

JAERI-M 82-117

α 粒子衝撃によって放出される中性子の 収量	
1982年9月	
中嶋 龍三*	

日本原子力研究所 Japan Atomic Energy Research Institute

JAERI-M レポートは、日本原子力研究所が不定期に公刊している研究報告書です。

入手の問合わせは、日本原子力研究所技術情報部情報資料課(〒319-11 茨城県那珂郡東海村)あて、お 申しこしください。なお、このほかに財団法人原子力弘済会資料センター(〒319-11 茨城県那珂郡東海村 日本原子力研究所内)で複写による実費頒布をおこなっております。

JAERI-M reports are issued irregularly.

Inquiries about availability of the reports should be addressed to Information Section, Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan.

© Japan Atomic Energy Research Institute, 1982

編集兼	兼発行	日本原子力研究所
ED	刷	日立高速印刷株式会社

JAERI - M 82 - 117

α粒子衝撃によって放出される中性子の収量

中嶋 龍三*

(1982年8月5日受理)

10 MeV 以下の α 粒子を厚いターゲットに衝撃した際に放出される中性子の収量を,それらの反応断面積を使って計算した。原子番号の小さい(2 < 15)元素については,利用できる既存の中性子収量計算値および測定値との比較をした。原子番号が17~49の元素に対しては,実験データのあるものについて計算値または測定結果の外挿値を示してある。

* シグマ研究委員会・法政大学

Neutron Yields from Bombardment of α -Particles

Ryuzo NAKASIMA*

(Received August 5, 1982)

The thick target neutron yields from bombardment of <10 MeV α -particles are calculated based on the reaction cross sections. The results for the elements of Z < 15 are compared with existing calculated or measured neutron yield data. For the elements of 16 < Z < 50, elemental or isotopic neutron yields are calculated if the cross section data are available.

Keywords: Neutron Yield Estimation, (α, n) Reaction, Thick Target, Light Element, UO₂, UC, Neutron Group, $(\alpha, \alpha'n)$ Reaction

* JNDC • Hosei University

目 次

1.	はじ	めに		1
2.	原子	番号7	が14 以下の元素に対する中性子収量	3
2.	1	Li	全収量,グループ別0°方向収量	3
2.	2	Be	全収量,グループ別全収量	7
2.	3	В	全収量,同位元素別全収量	12
2.	4	С	全収量, 0°方向収量	17
2.	5	Ν	全収量	20
2.	6	0	全収量	22
2.	7	F	全収量, グループ別0°方向収量	25
2.	8	Ne	全収量	27
2.	9	Na	全収量(測定値)	30
2.1	10	Mg	全収量	31
2.1	11	Al	全収量(計算值+測定值)	33
2.1	12	Si	全収量	37
2.1	13)	原子看	番号が 14 以下の主要元素に対する全収量の図	40
3. /	原子	番号な	が15以上30以下の元素に対する(α, n)反応	41
3.	1	CI	³⁵ Cl の全収量	41
3.	2	Sc	全収量	42
3.	3	Τi	⁴⁶ Ti の全収量	43
3.	4	V	51 Ⅴの全収量	44
3.	5	Cr	⁵⁰ Cr の全収量	45
3.	6	Fe	⁵⁴ Fe の全収量	46
3.	7	Co	全収量(測定值)	47
3.	8	Ni	⁶⁰ Ni と ⁶² Ni の全収量(測定値)	48
3.	9	Cu	全収量(測定値)	49
3.1	10	Zn	⁶⁴ Zn, ⁶⁶ Zn, ⁶⁸ Zn, ⁷⁰ Znの全収量(測定値)	50
4. <i>l</i>	原子	番号な	が40以上の元素に対する(α, n)反応	51
4.	1	Zr	全収量(外挿)	51
4.	2	Nb	全収量(外挿)	53
4.	3]	Mo	全収量(外挿)	54
4.	4	Pd	全収量(外挿)	55
4.	5.	Ag	全収量,同位元素別全収量(外插)	56
4.	6	In	全収量(外插)	58
4. '	7 J	原子者	昏号が 15 以上の元素に対する全収量の図	59

5.	UO2	2およ	び UC に対する中性子収量	60
	追	補		65

JAERI-M 82-117

Contents

- +		1
itroau		т 2
eutron	yields for elements with Z < 15	3
Li :	Total yield and yield at 0° for neutron group leading	_
	to each final state	3
Be :	Total yield and yield for neutron group leading to	
	each final state	7
в :	Total yield and isotopic total yields	12
с:	Total yield and yield at 0°	17
N :	Total yield	20
0:	Total yield	22
F:	Total yield and yield at 0° for neutron group leading	
	to each final state	25
Ne :	Total yield	27
Na :	Total yield (measured)	30
Mg :	Total yield	31
Al :	Total yield (calculated + measured)	33
Si :	Total yield	37
Graph	n of total yields for elements with Z<15	40
utron	yields from the (α, n) reactions for	
eleme	ents with 15 <z<30< td=""><td>41</td></z<30<>	41
C1 :	Total yield for ³⁵ Cl	41
Sc :	Total yield	42
Ti :	Total yield for ⁴⁶ Ti	43
V :	Total yield for ⁵¹ V	44
Cr :	Total yield for ⁵⁰ Cr	45
Fe :	Total yield for ⁵⁴ Fe	46
Co :	Total yield (measured)	47
Ni :	Total yield for ^{60,62} Ni (measured)	48
Cu :	Total yield (measured)	49
Zn :	Total yield for ^{64,66,68,70} Zn (measured)	50
utron	yields from the (α, n) reactions for	
eleme	ents with Z>40	51
Zr :	Total yield (extrapolated)	51
Nb:	Total yield (extrapolated)	53
Mo :	Total yield (extrapolated)	54
Pd :	Total yield (extrapolated)	55
	<pre>htrodu sutron Li : Be : Be : B : C : N : O : F : Ne : Ne : Na : Mg : Al : Graph tutron eleme Cl : Sc : Ti : V : Cr : Fe : Co : Ni : Cr : Fe : Ni : Cr : Ni : Cr : Fe : Ni : Cr : Fe : Ni : Cr : Pd : Pd : Pd : </pre>	<pre>stroduction sutron yields for elements with Z < 15 Li : Total yield and yield at 0° for neutron group leading to each final state Be : Total yield and yield for neutron group leading to each final state B : Total yield and isotopic total yields C : Total yield and yield at 0° N : Total yield and yield at 0° for neutron group leading to each final state F : Total yield and yield at 0° for neutron group leading to each final state N : Total yield F : Total yield and yield at 0° for neutron group leading to each final state N : Total yield N : Total yield N : Total yield (measured) N : Total yield (calculated + measured) Graph of total yields for elements with Z < 15 Sc : Total yield for ³⁵Cl Sc : Total yield for ³⁵Cl F : Total yield for ⁵⁰Cr F : Total yield for ⁵¹V Cr : Total yield for ⁵¹V Cr : Total yield for ⁵⁴Fe Co : Total yield for ⁶⁰, 6⁶⁸, 7⁰Zn (measured) Ni : Total yield for ⁶⁴, 6⁶⁶, 6⁸, 7⁰Zn (measured) Zn : Total yield for ⁶⁴, 6⁶⁶, 6⁸, 7⁰Zn (measured) Zr : Total yield (extrapolated) N : Total yield (extrapolated) P : Total yield (</pre>

JAERI-M 82-117

4	.5	Ag : Elemental and isotopic total yields (extrapolated)	56
4	6	In : Total yield (extrapolated)	58
4	7	Graph of total yields for elements with Z>15	59
5.	Neu	utron yields for UO ₂ and UC	60
	Not	te added in Proof	65

1. はじめに

使用済み核燃料中に含まれるα崩壊をする核種からの約10 MeV 以下のα粒子による(α, n)反応に関するデータの必要性については、シグマ研究委員会の燃料サイクル核データ・ワ ーキンググループ(1982年3月で一応作業を終了した)の報告書の中で述べられている。¹⁾ 実際の利用者の要求は、(α, n)反応だけでなくα粒子衝撃によって起り得るいろいろな過 程から出てくる中性子の収量と、そのエネルギー・スペクトルのデータであろう。いくつかの 元素に対する中性子収量については、Liskien and Paulsen の断面積データからの計算値²⁾や Bair and Gomez del Campoの直接測定結果³⁾などがすでに利用できるが、しかしこの両者 を比較してみただけでも、ものによっては30~50%の不一致がみられる。

ここでは燃料サイクル核データ・ワーキンググループの要求に応えることを目的として,主 として(α, n)反応の断面積データを収集・検討し,それを使って厚いターゲットに対する 中性子収量を計算する。しかし,データ収集は組織的に行なわれていないので必ずしも十分と はいえない。計算した中性子収量の値は,有効数字を2桁にしたために四捨五入の関係から10 %以内の不正確さを招く。最も大きな不確実さは,断面積がはげしい共鳴構造を示す場合の平 均化の際にもち込まれる。これは,とりわけα粒子のエネルギーが低いときに問題となり,約 20%前後の不確実さをもち込むであろうと推定される。また,計算に用いた阻止断面積はZiegler の値⁴⁾を採用したが,これに起因する不確実さは数%以内であるとしてよかろう。

2章では、原子番号が14以下の元素に対する中性子収量のここでの計算値を、Liskienらの計 算値²⁾および Bair らの測定値³⁾と比較した。計算結果は測定値とかなりよい一致を示すとは いうものの、概して測定値はやゝ低めである。3章で示す原子番号が15以上30以下では、特定 の同位元素に対する断面積の測定しかないものが多いので、各同位元素に対する中性子収量を 示した。4章で述べる原子番号が40以上の元素に対しては、Stelson and McGowan⁵⁾がα粒 子のエネルギーが大きいところで中性子収量を直接測定しているので、しきいエネルギーと全 反応断面積の理論的励起函数とを考慮して、よりエネルギーの低い領域まで断面積を外挿して 計算した中性子収量を示した。

なお、原子番号の小さいいくつかの元素については、しきいエネルギーの表や中性子収量の 表の中に、n₀グループとか n₁グループといったようなものが現われてくるが、n₀グループと いうのは(α, n)反応で直接最終核の基底状態にいく中性子グループ, n₁グループは最終核 の第一励起状態にいく中性子グループ,また n_{1,2}グループというのは最終核の第一励起状態と 第二励起状態とにいく中性子グループ,という意味である。これは、放出中性子のエネルギー・ スペクトルに対して大まかな目安を与えている、と考えてよかろう。エネルギー・スペクトル に対する利用者の要求には、ここではこれ以上には応えていない。

-1-

文

献

- 1) "核燃料サイクル全般にわたる核データ要求調査報告" JAERI-M 9993 (1982)
- 2) H. Liskien and A. Paulsen, Atomkernenergie 30, 59 (1977)
- 3) J.K.Bair and J.Gomez del Campo, Nucl. Sci. Eng. 71, 18 (1979)
- 4) J.F.Ziegler, "Helium Stopping Powers and Ranges in All Elements" Pergamon Press (1979)
- 5) P.H.Stelson and F.K.McGowan, Phys. Rev. 133 B911 (1964)

2 原子番号が14以下の元素に対する中性子収量

2.1 Li (α, n)

isotope	abundance	threshold energy (MeV)		
	(%)	$n_0 - group$	$n_1 - group$	n ₂ – group
⁶ Li	7.5	6.621	9.29	_
⁷ Li	92.5	4.382	5.510	7.115

(A) H.Bichsel and T.W.Bonner, Phys. Rev. <u>108</u>, 1025 (1957)
 ⁷Li(α, n): E_α ≤ 5.85 MeV: 0° および 90° 方向の励起函数: 逆反応 ¹⁰B(n, α₀) の
 励起函数も測定

- (B) J.H.Gibbons and R.L.Macklin, Phys. Rev. <u>114</u>, 571 (1959) ⁷Li(α , n): $E_{\alpha} \leq 8.2$ MeV : 全断面積励起函数
- (C) E.A.Davis, F.Gabbard, T.W. Bonner and R.Bass, Nucl. Phys. <u>27</u>, 448 (1961)
 逆反応 ¹⁰B(n, α₀)⁷Li: 励起函数
- (D) M.K.Mehta, W.E.Hunt, H.S.Plendl and R.H.Davis, Nucl. Phys. <u>48</u>, 90 (1963)
 ⁷Li (α, n) の0°方向励起函数: ⁶Li (α, n) の0°方向での相対的中性子収量:
 E_α ≤ 15.5 MeV
- (E) R.L. Macklin and J.H.Gibbons, Phys. Rev. <u>165</u>, 1147 (1968) [Li(α , n): E_{α} \leq 5.1 MeV: 全断面積励起函数
- (F) L.Van der Zwan and K.W.Geiger, Nucl. Phys. <u>A180</u>, 615 (1972)
 ⁷Li(α, n): E_α ≤ 8.0 MeV : n₀, n₁, n₂ グループ別に 0°方向励起函数,角度分布 および角度積分した全断面積励起函数
- (G) J.K.Bair and J.Gomez del Campo, Nucl. Sci. Eng. 71, 18 (1979)

⁶Li (α, n), ⁷Li (α, n) および ^{nat}Li (α, n): E_α ≤ 9.0 MeV:中性子収量 0°方向の励起函数を比較すると, (A)のBichselら, (D)の Mehta ら, および(F)の Van der Zwan らは相互にかなりよい一致を示す。これらから計算した中性子収量は, (A)は(F)より数%大きめ で(D)は(F)より数%小さめになる。したがって, ここでは(F)の Van der Zwan and Geigerの断面 積を使って, 0°方向の各中性子グループ別の収量を計算する。

全断面積に関しては、(B)の Gibbons らのデータは約25%大き過ぎることが、同じ著者による (E)で指摘されている。エネルギー点によっても異なるが、全領域にわたって(B)の断面積を20% 減少させると、(C)の Davis らの逆反応から求めた断面積および(F)の Van der Zwan らのそれと、 約6 MeV 以下で非常によく一致するが、それ以上のエネルギーでは、(F)の断面積はわずかに低 めである。そこで、ここでは E_{α} が6 MeV 以下では(F)の Van der Zwan らの断面積を使い、それ以

-3-

上では修正された(B)のGibbonsらのデータを使って中性子収量を計算する。

 E_{α} が 6.621MeV 以上では⁶Li(α , n)の寄与を考慮する必要がある。(D)のMehta らには, ⁶Li(α , n)反応の0[°]方向における相対的中性子収量が, E_{α} の函数として図示されている。 また(F)の Van der Zwan らには E_{α} が 7.95MeV のとき 0[°]方向での中性子スペクトルが図示され ているが,これによると、natural Liを用いた場合の⁶Li(α , n)からの中性子収量は⁷Li (α , n₂)のそれとほとんど等しい。⁶Li(α , n)の中性子放出が等方的だと仮定すると、^{nat}Liに 対する ⁶Li からの中性子収量は、 $E_{\alpha} = 7.0$ MeV で 4.8×10^{-7} n's/ α , 7.5 MeV で 9.5×10^{-7} n's/ α , 8.0 MeV で 1.2×10^{-6} n's/ α と計算される。中性子全収量の表の中では、 E_{α} が 7.2 MeV 以上でこの影響を 0.1×10^{-5} n's/ α として加えてある。

E_{α} (MeV)	n′s∕α	E_{α} (MeV)	n's⁄a
4.4	3.7 E-9	6.4	8.4 E-6
4.5	4.3 E-8	6.5	1.0 E-5
4.6	1.1 E-7	6.6	1.2
4.7	2.0	6.7	1.3
4.8	3.1	6.8	1.5
4.9	4.6	6.9	1.8
5.0	6.7	7.0	2.0
5.1	9.3	7.1	2.3
5.2	1.2 E-6	7.2	2.7
5.3	1.6	7.3	3.0
5.4	1.9	7.4	3.2
5.5	2.2	7.5	3.4
5.6	2.6	7.6	3.7
5.7	3.0	7.7	3.9
5.8	3.4	7.8	4.1
5.9	4.0	7.9	4.2
6.0	4.7	8.0	4.4
6.1	5.5	8.1	4.5
6.2	6.4	8.2	4.7
6.3	7.3		

Neutron yields from ^{nat}Li (α, n)

E_{α} (MeV)	n₀'s ∕α	n_1 's / α	n_2 's / α
4.4	3.2 E-9		
4.6	4.1 E-8		
4.8	1.0 E-7		
5.0	1.7		
5.2	2.6		
5.4	3.5		
5.6	44	1.2 E-8	
5.8	5.5	1.8 E-7	
6.0	6.7	3.6	
6.2	8.1	5.7	
6.4	1.0 E-6	8.7	
6.6	1.3	1.3 E-6	
6.8	1.8	1.9	
7.0	2.4	2.5	
7.2	2.9	3.0	6.6 E-9
7.4	3.3	3.5	4.2 E-8
76	3.8	3.8	7.2
7.8	4.1	4.0	9.0
8.0	4.3	4.1	1.0 E - 7

Neutron yields from [?]Li (α , n) at $\theta = 0^{\circ}$

表に示した^{nat}Li (α , n)の中性子収量を, Liskien and Paulsenの計算²⁾, および Bair and Gomez del Campoの測定値³⁾と比較したのが Fig.1 である。彼らの値を, ここで計算した 値で割ったものを示してあるが, 収量の 0.1 の違いでもこの比は 0.9 ~ 1.1 の間で変動する。 したがって, 図の中で 0.9 と 1.1 の間にある場合には"両者はよく一致している"といってよ かろう。

- 5 -

-6-

2.2 Be (α, n) + Be $(\alpha, \alpha' n)$

isotope	abundance	threshold energy (MeV)		
	(%)	n ₀ - group	$n_1 - group$	n ₂ -group
⁰ Be	100	0	0	2.820

(A)	I.Halpern , Phys. Rev. <u>76</u> , 248 (1949)
	$E_{\alpha} \leq 5.1 \text{ MeV}$:全断面積励起函数
(B)	T.W.Bonner, A.A.Kraus, Jr., J.B.Marion and J.P.Schiffer, Phys. Rev. <u>102</u> ,
	1348 (1956)
	E _α ≦ 5.2 MeV : 0°−20°および 70°−110°の励起函数
(C)	J.R.Risser, J.E.Price and C.M.Class, Phys. Rev. <u>105</u> , 1288 (1957)
	Eα≦ 4.8 MeV: n₀ および n₁グループに対する 0°方向の励起函数および角度分布
(D)	J.H.Gibbons and R.L. Macklin, Phys. Rev. <u>114</u> , 571 (1959)
	$E_{\alpha} ≤ 8.2 MeV$:全断面積励起函数
(E)	F.A.St. Romain, T.W.Bonner, R.L.Bramblett and J.Hanna, Phys. Rev. 126,
	1794 (1962)
	E _α ≦ 5.6 MeV :低エネルギー中性子を調べ, °Be (α,α'n)の可能性を論じている
(F)	J.H.Gibbons and R.L.Macklin, Phys. Rev. 137, B1508 (1965)
	$E_{\alpha} \leq 8.2 MeV$:全断面積励起函数
(G)	R.G. Miller and R.W. Kavanagh, Nucl. Phys. <u>88</u> , 492 (1966)
	Eα≦12 MeV : n₀, n₁, n₂ グループの 0°方向励起函数
(H)	V.V.Verbinski, F.G.Perey, J.K.Dickens and W.R.Burrus, Phys. Rev. 170,
	916 (1968)
	$E_{\alpha} \leq 10 \text{ MeV}$: n_0 , n_1 , n_2 グループに対する 0°方向の励起函数および角度分布:中性
	子エネルギー・スペクトル測定
(I)	L.Van der Zwan and K.W.Geiger, Nucl. Phys. <u>A152</u> , 481 (1970)
	$E_{\alpha} \leq 7.8 \text{ MeV}$: n_0 , n_1 , n_2 グループに対する 0°方向の励起函数および角度分布:角度
	積分をした全断面積の励起函数
(J)	A.W.Obst, T.B.Grandy and J.L. Weil, Phys. Rev. <u>C5</u> , 738 (1972)
	$E_{\alpha} \leq 6.4 \text{MeV}$: n_0 , n_1 , n_2 , n_3 グループに対する 0°方向励起函数と角度分布:中性子エ
	ネルギー・スペクトル (double differential cross sections)
(K)	K.W.Geiger and L.Van der Zwan, PXNR – 2404, NRCC 15303 (1976)
	$E_{\alpha} \leq 7.9 MeV$:断面積の評価
(L)	J.K.Bair and J.Gomez del Campo, Nucl. Sci. Eng. <u>71</u> , 18 (1979)
	$E_{\alpha} \leq 9.0 MeV$:中性子収量測定
(K)の	Geiger and Van der Zwanの断面積評価があるので,個々の断面積の比較検討は省略す

-7-

る。ここでは、NEA Data Bank から提供された(K)の断面積値を使って中性子収量を計算する が、これは、(F)のGibbons らのデータおよび(I)のVan der Zwan らの断面積を使った場合とほ とんど同じ結果を与える(数%以内)。

Be + α からの中性子収量を求める場合には、 (α , n) 反応に加えて (α , α 'n) 反応が約 4.3 MeV ぐらいから起るのでこの中性子も考慮する必要がある (break up neutron)。

E_{α} (MeV)	n′s∕α	E_{α} (MeV)	n′s∕α
1.6	7.0 E - 8	4.8	5.6 E-5
1.7	2.5 E-7	4.9	6.0
1.8	8.3	5.0	6.5
1.9	2.1 E-6		
2.0	3.5	5.1	6.9
		5.2	7.4
2.1	4.6	5.3	8.0
2.2	5.6	5.4	8.5
2.3	6.6	5.5	9.1
2.4	7.6	5.6	9.7
2.5	8.7	5.7	1.0 E - 4
2.6	9.8	5.8	1.1
2.7	1.1 E — 5	5.9	1.2
2.8	1.2	6.0	1.2
2.9	1.3		
3.0	1.4	6.1	1.3
		6.2	1.3
3.1	1.5	6.3	1.4
3.2	1.5	6.4	1.4
3.3	1.6	6.5	1.5
3.4	1.7	6.6	1.6
3.5	1.7	6.7	1.7
3.6	1.8	6.8	1.7
3.7	2.0	6.9	1.8
3.8	2.1	7.0	1.9
3.9	2.3		
4.0	2.6	7.1	1.9
		7.2	2.0
4.1	3.0	7.3	2.1
4.2	3.4	7.4	2.1
4.3	3.7	7.5	2.2
4.4	4.1	7.6	2.3
4.5	4.5	7.7	2.4
4.6	4.8	7.8	2.5
4.7	5.2	7.9	2.6

Total neutron yields from Be (α, n) and Be $(\alpha, \alpha' n)$

(α, n)反応から出てくる各中性子グループの収量と,(α, α'n)反応からの中性子(n_B と する)の収量を次の表に示す。

• • .	Neut	ron yields for	each neutron	n group	
E_{α} (MeV)	n₀'s∕α	n₁'s∕α	$n_2' s / \alpha$	n₃'s∕α	n' _B s∕α
1.6	1.8 E-8	5.2 E-8			
1.8	1.4 E - 7	6.8 E - 7			
2.0	6.8	2.8 E - 6			
2.2	1.6 E-6	4.1			
2.4	2.8	4.8			
2.6	4.1	5.8			
2.8	5.0	7.1			
3.0	5.7	8.1	2.6 E-9		
3.2	6.3	8.9	1.8 E-8		
3.4	6.7	9.8	3.7		
3.6	7.5	1.1 E-5	5.3		
3.8	8.8	1.2	1.3 E-7		
4.0	1.1 E - 5	1.4	7.5		
4.2	1.3	1.9	2.0 E-6		
4.4	1.5	2.2	3.3		3.2 E-8
4.6	1.7	2.7	4.3		2.9 E-7
4.8	1.8	3.1	5.3		8.9
5.0	2.0	3.7	6.3		2.0 E-6
5.2	2.1	4.3	7.1		3.6
5.4	2.2	4.9	8.0		6.2
5.6	2.3	5.5	8.9		9.8
5.8	2.3	6.2	9.7		1.4 E-5
6.0	2.4	6.8	1.0 E-5	3.1 E-8	2.0
6.2	2.5	7.2	1.1	2.3 E — 7	2.6
6.4	2.6	7.6	1.2	5.8	3.3
6.6	2.6	7.9	1.3	1.1 E-6	4.0
6.8	2.7	8.2	1.4	1.7	4.8
7.0	2.7	8.4	1.5	2.5	5.7
7.2	2.8	8.7	1.6	3.5	6.6
7.4	2.8	8.9	1.7	4.5	7.5
7.6	2.9	9.2	1.8	5.7	8.6
7.8	3.0	9.5	1.9	7.0	9.6

-9-

表に示した Be + α の全中性子収量を, Liskien and Paulsenの計算²⁾,および Bair and Gomez del Campo の測定値³⁾と比較したのが Fig.2 である。測定値は非常に低い値を示し, 参考までに Fig.2 に示した最も低い断面積を報告している(A)の Halpern から計算したものより も低めである。これに対して Liskien らの計算値は, とくに E_{α} が大きいところでやゝ大きめ の傾向を示す。

- Fig. 2 Comparison of the calculated neutron yields from $Be(\alpha, n)$ and $Be(\alpha, \alpha'n)$ with those reported by Liskien and Paulsen²) and Bair and Gomez del Campo³). Calculated results based on the cross sections by Halpern of (A) are also compared.
 - ----- Liskien-Paulsen/present
 - · Bair-Gomez del Campo/present
 - ---- Halpern/present

2.3 B (α, n)

isotope	abundance	threshold energy (MeV)		
	(%)	$n_0 - group$	$n_1 - group$	n ₂ -group
¹⁰ B	19.8	0	1.827	3.431
¹¹ B	80.2	0	2.939	5.168

(A)	R.L.Walker, Phys. Rev. <u>76</u> , 244 (1949)
	$^{nat}B(lpha, n): E_{lpha} \leq 5.3 MeV: 全断面積励起函数$
(B)	T.W.Bonner, A.A.Kraus, Jr., J.B. Marion and J.P. Schiffer Phys. Rev. 102,
	1348 (1956)
	¹¹ B(α, n) : E _α ≦ 5.2 MeV : 0°-20° および 70°-110° 方向の励起函数
(C)	J.H.Gibbons and R.L.Macklin, Phys. Rev. <u>114</u> , 571 (1957)
	¹ °B(α, n):E _α ≦4.8 MeV :全断面積励起函数
(D)	G.S.Mani and G.C.Dutt, Nucl. Phys. <u>78,</u> 613 (1966)
	¹¹ B(α, n):E _α ≦4.5 MeV : n₀, n₁ グループに対する0°方向の励起函数および角度分
	布
(E)	L.Van der Zwan and K.W.Geiger, Nucl. Phys. <u>A 216</u> , 188 (1973)
	¹ºB(α, n):E _α ≦ 5.0 MeV: n₀, n₁, n₂,₃ グループに対する 0°と 90°方向の励起函数
	および角度分布
(F)	L.Van der Zwan and K.W.Geiger, Nucl. Phys. <u>A 246</u> , 93 (1975)
	¹¹ B(α, n):E _α ≦ 8 MeV : n₀, n₁, n₂ グループに対する 0°方向励起函数と角度分布,
	および角度積分した全断面積励起函数
(G)	S.J.Wilson, Phys. Rev. <u>C11</u> , 1071 (1975)
	¹⁰ B(α , n): E _{α} \leq 70 MeV: $\theta_{CM} = 144^{\circ}$ の励起函数
(H)	J.K.Bair and J.Gomez del Campo, Nucl. Sci. Eng. <u>71,</u> 18 (1979)
	¹ºB(α, n), ¹¹B(α, n) および ^{nat} B(α, n) : E _α ≦ 7.5 MeV :中性子収量の測定
まず	^{* 10} Bについては,(E)のVan der Zwanらの0°および90°方向の励起函数と(G)のWilson
の重心	♪系 144° での測定とをみてみると,正確な比較はできないが(G)は(E)よりかなり大きい。
また,	(C)のGibbons らの全断面積との比較もできないが,もし中性子放出が等方的であると仮
定して	みると,約 3 MeV 以上で Gibbons らの断面積は(G)の Wilson のものよりも大きくなり,こ
れを使	iって計算した中性子収量は,表に示すように(H)の Bair らの測定値の約2倍以上にもなる。

¹¹Bについては, (B)の Bonner らと(F)の Van der Zwan らの 0°方向の断面積はかなりよい一致 を示すが, (D)の Mani らの 0°方向の測定値は(F)とくらべて, n_0 グループはかなり小さく, n_1 グ ループは大きい。また, (F)の Van der Zwan らの角度積分をした励起函数を使って計算した中 性子収量は,表に示すように(H)の Bair らの測定値より 50 %以上も大きい。

	10	В	11 E	3
E_{α} (MeV)	Gibbons	Bair	Van der Zwan	Bair
2.6	2.6 E - 8		1.9 E - 6	
2.8	9.9		2.7	
3.0	2.5 E -7		3.3	
3.2	4.2		4.3	
3.4	6.0		5.6	
3.5	7.3	3.3 E – 7	6.3	3.8 E — 6
3.6	8.9		7.1	
3.8	1.3 E - 6		9.1	
4.0	1.7	7.0	1.2 E - 5	7.6
4.2	2.4		1.5	
4.4	3.4		1.7	
4.5	4.0	1.9 E – 6	1.8	1.3 E – 5
4.6	4.7		2.0	
4.8	6.1		2.3	
5.0	7.4	3.6	2.6	1.8

Neutron yields from ${}^{10}\mathrm{B}\;(\alpha\,,\,n\,)$ and ${}^{11}\mathrm{B}\;(\alpha\,,\,n\,)$

^{nat}B について断面積を測定したのは(A)の Walker である。ここでは, この断面積から計算した中性子収量を,(C)の Gibbons らの ¹⁰ B と(F)の Van der Zwan らの ¹¹ B とを組合わせて求めた ^{nat}B の中性子収量とを比較して示す。後者は, 3.3 MeV 以上でやゝ大きめの結果を与える。

E_{α} (MeV)	Walker C	Gibbons + Van der Zwan
0.8	3.2 E – 8	
0.9	4.7	
1.0	6.5	
1.1	8.9	
1.2	1.2 E - 7	
1.3	1.6	
1 4	2.0	
1.5	2.6	
1.0	3.3	
1.0	4 1	
1.8	5.1	
1.0	6.2	
2.0	7 4	
2.1	8.7	
2.2	1.0 E - 6	
2.3	1.2	
2.4	1.4	
2.5	1.5	1.3 E - 6
2.6	1.7	1.5
2.7	2.0	1.9
2.8	2.2	2.2
2.9	2.4	2.4
3.0	2.7	2.7
3.1	3.0	3.0
3.2	3.3	3.5
3.3	3.7	4.1
3.4	4.1	4.6
3.5	4.6	5.2
3.6	5.1	5.9
3.7	5.7	6.7
3.8	6.4	7.6
3.9	7.3	8.3
4.0	8.3	1.0 E - 5

Neutron yields from $^{nat}B(\alpha, n)$

JAERI-M 82-117

E_{α} (MeV)	Walker	Gibbons + Van der Zwan
4.1	9.5 E – 6	1.1 E - 5
4.2	1.1 E - 5	1.2
4.3	1.2	1.3
4.4	1.3	1.4
4.5	1.4	. 1.5
4.6	1.6	1.7
4.7	1.7	1.9
4.8	1.8	2.0
4.9	2.0	2.1
5.0	2.1	2.2
5.1	2.3	
5.2	2.5	
5.3	2.6	

Fig.3 には, Liskien らの計算値²⁾, Bair らの測定値³⁾および Gibbons らと Van der Zwan らとを組合わせた計算値を, Walker の断面積から計算した中性子収量で割ったものを示してあ る。測定値は非常に小さい。

-15-

- Fig. 3 Comparison of the calculated neutron yields from B(α, n) with those reported by Liskien and Paulsen²) and Bair and Gomez del Campo³. Calculated results based on the cross sections by Gibbons and Macklin of (C) for ¹⁰B and by Van der Zwan and Geiger of (F) for ¹¹B are also compared.
 - Liskien-Paulsen/present
 - Bair-Gomez del Campo/present
 - --- Gibbons-Macklin and Van der Zwan-Geiger/present

2.4 C (α, n)

isotope	abundance	threshold energy
¹² C	98.89 %	11.338 MeV
¹³ C	1.11	0

 (A) T.W.Bonner, A.A.Kraus, Jr., J.B.Marion and J.P.Schiffer, Phys. Rev. <u>102</u>, 1348 (1956)

 $E_{\alpha} \leq 5.2 \, MeV$: 0°-10°と 80°-100°の励起函数

- (B) R.B.Walton, J.D.Clement and F.Boreli, Phys. Rev. <u>107</u>, 1065 (1957)
 E_α ≤ 3.5 MeV : 0°, 31°, 149° での励起函数,および角度積分した全断面積励起函数
- (C) K.K.Sekharan, A.S.Divatia, M.K. Mehta, S.S. Kerekatte and K.B. Nambiar, Phys. Rev. <u>156</u>, 1187 (1967)
 E_α ≤ 5.2 MeV : 全断面積励起函数
- (D) J.K.Bair and F.X.Haas, Phys. Rev. <u>C7</u>, 1356 (1973) $E_{\alpha} \leq 5.2 \text{ MeV}$: 全断面積励起函数
- (E) J.K.Bair, Nucl. Sci. Eng. <u>51</u>, 83 (1973)
 E_α ≤ 9.0 MeV : 中性子収量の測定

See also J.K.Bair and J.Gomez del Campo, Nucl. Sci. Eng. 71, 18 (1979)

0°方向の断面積については、(A)の Bonner らと(B)の Walton らとでは、 測定エネルギーが重なり合う領域ではかなりよい一致を示す。そこで、 E_{α} が 2MeV までは(B)の Walton らの断面積を、それ以上のエネルギーでは(A)の Bonner らの結果を使って、 ^{nat}C に対する 0°方向の中性子収量(n's/ α)を計算する。

全断面積の測定に関しては、(D)の Bair らの測定値は著者たちのいうように、 これから計算 した中性子収量をその直接測定と比較した結果、 $15 \sim 20$ %大き過ぎる。(B)の Walton らの測 定は E_a が 1 MeV からあるのに対して、(C)の Sekharan らの測定は 2 MeV 以上である。重なり合 うエネルギー領域では、Walton らの断面積がや、大きめであるが、 $2.1 \sim 2.3$ MeV の断面積は 比較的によく合っているので、ここでは 2 MeV 以下で(B)の Walton らの断面積を、それ以上では (C)の Sekharan らの断面積を使って中性子収量を計算する。

E_{α} (MeV)	n's⁄a	E_{α} (MeV)	n′s∕α
1.1	4.4 E – 11	3.4	3.6 E – 8
1.2	8.9	3.5	4.0
1.3	1.8 E - 10	3.6	4.3
1.4	2.8	3.7	4.4

Neutron yields from $C(\alpha, n)$: n's $/\alpha$

-17-

E_{α} (MeV)	n's⁄a	E_{α} (MeV)	n′s∕α
1.5	3.2 E - 10	3.8	4.6 E-8
1.6	4.0	3.9	4.6
1.7	5.1	4.0	4.7
1.8	7.4		
1.9	1.4 E - 9	4.1	4.7
2.0	2.6	4.2	4.8
		4.3	4.8
2.1	3.8	4.4	5.0
2.2	5.9	4.5	5.3
2.3	8.4	4.6	5.6
2.4	1.1 E – 8	4.7	5.8
2.5	1.4	4.8	6.0
2.6	1.6	4.9	6.1
2.7	1.8	5.0	6.4
2.8	2.0		
2.9	2.2	5.1	7.0
3.0	2.3	5.2	7.7
		5.3	8.5
3.1	2.6	5.4	9.7
3.2	2.8	5.5	1.1 E - 7
3.3	3.1	5.6	1.2

Neutron yields from C (α , n) at $\theta = 0^{\circ}$

E_{α} (MeV)	n′s∕α	E_{α} (MeV)	n′s∕α
1.0	3.1 E – 12	3.2	2.8 E - 9
		3.4	4.0
1.2	1.3 E – 11	3.6	4.9
1.4	4.0	3.8	5.1
1.6	6.7	4.0	5.2
1.8	1.1 E – 10		
2.0	1.7	4.2	5.4
		4.4	5.8
2.2	3.4	4.6	6.7
2.4	7.5	4.8	7.3
2.6	1.4 E - 9	5.0	7.9
2.8	1.9		
3.0	2.2	5.2	1.1 E – 8

ここに示した全中性子収量を, Liskien and Paulsenの計算²⁾と(E)の Bair の測定値と比較したのが Fig.4 である。

-19-

2.5 N (α, n)

isotope	abundance	threshold energy
¹⁴ N	99.63 %	6.088 MeV
15 N	0.37	8.130

(A) W.Gruhle, W.Schmidt and W.Burgmer, Nucl. Phys. <u>A186</u>, 257 (1972)

¹⁴N(α , n): $E_{\alpha} \leq 20$ MeV : 全断面積励起函数

¹⁵Nに対する測定がないが,存在比が小さいことと,¹⁴Nと¹⁵Nとのしきいエネルギーの差が大きいことのために, 8.5 MeV ぐらいまでは ^{nat}Nに対する ¹⁵Nの寄与は,次に示すように有効数字2桁にとどめるかぎり無視できる,と考えてよかろう。

E_{α} (MeV)	n's∕α	E_{α} (MeV)	n′s∕α
6.2	1.6 E — 9	7.4	2.9 E - 6
6.3	2.4 E – 8	7.5	3.3
6.4	9.8	7.6	3.8
6.5	2.2 E - 7	7.7	4.2
6.6	3.9	7.8	4.7
6.7	6.0	7.9	5.2
6.8	8.5	8.0	5.8
6.9 7.0	1.1 E — 6	8.1	6.3
1.0	2. 2	8.2	6.9
7.1	1.8	8.3	7.6
7.2	2.1	8.4	8.2
7.3	2.5	8.5	8.9

Neutron yields from N (α , n) : (n's/ α)

同じ断面積データを使って計算した Liskien and Paulsen の値²⁾は、Fig.5 に示すようにかなり大きい。彼らは、しきいエネルギーよりわずかに高い 6.1 MeV ですでに 1.2×10^{-9} の値を出している。このことは起り得ないことではないが、もし、彼らのエネルギー・スケールを100 keV 高い方にずらしたとすると、ここで計算した中性子収量とかなりよく合うことが Fig.5 からわかる。

- present

--- Liskien-Paulsen

2.6 Ο (α, n)

_	isotope	abundance	threshold energy
	¹⁶ O	99.759 <i>%</i>	15.171 MeV
	¹⁷ O	0.037	0
	¹⁸ O	0.204	0.851

 (A) T.W.Bonner, A.A.Kraus, Jr., J.B.Marion and J.P.Schiffer, Phys. Rev. <u>102</u>, 1348 (1956)

¹⁸O(α , n): $E_{\alpha} \leq 5 \text{ MeV}$: 0°-30°励起函数

- (B) J.K.Bair and H.B.Willard, Phys. Rev. <u>128</u>, 299 (1962)
 ¹⁸O(α, n): E_α ≤ 5.2 MeV : 全断面積励起函数
- (C) L.F.Hansen, J.D.Anderson, J.W. McClue, B.A.Pohl, M.L.Stelts, J.J. Wesolowski and C.Wong, Nucl. Phys. <u>A 98</u>, 25 (1967) ¹⁷O(α, n) と ¹⁸O(α, n): 4 MeV ≤ E_α ≤ 13 MeV : 全断面積の励起函数
- (D) J.K.Bair and F.X.Haas, Phys. Rev. <u>C7</u>, 1356 (1973)
 ¹⁷O(α, n) と ¹⁸O(α, n): E_α ≤ 5.2 MeV : ¹⁸O(α, n) の 2.5 MeV 以上は, (B)のデ
 -タを使って平均化している
- (E) Z.E.Switkowski, S.R.Kennett, D.G.Sargood, B.M.Spicer and R.O'Brien, Phys. Rev. C16, 1264 (1976)
 1264 (1976)

 $^{18}O(\alpha, n\gamma): E_{\alpha} \leq 6.5 \text{ MeV}: n_3, n_4 グループに対する断面積測定$

(F) J.K.Bair and J.Gomez del Campo, Nucl. Sci, Eng. 71, 18 (1979) $^{nat}O(\alpha, n) : E_{\alpha} \leq 7.7 \text{ MeV} : 全中性子収量$

(A)の Bonner らの測定は ¹⁸O に対して前方でしか測ってないが, 中性子放出が等方的だと仮定してこれを 4π 倍した断面積は, Bair らの(B)や(D)のそれと約 4 MeV 以下では 10 % 以内の範囲で一致しているが, 4 MeV 以上では 20 ~ 60 % 大きくなる。そして, むしろ(C)の Hansen らの ¹⁸O に対する断面積とかなりよい一致を示す。((B)や(D)の Bair らの断面積値を 1.35 倍すべき である, ということは(F)の Bair らが指摘している。)

^{nat}O に対する中性子収量を計算するにあたって、¹⁷O と¹⁸O の両方の測定を行なっているという意味で、4 MeV 以下では(D)の Bair らを、また 5 MeV 以上では、 エネルギー分解能がよくないとはいうものの、ここでは(C)の Hansen らの測定を採用し、両者が重なり合う 4 ~ 5 MeV では、これらから計算した中性子収量がなめらかにつながるような値をとった。

なお,(E)の Switkowski らの結果によれば,¹⁸O(α , n)によって²¹Neの約2.8 MeV準位にいく中性子グループの寄与は、 E_{α} が4.3 MeV ぐらいから現われて $E_{\alpha} = 6$ MeV では^{nat}O ターゲットに対して 5.3 × 10⁻⁹ n's / α である。

Neutron yields from O (α , n) : n's α

E_{α} (MeV) n's α	E_{α} (MeV)	n′s∕α
1.2 1.5 E - 13	5.7	8.2 E – 8
1.3 3.4	5.8	8.9
14 96	5.9	9.4
1.4 0.0 1.4 1.7 1.7 1.9	6.0	9.9
1.5 1.1 12 12 1.6 2.8		
	6.1	1.0 E - 7
	6.2	1.0
1.0 1.9 1.9 1.9 1.1	6.2	1.1
	6.5	1.2
2.0 2.8	6.5	1.2
	0.5	1.5
2.1 4.5	0.0	1.4
2.2 7.3	0.7	1.4
2.3 $1.2 E - 10$	6.8	1.0
2.4 1.8	6.9	1.6
2.5 3.0	7.0	1.7
2.6 4.7		
2.7 7.8	7.1	1.8
2.8 $1.1 E - 9$	7.2	1.9
2.9 1.4	7.3	2.0
3.0 1.8	7.4	2.1
	7.5	2.1
3.1 2.3	7.6	2.2
3.2 2.7	7.7	2.3
3.3 3.4	7.8	2.4
3.4 4.2	7.9	2.5
3.5 5.4	8.0	2.6
3.6 6.4		
3.7 7.9	8.1	2.6
3.8 9.5	8.2	2.7
3.9 1.1 E - 8	8.3	2.8
4.0 1.3	8.4	3.0
	8.5	3.1
4.1 1.5	8.6	3.2
4.2 1.8	8.7	3.3
4.3 2.0	8.8	3.4
4.4 2.2	8.9	3.5
4.5 2.5	9.0	3.6
4.6 2.9		
4.7 3.2	9.1	3.7
4.8 3.5	9.2	3.8
4.9 3.9	9.3	3.9
5.0 4.4	9.4	4.1
	9.5	4.Z
5.1 4.8	9.6	4.3
5.2 5.3	9.7	4.4
5.3 5.8	9.8	4.5
5.4 6.4	9.9	4.6
5.5 7.0	10.0	4.7
5.6 7.5		

-23-

Fig.6 では, ここで計算した中性子収量を, Liskien and Paulsenの計算値²⁾および Bair and Gomez del Campoの測定値³⁾と比較した。Liskien らの計算値は、 5 MeV 以上で非常に 小さい結果を与えている。

2.7 F (α, n)

isotope	abundance	threshold energy (MeV)		
	%	n₀-group	$n_{1,2} - group$	n ₃ — group
¹⁹ F	100	2.361	3.1	3.439

- (A) R.M.Williamson T.Katman and B.S. Burton, Phys. Rev. <u>117</u>, 1325(1960) $E_a \leq 3.5 \text{ MeV}$: 全断面積励起函数
- (B) L.Van der Zwan and K.W.Geiger, Nucl. Phys. <u>A 284</u>, 189 (1977)
 E_α ≤ 4.7 MeV : n₀, n_{1,2}, n₃ グループに対する 0°方向の励起函数と,角度分布
- (C) J.K.Bair and J.Gomez del Campo, Nucl. Sci. Eng. <u>71</u>, 18 (1979) E_α < 8.0 MeV : 中性子収量測定</p>

断面積がはげしい共鳴構造を示すことと, $E_{\alpha} = 4.7 \text{ MeV}$ まで測定した Van der Zwan らの測定は 0°方向の励起函数しか与えていないので, Bair らの直接測定との比較は困難である。しかし 3.5 MeV 以下では, 中性子放出が等方的であるとして Van der Zwan らの断面積を 4π 倍したものから計算した中性子収量は, Williamson らの断面積から計算したものより約 10 % ほど大きめである。そこでここでは, 3.5 MeV までは(A)の Williamson らの断面積を使って中性子収量を計算し, それ以上のエネルギーでは Van der Zwan らの 0°方向の断面積から計算したものY(0°)を4π倍し, さらにこれから 10 % 減じた値を, 参考までに括弧に入れて示しておいた。

E_{α} (MeV)	n′s∕α	E_{α} (MeV)	n′s∕α
2.4	3.2 E - 10	3.6	(6.1 E - 7)
2.5	3.3 E – 9	3.7	(1.0 E - 6)
2.6	1.3 E – 8	3.8	(1.3)
2.7	3.0	3.9	(1.4)
2.8	5.5	4.0	(1.7)
2.9	7.9		
3.0	9.5	4.1	(2.1)
		4.2	(2.3)
3.1	1.2 E - 7	4.3	(3.0)
3.2	1.6	4.4	(3.5)
3.3	2.2	4.5	(4.0)
3.4	3.1	4.6	(4.6)
3.5	3.9	4.7	(5.6)

Neutron yields from $F(\alpha, n)$: $n's / \alpha$

ここで示した値で(C)の Bair らの測定値を割った値は次に示すようになり、 測定値がかなり 小さめである。しかし、 E_{α} が 4.0 と 4.5 MeV での比較は前述のように、あまり信頼性がない。

-25-

E_{α} (MeV)	3.5	4.0	4.5
測定值/計算值	0.795	(0.517)	(0.540)

	E _α (MeV)	n₀'s ∕α	$n_{1,2}$'s / α	n₃'s ∕ α
	2.4	3.2 E – 11		
	2.5	3.9 E - 10		
	2.6	1.2 E - 9		
	2.7	2.4		
	2.8	3.6		
	2.9	5.8		
	3.0	8.0		
	3.1	9.1		
	3.2	1.0 E - 8		
	3.3	1.4	3.9 E – 9	
	3.4	1.8	8.5	
	3.5	2.3	1.1 E – 8	
	3.6	3.9	1.5	
	3.7	6.1	2.5	
	3.8	7.4	3.6	
	3.9	8.3	4.3	1.3 E – 9
	4.0	9.8	4.8	4.7
	4.1	1.2 E - 7	5.3	9.3
	4.2	1.4	5.7	1.4 E – 8
ļ	4.3	1.7	6.6	2.0
ļ	4.4	2.0	8.6	2.5
	4.5	2.3	1.0 E - 7	2.7
	4.6	2.6	1.2	3.1
	4.7	3.0	1.5	3.9
1				

Neutron yields from $F(\alpha, n)$ at $\theta = 0^{\circ}$

2.8 Ne (α, n)

isotope	abundance	threshold energy
²⁰ Ne	90.51 %	8.664 MeV
²¹ Ne	0.27	0
²² Ne	9.22	0.570

(A) N.W.Tanner, Nucl. Phys. <u>61</u>, 297 (1965) ²¹ Ne (α , n): $E_{\alpha} \leq 2.9 \text{ MeV}$: 30°における中性子収量

- (B) D.Ashery, Nucl. Phys. <u>A136</u>, 481 (1969)
 ²¹ Ne(α, n): E_α ≤ 4.7 MeV: n₀, n₁, n₂, n₃ グループに対する励起函数, および角度分布
- (C) F.X.Haas and J.K.Bair, Phys. Rev. <u>C7</u>, 2432 (1973)
 ²¹Ne(α, n) と²²Ne(α, n): E_α ≤ 5.1 MeV : 全断面積の励起函数
- (D) H.-B.Mak, D.Ashery and C.A.Barnes, Nucl. Phys. <u>A 226</u>, 493 (1974) ²²Ne(α , n): E_{α} \leq 3MeV : 全断面積の励起函数

(A)の Tanner は 30°だけの測定なので比較できないが、これを単純に 4 π 倍したものは、(C)の Haas らの断面積から計算したものよりかなり小さい。

(B)の Ashery と(D)の Mak らとは同じグループの測定であるが、(C)の Haas らは ²¹ Ne と ²² Ne の測定を同時に報告していることと、測定しているエネルギー領域が広いということの理由で ここでは(C)の Haas and Bair の断面積を使って ^{nat}Ne に対する中性子収量を計算する。その 計算結果は、(B)の Ashery と(D)の Mak らの結果を組み合わせて計算した結果とくらべると E_a = 2.1 MeV では一致するが、2 MeV 以下では大きくなり 2.3 MeV 以上ではかなり小さい。

E_{α} (MeV)	n′s∕α	E_{α} (MeV)	n′s∕α
1.2	1.3 E - 12	3.3	2.1 E-8
1.3	3.0	3.4	2.6
1.4	7.7	3.5	3.4
1.5	1.6 E - 11	3.6	4.1
1.6	2.4	3.7	5.5
1.7	4.2	3.8	6.8
1.8	6.3	3.9	8.8
1.9	1.0 E - 10	4.0	1.1 E - 7
2.0	1.4		
		4.1	1.4
2.1	2.2	4.2	1.7
2.2	3.8	4.3	2.1
2.3	6.0	4.4	2.4
2.4	8.2	4.5	2.9
2.5	1.4 E – 9	4.6	3.3
2.6	1.9	4.7	3.9
2.7	3.0	4.8	4.5
2.8	4.2	4.9	5.1
2.9	6.8	5.0	5.8
3.0	9.4		
		5.1	6.4
3.1	1.4 E – 8	5.2	7.0
3.2	1.7		

Neutron yields from Ne(α , n) : n's $/ \alpha$

Fig.7には, ここで計算した中性子収量をLiskien and Paulsenのそれ²⁾と比較してある。 Liskien らの値はかなり大きい。Asheryと Mak らから計算したものもこの図に示してある。

Fig. 7 Comparison of the calculated neutron yields from Ne(α , n) with those reported by Liskien and Paulsen²). Calculated results based on the cross sections by Ashery of (B) for ²¹Ne and by Mak et al. of (D) for ²²Ne are also compared.

---- Liskien-Paulsen/present

--- Ashery and Mak et al./present

2.9 Na (α, n)

isotope	abundance	threshold energy
²³ Na	100 %	3.485 MeV

(A) R.M.Williamson, T.Katman and B.S.Burton, Phys. Rev. <u>117</u>, 1325 (1960) $E_{\alpha} \leq 4.0 \text{ MeV}$:中性子収量

Na Br の厚いターゲットからの中性子収量が示されているので、ここではそれを採用する。 測定された中性子収量は、断面積に共鳴構造があることを明白に示している。

E_{α} (MeV)	n′s∕α
3.5	1.16E-10
3.6	5.1 1
3.7	2.48E-9
3.8	3.7 0
3.9	4.4 5
4.0	4.6 5

Neutron yields from Na (α , n) : n's $\neq \alpha$

2.10 Mg (α, n)

isotope	abundance	threshold energy
²⁴ Mg	78.99%	8.392 MeV
²⁵ Mg	10.00	0
²⁶ Mg	11.01	0

(A) I.Halperm, Phys. Rev. <u>76</u>, 248 (1949)

 $^{nat}Mg(\alpha, n)$: $E_{\alpha} \leq 5.1 \, MeV$: 全断面積励起函数

- (B) J.K.Bair and H.B.Willard, Phys. Rev. <u>128</u>, 299(1962)
 ²⁶ Mg (α, n) : E_α ≤ 5.4 MeV : 全断面積励起函数
- (C) J.K.Bair and J.Gomez del Campo, Nucl. Sci. Eng. <u>71</u>, 18 (1979) $^{nat}Mg(\alpha, n) : E_{\alpha} \leq 9.0 \text{ MeV} : 中性子収量$

^{nat}Mgに対する中性子収量を、(A)の Halpern の断面積値を使って計算する。(B)の Bairらは、 ²⁶Mgに対して約 3 MeV から 5.4 MeV の断面積を測定しており、これから計算される中性子収量 の ^{nat}Mg に対す寄与は、 $E_{\alpha} = 4 \sim 5$ MeV ではここで示す収量の 1/2 よりやゝ小さい。すな わち、このエネルギー範囲では ²⁵Mg の寄与の方が ²⁶Mgよりやゝ大きい、ということが推察さ れる。

E_{α} (MeV)	n′s∕α	E_{α} (MeV)	n′s∕α
2.1	8.5 E – 11	3.7	4.8 E – 8
2.2	2.7 E – 10	3.8	6.1
2.3	5.9	3.9	7.7
2.4	1.0 E - 9	4.0	9.7
2.5	1.6		
2.6	2.4	4.1	1.2 E - 7
2.7	3.2	4.2	1.5
2.8	4.3	4.3	1.9
2.9	5.5	4.4	2.4
3.0	6.9	4.5	2.9
		4.6	3.5
3.1	8.8	4.7	4.2
3.2	1.1 E – 8	4.8	4.9
3.3	1.5	4.9	5.6
3.4	2.0	5.0	6.4
3.5	2.8		
3.6	3.7	5.1	7.2

Neutron yields from $^{nat}Mg(\alpha, n)$: n's/ α

-31-

Fig.8 には、ここに示した中性子収量と、Liskien and Paulsenの計算値²⁾ および Bair and Gomez del Campo の測定値³⁾との比較を示してある。Liskien らは同じ Halpern の断面 積を使用したそうであるが、とりわけ4MeV以下では大きな収量を報告している。この喰違い の理由は不明である。

Liskien-Paulsen/present
 Bair-Gomez del Campo/present

2.11 A! (α, n)

isotope	abundance	threshold energy
²⁷ A l	100 %	3.027 MeV

- (A) I.Halpern, Phys. Rev. <u>76</u>, 248 (1949)
 E_α ≤ 5.0 MeV : 全断面積励起函数
- (B) R.M.Williamson, T.Katman and B.S.Burton, Phys. Rev. <u>117</u>, 1325 (1960) $E_{\alpha} \leq 4.0 \text{ MeV}$:全断面積励起函数
- (C) P.H. Stelson and F.K. McGowan, Phys. Rev. <u>133</u>, B911 (1964)
 E_a=5~10 MeV:中性子収量およびそれらから求めた全断面積値
- (D) A. J. Howard, H.B. Jensen, M.Rios, W.A. Fowler and B.A. Zimmerman, Astrophys.
 J. <u>188</u>, 133 (1974)
 E_α ≤10 MeV : 全断面積励起函数
- (E) D.S.Flynn, K.K.Sekharan, B.A.Hiller, H.Laumer, J.L.Weil and F.Gabbard, Phys. Rev. C18, 1566 (1978)
 E_α≤6.1 MeV : 全断面積励起函数
- (F) J.K.Bair and J.Gomez del Campo, Nucl. Sci. Eng. 71, 18 (1979) $E_{\alpha} \leq 9.0 \text{ MeV}$:中性子収量

断面積は、それぞれのエネルギー領域が重なり合うところで概してよい一致を示している(10 ~20%以内)。エネルギー領域を分けて比較してみると、

- E_αが4MeV以下では, (B) ≥ (D) > (E) > (A)
- E_{α} が4~5MeV では, (E) > (A) > (D)
- E_{α} が5~6MeVでは, (E)>(C)>(D)
- E_{α} が6 MeV 以上では, (D) > (C)
- といえるが、しかし顕著な喰違いがあるわけではない。

これらから計算した中性子収量についていえば、(D)の Howard らの断面積から計算したものを 基準にして比較してみると、他のものはすべて同じようなずれ方の傾向を示す。したがって、 測定エネルギー範囲が最も広いものではあるが、(D)の Howard らのデータは使わない。(E)のFlynn らの断面積から計算した収量は、重なり合うエネルギー領域 5.2 ~ 6.0 MeV で(C)の Stelsonらの 測定した収量と非常によい一致を示すので、ここでは 5 MeV までは(E)の Flynn らの断面積から の計算値を、それ以上では(C)の Stelson らの測定値を採用する。なお、Stelson らが同時に報 告している断面積値を使って中性子収量を再計算してみると、測定値と数%以内で一致するこ とが確かめられる。

E_{α} (MeV)	n's∕α	E_{α} (MeV)	n's∕α
3.1	1.0 E - 11	6.6	3.3 E — 6
3.2	6.6	6.7	3.7
3.3	2.5 E - 10	6.8	4.0
3.4	6.6	6.9	4.5
3.5	1.4 E – 9	7.0	4.9
3.6	2.7		
3.7	5.2	7.1	5.4
3.8	8.6	7.2	6.0
3.9	1.3 E – 8	7.3	6.6
4.0	1.8	7.4	7.1
		7.5	7.7
4.1	2.6	7.6	8.3
4.2	3.7	7.7	8.9
4.3	5.0	7.8	9.6
4.4	6.6	7.9	1.0 E — 5
4.5	8.6	8.0	1.1
4.6	1.1 E - 7		
4.7	1.4	8.1	1.2
4.8	1.8	8.2	1.3
4.9	2.3	8.3	1.4
5.0	2.8	8.4	1.4
		8.5	1.5
5.1	3.5	8.6	1.6
5.2	4.3	8.7	1.7
5.3	5.2	8.8	1.8
5.4	6.2	8.9	1.9
5.5	7.5	9.0	2.0
5.6	8.6		
5.7	1.0 E - 6	9.1	2.1
5.8	1.1	9.2	2.2
5.9	1.3	9.3	2.3
6.0	1.5	9.4	2.4
		9.5	2.5
6.1	1.7	9.6	2.6
6.2	2.0	9.7	2.7
6.3	2.3	9.8	2.9
6.4	2.6	9.9	3.0
6.5	2.9	10.0	3.1

Neutron yields from Al (α , n) : n's $\neq \alpha$

-34-

Liskien and Paulsenの値²⁾, および Bair and Gomez del Campoの測定値³⁾を, ここに示した値で割ったものをプロットしたのが Fig.9 である。ここには,参考までに Howard らの断面積から計算した収量も示してある。約 5 MeV 以上で Liskien らの計算値がここで表に示したものと完全に一致しているのは,彼らも Stelson らの測定値を採用したためである。

Fig. 9 Comparison of the tabulated neutron yields from Al(α, n) with those reported by Liskien and Paulsen²) and Bair and Gomez del Campo³. Calculated results based on the cross sections by Howard et al. of (D) are also compared.

----- Liskien-Paulsen/present

• Bair-Gomez del Campo/present

-×- Howard et al./present

2.12 Si (α, n)

-			
	isotope	abundance	threshold energy
	28 Si	92.23 %	9.252 MeV
	²⁹ Si	4.67	1.736
	³⁰ Si	3.10	3.958

- (A) J.H.Gibbons and R.L.Macklin, Phys. Rev. <u>114</u>, 571 (1959) ${}^{29}Si(\alpha, n) : E_{\alpha} \leq 4.5 \text{ MeV} : 全断面積励起函数$
- (B) M.Balakrishnan, M.K.Mehta, A.S.Divatia and S.Kailas, Phys. Rev. <u>C11</u>, 54 (1975)

²⁹Si(α , n): $E_{\alpha} \leq 5.25 \text{ MeV}$: 全断面積励起函数

- (C) L.G.Sanin, W.A.Schier, B.K.Barnes, G.P.Couchell, J.J.Egan, P.Harihar, A.Mittler and E.Sheldon, Nucl. Phys. <u>A245</u>, 317 (1975)
 ²⁹Si(α, n): E_α ≤ 5.5 MeV: n₀ グループに対する 0° および 160° 方向の励起函数と 角度分布
- (D) G.F.Auchampaugh, J.Halperin, R.L.Macklin and W.M.Howard, Phys. Rev. <u>C12</u>, 1126 (1975)

³⁰Si(α, n)の逆反応, ³³S(n, α₀):励起函数

- (E) D.S.Flynn, K.K.Sekharan, B.A.Hiller, H.Laumer, J.L.Weil and F.Gabbard, Phys. Rev. <u>C18</u>, 1566 (1978)
 ²⁹Si(α, n) と³⁰Si(α, n): E_α≤6.8 MeV:全断面積の励起函数
- (F) J.K.Bair and J.Gomez del Campo, Nucl. Sci. Eng. 71, 18 (1979) nat Si (α , n): E $_{\alpha} \leq 9.0$ MeV:中性子収量

断面積ははげしい共鳴構造を示し、(C)の Sanin らはとくにこれら共鳴準位について論じていて、測定された角度分布をみても、0°と160°方向の励起函数から中性子全収量を推定することはむずかしい。

²⁹Si (α, n)の全断面積については, (A)のGibbons らの測定値は(E)の Flynnらのものにくら べてかなり小さく,また(B)のBalakrishnan らの測定値はとくに 3.5 MeV 以下で非常に大きくな っている。これは, Flynn らの指摘によれば,その共鳴構造からみて Balakrishnan らの測定に は ¹³C (α, n)の影響が混っているものと考えられる。

³⁰Si(α , n)の断面積測定は(E)の Flynn らだけであるが, (D)の Auchampaughらの逆反応³³S (n, α_0)³⁰Si の測定から, E_{α} = 4.0 ~ 4.7 MeV での ³⁰Si(α , n)の断面積が計算できる。この逆反応から求めた断面積は, Flynn らのそれよりやゝ大きめではあるが, 大体よく合っているといえよう。

^{nat}Si(α, n)に対する中性子収量を計算するにあたっては,²⁹Siと³⁰Siとに対する測定を 同時に行なっているという理由で,(E)の Flynn らの断面積を使用する。

E_{α} (MeV)	n′s∕α	E_{α} (MeV)	n′s∕α
2.7	2.0 E - 11	4.9	4.7 E – 8
2.8	4.7	5.0	5.5
2.9	1.0 E - 10		
3.0	2.1	5.1	6.5
		5.2 .	7.4
3.1	3.6	5.3	8.7
3.2	5.1	5.4	1.0 E - 7
3.3	8.4	5.5	1.2
3.4	1.2 E – 9	5.6	1.4
3.5	1.7	5.7	1.7
3.6	2.2	5.8	1.9
3.7	2.9	5.9	2.2
3.8	3.6	6.0	2.4
3.9	4.9		
4.0	6.2	6.1	2.7
		6. 2 ⁻	3.0
4.1	8.1	6.3	3.4
4.2	1.0 E-8	6.4	3.7
4.3	1.4	6.5	4.1
4.4	1.7	6.6	4.4
4.5	2.3	6.7	4.8
4.6	2.6	6.8	5.1
4.7	3.2	6.9	5.6
4.8	3.8	7.0	6.0

Neutron yields from $^{nat}Si(\alpha, n)$: n's $/\alpha$

Liskien and Paulsenの計算値²⁾およびBair and Gomez del Campoの測定値³⁾を, ここ に示した収量で割ったものをプロットしたのが Fig.10 である。 この図には示すことができな かったが、Liskien らの値は Eαがもっと低いところで急速に大きくなり、 3.5 MeV では表の 値の約 2.5 倍, 3 MeV では約 8.1 倍にも達する。 これは, 彼らが(B)の Balakrishnan らの断面 積を用いたためである。

Fig. 10 Comparison of the calculated neutron yields from Si(α,n) with those reported by Liskien and Paulsen²) and Bair and Gomez del Campo³. —— Liskien-Paulsen/present

• Bair-Gomez del Campo/present

2.13 原子番号が 14 以下の主要元素に対する全収量の図

2章で示した中性子収量をプロットしたのが Fig. 11である。ただし、図がこみいって見にく くなるために、利用者があまり必要としないであろうと思われる Ne と、計算値ではない Na の測定値とは省いてある。

Fig. 11 Neutron yields from α -particle bombardments on 10 elements with Z<15.

原子番号が15以上30以下の元素に対する(α, n)反応

3.1 Cl (α, n)

isotope	abundance	threshold energy
³⁵ C1	75.77 %	6.529 MeV
³⁷ C1	24.23	4.292

(A) A. J. Howard, H.B. Jensen, M.Rios, W.A.Fowler and B.A.Zimmerman, Astrophys.
 J.188, 131 (1974)

³⁵Cl(α, n): E_α ≤ 11.1 MeV : 全断面積励起函数

 $a^{37}Cl(\alpha, n)$ のデータがないので natClに対する中性子収量は求められない。

E_{α} (MeV)	n′s∕α	E_{α} (MeV)	n′s∕α
6.8	3.6 E – 8	8.6	1.6 E - 6
7.0	1.3 E – 7	8.8	1.8
		9.0	2.1
7.2	2.5		
7.4	4.1	9.2	2.3
7.6	5.8	9.4	2.5
7.8	7.6	9.6	2.8
8.0	9.5	9.8	3.0
		10.0	3.3
8.2	1.2 E - 6		
 8.4	1.4	10.2	3.6

Neutron yields from ${}^{35}Cl(\alpha, n)$: n's/ α

3.2 Sc (α, n)

isotope	abundance	threshold energy
45 SC	100 %	2.439 MeV

(A) A.E. Vlieks, J.F.Morgan and S.L.Blatt, Nucl. Phys. <u>A 224</u>, 492 (1974) $E_{\alpha} \leq 10.93 \, MeV$: 全断面積励起函数

E_{α} (MeV)	n′s∕α	E_{α} (MeV)	n′s∕α
3.0	6.8 E - 11	6.8	8.1 E - 7
		7.0	1.1 E – 6
3.2	3.2 E-10		
3.4	6.9	7.2	1.4
3.6	1.3 E – 9	7.4	1.8
3.8	2.2	7.6	2.3
4.0	3.7	7.8	2.9
		8.0	3.7
4.2	6.1		
4.4	9.6	8.2	4.7
4.6	1.5 E - 8	8.4	5.8
4.8	2.2	8.6	7.2
5.0	3.4	8.8	8.7
		9.0	1.0 E - 5
5.2	5.0		
5.4	7.2	9.2	1.2
5.6	1.0 E - 7	9.4	1.4
5.8	1.5	9.6	1.6
6.0	2.1	9.8	1.8
		10.0	2.1
6.2	3.0		
6.4	4.2	10. 2	2.3
6.6	5.9		

Neutron yields from Sc (α , n) : n's $\neq \alpha$

isotope	abundance	threshold energy
⁴⁶ Ti	8.2 %	4.827 MeV
47 T i	7.4	0.347
⁴⁸ Ti	73.7	2.911
⁴⁹ Ti	5.4	0
⁵⁰ Ti	5.2	1.939

- (A) A.E.Vlieks, J.F.Morgan and S.L.Blatt, Nucl. Phys. <u>A224</u>, 492 (1974)
 ⁴⁶Ti(α, n): E_α≤10.93 MeV:全断面積励起函数
- (B) A.J. Howard, H.B. Jensen, M.Rios, W.A.Fowler and B.A.Zimmerman, Astrophys.
 J. <u>188</u>, 131 (1974)
 - 46 Ti(α , n): $E_{\alpha} \leq 11$ MeV : 全断面積励起函数

両者とも "GTi に対する測定なので, ^{nat}Ti (α , n) の中性子収量を求めることはできない。 "Ti (α , n) については, Howard らの測定値は E_{α} が約 6 MeV 以上で Vlieksらのそれの約15 倍である。この不一致についてはすでに Vlieks らが問題にしていて, ターゲットの厚さや検出 器効率などを再検討したが, 彼らの測定値は変化がないといっている。また, Howard らの断 面積は彼らが計算した理論値よりも大きいので, ここでは Vlieks らの断面積を使って中性子収 量を計算する。

$\begin{array}{ccc} 3 & 7.7 & \text{E} - 7 \\ 0 & 1.0 & \text{E} - 6 \end{array}$
0 1.0 E - 6
2 1.3
4 1.7
6 2.1
8 2.6
0 3.2
2 3.9
4 4.7
6 5.6
8 6.6
0 7.8
2 8.9

Neutron yields from ⁴⁶Ti (α, n) : n's $/\alpha$

-43-

3.4 V (α , n)

isotop	e abundan	ce threshold	energy
50 V	0.25	% 0.193 M	ſeV
⁵¹ V	99.7 5	2.471	

- (A) W.W.Bowman and M.Blann, Nucl. Phys. A131, 513 (1969) $^{51}V(\alpha, n)$: $E_{\alpha} \leq 85 \text{ MeV}$:全断面積励起函数
- (B) A.E.Vlieks, J.F.Morgan and S.L.Blatt, Nucl. Phys. <u>A224</u>, 492 (1974) ${}^{51}V(\alpha, n)$: $E_{\alpha} \leq 10.94 \, \text{MeV}$:全断面積励起函数

⁵⁰ V に対する測定はないが, ⁵⁰ V の存在比が非常に小さいので,しきいエネルギーが低いとは いえ, ^{nat} V (α, n) の中性子収量に対する ⁵⁰ V からの寄与は無視できる,と考えてもよさそう である。

Bowman らの測定は, むしろ高い入射エネルギーでの断面積に関心があるために, 10 MeV 以下では 6.6 MeV での測定しかない。しかもそこで約 200 mb となっているが, これは理論的計算値より1桁以上も大きい。したがって, ここでは Vlieks らの断面積を使って ⁵¹ V に対する中性子収量を計算する。

E_{α} (MeV)	n′s∕α	E_{α} (MeV)	n's∕α
5.2	8.2 E - 11	8.0	3.5 E — 6
5.4	3.4 E – 10		
5.6	1.1 E - 9	8.2	4.7
5.8	3.4	8.4	6.1
6.0	9.3	8.6	7.7
		8.8	9.5
6.2	2.4 E – 8	9.0	1.2 E – 5
6.4	5.5		
6.6	1.2 E - 7	9.2	1.4
6.8	2.3	9.4	1.6
7.0	4.1	9.6	1.9
		9.8	2.3
7.2	6.9	10.0	2.8
7.4	1.1 E – 6		
7.6	1.7	10.2	3.3
7.8	2.5		

Neutron yields from ${}^{51}V(\alpha, n)$: n's $/\alpha$

-44-

3.5 Cr (α, n)

isotope	abundance	threshold energy
⁵⁰ Cr	4.35 %	5.358 MeV
⁵² Cr	83.79	3.859
⁵³ Cr	9.50	0.351
⁵⁴ Cr	2.36	2.577

(A) A.E.Vlieks, J.F. Morgan and S.L.Blatt, Nucl. Phys. <u>A 224</u>, 492 (1974) 50 Cr (α , n): E_{α} \leq 10.92 MeV : 全断面積励起函数

 50 Cr に対する断面積測定なので、 nat Cr (α , n)の中性子収量を求めることはできない。

E_{α} (MeV)	n's / a	E_{α} (MeV)	n′s∕α
5.8	2.5 E — 10	8.2	5.9 E – 7
6.0	1.0 E – 9	8.4	8.3
		8.6	1.1 E-6
6.2	2.9	8.8	1.5
6.4	7.1	9.0	2.0
6.6	1.5 E-8		
6.8	2.8	9.2	2.5
7.0	4.8	9.4	3.0
		9.6	3.6
7.2	7.9	9.8	4.2
7.4	1.2 E - 7	10.0	4.8
7.6	1.9		
7.8	2.8	10.2	5.5
8.0	4.1		

Neutron yields from ⁵⁰Cr (α , n) : n's $\neq \alpha$

3.6 Fe (α, n)

•

isotope	abundance	threshold energy
⁵⁴ Fe	5.8 %	6.229 MeV
⁵⁶ Fe	91.8	5.462
57 Fe	2.15	1.451
⁵⁸ Fe	0.29	3.826

(A) A.E.Vlieks, J.F. Morgan and S.L.Blatt, Nucl. Phys. <u>A224</u>, 492 (1974) 54 Fe (α , n) : $E_{\alpha} \leq 10.93$ MeV : 全断面積励起函数

⁵⁴Feに対する断面積測定なので, ^{nat}Fe(α, n)の中性子収量を求めることはできない。

E_{α} (MeV)	n′s∕α	E_{α} (MeV)	n′s∕α
6.4	1.2 E – 9	8.4	5.7 E - 7
6.6	5.8	8.6	7.6
6.8	1.5 E – 8	8.8	1.0 E - 6
7.0	3.2	9.0	1.3
7.2	5.7	9.2	1.7
7.4	9.2	9.4	2.1
7.6	1.4 E - 7	9.6	2.6
7.8	2.1	9.8	3.2
8.0	3.0	10.0	3.9
8.2	4.2	10.2	4.6

Neutron yields from ⁵⁴Fe (α , n) : n's $\neq \alpha$

3.7 Co (α, n)

isotope	abundance	threshold energy
⁵⁹ Co	100 %	5.422 MeV

- (A) F.K.McGowan, P.H.Stelson and W.G.Smith, Phys. Rev. <u>133</u>, B907 (1964) $E_{\alpha} \leq 10.0 \text{ MeV}$:中性子収量および断面積値
- (B) P.H.Stelson and F.K.McGowan, Phys. Rev. <u>133</u>, B911 (1964)
 E_α ≤11.0 MeV : 中性子収量および断面積値

両者とも同一著者たちによる測定であるが、(A)は activation method によるもので、(B) は graphite sphere 4π detector によるものであって、両者は±7%の範囲内で一致している。 しかし、 $E_a < 8.4 \text{ MeV}$ では(A)の結果がやゝ大きめで、 $E_a > 8.4 \text{ MeV}$ では(B)の方がやゝ大きめの 結果を与える。ここでは(B)の中性子収量を示すが、とくに指示のない限り誤差は±4%だとさ れている。

E_{α} (MeV)	n′s∕α	E_{α} (MeV)	n's ∕α
5.8	$a^{a}2.0 E - 10$	8.2	7.12 E - 7
6.0	^b 8.7	8.4	1.01 E-6
		8.6	1.40
6.2	2.6 E - 9	8.8	1.94
6.4	6.5 7	9.0	2.62
6.6	1.43 E - 8		
6.8	2.55	9.2	3.43
7.0	4.62	9.4	4.42
		9.6	5.61
7.2	8.01	9.8	6.96
7.4	1.32 E - 7	1 0.0	8.49
7.6	2.10		
7.8	3.16	10.2	1.03E-5
8.0	4.81		

Neutron yields from Co (α, n) : n's $/\alpha$

 $a^{a} \pm 15\%$, $b^{b} \pm 5\%$

isotope	abundance	threshold energy
⁵⁸ N i	68.3 %	9.933 MeV
⁶⁰ Ni	26.1	8.434
⁶¹ Ni	1.13	4.118
⁶² Ni	3.59	6.901
⁶⁴ N i	0.91	5.169

(A) P.H.Stelson and F.K.McGowan, Phys. Rev. <u>133</u>, B911 (1964)

⁵⁸Ni (α, n), ⁶⁰Ni (α, n), ⁶²Ni (α, n): E_α ≦ 11.3 MeV : 中性子収量および断面 積値

⁵⁸Ni(α , n) は, E_{α} が 10.8 MeV 以上で測定されている。⁶¹Ni と ⁶⁴Ni の測定はない。両者は存在比が小さいとはいえ,しきいエネルギーが低いので, ^{nat}Ni(α , n)の中性子収量を求めることはむずかしい。次に示すのは測定された中性子収量であって,とくに指示のないかぎり誤差は±4%だとされている。

E_{α} (MeV)	⁶⁰ Ni (α, n)	⁶² Ni(α, n)
7.2		a 1.4 E - 8
7.4		^b 4.39
7.6		9.01
7.8		1.56 E - 7
8.0		2.51
8.2		3.81
8.4		5.61
8.6	^c 9.6 E – 9	8.21
8.8	^b 2.9 E – 8	1.15 E-6
9.0	1.19E-7	1.56
9.2	2.62	2.06
9.4	4.65	2.67
9.6	7.60	3.40
9.8	1.14 E - 6	4.33
1 0.0	1.61	5.35
10.2	2.16	6.63

Neutron yields from ⁶⁰Ni and ⁶²Ni (α, n) : n's $/\alpha$

 $a^{\pm}\pm 10\%$, $b^{\pm}\pm 5\%$, $c^{\pm}\pm 20\%$

-48-

3.9 Cu (α, n)

isotope	abundance	threshold energy
⁶³ Cu	69.2 %	7.979 MeV
⁶⁵ Cu	3 0. 8	6.182

(A) E.A.Bryant, D.R.F.Cochran and J.D.Knight, Phys. Rev. <u>130</u>, 1512 (1963)
 ⁶³Cu(α, n) と ⁶⁵Cu(α, n) : E_α ≤ 25.6 MeV : 全断面積の励起函数

(B) P.H.Stelson and F.K.McGowan, Phys. Rev. 133, B911 (1964)

⁶³Cu(α, n)と⁶⁵Cu(α, n): E_α ≤ 10.6 MeV: 中性子収量と断面積値

比較し得るエネルギー領域では、(A)の Bryant らの断面積は(B)の Stelson らのそれより大き く、エネルギーが低くなるにつれてその傾向が顕著になる。Bryant らは、10 MeV 以下では 7.8 MeV でのみ測定しているが、これは、⁶³ Cu のしきいエネルギー以下なのに 17 mb という値を報 告している。したがって、10 MeV 以下の断面積としては Stelson らのものを採るべきであろう ここで、⁶³ Cu および ⁶⁵ Cu に対する Stelson らの測定した中性子収量から、^{nat}Cu に対する中

性子収量を求めて次に示す。

E_{α} (MeV)	n's /a	E_{α} (MeV)	n's⁄a
6.4	1.34 E – 10	8.4	1.45 E - 7
6.6	4.68	8.6	2.39
6.8	1.50 E-9	8.8	3.87
7.0	3.70	9.0	5.91
-			
7.2	7.27	9.2	8.77
7.4	1.31 E-8	9.4	1.24 E - 6
7.6	2.28	9.6	1.70
7.8	3.67	9.8	2.28
8.0	5.82	10.0	2.98
8.2	8.96	10.2	3.80

Neutron yields from ^{nat}Cu(a, n) : n's/a

isotope	abundance	threshold energy
⁶⁴ Zn	48.6 %	9.774 MeV
⁶⁶ Zn	27.9	7.901
⁶⁷ Zn	4.10	3.142
⁶⁸ Zn	18.8	6.086
⁷⁰ Zn	0.62	4.137

(A) P.H.Stelson and F.K.McGowan, Phys. Rev. 133, B911 (1964)

⁶⁴Zn (α, n), ⁶⁶Zn (α, n), ⁶⁸Zn (α, n), ⁷⁰Zn (α, n) : $E_{\alpha} \leq 11 \text{ MeV}$: 中性子 収量および断面積値

 67 Zn に対する測定がないので nat Zn (α , n)の中性子収量を求められない。また, 66 Zn (α , n)に対しては $E_{\alpha} = 7.8$ MeV で中性子収量を報告しているが、これはしきいエネルギー以下な ので無視すべきである。中性子収量の誤差は、とくに指示がなければ土4%だとしている。

E_{α} (MeV)	⁶⁴ Zn	⁶⁶ Zn	⁶⁸ Zn	⁷⁰ Zn
6.2				^d 4.39E - 9
6.4			°6.60 E − 10	ç 5.93
6.6			^D 1.99 E – 9	[°] 8.49
6.8			^a 4.52	^a 1.29E−8
7.0			9.20	2.00
7.2			1.71E-8	3.08
7.4			3.04	4.74
7.6			5.19	7.31
7.8		$(^{c}2.0 E - 9)$	8.53	1.13 E – 7
8.0		^a 8.85	1.33 E - 7	1.78
8.2		2.39 E – 8	2.00	2.58
8.4		6.06	3.00	3.78
8.6		1.43 E - 7	4.39	5.51
8.8		2.69	6.38	7.88
9.0		4.49	9.01	1.07 E-6
0.2		7 0 2	121E - 6	1.4.5
0.4		1.02 1.01 F 6	1.67	1.40
9.4		1.01.0	2.07	2.53
9.0		1.41	2.22	2.00
9.0		1.09	2.90	J. 24 1 1 2
10.0	4.05 E 8	2.40	3.14	4.10
10.2	1.50 E - 7	3.30	4.68	5.13

Neutron yields from $^{64, 66, 68, 70}$ Zn (α , n) : n's / α

^a±5%, ^b±10%, ^c±15%, ^d±20% ()は除くべき値

4. 原子番号が 40 以上の元素に対する(α, n)反応

Stelson and McGowan⁵⁾は、 $Z \ge 40$ の数種元素に対しても、 E_{α} が約9 MeV から 11 MeVの範囲内で(α , n)反応からの中性子収量を graphite sphere detector で測定し、同時にそれらから求めた断面積値を報告している。

ここでは、Stelson and McGowan の励起函数を外挿してより低い入射エネルギーでの断面 積値を決め、それをもとにして中性子収量を計算する。直接中性子収量を外挿しないで断面積 値を外挿した理由は、彼らが図示している全反応断面積の光学模型による理論的励起函数の形 を考慮に入れながら外挿できるためである。しかし、本来外挿値は信頼性が乏しいものであっ て、以下に示す中性子収量は大体の目安を与えているに過ぎない、と解すべきであろう。なお、 ここには Stelson and McGowanの測定結果も併せて示しておく。

4.1 Zr (α, n)

 isotope	abundance	threshold energy
⁹⁰ Zr	51.4 %	7.947 MeV
⁹¹ Zr	11.2	5.352
⁹² Zr	17.1	6.669
94 Zr	17.5	5.595
⁹⁶ Zr	2.8	5.335

E_{α} (MeV)	calculated	Stelson -	- McGowan
6.6	1.5 E - 11		
6.8	5.2		
7.0	1.1 E - 10		
7.2	2.1		
7.4	3.5		
7.6	5.7		
7.8	9.2		
8.0	1.5 E — 9		
8.2	2.3		
8.4	3.5		
8.6	5.3		
8.8	7.9	8.0 E - 9	\pm 40 %
9.0	1.2 E - 8	1.2 E – 8	\pm 25
9.2	1.7	1.8	\pm 15
9.4	2.5	2.6	\pm 15
9.6	3.7	3.7	± 10
9.8	5.5	5.4	± 10
10.0	8.0	7.7	± 10
10.2	1.2 E – 7	1.2 E −7	± 10

Neutron yields from Zr (α , n) : n's $\neq \alpha$

4.2 Nb (α, n)

<u></u>	isotope	abundance	threshold energy	
	⁹³ Nb	100 %	7.338 MeV	

Stelson and McGowanの励起函数を、光学模型による全反応断面積の理論的励起函数と比較すると、他の元素あるいは核種の場合と異なり、約9.5 MeV以下での(α, n) 反応断面積の下降のしかたがかなりゆるい。強い共鳴準位の影響があるとすれば別だが、しきいエネルギーと全反応断面積の傾向とだけからみれば、8.6 ~ 9.4 MeV での彼らの測定値はや、大きめではないかと思われる。

E_{α} (MeV)	calculated	Stelson	— McGowan
7.6	6.1 E – 11		
7.8	1.8 E - 10		
8.0	4.1		
8.2	8.5		
8.4	1.6 E – 9		
8.6	2.9	4.1 E - 9	±60 %
8.8	4.7	6.0	± 40
9.0	7.4	8.7	± 30
-			
9.2	1.1 E – 8	1.3 E – 8	± 20
9.4	1.7	1.8	\pm 25
9.6	2.6	2.6	\pm 20
9.8	3.8	3.8	\pm 15
10.0	5.5	5.6	± 10
. 10.2	8.1	8.4	\pm 10

Neutron yields from Nb (α , n) : n's $\neq \alpha$

.

	isotope	abundance	threshold	energy
_	⁹² Mo	14.8 %	9.394	MeV
	⁹⁴ Mo	9.1	8.329	
	⁹⁵ Mo	1 5.9	5.349	
	⁹⁶ Mo	16.7	7.106	
	⁹⁷ Mo	9.5	4.133	
	⁹⁸ Mo	24.4	6.048	
	¹⁰⁰ Mo	9.6	4.757	

Neutron yields from Mo (α , n) : n's $\neq \alpha$

E_{α} (MeV)	calculated	Stelson —	McGowan
7.4	3.3 E – 12		
7.6	1.3 E – 11		
7.8	3.1		
8.0	6.7		
8.2	1.3 E - 10		
8.4	2.8		
8.6	5.8		
8.8	1.1 E - 9	1.2 E – 9	\pm 50 %
9.0	2.1	2.2	± 40
9.2	3.9	3.9	\pm 30
9.4	6.8	6.6	\pm 25
9.6	1.2 E - 8	1.2 E – 8	\pm 15
9.8	1.9	1.9	\pm 10
10.0	3.1	3.0	\pm 10
10.2	4.9	4.8	\pm 10

isotope	abundance	threshold energy
102 Pd	1.0 %	9.598 MeV
104 Pd	11.0	8.370
105 Pd	22.2	5.001
106 Pd	27.3	7.285
¹⁰⁸ Pd	26.7	6.135
110 Pd	11.8	5.111

Neutron yields from Pd (α , n) : n's $\neq \alpha$

E_{α} (MeV)	calculated	Stelson —	Mc Gowan
8.6	1.8 E - 12		
8.8	1.0 E – 11		
9.0	3.8		
9.2	1.1 E – 10		
9.4	3.1		
9.6	7.9		
9.8	1.8 E – 9	2.4 E - 9	\pm 50 %
10.0	3.8	4.0	± 40
10.2	7.2	7.0	±20
10.4	1.3 E – 8	1.2 E – 8	±15
10.6	2.2	2.0	± 10

-55-

4.5 Ag (α, n)

isotope	abundance	threshold energy
¹⁰⁷ Ag	51.83 %	7.928 MeV
¹⁰⁹ Ag	48.17	6.603

Stelson and McGowanは, ¹⁰⁷ Ag と¹⁰⁹ Ag とについて 10.2 乃至 11.0 MeV の測定値を報告 している。

E_{α} (MeV)	calculated	Stelson — McGowan	
8.8	6.3 E – 13		
9.0	3.0 E – 12		
9.2	1.1 E - 11		
9.4	3.7		
9.6	1.1 E - 10		
9.8	3.1		
10.0	8.0		
10.2	1.8 E - 9	2.0 E – 9	±50 %
10.4	3.9	3.9	\pm 40
10.6	7.5	7.4	± 25

Neutron yields from ¹⁰⁷ Ag (α, n) : n's $/ \alpha$

Neutron yields from ¹⁰⁹Ag (α , n) : n's/ α

E_{α} (MeV)	calculated	Stelson —	McGowan
8.8	3.1 E — 12		
9.0	1.5 E – 11		
9.2	4.6		
9.4	1.3 E - 10		
9.6	3.3		
9.8	7.5		
1 0.0	1.7 E – 9		
10.2	3.3	3.2 E - 9	+50%
10.2	5.9	5.7	± 30
1 0. 6	1.0 E-8	1.0 E - 8	±20

両方の計算値から求めた natural Ag に対するα粒子1箇当りの中性子収量を次に示す。

E_{α} (MeV)	n's /a	E_{α} (MeV)	n's ⁄ α
8.8	1.8 E – 12	9.8	5.2 E – 10
9.0	8.8	10.0	1.2 E – 9
9.2	2.8 E - 11	10.2	2.5
9.4	8.2	10.4	4.9
9.6	2.2 E - 10	10.6	8.7

Neutron yields from $^{nat}Ag(\alpha, n)$: n's $/\alpha$

4.6 $\ln(\alpha, n)$

isotope	abundance	threshold energy
¹¹³ I n	4.3 %	8.375 MeV
115 I n	95.7	7.472

Stelson and McGowan は, 10.7 ~ 11.0 MeV で 100 keV 間隔の断面積値を与えているが, C れを外挿するのは非常にむずかしい。次に示す中性子収量は, たんに大きさの程度を与えているに過ぎないと考えるべきであろう。

E_{α} (MeV)	calculated	Stelson — McGowan
9.6	7.8 E – 13	
9.8	6.5 E – 12	
10.0	3.5 E - 11	
1 0. 2	1.6 E – 10	
10.4	6.2	
10.6	1.9 E – 9	8.7 E - 10 \pm 40 %

Neutron yields from In (α, n) : n's $/ \alpha$

原子番号が 15 以上の元素に対する全収量の図 4.7

3章と4章とに示した原子番号が15以上のnatural element に対する(α, n)反応からの 中性子収量をプロットしたのがFig.12 である。 表に示したもののうちで, In に対する収量 は 10 MeV 以下のα粒子では 10⁻¹⁰ n's /α 以下である。

-59-

5. UO₂ およびUCに対する中性子収量

Liskien and Paulsenの計算⁹ にも Bair and Gomez del Campoの測定³⁾にも,化合物か らの中性子収量として UO₂ および UC に対する結果が報告されているので, ここでもこれら を計算してみた。

 E_{α} が10 MeV 以下では、U に対する (α , n) 反応は起らないとしてよい。中性子を発生す るのはO あるいはC だから、2 章で計算に使用したこれらの (α , n) 反応断面積を用いて次 式を計算すればよい。すなわち、入射 α 粒子のエネルギーを E_{α} , 中性子収量を Y_n とすると、

$$Y_n = \int_0^{E_\alpha} \frac{\sigma}{\varepsilon} \, d\, E$$
 ,

ただし、 σ は(α , n)反応の断面積で、 ϵ は阻止断面積である。ここで使う阻止断面積は、 U原子、O原子およびC原子に対する阻止断面積をそれぞれ ϵ (U), ϵ (O)および ϵ (C)とするとBragg の関係式により、

 UO_2 に対しては $\epsilon = \epsilon(U) + 2\epsilon(O)$,

UC に対しては $\varepsilon = \varepsilon(U) + \varepsilon(C)$

と表わせる。注意しなければならないのは、 UO_2 の場合には O_2 だから、上式で計算した Y_n を2倍しなければならない。

こうして計算した結果を次の表および Fig.13に示す。また,Liskienらの計算値およびBairらの測定値を,ここで計算した値で割ったものをプロットしたのが Fig.14 (UO₂)および Fig.15 (UC) である。Liskien らの計算値はかなり小さめであり,Bairらの測定値はここで計算したものより大きめである。

E_{α} (MeV)	UO2	UC	E_{α} (MeV)	UO2	UC
1.2	3.1 E - 14	1.2 E — 11	4.8	<u>1.1 E – 8</u>	9.2 E — 9
1.4	2.8 E – 1 3	4.3	5.0	1.3	9.9
1.6	9.0	6.4			
1.8	2.5 E – 12	1.2 E - 10	5.2	1.6	1.2 E - 8
2.0	8.8	4.1	5.4	1.9	1.4
			5.6	2.3	1.8
2.2	2.4 E - 1 1	9.4	5.8	2.6	
2.4	5.6	1.8 E – 9	6.0	3.0	
2.6	1.5 E – 10	2.6			
2.8	3.3	3.1	6.2	3.3	
3.0	5.6	3.8	6.4	3.7	
			6.6	4.1	
3.2	8.8	4.4	6.8	4.5	
3.4	1.3 E – 9	5.6	7.0	4.9	
3.6	2.0	6.9			
3.8	2.9	7.1	7.2	5.4	
4.0	4.1	7.2	7.4	6.0	
			7.6	6.7	
4.2	5.5	7.4	7.8	7.1	
4.4	6.8	7.7	8.0	7.6	
4.6	8.5	8.5			

Neutron yields from UO2(α , n) and UC(α , n): n's $\nearrow \alpha$

Fig. 13 Calculated neutron yields from α -particle bombardments on UO₂ and UC targets.

Fig. 15 Comparison of the calculated neutron yields from UC(α, n) with those reported by Liskien and Paulsen²) and Bair and Gomez del Campo³. Liskien-Paulsen/present

• Bair-Gomez del Campo/present
追

補

投稿した直後に,かねて Progress Report からの引用の許可を求めていた Harwell の Dr. West から, 中性子収量の測定値が送られてきた。これは,投稿準備中の論文 "Measurements of thick target (α , n) yields from light elements" by D. West and A.C. Sherwood に 載せる数値データの表なので,ここにそれらを転載することは遠慮して,ただ今回の計算結果 との比較のために測定値を使わせてもらうにとどめた。中性子収量の測定は, Be, BeO, BN, C, UO₂ (fuel pellet & laboratory sample), UC, Mg, Al, Si (single crystal & Polycrystalline), Fe, stainless steel について行なわれているので,これらを必要とされる方 は原研核データ・センターに問合わせていただきたい。

West らは,彼らの測定値を Liskien and Paulsenの計算値²⁾および Bair and Gomez del Campo の測定値³⁾と, 次のような形で比較している。すなわち,Yを中性子収量としてたと えば Lisken らとの比較の場合,

$$\frac{Y_{\text{Liskien}-Paulsen} - Y_{\text{West}-Sherwood}}{Y_{\text{West}-Sherwood}} \qquad (\%)$$

そこで、ここでも今回の計算結果との比較を同じ形式で行ない、あわせてLiskien らおよび Bair ら との比較値も示しておいた。前にも触れたように、計算値(Liskien らおよび present)は小数 以下1桁しか出していないので、約10%以内のくいちがいの場合には、よく一致しているとみ てもよかろう。

	Ве			C		UC		
E_{α} (MeV)	Liskien	Bair	present	Liskien	present	Liskien	Bair	present
4.0		—	. –	-15 %	+9 %	-40 %	+13.3 %	- 3%
4.5	+ 25 %	- 11.6%	+20%	-16	+7	-41	+ 11.3	3
5.0	+ 24		+ 16	-18	-1	-44	+ 7.8	10
5.5	+ 22 -	-10.8	+ 13	- 1	-1	-36	+ 2.7	-11
6.0	+ 19	- 9.6	+ 9	. <u> </u>	—	_	-	—
6.5	+ 23	- 9.0	+ 8		—	-	—	
7.0	+ 18	- 8.5	+ 12		_	-	_	—
7.5		- 8.4	+ 8		—	—	—	

		UO 2		Mg			
E_{α} (MeV)	Liskien	Bair	present	Liskien	Bair	present	
4.0	- 19 %	+ 20.0 %	- 17 %	+ 21 %	- 6.9 %	+ 17 %	
4.5	- 30	+ 3.9	- 26	- 8	-10.3	- 1	
5.0	- 30	+ 4.6	- 17	- 18	- 8.5	<u> </u>	
5.5	- 32	+ 6.9	5		—	_	
6.0	- 35	+ 4.9	- 2				
6.5	- 38	+ 2.9	- 4			_	
7.0	- 40	+ 1.0	- 5				
7.5	-	+ 0.1	0		-	_	
8.0	_		+ 1				

		A 1		S i			
E_{α} (MeV)	Liskien	Bair	present	Liskien	Bair	present	
4.0	+ 15 %	+ 2.1 %	+ 9 %	+ 150 %	-	+ 56 %	
4.5	+ 7	- 1.3	+ 6	+ 100	+ 2.6 %	+ 47	
5.0	+ 3	- 6.0	0	—	- 7.9	- 3	
5.5	- 2	- 7.8	- 1	_	- 8.4	- 4	
6.0	- 3	- 7.2	- 3	—	- 7.7	- 2	
6.5	- 4	- 7.8	- 4		- 6.8	— 1	
7.0	- 2	- 6.8	- 2	_	- 7.5	- 8	
7.5	_	- 7.6	0	_			
8.0		- 7.8	0	-	—		
8.5		- 8.3	0				
9.0	-	— 8.3	+ 2				

このような比較にもとづいて詳しい議論をすることはここでは行なわないが、しかしここで 示した結果は、反応断面積自身の評価に対して有用な情報をもたらすことは疑いもない。公表 前の測定データを提供されたことに関し、Dr. Westに感謝する次第である。

-66-

.