中性子のエネルギー分布.
- File 6, 放出中性子の energy-angle distribution.

File r, ガンマ線生成核データ.

記号は以下のことを示す。

- 新規又は新評価.
- 再評価.
- △ JENDL-2を見直し,場合によっては再評価.
- + JENDL-2015

天然元素のみに指示がある場合にもそのデータを構成する同位元素のデ ータが必要であったり、重要である場合には同位元素のデータも積極的 に格納することが望ましい。

主な作業およびコメント欄:

記号は以下のことを示す。

B5G ENDF/B-Vにガンマ線生成データが入っている。

- BP burnable poison.
- CA 制御材合金·
- CM 制御材.
- CN 重コンクリート材.
- CR 制御棒.
- DT detector.
- IM impurity.
- LWR 軽水炉.
- MS 熔融塩炉.
- SM 構造材.

コメント欄に指示されている反応は評価の際に特に注意を払うことを意味している。
		存在率			Fi	le	No	•	· · · · ·	JENDL-3での主な作業
核	種	又は寿命	1	2	3	4	5	6	r	およびコメント
н –	1	99.985	0		+	+				B 5G.
	2	0.015	0		+	+				B 5G.
	3	12.346 y	0·		0					(n, 2n)
He -	3	0.00013	0		0	-				(n, p)
	4	99.99987	0		+	0				
Li –	6	7.56	0		0	Ó	0	0	0	B5G. (n, n'). 特にlevelの追加
	7	92.44	0		0	0	0	0	0	B5G. 同 上
Be -	9	100.	0		0	0	0	0	0	B5G. high energy part 再評価
В —	10	1 9.8	\odot		+	+	+			B 5G.
	11	80.2	0		+	+	+			
С –	12	98.89	0		0	0	0	0	0	B5G. high energy part 再評価
N -			\odot		\odot	\odot	0			B5G・ ''Nのdataを入れておく.
	14	99.64	0		0	0	0			B5G. (n,p)
0 -	16	99.756	\odot		\triangle	\triangle	\triangle		0	B 5G.
F -	19	100.	\odot	+	+	+	+			B 5G.
Na-	23	100.	\odot	Δ	\triangle	Δ	\triangle		0	B5G. (n,2n)放射化.
Mg-			\odot	0	0	0	\odot		0	B 5G.
	24	78.99								²⁴ Mg(n,p)
	25	1 0.0								
	26	11.01								
Al –	27	100.	0	Δ	\triangle	\triangle	\triangle		0	B 5G. $(n, γ), (n, α)$
Si –		-	\odot	Δ	\bigtriangleup	\triangle	\bigtriangleup		\odot	B 5G.
	28	92.21								
	29	4.7								
	30	3.09								
P -	31	100.	0	0	0	0	0			B5G. (n,p), IM.
s –			\odot	0	0	0	0			B 5G. I M, CN.
	32	95.0								$^{32}S(n, p)$
	33	0.76								
	34	4.22								
	36	0.014								· · · · · · · · · · · · · · · · · · ·
C1 -			0	0	0	0	0			B5G. MS, IM.
	35	7 5.7 7								
	37	2 4.2 3					• •			
			1							

- 207 -

	177-	存在率			Fil	е	No).		JENDL-3での主な作業
核	瓼	又は寿命	1	2	3	4	5	6	r	およびコメント
Ar	- 40	99.6	0	0	0					(n, 7)
K			0	0	0	0	0			B 5G. M S
	39	93.3								³⁹ K (n, p) ³⁹ Ar (269y)
ļ	40	0.012 1.28×10 [°] v								
	41	6.7								^{⁴¹} K(n, p)放射化
Ca			0	\triangle	Δ	Δ	\triangle		\odot	B 5G.
	40	96.94								
	42	0.65								
	43	0.14								
	44	2.08								
	46	0.003								
	48	0.19								
Ti	_		0	0	0	0	0		0	B 5G. SM.
1	46	8.0								4 ⁶ Ti (n, p).
	47	7.5								"Ti (n, p).
	48	7 3.7								⁴⁸ Ti (n,p).
1	49	5.5								
	50	5.3								
V			0	+	.+	+	+			B 5G. **V の data を入れておく.
1	50	0.25								
	51	99.75	0	+	+	+	+			B 5G.
Cr	-		0	Δ	\triangle	0	0	0	0	B5G. high energy part 再評価
	50	4.35	0	\bigtriangleup	\bigtriangleup	Ο	Ο			
	5 2	83.79	\odot	\bigtriangleup	\bigtriangleup	0	Ο			
	53	9.50	0	\triangle	\bigtriangleup	Ο	Ο			
	54	2.36	0	Δ	\triangle	0	0			
Mn	- 55	100.	0	\triangle	Δ	\triangle	\bigtriangleup			B 5G.
Fe			0	\triangle	Δ	0	0	0	0	B5G. high energy part 再評価
	54	5.8	0	\triangle	\bigtriangleup	Ο	Ο			
	56	91.7	0	\triangle	\triangle	0	Ö			
	57	2.14	0	\bigtriangleup	\triangle	0	0			
	58	0.31	0	0	0	0	Ö			⁵⁸ Fe(n, 7)
Co	- 59	100.	0	+	+	+	+			B 5G.
1										

- 208 -

	2 75-	存在率		F	Pi le	2	Ňo.				JENDL-3での主な作業
核	種	又は寿命	1	2	3	4	5	6	r		およびコメント
Ni -	-		0	Δ	Δ	0	0	0	0	B 5G.	high energy part 再評価.
	58	67.76	0	\triangle	\bigtriangleup	0	0				
	60	26.42	0	\bigtriangleup	\bigtriangleup	0	0				
	61	1.16	0	\bigtriangleup	\bigtriangleup	0	0				
	62	3.71	0	\triangle	\bigtriangleup	0	0				
	64	0.95	0	\bigtriangleup	\bigtriangleup	0	0				
Cu -	_		0	Δ	0	Δ	\triangle		0	B 5G.	threshold reaction 再評価.
	63	69.1	0	\triangle	Ο	\triangle	\bigtriangleup				
1	65	30.9	0	\bigtriangleup	0	\triangle	\bigtriangleup				-
Zn -	_		0	0	0	0	0				IM.
	64	48.9									
	66	27.8								1	
	67	4.1									
]	68	18.6									
ļ	70	0.62									
Ga -	_		0	0	0	0	0				I M.
	69	6 0.0									
	71	4 0.0									
Br -	-		0	0	0	0	\odot				IM.
	79	50.69 4.9s									
	81	49.31									FP
Rb -	-		0	0	0	0	0				
	85	72.17									FP. ⁸⁵ Rb(n,2n) as DT.
	87	27.83 4.7×10 [™] y									FP.
Sr -	-		0	0	0	0	0				I M.
	84	0.56									
1	86	9.9									
	87	7.0 2.81h									
	88	82.6									FP.
Y -	- 89	100. 16.0s	0	+	+	+	+				FP.
Zr -	-		\odot	\odot	0	0	0		0	5	SM. for LWR.
	90	51.4									FP.
	91	11.2									FP.
	92	17.1									FP
[94	17.5									FP.

- 209 -

++-	Æ	存在率		F	7 i 10	e	No.			JENDL-3 での主な作業
仪	裡	又は寿命	1	2	3	4	5	6	r	およびコメント
Zr-	96	2.8								FP.
Nb-	93	100.	0	\bigtriangleup	\triangle	Ο	Ο		0	B 5G.
	94	2.0×10 ⁴ y			\odot					⁹⁴ Nb(n, γ)
Mo-			\odot	\bigtriangleup	\triangle	0	Ο		\odot	B5G. SM. high energy part 再評価
	92	14.8	0	\bigtriangleup	\triangle	0	Ο			
	94	9.1	\odot	\bigtriangleup	\bigtriangleup	Ο	Ο			
	95	1 5.9	0	\bigtriangleup	Δ	0	$^{\circ}$			FP.
	96	16.7	0	\bigtriangleup	\triangle	Ο	O_{1}			
	97	9.5	0	\bigtriangleup	\triangle	Ο	Ο			FP.
	98	24.4	0	\bigtriangleup	\bigtriangleup	0	Ο			FP.
	100	9.6	0	\bigtriangleup	Δ	0	0			FP.
Tc-	99	2.13×105 6.02h	\odot	+	+	+	+			FP.
Ru-			0	+	+	+	+			
	96	5.5								
	98	1.9								
	99	1 2.7			•					
	100	1 2 .6								
	101	1 7 .1								FP.
	102	31.6								FP-
	104	18.6								FP.
Rh-	103	100.	0	÷+'	+	+	+		·	FP. 103 Rh (n, n') as DT.
Pd-	-		0	+	+	+	+			
	$1 \ 0 \ 2$	1.0	2							
-	104	1 1.0								
	105	22.2			; '					FP.
	106	27.3								
	108	26.7								FP.
	110	1 1.8								FP.
Ag-			\odot	+	+	+	· +			IM. CA
	107	51.83 44.3s	0							FP.
	109	48.17 39.6s	0	4 ¹				<u> </u>		FP.
Cd-	-		0	+	+	+	:+			CM etc.
	106	1.2								
	108	0.9								4.
	110	12.4								FP.

.

+#:	Ŧ	存在率		I	Fil	e	No	•		JENDL-3での主な作業
仪	悝	又は寿命	1	2	3	4	5	6	r	およびコメント
Cd -	111	12.8 49m								FP.
	112	24.0								FP.
ļ	113	12.3 9×10^{15} y, 14.6v								FP.
	114	28.8								FP.
	116	7.6								FP.
In —			0	\odot	0	0	0			CA.
	113	4.3 99.48m								
	115	95.7 6×10 ¹⁴ y								FP. " ¹¹⁵ In (n, n') as DT.
Sb -			0	+	+	+	+			Sb-Be source material
	121	57.3	0	+	+	+	+			FP.
	123	42.7	0	+	+	+	+			FP.
	124	60.2 d	0		0					124 Sb(n, r) for Sb-Be source calculation.
Te –			0	0	0	0	0			
1	120	0.09								
	122	0.87								
	123	1.24×10 ^w y 119.7d								
	124	4.6								
	125	7.0 58 d			1					FP.
	126	18.7								
ļ	128	31.8								FP.
	130	34.5	 							FP.
I –	127	100.	0	+	+	+	+			FP. (n, 2 n)
Xe —			0	+	+	+	+			
	124	0.1 0								
	126	0.09								
	128	1.9								
	129	26.4 8.89 d								
	130	3.9								
	131	21.2 12.0 d					÷			FP.
	132	27.0								FP.
	134	10.5 0.29s								FP.
	136	8.9				.				FP.
Cs -	133	100.	0	+	+	-+-	+			FP.
Ba -			0	+	+	+	+			B5G. CN.
	130	0.1	}							

.

JAERI-M 9523

#	疲	存在率		F	ile	;	No.			JENDL-3 での主な作業
1%	悝	又は寿命	1	2	3	4	5	6	r	およびコメント
Ba ~	- 132	0.095								
	134	2.4								
	135	6.5 28.7 h	.							
j	136	7.8								
	137	11.2 2.55m								FP.
	138	7 1.9						•		FP.
La -	-		0	+	+	+	+			
	138	0.09 1.3×10 ¹¹ v								
	139	99.91				÷,				FP.
Ce -	-		0	+	+	+	+			
[136	0.19								
	138	0.2.6								
	140	88.5								FP.
	142	11.1	ĺ							FP.
Pr -	141	100.	0	+	+	+	+.			FP.
Nd -	-		0	+	+	+	+			
	142	27.1								
	143	1 2.2								FP.
	144×144	2 3.9 2.1×10 ¹⁵ v								FP.
	145	8.3								FP.
	146	17.2								FP.
	148	5.7								FP.
	150	5.6								FP.
Sm -	-	· · · · · · · · · · · · · · · · · · ·	0	+	+	+	+			
	144	3.1								
	147	15.0 1.06×10″v								FP.
	148^{*}	11.2 7×10 ¹⁵ v								FP.
	149	13.8								FP.
1	150	7.4								FP.
	152	26.7								FP.
	154	22.8								FP.
Eu -			\odot	+	+	+	+		0	CR.
	151	47.8	0	+	+	÷	+		0	B 5G.
}	153	5 2.2	\odot	+	.+	+ :	· +		\odot	B 5G. FP.

JAERI-M 9523

<u>`</u>		存在率		F	ile		No.	·····	<u></u>	JENDL-3での主な作業
核	種	又は寿命	1	2	-3	4	5	6	r	およびコメント
Gd-			0	\triangle	\triangle	Δ	\triangle			BP.
	152*	0.2 1.1×10^{14} v	0	\triangle	\triangle	\triangle	\bigtriangleup			
ļ	154	2.2	©'	\triangle	\triangle	\triangle	\bigtriangleup			
	155	14.9	0	\triangle	\triangle	\triangle	Δ			FP.
	156	20.6	0	\triangle	\bigtriangleup	\triangle	\bigtriangleup			FP.
	157	15.7	0	\triangle	\triangle	\bigtriangleup	\bigtriangleup			FP.
	158	24.7	0	\triangle	\triangle	\triangle	\bigtriangleup			FP.
	160	21.7	0	\triangle	\triangle	\triangle	\bigtriangleup	_		FP.
Tb –	159	100.	0	0	0	0	0			FP.
Hf -			0	0	0	0	0		0	CR.
	174^{\bigstar}	0.18,₅ 2×10 y								
	176	5.2								
	177	18.5 5.1m,1.1 s								
ľ	178 Û	27.2 31y, 4.3 s								
	179 [^]	13.8 25d,18.7s								
	180	35.1 5.5 h								
Ta	181	99.988	0	0	0	0	0		0	B 5G. CR.
W -			\odot	0	0	\bigcirc	\odot			
	180	0.13								
	182	26.3								B 5G.
	183	14.3 5.3 s								B 5G.
	184	30.7								B 5G. $^{184}W(n, r)$
Ľ	186	28.6								B 5G. $^{186}W(n, r)$
Рь —	*	1.4	0	\triangle	\triangle	0	0	0	0	B 5G.
	204'	1.4×10''y 66.9m	0	\triangle	\bigtriangleup	0	0			
	206	24.1	0	\triangle	\bigtriangleup	0	0			
	207	22.1	0	\triangle	\bigtriangleup	0	0			
	208	52.4	0	Δ	Δ	0				
Th -							÷			
	228	1.913y	+	+	+	Ŧ	+			
	230 米	7.7×10 [°] y	+	+	+	+	+			
	232	1.405×10 ¹ °y	0	\triangle	\triangle	\triangle	\odot			B 5G.
	233	22.2m	+	+	+	+	+			
	234	24.1 d	+	+	+	÷	+			
1										

- 213 -

±#:	珸	存在率		F	File	9	No.		- <u>.</u> .	JENDL – 3 での主な作業		
	俚	又は寿命	1	2	3	4	5	6	7	およびコメント		
Pa -												
	231	3.25×10⁴y	+	+	+	+	+					
	233	27.0 d	+	+	+	+	+			•		
U –												
	232	71.7y	+	+	+	+	+					
	233	1.59×10⁵y	+	+	+	+	+					
	234	0.0055 2.44×10 ⁵ y	\bigtriangleup	\bigtriangleup	Δ	\triangle	\bigtriangleup					
	235	0.72 7.04×10 °y , 26m	0	0	0	0	Ο		0	B 5G.		
	236 *	$2.342 \times 10^{7} y$	+	+	+	+	+					
	238	99.28 4.47×10 [°] y	0	0	0	0	0		0	B 5G.		
Np -												
	237	2.14×10°y		\bigtriangleup	\triangle	\triangle	\bigtriangleup					
	239	2.355d	\triangle	\bigtriangleup	\triangle	\triangle	\triangle					
Pu –												
	236	2.85y	+	+	+	+	+					
. 	238	87.75y	+	+	+	+	+					
	239	2.439×10 y		\triangle	\triangle	\triangle	\bigtriangleup		0	B 5G.		
	240	6937y		\bigtriangleup	\triangle	\triangle	\bigtriangleup			B 5G.		
	241	14.89y		\bigtriangleup	\triangle	\triangle	\bigtriangleup			B 5G.		
	242	3.87×10 [°] y	\triangle	\triangle	\triangle	Δ	\triangle			B 5G.		
Am-				\sim	~	~						
	241	433y	0	0	0	0	0			B 5G.		
a de la	242g	16.01h	0		0	0	0					
	242m	152y		0	0	0	0			B 5G.		
C	243	7400y	\bigcirc	0	0	0	0			B 5 G.		
Cm-	040	1604		Ċ	\cap	\cap	\bigcirc					
÷	242	20		0	0	0	0			D.C.		
	240	30 y		\bigcirc	0	0	0					
	244	10.11y		\bigcirc	0	0	Ó					
 ·	240	0002y		0	\cup		0					
						4 ¹						
<u> </u>			·			_						

JENDL-3に格納するFP核種

Br	81
Kr	83, 85
Rb	85, 87
Sr	90
Y	89
Zŗ	90, 91, 92, 93, 94, 95, 96
Mo	95, 97, 98, 100
Tc	9 9
Ru	101, 102, 103, 104, 106
Rh	105
Ρd	105, 107, 108, 110
Ag	107, 109
Cd	110, 111, 112, 113, 114, 115
In	115
Sb	121, 123
Te	128, 130
Ι	129
Xe	131, 132, 133, 134, 135, 136
Cs	133, 135, 137
Ba	138
La	139
Ce	140, 142, 144
Ρr	141
Nd	143, 144, 145, 146, 148, 150
Pm	$147, 148^{g}, 148^{m}$
Sm	147, 148, 149, 150, 151, 152, 154
Eu	153, 155,(152, 154を含む) ^{**}
Gd	155, 156, 157, 158
Тb	159

¹⁵²Eu, ¹⁵⁴EuはFPではないがFPの評価と同様にできるので, こゝに加えた。

JAERI-M 9523

図1 アンケート調査による JENDL-3 収納核種に対する希望分布。ここでは JENDL-2 にすでに収納されている核種は除外してある。

図2 JENDL-3の作成

 項目
 年度
 56 年度
 57 年度
 58 年度
 59 年度

 核データの評価研究 JENDL-2ベンチマークテスト
 JENDL-2公開
 JENDL-2公開
 JENDL-3
 JENDL-3

 理論計算コードの整備 核データ調査 JENDL-3 評価 JENDL-3 評価 JENDL-3 ベンチマークテスト
 JENDL-3 REA
 JENDL-3 REA

 核データ・システムの整備

図3 JENDL-3作成年次計画

- 217 -

閉会の辞

Summary Talk

Nobuhiro YAMAMURO

山室 信弘*

2日間にわたる核データ討論会の終了に当たり、余り適任とは思いませんが、summary を述 べさせていただきます。その前に去る9月末、私は「核融合炉ニュートロニクスの基礎」に関す る米国への視察旅行の機会を得、たまたまBNLで開催された"Conference on Nuclear Data Evaluation Methods and Procedures "に出席することができましたが、その際 IAEAのDr. Schmidt が連日その日の summary talk をするのを聞き、その大変丁寧なまと め方に感心すると共に、summary talk の大切な理由を理解することができたように思いまし た。幸い今日は余り時間もないようですし、Schmidt の話しを聞いたのはここでは私だけです から、私のできることを簡単にお話しして責を果したいと思います。

さて今回の討論会は昨日午後のJENDL-2のお話しに始まり、只今のJENDL-3のスコープ で終りました。その間にCovariance に関する発表・コメント及び質疑応答が盛沢山に配列され ていました。まずJENDL-2のstatus では、1977年のJENDL-1公開後、構造材、重核、F Pのそれぞれ共鳴構造、同時評価、核種の増加に関する改善点が示され、つづいてJUPITER 実 験解析や遮蔽問題へJENDL-2を適用した場合の問題点の指摘、ベンチマーク・テストと感度 解析による断面積のadjustment などが紹介されました。総合的に見てJENDL-2はJENDL-1に比べて格段に改良され、covariance file は未着手であるものの、国際的に見てもかなりの level のものになったと感じます。

次にいよいよ covariance 問題に入り、まず covariance fileの概要と題して九大の神田さんか ら大へん教訓的なお話しがありました。前述の BNL での conference でも covariance に関する 話題が多くありましたが、正直言って私の covariance に対する初期条件が悪かったものですか ら不消化な部分が少なくありませんでした。今回の討論会の方が私にとっても covariance を知 る上で効果的ではなかったかと思います。今朝からは covariance file への要求に関するセッシ ョンに入り、感度解析や積分測定データの取扱いにおける covariance file の役割、必要性が説 明されました。それを受けて午後からは、核データの理論計算、測定及び評価の立場からする variance, covariance を求めかつ評価して行く上での問題点が整理されました。

covariance file への要求では、東大炉中沢さんの照射線量、従って原子炉の寿命を評価する ような場合は、反応率の間の相関ばかりでなく、異るドシメトリー断面積の間の相関や、中性子 エネルギー分布の相関までが必要で、そのため当事者が頑張らなければならないという話しが印 象に残っています。評価の方の中心問題はやはり測定者が測定データの covariance をどれだけ 客観的に与えうるかということにあるようです。この見透しに関して、発表された測定者の間に も見解の相異があるようです。これはかなり測定者の個性に関係するようで、厳密解を求めよう とするタイプの人なら、covariance を計算する過程で入ることを避けることのできない任意性の 部分、つまり「えい」と決めてしまわなければならないところのあることに逡巡しますし、実務

* 東京工業大学, Tokyo Institute of Technology

的なタイプの人なら、そこのところを本人が考えうる一番妥当と信ずる値で仮定して、とに角 covariance の値を求めることを重く見るでしょう。私にはわかりませんが、この辺のところを例 えば、推計学などで乗り越えてゆく道があるのでしょうか、ないのでしょうか。

とも角,京大炉の小林さんからは断面積の測定結果にあわせて correlation matrix の値が与 えられていました。又九大の植之原さんが²³⁵ U(n,f)の評価ずみ核データに対する covari – ance の実例を,数枚にわたって長い長い行と列を示しながら見せていたのは,今後 covariance file を作ってゆく時の様相の一例を示したもので意味があったのではないでしょうか。最後に JENDL-3 のスコープが原研の五十嵐さんから紹介されました。JENDL-3 に対するアンケ ート調査の結果なども示しながら今後のスケジュールが語られていましたが,既にJENDL-2 まで完成させてきた経験もあることですし, version – up については従来より自信があるよう に感ぜられました。しかし,今回の討論会の主テーマであった covariance file をJENDL-3 に収納することになると,マンパワーの点でかなり困難であるがと,問題提起の形で話しが閉じ られました。

総ての核データに確かな分散と共分散を与えてゆくこと,これはとてつもなく多くの工夫と努 力と労働が必要となるでしょう。一方で今回の討論会で語られたように covariance fileの必要 性もまた確かなようです。covariance file が必要なものならば,その作成にどんな困難があっ ても、その困難は乗りこえてゆくべきでしょう。ただ出発に当たって出来うる限り適格な予測を 立てること、つまり作業の手順などをよく見透しておくこと、そして長期にわたって改良を繰り 返すことになる覚悟がいることなどを私は提案したいと思います。もう一つの問題は一たんとに 角 covariance file が出来た時、その file が一人歩きをするという危惧です。これは従来デー タの評価をする人ができうる限り実験の実態に明るく、データの利用者が評価の実状を理解して いることが求められて来たことと同じで、測定と評価と利用が常に情報を交換し、feed back をくり返すことによって防いでゆくことができると思います。そのために今回のような討論会が 役立つでしょう。

そこで今回の討論会の評価を私なりにやってみたいと思います。討論会の目的の一つは研究者の間にcovariance に対する理解ないし関心度を高めることにあったと思います。 ところで個々の研究者の covariance に対する関心度は次のような変数の関数と考えられないでしょうか。

covariance に対する関心度 = f (職務,個性,能力,精神年令,討論会) まだ他にも変数があるかも知れませんが,簡単のためこれらの変数で表わせるものと考え,かつ これらの変数の間には強い相関はない,独立なものとしましょう。次にこの討論会に参加してい る研究者の中からAとBという二人を任意に選ぶとします。Aは若く職務にも忠実で covariance に対する関心は既にかなり高く,その関心度の不確定さは10%としましょう。もう一人のBは私 がモデルで,精神年令はまだ若いつもりですが,能力は峠を超え,職務上一つの仕事に集中でき る時間はどんどん少なくなる。そこで, covariance のように新しい知識を要求されるものは面倒 に感ずるようになった人間です。Bの関心度の不確定さは従って 100%ということになりましょ う。AとBとはこの討論会以前は covariance について一緒に勉強したり,議論したりしたこと がないとすれば,標準偏差と相関マトリックスは次のように表示できます。

- 219 -

A
 10%

$$\begin{pmatrix} 1.0 & 0 \\ 0 & 1.0 \end{pmatrix}$$

 討論会前
 B
 100%
 $\begin{pmatrix} 0 & 0 \\ 0 & 1.0 \end{pmatrix}$

ところでこの討論会に際して、A はもちろんB もかなり熱心に発表に耳を傾け討論に参加した と致しましょう。そのお蔭でA もB も covariance に対する知識、関心度が高まりその不確しか さを減ずることができました。ちょっとしたテストでもして見れば標準偏差が測定できそうです が、ここではA は約 1/3 に、B は 1/2 に偏差が減じたとしましょう。 ところでA とB は二日間 同じ討論会に出席して同じ発表を聴き、同じ討論に参加したのですから、二人の知識・関心度に は相関があるはずです。この相関の強さを正しく決めることは大変難かしいと思います。A とB 以外の多数の参加者との相関にも影響されるでしょう。ここではとに角 0 でない適当な数を入れ るとして、

というように covariance に対する関心度の分散,共分散を表わして見たら如何でしょう。A,B を含めた多くの参加者の標準偏差が下がる程,測定者と評価者とその利用者の協力が強固になっ て相関係数が大きくなる程,討論会の成果が評価され,covariance file 作成の難事業に向ける 態勢が整うことになります。誰が何時このような態勢ができたと判断しゴーサインを出すことに なるのでしょうか,よくよく評価をして欲しいものです。

最後に本討論会の企画運営に当たられた方々,座長,講演者,コメンターの皆さんに私からも 感謝致しまして私のつたないSummary Talk と致します。