1166

JAERI 1275 NEANDC(J)-78/U INDC(JAP) -65/L

Benchmark Tests of JENDL-1

February 1982

本原子力研究所 日

Japan Atomic Energy Research Institute

#### 日本原子力研究所研究成果編集委員会

# 委員長 森 茂 (理事)

Ш

#### 委

| 朝]尚 | 卓見 | (原子炉工学部)  | 田中 茂也 | (物理部)            |
|-----|----|-----------|-------|------------------|
| 安達  | 公道 | (安全王学部)   | 田中 正俊 | (核融合研究部)         |
| 石塚  | 信  | (動力試験炉部)  | 田村 早苗 | (大型トカマク開発部)      |
| 伊藤  | 彰彦 | (環境安全研究部) | 仲本秀四郎 | (技術情報部)          |
| Ŀ₽ŕ | 馨  | (原子炉化学部)  | 長崎 隆吉 | (特別研究員)          |
| 岡本  | 次郎 | (高崎研究所)   | 沼宮内弼雄 | (保健物理部)          |
| 神頂  | 忠則 | (材料試験炉部)  | 橋谷 博  | (原子炉化学部)         |
| 栗山  | 将  | (大阪研究所)   | 浜口 由和 | (物理部)            |
| 桜井  | 裕  | (研究炉管理部)  | 原 昌雄  | (動力如開発・安全性研究管理部) |
| 佐藤  | -男 | (安全解析部)   | 更田豊治郎 | (企画室)            |
| 佐野川 | 团建 | (高温王学部)   | 三井 光  | (高崎研究所)          |
| 四方  | 英治 | (製造部)     |       |                  |

## Japan Atomic Energy Research Institute

#### Board of Editors

#### Shigeru Mori (Chief Editor)

| Hiromichi Adachi    | Takumi Asaoka   | Toyojiro Fuketa   |
|---------------------|-----------------|-------------------|
| Yoshikazu Hamaguchi | Masao Hara      | Hiroshi Hashitani |
| Makoto Ishizuka     | Akihiko Ito     | Masanori Kanbara  |
| Isamu Kuriyama      | Hiroshi Mitsui  | Ryukichi Nagasaki |
| Hideshiro Nakamoto  | Takao Numakunai | Jiro Okamoto      |
| Hiroshi Sakurai     | Konomo Sanokawa | Kazuo Sato        |
| Eiji Shikata        | Sanae Tamura    | Masatoshi Tanaka  |
| Shigeya Tanaka      | Kaoru Ueno      |                   |

JAERIレポートは、日本原子力研究所が研究成果編集委員会の審査を経て不定期に公 刊している研究報告書です。

入手の問合わせは、日本原子力研究所技術情報部情報資料課(〒319-11茨城県那珂郡東 海村)あて、お申しこしください。なお、このほかに財団法人原子力弘済会資料センター (〒319-11 茨城県那珂郡東海村日本原子力研究所内)で複写による実費頒布をおこなって おります。

JAERI reports are reviewed by the Board of Editors and issued irregularly. Inquiries about availability of the reports should be addressed to Information Section. Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan.

> ② Japan Atomic Energy Research Institute, 1982
>  編集兼発行 日本原子力研究所 印 刷 いばらき印刷(株)

# Benchmark Tests of JENDL-1

# Yasuyuki Kikuchi, Akira Hasegawa, Hideki Takano, Takanobu Kamei\*, Takeshi Hojuyama\*\*, Makoto Sasaki\*\*, Yuji Seki\*\*, Atsushi Zukeran\*\*\* and Iwao Otake\*\*\*\*

Working Group on JENDL Integral Tests Japanese Nuclear Data Committee Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

Received September 25, 1981

### Abstract

Various benchmark tests were made on JENDL-1. At the first stage, various core center characteristics were tested for many critical assemblies with one-dimensional model. At the second stage, applicability of JENDL-1 was further tested to more sophisticated problems for MOZART and ZPPR-3 assemblies with two-dimensional model.

It was proved that JENDL-1 predicted various quantities of fast reactors satisfactorily as a whole. However, the following problems were pointed out:

- 1) There exists discrepancy of 0.9% in the  $k_{eff}$ -values between the Pu- and U-cores.
- 2) The fission rate ratio of  $^{239}$ Pu to  $^{235}$ U is underestimated by 3%.
- 3) The Doppler reactivity coefficients are overestimated by about 10%.
- 4) The control rod worths are underestimated by 4%.
- 5) The fission rates of <sup>235</sup>U and <sup>239</sup>Pu are underestimated considerably in the outer core and radial blanket regions.
- 6) The negative sodium void reactivities are overestimated, when the sodium is removed from the outer core.

As a whole, most of problems of JENDL-1 seem to be related with the neutron leakage and the neutron spectrum.

It was found through the further study that most of these problems came from too small diffusion coefficients and too large elastic removal cross sections above 100 keV, which might be probably caused by overestimation of the total and elastic scattering cross sections for structural materials in the unresolved resonance region up to several MeV.

Keywords: Benchmark Tests, JENDL-1, k<sub>eff</sub>, Reaction Rate Ratio, Reactivity Worth, Doppler Coefficient, Reaction Rate Distribution, Sodium Void Reactivity, Control Rod Worth, Structural Materials.

<sup>\*</sup> Nippon Atomic Industry Group Co., Ltd.

<sup>\*\*</sup> Mitsubishi Atomic Power Industries, Inc.

<sup>\*\*\*</sup> Energy Research Laboratory, Hitachi Ltd.

<sup>\*\*\*\*</sup> Power Reactor and Nuclear Fuel Development Corporation.

# JENDL-1 のベンチマークテスト

### 日本原子力研究所 シグマ研究専門委員会 JENDL 積分評価ワーキンググループ

菊池康之・長谷川明・高野秀機・亀井孝信<sup>\*</sup>・宝珠山健<sup>\*\*</sup> 佐々木誠<sup>\*\*</sup>・関 雄次<sup>\*\*</sup>・瑞慶覧篤<sup>\*\*\*</sup>・大竹 厳<sup>\*\*\*\*\*</sup>

1981年9月25日受理

### **要 旨**

JENDL-1について種々のベンチマークテストを行った。第1段階として、1次元モデルで多数の臨界集合体の炉中心特性をテストした。第2段階としては、2次元モデルにより MOZART、 ZPPR-3 炉心の詳細な特性をテストした。

JENDL-1は高速炉の種々の特性を、全体としては満足に予測する事が判明した。しかし以下の 問題点も指摘された:

1) k<sub>eff</sub>値が Pu 炉心と U 炉心で 0.9 % 異る.

2) <sup>239</sup> Pu 対 <sup>235</sup> Uの核分裂率比が3% 過小評価される.

3) ドップラー係数は約10%過大評価される。

4) 制御棒価値は4%過小評価される.

5)<sup>235</sup>U,<sup>239</sup>Puの核分裂率は外部炉心と径方向ブランケット内でかなり過小評価される。

6) 外部炉心における Na ボイド係数が負側に過大評価される.

これらの問題の大部分は中性子漏洩とスペクトルに関係しているように思われる.

さらに検討を続けた結果,これらの問題点の多くは,100 keV 以上のエネルギー領域における拡 散係数の過小,弾性除去断面積の過大による事が判明した.さらにその原因は,数 MeV までの非 分離共鳴領域における,構造材の全断面積,弾性散乱断面積の過大評価にあると思われる.

\*\*\* 日立製作所(株)エネルギー研究所

\*\*\*\* 動力炉核燃料開発事業団

<sup>\*</sup> 日本原子力事業(株)NAIG 総合研究所

<sup>\*\*</sup> 三菱原子力工業(株)

## Contents

| <b>1.</b> Int  | troduction                                                        | 1  |
|----------------|-------------------------------------------------------------------|----|
| <b>2</b> . Be: | nchmark Tests with One-dimensional Model                          | 2  |
| 2.1            | Method                                                            | 2  |
| 2.2            | Assemblies                                                        | 2  |
| 2.3            | Effective Multiplication Factor                                   | 3  |
| 2.4            | Central Reaction Rate Ratio                                       | 5  |
| 2.5            | Central Reactivity Worth                                          | 11 |
| 2.5            | 5.1 Absolute Value                                                | 11 |
| 2.5            | <b>5.2</b> Normalized Worth                                       | 13 |
| 2.6            | Doppler Coefficient                                               | 20 |
| 2.7            | Analysis of Snell Experiments                                     | 21 |
| <b>3</b> . Be: | nchmark Tests with two-dimensional Model                          | 23 |
| 3.1            | MOZART                                                            | 23 |
| 3.1            | <b>1.1</b> Reaction Rate Distribution in MZB                      | 23 |
| 3.1            | <b>1.2</b> Sodium Void Reactivity in MZB                          | 27 |
| 3.1            | 1.3 Control Rod Worth in MZC                                      | 30 |
| 3.2            | ZPPR-3                                                            | 32 |
| 3.2            | 2.1 Worth of Multiple Control Rods in Phase 1B Core               | 32 |
| 3.2            | 2.2 Fission Rate Distribution of <sup>235</sup> U in Phase 2 Core | 34 |
| <b>4.</b> Su   | mmary and Discussion                                              | 37 |
| 4.1            | Problems Encountered through Benchmark Tests                      | 37 |
| 4.2            | Intercomparison of Macroscopic Cross Sections                     | 37 |
| 4.3            | Discussion                                                        | 38 |
| 4.4            | Feedback on Nuclear Data Evaluation                               | 38 |
| Ackno          | wledgment                                                         | 39 |
| Refere         | nces                                                              | 39 |
| Appen          | dices                                                             | 41 |
| A1.            | Production of Reactor Constants                                   | 41 |
| <b>A2</b> . ]  | Benchmark Specification                                           | 44 |
|                | A2.1 Twenty-seven Assemblies with One-dimensional Model           | 44 |
|                | A2.1.1 Eighteen Assemblies Selected by Hardie et al               | 44 |
|                | A2.1.2 MZA and MZB                                                | 44 |
|                | A2.1.3 FCA Assemblies                                             | 44 |
| ļ              | A2.2 Doppler Analysis                                             | 51 |
| <b>A3</b> .E   | Effects of Structural Material Cross Sections                     | 54 |
| A              | A3.1 Analysis with One-dimensional Model                          | 60 |
|                | A3.1.1 Effective Multiplication Factor                            | 60 |
|                | A3.1.2 Central Reaction Rate Ratio                                | 60 |
|                | A3.1.3 Central Reactivity Worth                                   | 60 |
|                | A3.1.4 Doppler Coefficient                                        | 64 |
|                | A3.1.5 Snell Experiments                                          | 65 |
| A              | A3.2 Analysis of MZB with Two-dimensional Model                   | 65 |
| A              | A3.3 Analysis of Large Fast Breeder Reactor                       | 72 |
| A4. I          | Intercomparison of Group Constants among JENDL-1,                 |    |
| J              | JFS-2 and ENDF/B-IV                                               | 74 |

# 目 次

| 1. 序 論                                             |                                         | 1        |
|----------------------------------------------------|-----------------------------------------|----------|
| 2. 一次元モデルによるベンチマークテスト                              |                                         | 2        |
| 2.1 方法                                             |                                         | 2        |
| 2.2 臨界集合体                                          |                                         | 2        |
| 2.3 実効増培率                                          | ••••••                                  | 3        |
| 2.4 中心反応率比                                         | •••••                                   | 5        |
| 2.5 中心反応度価值                                        |                                         | 11       |
| 2.5.1 絶対值                                          | •••••••                                 | 11       |
| <b>2.5.2</b> 規格化された値                               |                                         | 13       |
| 2.6 ドップラー係数                                        |                                         | 20       |
| 2.7 スネル実験解析                                        | ••••••                                  | 21       |
| 3. 次元モデルによるベンチマークテスト                               |                                         | 23       |
| 3.1 MOZART                                         | •••••••                                 | 23       |
| <b>3.1.1</b> MZB における反応率分布                         |                                         | 23       |
| <b>3.1.2</b> MZB における Na ボイド反応度                    |                                         | 27       |
| <b>3.1.3</b> MZC における制御棒価値                         |                                         | 30       |
| <b>3.2</b> ZPPR-3                                  |                                         | 32       |
| <b>3.2.1</b> フェーズ 1 B 炉心における多数本制御棒価値               |                                         | 32       |
| <b>3.2.2</b> フェーズ 2 炉心における <sup>235</sup> U 核分裂率分布 | •••••                                   | 34       |
| 4. 総括と議論                                           |                                         | 37       |
| <b>4.1</b> ベンチマークテストからの知見                          |                                         | 37       |
| <b>4.2</b> 巨視断面積の相互比較                              | ••••••••••••••••••••••••••••••••••••••• | 37       |
| 4.3 議 論                                            |                                         | 38       |
| <b>4.4</b> 核データ評価への提言                              |                                         | 38       |
|                                                    |                                         | 39       |
| 参照文献                                               |                                         | 39       |
| 付 録                                                |                                         | 41       |
| A 1   炉定数作成                                        |                                         | 41       |
| A2 ベンチマークテスト仕様                                     | •••••                                   | 44       |
| <b>A 2.1</b> 一次元モデルによる 27 炉心                       |                                         | 44       |
| <b>A 2.1.1</b> Hardie 等の選択による 18 集合体               | • • • • • • • • • • • • • • • • • • • • | 44       |
| A 2.1.2 MZA と MZB                                  | ••••••••••••••••••••••••••••••••••••••• | 44       |
| A 2.1.3 FCA 均心                                     |                                         | 44       |
| A 2.2 ドッフラー解析                                      |                                         | 51       |
| A3 構造材断面積の効果                                       |                                         | 54       |
| A 3.1 次元モデルによる解析                                   |                                         | 60       |
| A 3.1.1 実効増培率                                      |                                         | 60       |
| A 3.1.2 中心反応率比                                     | • • • • • • • • • • • • • • • • • • • • | 60       |
| A 3.1.3 中心反応度価值                                    |                                         | 60       |
| A 3.1.4 ドッフラー係数                                    |                                         | 64<br>67 |
| A 3.1.5 スネル実験                                      | • • • • • • • • • • • • • • • • • • • • | 65<br>65 |
| <b>A 3.2</b> 二次元モデルによる MZB 解析                      | • • • • • • • • • • • • • • • • • • • • | 65       |
| A 3.3 大型局速増殖炉の解析                                   | • • • • • • • • • • • • • • • • • • • • | 72       |
| A4 JENDL−1, JFS−2, ENDF/B-Ⅳ炉定数相互比較                 | • • • • • • • • • • • • • • • • • • • • | 74       |

# 1. Introduction

Japanese Evaluated Nuclear Data Library (JENDL) has been developed as the national standard neutron nuclear data library by Nuclear Data Center in JAERI in cooperation with Japanese Nuclear Data Committee (JNDC). Its first version (JENDL-1) mainly aimed to provide data for fast reactor calculations and its evaluation was made entirely on the basis of differential nuclear data. JENDL-1 contains the data from 10<sup>-5</sup> eV to 15 MeV for the following nuclides:

H, <sup>6</sup>Li, <sup>10</sup>B, <sup>12</sup>C, <sup>23</sup>Na, <sup>27</sup>Al, Si, Cr, <sup>50</sup>Cr, <sup>52</sup>Cr, <sup>53</sup>Cr, <sup>54</sup>Cr, <sup>55</sup>Mn, Fe, <sup>54</sup>Fe, <sup>56</sup>Fe, <sup>57</sup>Fe, <sup>58</sup>Fe, Ni, <sup>58</sup>Ni, <sup>60</sup>Ni, <sup>61</sup>Ni, <sup>62</sup>Ni, <sup>64</sup>Ni, Cu, <sup>63</sup>Cu, <sup>65</sup>Cu, <sup>90</sup>Sr, <sup>93</sup>Zr, Mo, <sup>92</sup>Mo, <sup>94</sup>Mo, <sup>95</sup>Mo, <sup>96</sup>Mo, <sup>97</sup>Mo, <sup>98</sup>Mo, <sup>100</sup>Mo, <sup>99</sup>Tc, <sup>101</sup>Ru, <sup>102</sup>Ru, <sup>104</sup>Ru, <sup>106</sup>Ru, <sup>103</sup>Rh, <sup>105</sup>Pd, <sup>107</sup>Pd, <sup>109</sup>Ag, <sup>129</sup>I, <sup>131</sup>Xe, <sup>133</sup>Cs, <sup>135</sup>Cs, <sup>137</sup>Cs, <sup>144</sup>Ce, <sup>143</sup>Nd, <sup>144</sup>Nd, <sup>145</sup>Nd, <sup>147</sup>Pm, <sup>147</sup>Sm, <sup>149</sup>Sm, <sup>151</sup>Sm, <sup>153</sup>Eu, <sup>155</sup>Eu, <sup>181</sup>Ta, <sup>232</sup>Th, <sup>233</sup>Pa, <sup>234</sup>U, <sup>235</sup>U, <sup>238</sup>U, <sup>239</sup>Pu, <sup>239</sup>Pu, <sup>240</sup>Pu, <sup>241</sup>Pu and <sup>241</sup>Am.

Its compilation started in 1973, and completed in 1975 for 28 fission product nuclides  $^{1,2}$  and in 1976 for the other nuclides  $^{3}$ .

Since then various benchmark tests have been made by the working group\* on JENDL integral tests of JNDC in order to prove its applicability to fast reactor calculations. Satisfactory results were obtained <sup>4</sup>) and JENDL-1 has been used for both analyses and design works of fast reactors. On the other hand, various problems were pointed out through these tests and experiences, particularly on the cross sections of structural materials, and they were further investigated by the same working group. This report describes details of the benchmark tests, discusses the problems encountered and suggests the way to improve the microscopic nuclear data of JENDL-1\*\*.

The first stage of the tests was done in 1976 on the core center characteristics for selected 27 assemblies. The calculation was based on one-dimensional diffusion and first-order perturbation approximations by using the reactor constants of JAERI-Fast set<sup>7</sup>) type with 70 groups. The results of these tests are described in Chapter 2. As the second stage, applicability was tested to more sophisticated problems in MOZART and ZPPR-3 cores with two-dimensional model. The details of the tests are written in Chapter 3. Various problems encountered through the tests are discussed in Chapter. 4.

The methods to produce the reactor constants are described in Appendix 1. Benchmark specifications are given in Appendix 2. In Appendix 3, the effects of cross sections of Fe, Cr and Ni are discussed by replacing them with those of ENDF/B-IV. The group constants of JENDL-1 are compared graphically with those of JAERI-Fast set Version 2 (JFS-2) and ENDF/B-IV in Appendix 4.

<sup>\*</sup> Group Members: Y. Kikuchi (leader), A. Hasegawa, T. Nakagawa, T. Narita, H. Takano, K. Tsuchihashi, H. Yoshida (JAERI), S. Iijima, T. Kamei (NAIG), Y. Seki, T. Hojuyama, M. Sasaki (MAPI), H. Matsunobu (SAEI), A. Zukeran, S. Itoh (Hitachi), M. Yamamoto (FBEC), I. Otake (PNC)

**<sup>\*\*</sup>** Benchmark tests were also made<sup>5,6</sup>) for the fission product nuclides, but they are not included in this report.

## 2. Benchmark Tests with One-dimensional Model

### 2.1 Method

We calculated the following items of core center characteristics with 1-D model: Effective multiplication factor ( $k_{eff}$ ), central reaction rate ratios, central reactivity worths and Doppler reactivity coefficients. The fission rate ratios in equilibrium neutron spectrum in natural uranium are also calculated and compared with the experimental data\*.

The group constants of 70 group structure were produced with PROF-GROUCH-G-II code system<sup>8</sup>). The self-shielding factors were obtained with TIMS-1<sup>9</sup>) by solving the neutron slowing down equation numerically. Details of the procedure are given in Appendix 1. Data of ENDF/B-IV were used for <sup>9</sup>Be, <sup>11</sup>B, <sup>16</sup>O and <sup>242</sup>Pu which are not contained in JENDL-1.

The effective multiplication factor, and the real and adjoint fluxes were calculated with a one-dimensional diffusion code EXPANDA-70D<sup>10</sup>). The reaction rate ratios and central reactivity worths were calculated with the XPRTC code<sup>10</sup>) by using the real and adjoint fluxes obtained with EXPANDA-70D. The calculated results were compared with the measured data in the form of the calculation-to-experiment ratio (C/E), and were statistically arranged with the BENCH code<sup>11</sup>) as average values and standard deviations.

The Doppler reactivity coefficients were calculated with the first-order perturbation approximation by the use of the EXPANDA-70D code<sup>10</sup>.

For comparison, the same items were calculated with the JAERI-Fast set, Version 2 (JFS-2) and with the group constants produced from ENDF/B-IV.

#### 2.2 Assemblies

Hardie *et al.*<sup>12)</sup> selected 18 assemblies for tests of ENDF/B-IV; twelve Pu-cores and six U-cores with various fertile to fissile ratios ( $0.05 \sim 8.6$ ) and core volumes ( $12 \sim 4000$  litre). We adopted all ot them\*\*, and added MOZART cores<sup>13)</sup> (MZA and MZB) and some FCA cores. Their main characteristics are shown in **Table 2.1**. The detailed specifications are given in Appendix 2. Corrections such as one to two dimensional, heterogeneity and transport are taken from Ref. (12) for the 18 assemblies selected by Hardie *et al.*, from Ref. (13) for the MOZART cores and from our preliminary calculation<sup>14)</sup> for the FCA cores. They are also given in Appendix 2.

As to the Doppler coefficients, we adopted small sample Doppler coefficient measurements at FCA-V-1, V-2, VI-1, VI-2, ZPPR-2 and ZPR-3-47, and whole core Doppler measurements at SEFOR. Precise specifications and necessary corrections are given in Appendix 2.

<sup>\*</sup> This type of experiment is called Snell experiment.

<sup>\*\*</sup> ZPR-3-54 was not considered in the statistical analyses of the results, because the leakage correction could not be adequately treated in the present model.

| Assembly<br>Name | Fissile<br>Fuel | Fertile to<br>Fissile Ratio | Core<br>Volume (१) | Remarks                                  |
|------------------|-----------------|-----------------------------|--------------------|------------------------------------------|
| VERA-11A         | Pu              | 0.05                        | 12                 | Pu + C, No U in core                     |
| VERA-1B          | U               | 0.07                        | 30                 | 94% EU + C                               |
| ZPR-3-6F         | U               | 1.1                         | 50                 |                                          |
| ZPR-3-54         | Pu              | 1.6                         | 190                | Similar to ZPR-3-53 except an Fe reactor |
| ZPR-3-53         | Pu              | 1.6                         | 220                | U reflector                              |
| FCA-V-2          | Pu (+U)         | 2.3                         | 200                | Pu/EU = 1/3                              |
| FCA-V-1          | U (+Pu)         | 2.6                         | 142                | Pu/EU = 1/4                              |
| SNEAK-7A         | Pu              | 3.0*                        | 110                |                                          |
| FCA-VI-2         | Pu (+U)         | 3.2*                        | 422                | Pu core + EU driver                      |
| ZPR-3-12         | U               | 3.8                         | 100                | Soft spectrum due to added C             |
| MZA              | Pu              | 3.9                         | 570                |                                          |
| FCA-I-6          | U               | 4.0                         | 24                 | 20% EU core with C reflector             |
| FCA-I-1          | U               | 4.0                         | 30                 | 20% EU core with Nat U blanket           |
| FCA-3-2S         | U               | 4.0                         | 245                | Soft spectrum due to added C             |
| FCA-VI-1         | Pu              | 4.4                         | 423                | Test region + DU blanket                 |
| ZPR-3-50         | Pu              | 4.5                         | 340                | (ZPR-3-48) with additional C             |
| ZPR-3-48         | Pu              | 4.5                         | 410                | Soft spectrum due to added C, $L/D = 1$  |
| ZPR-3-49         | Pu              | 4.5                         | 450                | (ZPR-3-48) without Na                    |
| ZPR-3-56B        | Pu              | 4.6                         | 610                | Ni reflector                             |
| ZPR-6-6A         | U               | 5.0                         | 4000               | L/D = 0.8                                |
| ZPPR-2           | Pu              | 5.1*                        | 2400               | Equal volume 2 zone core, $L/D = 0.5$    |
| MZB              | Pu              | 5.2                         | 1800               |                                          |
| ZEBRA-2          | U               | 6.2                         | 430                |                                          |
| ZPR-6-7          | Pu              | 6.5                         | 3100               | L/D = 0.9                                |
| SNEAK-7B         | Pu              | 7.0                         | 310                |                                          |
| ZPR-3-11         | U               | 7.5                         | 140                |                                          |
| ZEBRA-3          | Pu              | 8.6                         | 60                 | Hard spectrum (80% above 100 keV)        |

 Table 2.1
 Characteristics of critical assemblies

\* Averaged value of inner and outer cores with volume weights.

### 2.3 Effective Multiplication Factor

The C/E values of effective multiplication factor are given in **Table 2.2** and **Fig. 2.1**. The ZPR-3-54 assembly is omitted in the statistical analyses. The following are observed: 1) JENDL-1 predicts the  $k_{eff}$ -values very well on an average.

- 2) Discrepancy of 0.9% is observed between the Pu-fueled and U-fueled cores with JENDL-1. This can be partly explained by the fact that the different  $\nu_p$  values of <sup>252</sup>Cf spontaneous fission were assumed as the standard in the JENDL-1 evaluation of  $\nu_p$  values for <sup>235</sup>U and <sup>239</sup>Pu:  $\nu_p$  (<sup>252</sup>Cf) = 3.782 was assumed for <sup>235</sup>U and  $\nu_p$  (<sup>252</sup>Cf) = 3.756 for <sup>239</sup>Pu.
- 3) Compared with JFS-2, the C/E values of JENDL-1 have a tendency to decrease slightly with increasing the fertile to fissile ratio.
- 4) Obvious differences are observed between the results of ZPR-3-53 and ZPR-3-54, which have the same core but different reflectors, i.e., natural uranium for ZPR-3-53 and iron for ZPR-3-54. The k<sub>eff</sub>-value of ZPR-3-54 calculated with JENDL-1 is 2% higher than that of ZPR-3-53, while the k<sub>eff</sub>-values of ZPR-3-54 are 4% lower with JFS-2 and ENDF/B-IV. This may suggest that iron cross sections of JENDL-1 give less leakage.
- 5) ENDF/B-IV underestimates the  $k_{eff}$ -values by 1% as a whole. Particularly the underestimate is significant for assemblies whose fertile to fissile ratio lies between 2.5 and 7.2 as seen in Fig. 2.1.

6) As to ENDF/B-IV, the present results are about 1% lower than those calculated by Hardie et al.<sup>12</sup>). The reason of this disagreement is not clear, because we used the same models and corrections. This disagreement seems to be too large to be caused by the different methods of group constants production. Recently LeSage and McKnight<sup>15</sup>) discussed on the C/E discrepancies for several key integral parameters measured in ZPR assemblies including ZPR-3-48, ZPR-6-7, ZPPR-2 and ZPR-6-6A. The k<sub>eff</sub>-values for these assemblies calculated by LeSage and McKnight with ENDF/B-IV agree with the presently calculated values with ENDF/B-IV and are lower than those calculated by Hardie et al.

|      |                           |              | Calculated (C/E)   |                    |                    |                               |  |
|------|---------------------------|--------------|--------------------|--------------------|--------------------|-------------------------------|--|
| Fuel | Assembly                  | Experimental | JENDL-1            | JFS-2              | ENDF/B-IV          | ENDF/B-IV*<br>(Hardie et al.) |  |
|      | VERA-11A                  | 1,0000       | 0.9860             | 0.9924             | 0.9840             | 0.9945                        |  |
|      | ZPR-3-54**                | 1.0000       | 1.0217             | 0.9544             | 0.9335             | 0.9620                        |  |
|      | ZPR-3-53                  | 1.0000       | 0.9994             | 0.9965             | 0.9772             | 0.9955                        |  |
|      | FCA V-2                   | 1.0000       | 1.0108             | 1.0091             | 0.9973             | _                             |  |
|      | SNEAK-7A                  | 1.0000       | 0.9955             | 1.0051             | 0.9907             | 1.0022                        |  |
|      | FCA VI-2                  | 1.0000       | 1.0071             | 1.0045             | 0.9904             |                               |  |
|      | MZA                       | 1.0108       | 1.0027             | 1.0012             | 0.9831             | _                             |  |
|      | FCA VI-I                  | 1.0000       | 0.9945             | 1.0004             | 0.9844             | _                             |  |
|      | ZPR-3-50                  | 1.0000       | 0.9974             | 0.9985             | 0.9811             | 0.9948                        |  |
| D    | ZPR-3-48                  | 1.0000       | 1.0005             | 1.0031             | 0.9885             | 1.0015                        |  |
| Pu   | ZPR-3-49                  | 1.0000       | 1.0001             | 1.0042             | 0.9918             | 1.0021                        |  |
|      | ZPR-3-56B                 | 1.0000       | 0.9957             | 0.9967             | 0.9768             | 0.9882                        |  |
|      | ZPPR-2                    | 1.0000       | 1.0072             | 1.0087             | 0.9878             | 0.9976                        |  |
|      | MZB                       | 1.0040       | 0.9985             | 1.0013             | 0.9796             | -                             |  |
|      | ZPR-6-7                   | 1.0000       | 0.9983             | 1.0033             | 0.9810             | 0.9917                        |  |
|      | SNEAK-7B                  | 1.0000       | 0.9898             | 1.0044             | 0.9892             | 0.9967                        |  |
|      | ZEBRA-3                   | 1.0000       | 0.9816             | 0.9980             | 0.9918             | 1.0004                        |  |
|      | Average of C/E            |              | 0.9978<br>(0.9955) | 1.0017<br>(1.0010) | 0.9859<br>(0.9854) | (0.9968)                      |  |
|      | Standard deviation of C/E |              | 0.0074             | 0.0044             | 0.0057             | (0.0043)                      |  |
|      | VERA-1B                   | 1.0000       | 1.0077             | 1.0036             | 0.9942             | 1.0021                        |  |
|      | ZPR-3-6F                  | 1.0000       | 1.0195             | 1.0166             | 1.0083             | 1.0112                        |  |
|      | FCA V-1                   | 1.0000       | 1.0061             | 1.0059             | 0.9942             | -                             |  |
|      | ZPR-3-12                  | 1.0000       | 1.0061             | 1.0070             | 0.9987             | 1.0055                        |  |
|      | FCA I-6                   | 1.0000       | 1.0093             | 0.9987             | 0.9965             | _                             |  |
|      | FCA I-1                   | 1.0000       | 1.0120             | 1.0177             | 1.0129             | -                             |  |
| 11   | FCA III-2S                | 1.0000       | 1.0026             | 0.9881             | 0.9825             |                               |  |
| U    | ZPR-6-6A                  | 1.0000       | 1.0139             | 1.0019             | 0.9895             | 0.9967                        |  |
|      | ZEBRA-2                   | 1.0000       | 0.9902             | 0.9852             | 0.9781             | 0.9965                        |  |
|      | ZPR-3-11                  | 1.0000       | 0.9999             | 1.0080             | 1.0050             | 1.0107                        |  |
|      | Average of C/E            |              | 1.0067<br>(1.0062) | 1.0033<br>(1.0037) | 0.9960<br>(0.9956) | (1.0038)                      |  |
|      | Standard devia            | ation of C/E | 0.0077             | 0.0100             | 0.0104             | (0.0059)                      |  |
| All  | Average of C/             | E            | 1.0012<br>(1.0008) | 1.0023<br>(1.0020) | 0.9898<br>(0.9890) | (0.9993)                      |  |
|      | Standard devia            | ation of C/E | 0.0087             | 0.0071             | 0.0093             | (0.0060)                      |  |

Table 2.2Effective multiplication factors. Values in parenthesis are averaged<br/>over 17 assemblies selected by Hardie et al.)

\* Taken from Ref. (12).

**\*\*** Omitted in statistical analyses.

4



Fig. 2.1 C/E values of k<sub>eff</sub> vs. fertile to fissile ratio.

### 2.4 Central Reaction Rate Ratio

The C/E values of central reaction rate ratios are given in **Tables 2.3**  $\sim$  **2.7** and their dependence on the fertile to fissile ratio is shown in **Fig. 2.2**. The results for FCA-I-6, as well as those for ZPR-3-54, are omitted in the statistical analyses because of experimental uncertainties.

a) <sup>238</sup> U fission to <sup>235</sup> U fission

JENDL-1 predicts the ratios very well in the Pu-fueled cores but underestimates them by 5% in the U-fueled cores. The discrepancy between the Pu- and U- cores is smaller in the results obtained with JFS-2 and ENDF/B-IV. It can be seen from Fig. 2.2, however, that the C/E values for some assemblies much deviate from unity with any library set. Experimental conditions should be checked more carefully for such cases, because the fission rate of a fertile material such as <sup>238</sup>U or <sup>240</sup>Pu is very sensitive to the detector position in the fuel cell. Strong correlation is observed between the C/E values of <sup>238</sup>U fission to <sup>235</sup>U fission and those of <sup>240</sup>Pu fission to <sup>235</sup>U fission, as is seen from Fig. 2.2. This might also suggest some systematic errors in the fission rate ratio measurements for the fertile materials.

### b) <sup>239</sup> Pu fission to <sup>235</sup> U fission

JENDL-1 underestimates the ratios by about 3%. JFS-2 and ENDF/B-IV also underestimate them by about 2%. Fluctuation of the C/E values through the cores is small, as is seen from **Fig. 2.2**. Therefore the underestimate of this fission rate ratio is essential and further investigation should be required. The discrepancy of  $k_{eff}$  between the U- and Pu- cores may be partly attributed to the underestimate of this fission rate ratio.

|      |                           |              | Calculated (C/E) |                  |                  |                               |  |
|------|---------------------------|--------------|------------------|------------------|------------------|-------------------------------|--|
| Fuel | Assembly                  | Experimental | JENDL-1          | JFS-2            | ENDF/B-IV        | ENDF/B-IV*<br>(Hardie et al.) |  |
|      | VERA-11A                  | 0.077        | 1.129            | 1,094            | 1.086            | 1.090                         |  |
|      | ZPR-3-54**                | 0.0254       | 1.129            | 1.199            | 1.197            | 1.176                         |  |
|      | ZPR-3-53                  | 0.0254       | 1.146            | 1.152            | 1.147            | 1.125                         |  |
|      | FCA V-2                   | 0.0396       | 1.053            | 1.091            | 1.106            | _                             |  |
|      | SNEAK-7A                  | 0.0448       | 0.915            | 0.924            | 0.934            | 0.911                         |  |
|      | FCA VI-2                  | 0.0219       | 1.012            | 1.034            | 1.047            | _                             |  |
|      | MZA                       | 0.0337       | 0.943            | 0.956            | 0.968            | _                             |  |
|      | FCA VI-1                  | -            | _                |                  | _                | _                             |  |
|      | ZPR-3-50                  | 0.0251       | 1.120            | 1.138            | 1.147            | 1.132                         |  |
| Pu   | ZPR-3-48                  | 0.0326       | 0.997            | 1.019            | 1.027            | 1.026                         |  |
|      | ZPR-3-49                  | 0.0345       | 1.038            | 1.048            | 1.059            | 1.055                         |  |
|      | ZPR-3-56B                 | 0.0308       | 0.934            | 0.947            | 0.963            | 0.940                         |  |
|      | ZPPR-2                    | 0.0201       | 1.042            | 1.051            | 1.069            | 1.053                         |  |
|      | MZB                       | 0.0226       | 0.970            | 0.979            | 0.996            | _                             |  |
|      | ZPR-6-7                   | 0.0230       | 0.911            | 0.916            | 0,933            | 0.914                         |  |
|      | SNEAK-7B                  | 0.0330       | 0.963            | 0.981            | 1.000            | 0.965                         |  |
|      | ZEBRA-3                   | 0.0461       | 0.943            | 0.985            | 0.988            | 1.001                         |  |
|      | Average of C/E            |              | 1.008<br>(1.014) | 1.021<br>(1.023) | 1.031<br>(1.032) | (1.019)                       |  |
|      | Standard devia            | ation of C/E | 0.076            | 0.072            | 0.068            | (0.076)                       |  |
|      | VERA-1B                   | 0.066        | 1.117            | 1.150            | 1.187            | 1.180                         |  |
|      | ZPR-3-6F                  | 0.078        | 0.901            | 0.955            | 0.987            | 1.000                         |  |
|      | FCA V-1                   | 0.0423       | 0.980            | 1.022            | 1.039            | _                             |  |
|      | ZPR-3-12                  | 0.047        | 0.975            | 1.030            | 1.053            | 1.060                         |  |
|      | FCA I-6**                 | 0.054        | 1.017            | 1.099            | 1.125            | —                             |  |
|      | FCA I-1                   | 0.057        | 0.934            | 0.997            | 1.022            | _                             |  |
| U    | FCA HI-2S                 | 0.039        | 0.838            | 0.874            | 0.883            | —                             |  |
|      | ZPR-6-6A                  | 0.0245       | 0,903            | 0.926            | 0.938            | 0.926                         |  |
|      | ZEBRA-2                   | 0.0320       | 0.975            | 1.032            | 1.046            | 1.048                         |  |
|      | ZPR-3-11                  | 0.038        | 0.965            | 1.028            | 1.042            | 1.064                         |  |
|      | Average of C/E            |              | 0.954<br>(0.973) | 1.002<br>(1.020) | 1.022<br>(1.042) | (1.046)                       |  |
|      | Standard devia            | ation of C/E | 0.073            | 0.074            | 0.080            | (0.076)                       |  |
| All  | Average of C/I            | E            | 0.988<br>(1.000) | 1.014<br>(1.022) | 1.028<br>(1.036) | (1.029)                       |  |
| • •  | Standard deviation of C/E |              | 0.079            | 0.073            | 0.073            | (0.077)                       |  |

 Table 2.3
 Ratio of <sup>238</sup>U fission rate to <sup>235</sup>U fission rate at core center. Values in parenthesis are averaged over 17 assemblies selected by Hardie et al.

\* Taken from Ref. (12).

|  | ٠ |  |
|--|---|--|
|  |   |  |
|  |   |  |
|  | ¢ |  |

|      | Assembly        |              | Calculated (C/E) |                  |                  |                               |  |
|------|-----------------|--------------|------------------|------------------|------------------|-------------------------------|--|
| Fuel |                 | Experimental | JENDL-1          | JFS-2            | ENDF/B-IV        | ENDF/B-IV*<br>(Hardie et al.) |  |
|      | VERA-11A        | 1.07         | 1.066            | 1.073            | 1.067            | 1.073                         |  |
|      | ZPR-3-54**      | 0.928        | 0.930            | 0.945            | 0.931            | 0.936                         |  |
|      | ZPR-3-53        | 0.928        | 0.932            | 0.938            | 0.922            | 0.928                         |  |
|      | FCA V-2         | 1.104        | 0.950            | 0.962            | 0.967            | _                             |  |
|      | SNEAK-7A        | 1.016        | 0.946            | 0.953            | 0.957            | 0.960                         |  |
|      | FCA VI-2        | 0.956        | 0.950            | 0.961            | 0.964            | _                             |  |
|      | MZA             | 1.013        | 0.960            | 0.969            | 0.974            | _                             |  |
|      | FCA VI-1        | _            | _                | _                | _                | _                             |  |
|      | ZPR-3-50        | 0.903        | 0.974            | 0.982            | 0.978            | 0.986                         |  |
| Pu   | ZPR-3-48        | 0.976        | 0.973            | 0.983            | 0.984            | 0.993                         |  |
|      | ZPR-3-49        | 0.986        | 0.984            | 0.996            | 1.002            | 1.008                         |  |
|      | ZPR-3-56B       | 1.028        | 0.927            | 0.936            | 0.942            | 0.944                         |  |
|      | ZPPR-2          | 0.937        | 0.962            | 0.971            | 0.974            | 0.981                         |  |
|      | MZB             | 0.949        | 0.963            | 0.971            | 0.976            | -                             |  |
|      | ZPR-6-7         | 0.953        | 0.946            | 0.954            | 0.957            | 0.961                         |  |
|      | <b>SNEAK-7B</b> | 1.012        | 0.963            | 0.975            | 0.986            | 0.985                         |  |
|      | ZEBRA-3         | 1.190        | 0.963            | 0.980            | 0.982            | 0.988                         |  |
|      | Average of C/E  |              | 0.964<br>(0.967) | 0.974<br>(0.976) | 0.975<br>(0.977) | (0.982)                       |  |
|      | Standard devia  | ation of C/E | 0.031            | 0.031            | 0.031            | (0.036)                       |  |
|      | VERA-1B         | 1.070        | 1.057            | 1.059            | 1.065            | 1.062                         |  |
|      | ZPR-3-6F        | 1.22         | 1.003            | 1.014            | 1.017            | 1.020                         |  |
|      | FCA V-1         | 1.161        | 0.912            | 0.925            | 0.930            |                               |  |
|      | ZPR-3-12        | 1.12         | 0.971            | 0.987            | 0.993            | 0.996                         |  |
|      | FCA I-6**       | 1.08         | 1.108            | 1.129            | 1.130            |                               |  |
|      | FCA I-1         | 1.27         | 0.941            | 0.957            | 0.959            | -                             |  |
| U    | FCA III-2S      | 1.02         | 0.950            | 0.961            | 0.967            |                               |  |
|      | ZPR-6-6A        | _            | _                | _                | _                | -                             |  |
|      | ZEBRA-2         | 0.987        | 0,984            | 0.999            | 1.007            | 1.007                         |  |
|      | ZPR-3-11        | 1.19         | 0.960            | 0.976            | 0.980            | 0.987                         |  |
|      | Average of C/E  |              | 0.972<br>(0.995) | 0.985<br>(1.007) | 0.990<br>(1.012) | (1.014)                       |  |
|      | Standard devia  | ation of C/E | 0.041            | 0.038            | 0.039            | (0.026)                       |  |
| All  | Average of C/I  | E            | 0.967<br>(0.976) | 0.977<br>(0.986) | 0.980<br>(0.988) | (0.992)                       |  |
|      | Standard devia  | tion of C/E  | 0.035            | 0.034            | 0.034            | (0.037)                       |  |

Table 2.4Ratio of <sup>239</sup> Pu fission rate to <sup>235</sup> U fission rate at core center.<br/>Values in parenthesis are averaged over 16 assemblies selected<br/>by Hardie et al.

\* Taken from Ref. (12).

#### Benchmark Tests of JENDL-1

### c) <sup>240</sup> Pu fission to <sup>235</sup> U fission

The fission rate ratio of  $^{240}$ Pu to  $^{235}$ U is well predicted with JENDL-1 on an average. It should be noted, however, that fluctuation of the C/E values is very large as shown in **Fig. 2.2**. The strong correlation with the results of fission rate ratio of  $^{238}$ U to  $^{235}$ U suggests some systematic errors in the measurements as mentioned above. Hence the experimental conditions should be reexamined.

### d) <sup>238</sup> U capture to <sup>235</sup> U fission

The ratios of  $^{238}$ U capture to  $^{235}$ U fission are predicted fairly well with any set. However there exist discrepancies of  $2 \sim 4\%$  between the Pu- and U- cores.

### e) <sup>238</sup> U capture to <sup>239</sup> Pu fission

The ratios are also predicted fairly well. The average C/E values are a little higher than those of the  $^{238}$ U capture to  $^{235}$ U fission rate ratio. This is consistent with the underestimate in the  $^{239}$ Pu/ $^{235}$ U fission rate ratio. The discrepancies between the Pu- and U- cores become larger than those of the ratio of  $^{238}$ U capture to  $^{235}$ U fission.

|      |                           | by Hardie et al. |                  |                  |                  |                               |  |
|------|---------------------------|------------------|------------------|------------------|------------------|-------------------------------|--|
|      | Assembly                  |                  | Calculated (C/E) |                  |                  |                               |  |
| Fuel |                           | Experimental     | JENDL-1          | JFS-2            | ENDF/B-IV        | ENDF/B-IV*<br>(Hardie et al.) |  |
|      | VERA-11A                  | 0.475            | 1.029            | 1.032            | 1.041            | 1.035                         |  |
|      | ZPR-3-54**                | 0.174            | 1.134            | 1.186            | 1.219            | 1.196                         |  |
|      | ZPR-3-53                  | 0.174            | 1.146            | 1.146            | 1.177            | 1.147                         |  |
|      | MZA                       | 0.260            | 0.934            | 0.996            | 0.995            | -                             |  |
|      | ZPR-3-50                  | 0.159            | 1.262            | 1.306            | 1.332            | 1.311                         |  |
| Pu   | ZPR-3-48                  | 0.243            | 0.988            | 1.048            | 1.051            | 1.040                         |  |
|      | ZPR-3-56B                 | 0.282            | 0.793            | 0.849            | 0.847            | 0.824                         |  |
|      | ZPPR-2                    | 0.170            | 1.037            | 1.110            | 1.102            | 1.081                         |  |
|      | MZB                       | 0.192            | 0.959            | 1.027            | 1.020            | _                             |  |
|      | ZEBRA-3                   | 0.373            | 0.930            | 1.012            | 0.999            | 1.023                         |  |
|      | Average of C/             | E                | 1.009<br>(1.026) | 1.058<br>(1.072) | 1.063<br>(1.078) | (1.066)                       |  |
|      | Standard devi             | ation of C/E     | 0.127            | 0.117            | 0.127            | (0.136)                       |  |
|      | VERA-1B                   | 0.399            | 1.139            | 1.147            | 1.202            | 1.186                         |  |
|      | ZPR-3-6F                  | 0.53             | 0.923            | 0.962            | 1.000            | 1.005                         |  |
|      | ZEBRA-2                   | 0.237            | 1.012            | 1.095            | 1.094            | 1.092                         |  |
| U    | ZPR-3-11                  | 0.34             | 0.959            | 1.040            | 1.034            | 1.065                         |  |
|      | Average of C/             | E                | 1.008            | 1.061            | 1.083            | 1.087                         |  |
|      | Standard deviation of C/E |                  | 0.082            | 0.069            | 0.077            | 0.065                         |  |
| All  | Average of C/             | E                | 1.009<br>(1.020) | 1.059<br>(1.068) | 1.069<br>(1.080) | (1.074)                       |  |
| All  | Standard deviation of C/E |                  | 0.115            | 0.105            | 0.114            | (0.117)                       |  |

**Table 2.5** Ratio of <sup>240</sup>Pu fission rate to <sup>235</sup>U fission rate at core center. Values in parenthesis are averaged over 11 assemblies selected by Hardie *et al.* 

\* Taken from Ref. (12).

|      |                           | by Hardie et al. |                  |                  | . <u> </u>       |                               |  |
|------|---------------------------|------------------|------------------|------------------|------------------|-------------------------------|--|
|      | Assembly                  |                  | Calculated (C/E) |                  |                  |                               |  |
| Fuel |                           | Experimental     | JENDL-1          | JFS-2            | ENDF/B-IV        | ENDF/B-IV*<br>(Hardie et al.) |  |
|      | SNEAK-7A                  | 0.1376           | 0.963            | 0.963            | 0.986            | 0.979                         |  |
|      | MZA                       | 0.1314           | 1.019            | 1.016            | 1.040            | _                             |  |
|      | ZPR-3-48                  | 0.138            | 0.953            | 0.953            | 0.974            | 0.963                         |  |
|      | MZB                       | 0.1351           | 1.020            | 1.017            | 1.047            |                               |  |
| Pu   | ZPR-6-7                   | 0.136            | 1.016            | 1.015            | 1.046            | 1.044                         |  |
|      | SNEAK-7B                  | 0.131            | 1.011            | 1.006            | 1.033            | 1.025                         |  |
|      | Average of C/E            |                  | 0.997<br>(0.986) | 0.995<br>(0.984) | 1.021<br>(1.010) | (1.003)                       |  |
|      | Standard deviation of C/E |                  | 0.028            | 0.027            | 0.029            |                               |  |
|      | VERA-1B                   | 0.131            | 0.967            | 0.962            | 0.976            | 0.927                         |  |
|      | ZPR-3-6F                  | 0.104            | 0.975            | 0.987            | 0.953            | 0.919                         |  |
|      | ZPR-3-12                  | 0.123            | 0.984            | 0.975            | 0.982            | 0.954                         |  |
|      | ZPR-6-6A                  | 0.139            | 1.005            | 0.999            | 1.029            | 1.017                         |  |
| U    | ZEBRA-2                   | 0.136            | 0.972            | 0.965            | 0.988            | 0.968                         |  |
|      | ZPR-3-11                  | 0.112            | 0.993            | 0.996            | 0.978            | 0.949                         |  |
|      | Average of C/I            | E                | 0.983            | 0.981            | 0.984            | 0.956                         |  |
|      | Standard deviation of C/E |                  | 0.013            | 0.014            | 0.023            | 0.032                         |  |
| A11  | Average of C/E            |                  | 0.990            | 0.988<br>(0.982) | 1.003 (0.995)    | (0.975)                       |  |
| All  | Standard deviation of C/E |                  | 0.023            | 0.023            | 0.032            | (0.040)                       |  |

Table 2.6Ratio of <sup>238</sup>Ucapture rate to <sup>235</sup>U fission rate at core center.Values in parenthesis are averaged over 10 assemblies selected<br/>by Hardie et al.

\* Taken from Ref. (12).

Table 2.7 Ratio of <sup>238</sup>U capture rate to <sup>239</sup>Pu fission rate at core center.Values in parenthesis are averaged over 9 assemblies selectedby Hardie et al.

|      |                           | Experimental | Calculated (C/E) |                  |                  |                               |  |
|------|---------------------------|--------------|------------------|------------------|------------------|-------------------------------|--|
| Fuel | Assembly                  |              | JENDL-1          | JFS-2            | ENDF/B-IV        | ENDF/B-IV*<br>(Hardie et al.) |  |
|      | SNEAK-7A                  | 0.135        | 1.021            | 1.014            | 1.034            | 1.026                         |  |
|      | MZA                       | 0.1297       | 1.061            | 1.048            | 1.068            | _                             |  |
|      | ZPR-3-48                  | 0.141        | 0.983            | 0.972            | 0.993            | 0.970                         |  |
|      | MZB                       | 0.1424       | 1.060            | 1.047            | 1.074            | _                             |  |
| Pu   | ZPR-6-7                   | 0.143        | 1.072            | 1.063            | 1.091            | 1.086                         |  |
|      | SNEAK-7B                  | 0.129        | 1.054            | 1.035            | 1.051            | 1.046                         |  |
|      | Average of C/E            |              | 1.042<br>(1.033) | 1.030<br>(1.021) | 1.052<br>(1.042) | (1.032)                       |  |
|      | Standard deviation of C/E |              | 0.031            | 0.030            | 0.032            | (0.042)                       |  |
|      | VERA-1B                   | 0.122        | 0.918            | 0.912            | 0.920            | 0.873                         |  |
|      | ZPR-3-6F                  | 0.085        | 0.975            | 0.976            | 0.940            | 0.901                         |  |
|      | ZPR-3-12                  | 0.110        | 1.012            | 0.986            | 0.987            | 0.958                         |  |
| U    | ZEBRA-2                   | 0.138        | 0.986            | 0.965            | 0.980            | 0.961                         |  |
|      | ZPR-3-11                  | 0.094        | 1.035            | 1.022            | 1.000            | 0.962                         |  |
|      | Average of C/             | E            | 0.985            | 0.972            | 0.965            | 0.931                         |  |
|      | Standard devi             | ation of C/E | 0.040            | 0.036            | 0.030            | 0.037                         |  |
| All  | Average of C/             | Е            | 1.016<br>(1.006) | 1.004<br>(0.994) | 1.012<br>(1.000) | (0.976)                       |  |
|      | Standard devi             | ation of C/E | 0.045            | 0.044            | 0.053            | (0.064)                       |  |

\* Taken from Ref. (12).



Fig. 2.2 C/E values of central reaction rate ratios vs. fertile to fissile ratio.

### 2.5 Central Reactivity Worth

#### 2.5.1 Absolute Value

The central reactivity worths were calculated for <sup>239</sup>Pu and <sup>235</sup>U with the first-order perturbation approximation by changing the number density in the central small region. The calculated results are given in unit of  $\%\Delta k/k$  and the conversion coefficients to inhour were taken from Ref. (12). Therefore the calculations were restricted to 17 assemblies\* given in Ref. (12). The correction factors from 1-D to 2-D calculation were also taken from Ref. (12), which were calculated with ENDF/B-III.

The calculated results for <sup>239</sup>Pu are given in **Table 2.8**. The average C/E value in the Pucores is about 15% larger than that in the U-cores with all the three sets. The same tendency was observed for <sup>235</sup>U as shown in **Table 2.9**. The discrepancies between the Pu- and U- cores are larger than the standard deviation for Pu- or U- core. Hence these discrepancies seem to be systematic errors, some of which might be caused by the errors in the conversion coefficients between inhour and  $\%\Delta k/k$ . Furthermore very strong correlation is observed in the <sup>239</sup>Pu and <sup>235</sup>U- sample worths in each core as seen in **Fig. 2.3**.

In order to avoid this scaling problem, both the calculated and measured reactivity worths were normalized to those of  $^{239}$ Pu. The discrepancies between the Pu- and U- cores disappear with this normalization as seen in **Fig. 2.3**. It is also expected that the correction factor from 1-D to 2-D calculation could be cancelled considerably with the normalization.



Fig. 2.3 C/E values of central reactivity worths of <sup>239</sup>Pu and <sup>235</sup>U vs. fertile to fissile ratio.

<sup>\*</sup> ZPPR-2 was omitted, because 1-D cylinder model was adopted.

|      |                | _                          | <b>D</b> . <b>A</b>            |                  |         | Calculated ( | C/E)                         |
|------|----------------|----------------------------|--------------------------------|------------------|---------|--------------|------------------------------|
| Fuel | Assembly       | Experimental*<br>Inhour/kg | Factor <sup>∎</sup><br>ID → 2D | Inhour*<br>%Δk/k | JENDL-1 | JFS-2        | ENDF/B-IV*<br>(Hardie et al. |
|      | VERA-11A       | _                          |                                | 925.5            | _       | _            |                              |
|      | ZPR-3-54**     | 738                        | 1.048                          | 968.8            | 1.184** | 1.439**      | 1.475**                      |
|      | ZPR-3-53       | 681                        | 1.043                          | 950.3            | 1.216   | 1.203        | 1.247                        |
|      | SNEAK-7A       | 1023                       | 0.917                          | 911.8            | 1.056   | 1.037        | 1.051                        |
|      | ZPR-3-50       | 564                        | 1.049                          | 930.1            | 1.145   | 1.140        | 1.158                        |
|      | ZPR-3-48       | 445                        | 0.994                          | 932.5            | 1.202   | 1.177        | 1.178                        |
| _    | ZPR-3-49       | 415                        | 1.049                          | 934.4            | 1.131   | 1.104        | 1.102                        |
| Pu   | ZPR-3-56B      | 372                        | 1.064                          | 975.6            | 1.275   | 1.277        | 1.290                        |
|      | ZPPR-2         | 120                        | 1.000                          | 963.4            | _       | _            | 1.133**                      |
|      | ZPR-6-7        | 158                        | 1.004                          | 972.5            | 1.228   | 1.214        | 1.222                        |
|      | SNEAK-7B       | 584                        | 0.965                          | 843.7            | 1.065   | 1.053        | 1.052                        |
|      | ZEBRA-3        | 1144                       | 0.985                          | 837.9            | 1.204   | 1.181        | 1.160                        |
|      | Average of C/l | E                          |                                |                  | 1.169   | 1.154        | 1.162                        |
|      | Standard devia | ation of C/E               |                                |                  | 0.071   | 0.074        | 0.079                        |
|      | VERA-1B        | 674                        | 0.974                          | 376.9            | 0.879   | 0.876        | 0.920                        |
|      | ZPR-3-6F       | 452                        | 1.002                          | 407.2            | 1.029   | 0.983        | 0.984                        |
|      | ZPR-3-12       | 436                        | 0.995                          | 427.6            | 0.954   | 0.958        | 0.945                        |
|      | ZPR-6-6A       | 57                         | 1.003                          | 431.9            | 1.020   | 1.046        | 1.043                        |
|      | ZEBRA-2        | 195                        | 0.987                          | 442.3            | 1.057   | 1.086        | 1.089                        |
| U    | ZPR-3-11       | 411                        | 0.988                          | 462.6            | 0.991   | 0.992        | 1.011                        |
|      | Average of C/I | E                          |                                |                  | 0.988   | 0.990        | 0.999                        |
|      | Standard devia | ation of C/E               |                                |                  | 0.058   | 0.066        | 0.057                        |
| A 11 | Average of C/I | E                          |                                |                  | 1.097   | 1.088        | 1.097                        |
| AII  | Standard devia | ation of C/E               |                                |                  | 0.110   | 0.107        | 0.107                        |

**Table 2.8** Central reactivity worths of <sup>239</sup>Pu

\* Taken from Ref. (12).

\*\* Omitted in statistical analyses.

|      |                |                            |                    |         | Calculated ( | C/E)                          |
|------|----------------|----------------------------|--------------------|---------|--------------|-------------------------------|
| Fuel | Assembly       | Experimental*<br>Inhour/kg | Factor*<br>1D → 2D | JENDL-1 | JFS-2        | ENDF/B-IV*<br>(Hardie et al.) |
|      | VERA-11A       | _                          | _                  | _       | _            | _                             |
|      | ZPR-3-54**     | 567                        | 1.047              | 1.246** | 1.396**      | 1.552**                       |
|      | ZPR-3-53       | 520                        | 1.045              | 1.287   | 1.173        | 1.338                         |
|      | SNEAK-7A       | 757                        | 0.918              | 1.077   | 1.026        | 1.055                         |
|      | ZPR-3-50       | 464                        | 1.049              | 1.168   | 1.101        | 1.169                         |
|      | ZPR-3-48       | 334                        | 0.994              | 1.239   | 1.174        | 1.189                         |
| _    | ZPR-3-49       | 282                        | 1.049              | 1.267   | 1.197        | 1.205                         |
| Pu   | ZPR-3-56B      | 295                        | 1.063              | 1.254   | 1.217        | 1.239                         |
|      | ZPPR-2         | 90                         | 1.001              |         | _            | 1.249**                       |
|      | ZPR-6-7        | 133                        | 1.004              | 1.233   | 1.180        | 1.204                         |
|      | SNEAK-7B       | 435                        | 0.965              | 1.110   | 1.063        | 1.068                         |
|      | ZEBRA-3        | 721                        | 0.986              | 1.250   | 1.199        | 1.173                         |
|      | Average of C/E | 3                          |                    | 1.209   | 1.148        | 1.182                         |
|      | Standard devia | tion of C/E                |                    | 0.070   | 0.064        | 0.080                         |
|      | VERA-IB        | 391                        | 0.974              | 0.903   | 0.886        | 0.914                         |
|      | ZPR-3-6F       | 320                        | 1.002              | 0.847   | 0.800        | 0.813                         |
|      | ZPR-3-12       | 285                        | 0.996              | 0.953   | 0.937        | 0.952                         |
|      | ZPR-6-6A       | 42                         | 1.003              | 1.072   | 1.064        | 1.081                         |
| U    | ZEBRA-2        | 140                        | 0.987              | 1.107   | 1.100        | 1.110                         |
|      | ZPR-3-11       | 246                        | 0.989              | 1.068   | 1.047        | 1.062                         |
|      | Average of C/H | E                          |                    | 0.992   | 0.972        | 0.989                         |
|      | Standard devia | tion of C/E                |                    | 0.096   | 0.107        | 0.105                         |
| 4.11 | Average of C/E | 3                          |                    | 1.122   | 1.078        | 1.105                         |
| AII  | Standard devia | tion of C/E                |                    | 0.134   | 1.120        | 0.131                         |

Table 2.9Central reactivity worths of <sup>235</sup>U

\* Taken from Ref. (12).

### 2.5.2 Normalized Worth

The reactivity worths normalized to those of <sup>239</sup>Pu are given in **Tables 2.10** ~ **2.18**. The fertile to fission ratio dependences are shown in **Figs. 2.4** and **2.5**. The calculated worths are obtained as the ratio of the perturbation cross sections, and the experimental data are given as the ratio of the worths in unit of inhour/mol. ZPR-3-6F were omitted in the statistical analyses, because extremely inconsistent values appeared between the worths of <sup>235</sup>U and <sup>238</sup>U. We also omitted VERA-11A and VERA-1B, which have very small core volume and often give very extreme C/E values.

### a) Uranium-235

JENDL-1 overestimates the worths by 5% on an average. Little discrepancy is observed between the Pu- and U-cores. The other sets also overestimates the worths. This overestimate of the  $^{235}$ U worths normalized to the  $^{239}$ Pu worth is consistent with the underestimate of the fission rate ratio of  $^{239}$ Pu to  $^{235}$ U mentioned in section 2.4.

### b) Uranium-238

JENDL-1 overestimates the worths of <sup>238</sup>U by 4% on an average, while the other sets underestimates them. The discrepancy of 9% is observed with JENDL-1 between the Puand U-cores. The worth in ZPR-3-54 is higher than that in ZPR-3-53 with JENDL-1, while the opposite tendency is observed with the other sets. This is consistent with the observation in  $k_{eff}$ , as discussed in section 2.3; the iron cross sections of JENDL-1 allow less leakage and enhance the high energy spectrum.

### c) Boron-10

JENDL-1 underestimates the worths of <sup>10</sup>B by 8%. The other sets also underestimates them. Particularly the underestimate reaches 15% with ENDF/B-IV. The C/E values with JFS-2 are very similar to those with JENDL-1 in the Pu-cores and to those with ENDF/B-IV in the U-cores as seen in Fig. 2.4.

## d) Sodium and Aluminium

The reactivity worths are very small for the light scattering materials such as carbon, oxygen, sodium and aluminium. The sign of the reactivity often changes according to the core composition as seen in **Tables 2.13** and **2.14**. Therefore it is not a good way to compare the worths of such nuclides as the C/E ratio. Hence the C/E values of sodium and aluminium worths should be read only as references.

### e) Chromium, Iron and Nickel

It is rather difficult to well predict the reactivity worths of the structural material such as chromium, iron and nickel, since the relatively large component due to elastic and inelastic scattering depends strongly on the real and adjoint fluxes which are determined mainly by the cross sections of fissile and fertile materials.

JENDL-1 excellently predicts the worths of chromium, while the other sets overestimate them by more than 30%. As to the worths of iron the prediction with JFS-2 seems to be best, while JENDL-1 underestimates them by 10% and ENDF/B-IV overestimates them by 10%. The worths of nickel are overestimated by about 10% with any set.

|             |                   |               |         | Calc  | ulated (C/E) |                                |
|-------------|-------------------|---------------|---------|-------|--------------|--------------------------------|
| Fuel<br>Pu  | Assembly          | Experimental* | JENDL-1 | JFS-2 | ENDF/B-IV    | ENDF/B-IV**<br>(Hardie et al.) |
| _           | VERA-11A***       | 0.551         | 1.116   | 1.091 | 1.097        |                                |
|             | ZPR-3-54***       | 0.755         | 1.052   | 0.972 | 1.071        | 1.052                          |
|             | ZPR-3-53          | 0.751         | 1.058   | 0.974 | 1.084        | 1.073                          |
|             | SNEAK-7A          | 0.726         | 1.021   | 0.986 | 1.011        | 1.004                          |
|             | ZPR-3-50          | 0.809         | 1.020   | 0.967 | 1.023        | 1.009                          |
|             | ZPR-3-48          | 0.738         | 1.030   | 0.997 | 1.025        | 1.009                          |
| <b>D</b> 11 | ZPR-3-49          | 0.675         | 1.108   | 1.072 | 1.092        | 1.093                          |
| ru          | ZPR-3-56B         | 0.779         | 0.985   | 0.956 | 0.975        | 0.960                          |
|             | ZPPR-2            | 0.737         | 1.126   | 1.091 | 1.119        | 1.102                          |
|             | ZPR-6-7           | 0.827         | 1.005   | 0.973 | 0.999        | 0.985                          |
|             | SNEAK-7B          | 0.726         | 1.050   | 1.020 | 1.027        | 1.015                          |
|             | ZEBRA-3           | 0.620         | 1.036   | 1.014 | 1.020        | 1.011                          |
|             | Average of C/E    |               | 1.044   | 1.005 | 1.037        | 1.026                          |
|             | Standard deviatio | n of C/E      | 0.042   | 0.043 | 0.043        | 0.045                          |
|             | VERA-1B***        | 0.571         | 1.023   | 1.008 | 0.993        | 0.993                          |
|             | ZPR-3-6F***       | 0.678         | 0.844   | 0.836 | 0.830        | 0.826                          |
|             | <b>ZPR-3-12</b>   | 0.622         | 1.030   | 1.009 | 1.011        | 1.007                          |
|             | ZPR-6-6A          | 0.719         | 1.058   | 1.025 | 1.042        | 1.036                          |
|             | ZEBRA-2           | 0.703         | 1.050   | 1.018 | 1.028        | 1.019                          |
| U           | ZPR-3-11          | 0.589         | 1.075   | 1.054 | 1.058        | 1.050                          |
|             | Average of C/E    |               | 1.053   | 1.027 | 1.035        | 1.028                          |
|             | Standard deviatio | n of C/E      | 0.016   | 0.017 | 0.018        | 0.016                          |
| A 11        | Average of C/E    |               | 1.046   | 1.011 | 1.037        | 1.027                          |
| All         | Standard deviatio | n of C/E      | 0.037   | 0.039 | 0.038        | 0.039                          |

**Table 2.10** Central reactivity worths of <sup>235</sup>U normalized to those of <sup>239</sup>Pu

\*\* Deduced from the absolute values given in Ref. (12). \*\*\* Omitted in statistical analyses.

|      |                    |               |         | Calc  | ulated (C/E) |                                |
|------|--------------------|---------------|---------|-------|--------------|--------------------------------|
| Fuel | Assembly           | Experimental* | JENDL-1 | JFS-2 | ENDF/B-IV    | ENDF/B-IV**<br>(Hardie et al.) |
|      | VERA-11A***        | 0.0070        | 4.064   | 3.170 | 2.795        | _                              |
|      | ZPR-3-54***        | -0.1106       | 0.910   | 0.755 | 0.714        | 0.691                          |
|      | ZPR-3-53           | -0.1098       | 0.882   | 0.885 | 0.842        | 0.817                          |
|      | SNEAK-7A           | -0.0385       | 1.140   | 1.100 | 1.075        | 1.129                          |
|      | ZPR-3-50           | -0.0743       | 0.914   | 0.876 | 0.844        | 0.813                          |
|      | ZPR-3-48           | -0.0528       | 0.970   | 0.907 | 0.882        | 0.874                          |
| Pu   | ZPR-3-49           | -0.0448       | 1.059   | 1.001 | 0.979        | 0.937                          |
|      | ZPR-3-56B          | -0.0493       | 1.099   | 1.020 | 0.983        | 0.947                          |
|      | ZPPR-2             | -             | _       |       | _            | -                              |
|      | ZPR-6-7            | -0.0686       | 0.913   | 0.864 | 0.833        | 0.829                          |
|      | SNEAK-7B           | -0.0413       | 1.142   | 1.097 | 1.074        | 1.063                          |
|      | ZEBRA-3            | -0.0313       | 1.006   | 0.979 | 0.957        | 0.872                          |
|      | Average of C/E     |               | 1.014   | 0.970 | 0.941        | 0.920                          |
|      | Standard deviation | on of C/E     | 0.095   | 0.087 | 0.090        | 0.105                          |
|      | VERA-1B***         | 0.0194        | 1.758   | 1.384 | 1.482        | 1.174                          |
|      | ZPR-3-6F***        | 0.0060        | 2.126   | 2.114 | 2,543        | 2.651                          |
|      | ZPR-3-12           | -0.0265       | 1.137   | 1.029 | 1.011        | 0.944                          |
|      | ZPR-6-6A           | -0.0614       | 1.170   | 1.045 | 1.087        | 1.072                          |
| U    | ZEBRA-2            | -0.0545       | 1.028   | 0.922 | 0.952        | 0.912                          |
|      | ZPR-3-11           | -0.0316       | 1.076   | 1.038 | 1.021        | 0.943                          |
|      | Average of C/E     |               | 1.103   | 1.009 | 1.018        | 0.968                          |
|      | Standard deviation | on of C/E     | 0.055   | 0.050 | 0.048        | 0.062                          |
| A 11 | Average of C/E     |               | 1.041   | 0.982 | 0.965        | 0.935                          |
| AU   | Standard deviation | on of C/E     | 0.094   | 0.080 | 0.087        | 0.097                          |

 Table 2.11
 Central reactivity worths of <sup>238</sup>U normalized to those of <sup>239</sup>Pu

\* Ratio of reactivity worths in unit of inhour/mol.

\*\* Deduced from the absolute values given in Ref. (12).

|      |                    |               |         | Calc  | ulated (C/E) |                                |
|------|--------------------|---------------|---------|-------|--------------|--------------------------------|
| Fuel | Assembly           | Experimental* | JENDL-1 | JFS-2 | ENDF/B-IV    | ENDF/B-IV**<br>(Hardie et al.) |
|      | ZPR-3-54***        | -2.405        | 0.683   | 0.664 | 0.588        | 0.574                          |
|      | ZPR-3-53           | -2.398        | 0.672   | 0.718 | 0.637        | 0.602                          |
|      | SNEAK-7A           | -0.788        | 0.986   | 1.010 | 0.931        | 0.916                          |
|      | ZPR-3-50           | -1.298        | 0.850   | 0.882 | 0.788        | 0.742                          |
|      | ZPR-3-48           | -0.839        | 0.902   | 0.904 | 0.829        | 0.807                          |
|      | ZPR-3-49           | -0.710        | 0.947   | 0.953 | 0.885        | 0.852                          |
| Pu   | ZPR-3-56B          | -0.788        | 0.881   | 0.872 | 0.797        | 0.797                          |
|      | ZPR-2              | -0.791        | 0.993   | 0.987 | 0.895        | 0.879                          |
|      | ZPR-6-7            | -0.779        | 1.006   | 1.006 | 0.910        | 0.895                          |
|      | SNEAK-7B           | -0.54 i       | 1.013   | 1.010 | 0.949        | 0.943                          |
|      | ZEBRA-3            | -0.330        | 0.911   | 0.885 | 0.876        | 0.869                          |
|      | Average of C/E     |               | 0.916   | 0.923 | 0.850        | 0.830                          |
|      | Standard deviatio  | on of C/E     | 0,097   | 0.087 | 0.087        | 0.095                          |
|      | VERA-1B***         | -0.612        | 1.123   | 1.082 | 1.065        | 1.021                          |
|      | ZPR-3-6F***        | -0.333        | 1.076   | 0.996 | 0.966        | 0.947                          |
|      | ZPR-6-6A           | -0.963        | 0.973   | 0.905 | 0.900        | 0.861                          |
| U    | ZEBRA-2            | -0.966        | 0.808   | 0.751 | 0.747        | 0.705                          |
|      | ZPR-3-11           | -0.345        | 1.011   | 0.954 | 0.935        | 0.915                          |
|      | Average of C/E     |               | 0.931   | 0.870 | 0.861        | 0.827                          |
|      | Standard deviation | on of C/E     | 0.088   | 0.086 | 0.082        | 0.089                          |
|      | Average of C/E     |               | 0.919   | 0.910 | 0.852        | 0.829                          |
| All  | Standard deviation | on of C/E     | 0.095   | 0.089 | 0.086        | 0.094                          |

 Table 2.12
 Central reactivity worths of <sup>10</sup>B normalized to those of <sup>239</sup>Pu

\*\* Deduced from the absolute values given in Ref. (12).

\*\*\* Omitted in statistical analyses.

|      |                  |               |         | Calc   | ulated (C/E) |                                |
|------|------------------|---------------|---------|--------|--------------|--------------------------------|
| Fuel | Assembly         | Experimental* | JENDL-1 | JFS-2  | ENDF/B-IV    | ENDF/B-IV**<br>(Hardie et al.) |
|      | ZPR-3-53         | 0.00818       | 1.858   | 1.420  | 0.553        | 0.385                          |
|      | ZPR-3-50         | 0.01928       | 0.609   | 0.430  | 0.065        | _                              |
|      | ZPR-3-48         | -0.00137      | 1.510   | 1.641  | 2.248        | 1.743                          |
|      | ZPR-3-49         | 0.00323       | 1.678   | 0.740  | -1.402       | 0.945                          |
| Pu   | ZPR-3-56B        | -0.00231      | 1.732   | 1.739  | 2.027        | 1.477                          |
|      | ZPPR-2           | 0.00414       | 0.931   | 0.981  | 1.111        | 0.951                          |
|      | ZPR-6-7          | -0.00412      | 0.909   | 0.972  | 1.099        | 0.923                          |
|      | ZEBRA-3          | -0.00881      | 1.119   | 0.952  | 1.080        | 1.003                          |
|      | Average of C/E   |               | 1.293   | 1.109  | 0.848        | 1.061                          |
|      | Standard deviati | on of C/E     | 0.431   | 0.423  | 1.078        | 0.404                          |
|      | VERA-1B***       | 0.00336       | 4.336   | 4.139  | 4.091        | 0.368                          |
|      | ZPR-3-6F***      | 0.01239       | 0.425   | 0.449  | 0.372        | 0.313                          |
|      | ZPR-6-6A         | 0.00027       | 0.341   | -1.749 | -0.805       | _                              |
| U    | ZEBRA-2          | 0.00144       | 3.103   | 2.777  | 3.534        | -0.330                         |
|      | ZPR-3-11         | -0.00335      | 1.539   | 1.329  | 1.593        | 1.680                          |
|      | Average of C/E   |               | 1.661   | 0.786  | 1.441        | 0.675                          |
|      | Standard deviati | on of C/E     | 1.131   | 1.887  | 1.774        | 1.005                          |
| A 11 | Average of C/E   |               | 1.393   | 1.021  | 1.009        | 0.975                          |
| All  | Standard deviati | on of C/E     | 0.715   | 1.060  | 1.332        | 0.614                          |

 Table 2.13
 Central reactivity worths of Sodium normalized to those of <sup>239</sup>Pu

\* Ratio of reactivity worths in unit of inhour/mol.

\*\* Deduced from the absolute values given in Ref. (12).

|      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Calculated (C/E) |       |       |
|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|-------|
| Fuel | Assembly           | $\begin{tabular}{ c c c c c c } \hline & Calculated (C/E) \\ \hline & JENDL-1 & JFS-2 \\ \hline & -0.00399 & 1.272 & 1.125 \\ & -0.00566 & 1.094 & 1.013 \\ & -0.00479 & 1.268 & 1.184 \\ & -0.0107 & 0.995 & 0.840 \\ \hline & C/E & 1.157 & 1.041 \\ eviation of C/E & 0.118 & 0.131 \\ \hline & 0.00904 & 1.244 & 1.068 \\ & 0.00089 & 0.791 & 0.938 \\ & -0.00159 & 1.439 & 1.322 \\ & -0.00278 & 1.484 & 1.326 \\ & -0.00478 & 1.373 & 1.172 \\ \hline & C/E & 1.432 & 1.273 \\ eviation of C/E & 0.046 & 0.072 \\ \hline & C/E & 1.275 & 1.140 \\ eviation of C/E & 0.165 & 0.159 \\ \hline \end{tabular}$ | ENDF/B-IV        |       |       |
|      | ZPR-3-48           | -0.00399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.272            | 1.125 | 1.272 |
|      | ZPPR-2             | -0.00566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.094            | 1.013 | 1.095 |
|      | <b>ZPR-6-</b> 7    | -0.00479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.268            | 1.184 | 1.278 |
| Pu   | ZEBRA-3            | -0.0107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.995            | 0.840 | 0.899 |
|      | Average of C/E     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.157            | 1.041 | 1.136 |
|      | Standard deviation | n of C/E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.118            | 0.131 | 0.155 |
|      | VERA-1B**          | 0.00904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.244            | 1.068 | 1.076 |
|      | ZPR-3-6F**         | 0.00089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.791            | 0.938 | 0.477 |
|      | ZPR-3-12           | 0.00159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.439            | 1.322 | 1.719 |
| U    | ZEBRA-2            | -0.00278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.484            | 1.326 | 1.408 |
|      | ZPR-3-11           | -0.00478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.373            | 1.172 | 1.352 |
|      | Average of C/E     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.432            | 1.273 | 1.493 |
|      | Standard deviation | n of C/E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.046            | 0.072 | 0.161 |
| A 11 | Average of C/E     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.275            | 1.140 | 1.289 |
| All  | Standard deviation | n of C/E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.165            | 0.159 | 0.237 |

 Table 2.14
 Central reactivity worths of Aluminium normalized to those of <sup>239</sup>Pu

**\*\*** Omitted in statistical analyses.

|      |                  |               |         | Calc  | ulated (C/E) |                                        |
|------|------------------|---------------|---------|-------|--------------|----------------------------------------|
| Fuel | Assembly         | Experimental* | JENDL-1 | JFS-2 | ENDF/B-IV    | ENDF/B-IV**<br>(Hardie <i>et al.</i> ) |
| -    | ZPR-3-53         | -0.00323      | 0.896   | 1.384 | 1.519        | 1.611                                  |
|      | ZPR-3-50         | -0.00505      | 1.208   | 1.558 | 1.627        | 1.525                                  |
|      | ZPR-3-48         | -0.00602      | 1.033   | 1.328 | 1.391        | 1.298                                  |
|      | ZPR-3-49         | -0.00625      | 1.099   | 1.375 | 1.431        | 1.331                                  |
| Pu   | ZPR-3-56B        | -0.00745      | 0.852   | 1.065 | 1.106        | 0.985                                  |
|      | ZPPR-2           | -0.00615      | 1.027   | 1.273 | 1.310        | 1.244                                  |
|      | ZPR-6-7          | -0.00623      | 1.002   | 1.250 | 1.284        | 1.218                                  |
|      | Average of C/E   |               | 1.017   | 1.319 | 1.381        | 1.316                                  |
|      | Standard deviati | on of C/E     | 0.111   | 0.140 | 0.157        | 0.191                                  |
|      | ZPR-3-6F***      | -0.00213      | 0.552   | 1.246 | 1.448        | 1.672                                  |
|      | ZEBRA-2          | -0.00617      | 1.022   | 1.392 | 1.424        | 1.309                                  |
| U    | ZPR-3-11         | -0.00813      | 0.989   | 1.217 | 1.285        | 1.213                                  |
|      | Average of C/E   |               | 0.989   | 1.305 | 1.355        | 1.261                                  |
|      | Standard deviati | on of C/E     | 0.016   | 0.088 | 0.070        | 0.048                                  |
| A 11 | Average of C/E   |               | 1.014   | 1.316 | 1.375        | 1.304                                  |
| All  | Standard deviati | ion of C/E    | 0.098   | 0.129 | 0.143        | 0.172                                  |

 Table 2.15
 Central reactivity worths of Chromium normalized to those of <sup>239</sup>Pu

\* Ratio of reactivity worths on unit of inhour/mol.

**\*\*** Deduced from the absolute values given in Ref. (12).

|      |                  |               |         | Calc  | ulated (C/E) |                                |
|------|------------------|---------------|---------|-------|--------------|--------------------------------|
| Fuel | Assembly         | Experimental* | JENDL-1 | JFS-2 | ENDF/B-IV    | ENDF/B-IV**<br>(Hardie et al.) |
|      | ZPR-3-53         | -0.00154      | 1.129   | 1.161 | 1.610        | 1.814                          |
|      | SNEAK-7A         | -0.00781      | 0.693   | 0,778 | 0.850        | 0.821                          |
|      | ZPR-3-50         | -0.00547      | 1.027   | 1.124 | 1.219        | 1.148                          |
|      | ZPR-3-48         | -0.00646      | 0.924   | 1.017 | 1.092        | 1.061                          |
| Pu   | ZPR-3-49         | -0.00802      | 0.854   | 0.922 | 0.977        | 0.922                          |
|      | ZPR-3-56B        | -0.00772      | 0.766   | 0.818 | 0.866        | 0.805                          |
|      | ZPPR-2           | -0.00614      | 0.904   | 0.962 | 1.012        | 1.028                          |
|      | ZPR-6-7          | -0.00630      | 0.869   | 0.930 | 0.977        | 0.988                          |
|      | SNEAK-7B         | -0.00851      | 0.920   | 1.021 | 1.062        | 1.025                          |
|      | Average of C/E   |               | 0.898   | 0.970 | 1.074        | 1.068                          |
|      | Standard deviat  | ion of C/E    | 0.122   | 0.120 | 0.217        | 0.284                          |
|      | ZPR-3-6F***      | -0.00349      | 0.772   | 1.009 | 1.200        | 0.988                          |
|      | ZPR-3-12         | -0.00584      | 0.919   | 1.160 | 1.243        | 1.160                          |
|      | ZEBRA-2          | -0.00617      | 0.942   | 1.162 | 1.188        | 1.176                          |
| U    | ZPR-3-11         | -0.00813      | 1.049   | 1.176 | 1.264        | 1.247                          |
|      | Average of C/E   |               | 0.970   | 1.166 | 1.232        | 1.194                          |
|      | Standard deviati | ion of C/E    | 0.057   | 7.273 | 0.032        | 0.038                          |
| A 11 | Average of C/E   |               | 0.916   | 1.019 | 1.113        | 1.100                          |
| All  | Standard deviati | ion of C/E    | 0.113   | 0.134 | 0.201        | 0.252                          |

 Table 2.16
 Central reactivity worths of Iron normalized to those of <sup>239</sup>Pu

\*\* Deduced from the absolute values given in Ref. (12).

\*\*\* Omitted in statistical analyses.

|      |                 |               |         | Calc  | ulated (C/E) |                                        |
|------|-----------------|---------------|---------|-------|--------------|----------------------------------------|
| Fuel | Assembly        | Experimental* | JENDL-1 | JFS-2 | ENDF/B-IV    | ENDF/B-IV**<br>(Hardie <i>et al.</i> ) |
|      | ZPR-3-53        | -0.00739      | 1.318   | 1.073 | 1.137        | 1.103                                  |
|      | ZPR-3-50        | -0.00940      | 1.179   | 1.174 | 1.207        | 1.153                                  |
|      | ZPR-3-48        | -0.01006      | 1.125   | 1.161 | 1.185        | 1.181                                  |
|      | ZPR-3-49        | -0.01283      | 0.997   | 1.025 | 1.034        | 1.074                                  |
| Pu   | ZPR-3-56B       | -0.01109      | 1.013   | 1.038 | 1.047        | 1.008                                  |
| _    | ZPPR-2          | -0.00974      | 1.016   | 1.063 | 1.065        | 1.090                                  |
|      | ZPR-6-7         | -0.01003      | 0.975   | 1.026 | 1.026        | 1.051                                  |
|      | Average of C/E  |               | 1.089   | 1.080 | 1.100        | 1.094                                  |
|      | Standard deviat | tion of C/E   | 0.116   | 0.058 | 0.070        | 0.054                                  |
|      | ZPR-3-6F***     | -0.00655      | 1.651   | 1.524 | 1.615        | 1.679                                  |
|      | ZPR-3-12        | -0.01070      | 1.153   | 1.283 | 1.217        | 1.146                                  |
|      | ZEBRA-2         | -0.01255      | 0.879   | 1.004 | 0.925        | 0.872                                  |
| U    | ZPR-3-11        | -0.01148      | 1.190   | 1.311 | 1.351        | 1.308                                  |
|      | Average of C/E  |               | 1.074   | 1.199 | 1.164        | 1.109                                  |
|      | Standard deviat | tion of C/E   | 0.139   | 0.139 | 0.178        | 0.180                                  |
| A 11 | Average of C/E  |               | 1.084   | 1.116 | 1.119        | 1.099                                  |
| All  | Standard deviat | tion of C/E   | 0.123   | 0.105 | 0.117        | 0.109                                  |

 Table 2.17
 Central reactivity worths of Nickel normalized to those of <sup>239</sup>Pu

\* Ratio of reactivity worths on unit of inhour/mol.

\*\* Deduced from the absolute values given in Ref. (12).

**JAERI 1275** 



Fig. 2.4 C/E values of central reactivity worths of <sup>235</sup>U, <sup>238</sup>U and <sup>10</sup>B normalized to those of <sup>239</sup>Pu.



Fig. 2.5 C/E values of central reactivity worths of Cr, Fe and Ni normalized to those of <sup>239</sup>Pu.

|      |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calculated (C/E | )     |
|------|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|
| Fuel | Assembly          | Experimental* | $\begin{tabular}{ c c c c c } \hline Calculated (C/E) \\ \hline Experimental* & JENDL-1 & JFS-2 \\ \hline -0.0391 & 1.127 & 1.264 \\ -0.0436 & 1.029 & 1.142 \\ -0.0390 & 1.148 & 1.281 \\ \hline 1.101 & 1.229 \\ f C/E & 0.052 & 0.062 \\ \hline -0.0139 & 1.182 & 1.241 \\ -0.0277 & 1.104 & 1.186 \\ -0.0244 & 0.997 & 1.175 \\ \hline 1.050 & 1.180 \\ f C/E & 0.053 & 0.005 \\ \hline f C/E & 0.058 & 0.054 \\ \hline \end{tabular}$ | ENDF/B-IV       |       |
|      | ZPR-3-48          | -0.0391       | 1.127                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.264           | 1.239 |
|      | ZPPR-2            | -0.0436       | 1.029                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.142           | 1.106 |
| Pu   | ZPR-6-7           | -0.0390       | 1.148                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.281           | 1.238 |
|      | Average of C/E    |               | 1.101                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.229           | 1.194 |
|      | Standard deviatio | n of C/E      | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.062           | 0.062 |
|      | ZPR-3-6F**        | -0.0139       | 1.182                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.241           | 1.281 |
|      | ZPR-3-12          | -0.0277       | 1,104                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.186           | 1.217 |
| U    | ZPR-3-11          | -0.0244       | 0.997                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.175           | 1.210 |
|      | Average of C/E    |               | 1.050                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.180           | 1.213 |
|      | Standard deviatio | n of C/E      | 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005           | 0.003 |
|      | Average of C/E    |               | 1.081                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.209           | 1.202 |
| All  | Standard deviatio | n of C/E      | 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.054           | 0.049 |

Table 2.18 Central reactivity worths of Molybdenum normalized to those of <sup>239</sup>Pu

\*\* Omitted in statistical analyses.

### 2.6 Doppler Coefficient

We analyzed the small sample Doppler measurements in FCA-V-1, V-2, VI-1, VI-2, ZPPR-2 and ZPR-3-47, and the whole core Doppler measurements at SEFOR. The analysis was made with EXPANDA-70D<sup>10</sup> on the basis of one dimensional model and the first-order perturbation approximation.

The C/E values of Doppler coefficients are given in **Table 2.19**. JENDL-1 overestimates the coefficients by 8%, while JFS-2 and ENDF/B-IV underestimate them by about 10%. The C/E-values are reported<sup>7</sup>) to increase slightly when two-dimensional model is applied. Hence the overestimation with JENDL-1 may be about 10%.

The calculated neutron spectra were compared in order to know the cause of the discrepancy of 20% between JENDL-1 and JFS-2. Figure 2.6 shows the spectra for ZPPR-2. JENDL-1 gives higher flux in the energy range from 1 keV to 10 keV where the Doppler effects are predominant.

| •                  | Assembly        |         | IEC 2                                 |           |
|--------------------|-----------------|---------|---------------------------------------|-----------|
|                    | Assembly        | JENDL-I | JF 5-2                                | ENDF/B-IV |
|                    | FCA V-1         | 1.09    | 0.78                                  | 0.91      |
|                    | V-2             | 0.98    | 0.74                                  | 0.78      |
| Small Sample       | VI-1            | 1.13    | 0.94                                  | 0.93      |
| Doppler            | VI-2            | 1.03    | 0.90                                  | 0.87      |
| Experiment         | ZPPR-2 (Normal) | 1.25    | 1.08                                  | 0.93      |
|                    | (Na-voided)     | 0.96    | 0.81                                  | 0.81      |
|                    | ZPR-3-47        | 1.04    | 0.95                                  | 0.92      |
| Whole Core         |                 |         | · · · · · · · · · · · · · · · · · · · |           |
| Dopper             | SEFOR           | 1.12    | 1.05                                  | 1.04      |
| Experiment         |                 |         |                                       |           |
| Average of C/E     |                 | 1.08    | 0,91                                  | 0.90      |
| Standard Deviation | n of C/E        | 0.09    | 0.12                                  | 0.08      |

 Table 2.19
 Doppler reactivity coefficients (C/E)



Fig. 2.6 Spectrum at core center of ZPPR-2 calculated with JENDL-1 and JFS-2.

### 2.7 Analysis of Snell Experiments

Measurements of average cross sections in a natural uranium equilibrium spectrum were first carried out by Snell et al.<sup>16</sup>), and this type of experiment is generally called Snell experiment. Considerable number of experimental data are now available for the average fission rate ratio of <sup>235</sup>U to <sup>238</sup>U, <sup>237</sup>Np to <sup>238</sup>U and <sup>239</sup>Pu to <sup>238</sup>U. They are summarized by Chezem<sup>17</sup>).

In the present tests, the fission rate ratios of  $^{235}$ U to  $^{238}$ U and  $^{239}$ Pu to  $^{238}$ U were calculated with the equilibrium spectrum, which were calculated at the depth of 190 cm in a hypothetical large natural uranium blanket of 200 cm thickness attached to the core of FCA-V-II.

The calculated values were compared with the experimental data compiled in Ref. (17) in **Table 2.20**. The fission rate ratio of  $^{235}$ U to  $^{238}$ U calculated with JENDL-1 agrees well with the data of Chezem<sup>17)</sup>, but the calculated ratio of  $^{239}$ Pu to  $^{238}$ U is lower than the experimental data. Both the ratios calculated with JFS-2 are about 8% lower than those with JENDL-1. The calculated ratios of  $^{235}$ U to  $^{238}$ U are larger than the ratios of  $^{239}$ Pu to  $^{238}$ U, while the experimental data show an opposite tendency except for the data of Leipunsky et al.<sup>21)</sup> which were measured in the depleted uranium. This discrepancy seems to be consistent with the underestimate of the fission rate ratio of  $^{239}$ Pu to  $^{235}$ U in the core center as discussed in section 2.4. This problem should be further investigated.

|                                               | <sup>235</sup> U fission | <sup>239</sup> Pu fission |
|-----------------------------------------------|--------------------------|---------------------------|
|                                               | <sup>238</sup> U fission | <sup>238</sup> U fission  |
| JENDL-1                                       | 240.8                    | 220.0                     |
| JFS-2                                         | 226.7                    | 206.0                     |
| ENDF/B-IV                                     | 227.7                    | 203.4                     |
| Experiments*                                  |                          |                           |
| Snell et al. (1943, U Chicago) <sup>16)</sup> | 200                      |                           |
| Brolley et al. (1943, ORNL) <sup>18)</sup>    | 336                      |                           |
| Beyer et al. (1955, ANL) <sup>19)</sup>       | $363 \pm 40$             |                           |
| Neuer et al. (1955, LASL) <sup>20)</sup>      | $220 \pm 22^{a}$         |                           |
|                                               | $200 \pm 10^{\text{b}}$  | $228 \pm 12$              |
|                                               | $210 \pm 10^{\circ}$     |                           |
| Leipunsky et al. (1958, USSR) <sup>21)</sup>  | $249 \pm 20$             | 230                       |
| Campan et al. (1958, Saclay) <sup>22)</sup>   | $221 \pm 11$             |                           |
| Chezem (1960, LASL) <sup>17)</sup>            | $239 \pm 7$              | $250 \pm 16$              |

 Table 2.20
 Fission rate ratios in natural uranium equilibrium spectra

Taken from Ref. (17)

a) Foil activation

b) Radiochemistry

c) Fission chambers

### 3. Benchmark Tests with Two-dimensional Model

After completion of the benchmark tests on the core center characteristics with the one-dimensional model, applicability of JENDL-1 was further tested to more sophisticated problems such as reaction rate distributions, sodium void reactivities and control rod worths. The MOZART and ZPPR-3 assemblies were selected for these tests. The analyses were made on the basis of the two-dimensional model and the first-order or exact perturbation method. The cell heterogeneity corrections were made with the integral transport theory. The anisotropy of the diffusion coefficients were considered according to Benoist's method.<sup>23</sup>

The calculation started from the ABBN type reactor constants of 25 group structure because of limitation of codes which treat the cell heterogeneity. Hence the library of 70 group structure was collapsed to that of 25 group structure by using the reactor integrated spectrum of ZPPR-2. This collapse may cause some errors particularly in the elastic removal cross sections in the blanket region.

The analyses of MOZART and ZPPR-3 were performed by Mitsubishi Atomic Power Industries Inc. and Nippon Atomic Industry Group Co., Ltd., respectively.

### 3.1 MOZART

The MOZART program is a Japan-U.K. joint research work for the mock-up critical experiments of the Japanese prototype fast breeder reactor "MONJU". Neutronics characteristics were studied in three core configurations; MZA, MZB and MZC. The MZA core is a one-zone core simulating the outer core of MONJU for basic studies of reactor physics. The MZB core is a mock-up of the clean two-zone core of MONJU and the MZC core is an extention of MZB by adding control rod positions.

In the present study, analyses were made for the reaction rate distributions and the sodium void reactivities in the MZB core and the control rod worths in the MZC core.

### 3.1.1 Reaction Rate Distribution in MZB

Fission and capture reaction rate distributions were measured in the radial direction at the core midplane in MZB using the foils of <sup>235</sup>U, <sup>238</sup>U and the fission chambers of <sup>235</sup>U, <sup>238</sup>U, <sup>239</sup>Pu and <sup>240</sup>Pu. Axial scans were also made at the core center position. The measurements were reviewed by Ingram et al.<sup>24)</sup>

The calculation of the reaction rate distributions was made on the basis of the X-Y and R-Z diffusion model with 6 groups. The six-group cross sections were reduced with the spectra obtained by one-dimensional diffusion calculations in radial and axial directions. The group structure is given in **Table 3.1**. The X-Y calculation model of MZB is shown in **Fig. 3.1**. Axial bucklings at the core midplane for the X-Y calculation were obtained from the R-Z calculation. Corrections for the group collapsing and for diffusion-versus-transport approximation were obtained from one-dimensional calculations and were applied to the results of the six-group diffusion calculations.

The calculated radial distributions of  $^{235}$ U,  $^{238}$ U,  $^{239}$ Pu and  $^{249}$ Pu fission rates and  $^{238}$ U capture rate are compared with the measured data in **Tables 3.2** ~ **3.6** and also shown in **Fig. 3.2**. The fission rates of  $^{235}$ U and  $^{239}$ Pu are underestimated in the outer core and the blanket. Though this underestimation is observed with other sets, it is significant with

JENDL-1. On the other hand, the fission rate of  $^{240}$ Pu is overestimated in the outer core and the blanket. The C/E values stay near unity for the fission and capture rates of  $^{238}$ U.

| For reaction rate distribution<br>and control rod worth |                       |                       | For sodium void reactivity |                       |                       |  |
|---------------------------------------------------------|-----------------------|-----------------------|----------------------------|-----------------------|-----------------------|--|
| Group No.                                               | E <sub>max</sub> (eV) | E <sub>min</sub> (eV) | Group No.                  | E <sub>max</sub> (eV) | E <sub>min</sub> (eV) |  |
| 1                                                       | 1.05 + 7*             | 1.4 + 6               | 1                          | 1.05 + 7              | 6.5 + 6               |  |
| 2                                                       | 1.4 + 6               | 1.0 + 5               | 2                          | 6.5 + 6               | 4.0 + 6               |  |
| 3                                                       | 1.0 + 5               | 1.0 + 4               | 3                          | 4.0 + 6               | 2.5 + 6               |  |
| 4                                                       | 1.0 + 4               | 1.0 + 3               | 4                          | 2.5 + 6               | 1.4 + 6               |  |
| 5                                                       | 1.0 + 3               | 1.0 + 2               | 5                          | 1.4 + 6               | 8.0 + 5               |  |
| 6                                                       | 1.0 + 2               | Thermal               | 6                          | 8.0 + 5               | 4.0 + 5               |  |
|                                                         |                       |                       | 7                          | 4.0 + 5               | 2.0 + 5               |  |
|                                                         |                       |                       | 8                          | 2.0 + 5               | 1.0 + 5               |  |
|                                                         |                       |                       | 9                          | 1.0 + 5               | 4.65 + 4              |  |
|                                                         |                       |                       | 10                         | 4.65 + 4              | 2.15 + 4              |  |
|                                                         |                       |                       | 11                         | 2.15 + 4              | 1.0 + 4               |  |
|                                                         |                       |                       | 12                         | 1.0 + 4               | 4.65 + 3              |  |
|                                                         |                       |                       | 13                         | 4.65 + 3              | 2.15 + 3              |  |
|                                                         |                       |                       | 14                         | 2.15 + 3              | 1.0 + 3               |  |
|                                                         |                       |                       | 15                         | 1.0 + 3               | 4.65 + 2              |  |
|                                                         |                       |                       | 16                         | $465 \pm 2$           | Thermal               |  |

**Table 3.1**Energy group structure of collapsed group cross sectionsused for analyses of MOZART

\* 1.05 + 7 denotes  $1.05 \times 10^7$ 

|      | Radius Calculation Correction Fa<br>(cm) Calculation Collapsing T |              | Correctio | n Factor    | Corrected  | _      |       |
|------|-------------------------------------------------------------------|--------------|-----------|-------------|------------|--------|-------|
|      |                                                                   |              | Transport | Calculation | Experiment | C/E    |       |
|      | 0.0                                                               | 1.0000       | 1.0       | 1.0         | 1.0000     | 1.0000 | 1.000 |
|      | 10.85                                                             | 0.9889       | 1.0       | 1.0         | 0.9889     | 0.9866 | 1.002 |
|      | 21.70                                                             | 0.9553       | 1.0       | 1.0         | 0.9553     | 0.9532 | 1.002 |
| 1/C  | 32.55                                                             | 0.8995       | 1.0       | 1.0         | 0.8995     | 0.8955 | 1.004 |
| I/C  | 43.40                                                             | 0.8216       | 1.0       | 1.0         | 0.8216     | 0.8110 | 1.014 |
|      | 48.83                                                             | 48.83 0.7742 |           | 1.0         | 0.7742     | 0.7669 | 1.010 |
|      | 54.25                                                             | 0.7208       | 1.0       | 1.005       | 0.7244     | 0.7080 | 1.023 |
|      | 59.68                                                             | 0.6610       | 1.0       | 1.010       | 0.6676     | 0.6528 | 1.023 |
|      | 65.11                                                             | 0.5928       | 1.0       | 1.016       | 0.6023     | 0.5855 | 1.029 |
| O/C  | 70.53                                                             | 0.5259       | 1.0       | 1.018       | 0.5354     | 0.5298 | 1.011 |
|      | 75.96                                                             | 0.4671       | 1.0       | 1.015       | 0.4741     | 0.4820 | 0.984 |
|      | 81.37                                                             | 0.4452       | 0.989     | 1.004       | 0.4421     | 0.4627 | 0.955 |
|      | 86.81                                                             | 0.3928       | 0.984     | 0.998       | 0.3857     | 0.4228 | 0.912 |
| D (D | 92.23                                                             | 0.3217       | 0.990     | 0.995       | 0.3169     | 0.3631 | 0.873 |
| R/B  | 97.66                                                             | 0.2555       | 0.997     | 0.995       | 0.2535     | 0.2973 | 0.853 |
|      | 103.10                                                            | 0.2032       | 1.009     | 0.995       | 0.2040     | 0.2479 | 0.823 |
|      | 108.50                                                            | 0.1755       | 1.006     | 0.996       | 0.1755     | 0.2155 | 0.815 |

 Table 3.2
 Radial fission rate traverse of <sup>235</sup>U with fission chamber in MZB

|      | Radius | Radius<br>(cm) Calculation Correction Factor<br>Collapsing Transport |       | Corrected | <b>F</b>    | C/F        |       |
|------|--------|----------------------------------------------------------------------|-------|-----------|-------------|------------|-------|
|      | (cm)   |                                                                      |       | Transport | Calculation | Experiment | C/E   |
|      | 0.0    | 1.0000                                                               | 1.0   | 1.0       | 1.0000      | 1.0000     | 1.000 |
|      | 10,85  | 0.9892                                                               | 1.0   | 1.0       | 0.9892      | 0.9843     | 1.005 |
|      | 21.70  | 0.9565                                                               | 1.0   | 1.0       | 0.9565      | 0.9481     | 1.009 |
| L/C  | 32.55  | 0.9035                                                               | 1.0   | 1.0       | 0.9035      | 0,8968     | 1.007 |
| I/C  | 43,40  | 0.8341                                                               | 1.0   | 1.0       | 0.8341      | 0.8215     | 1.015 |
|      | 48.83  | 0.7958                                                               | 1.0   | 1.0       | 0.7958      | 0.7859     | 1.013 |
|      | 54.25  | 0.7581                                                               | 1.0   | 1.0       | 0.7581      | 0.7456     | 1.017 |
|      | 59.68  | 0.7255                                                               | 1.0   | 1.003     | 0.7277      | 0.7219     | 1.008 |
|      | 65.11  | 0.7098                                                               | 1.0   | 1.040     | 0.7382      | 0.7145     | 1.033 |
| O/C  | 70.53  | 0.6271                                                               | 1.0   | 1.047     | 0.6566      | 0.6423     | 1.022 |
|      | 75.96  | 0.4908                                                               | 1.0   | 1.054     | 0.5173      | 0.4977     | 1.039 |
|      | 81.37  | 0.2690                                                               | 1.005 | 0.941     | 0.2544      | 0.2704     | 0.941 |
|      | 86.81  | 0.1430                                                               | 1.027 | 0.933     | 0.1370      | 0.1378     | 0.994 |
| D (D | 92.23  | 0.07946                                                              | 1.002 | 0.955     | 0.07604     | 0.0774     | 0.982 |
| R/B  | 97.66  | 0.04567                                                              | 0.981 | 0.988     | 0.04426     | 0.0455     | 0.973 |
|      | 103.10 | 0.02176                                                              | 0.962 | 1.034     | 0.02702     | 0.0287     | 0.941 |
|      | 108.50 | 0.01618                                                              | 1.009 | 1.072     | 0.01750     | 0.0173     | 1.012 |

 Table 3.3
 Radial fission rate traverse of <sup>238</sup>U with fission chamber in MZB

 Table 3.4
 Radial capture rate traverse of <sup>238</sup>U with foil detector in MZB

|      | Radius Calculation (cm) |              | Correctio            | Correction Factor |             |            |       |
|------|-------------------------|--------------|----------------------|-------------------|-------------|------------|-------|
|      |                         |              | Collapsing Transport |                   | Calculation | Experiment | C/E   |
|      | 0.0                     | 1.0000       | 1.0                  | 1.0               | 1.0000      | 1.0000     | 1.000 |
|      | 10.85                   | 0.9889       | 1.0                  | 1.0               | 0.9889      | 0.9874     | 1.002 |
|      | 21.70                   | 0.9552       | 1.0                  | 1.0               | 0.9552      | 0.9491     | 1.006 |
| LIC. | 32.55                   | 0.8990       | 1.0                  | 1.0               | 0.8990      | 0.8923     | 1.008 |
| I/C  | 43.40                   | 0.8204       | 1.0                  | 1.0               | 0.8204      | 0.8090     | 1.014 |
|      | 48.83                   | 48.83 0.7721 |                      | 1.0 0.7721        |             | 0.7601     | 1.016 |
|      | 54.25                   | 0.7174       | 1.0                  | 1.007             | 0.7224      | 0.7077     | 1.021 |
|      | 59.68                   | 0.6554       | 1.0                  | 1.011             | 0.6626      | 0.6470     | 1.024 |
|      | 65.11                   | 0.5886       | 1.0                  | 1.015             | 0.5974      | 0.5861     | 1.019 |
| O/C  | 70.53                   | 0.5207       | 1.0                  | 1.016             | 0.5290      | 0.5171     | 1.023 |
|      | 75.96                   | 0.4626       | 1.0                  | 1.013             | 0.4686      | 0.4652     | 1.007 |
|      | 81.37                   | 0.3740       | 0.989                | 1.005             | 0.3717      | 0.3731     | 0.996 |
|      | 86.81                   | 0.3151       | 0.988                | 0.998             | 0.3107      | 0.3129     | 0.993 |
| D /D | 92.23                   | 0.2483       | 0.997                | 0.995             | 0.2463      | 0.2530     | 0.974 |
| R/B  | 97.66                   | 0.1896       | 1.008                | 0.995             | 0.1902      | 0.1967     | 0.967 |
|      | 103.10                  | 0.1434       | 1.018                | 0.995             | 0.1453      | 0.1511     | 0.961 |
|      | 108.50                  | 0.1131       | 1.014                | 0.995             | 0.1141      | 0.1171     | 0.974 |

|      | Radius |              | Correctio  | n Factor             | Corrected |            |       |  |
|------|--------|--------------|------------|----------------------|-----------|------------|-------|--|
|      | (cm)   | Calculation  | Collapsing | Collapsing Transport |           | Experiment | C/E   |  |
|      | 0.0    | 1.0000       | 1.0        | 1.0                  | 1.0000    | 1.0000     | 1.000 |  |
|      | 10.85  | 0.9890       | 1.0        | 1.0                  | 0.9890    | 0.9882     | 1.001 |  |
|      | 21.70  | 0.9556       | 1.0        | 1.0                  | 0.9556    | 0.9551     | 1.001 |  |
|      | 32.55  | 0.9003       | 1.0        | 1.0                  | 0.9003    | 0.8964     | 1.004 |  |
| U.C. | 43.40  | 0.8237       | 1.0        | 1.0                  | 0.8237    | 0.8202     | 1.004 |  |
| ηc   | 48.83  | 48.83 0.7774 |            | 1.0                  | 0.7774    | 0.7237     | 1.005 |  |
|      | 54.25  | 0.7258       | 1.0        | 1.006                | 0.7302    | 0.7230     | 1.010 |  |
|      | 59.68  | 0.6686       | 1.0        | 1.010                | 0.6753    | 0.6602     | 1.023 |  |
|      | 65.11  | 0.6037       | 1.0        | 1.018                | 0.6146    | 0.6009     | 1.023 |  |
| O/C  | 70.53  | 0.5337       | 1.0        | 1.022                | 0.5454    | 0.5403     | 1.010 |  |
|      | 75.96  | 0.4640       | 1.0        | 1.019                | 0.4728    | 0.4834     | 0.978 |  |
|      | 81.37  | 0.4378       | 0.988      | 1.001                | 0.4330    | 0.4615     | 0.938 |  |
|      | 86.81  | 0.3802       | 0.984      | 0.996                | 0.3726    | 0.4140     | 0.900 |  |
| D /D | 92.23  | 0.3108       | 0.991      | 0.995                | 0.3065    | 0.3656     | 0.838 |  |
| К/В  | 97.66  | 0.2485       | 1.009      | 0.995                | 0.2495    | 0.3088     | 0.808 |  |
|      | 103.10 | 0.2018       | 1.038      | 0.995                | 0.2084    | 0.2691     | 0.775 |  |
|      | 108.50 | 0.1824       | 1.006      | 0.996                | 0.1828    | 0.2469     | 0.740 |  |

**Table 3.5** Radial fission rate traverse of <sup>239</sup>Pu with fission chamber in MZB

Table 3.6 Radial fission rate traverse of <sup>240</sup>Pu with fission chamber in MZB

|     | Radius Calculation (cm) |         | Correctio            | n Factor       | Corrected   |            |       |
|-----|-------------------------|---------|----------------------|----------------|-------------|------------|-------|
|     |                         |         | Collapsing Transport |                | Calculation | Experiment | C/E   |
|     | 0.0                     | 1.0000  | 1.0                  | 1.0            | 1.0000      | 1.0000     | 1.000 |
|     | 10.85                   | 0.9891  | 1.0                  | 1.0            | 0.9891      | 0.9875     | 1.002 |
|     | 21.70                   | 0.9563  | 1.0                  | 1.0            | 0.9563      | 0.9550     | 1.001 |
|     | 32.55                   | 0.9026  | 1.0                  | 1.0            | 0.9026      | 0.8973     | 1.006 |
| I/C | 43.40                   | 0.8301  | 1.0                  | 1.0            | 0.8301      | 0.8276     | 1.003 |
|     | 48.83                   | 0.7880  | 1.0                  | 1.0 1.0 0.7880 |             | 0.7852     | 1.004 |
|     | 54.25                   | 0.7430  | 1.0                  | 1.005          | 0.7467      | 0.7422     | 1.006 |
|     | 59.68                   | 0.6967  | 1.0                  | 1.007          | 0.7016      | 0.7028     | 0.998 |
|     | 65.11                   | 0.6685  | 1.0                  | 1.027          | 0.6865      | 0.6669     | 1.029 |
| O/C | 70.53                   | 0.5870  | 1.0                  | 1.031          | 0.6052      | 0.5914     | 1.023 |
|     | 75.96                   | 0.4764  | 1.0                  | 1.033          | 0.4921      | 0.4713     | 1.044 |
|     | 81.37                   | 0.3177  | 0.995                | 0.985          | 0.3114      | 0.3045     | 1.023 |
|     | 86.81                   | 0.2036  | 0.990                | 0.975          | 0.1965      | 0.1925     | 1.021 |
| D/D | 92.23                   | 0.1377  | 0.986                | 0.980          | 0.1331      | 0.1252     | 1.063 |
| к/в | 97.66                   | 0.09380 | 0.981                | 0.991          | 0.09119     | 0.08371    | 1.089 |
|     | 103.10                  | 0.06446 | 0.977                | 1.001          | 0.06304     | 0.05543    | 1.137 |
|     | 108.50                  | 0.04437 | 1.000                | 1.010          | 0.04481     | 0.03788    | 1.183 |





Fig. 3.1 X-Y calculational model of MZB for reaction rate distribution analysis.

Fig. 3.2 Reaction rate distributions in MZB.

### 3.1.2 Sodium Void Reactivity in MZB

Sodium void reactivities in MZB were measured at various positions in the axial and radial directions. Axial traverse measurements were made in the central nine elements at the core center. Radial traverse measurements were made by removing sodium of 9 elements in the core at six different positions shown in **Fig. 3.3**. The experimental condition and results are given in Ref. (25).

The calculated worths of sodium removal were obtained using a two-dimensional R-Z diffusion code with 16-group cross sections whose group structure is also given in **Table 3.1**. Both exact and first-order perturbation calculations were made to obtain reactivity components. The calculation model is shown in **Fig. 3.4**. Mesh arrangement and typical plate cells were indicated in the figure.

The calculated results are compared with the measured ones in **Tables 3.7** and **3.8**. The comparison is also shown in **Fig. 3.5**.

The following are observed:

- 1) The C/E value is 1.1 for void in the core center.
- 2) The calculation well predicts the sodium void worths in the axial direction.
- 3) The calculation overestimates the negative sodium void reactivities, when sodium is removed from the outer core. By examining the perturbation components, we considered that this might be caused by overestimation of the radial leakage component.



Fig. 3.3 Positions of sodium removal measurements in MZB. Taken from Ref. (25).

| Table 3.7 | Radial traverse of sodium | n void worth in 9 elements | s of MZB assembly |
|-----------|---------------------------|----------------------------|-------------------|

|                   |          |              |           |              |              |                   | (in un           | it of    | 10 <sup>⊸</sup> Δρ) |
|-------------------|----------|--------------|-----------|--------------|--------------|-------------------|------------------|----------|---------------------|
|                   | Measured |              |           | Perturbation | Calculation  |                   |                  |          | Direct              |
| Void Position     | Worth    | Total        | Fission   | Absorption   | Moderation   | Radial<br>Leakage | Axial<br>Leakage | *        | Calc.               |
| #3<br>Core Center | +231 ± 5 | +223<br>+244 | 97<br>102 | +167<br>+162 | +478<br>+498 | -2<br>-2          | -323<br>-312     | FP<br>EP | +243                |
| #4<br>I.C. Edge   | +50 ± 5  | +10          | -58       | +94          | +269         | -103              | -191             | FP       |                     |
| #2<br>O.C.        | -201 ± 5 | -437<br>335  | 28<br>32  | +41<br>+40   | +120<br>+126 | -450<br>-360      | -120<br>-109     | FP<br>EP | -335                |
| #1<br>Rad. B1.    | 129 ± 2  | -135<br>-118 | 2<br>3    | +7<br>+7     | +38<br>+39   | 168<br>151        | $-10 \\ -10$     | FP<br>EP | -120                |

\* FP: First order perturbation

EP: Exact perturbation



Fig. 3.4 R-Z calculational model of MZB for sodium void worth analysis.

 Table 3.8
 Axial traverse of sodium void worth in plate-type central 9 elements of MZB assembly

|                        |          |              |             |              |              |                   | (in un           | it of    | 10 <sup>-6</sup> Δρ) |
|------------------------|----------|--------------|-------------|--------------|--------------|-------------------|------------------|----------|----------------------|
|                        | Measured |              |             | Perturbation | Calculation  |                   |                  |          | Direct               |
| Void Position          | Worth    | Total        | Fission     | Absorption   | Moderation   | Radial<br>Leakage | Axial<br>Leakage | *        | Calc.                |
| 0-12 cm<br>Core Center | +175 ± 2 | +194<br>+198 | -38<br>-40  | +63<br>+62   | +178<br>+184 | -1<br>-1          | -8<br>-8         | FP<br>EP | +190                 |
| 12-45 cm<br>Core Edge  | +56 ± 4  | +29          | 59          | +104         | +300         | - <b>l</b>        | -315             | FP       |                      |
| 0-45 cm<br>Core Height | +231 ± 5 | +223<br>+244 | -97<br>102  | +167<br>+162 | +478<br>+498 | -2<br>-2          | -323<br>-312     | FP<br>EP | +243                 |
| 45-80 cm<br>Axial Bl.  | -76 ± 3  | -86          | -1          | +13          | +71          | 0                 | -169             | FP       |                      |
| 0-80 cm<br>All Element | +149 ± 6 | +137<br>+153 | -98<br>-103 | +180<br>+175 | +549<br>+572 | -2<br>-2          | -492<br>-487     | FP<br>EP | +181                 |

\* FP: First order perturbation

EP: Exact perturbation



Fig. 3.5 Axial and radial traverses of sodium void worth in MZB.

#### 3.1.3 Control Rod Worth in MZC

Analysis of control rod worths was made for a control rod inserted at the center of the MZC core. In the experiment, worths were measured for four types of control rod with different <sup>10</sup>B enrichments (natural, 30% (weight), 80% (weight) and 90% (weight)) to study the C/E dependence on <sup>10</sup>B content. The detail of measurements is given in Ref. (26).

The six-group cross sections for the fuel regions were prepared using 26-group flux spectra obtained with one-dimensional diffusion calculations in radial and axial directions. In producing the six-group cross sections for control rods, one-dimensional transport calculations were used to take into consideration the heterogeneous arrangement of  $B_4C$  pins in a control rod.

The basic calculations for the control rod worths were made with two-dimensional sixgroup diffusion calculation in the R-Z model containing a central control rod position shown in **Fig. 3.6**. Several correction factors listed in **Table 3.9** were applied to the calculated rod worths.
Comparison between calculation and experiment is shown in **Table 3.10**. The C/E values are nearly 0.95, and show no apparent dependence on the enrichment of  ${}^{10}B$ , while the  ${}^{10}B$  enrichment dependence was often observed in analyses with other cross section sets except JFS-2.



Fig. 3.6 R-Z calculational model of MZC for control rod worth analysis.

Table 3.9 Correction factors for MZC central control rod worth analysis

| Rod<br>Pattern | Pin ( <sup>10</sup> B)<br>Absorber<br>Heterogeneity* | Pin (10 B)26 gr.AbsorbertoHeterogeneity*6 gr. |       | S <sub>N</sub> ** | Mesh  | Total |
|----------------|------------------------------------------------------|-----------------------------------------------|-------|-------------------|-------|-------|
| BN             | 0.990                                                | 0.997                                         | 0.976 | 0.958             | 1.009 | 0.931 |
| <b>B</b> 30    | 0.989                                                | 0.997                                         | 0.973 | 0.949             | 1.011 | 0.920 |
| <b>B80</b>     | 0.976                                                | 0.994                                         | 0.966 | 0.938             | 1.015 | 0.892 |
| B90            | 0.977                                                | 0.994                                         | 0.964 | 0.930             | 1.016 | 0.885 |

\* Corrections for heterogeneity in control rods (B<sub>4</sub> C mass lumping and pin heterogeneity) \*\* Transport theory correction (S<sub>4</sub> approximation was used.)

|             |                        | Calculation with JENDL-1          |                      |                               |       |  |  |  |  |
|-------------|------------------------|-----------------------------------|----------------------|-------------------------------|-------|--|--|--|--|
| Rod Pattern | Experiment<br>% Δk/kk' | without<br>Correction<br>% Δk/kk' | Correction<br>Factor | with<br>Correction<br>%∆k/kk' | C/E   |  |  |  |  |
| BN          | 0.808 ± 1.3%           | 0.822                             | 0.931                | 0.765                         | 0.947 |  |  |  |  |
| B30         | 0.993 ± 1.4%           | 1.028                             | 0.920                | 0.946                         | 0.952 |  |  |  |  |
| B80         | 1.525 ± 1.8%           | 1.638                             | 0.892                | 1.461                         | 0.958 |  |  |  |  |
| <b>B90</b>  | 1.629 ± 1.9%           | 1.740                             | 0.885                | 1.540                         | 0.945 |  |  |  |  |

 Table 3.10
 Results of MZC central control rod worth analysis

#### 3.2 ZPPR-3

Items included in the present analysis are single and multiple control rod worth experiments in ZPPR-3 Phase 1B core and <sup>235</sup>U fission rate distribution experiments in ZPPR-3 Phase 2 core.

The method of calculation is basically two-dimensional (X-Y) 7 group anisotropic diffusion theory. Spatial self-shielding calculations for plate heterogeneities were done using an integral transport theory code, and anisotropic diffusion coefficients were obtained with Benoist's first approximation<sup>23)</sup>. The cross sections for the control rod positions were calculated with the homogeneous model. The bucklings were calculated at Z = 6.1 cm with the R-Z model. The group reduction from 25 to 7 groups was made with one-dimensional flux of ZPPR-3 Phase 1B or Phase 2 core. The group structure of 7 groups is given in **Table 3.11**.

| for analyses of ZPPR-3 |                       |                       |  |  |  |  |
|------------------------|-----------------------|-----------------------|--|--|--|--|
| Group No.              | E <sub>min</sub> (eV) | E <sub>max</sub> (eV) |  |  |  |  |
| 1                      | 1.05 + 7*             | 1.4 + 6               |  |  |  |  |
| 2                      | 1.4 +6                | 4.0 + 5               |  |  |  |  |
| 3                      | 4.0 + 5               | 1.0 + 5               |  |  |  |  |
| 4                      | 1.0 + 5               | 1.0 + 4               |  |  |  |  |
| 5                      | 1.0 + 4               | 1.0 + 3               |  |  |  |  |
| 6                      | 1.0 + 3               | 1.0 + 2               |  |  |  |  |
| 7                      | 1.0 + 2               | Thermal               |  |  |  |  |

 Table 3.11
 Energy group structure of collapsed group cross sections used for analyses of 7 PPP 2

\* 1.05 + 7 denotes  $1.05 \times 10^{+7}$ 

#### 3.2.1 Worth of Multiple Control Rods in Phase 1B Core

Phase 1B of ZPPR assembly 3 is the end-of-cycle configuration for the US demonstration plant. The assembly has 19 simulated control rod positions (CRP), all of which are sodium-filled channels. The control rod configuration is shown in **Fig. 3.7**. The control rod worth measurements were made by three different methods, i.e., inverse multiplication method, polarity coherence method and rod drop method. Details of measurements are given in Ref. (27).

Three different designs were adopted for the simulated control rods. The principal difference of design is the mass of  $B_4C$  loaded. Design H has 0.78 kg of natural  $B_4C$ , design I has 1.85 kg, and design J has 1.21 kg. Control rods of design H are inserted at the CRP's 2, 3, 4, 5, 6 and 7, design I at CRP's 8, 10, 12, 14, 16 and 18, and design J at CRP's 9, 11, 13, 15, 17 and 19.

The analysis was made with the two-dimensional diffusion model, and corrections were made for the transport, mesh and transverse buckling effects. **Table 3.12** shows the results of analysis for various control rod patterns in Phase 1B core. Results<sup>28)</sup> with JFS-2 set are also shown in the table for comparison. The C/E values show little dependence on the control rod pattern as seen in the table. The average of C/E is 0.96 with standard deviation of 2%, which agrees with the results for MZC.



Fig. 3.7 ZPPR assembly 3, phase 1 B, reference core.

| Table 3.12 | C/E values for control rod worth of ZPPR-3 phase 1B core |   |
|------------|----------------------------------------------------------|---|
|            |                                                          | - |

|      |                                              | No. of | Measured |                   | C/E Values  |             |  |
|------|----------------------------------------------|--------|----------|-------------------|-------------|-------------|--|
| No.  | Control Rod Positions Inserted               | C.R.   | Worth \$ | $\beta_{eff}$     | JFS-2       | JENDL-1     |  |
|      |                                              |        |          | ×10 <sup>-3</sup> |             |             |  |
| 1    | 8                                            | 1      | 1.94     | 3.51              | 0.96        | 0.94        |  |
| 2    | 2                                            | 1      | 2,02     | 3.51              | 1.00        | 0.98        |  |
| 3    | 2, 8                                         | 2      | 3.58     | 3.51              | _           | 0.95        |  |
| 4    | Type-I in CRP-1                              | 1      | 4.14     | 3.51              | 0.96        | 0.96        |  |
| 5    | 8, 14                                        | 2      | 4.24     | 3.51              | 0.97        | 0.99        |  |
| 6    | 2, 5                                         | 2      | 4.26     | 3.51              | 0.99        | 0.98        |  |
| 7    | 2, 4, 6                                      | 3      | 6.51     | 3.52              | 0.99        | 0.98        |  |
| 8    | 2, 4, 6, 10, 14, 18                          | 6      | 14.33    | 3.54              | 0.97        | 0.98        |  |
| 9    | 8, 10, 12, 14, 16, 18                        | 6      | 14.88    | 3.54              | 0.97        | 0.93        |  |
| 10   | 2, 3, 4, 5, 6, 7, 10, 14, 18                 | 9      | 20.75    | 3.55              | _           | 0.97        |  |
| 11   | 2, 4, 6, 8, 10, 12, 14, 16, 18               | 9      | 22.65    | 3.55              | _           | 0.98        |  |
| 12   | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | 12     | 28.96    | 3.57              | 0.99        | 0.97        |  |
| 13   | 2, 4, 6, 9, 10, 11, 13, 14, 15, 17, 18, 19   | 12     | 28,99    | 3.57              | _           | 0.95        |  |
| 14   | 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18      | 12     | 30.12    | 3.57              | _           | 0.95        |  |
| 15   | All except CRP-1                             | 18     | 44.76    | 3.61              | _           | 0.95        |  |
| Aver | age and one standard deviation of C/E values |        |          |                   | 0.98 ± 0.01 | 0.96 ± 0.02 |  |

# 3.2.2 Fission Rate Distribution of <sup>235</sup>U in Phase 2 Core

Phase 2 core of ZPPR assembly 3 is the middle-of-cycle configuration for the US demoplant. Six simulated control rods are fully inserted in this core. The foil measurements were performed for the following three control rod patterns: (1) Three rods are inserted in the inner ring and three in the outer ring (Phase 2 Reference), (2) all of the six control rods are inserted in the inner ring (A.I.R), and (3) all of the six are inserted at the CRP positions of even numbers in the outer ring. (E.O.R.).

Analysis was made for the radial fission rate distribution measurements, in which foils are placed on the X-Y plane at about Z = 7.7 cm. No correction was performed for the structure of in-cell flux distribution. The error due to neglect of this effect is estimated to be less than 1%. Transport effect was not taken into account in the present analysis.

**Figures 3.8** ~ **3.10** show the C/E distributions of  $^{235}$ U fission rate for the three rod patterns in Phase 2 core. The C/E values along X axis are shown in **Fig. 3.11**. The following are concluded as to the applicability of JENDL-1 library in the fission rate distribution prediction:

- 1) The calculation underestimates the fission rate in the outer core.
- 2) The underestimation is much enhanced when the control rods are inserted in the outer ring. The average C/E value is decreased down to 0.88.
- 3) The control rods have little effect on the C/E value of reaction rate distribution when inserted in the inner ring.

It is interesting to compare the present results with those obtained by using different cross section library sets. **Table 3.13** shows the maximum and minimum, and average C/E values obtained using the JENDL-1, JFS-2, and NNS-5<sup>29)</sup> sets for the above three core configurations. The average C/E values with JENDL-1 are relatively smaller than those with JFS-2 and NNS-5. Note that the C/E value with JENDL-1 is 0.92 in the case of E.O.R., while those with JFS-2 and NNS-5 are 0.98 and 0.97, respectively. The poor prediction of reaction rate distribution with JENDL-1 seems to come from too small diffusion coefficient and too large slowing down cross sections of JENDL-1 in the energy range from 10 keV to 1.4 MeV. The detailed discussion on this point will be made in Chapter 4 and Appendix 3.

| <u>Curran</u>                |      | JEND | L-1                       |      | JFS- | 2                           | NNS-5 |      |                           |  |
|------------------------------|------|------|---------------------------|------|------|-----------------------------|-------|------|---------------------------|--|
| Case                         | Max. | Min. | $\overline{C/E}\pm\sigma$ | Max. | Min, | $\overline{C/E} \pm \sigma$ | Max.  | Min. | $\overline{C/E}\pm\sigma$ |  |
| Phase 2<br>Reference<br>Core | 0.99 | 0.91 | 0.95±0.02                 | 1.02 | 0.96 | 0.98±0.01                   | 1.01  | 0.96 | 0.98±0.01                 |  |
| A.I.R. Core                  | 1.00 | 0.92 | 0.96±0.02                 | 1.03 | 0.94 | 0.98±0.02                   | 1.00  | 0.94 | 0.98±0.01                 |  |
| E.O.R. Core                  | 0.97 | 0.88 | 0.92±0.02                 | 1.02 | 0.94 | 0.98±0.02                   | 1.01  | 0.95 | 0.97±0.02                 |  |

 Table 3.13
 Comparison of C/E values of <sup>235</sup>U (n, f) reaction rate distribution in outer core by using three different library sets

Note:

1) Normalization between calculation and measurement is done at the position specified in Figs. 3.8 ~ 3.10. The C/E values at control rod channels are excluded in the statistical procedure.



Fig. 3.8 C/E values of <sup>235</sup>U fission rate distribution in ZPPR-3 phase 2 reference core.



Fig. 3.9 C/E values of <sup>235</sup>U fission rate distribution in ZPPR-3 phase 2 A.I.R. core.



Fig. 3.10 C/E values of <sup>235</sup>U fission rate distribution in ZPPR-3 phase 2 E.O.R. core.



Fig. 3.11 Fission rate distribution along X-axis in ZPPR-3 phase 2 core.

# 4. Summary and Discussion

It has been proved through benchmark tests that JENDL-1 predicts various quantities of fast reactors satisfactorily as a whole. However, some problems have been pointed out through the tests. In this chapter, these problems are discussed, the possible drawbacks in the evaluation are pointed out and the way to their improvement is suggested.

### 4.1 Problems Encountered through Benchmark Tests

The following problems have been pointed out:

- 1) There exists discrepancy of 0.9% in the  $k_{eff}$ -values between the Pu- and U-cores. Most of this discrepancy comes from inconsistent  $\nu_p$ -values of <sup>252</sup>Cf used as the standard in the evaluation.
- 2) The fission rate ratio of <sup>239</sup>Pu to <sup>235</sup>U is underestimated by 3%. This underestimate is also observed in JFS-2 and ENDF/B-IV.
- 3) Apparent discrepancies are observed in the central reactivity worths between the Puand U-cores. There might be some inconsistency in the delayed neutron parameters.
- 4) The Doppler reactivity coefficients are overestimated by about 10%.
- 5) The control rod worths are underestimated a little, but little dependence are observed on the <sup>10</sup>B enrichment and on the number of the inserted rods.
- 6) The fission rates of <sup>235</sup>U and <sup>239</sup>Pu are underestimated considerably in the outer core and radial blanket regions. In the case of ZPPR-3, this underestimation is much enhanced, when the control rods are inserted in the outer core.
- 7) The sodium void reactivities are well predicted, but the negative reactivities are overestimated, when the sodium is removed from the outer core. This might be caused by the overestimation of radial leakage.

As a whole, most of problems of JENDL-1 occur in the outer core and blanket regions, and are related to the leakage and neutron spectrum.

### 4.2 Intercomparison of Macroscopic Cross Sections

The macroscopic cross sections were compared with other sets in some selected assemblies, in order to know the causes affecting the neutron leakage and spectrum. Table A3.9 and Figs. A3.12  $\sim$  A3.14 in Appendix 3 should be referred as examples. It was pointed out that JENDL-1 had

- 1) smaller diffusion coefficient above 100 keV,
- 2) smaller inelastic removal cross section,
- 3) larger elastic removal cross section above 100 keV
- and
- 4) smaller elastic removal cross section below 1 keV.

From graphical comparison of group cross sections of JENDL-1, JFS-2 and ENDF/B-IV given in Appendix 4, it is seen that most of the differences in the macroscopic cross section come from the differences in the cross sections of structural materials such as chromium, iron and nickel. It has been pointed out<sup>30</sup> through reevaluation work for JENDL-2 that JENDL-1 overestimated the total and elastic scattering cross sections of chromium, iron and

nickel in the energy range from a few hundred keV to a few MeV and underestimated the inelastic scattering cross sections of these nuclei. The overestimation of the total cross section was caused by adopting the calculated cross section with the optical model instead of following the fine structure of the cross section obtained from high resolution experiments. The optical model parameters adopted in JENDL-1 overestimate the total cross section below 1 MeV for these nuclei. Furthermore, ignorance of the fine structure up to a few MeV causes ignorance of the self-shielding effects. Hence the total and elastic scattering cross sections are doubly overestimated from a few hundred keV to a few MeV.

#### 4.3 Discussion

As pointed out in the preceding section, one of the most significant problems exists in the cross sections of the structural materials. In order to know whether the cross sections of structural materials significantly affect the problems pointed out in section 4.1, some analyses were made by replacing the cross sections of chromium, iron and nickel by those of ENDF/ B-IV. The detailed discussion is given in Appendix 3.

The  $k_{eff}$ -values are decreased by about 1% by the replacement, resulting in underestimate of  $k_{eff}$  by more than 1%. This suggests that JENDL-1 underestimates the  $k_{\infty}$ -values and that this underestimation is considerably compensated by underestimation of neutron leakage due to overestimation of the elastic scattering cross sections of structural materials.

By the replacement, the neutron flux is enhanced between 100 keV and 1 MeV and suppressed above 1 MeV and below a few tens of keV. This can be explained by larger inelastic scattering and larger amount of leakage with ENDF/B-IV cross sections. It can be said that JENDL-1 gives too flat neutron spectra because of its too small inelastic scattering and too small neutron leakage. This causes overestimate of the neutron flux below a few tens of keV, resulting in overestimate of the Doppler reactivity coefficients. The overestimate of the neutron flux below 10 keV was also pointed out<sup>31</sup> in the analyses of leakage spectrum from an iron block measured<sup>32</sup> at Research Reactor Institute, Kyoto University.

On the other hand, the fission rate becomes more underestimated in the outer core and radial blanket regions with the replaced library. Thus the underestimate of the fission rate in these regions is not due to the cross sections of the structural materials but may be attributed to the underestimation of the  $k_{\infty}$ -values in the core.

## 4.4 Feedback on Nuclear Data Evaluation

Various problems of JENDL-1 have been revealed through the benchmark tests. The following are pointed out on the evaluation of JENDL-1 from the view point of the integral tests.

- 1) The  $\nu_p$ -value of <sup>252</sup>Cf should be evaluated more carefully.
- 2) Delayed neutron parameters should be reevaluated.
- 3) The total and elastic scattering cross sections of chromium, iron and nickel should be reevaluated in the energy region between a few hundred keV and a few MeV, by taking account of the fine structure observed in the high resolution experiments.
- 4) The inelastic scattering cross sections of iron and nickel should be increased.
- 5) The inelastic scattering cross section of <sup>238</sup>U should be checked with the relation of the inelastic scattering cross sections of iron and nickel.
- 6) The fission and capture cross sections of the main fissile and fertile materials should be investigated carefully, because JENDL-1 underestimates the  $k_{\infty}$ -values.

These points were taken into consideration in the reevaluation work for JENDL-2.

# Acknowledgment

The authors wish to thank members of working group on JENDL integral tests of JNDC and members of JAERI Nuclear Data Center for their helpful discussion. They acknowledge T. Narita for his aid in production of group constants and K. Kaneko for his advice in improving the benchmark test system. Careful typewriting by H. Terakado is much appreciated.

# References

- 1) Iijima S., Nakagawa T., Kikuchi Y., Kawai M., Matsunobu H., Maki K. and Igarasi S.: J. Nucl. Sci. Technol., 14, 161 (1977).
- Kikuchi Y., Nakagawa T., Matsunobu H., Kawai M., Igarasi S. and Iijima S.: "Neutron Cross Sections of 28 Fission Product Nuclides Adopted in JENDL-1", JAERI-1268 (1981).
- Igarasi S., Nakagawa T., Kikuchi Y., Asami T. and Narita T.: "Japanese Evaluated Nuclear Data Library, Version-1, JENDL-1", JAERI-1261 (1979).
- Kikuchi Y., Hasegawa A., Hojuyama T., Sasaki M., Seki Y., Kamei T. and Otake I.: "Nuclear Cross Sections for Technology", Proc. Int. Conf., Knoxville, Oct. 22-26, 1979, p. 581. NBS Special Publication 594 (1980).
- 5) Kikuchi Y., Hasegawa A., Nishimura H. and Tasaka K.: "Fission Product Fast Reactor Constants System of JNDC", JAERI-1248 (1976).
- 6) Iijima S., Watanabe T., Yoshida T., Kikuchi Y. and Nishimura H.: Proc. NEA Specialists' Meeting on Neutron Cross Sections of Fission Product Nuclei, Bologna, Dec. 12–14, 1979, p. 317, RIT/FIS-LDN(80)1, NEANDC(E)209 "L" (1980).
- 7) Takano H., Hasegawa A., Nakagawa M., Ishiguro Y. and Katsuragi S.: "JAERI Fast Reactor Group Constants Set, Version II", JAERI-1255 (1978).
- 8) Hasegawa A. et al.: To be published.
- 9) Takano H., Ishiguro Y. and Matsui Y.: "TIMS-1: A Processing Code for Production of Group Constants of Heavy Resonant Nuclei", JAERI-1267 (1980).
- Hasegawa A., Katsuragi S. and Tone T.: "A One-dimensional Diffusion Code for Multigroup Criticality and Perturbation Calculations with JAERI-Fast Sets of 70-group Structure: EXPANDA-70D", JAERI-M 4953 (1972) [in Japanese].
- 11) Hasegaw A.: Private Communication.
- 12) Hardie R.W., Schenter R.E. and Wilson R.E.: Nucl. Sci. Eng. 57, 222 (1975).
- 13) Ingram G., Stevenson J.M., Smith R.W., Ichimori T. and Konishi T.: Proc. Int. Symp. Physics of Fast Reactors, Tokyo, Oct. 16-19, 1973, Vol. I, p. 269 (1973).
- 14) Kamei T. and Kikuchi Y.: "Compilation of FCA Experimental Data for Integral Tests of Group Constants Set", Private Communication, (1978).
- LeSage L.G. and McKnight R.D.: "Nuclear Cross Sections for Technology", Proc. Int. Conf., Knoxville, Oct. 22–26, 1979, p. 297, NBS Special Publication 594 (1980).

- 16) Snell A.H., Brolley J.E., Levinger J.S. and Wilkinson R.: "Studies in a Five Ton Metal Pile", University of Chicago Metallurgical Report CF-589 (1943).
- 17) Chezem C.G.: Nucl. Sci. Eng., 8, 652 (1960).
- 18) Brolley J.E., Byerley F.J., Feld B., Olds A.E., Schalettar R., Slotin L. and Stewart R.B.: "Neutron Multiplication in a Mass of Uranium Metal", University of Chicago Metallurgical Project Report CF-1627 (1944).
- 19) Beyer F.C., Bryan R.H., Hummel H.H., Lennox D.H., Martens F.H., Reardon W.A., Rosenzweig N., Smith A.B. and Spinrad B.I.: Proc. 1st U.N. Int. Conf. Peaceful Uses Atomic Energy, Geneva, 5, 342 (1956).
- 20) Neuer J.J. and Stewart, C.B.: "Preliminary Survey of Uranium Metal Exponential Columns", LA-2023 (1956).
- Leipunsky A.I., Abramov A.I., Andreev V.N., Baryshnikov A.I., Bondarenko I.I., Galkov V.I., Golubev V.I., Gulko A.D., Guseinov A.G., Kazachkovsky O.D., Kozlova N.V., Krasnoyarov N.V., Kuzminov B.D., Morozov V.N., Nikolaev M.N., Smirenkin G.N., Stavissky Yu. Ya., Ukraintsev F.I., Usachev L.N., Fetisov N.I. and Sherman L.E.: Proc. 2nd U.N. Int. Conf. Peaceful Uses Atomic Energy, Geneva, **12**, 3 (1958).
- 22) Campan J.L., Clauzon P., Kirchner B., Ribon P. and Zaleski C.P.: "Experience Exponentielle Rapide, Resultats Preliminaires", Report S.N.E. No. 13 (1958).
- 23) Benoist P.: "Théorie du Coefficient des Diffusion des Neutrons dans un Reseau Conportant des Cavités", CEA-R 2278 (1964).
- 24) Ingram G., Hardiman J.P., Smith R.W., Konishi T. and Nakano M.: Proc. Int. Symp. Physics of Fast Reactors, Tokyo, Oct. 16–19, 1973, Vol. I, p. 289 (1973).
- Stevenson J.M., Hardiman J.P. and Yoshida H.: Proc. Int. Symp. Physics of Fast Reactors, Tokyo, Oct. 16–19, 1973, Vol. I, p. 355 (1973).
- 26) Broomfield A.M., Collins P.J., Carter M.D., Marshall J., Sugawara A., Sekiguchi Y. and Konishi T.: Proc. Int. Symp. Physics of Fast Reactors, Tokyo, Oct. 16–19, 1973, Vol. I, p. 312 (1973).
- 27) Carpenter S.G.: "Measurement of Control Rod Worths Using ZPPR", Paper presented at Specialists' Meeting on Control Rod Measurement Technique: Reactivity Worths and Power Distributions, Cadarache, 12–22 April 1976, NEACRP-U-75L (1976).
- 28) Osugi T., Yoshida H., Iijima S., Shinhama K. and Hirata M.: "Analysis of Simulated Control Rod Worth Experiments Made in Phase IA and Phase IB Cores of ZPPR Assembly 3", Private Communication, (1976).
- 29) Iijima S., Iida M., Kawai M., Yamamoto M., Yoshida T. and Sano J.: Proc. 3rd Seminar Neutron Cross Sections, 9 – 11 Nov., 1972, JAERI, JAERI-1228, p. 183 (1973) [in Japanese].
- Asami T., Kikuchi Y., Nakagawa T. and Igarasi S.: "Neutron Data of Structural Materials for Fast Reactors", Proc. NEANDC, NEACRP Specialists' Meeting, Geel, 5-8 Dec. 1977, p. 118, Pergamon Press (1979).
- Otake I.: "Neutron Data of Structural Materials for Fast Reactors", Proc. NEANDC, NEACRP Specialists' Meeting, Geel, 5–8 Dec. 1977, p. 105, Pergamon Press (1979).
- 32) Kimura I., Kobayashi K., Hayashi S.A., Yamamoto S., Nishihara H., Ando M., Kanazawa S. and Nakagawa M.: "Nuclear Cross sections and Technology", Proc. Conf. Washington, D.C., March 3-7, 1975, Vol. 1, p. 184, NBS Special Publication 425 (1975).

# Appendices

#### Appendix 1 Production of Reactor Constants

The library of multigroup constants of the JAERI-Fast set<sup>1~3)</sup> type was produced from JENDL-1 data by using two processing codes PROF-GROUCH-G-II<sup>4)</sup> and TIMS-1<sup>5)</sup>. The PROF-GROUGH-G-II code produces the group constants of light and intermediate nuclides in the full energy range and those of heavy nuclides in the smooth region above resonance energy. The TIMS-1 code calculates the temperature dependent group constants of heavy nuclides in the resonance energy region. The produced library contains both cross sections and self-shielding factors of 70 groups whose structure is given in **Table A1.1**. The thermal group is not contained in this library.

| Group | Upper energy | Lower<br>energy | Lethargy<br>width | Group | Upper energy | Lower<br>energy | Lethargy<br>width |
|-------|--------------|-----------------|-------------------|-------|--------------|-----------------|-------------------|
| 1     | 10.5 (MeV)   | 8.3             | 0.2351            | 36    | 1.66 (keV    | ) 1.29          | 0.2522            |
| 2     | 8.3 (MeV)    | 6.5             | 0.2445            | 37    | 1.29 (keV    | ) 1.0           | 0.2546            |
| 3     | 6.5 (MeV)    | 5.1             | 0.2426            | 38    | 1000 (eV     | ) 773           | 0.2575            |
| 4     | 5.1 (MeV)    | 4.0             | 0.2429            | 39    | 773 (eV      | ) 598           | 0.2567            |
| 5     | 4.0 (MeV)    | 3.1             | 0.2549            | 40    | 598 (eV      | ) 465           | 0.2516            |
| 6     | 3.1 (MeV)    | 2.5             | 0.2151            | 41    | 465 (eV      | ) 360           | 0.2559            |
| 7     | 2.5 (MeV)    | 1.9             | 0.2744            | 42    | 360 (eV      | ) 278           | 0.2585            |
| 8     | 1.9 (MeV)    | 1.4             | 0.3054            | 43    | 278 (eV      | ) 215           | 0.2570            |
| 9     | 1.4 (MeV)    | 1.1             | 0.2412            | 44    | 215 (eV      | ) 166           | 0.2587            |
| 10    | 1.1 (MeV)    | 0.8             | 0.3185            | 45    | 166 (eV      | ) 129           | 0.2522            |
| 11    | 0.8 (MeV)    | 0.63            | 0.2389            | 46    | 129 (eV      | 001 (           | 0.2546            |
| 12    | 0.63 (MeV)   | 0.50            | 0.2311            | 47    | 100 (eV      | ) 77.3          | 0.2575            |
| 13    | 0.50 (MeV)   | 0.4             | 0.2231            | 48    | 77.3 (eV     | ) 59.8          | 0.2567            |
| 14    | 0.4 (MeV)    | 0.31            | 0.2549            | 49    | 59.8 (eV     | ) 46.5          | 0.2516            |
| 15    | 0.31 (MeV)   | 0.25            | 0.2151            | 50    | 46.5 (eV     | ) 36.0          | 0.2559            |
| 16    | 0.25 (MeV)   | 0.2             | 0.2231            | 51    | 36.0 (eV     | ) 27.8          | 0.2585            |
| 17    | 0.2 (MeV)    | 0.15            | 0.2877            | 52    | 27.8 (eV     | ) 21.5          | 0.2570            |
| 18    | 0.15 (MeV)   | 0.12            | 0.2231            | 53    | 21.5 (eV     | ) 16.6          | 0.2587            |
| 19    | 0.12 (MeV)   | 0.1             | 0.1823            | 54    | 16.6 (eV     | ) 12.9          | 0.2522            |
| 20    | 100 (keV)    | 77.3            | 0.2575            | 55    | 12.9 (eV     | ) 10.0          | 0.2546            |
| 21    | 77.3 (keV)   | 59.8            | 0.2567            | 56    | 10.0 (eV     | ) 7.73          | 0.2575            |
| 22    | 59.8 (keV)   | 46.5            | 0.2516            | 57    | 7.73 ( eV    | ) 5.98          | 0.2567            |
| 23    | 46.5 (keV)   | 36.0            | 0.2559            | 58    | 5.98 (eV     | ) 4.65          | 0.2516            |
| 24    | 36.0 (keV)   | 27.8            | 0.2585            | 59    | 4.65 (eV     | ) 3.60          | 0.2559            |
| 25    | 27.8 (keV)   | 21.5            | 0.2570            | 60    | 3.60 (eV     | ) 2.78          | 0.2585            |
| 26    | 21.5 (keV)   | 16.6            | 0.2587            | 61    | 2.78 ( eV    | ) 2.15          | 0.2570            |
| 27    | 16.6 (keV)   | 12.9            | 0.2522            | 62    | 2.15 ( eV    | ) 1.66          | 0.2587            |
| 28    | 12.9 (keV)   | 10.0            | 0.2546            | 63    | 1.66 ( eV    | ) 1.29          | 0.2522            |
| 29    | 10.0 (keV)   | 7.73            | 0.2575            | 64    | 1.29 ( eV    | ) 1.0           | 0.2546            |
| 30    | 7.73 (keV)   | 5.98            | 0.2567            | 65    | 1.0 ( eV     | ) 0.773         | 0.2575            |
| 31    | 5.98 (keV)   | 4.65            | 0.2516            | 66    | 0.773 ( eV   | ) 0.598         | 0.2567            |
| 32    | 4.65 (keV)   | 3.60            | 0.2559            | 67    | 0.598 ( eV   | ) 0.465         | 0.2516            |
| 33    | 3.60 (keV)   | 2.78            | 0.2585            | 68    | 0.465 ( eV   | ) 0.360         | 0.2559            |
| 34    | 2.78 (keV)   | 2.15            | 0.2570            | 69    | 0.360 ( eV   | ) 0.278         | 0.2585            |
| 35    | 2.15 (keV)   | 1.66            | 0.2587            | 70    | 0.278 ( eV   | ) 0.215         | 0.2570            |

Table A1.170-group structure

In the group constants system of JAERI-Fast set, the group-averaged cross section of reaction x for energy group g is defined as

$$\bar{\sigma}_{x}^{g}(\sigma_{0}, T) = \frac{\int_{\Delta E_{g}} \sigma_{x}(E, T) \phi(E, T, \sigma_{0}) dE}{\int_{\Delta E_{g}} \phi(E, T, \sigma_{0}) dE}$$

where  $\phi(E, T, \sigma_0)$  is the weighting spectrum depending on the energy *E*, temperature *T*, and admixture cross section  $\sigma_0$ . Furthermore, a special total cross section used to calculate the diffusion coefficient is defined as

$$\bar{\sigma}^{g}_{t}(\sigma_{0},T) = \frac{\int_{\Delta E_{g}} \phi(E,T,\sigma_{0}) dE}{\int_{\Delta E_{g}} \frac{\phi(E,T,\sigma_{0})}{\sigma_{t}(E,T) + \sigma_{0}} dE} - \sigma_{0}.$$

The elastic removal cross section is given by

$$\bar{\sigma}^{g}_{er}(\sigma_{0}, T) = \frac{\int_{\Delta E'} \sigma_{s}(E, T) \phi(E, T, \sigma_{0}) \frac{E_{L} - \alpha E}{1 - \alpha} dE}{\int_{\Delta E_{g}} \phi(E, \sigma_{0}, T) dE}$$
$$\Delta E' = \frac{E_{L}}{\alpha} - E_{L},$$
$$\alpha = \left(\frac{A - 1}{A + 1}\right)^{2},$$

where  $E_{\rm L}$  is the lower energy boundary of integration interval  $\Delta E_{g}$ ,  $\sigma_{s}(E, T)$  the elastic scattering cross section and A the atomic mass of the resonant element. The self-shielding factor is defined as the ratio to the effective cross section of an infinitely dilute system at 300°K:

$$f_{x}^{g}(\sigma_{0},T) = \frac{\bar{\sigma}_{x}^{g}(\sigma_{0},T)}{\bar{\sigma}_{x}^{g}(\infty,300)} .$$

As to the weighting spectrum, the PROF-GROUGH-G-II code uses the conventional form as

$$\phi$$
 (E, T,  $\sigma_0$ ) =  $\frac{\phi^0(E)}{\sigma_t(E, T) + \sigma_0}$ 

where the global spectrum  $\phi^0(E)$  is assumed to be 1/E up to 1 MeV and to be fission spectrum with nuclear temperature of 200 keV above 1 MeV. In the TIMS-1 code, on the other hand, the weight function  $\phi(E, T, \sigma_0)$  are numerically calculated by solving the neutron slowing down equation by the use of a recurrence formula for nuetron slowing down source.

The presently processed nuclides are H, Be, <sup>10</sup>B, <sup>11</sup>B, C, O, Na, Al, Si, Cr, Mn, Fe, Ni, Cu, Mo, <sup>234</sup>U, <sup>235</sup>U, <sup>238</sup>U, <sup>239</sup>Pu, <sup>240</sup>Pu, <sup>241</sup>Pu, <sup>242</sup>Pu and <sup>241</sup>Am. Among them, data of Be, <sup>11</sup>B, O and <sup>242</sup>Pu were taken from ENDF/B-IV, because they are not contained in JENDL-1. The temperature dpendent self-shielding factors<sup>6</sup> were produced for five heavy resonant nuclides, <sup>235</sup>U, <sup>238</sup>U, <sup>239</sup>Pu, <sup>240</sup>Pu and <sup>241</sup>Pu at 300, 900 and 2100°K. The admixture cross sections were selected appropriately from the range between 0 and 10<sup>4</sup> barns. Detailed specifications are given for each nuclide in **Table A1.2**.

| Material          | PROF-GROUGH-G-II | TIMS-1          | Temperature<br>(°K) | $\sigma_0^{}$ – values (barn)                                 |
|-------------------|------------------|-----------------|---------------------|---------------------------------------------------------------|
| <sup>235</sup> U  | 10.5MeV-21,5keV  | 21.5keV-0.215eV | 300, 900, 2100      | $0, 10, 10^2, 10^3$                                           |
| <sup>238</sup> U  | 10.5MeV-46,5keV  | 46.5keV-0.215eV | 300, 900, 2100      | $0, 1, 10, 10^2, 10^3$                                        |
| <sup>239</sup> Pu | 10.5MeV-21.5keV  | 21.5keV-0.215eV | 300, 900, 2100      | $0, 10, 10^2, 10^3$                                           |
| <sup>240</sup> Pu | 10.5MeV-46.5keV  | 46.5keV-0.215eV | 300, 900, 2100      | $0, 10^2, 10^3, 10^4$                                         |
| <sup>241</sup> Pu | 10.5MeV-21.5keV  | 21.5keV-0.215eV | 300, 900, 2100      | 0, 10, 10 <sup>2</sup> , 10 <sup>3</sup> , 10 <sup>4</sup>    |
| Н                 | 10.5MeV-0.215eV  |                 | 0                   | 0, 1, 10, 10 <sup>2</sup> , 10 <sup>3</sup> , 10 <sup>4</sup> |
| Be                | n                |                 | 0                   | */                                                            |
| <sup>10</sup> B   | "                |                 | 0                   | "                                                             |
| <sup>11</sup> B   | "                |                 | 0                   | "                                                             |
| С                 | "                |                 | 0                   | "                                                             |
| 0                 | "                |                 | 0                   | **                                                            |
| Na                | "                |                 | 0                   | 11                                                            |
| Al                | "                |                 | 0                   | "                                                             |
| Si                | "                |                 | 0                   | "                                                             |
| Cr                | "                |                 | 0                   | "                                                             |
| Mn                | "                |                 | 0                   | "                                                             |
| Fe                | "                |                 | 0                   | "                                                             |
| Ni                | и                |                 | 0                   | "                                                             |
| Cu                | "                |                 | 0                   | "                                                             |
| Мо                | "                |                 | 0                   | "                                                             |
| <sup>234</sup> U  | "                |                 | 0                   | "                                                             |
| <sup>242</sup> Pu | "                |                 | 0                   | "                                                             |
| <sup>241</sup> Am | "                |                 | 0                   | "                                                             |

Table A1.2 Materials processed with PROF-GROUGH-G-II and TIMS-1

#### References

- 1) Katsuragi S., Tone T. and Hasegawa A.: "JAERI Fast Reactor Group Constants Systems Part I", JAERI 1195 (1970).
- 2) Katsuragi S., Ishiguro Y., Takano H. and Nakagawa M.: "JAERI Fast Reactor Group Constants Systems Part II-1", JAERI 1199 (1970).
- 3) Takano H., Hasegawa A., Nakagawa M., Ishiguro Y. and Katsuragi S.: "JAERI Fast Reactor Group Constants Set, Version II", JAERI 1255 (1978).
- 4) Hasegawa A. et al.: to be published.
- 5) Takano H., Ishiguro Y. and Matsui Y.: "TIMS-1: A Processing Code for Production of Group Constants of Heavy Resonant Nuclei", JAERI 1267 (1980).
- 6) Takano H., Matsui Y. and Ishiguro Y: "Effect of Difference between group Constants Processed by Codes TIMS and ETOX on Integral Quantities", JAERI-M 7724 (1978).

#### Appendix 2 Benchmark Specification

#### A2.1 Twenty-seven Assemblies with One-dimensional Model

#### A2.1.1 Eighteen Assemblies Selected by Hardie et al.

Hardie *et al.*<sup>1)</sup> selected 18 critical assemblies for benchmark tests of ENDF/B. We adopted all of them. One-dimensional spherical model was adopted in the present work except for ZPPR-2 in which case the model was a 1-D cylinder. The precise specifications are given in Ref. (1). In the present model, number densities of some minor nuclides were included to those of analogous nuclides because of limitation on number of nuclides for EXPANDA-70D<sup>2</sup>). The specifications adopted in the present calculations are given in **Table A2.4** as the input format for EXPANDA-70D.

#### A2.1.2 MZA and MZB

The MOZART experiments were performed for mock-up of Japanese proto-type fast reactor "MONJU" as a joint work between Japan and the United Kingdom. The measurements were made very carefully and the detailed analyses were made for the calculational model. Hence we adopted the physics mock-up cores, MZA and MZB, for the present benchmark tests.

One-dimensional spherical model was adopted for both MZA and MZB, though 1-D cylinder model may be more adequate for MZB of pancake shape. The specifications are given in **Table A2.1**. The input format for EXPANDA-70D is given in **Table 2.4**.

#### A2.1.3 FCA Assemblies

Number of critical experiments have been made at FCA facility in JAERI since 1967. Kamei and Kikuchi<sup>3)</sup> made the benchmark problems concerning FCA assemblies. Examining the quality and quantity of the measured data and abandoning cores for complicated engineering mock-up experiments, they selected 13 assemblies for the benchmark tests of nuclear data: I-1, I-4, I-6, II-4S, II-5S, III-1, III-2S, IV-1, IV-1-P', V-1, V-2, VI-1 and VI-2.

Two-dimensional R-Z model and one-dimensional spherical model were made for most cores. One-dimensional cylinder model was applied for FCA VI-2 assembley because of its pancake shape. Assemblies II-4S, II-5S and III-2S are spherical cores and therefore only 1-D spherical model was applied. Assemblies IV-1 and IV-1-P' are special cores whose  $k_{\infty}$ -value is unity. As the EXPANDA-70D code has no option to treat completely reflective boundaries, we assume a very large spherical core with radius of 20 m so that the leakage becomes negligible. The transport corrections were calculated by using JENDL-1 with a 1-D transport code DTF-IV<sup>4</sup>). The cell heterogeneity corrections were obtained by solving the integral transport equation with the EXPANDA-75 code<sup>5</sup>) by using JENDL-1. The benchmark specifications and the corrections are given in **Table A2.2**.

The benchmark calculation was made for all the 13 assemblies, but we considered only the results of I-1, I-6, III-2S, V-1, V-2, VI-1 and VI-2, taking account of the quality and quantities of the measured data and of the reliability of modeling. Particularly we abandoned FCA-II series and -IV series in the present work from the following reasons.

FCA-II series (II-4S and II-5S) contain large amount of polyethelene to soften the spectrum. It was found that the  $k_{eff}$ -values of these assemblies were very sensitive to the method used in calculating the self-shielding factors. The sensitivity of the method was investigated by Takano et al.<sup>6</sup>) by using two sets of the self-shilding factors; one is obtained with

| Assembly                      |           |                          | M             | ZA          |         |           |          |                         | _             | MZB          |               |         |           |
|-------------------------------|-----------|--------------------------|---------------|-------------|---------|-----------|----------|-------------------------|---------------|--------------|---------------|---------|-----------|
| Model                         | Sphere:   | 4 region cor             | e + blanket · | + reflector |         | _         | Sphere:  | 4 region inne           | er core + out | er core + bl | anket + refle | ctor    |           |
| Region                        | Core-1    | Core-2                   | Core-3        | Core-4      | R.B.    | Reflector | I.C1     | I.C2                    | I.C3          | I.C4         | O.C.          | R.B.    | Reflector |
| Thickness (cm)                | 30.55     | 7.80                     | 8.38          | 4.57        | 37.65   | 23.30     | 44.55    | 8.71                    | 8.79          | 7.54         | 11.41         | 38.24   | 26.33     |
| Number density $(10^{22}/cc)$ |           |                          |               |             |         |           |          |                         |               |              |               |         |           |
| Pu-239                        | 0.1361    | 0.1343                   | 0.1347        | 0.1348      |         |           | 0.0892   | 0.0894                  | 0.0894        | 0.0892       | 0.1346        |         |           |
| Pu-240                        | 0.0323    | 0.0350                   | 0.0332        | 0.0330      |         |           | 0.0183   | 0.0183                  | 0.0183        | 0.0184       | 0.0332        |         |           |
| Pu-241                        | 0.0046    | 0.0055                   | 0.0053        | 0.0053      |         |           | 0.0027   | 0.0027                  | 0.0027        | 0.0027       | 0.0052        |         |           |
| U-235                         | 0.0039    | 0.0039                   | 0.0039        | 0.0039      | 0.0070  |           | 0.0043   | 0.0043                  | 0.0043        | 0.0043       | 0.0039        | 0.0055  |           |
| U-238                         | 0.5357    | 0.5354                   | 0.5357        | 0.5357      | 0.9718  |           | 0.5926   | 0.5925                  | 0.5925        | 0.5926       | 0.5351        | 0.7644  |           |
| B-10                          | 1.14-6*   |                          |               |             | 1.14-4* |           |          |                         |               |              |               | 1.75-5* |           |
| B-11                          | 4.01-6*   |                          |               |             | 1.34-6* |           |          |                         |               |              |               | 4.63-7* |           |
| С                             | 0.3123    | 0.3126                   | 0.3127        | 0.3117      | 1.4437  | 0.0485    | 0.0111   | 0.0111                  | 0.0106        | 0.0105       | 0.3119        | 1.1257  | 0.0461    |
| 0                             | 1.0799    | 1.0793                   | 1.0800        | 1.0797      | 0.3318  |           | 1.2551   | 1.2551                  | 1.2551        | 1.2551       | 1.0789        | 0.0512  |           |
| Na                            | 0.8580    | 0.8515                   | 0.8520        | 0.8520      | 0.5067  | 0.0185    | 0.9242   | 0.9244                  | 0.9257        | 0.9257       | 0.8584        | 0.9099  | 0.0169    |
| Al                            | 0.0026    | 0.0026                   | 0.0026        | 0.0025      | 0.4246  | 1.1503    | 0.0027   | 0.0027                  | 0.0027        | 0.0027       | 0.0026        | 0.0683  | 1.3724    |
| Cr                            | 0.3464    | 0.3448                   | 0.3449        | 0.3448      | 0.2030  | 0.0345    | 0.3447   | 0.3455                  | 0.3552        | 0.3550       | 0.3403        | 0.3355  | 0.0412    |
| Mn                            | 0.0250    | 0.0271                   | 0.0271        | 0.0271      | 0.0141  | 0.0401    | 0.0259   | 0.0259                  | 0.0253        | 0.0253       | 0.0268        | 0.0236  | 0.0358    |
| Fe                            | 1.2520    | 1.2613                   | 1.2609        | 1.2596      | 1.3951  | 5.3110    | 1.2532   | 1.2512                  | 1.2356        | 1.2349       | 1.2518        | 1.2891  | 4.9574    |
| Ni                            | 0.1739    | 0.1715                   | 0.1715        | 0.1714      | 0.1027  | 0.0193    | 1.1811   | 0.1819                  | 0.1882        | 0.1881       | 0.1693        | 0.1678  | 0.0230    |
| Cu                            |           | 0.0996                   | 0.0496        | 0.0496      | 0.0007  | 0.0002    | 0.0232   | 0.0236                  | 0.0236        | 0.0236       | 0.0054        | 0.0010  | 0.0002    |
| Мо                            | 0.0011    | 0.0011                   | 0.0011        | 0.0011      | 0.0011  | 0.0003    | 0.0011   | 0.0011                  | 0.0011        | 0.0011       | 0.0011        | 0.0016  | 0.0004    |
| Corrections<br>(%∆k/k)        | 1 D → 2 D | 0: −1.96, S <sub>n</sub> | : 0.75, Het   | ero: 1.40   |         |           | 1 D → 2D | ∷ −1.86, S <sub>n</sub> | : 0.36, Hete  | ero: 1.23    |               |         |           |

 Table A2.1
 Benchmark Specifications of MZA and MZB Assemblies

\* 1.1 - 6 denotes  $1.1 \times 10^{-6}$ 

| Ass                       | embly Name                                                                                                                                                                 | 1-1                                            | 1-4                                                       | I-6                                            | II-4S                                                                   | II-5S                                                                    | III-1                                                           | 111-28                                                        | IV-1                                       | 1V-1-P'                                                                  | V-1                                                                                                                 | V-2                                                                                                                  | VI-1                                                                                                            | v                                                                                                                                        | 1-2                                                                                                     |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|                           | Fuel Type                                                                                                                                                                  | 20% EU                                         | EU/C                                                      | EU                                             | EU/C/CH₂                                                                | EU/C/CH₂                                                                 | EU/Al                                                           | EU/C                                                          | EU/NU                                      | Pu/NU                                                                    | $\frac{Pu/EU}{Na/Al_2O_3}$                                                                                          | Pu/EU/Na                                                                                                             | Pu/1                                                                                                            | DUO <sub>2</sub> /Na/A                                                                                                                   | l <sub>2</sub> 'O <sub>3</sub>                                                                          |
| Benchmark                 | Geometry<br>Number of Region<br>Core Radius (cm)<br>Core Height (cm)                                                                                                       | Sphere<br>2<br>19.24                           | Sphere<br>2<br>23.442                                     | Sphere<br>2<br>17.88                           | Sphere<br>2<br>31.9                                                     | Sphere<br>2<br>38.15                                                     | Sphere<br>2<br>36.91                                            | Sphere<br>2<br>38.8                                           | ∞<br>1                                     | ∞<br>1                                                                   | Sphere<br>2<br>32.34                                                                                                | Sphere<br>2<br>36.30                                                                                                 | Sphere<br>2<br>46.59                                                                                            | Cylir<br>2 (core) +<br>R1=29.38<br>91.44                                                                                                 | ider<br>R.B.<br>R2=46.70                                                                                |
|                           | Critical Mass:U<br>Pu-fiss.                                                                                                                                                | 91.1                                           | 123.8                                                     | 73.2                                           | 95.1                                                                    | 162.6                                                                    | 281.5                                                           | 256.2                                                         | k <sub>∞</sub> =1.024                      | k <sub>∞</sub> 0.9963                                                    | 141.66<br>108.3<br>59.3                                                                                             | 200.36<br>114.9<br>84.0                                                                                              | 423.63<br>2.51<br>266.6                                                                                         | 422.0 (1st<br>103.8 (1st                                                                                                                 | 6, V 2=3 / 8.54<br>& 2nd Reg.)<br>Reg.)                                                                 |
|                           | Core                                                                                                                                                                       |                                                |                                                           |                                                |                                                                         |                                                                          |                                                                 |                                                               |                                            |                                                                          |                                                                                                                     |                                                                                                                      | _                                                                                                               | 1st region                                                                                                                               | 2nd region                                                                                              |
|                           | $\begin{array}{c} Pu-239 \\ Pu-240 \\ Pu-241 \\ U-235 \\ U-238 \\ H \\ C \\ O \\ (\times 10^{22}/cc) \\ O \\ Na \\ Al \\ Cr \\ Fc \\ Ni \\ B_g^2 \\ (cm^{-2}) \end{array}$ | 0.7836<br>3.113<br>0.1827<br>0.6652<br>0.07964 | 0.588<br>-2.3344<br>1.8361<br>0.1827<br>0.6652<br>0.07964 | 0.7836<br>3.113<br>0.1827<br>0.6652<br>0.07964 | 0.1792*<br>0.7114*<br>0.787*<br>4.590*<br>0.2814*<br>1.0233*<br>0.1214* | 0.1792*<br>0.7114*<br>0.3923*<br>4.813*<br>0.2814*<br>1.0233*<br>0.1214* | 0.3428<br>1.362<br>0.9826<br>1.216<br>0.3553<br>1.292<br>0.1527 | 0.2685*<br>1.0670*<br>4.197*<br>0.2814*<br>1.0233*<br>0.1214* | 0.2407<br>3.677<br>0.183<br>0.665<br>0.080 | 0.1287<br>0.0112<br>0.0010<br>0.0261<br>3.598<br>0.217<br>0.788<br>0.098 | 0.10446<br>0.009427<br>0.001124<br>0.1960<br>0.7781<br>1.6476<br>0.60431<br>1.1065<br>0.30535<br>1.09705<br>0.14275 | 0.10458<br>0.009325<br>0.001069<br>0.1470<br>0.58359<br>1.3101<br>0.81341<br>0.88395<br>0.32734<br>1.1950<br>0.15345 | 0.15687<br>0.01400<br>0.00142<br>0.00152<br>0.69057<br>1.5598<br>0.7656<br>0.1354<br>0.3552<br>1.3004<br>0.1639 | 0.10458<br>0.00933<br>0.00092†<br>0.00152<br>0.69057<br>1.7286<br>0.7656<br>0.2403<br>0.3413<br>1.2504<br>0.1566<br>7.06×10 <sup>4</sup> | 0.28483<br>0.68915<br>1.3619<br>0.7656<br>0.9079<br>0.3134<br>1.1504<br>0.1402<br>7.16×10 <sup>-4</sup> |
| Blank                     | et or Reflector                                                                                                                                                            | 30cm NU                                        | 30cm NU                                                   | 25.5 cm<br>Carbon                              | 30.6cm NU                                                               | 28.4cm NU                                                                | 20cm NU                                                         | 2.78cm NU                                                     |                                            |                                                                          | 30cm NU                                                                                                             | 30cm NU                                                                                                              | 26cm DU                                                                                                         | 26.47                                                                                                                                    | 'cm NƯ                                                                                                  |
|                           | - U-235<br>U-238<br>C<br>Cr (x10 <sup>22</sup> /cc)<br>Fe                                                                                                                  | 0.02<br>3.98<br>0.18<br>0.66                   | 2891<br>39<br>327<br>552                                  | 7.344<br>0.1827<br>0.6652                      |                                                                         | 0.03<br>3.98<br>0.18<br>0.66                                             | 2891<br>39<br>827<br>552                                        |                                                               |                                            |                                                                          | 0.0<br>3.9<br>0.1<br>0.6                                                                                            | 2891<br>89<br>827<br>652<br>70:4                                                                                     | 0.0086<br>4.0070<br>0.1827<br>0.6652                                                                            | 36         0.02891           70         3.989           27         0.1827           52         0.6652                                    |                                                                                                         |
|                           | NI<br>Bg                                                                                                                                                                   | 0.0                                            | /964                                                      | 0.07964                                        |                                                                         | 0.07964                                                                  |                                                                 | 0.0                                                           | /964                                       | 0.07964                                                                  | 5.66                                                                                                                | × 10 <sup>-4</sup>                                                                                                   |                                                                                                                 |                                                                                                                                          |                                                                                                         |
| Hegerogene<br>Transport I | eity Effect** %Δk/k<br>Effect** %Δk/k                                                                                                                                      | 0.0<br>1.9                                     | 0.1<br>1.4                                                | 0.0<br>3.4                                     | 1.5<br>0.7                                                              | 1.4<br>0.5                                                               | 0.1<br>0.9                                                      | 0.4<br>0.6                                                    | 0.0<br>0.0                                 | 0.6<br>0.0                                                               | 0.3 <del>†</del><br>1.1                                                                                             | 0.4†<br>1.0                                                                                                          | 0.7<br>0.8                                                                                                      | 0.6<br>0.4                                                                                                                               |                                                                                                         |
| Comment                   |                                                                                                                                                                            |                                                |                                                           |                                                |                                                                         |                                                                          |                                                                 |                                                               |                                            |                                                                          | †Exp.:<br>0.257<br>%Δk/k                                                                                            | †Exp.:<br>0.345<br>%Δk/k                                                                                             |                                                                                                                 | at Marc                                                                                                                                  | ch 1973                                                                                                 |

 Table A2.2
 Benchmark specifications of FCA assemblies

Private communication from Dr. H. Kuroi (1976)
\*\* Calculated with JENDL-1

Appendices

TIMS-1<sup>7)</sup> and the others with ETOX<sup>8)</sup>. Little difference was observed<sup>6)</sup> between the two sets for most cases. For FCA-II series, however, there exist discrepancies of  $3 \sim 4\%$  in the k<sub>eff</sub>values as seen in **Table A2.3**, though the differences are less than 0.3% for the other FCA assemblies. TIMS-1 solves the slowing down equation in the medium of A = 30, while ETOX assumes the narrow resonance approximation. It is not easy to say which method is more adequate, and we concluded that FCA-II series were not appropriate to benchmark tests of nuclear data.

FCA-IV series consist of the test region with  $k_{\infty} = 1$  sustained by the surrounding driver region. In the present analysis, hypothetical large cores were assumed to make the leakage negligible. But this makes the mesh interval very large and causes the errors due to rough meshes. Hence FCA-IV-1 and -IV-1-P' were abandoned in the benchmark tests.

Table A2.3 Effects of difference in processing

the self-shielding factors on keff

The input format for EXPANDA-70D is given in Table A2.4.

| va           | lues   |        |
|--------------|--------|--------|
| Assemblies   | TIMS   | ETOX   |
| FCA-I-1      | 1.0120 | 1.0122 |
| I-4          | 1.0113 | 1.0116 |
| I-6          | 1.0093 | 1.0106 |
| II-4S        | 0.9764 | 1.0180 |
| I-5S         | 0.9981 | 1.0266 |
| III-i        | 1.0163 | 1.0178 |
| III-2S       | 1.0026 | 1.0028 |
| IV-1         | 0.9960 | 0.9958 |
| IV-1-P       | 0.9548 | 0.9544 |
| V-1          | 1.0061 | 1.0083 |
| V-2          | 1.0108 | 1.0129 |
| <b>VI-</b> 1 | 0.9945 | 0.9967 |
| VI-2         | 1.0071 | 1.0101 |

#### Table A2.4 Benchmark specifications of all the assemblies with onedimensional model as input format for EXPANDA-70D

#### A. Pu-fueled cores

INPUT DATA OF BENCHMARK TESTS FOR PUH CORES. 00000100 0 1 0 70 1123568 5 0 00000200 1.0 CORF-1 LING 0 -1 29 0 2 1 -1 0 01.0E-51.0E-4 0.0 0.0 1.0 8 8 5 00000300 • 3 00000400 00000500 ż 00000600 • • 18 8.6 00000700 5 0A9920 34941.075 - .000020.34001.075 6 200. 300. 300. 5940 7.213 - 3040 3.70 8 26 6.533 - 3 28 6.65 9040 7.213 - 3940 3.70 8 26 6.53 - 3940 3.70 8 26 6.53 - 3940 3.70 8 26 6.53 - 4028 3.44 2125568 7 0 00000800 -4941 2.80 -4 29 7.402 -4941 2.80 -4 29 7.402 00000900 -5 6 4.6204 -2 24 1.579 -311 - 3 12 00001000 -2 24 1.579 00001100 -5 6 4.6204 -1928 7.44 -2 24 1.70 -3 26 6.50 -3 28 7.1 2124568 7 0 COPE-2 2P-3-54 2.REG.SPHERE. 3 170 0 -1 29 0 2 1 -1 0 CLOE-51.0E-4 0.0 0.0 1.0 11 1 5 48 78 70/0 6 78 22 00001200 -3 28 7.10 -431 00001300 00001400 : 3 00001500 00001600 00001800 5.179440.89721.2448 00001900 A 300, 300, 300. -4928 2.615 3949 1.669 -3940 1.07 -4941 8.0 -611 00002000 8925 6.0 2.1.7 0.0 -4928 2.615 2 6 5.5898 -2 13 1.11 8 42 2.08 4 -3 28 9.70 -412 00002100 -4 24 2.081 -3 26 2.134 0002200 -494 8 0 00002300 - 3940 :.07 -621 8925 6.0 -6928 2.615 -3949 1.669 00002400 -3 26 7.134 -3 28 9.70 -422 6 5.5898 -2 13 1.11 -4 24 2.081 23 00002500 1.2.2. -5 24 1.334 -3 26 7.4805 -2 28 6.29 -4 42 5.1 3123568 8 0 CORL-3 2PR-3-53 2-REG.SPMERE. 1 3 170 0 -1 29 0 2 1 -1 0 01.05-51.0E-4 0.0 0.0 1.0 2 11 11 6 3 10 48 78 00002600 -4 42 5.12 -431 00002700 00002800 00002900 00003000 5.18773.938651.2443 00003100 00003200 6 300. 300. 300. 8925 6.0 -6925 00003300 -3940 1.07 -4941 8.0 -611 - 3949 1.669 -A928 2 A15 8 6 5.5898 8 42 2.08 -3 26 7.:34 -412 -4 24 2.CA: -3 28 9.70 00003400 -2 13 1.11 00003500 00003600 -3940 1.07 -4941 8.0 -623 8925 6.0 8 6 5.5898 -6928 2.615 -3949 1.669 -3 26 7.134 -3 28 9.70 - 4 2 2 2 3 00003700 -2 :3 1.11 -4 24 2.081 00003800 8 42 2.08 -5928 3.9770 -2 6 2.4 -3 26 4.496 -33: 00003900 8925 8.3 -5 24 1.311 32 00004000 8 28 6.11 - 4 CORE 4 FCA 5-2 2REG.SPHERE 4 0 00004100 4./2500 4 0 CORE 4 FCA 5-2 2REG." 1 2 1 70 0 -1 29 0 2 1 -1 0 Cl. E-51. E-40. 7 11 5 5 80 00004200 с. 1. 00004300 00004500 5.7302 1. 6300. 300. 00004600 00004700 E 59251.47 E-39285.836 E-311 89491.0458 E-39409.33 E-59411.07 00004800 F-3 243.273 E-3 261.195 E-212 8 81.3101 E-2 118.134 E-3 138.83 • • 00004900 8 281.535 E - 3 00005000 89252.89: E-49283.989 E-2 241.827 E-3 266.652 E-3 287.964 E-42: 5123568 5123568 8 0 CORE-5 SNEAK-7-A 2-REG.SPHERE. : 3 ! 70 0 -1 29 0 2 : -: 0 01.0E-51.0E-4 0.0 0.0 1.0 00005100 00005200 00005300 2 14 14 9 10 48 68 00005400 50.14250.71251.50 6 300. 300. 300. 00005500 00005600 8925 5.86 -5928 7.9604 -3949 2.6374 -3940 2.380 -4941 2.15 -511 00005700 8 2.18462 -2 6 2.60987 -2 13 8.0 8 8 2.18462 -2 6 2.60987 -2 13 8.0 8 28 1.1664 -3 42 1.65 -5 25 1.109 -6 24 2.2423 -4 11 9.33 - 312 00005800 -3 26 7.9802 - 5 13 00005900 
 8925
 5.86
 -5928
 7.9602
 -3949
 2.6374

 8
 8
 2.18462
 -2
 6
 2.60987
 -2
 13
 8.0

 8
 28
 1.1664
 -3
 42
 1.65
 -5
 25
 1.109
 -3940 2.380 -4941 2.15 -521 00006000 00006100 -6 24 2.2423 -3 26 7.9802 -322 00006200 -4 11 9.33 - 5 23 -4928 3.99401 -2 6 1.35 -5 24 1.1080 -3 26 3.9634 8925 1.624 -331 00006300 32 00006400 8 28 9.845 -4 42 1.00 -5 25 8.75 -5 11 4.53 - 5

#### 61235678 6 0 CORE-6 FCA 6-2 3REG.CYLINDER 00006500 1 70 0 -1 29 0 1 1 1 0 01. E-51. E-40. ο. 1 5 1. 00006700 40 62 00006800 80 50.7345.787271.4606 0006900 6300. 300. 300. 00007000 00007100 77.06 E-47.16 E-45.66 E - 4 11 89491.0458 E-39409.33 E-59419.2 8 81.7286 E-2 117.656 E-3 132.403 F-69251 52 E-59286.9057 8-311 00007200 F-212 00007300 E-3 243.413 E-3 261,2504 28:.566 :3 00007400 E-39286.8915 E-3 81.3619 F-3 261.1504 E-2 281.402 E-2 117.656 89252.848 F-3 139 079 E - 321 00007500 22 00007600 8 243.134 E - 3 5-49283.989 E-2 241.827 E-3 266.652 E-3 287.964 E-431 00007700 89252.891 89252,893 = E-49283,989 = E-2241,827 = E-3266,852 = E 7:235678 - 22 0 CORE-7 MZA 6-REG.SPHERE. 7 1 70 0 - 1 29 0 2 1 -1 0 01.0E-51.0E-40.0 0.0 2 17 17 15 15 15 14 9 3 14 34 42 50 58 82 92 00007800 1.0 00007900 00008000 00008100 50.15581.41830.97461.04690.57091.56872.3294 00008200 6300, 300, 300, 300, 300, 300, 300, 00008300 70.0 0.0 0.0 0.0 0.0 0.0 01 00008600 12 70.0 00008500 8925 3.886181E-5949 1.361012E-3928 5.357208E-3940 3.232607E-4 6 3.123281E-311 00008600 8 8 1.079941E-2 11 8.579973E-3 26 1.251963E-2115 4.009848E-8 24 3.463726E-312 8 29 4.963544E-4941 4.644822E-5 42 1.145005E-5 25 2.502263E-4 28 1.738612E-313 00008700 00008800 8105 1.143000E-8 13 2.600244E-5 00008900 8925 3.886181E-5949 1.361012E-3928 5.357208E-3940 3.232607E-4 6 3.123281E-321 C0009000 8 8 1.079941E-2 11 8.579973E-3 26 1.251963E-2115 4.009848E-6 24 3.463726E-322 00009100 8 29 4.963544E-4941 4.644822E-5 42 1.145005E-5 25 2.502268E-4 28 1.738612E-323 00009200 8105 1.:43000E-8 13 2.600244E-5 24 8925 3.883492E-5949 1.343325E-3928 5.353500E-3940 3.500438E-4 6 3.126006E-331 00009300 00009400 8 8 10792786-2 11 8,514944-3 26 1,261317E-2 24 3,44512E-3 29 9,66018E-131 00009400 894: 5,477312E-5 42 1,144758E-5 27,714402E-4 28 1,714983E-3 17,579548E-533 00009400 8925 3,885767E-594 1,347098E-3928 5,56885E-3940 3,320482E+4 6 3,128891E-344 00009700 8925 3.885767E-5949 1.347098E-3928 5.356683E-3940 3.320682E-4 6.3.126891E-34: 00009700 8 8 1.080012E-2 11 8.570851E-3 26 1.76089EE-2 4 5.46397E-3 29 4.965019E-442 00009800 9441 5.312421E-5 42 1.144067E-5 25 2.714488E+4 28 1.715343E-3 32,579969E-543 00009000 8 8 1.079740E-2 18.519840E-3 26 1.259615E-2 4 5.448059E-3 29 4.965019E-445 00010000 8 8 1.079740E-2 18.519840E-3 26 1.259615E-2 4 5.448059E-3 29 4.965019E-453 0001200 8925 3.385761E-5429 9.71756E-5 26 2.714184E+4 28 1.714732E-3 37,499184E-553 00012000 8945 3.314748E-5 42 1.144967E-5 25 2.714184E+4 28 1.714732E-3 37,499184E-553 0001200 8925 7.013167E-5929 9.71756E-5 4 0.143702E-2 8 3.3179717E-3 11 5.066874E-561 00010300 8 4 1.395105E-2115 1.340675E-8 24 2.030370E-3 29 6.855061E-6 42 1.081886E-562 00010400 8 25 1.420715E-4 28 1.026837E-3105 1.135431E-6 13 4.245644E-3 63 8 6 4.848179F-4 26 5.310974E-2 24 3.451174E-4 29 1.582560E-6 42 3.135814E-671 63 00010500 00010600 P ∩ L.AKAT/91-2 26 5.5109761-2 25 5.511742-4 27 1.36250000 42 5.-2 8254.0080826-1 28 1.92859001-4 13 1.151503316-2 11 1.8547081-4 8123568 4 0 COBE-8 FCA 6-1 28EG.SPHERE-MODEL-1 2 2 7.7 0 -1 129 0 2 1 -1 0 01. E-51. E-40. 0. 1. 72 00010700 00010800 00010900 :1 5 00011000 46 64 00011100 51.01281.4444 00011200 6300. 300. 89491.5687 E-39401.4 00011300 E-49411.42 E-59251.52 E-59286.9057 E-311 00011400 8 81.5598 8 281.639 E-2 1:7.656 E-3 131.354 E-3 243.552 E-3 261.3004 E-212 00011500 13 00011600 E-3 287.964 E-421 00011700 00011800 0 00011900 00012000 00012100 5.:73720.86861.3447 00012200 300. 500. 300. 00012300 8925 1.6 -5928 7.404 - 3949 1.645 -3940 1.064 -4941 1.1 -511 00012400 8 6 4.594 -3 26 7.3 -2 :3 1.1 -4 24 1.816 -3 28 7.96 -412 00012500 8 42 2.05 -4 25 7.6 - 5 13 00012600 -3949 1.645 8925 1.6 -3940 1.064 00012700 -5928 7.404 -6961 1.1 -52: -2 13 1.1 -4 24 1.816 -3 26 7.3 -3 28 7.96 -422 00012800 6 42 2.05 -4 25 7.6 23 00012900 8925 8.3 -5928 3.9613 -2 24 1.161 -3 26 4.671 -3 28 5.08 -431 32 00013000 8 25 4.8 - 5 00013100 :0.25568 8 0 CORE-10 ZPR-3-48 Z-REG.SPHERE. : 3 1 70 0 -: 29 0 2 1 -1 0 01.0E-51.0E-4 0.0 0.0 1.0 : 3 13 7 : 0 58 78 00013200 00013300 00013400 00013500 5.180980.90491.50 00013600 300. 300. 300. 00013700 -3949 1.645 8925 1.6 -5928 7.405 -3940 1.064 -4941 1.1 -511 00013800 8 6 2.0770 -2 11 6.355 -3 13 1.09 -4 24 2.531 -3 26 1.0180 -212 00013900 8 28 1.119 -3 42 2.06 -4 25 1.06 13 00014000 8925 1,6 8 6 2.0770 -5928 7.405 -3949 1.645 -3940 1.044 -4941 1.1 00014100 -521 -2 11 6.355 -3 13 1.09 -4 24 2.531 -3 26 1.0180 - 222 00014200 8 28 1.119 -3 42 2.06 -4 25 1.06 23 00014300 -5928 3.9690 8925 8.3 -2 24 1.225 -3 26 4.925 -3 28 5.36 -431 00014400

8 25 5.1

-5 11 6.0

- 5

32 00014500

11123568 7 0 CORE-11 2PR-3-49 2-REG.SPHERE. 1 3 1 70 0 -1 29 0 2 : -1 0 01.0E-51.0E-4 0.0 0.0 1.0 00014600 0 00014700 00014800 12 12 10 58 5 2 88 00014900 5.190120.95061.2143 00015000 6 300. 300. 300. 8925 1.6 -5928 00015100 -5928 7.406 -3949 1.644 -3940 1.064 -4941 1.1 -511 00015200 8 6 2.0766 8 47 7.06 -2 13 1.09 -4 24 2.508 -3 26 1.0083 -2 28 1.121 -312 00015300 -4 25 1.05 - 4 13 00015400 -3949 1.644 8925 1.6 -3940 1.064 -4941 1.1 00015500 -5928 7.406 -521 8 6 2.0766 -2 13 1.09 -4 24 2.508 -3 26 1.0083 -2 28 1.121 - 322 00015600 8 42 2.06 8925 8.3 -4 25 1.05 - 4 23 00015700 -2 24 1.242 -3 26 4.626 -3 28 6.11 -431 00015800 -5928 3.9556 22123568 7 0 CORE-12 2PR-3-568 2-REG.SPHERE. 3 1 70 0 -1 29 0 2 1 -1 0 01.0E-51.0E-4 0.0 0.0 1.0 c 00015900 1 70 0 12 12 10 00016000 00016100 88 00016200 5.210881.05441.1447 6 300. 300. 300. 8925 1.4 -5928 00016300 00016400 -5928 6.195 -3949 1.358 -3940 1.81 -4 8 1.5 00016500 -211 8 6 1.03 8 42 3.43 -3 11 8.669 -4 25 2.2 -3 24 2.5 -3 26 1.37 -2 28 1.09 -312 00016600 13 00016700 -3949 1.358 8925 1.4 -5928 6.195 -3940 1.81 -4 8 1.5 -221 00016800 8 6 1.03 -3 11 8.669 -3 24 2.5 -3 26 1.37 -2 28 1.09 -322 00016900 8 42 3.43 -4 25 2.2 - 4 23 00017000 
 6
 -4
 2
 2.6
 -4
 2.5
 -4
 2.5
 2.6
 -4
 2.5
 2.6
 -4
 2.5
 2.5
 2.5
 3.0
 3.1
 7.82
 -2
 2.5
 3.0
 3.2
 3.5
 7.82
 -2
 2.5
 3.0
 3.2
 3.5
 7.8
 1.7
 2.6
 7.82
 -2
 2.5
 3.0
 3.2
 3.5
 7.6
 2.6
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 7.8
 -431 00017100 o 00017200 00017300 00017400 00017500 50,23001,15001,90502,34252,38252,9275 6 300, 300, 300, 300, 300, 300, 300, 00017600 00017700 -4 5.92 -4 5.92 00017800 7 5.92 -4 5.92 -4 5.92 - 4 01 7 5.92 - 4 12 00017900 -5928 5.5549 -3949 8.433 00018000 -4940 1.141 -4941 1.53 -511 -2 6 3.0 -2 28 1.221 -5928 5.5549 8 8 1.3116 -5 11 8.933 -3 13 3.0 -6 24 2.702 -312 00018100 -3 42 2.31 8 26 1.2576 -4 25 2.09 -4 29 1.9 -513 0001B200 -521 00018300 -4940 1.141 -4941 1.53 8925 1.23 8 8 1.3116 -2 6 3.0 -5 11 8.933 -3 13 3.0 -6 24 2.702 -322 00018400 -3 42 2.31 8 26 1.2576 -2 28 1.221 -4 25 2.09 -4 29 1.9 -523 00018500 8925 1.15 -5928 5.1980 -3940 1.724 -4941 2.31 - 531 00018600 8 8 1.1761 -2 6 2.3 -5 11 8.682 -3 13 4.0 - 332 00018700 -6 24 2.523 8 26 1.3852 -2 28 1.160 -3 42 3.41 -4 25 2.02 -4 29 2.0 - 5 3 3 00018800 8925 2.4 -5928 1.1085 -2 8 2.0132 -2 6 1.013 -3 11 6.492 -341 00018900 8 13 2.0 -6 24 1.991 -3 26 6.931 -3 28 8.98 -4 42 1.4 -542 00019000 8 25 1.57 -4 29 1.7 - 5 43 00019100 -5928 1.1085 -2 8 2 0133 -351 00019200 -2 6 1.013 -3 11 6.065 8925 2.4 8 13 3.0 -6 24 2.172 -3 26 7.549 -3 28 9.87 -4 42 1.5 -552 00019300 8 25 1.74 -4 29 1.8 - 5 53 00019400 -3 26 7.5161 -4 24 1.205 -4-42 1.2 00019500 8 6 5.58 -2 28 5.13 -561 
 0
 0
 0
 1
 2
 0
 1
 2
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 62 00019600 ٥ 00019700 1.0 00019800 00019900 00020000 50.25001.40151.45241.46511.88611.90231.91192.1941 00020100 00020200 70.0 0.0 0.0 0.0 00020300 0.0 0.0 01 70.0 0.0 12 00020400 89498.916317E-049401.832231E-049412.711883E-059254.293537E-059285.925857E-0311 00020500 8 61.110577E-04 81.255138E-02 261.253244E-02 281.810516E-03 119.242322E-0312 8 132.730518E-05 243.447433E-03 252.592418E-04 292.324749E-04 421.124641E-0513 89498.916317E-04940.1.832231E-049412.711883E-059254.29537E-05328.925857E-05321 00020600 00020700 00020800 8 61.110577E-04 81.255138E-02 261.253244E-02 281.810516E-03 119.242322E-0322 00020900 8 132.730518E-05 243.447433E-03 252.592416E-04 292.324749E-04 421.124641E-0523 89498.940394E-049401.825531E-049412.698123E-059254.293326E-059285.925484E-0331 00021000 00021100 8 61.114478-04 61.255052-02 261.251216-02 261.8194728-03 119.243702-03 8 132.727699-05 223.4551828-03 252.5915126-02 261.8194728-03 119.2437026-033 89489.4039746-04401.82553126-044212.6881238-059254.29932542-053288.9254.8848-0341 00021200 00021300 00021400 8 41.062886-04 81.250326-02 241.255596-02 2481.8821078-03 119.2570196-034 8 12.7276796-05 243.5527765-05 252.5347886-04 292.3574978-04 21.1246245-0543 89498.9156816-04.901.8380376-044212.7429986-059254.2938486-059285.02568556-0554 00021500 00021600 00021700 8 61.048065E-04 81.255095E-02 261.234917E-02 281.880967E-03 119.257283E-0352 8 132.721186E-05 243.549894E-03 252.532701E-04 292.357578E-04 421.124636E-0553 00021800 00021900 89491.345700E-039403.317932E-049415.192833E-059253.881736E-059285.351122E-0361 00022000 8 63.119267F-03 81.078882E-02 261.251809F-02 881.693349E-03 188.586108E-0368 8 132.577202E-05 243.403311E-03 252.678221E-04 295.412130E-04 421.144593E-0563 89255.537491E-059227.644108E-031051.753698E-071154.433810E-07 61.125709E-0271 00022100 00022200 00022300 8 85.121978-04 261.289108-02 281.08413E-03 119.093980E-03 136.831933E-0472 00022400 8 24.3355167E-03 252.358001E-04 291.043136E-05 421.635368E-03 00.0 73 00022500 8 44.616631E-04 24.957446E-02 282.300861E-04 11.685362E-04 131.372378E-0281 00022600 8 244.117345E-04 253.575375E-04 291.888036E-06 423.741112E-06 00.0 82 00022700

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -R*B           |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|
| 0 15123568 8 0 CORE-15 ZPR-6-7 Z-REG.5PHERE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 00022800 |
| 1 3 1 70 0 -1 29 0 2 1 -1 0 01.0E-51.0E-4 0.0 0.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 00022900 |
| 2 12 12 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 00023000 |
| 3 10 88 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 00023100 |
| 50.22041.10202.8175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 00023200 |
| 6 300, 300, 300,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 00023300 |
| 8925 1.26 -5928 5.78036 -3949 8.8672 -4940 1.1944 -4941 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 - 511        | 00023400 |
| 8 8 1.390 -2 11 9.2904 -3 24 2.842 -3 26 1.3431 -2 28 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 312          | 00023500 |
| 8 42 2.357 -4 25 2.21 -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13             | 00023600 |
| 8925 1.26 -5928 5.78036 -3949 8.8672 -4940 1.1944 -4941 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 521          | 00023700 |
| 8 8 1.390 -2 11 9.2904 -3 24 2.842 -3 26 1.3431 -2 28 1 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 322          | 00023800 |
| 8 42 2.357 -4 25 2.21 -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23             | 00023900 |
| 8925 8.56 -5928 3.96179 -2 8 2.4 -5 24 1.295 -3 24 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 00024000 |
| 8 28 5 635 -4 42 3 8 -6 25 9 98 -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32             | 00024000 |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52             | 00024200 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00024200 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00024300 |
| 3 10 58 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 00024500 |
| 5 142540 81281 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 0002(400 |
| 6 300 300 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 00024000 |
| 8925 2,663 -4028 1,45794 -2949 1,8312 -3940 1,652 -4041 1,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -511           | 00024800 |
| B B 3 31934 -2 4 4 31 -5 13 1 2112 -3 24 2 7540 -3 24 0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71 -312        | 00024000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13             | 00025000 |
| 8925 2 AA3 _ 4078 1 45794 _ 2040 1 8312 _ 3040 1 A52 _ 4041 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 2 1          | 00025000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71 -323        | 00025100 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 00025200 |
| $R_{0} = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23             | 00023300 |
| B = B = 0.05 = 1.73 + 0.00 = 5.55 = 0.753 = -5.54 + 1.1000 = 5.25.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 554 -5 51<br>T | 00025400 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26             | 00025500 |
| 1 3 1 70 0 -1 20 0 2 1 -1 0 01 0E-51 0E-( 0 0 0 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 00025800 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00025700 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00025800 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00025900 |
| 4 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 00028000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00026100 |
| g = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2) = (1, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 00028200 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00028300 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00028400 |
| $0 \times 1/2 = 0 \times 1/2 = 0 \times 1/1/2 = 0 \times 1/1/$ | -521           | 00026500 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00028800 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23             | 00028700 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -431           | 00026800 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -032           | 00028900 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22             | 00027000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00027100 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00027200 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00027300 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00027400 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00027600 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00027700 |
| 9 7/2 17 E 7 7401.12 E 7 7401. E 7 7202 E 7 720 E 7 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 6-211        | 00027800 |
| 0 242.17 = 5 207.00 = 1-5 209.0 = 1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12             | 00027900 |
| 07471.207 C-37401.12 E-49283.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s t-221        | 00028000 |
| a < 42 = 5 < 207.00 = 5 > 207.0 = 5 - 207.0 = 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 00028100 |
| 9 7/7 7 5 7 7 5 7 7 7 5 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 E-251        | 00028200 |
| 0 242 ETO 201.00 ETO 209.8 ET4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32             | 00028300 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 00028900 |

#### B. U-fueled cores

| INPUT | OF BENCH  | MARK TES | STS FOF | R U-CORES |       |        |          |         |       |      | 00000100 |
|-------|-----------|----------|---------|-----------|-------|--------|----------|---------|-------|------|----------|
|       | 0 1       | 0        | 70      |           |       |        |          | 10      |       |      | 00000200 |
| 0     | 19123568  | 5 0      | ) (     | CORE-19   | VERA  | -1B    | 2-REG.   | SPHERE. |       |      | 00000300 |
| 1     | 3 1 70    | 0 -1 29  | 0 2     | 1 - 1 0   | 01. 8 | -51. E | -40.     | 0. 1.   |       |      | 00000400 |
| 2     | 7         | 7 5      |         |           |       |        |          |         |       |      | 00000500 |
| 3     | 10 4      | 4 84     |         |           |       |        |          |         |       |      | 00000600 |
| 50.   | 28710.478 | 50.9863  |         |           |       |        |          |         |       |      | 00000700 |
| 6 3   | 00. 300.  | 300.     |         |           |       |        |          |         |       |      | 00000800 |
| 892   | 4 9.20    | -5925    | 7.363   | -3928     | 4.55  | - 4    | 6 5.754  | 0 -2 24 | 6.890 | -411 | 00000900 |
| B 2   | 6 6.3410  | -3 28    | 1.635   | - 3       |       |        |          |         |       | 12   | 00001000 |
| 892   | 4 9.20    | -5925    | 7.363   | -3928     | 4.55  | - 4    | 6 5.754  | 0 -2 24 | 6.890 | -421 | 00001100 |
| 8 2   | 6 6.3410  | -3 28    | 1.635   | - 3       |       |        |          |         |       | 22   | 00001200 |
| 892   | 5 2.50    | -4928    | 3.44    | -2 24     | 7.08  | - 4    | 26 6.464 | -3 28   | 1.682 | -331 | 00001300 |

JAERI 1275

```
0 20123568 6 0 CORE-20 ZPR-3-6F 2-REG.SPHERE.
                                                                                                                                                                                       00001400
   1 3 1 70 0 -1 29 0 2 1 -1 0 01, E-51, E-40. 0. 1.
                                                                                                                                                                                        00001500
         8 8 7
10 48 78
    2
                                                                                                                                                                                        00001600
    3
                                                                                                                                                                                       00001700
    5.114980.57491.0167
                                                                                                                                                                                        00001800
   6 300. 300. 300.
8924 6.90 -5925 6.756 -3928 7.547
8 26 7.712 -3 28 8.39 -4 25 8.0
                                                                                                                                                                                       00001900
                                                                                                      -3 13 1.9019 -2 24 1.918
                                                                                                                                                                      -311 00002000
                                                                                                    - 5
                                                                                                                                                                                       00002100
                                                                                                                                                                               12
 8924 6.90 -5925 6.756 -3928 7.547 -3 13 1.9019 -2 24 1.918
8 26 7.712 -3 28 8.39 -4 25 8.0 -5
                                                                                                                                                                          -321 00002200
                                                                                                                                                                               22
                                                                                                                                                                                       00002300
                                                                                                   -3 24 1.129 -3 26 4.539
                                                                                                                                                                           -331
                                                                                                                                                                                        00002400
                                                                                                                                                                               32
                                                                                                                                                                                       00002500
o
                                                                                                                                                                                       0002600
                                                                                                                                                                                        00002700
                                                                                                                                                                                       00002800
                                                                                                                                                                                       00002900
     5.676501.
                                                                                                                                                                                        00003000
    6300. 300.
89491.0446 E-39409.43
                                                                                                                                                                                        00003100
                                                            E-59411.12 E-59251.96
                                                                                                                                  E-39287.781
                                                                                                                                                                       E-311 00003200
    8 81.6476 E-2 116.043 E-3 131.1065 E-2 243.054 E-3 261.0971 E-212
                                                                                                                                                                                       00003300
  6 61.6476 E-2 116.043 E-3 131.1065 E-2 243.034 E-3 261.0471

8 261.4275 E-3

8 262.4275 E-3

8 262.52891 E-49283.989 E-2 241.827 E-3 266.652 E-3 287.964

2 22125588 6 0 CORE-22 2PR-3-12 2-REG.SPHERE.

1 3 1 70 0 -1 29 0 2 1 -1 0 01. E-51. E-40. 0. 1.

2 9 9 7

3 10 48 78
                                                                                                                                                                               13
                                                                                                                                                                                       00003400
                                                                                                                                                                       F-421
                                                                                                                                                                                       00003500
0
                                                                                                                                                                                        00003600
                                                                                                                                                                                        00003700
                                                                                                                                                                                       00003800
                                                                                                                                                                                        00003900
    50.14380.71901.0167
                                                                                                                                                                                       00004000
    6 300. 300. 300.
                                                                                                                                                                                       00004100
    8924 4.6
                                     -5925 4.516
                                                                -3928 1.6948 -2 6 2.6762 -2 24 1.419
                                                                                                                                                                          -311 00004200

        8 26 5.704
        -32 8 6.21
        -4 25 5.9
        -5 11 6.9
        -5

        8 26 5.704
        -32 8 6.21
        -4 25 5.9
        -5 11 6.9
        -5

        8 26 5.704
        -32 88 6.21
        -4 25 5.9
        -5 11 6.9
        -5

        8 26 5.704
        -32 88 6.21
        -4 25 5.9
        -5 11 6.9
        -5

        8 26 5.704
        -32 88 6.21
        -4 25 5.9
        -5 11 6.9
        -5

        8 26 5.704
        -32 88 6.21
        -4 25 5.9
        -5 11 6.9
        -5

        8 26 5.704
        -32 88 6.21
        -4 25 5.9
        -5 11 6.9
        -5

        8 26 5.704
        -32 88 6.21
        -4 25 5.9
        -5 11 6.9
        -5

        8 26 5.8.9
        -5928 4.0026
        -2 24 1.237
        -5 26 4.971
        -3 28 5.41

                                                                                                                                                                               12 00004300
                                                                                                                                                                          -321 00004400
                                                                                                                                                                               22
                                                                                                                                                                                       00004500
  -..., 2200 -..., 222 1.237 -3 26 4.971 -3 21
8 25 5.2 -5 11 6.0 -5
7 23123568 2 0 CORE-23 FCA-1-6 2REG.SPMERE
1 2 1 70 0 -1 29 0 2 1 -1 0 01. E-51. E-40. 0. 1.
2 5 4
   8925 8.9
8 25 5.2
                                                                                                                                                                           -431 00004600
                                                                                                                                                                              32
                                                                                                                                                                                       00004700
0
                                                                                                                                                                                        00004800
                                                                                                                                                                                        00004900
                                                                                                                                                                                       00005000
         26 46
    τ.
                                                                                                                                                                                       00005100
    5 487491 275
                                                                                                                                                                                       00005200
    6300. 300.
                                                                                                                                                                                       00005300

        6300.
        300.
        80257.836
        E-39283.113
        E-2 241.827
        E-3 266.652
        E-3 287.964
        E-411

        8
        67.344
        E-2 241.827
        E-3 266.652
        E-3 287.964
        E-4 21

        2412558
        2
        0
        CRE-24
        FCA-1-1
        2REG.SPHERE

        1
        2
        1.70
        0
        -1 29
        0
        2
        1 -1
        0
        0.1.

                                                                                                                                                                                       00005400
                                                                                                                                                                                       00005500
0
                                                                                                                                                                                       00005600
                                                                                                                                                                                       00005700
                5
                             5
                                                                                                                                                                                        00005800
         30 60
                                                                                                                                                                                       00005900
    5.641331.
                                                                                                                                                                                       00000000

        6300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        3000.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        300.
        <
0
   2
         6 5
52 78
                                                                                                                                                                                        0006600
                                                                                                                                                                                        00006700
    5.746151.0692
                                                                                                                                                                                       00006800
    6300. 300.
                                                                                                                                                                                       00066900
    89252.685 E-39281.067 E-2 64.197 E-2 242.814 E-3 261.0233 E-211
                                                                                                                                                                                       00007000

        BVC22.685
        E-3X281.067
        E-2
        64.177
        E-2
        C42.014
        E-3
        c01.0233

        BV252.691
        E-49283.989
        E-2
        241.827
        E-3
        266.552
        E-3
        287.964

        26123568
        3
        0
        CORE-26
        FCA-1-4
        2REG.SPHERE

        1
        2
        1.70
        0
        -1
        29
        0
        1
        -1
        0
        0.1
        E-51
        E-4
        1.

                                                                                                                                                                               12
                                                                                                                                                                                       00007100
                                                                                                                                                                                       00007200
                                                                                                                                                                       E-421
٥
                                                                                                                                                                                        00007300
                                                                                                                                                                                       00007400
         6 5
34 64
    2
                                                                                                                                                                                        00007500
                                                                                                                                                                                       00007600
    5.689471.
    6300. 300.
                                                                                                                                                                                       00007800
   89255.88 E-39282.3344 E-2 61.8361 E-2 241.827 E-3 266.652
8 287.964 E-4
                                                                                                                                                                       E-311
                                                                                                                                                                                       00007900
  a 287.964 E-4

89252.891 E-49283.989 E-2 241.827 E-3 266.652 E-3 287.964

27123568 3 0 CORE-27 FCA-2-45 28EG.5PHERE

1 2 1 70 0 -1 29 0 2 1 -1 0 01. E-51. E-40. 0. 1.

2 7 5

5 693.64 0 0
                                                                                                                                                                               12
                                                                                                                                                                                       00008000
                                                                                                                                                                       E-421
                                                                                                                                                                                       00008100
٥
                                                                                                                                                                                       00008200
                                                                                                                                                                                       00008300
                                                                                                                                                                                       00008400
                                                                                                                                                                                       00008500
    5.693481.02
                                                                                                                                                                                       00008600
    6300. 300.
                                                                                                                                                                                       00008700
    89251.792
                              E-39287.114
                                                                  E-3 17.87
                                                                                                   E-3 64.59
                                                                                                                                    E-2 242.814
                                                                                                                                                                       E-311 00008800
    8 261.023
                                E-2 281.214
                                                                  E - 3
                                                                                                                                                                                       00008900
                                                                                                                                                                              12
    89252.891
                               E-49283.989
                                                                  E-2 241.827
                                                                                                   E-3 266.652 E-3 287.964
                                                                                                                                                                       E-421 00009000
```

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             | 5                                                                                                                                                                                 |                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ^ | 28123548 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DRF-28                                                                                                                                                                                             | FCA-2-5                                                                                                                                     | S 28FG SP                                                                                                                                                                         |                                                                                                                                                                              | - 0                                                                                                                       | 00009100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 | 1 2 1 70 0 -1 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ັດວັ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 -1 0                                                                                                                                                                                             | 01 6-51                                                                                                                                     | F-40 0                                                                                                                                                                            |                                                                                                                                                                              |                                                                                                                           | 000000100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 7 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | о .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 -1 0                                                                                                                                                                                             | 01. 0 51                                                                                                                                    |                                                                                                                                                                                   | ••                                                                                                                                                                           |                                                                                                                           | 00009200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 1 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00009300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 5 52 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00009200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 5.733651.0145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00009500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 6300. 300.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00009600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 89251.792 E-3928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-5 1.                                                                                                                                                                                             | 5.923 E                                                                                                                                     | -3 64.815                                                                                                                                                                         | E-2 242.014                                                                                                                                                                  | E-311                                                                                                                     | 00009700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8 261.023 E-2 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E-3                                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              | 12                                                                                                                        | 00009800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 89252.891 E-4928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E-2 24:                                                                                                                                                                                            |                                                                                                                                             | -> 200.052                                                                                                                                                                        | E-3 287.964                                                                                                                                                                  | E-421                                                                                                                     | 00009900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 | 29123568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | THE-54                                                                                                                                                                                             | FLA-3-1                                                                                                                                     | 2 MEG.SPHE                                                                                                                                                                        | RE                                                                                                                                                                           |                                                                                                                           | 00010000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 2 2 1 70 0 -1 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 -1 0                                                                                                                                                                                             | 01. E-51                                                                                                                                    | . E-40. 0.                                                                                                                                                                        | 1.                                                                                                                                                                           |                                                                                                                           | 00010100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 2 7 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00010200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 3 54 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00010300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 5.683521.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00010400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 6300. 300.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00010500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 89253.428 E-3928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E-2 89                                                                                                                                                                                             | 9.826 E                                                                                                                                     | -3 131.216                                                                                                                                                                        | E-2 243,553                                                                                                                                                                  | E-311                                                                                                                     | 00010600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8 261.292 E-2 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ε-3                                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              | :2                                                                                                                        | 00010700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 89252.891 E-4928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E-2 24:                                                                                                                                                                                            | 1.827 E                                                                                                                                     | -3 266.652                                                                                                                                                                        | E-3 287.964                                                                                                                                                                  | E-421                                                                                                                     | 00010800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 | 30123568 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DRE-30                                                                                                                                                                                             | 2PR-6-6-                                                                                                                                    | A 2-REG.SF                                                                                                                                                                        | HERE.                                                                                                                                                                        |                                                                                                                           | 00010900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 1 3 1 70 0 -1 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 - 1 0                                                                                                                                                                                            | 01. E-51                                                                                                                                    | . E-40. 0.                                                                                                                                                                        | 1.                                                                                                                                                                           |                                                                                                                           | 00011000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 2 8 8 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00011100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 3 10 88 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00011200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 5.239181.19592.817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00011300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 6 300. 300. 300.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00011400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8925 1.153 - 3928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.8176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -38                                                                                                                                                                                                | 1.390                                                                                                                                       | -2 11 9.2904                                                                                                                                                                      | -3 24 2.842                                                                                                                                                                  | -311                                                                                                                      | 00011500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8 26 1.3431 -2 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -3 25                                                                                                                                                                                              | 2.21                                                                                                                                        | - 4                                                                                                                                                                               |                                                                                                                                                                              | 12                                                                                                                        | 00011600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8925 1.153 -3928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.8176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -38                                                                                                                                                                                                | 1.390                                                                                                                                       | -2 11 9.2904                                                                                                                                                                      | -3 24 2.842                                                                                                                                                                  | -321                                                                                                                      | 00011700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8 26 1.3431 -2 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -3 25                                                                                                                                                                                              | 2.21                                                                                                                                        | - 4                                                                                                                                                                               |                                                                                                                                                                              | 22                                                                                                                        | 00011800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8925 8.56 -5928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.9550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 -2 5                                                                                                                                                                                             | 2.30                                                                                                                                        | -5 24 1.247                                                                                                                                                                       | -3 26 4.4669                                                                                                                                                                 | - 3 3 1                                                                                                                   | 00011900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8 28 5.407 -4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -5                                                                                                                                                                                                 |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              | 32                                                                                                                        | 00012000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ٥ | 31123568 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DRF-31                                                                                                                                                                                             | 2 E 8 8 4 - 2                                                                                                                               | 2-REG. SPH                                                                                                                                                                        | FRE                                                                                                                                                                          |                                                                                                                           | 00012100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| • | 1 3 1 70 0 -1 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 -1 0                                                                                                                                                                                             | 01. 5-51                                                                                                                                    | . F-40. 0.                                                                                                                                                                        | 1.                                                                                                                                                                           |                                                                                                                           | 00012200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 2 12 12 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    | •••••                                                                                                                                       |                                                                                                                                                                                   | ••                                                                                                                                                                           |                                                                                                                           | 00012300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 3 10 58 8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00012400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 50.18180.90901 054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00012500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 6 300 300 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00012600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           | 00012000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8975 2 526 . 3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1 5447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | 1 566                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                              | -511                                                                                                                      | 00012700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8925 2.526 -3928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -7 28                                                                                                                                                                                              | 1.544                                                                                                                                       | -4 6 3.7992                                                                                                                                                                       | -2 13 1.4                                                                                                                                                                    | -511                                                                                                                      | 00012700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8925 2.526 - 3928<br>8 24 8.64 - 4 26<br>8 29 4.0 - 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.9783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3 28                                                                                                                                                                                              | 4.83                                                                                                                                        | -4 42 8.0                                                                                                                                                                         | -6 25 6.4                                                                                                                                                                    | -511                                                                                                                      | 00012700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8925 2.526 -3928<br>8 24 8.64 -4 26<br>8 29 4.0 -6 11<br>8925 2.524 -3928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5667<br>3.9783<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3 28                                                                                                                                                                                              | 4.83                                                                                                                                        | -4 42 8.0                                                                                                                                                                         | -2 13 1.4                                                                                                                                                                    | -511<br>-512<br>13                                                                                                        | 00012700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8925 2.526 -3928<br>8 24 8.64 -4 26<br>8 29 4.0 -6 10<br>8925 2.526 -3928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5667<br>3.9783<br>5.4<br>1.5667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2 8<br>-3 28<br>-5<br>-2 8                                                                                                                                                                        | 1.544<br>4.83                                                                                                                               | -4 42 8.0                                                                                                                                                                         | -2 13 1.V<br>-6 25 6.4<br>-2 13 1.9                                                                                                                                          | -511<br>-512<br>13<br>-521                                                                                                | 00012800<br>00012800<br>00012900<br>00013000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 8925 2.526 -3928<br>8 24 8.64 -4 26<br>8 29 4.0 -6 11<br>8925 2.526 -3928<br>8 24 8.64 -4 26<br>8 29 4.0 -6 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2 B<br>-3 28<br>-5<br>-2 8<br>-3 28                                                                                                                                                               | 1.544<br>4.83<br>1.544<br>4.83                                                                                                              | -4 42 8.0<br>-4 42 8.0<br>-4 42 8.0                                                                                                                                               | -2 13 1.V<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4                                                                                                                             | -511<br>-512<br>13<br>-521<br>-522                                                                                        | 00012700<br>00012800<br>00012900<br>00013000<br>00013100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 8925         2.526         -3921           8         24         8.64         -4.22           8         29         4.0         -6.13           8925         2.526         -3921           8925         2.526         -3921           8925         2.526         -3921           8925         2.526         -3921           824         8.64         -4.22           829         4.0         -6.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2 B<br>-3 28<br>-5<br>-2 8<br>-3 28<br>-5<br>-5                                                                                                                                                   | 1.544<br>4.83<br>1.544<br>4.83                                                                                                              | -4 42 8.0<br>-4 42 8.0<br>-4 42 8.0<br>-4 42 8.0                                                                                                                                  | -2 13 1.V<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4                                                                                                                             | -511<br>-512<br>13<br>-521<br>-522<br>23                                                                                  | 00012700<br>00012800<br>00012900<br>00013000<br>00013100<br>00013200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 8925 2.526 -3021<br>8 24 8.64 -4 22<br>8 29 4.0 -6 1<br>8925 2.526 -3921<br>8 24 8.64 -4 22<br>8 24 8.64 -4 22<br>8 29 4.0 -6 1<br>8925 2.98 -4922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4<br>4.1269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2 8<br>-3 28<br>-5<br>-2 8<br>-3 28<br>-5<br>-2 6                                                                                                                                                 | 4.83<br>1.544<br>4.83<br>4.2                                                                                                                | -4 8 3.7002<br>-4 42 8.0<br>-4 42 8.0<br>-4 42 8.0<br>-5 13 1.9                                                                                                                   | -2 13 1.0<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 24 8.64                                                                                                 | -511<br>-512<br>13<br>-521<br>-522<br>23<br>-431                                                                          | 00012700<br>00012800<br>00012900<br>00013000<br>00013100<br>00013200<br>00013300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 8925       2.526       -3921         8       24       8.64       -4       22         8       29       4.0       -6       11         8       29       4.0       -6       12         8       24       8.0       -6       12         8       24       8.64       -4       22         8       24       8.64       -4       22         8       29       4.0       -6       11         8       29       4.0       -6       12         8       29       4.0       -6       12         8       29       4.0       -6       12         8       29       5.0       -8       -4921         8       29       3.34       -3       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4<br>4.1269<br>4.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2 8<br>-3 28<br>-5<br>-2 8<br>-3 28<br>-5<br>-2 6<br>-4 42                                                                                                                                        | 4.83<br>1.544<br>4.83<br>4.2<br>8.0                                                                                                         | -4 42 8.0<br>-4 42 8.0<br>-4 42 8.0<br>-5 13 1.9<br>-6 25 6.4                                                                                                                     | -2 13 1.4<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 29 4.0                                                                                                  | -511<br>-512<br>13<br>-521<br>-522<br>23<br>-431<br>-632                                                                  | 00012700<br>00012800<br>00012900<br>00013000<br>00013100<br>00013200<br>00013200<br>00013400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • | 8925         2.526         -3921           824         8.64         -4.22           824         8.64         -4.22           8925         2.526         -3921           8925         2.526         -4.22           8924         8.64         -4.22           829         4.0         -6.11           8925         2.92         -3921           826         3.344         -3.21           81         1.5.4         -5           3212         3.344         -3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4<br>4.1269<br>4.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2 8<br>-3 28<br>-5<br>-2 8<br>-3 28<br>-3 28<br>-5<br>-2 6<br>-4 42                                                                                                                               | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0                                                                                                | -4 42 8.0<br>-4 42 8.0<br>-4 42 8.0<br>-5 13 1.9<br>-6 25 6.4                                                                                                                     | -2 13 1.4<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 29 4.0                                                                                                  | -511<br>-512<br>13<br>-521<br>-522<br>23<br>-431<br>-632<br>33                                                            | 00012700<br>00012800<br>00013000<br>00013100<br>00013200<br>00013200<br>00013400<br>00013400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0 | 8925         2.526         -3021           824         8.64         -4.22           829         4.0         -6.13           8925         2.526         -3021           8925         2.526         -3021           8925         2.526         -3021           8925         2.68         -4           8925         2.08         -4921           8925         2.08         -4921           811         5.4         -5           32123568         6         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4<br>4.1269<br>4.83<br>0 C(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2 8<br>-3 28<br>-5<br>-2 8<br>-3 28<br>-3 28<br>-5<br>-2 6<br>-4 42<br>DRE-32                                                                                                                     | 4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>ZPR-3-1                                                                                              | -4 42 8.0<br>-4 42 8.0<br>-4 42 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF                                                                                                       | -2 13 1.4<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 29 4.0<br>PHERE.                                                                                        | -511<br>-512<br>13<br>-521<br>-522<br>23<br>-431<br>-632<br>33                                                            | 00012700<br>00012800<br>00012800<br>00013000<br>00013100<br>00013200<br>00013200<br>00013500<br>00013500<br>00013500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 | 8925         2,526         -392           8 24         8,64         -4         24           8 29         4,0         -6         11           8925         2,526         -3921         8           8 29         4,0         -6         11           8925         2,526         -3921         8           8 29         4,0         -6         11           8 29         4,0         -6         11           8 29         2,08         -4921         8           8 20         3,31,4         -3         12           32123566         6         1         3         1,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4<br>5.4<br>5.4<br>4.1269<br>4.83<br>0 C(<br>0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2 8<br>-3 28<br>-3 28<br>-2 8<br>-3 28<br>-3 28<br>-3 28<br>-5<br>-2 6<br>-4 42<br>DRE-32<br>1 -1 0                                                                                               | 4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>2PR-3-1<br>01. E-51                                                                                  | -4 42 8.0<br>-4 42 8.0<br>-4 42 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>. E-40. 0.                                                                                         | -2 13 1.9<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 26 8.64<br>-5 29 4.0<br>PHERE.<br>1.                                                                                  | -511<br>-512<br>13<br>-521<br>-522<br>23<br>-431<br>-632<br>33                                                            | 00012700<br>00012800<br>00013000<br>00013100<br>00013200<br>00013200<br>00013500<br>00013500<br>00013500<br>00013500<br>00013500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0 | 8925         2,526         -3921           824         8,64         -422           829         4,0         -612           825         2,326         -3921           825         2,326         -5921           824         8,64         -422           829         4,0         -612           829         4,0         -612           829         8,26         -422           829         8,26         -422           829         8,26         -422           829         8,26         -422           829         1,5,4         -5           32123568         6           1         1,70         0           2         7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4<br>4.1269<br>4.83<br>0 C(<br>0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2 8<br>-3 28<br>-5<br>-2 8<br>-3 28<br>-3 28<br>-5<br>-2 6<br>-4 42<br>0RE-32<br>1 -1 0                                                                                                           | 4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>ZPR-3-1<br>01. E-51                                                                                  | -4 42 8.0<br>-4 42 8.0<br>-4 42 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>. E-40. 0.                                                                                         | -2 13 1.4<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 29 4.0<br>PHERE.<br>1.                                                                                  | -511<br>-512<br>13<br>-521<br>-522<br>23<br>-431<br>-632<br>33                                                            | 00012700<br>00012800<br>00013000<br>00013100<br>00013200<br>00013300<br>00013500<br>00013500<br>00013600<br>00013600<br>00013800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4<br>4.1269<br>4.83<br>0 C(<br>0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2 8<br>-3 28<br>-5<br>-2 8<br>-3 28<br>-3 28<br>-3<br>-2 6<br>-4 42<br>DRE-32<br>1 -1 0                                                                                                           | 4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>ZPR-3-1<br>01. E-51                                                                                  | -4 6 3.7992<br>-4 42 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>. E-40. 0.                                                                                                    | -2 13 1.9<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 29 4.0<br>PMERE.<br>1.                                                                                  | -511<br>-512<br>13<br>-521<br>-522<br>23<br>-431<br>-632<br>33                                                            | 00012700<br>00012800<br>00013000<br>00013100<br>00013100<br>00013300<br>00013300<br>00013500<br>00013600<br>00013600<br>00013800<br>00013800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0 | 8925         2,52         -         -         392           8 24         8,64         -         2         8         -         6         12           8 29         2,06         -         6         12         8         -         6         12           8 29         2,26         -         52         8         -         6         12           8 26         8,64         -         6         12         8         26         8,64         -         6         12           8 26         3,344         -         3         24         8         -         6         12         8         15         4         -         5         32123568         6         1         3         1         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7 | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4<br>4.1269<br>4.1269<br>4.83<br>0 C(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2 8<br>-3 28<br>-5<br>-2 8<br>-3 28<br>-3 28<br>-5<br>-2 6<br>-4 42<br>DRE-32<br>1 -1 0                                                                                                           | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>ZPR-3-1<br>01. E-51                                                                         | -2 6 3.7002<br>-4 28.0<br>-4 42 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>1 2-REG.SF                                                                                         | -2 13 1.9<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 29 4.0<br>MHERE.<br>1.                                                                                  | -511<br>-512<br>13<br>-521<br>-522<br>23<br>-431<br>-632<br>33                                                            | 00012700<br>00012800<br>00013000<br>00013000<br>00013100<br>00013200<br>00013500<br>00013500<br>00013500<br>00013800<br>00013800<br>00013800<br>00013800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4<br>4.1269<br>4.83<br>0 C(<br>0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3 28<br>-5<br>-5<br>-2 8<br>-3 28<br>-5<br>-2 6<br>-4 42<br>0RE-32<br>1 -1 0                                                                                                                      | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>ZPR-3-1<br>01. E-51                                                                         | -4 42 8.0<br>-4 42 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>. E-40. 0.                                                                                                      | -2 13 1.9<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 24 8.64<br>-5 29 4.0<br>HERE.<br>1.                                                                     | -511<br>-512<br>13<br>-521<br>-522<br>-431<br>-632<br>-33                                                                 | 00012700<br>00012800<br>00012800<br>00013000<br>00013100<br>00013200<br>00013300<br>00013500<br>00013500<br>00013600<br>00013800<br>00013800<br>00014000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4<br>4.1269<br>4.1269<br>4.83<br>0 C(<br>0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3928                                                                                                                                                                                              | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>2PR-3-1<br>01. E-51<br>3.4373                                                               | -2 6 3.7002<br>-4 28.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>1 2-REG.SF<br>- E-40. 0.                                                                                        | -2 13 1.9<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 24 8.84<br>-5 29 4.0<br>MHERE.<br>1.<br>-3 26 5.681                                                                   | -511<br>-512<br>13<br>-521<br>-522<br>23<br>-431<br>-632<br>33                                                            | 00012700<br>00012800<br>00013000<br>00013100<br>00013200<br>00013200<br>00013500<br>00013500<br>00013500<br>00013500<br>00013600<br>00013900<br>00014000<br>00014100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4<br>4.1269<br>4.83<br>0 C(<br>0 2<br>4.586<br>2.08<br>4.586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3 28<br>-5<br>-5<br>-5<br>-2<br>-5<br>-3<br>-5<br>-2<br>-2<br>-2<br>-4<br>-4<br>-4<br>-3<br>-5<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2                      | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>2PR-3-1<br>01. E-51<br>3.4373                                                               | -2 8 3.7002<br>-4 42 8.0<br>-4 42 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>. E-40. 0.                                                                                       | -2 13 1.9<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 29 4.0<br>HERE.<br>1.<br>-3 26 5.681                                                                                  | -511<br>-512<br>13<br>-521<br>-522<br>23<br>-431<br>-632<br>33                                                            | 00012700<br>00012800<br>00012800<br>00013000<br>00013100<br>00013200<br>00013200<br>00013500<br>00013600<br>00013800<br>00013800<br>0001400<br>00014100<br>00014200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 1.5667<br>3.9783<br>5.4<br>3.9783<br>5.4<br>4.1269<br>4.83<br>0 C(<br>0 2<br>0 C(<br>0 2<br>0 2<br>0 2<br>0 2<br>0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3928<br>-3<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-4<br>-4<br>-4<br>-4<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3                                              | 4.83<br>4.83<br>4.2<br>8.0<br>2PR-3-1<br>01. E-51<br>3.4373<br>3.4373                                                                       | -2 6 3.7002<br>-4 28.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>- E-40. 0.<br>-2 24 1.486<br>-2 24 1.486                                                                        | -2 13 1.9<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 29 4.0<br>PHERE.<br>1.<br>-3 26 5.681                                                                   | -511<br>-512<br>13<br>-521<br>-522<br>23<br>-431<br>-632<br>33                                                            | 00012800<br>00012800<br>00013000<br>00013100<br>00013100<br>00013200<br>00013200<br>00013400<br>00013500<br>00013500<br>00013700<br>00014000<br>00014000<br>00014200<br>00014200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i 1.5667<br>3.9783<br>5.4<br>i 1.5667<br>3.9783<br>5.4<br>i 4.1269<br>i 4.83<br>0 C(<br>0 2<br>i<br>4.83<br>0 C(<br>0 2<br>i<br>4.586<br>i 2.08<br>i 4.586<br>i 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3 28<br>-5 28<br>-5 28<br>-5 28<br>-3 28<br>-5 -6<br>-4 42<br>0RE - 32<br>1 -1 0<br>- 3928<br>-4<br>-4<br>-3928<br>-4<br>-3928<br>-4<br>-4<br>-3928<br>-4<br>-4<br>-3928<br>-3928<br>-4<br>-4     | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>ZPR-3-1<br>01. E-51<br>3.4373<br>3.4373                                                     | -2 6 3.7092<br>-4 22 8.0<br>-4 42 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>. E-40. 0.1<br>-7 74 1.486<br>-2 24 1.486                                                        | -2 13 1.9<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 29 4.0<br>MERE.<br>1.<br>-3 26 5.681<br>-3 26 5.681                                                                   | -511<br>-512<br>13<br>-521<br>-522<br>23<br>-431<br>-632<br>-333                                                          | 00012700<br>00012800<br>00012800<br>00013000<br>00013100<br>00013200<br>00013200<br>00013500<br>00013500<br>00013500<br>00013500<br>0001400<br>0001400<br>00014100<br>00014200<br>00014300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i 1.5667<br>3.9783<br>5.4<br>i 1.5667<br>3.9783<br>5.4<br>i 4.1269<br>i 4.83<br>0 C(i<br>0 2<br>i<br>i 4.586<br>i 2.08<br>i 4.586<br>i 2.08<br>i 4.586<br>i 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3 28<br>-3 28<br>-5 8<br>-3 28<br>-3 28<br>-3 28<br>-5 -6<br>-4 42<br>-5 -6<br>-4 42<br>-1 0<br>1 -1 0<br>-3928<br>-4<br>-3928<br>-4<br>-3928<br>-4<br>-3928<br>-4<br>-2 24<br>-2 24              | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>2PR-3-1<br>01. E-51<br>3.4373<br>3.4373<br>1.196                                            | -2 6 3.7092<br>-4 28.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>-7 24 1.486<br>-2 24 1.486<br>-3 26 4.925                                                                       | -2 13 1.9<br>-6 25 6.4<br>-5 25 6.4<br>-5 24 8.64<br>-5 29 4.0<br>MERE.<br>1.<br>-3 26 5.681<br>-3 28 5.36                                                                   | -511<br>-512<br>13<br>-521<br>-522<br>23<br>-431<br>-632<br>33<br>-311<br>12<br>-321<br>22<br>-431                        | 00012800<br>00012800<br>00013000<br>00013100<br>00013100<br>00013200<br>00013500<br>00013500<br>00013500<br>00013500<br>00013500<br>00014000<br>00014000<br>00014200<br>00014500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1.5667<br>3.9783<br>5.4<br>1 1.5667<br>3.9783<br>5.4<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269                                                                         | -3 28<br>-3 28<br>-5 8<br>-3 28<br>-3 28<br>-5 6<br>-4 42<br>0RE-32<br>1 -1 0<br>-3928<br>-3928<br>-4<br>-2 24                                                                                     | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>2PR-3-1<br>01. E-51<br>3.4373<br>3.4373<br>1.196                                            | -2 6 3.7092<br>-4 22 8.0<br>-4 42 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>. E-40. 0.<br>-2 24 1.486<br>-3 26 4.925                                                         | -2 13 1.9<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 29 4.0<br>MERE.<br>1.<br>-3 26 5.681<br>-3 26 5.681<br>-3 28 5.36                                                     | -511<br>-512<br>13<br>-522<br>23<br>-632<br>-632<br>-632<br>-632<br>-632<br>-632<br>-632                                  | 00012800<br>00012800<br>00013000<br>00013100<br>00013200<br>00013200<br>00013500<br>00013500<br>00013500<br>00013600<br>0001400<br>00014100<br>00014100<br>00014200<br>00014200<br>00014500<br>00014600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i 1.5667<br>3.9783<br>5.4<br>i 1.5667<br>3.9783<br>5.4<br>i 4.1269<br>i 4.83<br>0 C(1<br>0 2<br>i<br>4.586<br>2.08<br>i 4.586<br>2.08<br>i 4.0025<br>0 C01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2 08<br>-3 28<br>-5 -2 8<br>-3 28<br>-3 28<br>-2 6<br>-4 42<br>DRE-32<br>1 -1 0<br>-3928<br>-4<br>-3928<br>-4<br>-2 24<br>RE-33                                                                   | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>2PR-3-1<br>01. E-51<br>3.4373<br>3.4373<br>1.196<br>F(A-4-1                                 | -2 6 3.7002<br>-4 28.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>-7 24 1.486<br>-2 24 1.486<br>-3 26 4.925<br>TEST REGIO                                                         | -2 13 1.9<br>-6 25 6.4<br>-5 25 6.4<br>-5 29 4.0<br>MERE.<br>1.<br>-3 26 5.681<br>-3 28 5.36<br>ON ONLY                                                                      | -511<br>-512<br>-522<br>-522<br>-431<br>-632<br>-531<br>-632<br>-531<br>-632<br>-531<br>-22<br>-431<br>-32<br>-431<br>-32 | 0012800           0012800           0013200           001300           001300           001300           001300           001300           001300           001300           001300           0013500           00013600           00013800           00013800           00014000           00014000           00014000           00014200           00014200           00014200           00014200           00014500           00014400           00014500           00014400           00014400           00014500           00014500           00014600           00014800                                                                                                                                                                                                                                                                                                               |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1.5667<br>3.9783<br>5.4<br>1 .5667<br>3.9783<br>5.4<br>4.1269<br>4.483<br>0 C(1<br>4.1269<br>4.483<br>0 C(1<br>4.2686<br>4.586<br>4.586<br>4.586<br>2.08<br>4.0025<br>0 C01<br>0 C01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2 02<br>-3 28<br>-5 -2 8<br>-3 28<br>-3 28<br>-2 6<br>-4 42<br>-4 42<br>-3 928<br>-4<br>-3 928<br>-4<br>-3 928<br>-2 24<br>RE-33<br>1 -1 0                                                        | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>2PR-3-1<br>01. E-51<br>3.4373<br>3.4373<br>1.196<br>FCA-4-1<br>11. E-41                     | -2 6 3.7092<br>-4 22 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>. E-40. 0.<br>-2 24 1.486<br>-3 26 4.925<br>TEST REGIC<br>. E-20. 0.                                          | -2 13 1.9<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 29 4.0<br>MERE.<br>1.<br>-3 26 5.681<br>-3 26 5.681<br>-3 28 5.36<br>NONLY                                            | -511<br>-512<br>13<br>-522<br>23<br>-431<br>-632<br>33<br>-311<br>12<br>-321<br>22<br>-431<br>32                          | 00012800           00012800           00013800           00013100           00013100           00013200           00013300           00013500           00013800           00013800           00013800           00013800           00013800           00013800           0001400           0001400           0001400           00014200           00014200           00014200           00014200           00014200           00014200           00014800           00014800           00014800           00014800           00014800           00014800           00014800                                                                                                                                                                                                                                                                                                                 |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4<br>4.1269<br>4.483<br>0 C(<br>0 2<br>4.83<br>0 C(<br>0 2<br>4.586<br>2.08<br>4.586<br>4.586<br>4.586<br>4.586<br>4.586<br>0 C(<br>0 2<br>0 0<br>1<br>0 0<br>2<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2 02<br>-3 28<br>-5 28<br>-2 8<br>-3 28<br>-2 6<br>-4 42<br>-4 42<br>-4 42<br>-4 42<br>-3928<br>-4<br>-2 24<br>RE-33<br>1 -1 0                                                                    | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>01. E-51<br>3.4373<br>3.4373<br>1.196<br>FCA-4-1<br>11. E-41                                | -2 6 3.7092<br>-4 22 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>-7 24 1.486<br>-2 24 1.486<br>-3 26 4.925<br>TEST REGIO<br>. E-20. 0.                                         | -2 13 1.9<br>-6 25 6.4<br>-5 26 5.6<br>-5 29 4.0<br>MERE.<br>1.<br>-3 26 5.681<br>-3 28 5.36<br>DN ONLY<br>1.                                                                | -511<br>-512<br>-522<br>-522<br>-431<br>-632<br>-33<br>-311<br>-22<br>-321<br>-321<br>-321<br>-321<br>-32<br>-33<br>-311  | 00012700           00012800           00012800           00013000           00013000           00013200           00013200           00013200           00013800           00013800           00013800           00014200           00013800           00014100           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200 <t< td=""></t<> |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5667<br>3.0783<br>5.4<br>1.5667<br>3.0783<br>5.4<br>1.5667<br>4.1269<br>4.4.83<br>0 C(<br>0 0 2<br>4<br>4.586<br>2.08<br>4.586<br>2.08<br>4.586<br>2.08<br>4.586<br>0 C(<br>0<br>4.586<br>0 C(<br>0<br>4.586)<br>2.08<br>4.586<br>0 C(<br>0<br>4.586)<br>0 C(<br>0<br>4.566)<br>0 C(<br>0<br>4.586)<br>0 C(<br>0<br>4.566)<br>0 C(<br>0<br>4.586)<br>0 C(<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                 | -2 0<br>-3 28<br>-5 28<br>-3 28<br>-3 28<br>-3 28<br>-3 28<br>-4 42<br>20RE-32<br>1 -1 0<br>-3928<br>-4<br>-3928<br>-4<br>-2 24<br>RE-33<br>1 -1 0                                                 | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>2PR-3-1<br>01. E-51<br>3.4373<br>3.4373<br>1.196<br>FCA-4-1<br>11. E-41                     | -2 6 3.7092<br>-4 22 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>. E-40. 0.<br>-2 24 1.486<br>-3 26 4.925<br>TEST REGIC<br>. E-20. 0.                                          | -2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 29 4.0<br>-5 29 4.0<br>-5 26 5.681<br>-3 26 5.681<br>-3 28 5.36<br>DN ONLY<br>1.                                                  | -511<br>-512<br>-521<br>-522<br>-521<br>-522<br>-431<br>-632<br>-33<br>-5311<br>-632<br>-321<br>-22<br>-22<br>-231<br>-32 | 00012800           00012800           00012800           00013000           00011200           00013200           00013000           00013100           00013200           00013000           00013100           00013200           00013800           00013800           00013000           00014100           00014100           00014200           00014200           00014200           00014400           00014500           00014800           00014800           00014800           00014800           00014800           00014800           00014800           00014800           00014800           00014800           00014900           00014900           00014900           00014900           00014900           00014900           00014900           00014900           00014900           00014900           00014900           00014900           00014900 <t< td=""></t<> |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>5.4<br>4.1269<br>4.483<br>0 C(<br>0 2<br>4.83<br>0 C(<br>0 2<br>4.586<br>2.08<br>4.0025<br>0 C0<br>2.08<br>4.0025<br>0 C0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2 8<br>-3 28<br>-5 28<br>-2 8<br>-3 28<br>-5<br>-2 6<br>-2 6<br>-2 6<br>-2 6<br>-2 6<br>-2 6<br>-2 6<br>-2 2<br>1 -1 0<br>-3928<br>-4<br>-3928<br>-2 24<br>RE-33<br>1 -1 0                        | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>01. E-51<br>3.4373<br>3.4373<br>1.196<br>F(A-4-1<br>11. E-41                                | -2 6 3.7002<br>-4 22 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SFI<br>. E-40. 0.<br>-7 24 1.486<br>-3 26 4.925<br>TEST REGIO<br>. E-20. 0.                                         | -2 13 1.9<br>-6 25 6.4<br>-2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 29 4.0<br>PHERE.<br>1.<br>-3 26 5.681<br>-3 28 5.36<br>IN ONLY<br>1.                                    | -511<br>-512<br>-521<br>-522<br>-33<br>-431<br>-632<br>-33<br>-33<br>-311<br>12<br>-321<br>-321<br>-321<br>-321<br>-      | 00012700           00012800           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00014100           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200 <t< td=""></t<> |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5667<br>3.9783<br>5.4<br>1.5667<br>3.9783<br>4.1269<br>4.83<br>0 C(<br>0 2<br>1<br>4.586<br>2.08<br>4.586<br>2.08<br>4.586<br>2.08<br>5.00<br>0 C(<br>0 0<br>1<br>4.586<br>2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2 8<br>-3 28<br>-5 28<br>-2 8<br>-3 28<br>-3 28<br>-3 28<br>-2 6<br>-4 42<br>0RE-32<br>1 -1 0<br>-3928<br>-4<br>-3928<br>-2 24<br>RE-33<br>1 -1 0                                                 | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>2PR-3-1<br>01. E-51<br>3.4373<br>3.4373<br>1.196<br>FCA-4-1<br>11. E-41                     | -2 6 3.7092<br>-4 42 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>. E-40. 0.<br>-7 24 1.486<br>-3 26 4.925<br>TEST REGIO                                                        | -2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 29 4.0<br>-5 29 4.0<br>-5 26 5.681<br>-3 26 5.681<br>-3 28 5.36<br>NONLY<br>1.                                                    | -511<br>-512<br>-521<br>-522<br>-523<br>-431<br>-632<br>-33<br>-33<br>-311<br>12<br>-321<br>-321<br>-321<br>-321<br>-     | 00012700           00012800           00012800           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00015000           00015100           00015300           00015400           00015400                                                                                                                                   |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1.5667<br>3.0783<br>5.4<br>1.5667<br>3.978<br>5.4<br>1.5677<br>3.978<br>5.4<br>1.5667<br>2.08<br>4.586<br>2.08<br>4.0025<br>0 C(1)<br>0.025<br>0 C(1)<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025 | -2 28<br>-3 28<br>-5 -2 8<br>-3 28<br>-5 -2 6<br>-2 6<br>-2 6<br>-2 6<br>-2 6<br>-2 6<br>-2 6<br>-2 6                                                                                              | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>01. E-51<br>3.4373<br>3.4373<br>1.196<br>F(A-4-1<br>11. E-41                                | -2 6 3.7002<br>-4 22 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SFF<br>. E-40. 0.<br>-7 24 1.486<br>-3 26 4.925<br>TEST REGIC<br>. E-20. 0.<br>-3 266.65                            | -2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 29 4.0<br>HERE.<br>1.<br>-3 26 5.681<br>-3 28 5.36<br>N ONLY<br>1.<br>E-3 288.                                                    | -511<br>-512<br>-521<br>-522<br>-33<br>-431<br>-632<br>-33<br>-311<br>12<br>-321<br>-321<br>-321<br>-321<br>-321          | 00012800           00012800           00013000           00013000           00013000           00013100           00013000           00013000           00013000           00013000           00013000           00013000           00014100           00014100           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200                                                       |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1.5667<br>3.0783<br>5.4<br>1.5667<br>3.78<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4                                                                     | - 2 28<br>- 3 28<br>- 5 8<br>- 2 8<br>- 3 28<br>- 3 28<br>- 4 22<br>1 - 1 0<br>- 3928<br>- 4<br>- 3928<br>- 4<br>- 3928<br>- 4<br>- 3928<br>- 4<br>- 2 24<br>RE- 3<br>1 - 1 0<br>- 2 24<br>E- 2 24 | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>2PR-3-1<br>01. E-51<br>3.4373<br>3.4373<br>1.196<br>FCA-4-1<br>11. E-41<br>1.83 E<br>1.83 E | -2 6 3.7002<br>-4 42 8.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SF<br>. E-40. 0.<br>-7 24 1.486<br>-3 26 4.925<br>. E-20. 0.<br>-3 266.65<br>-3 266.65                              | -2 13 1.9<br>-6 25 6.4<br>-5 24 8.64<br>-5 29 4.0<br>MERE.<br>1.<br>-3 26 5.681<br>-3 28 5.56<br>NONLY<br>1.<br>E-3 288.<br>E-3 288.                                         | $\begin{array}{c} -511\\ -512\\ \cdot 3\\ -521\\ -522\\ -22\\ -431\\ -632\\ -33\\ \end{array}$                            | 00012800           00012800           00012800           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00014000           00015000           00015000           00015000           00015500           00015500                                                                                                                |
| 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1.5667<br>3.0783<br>5.4<br>1.5667<br>3.78<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.1269<br>4.000<br>5.208<br>4.000<br>5.208<br>4.000<br>5.208<br>4.000<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.208<br>5.                       | -2 8<br>-3 28<br>-5 -2 8<br>-3 28<br>-5 -2 8<br>-5 -2 6<br>-2 4 42<br>-2 6<br>-4 42<br>1 -1 0<br>-3928<br>-4<br>-3928<br>-4<br>-2 24<br>RE-33<br>1 -1 0<br>E-2 24<br>E-2 24<br>E-2 24<br>E-2 24    | 1.544<br>4.83<br>1.544<br>4.83<br>4.2<br>8.0<br>2PR-3-1<br>01. E-51<br>3.4373<br>3.4373<br>1.196<br>F(A-4-1<br>11. E-41<br>1.83 E<br>1.83 E | -2 6 3.7002<br>-4 28.0<br>-5 13 1.9<br>-6 25 6.4<br>1 2-REG.SFF<br>1 2-REG.SFF<br>-7 24 1.486<br>-2 24 1.486<br>-3 26 4.925<br>TEST REGI(<br>. E-20. 0.<br>-3 266.65<br>-3 266.65 | -2 13 1.9<br>-6 25 6.4<br>-5 29 4.0<br>-5 29 4.0<br>-5 29 4.0<br>-5 29 4.0<br>-5 29 4.0<br>-5 29 5.681<br>-3 26 5.681<br>-3 28 5.36<br>ON ONLY<br>1.<br>E-3 288.<br>E-3 288. | $\begin{array}{c} -511\\ -512\\ 13\\ -521\\ -522\\ 23\\ -431\\ -632\\ 33\\ \end{array}$                                   | 00012800           00012800           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00013000           00014100           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014200           00014500           00014500           00014500           00014500           00014500           00014500           00014500           00014500           00014500           00014500           00015000                                                                                                                                                                                                                                                     |

Appendices

### A2.2 Doppler Analysis

Analyses of Doppler measurements are required in order to test the temperature dependence of group cross sections. For this purpose, we adopted the Doppler experiments performed in eight critical assemblies, FCA-V-1, FCA-V-2, FCA-VI-1, FCA-VI-2, ZPPR-2 (normal core), ZPPR-2 (Na-voided core), ZPR-3-47 and SEFOR. Main characteristics of these assemblies are shown in Table A2.5.

| Assembly | Fuel  | $R = \frac{Fertile N}{Fertile N}$ | Doppler<br>sample | Sample<br>size (cm) |
|----------|-------|-----------------------------------|-------------------|---------------------|
| FCA-V-1  | Pu, U | 2.6                               | NUO <sub>2</sub>  | 2.5¢, 15L           |
| FCA-V-2  | Pu, U | 2.3                               | NUO <sub>2</sub>  | $2.5\phi, 15L$      |
| FCA-VI-1 | Pu, U | $R_{I}$ =4.3, $R_{o}$ =3.0        | NUO <sub>2</sub>  | $2.5\phi, 15L$      |
| FCA-VI-2 | Pu, U | $R_{I}=6.9, R_{o}=2.5$            | NUO <sub>2</sub>  | $2.5\phi, 15L$      |
| ZPPR-2   | Pu    | $R_{I}$ =6.5, $R_{o}$ =4.0        | NUO <sub>2</sub>  | $2.54\phi, 30, 48L$ |
| ZPR-3-47 | Pu    | 5.1                               | NUO <sub>2</sub>  | 1.27¢, 15.24L       |
| SEFOR    | Pu    | 4.3                               | All c             | ore on power        |

 
 Table A2.5
 Main characteristics of fast critical assemblies used for benchmark calculation of Doppler effects

 $R_1$  and  $R_0$  mean the density ratio of fertile to fissile materials in the inner and outer cores, respectively.

In SEFOR assembly, the Doppler measurement was performed by measuring the reactivity change due to the power increase from zero to 20 MW, while holding the coolant temperature constant<sup>9)</sup>. This experimental isothermal Doppler coefficient was T (dk/dT) =  $-0.0081 \pm$ 0.001 and the experimental uncertainty is  $\pm 12\%$ . Though three models (spherical, slab and R-Z geometries) are recommended as the benchmark specification problem in Ref. (9), the present benchmark claculation was performed only for one-dimensional spherical model.

In the other seven assemblies the <sup>238</sup>U Doppler reactivity effect was measured for natural  $UO_2$  (NUO<sub>2</sub>) sample. The sample oscillation reactivity difference technique was used at JAERI and ANL. In this technique, a Doppler sample and a reference sample are periodically exchanged at some point in a reactor where the Doppler effect is to be measured. The Doppler samples are 2.5 cm in diameter and 15 cm long at FCA assemblies, 2.54 cm in diameter and 30.48 cm long at ZPPR assembly 2, and 1.27 cm and 15.24 cm at ZPR-3-47. The Doppler measurement was made in both the normal and Na-voided inner cores in ZPPR-2. The compositions and configurations for these fast critical assemblies are detailed in Ref. (10).

In the present benchmark calculation, one-dimensional spherical model was adopted for these assemblies. Resonance heterogeneity effect was considered by the usual equivalent relation  $\sigma_{ex} = a (1-C)/(Nl)$ , where N and l stand for the atomic number density of the resonant material and the mean chord length of the sample, and the Dancoff factor a (1-C)was assumed to be 1.35. However, the heterogeneity effect, the buffer effect of steel-environment of the sample and the two-dimensional to one-dimensional effect were not considered in the present calculation. These effects contribute significantly to Doppler effect. It was found<sup>10</sup> that the <sup>238</sup>U Doppler effect was underestimated considerably by ignoring these effects. The input data for EXPANDA-70D are given in Table A2.6.

#### Table A2.6 Benchmark specifications of the eight assemblies used for Doppler analyses as input format for EXPANDA-70D

| , , | //SYSIN DD .                          | NODUED EFFECTE IN FCA-V-1            | 00000600  |
|-----|---------------------------------------|--------------------------------------|-----------|
|     | ANALYSIS OF EXPERIMENTAL RESULTS OF D | JUPPLER EFFECTS IN FCH-1-1           | 000000800 |
|     | 1 1 0 70 1                            | -1140 10                             | 00000800  |
|     | 1 2.5 1.35                            |                                      | 00000700  |
| 0   | 0 1019123568 5 CASE NO.1 **           | **FCA-V-1 REFERENCE*** NUO-2 300 K 5 | 00001000  |
|     | 1 3 1 70 0 -1 29 0 2 1 -1 0 0         | 01.0 -51.0 -4 0. 0. 1.0              | 00001100  |
|     | 2 3 11 5                              |                                      | 00001200  |
|     | 3 10 50 80                            |                                      | 00001300  |
|     | 50 26 0 25 1 0                        |                                      | 00001400  |
|     | 4 100 0 300 300                       |                                      | 00001500  |
|     |                                       | 156 -7 11                            | 00001600  |
|     |                                       | 12/ -5025 1 94 -3028 7 7812 -321     | 00001700  |
|     | 8929 1.0226 -3920 4.2270001-3921 1.   | 1045 -7 74 3 0535 -3 26 1 09705 -227 | 00001800  |
|     | 8 8 1.64/58 -2 11 8.0451 -5 15 1.     |                                      | 00001900  |
|     | 8 28 1.4275 -3                        |                                      | 00002000  |
|     | 8925 2.891 -4928 3.989 -2 24 1.       | .827 -3 20 0.032 -3 20 7.704 -431    | 00001000  |
| 0   | 0 10196 CASE NO.2 .                   | ==NA1 UU-2 I=573.0 K ***             | 00002100  |
|     | 6 573.0 300.0 300.0                   |                                      | 00002200  |
| 0   | 0 10196 CASE NO.3 **                  | ■■NAT UO-2 T=823.0 K ■■■             | 00002300  |
|     | 6 823.0 300.0 300.0                   |                                      | 00002400  |
| 0   | 0 10196 CASE NO.4 **                  | ** NAT UD-2 T=1073.0 K ***           | 00002500  |
| č   | 61073 0 300 0 300 0                   |                                      | 00002600  |
| 1   | 1                                     |                                      | 00002700  |
| *   | · •                                   |                                      | 00002800  |

| , | /SYSIN DD +                                                           |        | 00006000 |
|---|-----------------------------------------------------------------------|--------|----------|
|   | ANALYSTS OF EXPERIMENTAL RESULTS OF DOPPLER EFFECTS IN FCA-V-2        |        | 00006100 |
|   |                                                                       |        | 0006200  |
|   |                                                                       |        | 00006300 |
| • | 1010123548 5 0 CASE NO.1 ###FCA-V-2 REFERENCE### NU0-2 300 K          | 3      | 00006400 |
| • |                                                                       |        | 00006500 |
|   |                                                                       |        | 00006600 |
|   |                                                                       |        | 00006700 |
|   |                                                                       |        | 00066800 |
|   | 5 0.65 1.14031.30                                                     |        | 00006900 |
|   | 6 300.0 300.0 300.0                                                   |        | 00007000 |
|   | 89251.503 E-02028 2.0832E-02 8 4.158 E-02                             |        | 00007100 |
|   | 8949 1.0458 E-03940 9.325 E-05941 1.0688 E-05925 1.47 E-039285.8339   | 6-0321 | 00007100 |
|   | 8 8 1.3101 E-02 11 8.1341 E-03 13 8.8295 E-03 24 3.2734 E-03 26 1.195 | E-0255 | 0000/200 |
|   | 8 28 1.5345 E-03                                                      | 23     | 00007300 |
|   | 8925 2.891 E-04928 3.989 E-02 24 1.827 E-03 26 6.652 E-03 28 7.964    | E-0431 | 00007400 |
| 0 | 10196 CASE NO.2 ****NAT UO-2 T=1073.0 5 ***                           |        | 00007500 |
|   | 41073 0300 0 300 0                                                    |        | 00007600 |
| 1 |                                                                       |        | 00007700 |
| 1 | · .                                                                   |        | 00007800 |

1

//SYSIN DD . 00003200 ANALYSIS OF EXPERIMENTAL RESULTS OF DOPPLER EFFECTS IN FCA-VI-1 00003300 1 1 0 70 1 1 2.5 1.35 019123568 7 CASE 1 -1190 10 00003400 00003500 0 1019123566 7 C352 NO.1 \*\*\*FCA-VI-1 REFERENCE\*\*\* NUO-2 300 K 1 4 1 70 0 -1 20 0 2 1 -1 0 01.0 -51.0 -4 0. 0. 1.0 2 3 11 8 5 3 4 0 56 80 50.65 0.9737 .5651.0325 3 00003600 00003700 00003800 00003900 00004000 6 300.0 300.0 300.0 300.0 00004100 -2 8 4.156 -4941 1.6 -3 28 1.639 8925 1.503 -4928 2.0632 8949 1.5687 -3940 1.4 -2 00004200 11 -5928 6.9057 00004300 - 321 8 8 1.5598 -2 11 7.656 -3 13 1.354 -322 00004400 -3 24 3.552 8 26 1.3004 -2 8925 2.131 -3928 6.4152 -3 8 1.5598 23 00004500 -3 13 1.0204 -2 11 7.656 -231 00004600 8 24 3.134 -3 26 1.1504 -2 28 1.42 -2 24 1.827 00004700 - 3 32 -3 26 6.652 8925 2.891 -4928 3.9885 -3 28 7.964 -441 00004800 0 10196 CAS 6 623.0 300.0 300.0 300.0 CASE NO.2 \*\*\* NAT UO-2 T=623.0 K \*\*\* 00004900 00005000 0 10196 CASE NO.3 \*\*\* NAT UO-2 T=823.0 K \*\*\* 00005100 0 10196 CAS 6 823.0 300.0 300.0 300.0 00005200 0 10196 CASE NO.4 \*\*\* NAT UO-2 T=1073.0 K \*\*\* 00005300 61073.0 300.0 300.0 300.0 00005400 00005500 1 00005600 00005700

#### //SYSIN DD . 00018600 ANALYSIS OF EXPERIMENTAL RESULTS OF DOPPLER EFFECTS. IN FCA-V1-2 00018700 1 0 70 1 2.5 1.35 123568 8 CASE NO. -1190 10 00018800 1 00018900 0 1019123568 CASE NO.1 ###FCA-VI-2 REFERENCE ##### NU0-2 300 K 3 00019000 1 4 1 70 0 -1 29 0 2 1 -1 0 01.0 -51.0 -4 0. 0. 1.0 2 3 13 13 5 3 4 4 0 56 80 00019100 00019200 00019300 50.65 1.007 0.87431.117 00019400 6 300.0 300.0 300.0 300.0 00019500 8925 1.503 - 4928 2.0632 -2 84.156 8949 1.0458 -3940 9.33 -5941 1.07 8105 1.0 -8 8 1.72858 -2 11 7.656 - 2 11 00019600 -5925 1.516 - 5928 6.9057 -321 00019200 -3 13 2.4027 -3 24 3.41266 - 322 00019800 8 26 1.2504 -2 28 1.5658 -3 42 1.0 8 26 1.2504 -2 28 1.5658 -3 42 1.0 8 26 1.2504 -2 28 1.5658 -3 42 1.0 8 40 1.0 -8940 1.0 -8941 1.0 8 1.36189 -2 11 7.656 - 8 23 00019900 -8925 2.8483 -3928 6.8915 -331 00020000 -3 13 9.0793 -3 24 3.134 00020100 8 26 1.1504 -2 28 1.42 -3 42 1.0 8925 2.891 -4928 3.9885 -2 24 1.827 - 8 33 00020200 -3 26 6.652 -3 28 7.964 - 4 4 1 00020300 0 10196 CASE NO.2 \*\*\*NAT UO-2 T=623.0 K\*\*\* 00020400 6 623.0 300.0 300.0 300.0 6 623.0 300.0 300.0 CASE NO.3 \*\*\*\*\*\* UO-2 T=1073.0 K 00020500 CASE NO.3 \*\*\*NAT UO-2 T=823.0 K\*\*\* 00020600 00020700 00020800 00020900 1 00021000

1

00022000

00007900

| //SYSIN DD .        |                 |                 |                        | 00008200      |
|---------------------|-----------------|-----------------|------------------------|---------------|
| ANALYSIS OF EXPERIM | ENTAL RESULTS O | F DOPPLER EFFEC | TS IN ZPPR-2 (NORMAL ( | ORE) 00008300 |
| 1 1 0               | 70 1            | - 1 *           | 190 10                 | 00008400      |
| 2.5                 | 1.35            |                 |                        | 00008500      |
| 0 1021123568 12     | 0 CASE NO.1     | SAN ZPPR-2(NOR  | MAL)                   | 3 00008600    |
| 1 5 1 70 0 -1 29    | 0 2 1 -1 0      | 01.0 -51.0 -4   | 0. 0. 1.0              | 00008700      |
| 2 3 15 15           | 12 7            |                 |                        | 00008800      |
| 3 10 50 60          | 80 86           |                 |                        | 00008900      |
| 50 33281 56231 7106 | 2 33342 6527    |                 |                        | 00009000      |
| A 300.0 300.0 300.0 | 300.0 300.0     |                 |                        | 00009100      |
| 8925 0 01 -2928     | 1 56 -2 8       | 3 14 2          |                        | 11 00009200   |
| 8949 0.08439 -2940  | 0.01117 -2941   | 0.00201 -2925   | 0.00123 -2928 0.55549  | -221 00009300 |
| 8 6 0.0030 -2 8     | 1.3116 -2.11    | 0.8796 -2 13    | 0.0003 -2 26 1.2576    | -222 00009400 |
| 8 24 0.2702 -2 28   | 0.1221 -2 25    | 0.0209 -2.29    | 0.0019 -2 42 0.0231    | -223 00009500 |
| 8949 0.12750 -2940  | 0.01687 -2941   | 0.00304 -2925   | 0.00115 -2928 0.51980  | -231 00009600 |
| 8 6 0.0023 -2 8     | 1.1761 -2 11    | 0.8564 -2 13    | 0.0004 -2 26 1.3852    | -232 00009700 |
| 8 24 0.2523 -2 28   | 0.1160 -2.25    | 0.0202 -2 29    | 0.0020 -2 42 0.0341    | -233 00009800 |
| 8925 0.0024 -2928   | 1.1085 -2 6     | 0.1013 -2 8     | 2.0132 -2 11 0.6398    | -241 00009900 |
| 8 13 0.0002 -2 26   | 0.6923 -2.24    | 0.1991 -2.28    | 0.0898 -2 25 0.0157    | -242 00010000 |
| 8 29 0.0017 -2 42   | 0.0014 -2       |                 |                        | 43 00010100   |
| 8 6 0.0558 -2 26    | 7.1561 -2.24    | 0.1205 -2 28    | 0.0513 -2 25 0.0598    | -251 00010200 |
| 8 29 0.0013 -2 42   | 0.0012 -2       |                 |                        | 52 00010300   |
| 0 10216             | CASE NO.2       | *** NAT NUO-2   | T= 500.0 K ==+         | 00010400      |
| 6 500.0 300.0 300.0 | 300.0 300.0     |                 |                        | 00010500      |
| 0 10216             | CASE NO.3       | S-OUN TAN       | T= 800.0 K +++         | 00010600      |
| 6 800.0 300.0 300.0 | 300.0 300.0     |                 |                        | 00010700      |
| 0 10216             | CASE NO.4       | *** NAT NUO-2   | T=1100.0 K ===         | 00010800      |
| 61100.0 300.0 300.0 | 300.0 300.0     |                 |                        | 00010900      |
| 1                   |                 |                 |                        | 00011000      |
| 1                   |                 |                 |                        | 00011100      |
| •                   |                 |                 |                        | 00011200      |

00021100

00021200

| //SYSIN DD *<br>ANALYSIS OF EXPERIMENTAL RESULTS OF<br>1 1 0 70 1 | DOPPLER EFFECTS IN ZPR-3-47 00011500<br>-1190 10 00011700 |
|-------------------------------------------------------------------|-----------------------------------------------------------|
| 2 1.27 1.35                                                       | 00011800                                                  |
| 0 1021123568 14 0 CASE NO.1 .                                     | ** ZPR-3-47 *** NUO-2 300 K 3 00011900                    |
| 1 6 1 70 0 -1 29 0 2 1 -1 0                                       | 01.0 -51.0 -4 0. 0. 1.0 00012000                          |
| 2 14 3 14 13 7                                                    | 6 00012100                                                |
| 3 2 6 24 32 38 4                                                  | 4 00012200                                                |
| 50.76840.20131.89611.76912.89092.753                              | 4 00012300                                                |
| 6 300.0 300.0 300.0 300.0 300.0 300.                              | 0 00012400                                                |
| 8949 0.1480 -2940 0.0132 -2925 0                                  | 0.0015 -2928 0.7742 -2 6 0.3359 -211 00012500             |
| 8 8 1.5663 -2 11 0.6628 -2 13 0                                   | .6986 -2 24 0.2579 -2 25 0.0158 -212 00012600             |
| 8 26 0.9847 -2 28 0.1398 -2 42 0                                  | 0.0515 -2 4 0.5680 -2 13 00012700                         |
| 8925 1.0 -4928 1.56 -2 8 3                                        | i.14 -2 21 00012800                                       |
| 8949 0.1480 -2940 0.0132 -2925 0                                  | 0.0015 -2928 0.7742 -2 6 0.3359 -231 00012900             |
| 8 8 1.5663 -2 11 0.6628 -2 13 0                                   | .6986 -2 24 0.2579 -2 25 0.0158 -232 00013000             |
| 8 26 0.9847 -2 28 0.1398 -2 42 0                                  | 0.0515 -2 4 0.5680 -2 33 00013100                         |
| 8949 0.1513 -2940 0.0072 -2925 0                                  | 0.0015 -2928 0.7893 -2 6 0.3359 -241 00013200             |
| 8 8 1.5287 -2 11 0.6601 -2 13 0                                   | .7723 -2 24 0.2816 -2 25 0.0172 -242 00013300             |
| 8 26 1.0748 -2 28 0.1526 -2 4 0                                   | .5419 -2 43 00013400                                      |
| 8 11 0.47 -2 13 0.1637 -2 24 0                                    | .40 -2 25 0.0245 -2 26 1.5275 -251 00013500               |
| 8 28 1.2478 -2 6 0.0415 -2                                        | 52 00013600                                               |
| 8 13 0.6823 -2 24 0.1934 -2 25 0                                  | 0.0118 -2 26 0.7381 -2 28 5.9014 -261 00013700            |
| 8 6 0.0472 -2                                                     | 62 00013800                                               |
| 0 10216 CASE NO.2 #                                               | **NAT UO-2 T= 500.0 K *** 00013900                        |
| 6 300.0 500.0 300.0 300.0 300.0 300.                              | 0 00014000                                                |
| 0 10216 CASE NO.3 .                                               | **NAT U0-2 T= 800.0 K *** 00014100                        |
| 6 300.0 800.0 300.0 300.0 300.0 300.                              | 0 00014200                                                |
| 0 10216 CASE NO.4 .                                               | ==NAT U0-2 T=1100.0 K === 00014300                        |
| 6 300.01100.0 300.0 300.0 300.0 300.                              | 0 00014400                                                |
| 1                                                                 | 00014500                                                  |
| 1                                                                 | 00014600                                                  |
|                                                                   | 00014700                                                  |

| VIEVETH DD -                                                     |                      |
|------------------------------------------------------------------|----------------------|
| ANALYSIS OF EXBEDIMENTAL DEPULTO OF DODDLED SEFECTO IN SDDD D (M | 00015000             |
| ARCHING OF EXPERIMENTAL RESULTS OF DUPPLER EFFECTS IN ZPPR-2 (N  | X-VOIDED) 00015100   |
|                                                                  | 00015200             |
| 1 2.3 1.35                                                       | 00015300             |
| 0 1021123386 15 0 CASE NO.1 *** ZPPR-2(NA-VOID) *** NU0-2        | 300 K 3 00015400     |
| 1 8 1 70 0 -1 29 0 2 1 -1 0 01.0 -51.0 -4 0. 0. 1.0              | 00015500             |
| 2 3 14 15 15 12 7                                                | 00015600             |
| 3 10 34 50 60 80 86                                              | 00015700             |
| 50.33281.66531.61591.71062.33342.6527                            | 00015800             |
| 6 300.0 300.0 300.0 300.0 300.0 300.0                            | 00015900             |
| 8925 0.01 -2928 1.56 -2 8 3.14 -2                                | 11 00016000          |
| 8949 0.08439 -2940 0.01117 -2941 0.00201 -2925 0.00123 -2928 0   | .55549 -221 00016100 |
| 8 6 0.0030 -2 8 1.3116 -2 13 0.0003 -2 26 1.2576 -2 24 0         | .2702 -222 00016200  |
| 8 28 0.1221 -2 25 0.0209 -2 29 0.0019 -2 42 0.0231 -2            | 23 00016300          |
| 8949 0.08439 -2940 0.01117 -2941 0.00201 -2925 0.00123 -2928 0   | .55549 -231 00016400 |
| 8 6 0.0030 -2 8 1.3116 -2 11 0.8796 -2 13 0.0003 -2 26 1         | .2576 -232 00016500  |
| 8 24 0.2702 -2 28 0.1221 -2 25 0.0209 -2 29 0.0019 -2 42 0       | .0231 -233 00016600  |
| 8949 0.12750 -2940 0.01687 -2941 0.00304 -2925 0.00115 -2928 0   | .51980 -241 00016700 |
| 8 6 0.0023 -2 8 1.1761 -2 11 0.8564 -2 13 0.0004 -2 26 1         | .3852 -242 00016800  |
| 8 24 0.2523 -2 28 0.1160 -2 25 0.0202 -2 29 0.0020 -2 42 0       | 0341 -243 00016900   |
| 8925 0.0024 -2928 1.1085 -2 6 0.1013 -2 8 2 0132 -2 11 0         | A398 -251 00017000   |
| 8 13 0.0002 -2 26 0.6923 -2 26 0.1991 -2 28 0.0898 -2 25 0       | 0157 -252 00017100   |
| 8 29 0.0017 -2 42 0.0014 -2                                      | 53 00017200          |
| 8 6 9 9558 -2 26 7 1561 -2 24 0 1205 -2 28 0 0513 -2 25 0        | 0598 -261 00017300   |
| 8 29 0.0013 -2 42 0.0012 -2                                      | A2 00017400          |
| 0 10216 CASE NO 2 REE NAT NU0-2 TE 500 0 K AND                   | 00017500             |
| 6 599.0 309.0 309.0 300.0 300.0 300.0                            | 00017600             |
| 0 10216 CASE NO 3 BR NAT NU0-2 TH 800 0 K ARA                    | 00017700             |
| 6 899-0 300-0 300-0 300-0 300-0 300-0                            | 00017800             |
| 0 10216 CASE NO 4 BEE NAT NU0-2 TE1100 0 K AND                   | 00017800             |
| 61100-0 300-0 300-0 300 0 300 0 300 0 300 0                      | 00018000             |
| 1                                                                | 00018000             |
| 1                                                                | 00018100             |
| •                                                                | 00018200             |
|                                                                  | 00018300             |

| //SYSIN DD =   |        |          |          |          |        |        |                |      | 0002150 |
|----------------|--------|----------|----------|----------|--------|--------|----------------|------|---------|
| ANALYSIS OF    | DOPPL  | ER BENCH | -MARK TE | ST FOR   | SEFOR  | 1-DIM. | SPHERICAL GEOM |      | 0002160 |
| 1 1            | 0      | 70 1     |          |          |        | 10     |                |      | 0002170 |
| 0 0126123568   | 8      | CASE     | NO.1 *   | REFFI    | ERENCE | CASE   |                |      | 0002180 |
| 1 4 1 70 0     | -1 29  | 0 2 3    | -10      | 01.0 -5: | 1.0 -4 | 0. 0.  | 1.0            |      | 0002190 |
| 2 4 14         | 10     | 8        |          |          |        |        |                |      | 0002200 |
| 3 4 24         | 40     | 46       |          |          |        |        |                |      | 0002210 |
| 52.672 1.95311 | .83972 | 2.2635   |          |          |        |        |                |      | 0002220 |
| 6 677. 677.    | 677.   | 677.     |          |          |        |        |                |      | 0002230 |
| 8 26 1.3574    | -2 24  | 3.9574   | -3 28 2  | .0292    | -3 11  | 1.6615 | -2             | 11   | 0002240 |
| 8 26 1.3886    | -2 24  | 3,9511   | -3 28 2  | .358     | -3 11  | 6.8099 | -3 8 2.0991    | -221 | 0002250 |
| 8 42 1.1999    | -4105  | 6.11     | -\$115 2 | .46      | -4925  | 1.5374 | -4928 6.9808   | -322 | 0002260 |
| 8949 1.5901    | -3940  | 1.4355   | -4 6 7   | .677     | -54    | 3.6011 | -3             | 23   | 0002270 |
| 8 26 5.8932    | -3 24  | 2.8913   | -3 28 3  | .0178    | -2 11  | 5.4493 | -3 8 1.2597    | -431 | 0002280 |
| 8 42 1.5605    | - 5925 | 1.1724   | -7928 5  | .3438    | -5 13  | 2.233  | -3 4 1.8327    | -532 | 0002290 |
| 8 26 7.8587    | -3 24  | 2.4623   | -3 28 1  | .3315    | -3 11  | 1.307  | -3105 5.7684   | -341 | 0002300 |
| 8115 2.31      | -2 13  | 6.58     | -3 6 7   | . 22     | -3     |        |                | 42   | 0002310 |
| 0 01266        |        | CASE     | NO.2 PE  | RTURBED  | CASE   |        |                |      | 0002320 |
| 6 677. 1365.   | 677.   | 677.     |          |          |        |        |                |      | 0002330 |
| 1              |        | -        |          |          |        |        |                |      | 0002340 |
| - 1            |        |          |          |          |        |        |                |      | 0002350 |
| -              |        |          |          |          |        |        |                |      | 0002360 |

----\$----5-----6-----8-----8-----8-----8-----5-----8-----6-----8-----7-R--8-----8

JAERI 1275

#### References

- 1) Hardie R.W., Schenter R.E. and Wilson R.E.: Nucl. Sci. Eng., 57, 222 (1975).
- Hasegawa A., Katsuragi S. and Tone T.: "A One-dimensional Diffusion Code for Multigroup Criticality and Perturbation Calculations with JAERI-Fast Sets of 70-group Structure: EXPANDA-70D", JAERI-M 4953 (1972) [in Japanese].
- 3) Kamei T. and Kikuchi Y.: "Compilation of FCA Experimental Data for Integral Tests of Group Constants Set", Private Communication (1978).
- 4) Lathrop K.D.: "DTF-IV: a FORTRAN-IV Program for Solving the Multi-group Transport Equation with Anisotropic Scattering", LA-3373 (1965).
- Kikuchi Y., Katsuragi S., Ogitsu M. and Suzuki T.: "EXPANDA-75: One-dimensional Diffusion Code for Multi-region Plate Lattice Heterogeneous System", JAERI 1239 (1975).
- 6) Takano H., Matsui Y. and Ishiguro Y.: "Effect of Difference between Group Constants Processed by Codes TIMS and ETOX on Integral Quantities", JAERI-M 7724 (1978).
- 7) Takano H., Ishiguro Y. and Matsui Y.: "TIMS-1: A Processing Code for Production of Group Constants of Heavy Resonant Nuclei", JAERI 1267 (1980).
- 8) Schenter R.E., Baker J.L. and Kidman R.B.: "ETOX: a Code to Calculate Group Constants for Nuclear Reactor Calculations", BNWL-1002 (1969).
- 9) Freeman D.D.: "SEFOR Experimental Results and Applications to LMFBRs", GEAP-13929 (1973).
- Takano H. and Matsui Y.: "Analysis of Doppler Effects with JAERI-Fast Sets", JAERI-M 7195 (1977) [in Japanese].

#### Appendix 3 Effects of Structural Material Cross Sections

It has been pointed out from the benchmark tests on JENDL-1 that JENDL-1 may have too small diffusion coefficients and too large removal cross sections above 100 keV. On the other hand, it has been pointed out through reevaluation work for JENDL-2 that the total and elastic scattering cross sections of chromium, iron and nickel may be overestimated in JENDL-1 in the energy range from a few hundred keV to a few MeV. This is consistent with the observation on the diffusion coefficients and the removal cross sections. The total, capture and inelastic scattering cross sections of chromium, iron and nickel are shown in Figs. A3.1  $\sim$  A3.9 with those of ENDF/B-IV as well as some selected experimental data. Overestimation of the total cross sections in JENDL-1 is evident in the energy region above resolved resonances up to a few MeV. This is caused by our adopting the calculated values with the optical model instead of following the structure appeared in the experimental data. Considerable differences are observed between JENDL-1 and ENDF/B-IV in the other cross sections for these nuclides.

Hence the effects of the cross sections of structural materials were investigated by replacing the cross sections of chromium, iron and nickel in JENDL-1 with those in ENDF/B-IV. This replaced group cross section library is called JENDL-B4 in this appendix. This study was made on the 27 assemblies mentioned in Chapter 2 with the 1-D model, and on MZB assembly and a large fast breeder reactor of 1000 MWe with the 2-D R-Z model.



Fig. A3.1 Total cross sections of chromium.



Fig. A3.2 Capture cross sections of chromium.



Fig. A3.3 Inelastic scattering cross sections of chromium.



Fig. A3.4 (a) Total cross sections of ion.



Fig. A3.4 (b) Total cross sections of ion.



Fig. A3.5 Capture cross sections of iron.



Fig. A3.6 Inelastic scattering cross sections of iron.

NI-NAT-TOTAL



Fig. A3.7 Total cross sections of nickel.



Fig. A3.8 Capture cross sections of nickel.



Fig. A3.9 Inelastic scattering cross sections of nickel.

#### A3.1 Analysis with One-dimensional Model

The same calculations were made as done in the benchmark tests described in Chapter 2. We mainly discuss on the statistical average values.

#### A3.1.1 Effective Multiplication Factor

The effects of the replacement are shown in **Table A3.1**. The C/E values of  $k_{eff}$  are decreased by 0.7% on an average. Particularly the average C/E value is underestimated more than 1% for the Pu-cores with JENDL-B4. The  $k_{eff}$ -value of ZPR-3-54 is 4% lower than ZPR-3-53 with JENDL-B4 as the cases with JFS-2 and ENDF/B-IV. It could be concluded from these facts that the  $k_{\infty}$ -values are underestimated with JENDL-1 and that this underestimate is cancelled by underestimate of leakage effect due to overestimate of the elastic scattering cross sections of the structural materials.

| Assembly    | * | JENDL-1 | JENDL-B4 | JFS-2  | ENDF/B-IV |
|-------------|---|---------|----------|--------|-----------|
| 16 Pu-cores | А | 0.9978  | 0.9894   | 1.0017 | 0.9859    |
|             | В | 0.0074  | 0.0062   | 0.0044 | 0.0057    |
| 10 U-cores  | А | 1.0067  | 1.0011   | 1.0033 | 0.9960    |
|             | В | 0.0077  | 0.0065   | 0.0100 | 0.0104    |
| All cores   | А | 1.0012  | 0.9939   | 1.0023 | 0.9898    |
|             | В | 0.0087  | 0.0085   | 0.0071 | 0.0093    |
| ZPR-3-53    |   | 0.9994  | 0.9948   | 0.9965 | 0.9772    |
| ZPR-3-54    |   | 1.0217  | 0.9572   | 0.9544 | 0.9335    |

Table A3.1 Effective multiplication factors (C/E)

\* A: Average of C/E

B: Standard deviation of C/E

#### A3.1.2 Central Reaction Rate Ratio

The C/E values of central reaction rate ratio are given in **Table A3.2**. The fission rate ratio of  $^{238}$ U to  $^{235}$ U is decreased by 2 ~ 3% by replacing JENDL-1 with JENDL-B4. Little changes are observed in the other reaction rate ratio by the replacement. As shown in **Fig. A3.15** in the next section, the neutron flux above 1 MeV is decreased by the replacement.

#### A3.1.3 Central Reactivity Worth

**Table A3.3** compares the averages and standard deviations of the central reactivity worths normalized to those of <sup>239</sup>Pu. By the replacement, the C/E values for <sup>238</sup>U and <sup>10</sup>B becomes slightly lower. The C/E values for chromium and iron increase by 25% and by 6%, respectively, while the C/E value decreases by 5% for nickel.

Components of the perturbation cross section are compared in **Table A3.4** in order to further investigate the changes in the worths of structural materials. It is evident from the table that the dominant components are capture and inelastic scattering, and that the elastic scattering has a minor role.

Both capture and inelastic scattering components of chromium are lower in JENDL-1 than ENDF/B-IV. It was pointed out by Asami et al.<sup>1)</sup> that the capture cross section might be overestimated in ENDF/B-IV. The inelastic scattering cross section of JENDL-1 is also lower than that of ENDF/B-IV. By comaring with the experimental data, the data of JENDL-1 look more reasonable.

The capture component of iron decreases by 5% by the replacement, while the inelastic

scattering components increases by 20%. As a whole, the total reactivity worth increases by several percents. There exist differences in the capture and inelastic scattering cross sections between JENDL-1 and ENDF/B-IV. By comparing with the measured data in Fig. A3.4 and A3.5, it is difficult to say which one is better.

As to nickel, the capture component of ENDF/B-IV is 13% lower than that of JENDL-1, while the inelastic scattering component of ENDF/B-IV is about 60% higher. The difference in the total worth is much smaller because of compensation. We conclude from Figs. A3.8 and A3.9 that the capture cross section is overestimated and the inelastic scattering cross section is underestimated in JENDL-1.

| Quantity                  | Number<br>of<br>Assemblies | * | JENDL-1 | JENDL-B4 | JFS-2 | ENDF/B-IV |
|---------------------------|----------------------------|---|---------|----------|-------|-----------|
|                           | Pu-cores                   | Α | 1.008   | 0.980    | 1.021 | 1.031     |
|                           | 16                         | В | 0.076   | 0.078    | 0.072 | 0.068     |
| <sup>238</sup> U Fission  | U-cores                    | Α | 0.954   | 0.941    | 1.002 | 1.022     |
| <sup>235</sup> U Fission  | 9                          | В | 0.073   | 0.076    | 0.074 | 0.080     |
|                           | All cores                  | Α | 0.988   | 0.965    | 1.014 | 1.028     |
|                           | 25                         | В | 0.079   | 0.080    | 0.073 | 0.073     |
|                           | Pu-cores                   | A | 0.964   | 0.964    | 0.974 | 0.975     |
|                           | 15                         | В | 0.031   | 0.031    | 0.031 | 0.031     |
| <sup>239</sup> Pu Fission | U-cores                    | Α | 0.972   | 0.972    | 0.985 | 0.990     |
| <sup>235</sup> U Fission  | 8                          | В | 0.041   | 0.041    | 0.038 | 0.039     |
|                           | All cores                  | Α | 0.967   | 0.967    | 0.977 | 0.980     |
|                           | 23                         | В | 0.035   | 0.035    | 0.034 | 0.034     |
|                           | Pu-cores                   | A | 1.009   | 1.007    | 1.058 | 1.063     |
|                           | 9                          | В | 0.127   | 0.125    | 0.117 | 0.127     |
| <sup>240</sup> Pu Fission | U-cores                    | Α | 1.008   | 1.007    | 1.061 | 1.083     |
| <sup>235</sup> U Fission  | 4                          | В | 0.082   | 0.080    | 0.069 | 0.077     |
|                           | All cores                  | Α | 1.009   | 1.007    | 1.059 | 1.069     |
|                           | 13                         | В | 0.115   | 0.113    | 0.105 | 0.114     |
|                           | Pu-cores                   | Α | 0.997   | 1.001    | 0.995 | 1.021     |
|                           | 6                          | В | 0.028   | 0.029    | 0.027 | 0.029     |
| <sup>238</sup> U Capture  | U-cores                    | Α | 0.983   | 0.984    | 0.981 | 0.984     |
| <sup>235</sup> U Fission  | 6                          | В | 0.013   | 0.014    | 0.014 | 0.023     |
|                           | All cores                  | Α | 0.990   | 0.993    | 0.988 | 1.003     |
|                           | 12                         | В | 0.023   | 0.024    | 0.023 | 0.032     |
|                           | Pu-cores                   | Α | 1.042   | 1.046    | 1.030 | 1.052     |
|                           | 6                          | В | 0.031   | 0.031    | 0.030 | 0.032     |
| <sup>238</sup> U Capture  | U-cores                    | Α | 0.985   | 0.987    | 0.972 | 0.965     |
| <sup>239</sup> Pu Fission | 5                          | В | 0.040   | 0.039    | 0.036 | 0.030     |
|                           | All cores                  | Α | 1.016   | 1.019    | 1.004 | 1.012     |
|                           | 11                         | В | 0.045   | 0.045    | 0.044 | 0.053     |

Table A3.2 Central reaction rate ratios

A: Average of C/E

B: Standard deviation of C/E

| Sample           | Number<br>of<br>Assemblies | * | JENDL-1 | JENDL-B4 | JFS-2 | ENDF/B-IV |
|------------------|----------------------------|---|---------|----------|-------|-----------|
| <sup>235</sup> U | 14                         | А | 1.046   | 1.047    | 1.011 | 1.037     |
|                  |                            | В | 0.037   | 0.037    | 0.039 | 0.038     |
| <sup>238</sup> U | 13                         | А | 1.041   | 1.036    | 0.982 | 0.965     |
|                  |                            | В | 0.094   | 0.091    | 0.080 | 0.087     |
| <sup>10</sup> B  | 13                         | А | 0.919   | 0.914    | 0.910 | 0.852     |
|                  |                            | В | 0.095   | 0.092    | 0.089 | 0.086     |
| Cr               | 9                          | А | 1.014   | 1.265    | 1.316 | 1.375     |
|                  |                            | В | 0.098   | 0.132    | 0.129 | 0.143     |
| Fe               | 12                         | А | 0.916   | 0.979    | 1.019 | 1.113     |
|                  |                            | В | 0.113   | 0.139    | 0.134 | 0.201     |
| Ni               | 10                         | А | 1.084   | 1.036    | 1.116 | 1.119     |
|                  |                            | В | 0.123   | 0.115    | 0.105 | 0.117     |

**Table A3.3** Central reactivity worths normalized to those of  $^{239}$ Pu

\* A: Average of C/E

B: Standard deviation of C/E

| Table A3.4 | Components of | perturbation | cross section : | for chromiu | ım, iron and | l nickel |
|------------|---------------|--------------|-----------------|-------------|--------------|----------|
|            |               |              |                 |             |              |          |

|                           |                |             | Cr           | Fe Ni  |             |              |        |             |              |        |
|---------------------------|----------------|-------------|--------------|--------|-------------|--------------|--------|-------------|--------------|--------|
| Assembly                  | Com-<br>poment | JENDL<br>-1 | JENDL<br>-B4 | Ratio* | JENDL<br>-1 | JENDL<br>-B4 | Ratio* | JENDL<br>-1 | JENDL<br>-B4 | Ratio* |
|                           | Capture        | -8.05       | -11.44       | 1.42   | 8.42        | 7.84         | 0.93   | -49.45      | -43.06       | 0.87   |
|                           | Inelastic      | 1.41        | 1.19         | 0.85   | 3.39        | 2.25         | 0.66   | 1.19        | 1.32         | 1.11   |
| VERA-11A                  | Elastic        | 6.86        | 6.72         | 0.98   | 3.42        | 2.77         | 0.81   | 9.01        | 9.98         | 1.11   |
|                           | Total          | 0.22        | -3.52        | -15.96 | 1.61        | 2.81         | 1.75   | -39.25      | -31.75       | 0.81   |
|                           | Capture        | 9.34        | -13.23       | 1.42   | -8.54       | 7.87         | 0.92   | - 42.39     | -36.47       | 0.86   |
|                           | Inelastic      | 14.08       | 16.56        | 1.18   | 18.46       | 19.58        | 1.06   | 10.23       | 15.93        | 1.56   |
| VERA-1B                   | Elastic        | 14.38       | 13.66        | 0.95   | 11.68       | 10.84        | 0.93   | 17.26       | 17.49        | 1.01   |
|                           | Total          | 19.12       | 16.99        | 0.89   | 21.59       | 22.55        | 1.04   | -14.91      | -3.06        | 0.21   |
|                           | Capture        | 5.58        | -8.02        | 1.44   | - 7.18      | 6.67         | 0.93   | -39.83      | -33.90       | 0.85   |
|                           | Inelastic      | 6.36        | -7.83        | 1.23   | 4.06        | 6.76         | 1.66   | -4.21       | 6.97         | 1.66   |
| ZPR-3-6F                  | Elastic        | 8.29        | 7.47         | 0.90   | 2.87        | 2.21         | 0.77   | 10.40       | 12.37        | 1.19   |
|                           | Total          | -3.65       | 8.38         | 2.30   | - 8.37      | 11.23        | 1.34   | 33.64       | -28.50       | 0.85   |
|                           | Capture        | 17.22       | 21.75        | 1.26   | - 12.77     | -12.86       | 1.01   | -42.69      | 37.45        | 0.88   |
|                           | Inelastic      | 0.81        | 2.76         | 3.40   | 1.68        | 3.54         | 2.11   | 0.55        | 2.46         | 4.44   |
| ZPR-3-54                  | Elastic        | 7.48        | 9.00         | 1.20   | 5.65        | 6.74         | 1.19   | 12.52       | 14.98        | 1.20   |
|                           | Total          | 8.92        | 9.99         | 1.12   | 5.44        | -2.59        | 0.48   | -29.62      | -20.01       | 0.68   |
|                           | Capture        | 17.24       | -21.94       | 1.27   | 12.80       | 13.01        | 1.02   | -42.87      | 37.75        | 0.88   |
|                           | Inelastic      | 0.67        | 0.86         | 1.28   | 1.57        | 1.35         | 0.86   | 0.48        | 0.69         | 1.42   |
| ZPR-3-53                  | Elastic        | 7.92        | 8.16         | 1.03   | 6.02        | 6.12         | 1.02   | 13.23       | 13.82        | 1.04   |
|                           | Total          | 8.65        | 12.92        | 1.49   | -5.21       | -5.54        | 1.06   | -29.15      | -23.24       | 0.80   |
|                           | Capture        | 8.72        | 12.91        | 1.48   | 8.15        | 7.61         | 0.93   | -38.78      | -33.24       | 0.86   |
| <b>E</b> (1) <b>I</b> (3) | Inelastic      | 4.97        | 5.79         | 1.16   | -4.66       | 5.92         | 1.27   | -3.39       | -5.39        | 1.59   |
| FCA-V-2                   | Elastic        | 3.85        | 4.37         | 1.14   | 2.15        | 1.99         | 0.93   | 13.23       | 14.69        | 1.11   |
|                           | Total          | 9.85        | -14.32       | 1.45   | 10.66       | 11.54        | 1.08   | -28.94      | -23.94       | 0.83   |
|                           | Capture        | 8.34        | - 12.46      | 1.49   | - 8.04      | -7.39        | 0.92   | -38.13      | 32.65        | 0.86   |
| T                         | Inelastic      | 5.96        | 6.92         | 1.16   | 5.58        | 7.05         | 1.27   | - 4.09      | -6.47        | 1.58   |
| FCA-V-I                   | Elastic        | 3.69        | 4.06         | 1.10   | 1.94        | 1.62         | 0.84   | 12.96       | 14.17        | 1.09   |
|                           | Total          | 10.61       | -15.32       | 1.44   | 11.67       | 12.82        | 1.10   | - 29.26     | 24.94        | 0.85   |

Table A3.4 (cont.)

|           | ~               |             | Cr           |        |             | Fe           |        | Ni                    |        |
|-----------|-----------------|-------------|--------------|--------|-------------|--------------|--------|-----------------------|--------|
| Assembly  | Com-<br>poment  | JENDL<br>-1 | JENDL<br>-B4 | Ratio* | JENDL<br>-1 | JENDL<br>-B4 | Ratio* | JENDL JENDL<br>-1 -B4 | Ratio* |
|           | Canture         | -12.04      |              | 1 37   | -10.05      | -9.58        | 0.95   | -44.75 -39.11         | 0.87   |
|           | Inelastic       | -9.75       | -11.25       | 1.15   | -10.17      | -12.16       | 1.20   | -6.75 -10.80          | 1.60   |
| SNEAK-7A  | Elactio         | 2 / 2       | 2 08         | 1.15   | 1 74        | 1.84         | 1.06   | 916 983               | 1.00   |
|           | EldSUC<br>Total | 10 24       | 2.70         | 1.10   | 19.47       | 10.00        | 1.00   | 12 25 40.08           | 0.05   |
|           | Total           | -18.30      | 23.74        | 1.29   | -18.47      | -19.90       | 1.08   | -42.55 -40.08         | 0.95   |
|           | Capture         | -12.31      | -17.18       | 1.40   | -9.88       | -9.55        | 0.97   | -38.55 -33.34         | 0.87   |
|           | Inelastic       | -9.38       | -10.27       | 1.10   | -10.32      | -11.32       | 1.10   | -6.59 -9.78           | 1.48   |
| FCA-VI-2  | Elastic         | -1.56       | -0.87        | 0.56   | -0.91       | 0.55         | 0.61   | 4.51 4.68             | 1.04   |
|           | Total           | -23.25      | -28.32       | 1.22   | -21.11      | -21.42       | 1.02   | -40.63 -38.44         | 0.95   |
|           | Contura         | ۰ م<br>۵    | 11.07        | 1 4 9  | 8 6 0       | 7 70         | 0.00   | 41 22 26 08           | 0.87   |
|           | Inclastic       | 0.00        | -11.07       | 1.40   | -0.00       | -7.70        | 1.28   | -963 - 1545           | 1.60   |
| ZPR-3-12  | Election        | -14.17      | -10.44       | 0.05   | -15.14      | -10.70       | 0.00   | -9.03 -13.45          | 1.00   |
|           | Elastic         | 5.25        | 4.97         | 0.95   | 4.02        | 4.39         | 0.99   | 11.03 12.04           | 1.05   |
|           | Total           | -16.92      | -23.34       | 1.38   | -17.11      | -19.87       | 1.16   | -39.30 -39.49         | 1.01   |
|           | Capture         | -10.35      | -14.65       | 1.42   | -8.90       | -8.60        | 0.97   | -38.77 -33.20         | 0.86   |
|           | Inelastic       | -9.30       | -10.38       | 1.12   | -10.43      | -11.58       | 1.11   | -6.50 -9.83           | 1.51   |
| MAZ       | Elastic         | -1.81       | -0.77        | 0.42   | -1.43       | -0.91        | 0.63   | 3.97 4.90             | 1.24   |
|           | Total           | -21.46      | -25.79       | 1.20   | -20.77      | -21.08       | 1.02   | -41.31 -38.13         | 0.92   |
|           | <b>C b c</b>    | 5 70        | 0.01         | 1 4 1  | 7 7 7       | 7.04         | 0.01   | 40.24 24.84           | 0.07   |
|           | Capture         | -5.70       | -8.01        | 1.41   | -1.13       | - /.06       | 0.91   | -40.24 -34.84         | 0.87   |
| ECA-I-6   | Inelastic       | -19.40      | -22.83       | 1.18   | -18.62      | -23./1       | 1.27   | -13.13 -21.37         | 1.63   |
| rento     | Elastic         | 4.40        | 3.24         | 0.74   | 2.51        | 2.90         | 1.15   | 4.65 5.84             | 1.26   |
|           | Total           | -20.70      | -27.59       | 1.33   | -23.84      | -27.87       | 1.17   | -48.73 -50.38         | 1.03   |
|           | Capture         | -5.62       | -7.90        | 1.41   | -7.73       | -7.04        | 0.91   | -39.80 -34.45         | 0.87   |
|           | Inelastic       | -19.84      | -23.26       | 1.17   | -19.20      | -24.28       | 1.26   | -13.39 -21.74         | 1.62   |
| FCA-I-1   | Elastic         | 3.93        | 2.77         | 0.70   | 2.26        | 2.63         | 1.16   | 4.26 5.39             | 1.27   |
|           | Total           | -21.53      | -28.40       | 1.32   | -24.67      | -28.69       | 1.16   | -48.94 -50.80         | 1.04   |
|           | Capture         |             | -17 59       | 1 38   | -9.83       | _9 33        | 0.95   | -40 79 -35 62         | 0.87   |
|           | Inelactic       | 12.70       | 8.65         | 1.50   | 6.78        | -8.61        | 1 27   | -5.26 -8.18           | 1.56   |
| FCA-3-2S  | Flactic         | 7.72        | 7 20         | 1.12   | 5.91        | 5.01         | 1.00   | 14.82 15.26           | 1.00   |
|           | Total           | 12.24       | 18.04        | 1.01   | 10.77       | 12.11        | 1.00   | 21.22 28.54           | 0.01   |
|           | Total           | -13.20      | 10,94        | 1.45   | -10.77      | -12.11       | 1.12   | -31.22 -28.34         | 0.91   |
|           | Capture         | -10.06      | -14.36       | 1.43   | -8.78       | -8.42        | 0.96   | -39.27 -33.71         | 0.86   |
| ECA VI 1  | Inelastic       | -10.23      | -11.46       | 1.12   | -11.20      | -12.61       | 1.13   | -7.14 -10.90          | 1.53   |
| FCA-VI-I  | Elastic         | -1.40       | -0.33        | 0.24   | -1.21       | -0.83        | 0.68   | 6.03 7.05             | 1.17   |
|           | Total           | -21.69      | -26.16       | 1.21   | -21.20      | -21.86       | 1.03   | -40.38 -37.56         | 0.93   |
|           | Capture         | -15.82      | -20.54       | 1.30   | -11.98      | -11.90       | 0.99   | -44.17 -38.95         | 0.88   |
|           | Inelastic       | -11.25      | -12.78       | 1.14   | -11.67      | -13.84       | 1,19   | -7.77 -12.23          | 1.58   |
| ZPR-3-50  | Elastic         | 5.15        | 5.76         | 1.12   | 3.49        | 3.88         | 1.11   | 12.12 12.77           | 1.05   |
|           | Total           | -21.93      | -27.57       | 1.26   | -20.16      | -21.85       | 1.08   | -39.82 -38.41         | 0.97   |
|           | Carta           | 11.00       | 16.40        | 1 20   | 0.02        | 0.54         | 0.07   | 41 (7 )(17            | 0.07   |
|           | Capture         | -11.90      | -16.40       | 1.38   | -9.83       | -9.54        | 0.97   | -41.67 -36.17         | 0.87   |
| ZPR-3-48  | Inelastic       | -12.13      | -13.07       | 1.13   | -12.84      | -14.85       | 1.10   | -8.39 -13.02          | 1.55   |
|           | Elastic         | 1.26        | 2.11         | 1.6/   | 0.80        | 1.20         | 1.50   | 8.60 9.44             | 1.10   |
|           | Total           | -22.76      | -27.96       | 1.23   | -21.87      | -23.19       | 1.06   | -41.46 -39.75         | 0.96   |
|           | Capture         | -10.92      | -15.14       | 1.39   | -8.95       | -8.58        | 0.96   | -42.44 -36.71         | 0.87   |
| 7PD_2_40  | Inelastic       | -14.27      | -16.08       | 1.13   | -15.19      | -17.46       | 1.15   | -9.86 -15.32          | 1.55   |
| Lr K-3-49 | Elastic         | 0.15        | 0.96         | 6.55   | 0.85        | 0.44         | 0.51   | 5.64 6.59             | 1.17   |
|           | Total           | -25.05      | -30.26       | 1.21   | -25.00      | -26.48       | 1.06   | -46.66 -45.43         | 0.97   |
|           | Capture         | -11.06      | -15.53       | 1.41   | -9.03       | -8.74        | 0.97   | -39.23 - 33.74        | 0.86   |
| 700 0 640 | Inelastic       | 10.10       | -11.21       | 1.11   | -11.19      | -12.41       | 1.11   | -7.07 -10.67          | 1.51   |
| ZPK-3-36B | Elastic         | -2.39       | -1.49        | 0.62   | -1.70       | -1.34        | 0.97   | 4.66 5.41             | 1.16   |
|           | Total           | -23.54      | -28.23       | 1.20   | -21.91      | -22.49       | 1.03   | 41.65 39.00           | 0.94   |

|          | Com-      |        | Cr           |        |        | Fe           |        |        | Ni           |        |
|----------|-----------|--------|--------------|--------|--------|--------------|--------|--------|--------------|--------|
| Assembly | poment    | JENDL  | JENDL<br>-B4 | Ratio* | JENDL  | JENDL<br>-B4 | Ratio* | JENDL  | JENDL<br>-B4 | Ratio* |
|          |           | •      |              |        |        |              |        | -      |              |        |
|          | Capture   | 12.37  | -17.50       | 1.42   | -9.48  | -9.15        | 0.97   | -36.75 | -31.82       | 0.87   |
| 7PR-6-6A | Inelastic | -6.01  | -6.47        | 1.08   | -5.94  | -6.82        | 2.36   | -4.18  | -6.13        | 1.47   |
|          | Elastic   | 3.06   | 3.47         | 1.14   | 2.89   | 2.88         | 1.00   | 12.46  | 13.04        | 1.05   |
|          | Total     | -15.32 | - 20.50      | 1.34   | -12.52 | -13.08       | 1.05   | -28.48 | -24.91       | 0.88   |
|          | Capture   | -12.81 | -17.67       | 1.38   | -9.97  | -9.77        | 0.98   | -38.53 | -33.31       | 0.86   |
|          | Inelastic | -10.33 | -11.20       | 1.09   | -11.50 | -12.48       | 1.09   | -7.26  | -10.66       | 1.47   |
| ZPPR-2   | Elastic   | -2.60  | -1.63        | 0.63   | -1.13  | -0.68        | 0.60   | 5.47   | 5.93         | 1.08   |
|          | Total     | -25.74 | -30.50       | 1.19   | -22.60 | -22.93       | 1.01   | -40.32 | -38.04       | 0.94   |
|          | Capture   | -12.07 |              | 1 39   | -9.81  | 9.56         | 0.97   | -37.96 | -32 70       | 0.86   |
|          | Inelastic | -10.31 | -11.19       | 1.09   | -11.60 | -12.55       | 1.08   | -7.24  | -10.62       | 147    |
| MZB      | Elastic   | -3.31  | -2.31        | 0.70   | -1.79  | -1.30        | 0.73   | 3.84   | 4 18         | 1.09   |
|          | Total     | -25.70 | -30.32       | 1 18   | -23.20 | -23.40       | 1 01   | -41.37 | -39.14       | 0.95   |
|          | 0         |        |              |        | 10.20  | 20.10        |        |        |              | 0.90   |
|          | Capture   | -12.51 | -17.35       | 1.39   | -10.79 | -10.01       | 0.93   | -42.50 | -37.63       | 0.89   |
| ZEBRA-2  | Inelastic | -14.84 | -17.17       | 1.16   | -14.63 | -18.18       | 1.24   | -10.12 | -16.26       | 1.61   |
|          | Elastic   | 6.13   | 6.28         | 1.02   | 5.87   | 6.07         | 1.03   | 15.50  | 15.48        | 1.00   |
|          | Total     | -21.22 | -28.24       | 1.33   | -19.54 | -22.12       | 1.13   | -37.13 | -38.41       | 1.42   |
|          | Capture   | -12.84 | -17.70       | 1.38   | -9.96  | -9.76        | 0.98   | -38.52 | -33.29       | 0.86   |
| 700 4 7  | Inelastic | -10.27 | 11.13        | 1.08   | -11.42 | -12.40       | 1.09   | -7.22  | -10.59       | 1.47   |
| LTK-0-/  | Elastic   | -2.44  | -1.51        | 0.62   | -1.02  | 0.59         | 0.58   | 5.69   | 6.09         | 1.07   |
|          | Total     | -25.55 | 30.34        | 1.19   | -22.40 | -22.75       | 1.02   | -40.05 | -37.79       | 0.94   |
|          | Capture   | -10.03 | -14.40       | 1.44   | -9.09  | -8.37        | 0.92   | -42.62 | -37.17       | 0.87   |
| CNEAR 7D | Inelastic | -17.62 | -19.91       | 1.13   | -19.03 | -21.89       | 1.15   | -12.18 | -19.18       | 1.58   |
| SNEAK-/D | Elastic   | -3.33  | -2.62        | 0.79   | -3.68  | -3.42        | 0.93   | 2.39   | 2.76         | 1.15   |
|          | Total     | -30.98 | -36.93       | 1.19   | -31.80 | -33.69       | 1.06   | -52.41 | -53.59       | 1.02   |
|          | Capture   | - 5.88 | -8.41        | 1.43   | -7.90  | -7.08        | 0.90   | -36.29 | - 31.37      | 0.86   |
|          | Inelastic | -20.91 | -24.32       | 1.16   | -21.63 | -26.28       | 1.22   | -14.20 | -22.98       | 1.62   |
| ZPR-3-11 | Elastic   | 3,59   | -4.17        | 1.16   | -2.68  | -2.55        | 0.95   | -1.11  | -0.83        | 0.75   |
|          | Total     | -30.38 | 36.90        | 1.22   | -32.21 | -35.91       | 1.12   | -51.60 | -55.18       | 1.07   |
|          | Capture   | -5.81  | 8.21         | 1.41   | -8.14  | -7.35        | 0.90   | -41.17 | -36.08       | 0.88   |
|          | Inelastic | -27.13 | -31.78       | 1 17   | -29.21 | -35.08       | 1.20   | -18.38 | -30.18       | 1.64   |
| ZEBRA-3  | Flastic   | -11.20 | -11.16       | 1.00   | =10.02 | -10.23       | 1.02   | -12.01 | -11.72       | 0.98   |
|          | Total     | -44.14 | -51.14       | 1.16   | -47.37 | 52.65        | 1.11   | -71.56 | -77.98       | 1.09   |
|          | Conture   | 10 57  | 14.65        | 1.20   | 0.25   | 0.00         | 0.05   | 40.73  | 25.22        | 0.97   |
|          | Capture   | -10.57 | -14.03       | 1.39   | -9.33  | -0.90        | 0.93   | -40.72 | -33.33       | 0.8/   |
| Average  | Inelastic | -9.83  | -11.13       | 1.13   | -9.81  | -11.79       | 1.20   | -0./2  | -10.53       | 1.37   |
| -        | Elastic   | 2.18   | 2.50         | 1.15   | 1.38   | 1.53         |        | 18./   | 8.58         | 1.10   |
|          | Total     | -18.22 | -23.28       | 1.28   | -1/.// | -19.16       | 80.1   | -39.63 | 37.28        | 0.94   |

Table A3.4 (cont.)

\* JENDL-B4/JENDL-1

# A3.1.4 Doppler Coefficient

The C/E values of Doppler coefficients are given in Table A3.5. The C/E values decrease by about 2% with JENDL-B4.

|                   | Assembly         | JENDL-1 | JENDL-B4 | ENDF/B-IV |
|-------------------|------------------|---------|----------|-----------|
|                   | FCA V-1          | 1.09    | 1.07     | 0.91      |
|                   | <b>V-</b> 2      | 0.98    | 0.96     | 0.78      |
| Small Sample      | VI-1             | 1.13    | 1.10     | 0.93      |
| Doppler           | VI-2             | 1.03    | 1.01     | 0.87      |
| Experiment        | ZPPR-2 (Normal)  | 1.25    | 1.22     | 0.93      |
| -                 | (Na-voided)      | 0.96    | 0.92     | 0.81      |
|                   | <b>ZPR-3-4</b> 7 | 1.04    | 1.04     | 0.92      |
| Whole Core        |                  |         |          |           |
| Dopper            | SEFOR            | 1.12    | 1.12     | 1.04      |
| Experiment        |                  |         |          |           |
| Average of C/E    |                  | 1.08    | 1.06     | 0.90      |
| Standard Deviatio | on of C/E        | 0.09    | 0.09     | 0.08      |

 Table A3.5
 Doppler reactivity coefficients (C/E)

#### A3.1.5 Snell Experiments

The fission rate ratios of  ${}^{235}U$  to  ${}^{238}U$  and of  ${}^{239}Pu$  to  ${}^{238}U$  in natural uranium equilibrium spectra are given in **Table A3.6**. Both ratios decrease by 1% with JENDL-B4.

| Table A3.6 | Fission rate ratios<br>uranium equilibri | s in natural<br>um spectra |
|------------|------------------------------------------|----------------------------|
| Library    | <sup>235</sup> U fission                 | <sup>239</sup> Pu fission  |
|            | <sup>238</sup> U fission                 | <sup>230</sup> U fission   |
| JENDL-1    | 240.8                                    | 220.0                      |
| JENDL-B4   | 238.2                                    | 217.8                      |
| ENDF/B-IV  | 227.7                                    | 203.4                      |

# A3.2 Analysis of MZB with Two-dimensional Model

Effects of cross sections of the structural materials were studied on MZB core characteristics. Effective multiplication factor, central reaction rate ratios and reaction rate distributions were calculated with the two-dimensional R-Z model as shown in **Fig. A3.10**. The calculation was performed with the 25 group macroscopic cross sections collapsed with the 1-D diffusion code EXPANDA-70D. The difference in the 70 group elastic removal cross sections between ENDF/B-IV and JENDL-1 is shown in **Fig. A3.11**. The discrepancies are specially remarkable in the energy range from 500 keV to 4 MeV. **Figures A3.12**, **A3.13** and **A3.14** compare the 25 group macroscopic capture cross sections, diffusion coefficients and removal cross sections, respectively, in the steel reflector of MZB. It is seen from these figures that the discrepancies between ENDF/B-IV and JENDL-1 are remarkable. The discrepancy of the diffusion coefficients in the important energy range from 10 keV to 4 MeV must have considerable effects on the calculation of neutron leakage.

**Table A3.7** shows comparison of the effective multiplication factors and central reaction rate ratios calculated with JENDL-1, JENDL-B4 and JFS-2. The effective multiplication factor  $k_{eff}$  with JENDL-B4 becomes about 1.3% smaller than that with JENDL-1 as observed in the 1-D calculation described in Section A3.1. This must be mainly caused by the difference in the neutron leakage. As to the central reaction rate ratios, the difference is seen only for the ratio of <sup>238</sup>U fission to <sup>235</sup>U fission. This can be understood from the core center neutron

spectra shown in **Fig. A3.15**. The spectra calculated with JENDL-B4 are softer than those for JENDL-1, because the removal cross sections of JENDL-B4 are larger than those of JENDL-1 in the energy range above 1.4 MeV. This is caused by the difference in the inelastic scattering cross sections as shown in **Fig. A3.6**.

The reaction rate distribution for <sup>235</sup>U fission, <sup>239</sup>Pu fission, <sup>238</sup>U fission, <sup>238</sup>U capture and iron capture are shown in **Figs. A3.16** ~ **A3.20**, respectively, as the ratio of the result with JENDL-B4 to that with JENDL-1. It is seen from these figures that the results with JENDL-B4 become smaller than those with JENDL-1 in the radial blanket and reflector regions except for the capture rate distribution of iron  $\sigma_c$  (Fe). This depression with JENDL-B4 is caused by the larger neutron leakage due to the larger diffusion coefficients in the reflector above 10 keV as seen in **Fig. A3.13**. The larger capture rate of iron in the blanket region can be understood by the larger capture cross section of ENDF/B-IV in the energy region below 10 keV as is seen in **Fig. A4.10**.

Table A3.7 Effective multiplication factors and central reaction rate ratios for MZB

|                                                      | JENDL-1 | JENDL-B4 | JFS-2   |
|------------------------------------------------------|---------|----------|---------|
| k <sub>eff</sub>                                     | 0.98824 | 0.97548  | 0.98749 |
| <sup>238</sup> U fission/ <sup>235</sup> U fission   | 0.02218 | 0.02128  | 0.02244 |
| <sup>235</sup> U fission/ <sup>239</sup> Pu fission  | 1.09341 | 1.09123  | 1.08502 |
| <sup>238</sup> U capture/ <sup>239</sup> Pu fission  | 0.15009 | 0.15063  | 0.14831 |
| <sup>241</sup> Pu fission/ <sup>239</sup> Pu fission | 1.37445 | 1.37279  | 1.3788  |



Fig. A3.10 Two-dimensional R-Z calculational model for MZB critical assembly.


Fig. A3.11 70-group elastic removal cross sections of iron.



Fig. A3.12 25-group macroscopic capture cross sections in the steel reflector of MZB.



Fig. A3.13 25-group diffusion coefficients in the steel reflector of MZB.



Fig. A3.14 25-group macroscopic removal cross sections in the steel reflector of MZB.







**Fig. A3.16** Ratio of <sup>235</sup>U fission rate distribution calculated with JENDL-B4 to that with JENDL-1.



Fig. A3.17 Ratio of <sup>239</sup>Pu fission rate distribution calculated with JENDL-B4 to that with JENDL-1.



**Fig. A3.18** Ratio of <sup>238</sup>U fission rate distribution calculated with JENDL-B4 to that with JENDL-1.

Appendices





Fig. A3.19 Ratio of <sup>238</sup>U capture rate distribution calculated with JENDL-B4 to that with JENDL-1.



Fig. A3.20 Ratio of iron capture rate distribution calculated with JENDL-B4 to that with JENDL-1.

## A3.3 Analysis of Large Fast Breeder Reactor

Effects of the structural material cross sections were studied on core characteristics of a large fast breeder reactor under conceptual design, in order to know the core size dependence of the effects. The design specification and characteristics of the reactor are given in **Table A3.8**. The analysis was made with the 2-D R-Z diffusion model and six group cross section collapsed with the 1-D diffusion calculation. The R-Z model is shown in **Fig. A3.21**. We replaced not only the cross sections of chromium, iron and nickel but also those of sodium by those of ENDF/B-IV in this study. It was proved, however, that the latter replacement

| Reactor thermal output                       | 2600         | (MW)              |
|----------------------------------------------|--------------|-------------------|
| Reactor electric out put                     | 1000         | (MW)              |
| Core height                                  | 98           | (cm)              |
| Core diameter                                | 345          | (cm)              |
| Axial blanket thickness<br>(upper/lower)     | 35/35        | (cm)              |
| Radial blanket thickness                     | 40           | (cm)              |
| Pu enrichment                                | 11.3/14.5    | (a/o Pu-fiss)     |
| (inner core/outer core)                      |              |                   |
| Pu isotope ratio                             | 58/24/14/4   |                   |
| (239/240/241/242)                            |              |                   |
| Fuel pellet density<br>(core/blanket)        | 90/93        | (% T.D.)          |
| Burn up (average)                            | 80,000       | (MWD/T)           |
| Number of refueling batches (core/blanket)   | 3/6          |                   |
| Breeding ratio (MOEC)                        | 1.30         |                   |
| Reactivity swing                             | 2,89         | $(\% \Delta k/k)$ |
| Power share (MOEC)<br>(core/r, bla./a, bla.) | 88.5/3.5/8.0 | (%)               |

 
 Table A3.8
 Design specifications and characteristics of 1000 MWe LMFBR



Fig. A3.21 Two-dimensional R-Z calculational model of 1000 MWe fast breeder reactor.

has minor effects on the characteristics interested. Hence this replaced library is also called JENDL-B4 in this section.

Changes of macroscopic cross sections in the outer core region are shown in Table A3.9. Significant changes are

- 1) decrease of  $\Sigma_s$  above 100 keV due to the change of elastic scattering cross section,
- 2) increase of D and decrease of  $\Sigma_{rem}$  between 100 keV and 1.4 MeV as the results of decrease in  $\Sigma_{s}$ ,
- 3) increase of  $\Sigma_{rem}$  above 1.4 MeV due to the increase of the inelastic scattering cross section

and

4) increase of  $\Sigma_a$ ,  $\Sigma_s$  and  $\Sigma_{rem}$  and decrease of D below 1 keV.

Changes of  $k_{eff}$  and breeding ratio are shown in **Table A3.10**. The  $k_{eff}$ -values decrease by 1.2% as observed in the other cores. Little change appears in the breeding ratio. **Table A3.11** shows absorption probabilities of a neutron by fissile, fertile and structural material nuclei in each zone of the reactor. Absorption by structural materials increases and those by fissile and fertile nuclei decrease by the replacement.

Changes of neutron flux in the outer core and radial blanket region are given in **Table A3.12**. The flux above 1.4 MeV is lower with JENDL-B4 due to larger removal cross section as mentioned above. The flux between 10 keV and 1.4 MeV becomes higher with JENDL-B4 as the results of larger removal from the first group. The flux below 10 keV decreases because of larger leakage between 100 keV and 1.4 MeV and of larger absorption cross section below 1 keV.

Change of power distribution has the same tendency as observed in the fission rate distributions in MZB: The change is less than 1% even in the outer edge of the outer core, and the calculated power with JENDL-B4 becomes lower by 4% at the outer edge of radial blanket and by 6% at the top of axial blanket.

| E <sub>H</sub> | r i      |                         | (JENDL-B4 – JENDL-1)/JENDL-1 (%) |                         |                           |      |  |
|----------------|----------|-------------------------|----------------------------------|-------------------------|---------------------------|------|--|
|                | ΕL       | $\Delta \nu \Sigma_{f}$ | $\Delta \Sigma_{\mathbf{a}}$     | $\Delta \Sigma_{\rm s}$ | $\Delta \Sigma_{\rm rem}$ | ΔD   |  |
| 1.05 + 7*      | 1.4 +6   | -0.5                    | 0.9                              | -2.6                    | 4.8                       | 0.3  |  |
| 1.4 +6         | 4.0 + 5  | 0.1                     | -0.3                             | -5.9                    | -3.5                      | 11.3 |  |
| 4.0 + 5        | 1.0 + 5  | 0                       | 0                                | -3.3                    | -1.3                      | 3.9  |  |
| 1.0 + 5        | 1.0 + 4  | 0.2                     | 1.0                              | -0.8                    | -3.2                      | 0.4  |  |
| 1.0 + 4        | 1.0 + 3  | -0.9                    | 1.6                              | -0.2                    | 0.1                       | -0.7 |  |
| 1.0 + 3        | 1.0 + 2  | 0.9                     | 3.4                              | 3.0                     | 3.0                       | -6.0 |  |
| 1.0 + 2        | 2.15 - 1 | 0.5                     | 0.9                              | 0.7                     | 0.7                       | -2.9 |  |

 
 Table A3.9
 Change of macroscopic cross sections in outer core region of 1000 MWe LMFBR due to replacement of the structural material cross sections

\* 1.05 + 7 denotis  $1.05 \times 10^7$ 

 
 Table A3.10
 Effective multiplication factor and breeding ratio of 1000 MWe LMFBR

|                  | JENDL-1 | JENDL-B4 |
|------------------|---------|----------|
| k <sub>eff</sub> | 1.03881 | 1.02444  |
| breeding ratio   | 1.2658  | 1.2666   |

| Region         | Fissile nuclei |          | Fertile nuclei |          | Structural material nuclei |          |
|----------------|----------------|----------|----------------|----------|----------------------------|----------|
|                | JENDL-1        | JENDL-B4 | JENDL-1        | JENDL-B4 | JENDL-1                    | JENDL-B4 |
| Inner core     | 0.2143         | 0.2121   | 0.2405         | 0.2371   | 0.0290                     | 0.0324   |
| Outer core     | 0.1514         | 0.1489   | 0.1303         | 0.1276   | 0.0161                     | 0.0176   |
| Radial blanket | _              | _        | 0.0652         | 0.0647   | 0.0052                     | 0.0066   |
| Axial blanket  | _              | _        | 0.0968         | 0.0956   | 0.0112                     | 0.0137   |
| Other          | -              | -        | -              | _        | 0.0187                     | 0.0214   |
| Whole region   | 0.3656         | 0.3610   | 0.5328         | 0.5251   | 0.0803                     | 0.0917   |

Table A3.11Absorption probability of a neutron by fissile, fertile and structural<br/>material nuclei in each region of 1000 MWe LMFBR

 Table A3.12
 Fluxes in outer core regions and radial blanket of 1000 MWe LMFBR

| E E        |          | Inner edge of outer core |             | Outer edge of outer core |             | Radial blanket |             |
|------------|----------|--------------------------|-------------|--------------------------|-------------|----------------|-------------|
| EH EL      | EL       | JENDL-1                  | change* (%) | JENDL-1                  | change* (%) | JENDL-1        | change* (%) |
| 1.05 + 7** | 1.4 +6   | 2.270 + 14               | -2.7        | 9.570 + 13               | -2.9        | 7.790 + 12     | -6.7        |
| 1.4 +6     | 4.0 + 5  | 8.047 + 14               | 5.3         | 3.293 + 14               | 4.8         | 4.596 + 13     | 11.2        |
| 4.0 + 5    | 1.0 + 5  | 8.448 + 14               | 1.8         | 3.419 + 14               | 1.6         | 7.094 + 13     | 5.7         |
| 1.0 + 5    | 1.0 + 4  | 1.081 + 15               | 1.3         | 4.391 + 14               | 1.2         | 1.507 + 14     | 3.7         |
| 1.0 + 4    | 1.0 + 3  | 2.206 + 14               | -1.4        | 8.92 + 13                | -1.6        | 4.734 + 13     | -0.1        |
| 1.0 + 3    | 1.0 + 2  | 3.896 + 13               | -3.4        | 1.687 + 13               | -4.5        | 1.718 + 13     | -4.4        |
| 1.0 + 2    | 2.15 - 1 | 1.907 + 11               | 6.4         | 2.115 + 11               | -1.8        | 1.070 + 12     | -2.4        |

\* (JENDL-B4 – JENDL-1)/JENDL-1

\*\* 1.05 + 7 denotes  $1.05 \times 10^7$ 

## References

 Asami T., Kikuchi Y., Nakagawa T. and Igarasi S.: "Neutron Data of Structural Materials for Fast Reactors", Proc. Specialists' Meeting, Geel, 5-8 Dec. 1977, p. 118, Pergamon Press (1979).

## Appendix 4 Intercomparison of Group Constants among JENDL-1, JFS-2 and ENDF/ B/IV

Some important group constants of JENDL-1, JFS-2 and ENDF/B-IV are graphically compared with one another in this appendix. One comment is necessary as to JFS-2. JFS-2 adopted the data of ENDF/B-IV for Al, Na, Cr, Fe and Ni. Hence the data of ENDF/B-IV are hidden by those of JFS-2 in the present graphs. As to the  $(n, \alpha)$  reaction cross section of <sup>10</sup>B, the values of ENDF/B-IV are very close to those of JENDL-1.











Fig. A4.3 Elastic scattering cross sections of alminium.























Fig. A4.9 Elastic scattering cross sections of iron.







Fig. A4.11 Inelastic scattering cross sections of iron.



Fig. A4.12 Total cross sections of nickel.



Elastic scattering cross sections of nickel. Fig. A4.13



Fig. A4.14 Capture cross sections of nickel.







Fig. A4.17 (b) Fission cross sections of  $^{235}$ U.



10<sup>6</sup>

 $10^{7}$ 

10<sup>5</sup>

Neutron Energy (eV) Fig. A4.19 Inelastic scattering cross sections of <sup>235</sup>U.

0.0 10⁴







Fig. A4.21 Fission cross sections of <sup>238</sup>U.





**JAERI 1275** 



Fig. A4.24 Total cross sections of <sup>239</sup>Pu.

104

Neutron Energy (eV)

10<sup>5</sup>

 $10^{6}$ 

10'

10°L\_\_\_\_ 101

10<sup>2</sup>

10<sup>3</sup>







Fig. A4.25 (b) Fission cross sections of  $^{239}$ Pu.



Fig. A4.26 (a) Capture cross sections of  $^{239}$ Pu.













Fig. A4.31 Inelastic scattering cross sections of  $^{240}$ Pu.



Capture cross sections of <sup>241</sup>Pu. Fig. A4.34

Neutron Energy (eV)



Fig. A4.35 Inelastic scattering cross sections of <sup>241</sup>Pu.