NEANDC(J)90/AU INDC(JAP)77/G

JAERI - M 83-041

1982年核データ研究会報告

1983年3月

シグマ研究委員会

日本原子力研究所 Japan Atomic Energy Research Institute

JAERI-M レポートは、日本原子力研究所が不定期に公刊している研究報告書です。 入手の問合わせは、日本原子力研究所技術情報部情報資料課(〒319-11次城県那珂郡東 海村)あて、お申しこしください。なお、このほかに財団法人原子力弘済会資料センター (〒319-11 次城県那珂郡東海村日本原子力研究所内)で複写による実費頒布をおこなって おります。

JAERI-M reports are issued irregularly.

Inquiries about availability of the reports should be addressed to Information Section, Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-14, Japan.

②Japan Atomic Energy Research Institute, 1985
 編集業発行 日本原子力研究所
 印 朝・いばらき印刷㈱

.

1982年核データ研究会報告

日本原子力研究所シグマ研究委員会

(1983年1月31日受理)

シグマ研究委員会主催の核データ研究会が1982年11月24,25日の両日,日本原子力研究所の 東海研究所において開催された。本年度はシグマ研究委員会が発足して満20年に当るのに際し, 記念講演及びこの20年間の核データ活動のレビューが行われた。その他に,最近の話題からの テーマも採り挙げられた。また、核テータの測定者,評価者,利用者による特定テーマについて の討論,さらに初めての試みとして核データの測定の将来計画についてのパネル討論も行われた。 本報告書はこれらの報文集をまとめたものである。

プログラム委員会:村田 激,関 泰,中嶋 龍三,関 雄次,椙山 一典,吉田 正 浅見 哲夫,五十嵐,信一,水本 元治 編 集 委 員 会:村田 徹,浅見 哲夫,五十嵐,信一,水本 元治

.

Proceedings of the 1982 Seminar on Nuclear Data

Japanese Nuclear Data Committee, JAERI

(Received January 31, 1983)

The 1982 Seminar on Nuclear Data was held on November 24 and 25, 1982 in Tokai Research Establishment of JAERI, by Japanese Nuclear Data Committee (JNDC). The proceedings contain the texts of the commemorative talk for the 20th anniversary of JNDC, the review talks on the nuclear data activity in JNDC, the topical discussion, and the panel discussion by users, evaluators and experimenters. Topics covered include: the theory of preequilibrium process, a new statistical method and the sensitivity analysis for FBR; the nuclear data needs for FBR burn-up calculation, and for fusion integral experiment; status of JENDL-3. Given are the papers presented and the discussion made at the seminar.

Keywords: Nuclear Data, JNDC, Data Evaluation, Cross Sections, Neutrons, Nuclear Model, Nuclear Model Code, FBR, Fuel Burn-up, Fusion Research, JENDL-3, Nuclear Data Needs

Programme Committee: T. Murata, Ya. Seki, R. Nakasima, Yu. Seki, K. Sugiyama, T. Yoshida, T. Asami, S. Igarasi and M. Mizumoto Editors : T. Murata, T. Asami, S. Igarasi and M. Mizumoto

ι

Ħ

目 次

1.	開会	会の言	葉			原田	吉之財)(原研)	*******************	• 1
2.	20	周年記	記念講演		座長:	原田	吉之助	(原研)	•••••••••••••••••••••••••	• 2
	3	ングマ	研究委員会 20年	Fを振返っ	τ					
						中嶋	龍三	(法大)	••••••	• 2
3.	核法	データ	活動の進展		座長:	山室	信弘	(東エナ		. 9
	3. 1	断面	績計算コード開	発の成果						
						五十月	1信—	(原研)	··· · · · · · · · · · · · · · · · · ·	. 9
:	3. 2	断面积	資実験データの	レビュー						
				•		椙山	一典	(東北大	ىى	- 34
4.	最近	の話	題から		座長:	吉田	正	(NAIG	;)	47
4	4.1	前平征	動過程の理論			岩本	昭	(原研)	*** *****************	47
4	4. 2	理論(の内在誤差を考	慮した新し	い統計	法				
						宇野	正宏	(早大)	·····	58
4	L 3	一般	化摂動論による	感度解析ー	FBR	ሻ ላ ዞ	反応服	変への通	用一	
						竹田	敏一	(阪大)		6 8
5.	総	ł	舌(1)			村田	徹	(NAI G	;)	81
6.	利用	者・静	平価者・測定者の	の討論 …	•••••	••••••				82
ł	A F	'BR燃	焼計算における	核データの	D問題					
					座長:	関	雄次	(FBEC	;)	82
	6 A	• 1	大型に散焼べ	ンチマーク	計算に	おける	5問題			
						中川	正幸	(原研)		. 82
	6 A	• 2	「常陽」 燃料(の燃焼度試	検					
						池上	哲雄	(動燃)		91
	6 A	• 3	高速炉燃烧反应	芯度の感度	解析					•
			瑞慶	覧 篤(日	立・エ	ネ研)	,渡	部隆(川重)	102
В	核	融合制	日実験における	5核データ						
					座長:	i XI	₹ (J	亰研)	••• ••••••	119
	6 B	• 1	FNS積分実験	からの核う	ドータイ	への要	請			
					•	前川	洋	(原研)	******	119
	6 B	• 2	オクタビアン	費分実験と	枝デー	タの間) /16			
					i	高橋	亮人	(版大)		135
	6 B	• 3	核融合積分実際	食に関連す	る核デ	ーダの	現状			
						岩崎	信	(東北大))	146
7.	JEN	IDL-	3を逝って	ź	至長:	松延	廣幸	(住友原)	I)	171

7.	1 JENDL – 3 作成の現状					
		浅見	哲夫	(原研)	••••••••	171
7. :	2 Joint Evaluated File の現状					
		菊池	康之	(原研)	•••••	186
8. 1	ボデータ将来計画パネル討論―実験デー	タの充調	実に向	けて		
	座長	:神田	幸則	(九大)	••••••••	188
(1)	原研リニアックによる核データの測定					
		水本	元治	(原研)	*** ****	188
(2)	東北大ダイナミトロン施設における核	データ	D)))))))))))))))))))))))))))))))))))))			
		岩崎	信	(東北大)	*** • • • • • • • • • • • • • • • • • •	193
(3)	東工大ペレトロン加速器を用いた中性	子実験				
		井頭	政之	(東工大)	••••••	197
(4)	京大炉における中性子断面積の測定					
		小林	捷平	(京大炉)	•••••••	200
(5)	核断面積に対する FBR設計側からの要	望事項				
		加蘇	恭義	(FBEC)		214
(6)	核融合炉ニュートロニクスの立場から					
		関	泰	(原研)		218
(7)	核燃料施設等の核的安全評価に必要な核	ダデータ	•			
		山野	直樹	(原研)	•••	320
(8)	炉設計以外で使用される核データの要 素	Ŕ				
		村田	徹	(NAIG)		225
(9)	パネル討論ーパネリストと一般出席者の	の間の計	論		•••••	229
9. 緩	括(2)	飯島	俊吾	(NAIG)		235

.

Contents

1. Opening Talk	Kichinosuke HARADA (JAERI) 1
2. Commemorative Talk Chairman:	Kichinosuke HARADA (JAERI) 2
It is twenty years ago now! - Retrospect	ion of JNDC in the past
20 years -	Ryuzo NAKASIMA (Hosei Univ.) 2
3. Review of the Nuclear Data Activity in J	INDC
Chairman:	Nobuhiro YAMAMURO (TIT)
3.1 On the Development of Nuclear Model Co	des for Cross-Section
Calculations in JNDC	Sin-iti IGARASI (JAERI)
3.2 The Experimental Work on the Neutron C	ross-Sections in Japan 34
	Kazusuke SUGIYAMA (Tohoku Univ.)
4. Special Topics Chairman:	Tadashi YOSHIDA (NAIG) 47
4.1 Theory of Preequilibrium Process	Akira IWAMOTO (JAERI) 47
4.2 A New Statistical Method with Consider	ation of the Intrinsic Error of
theory	Masahiro UNO (Waseda Univ.) 58
4.3 Sensitivity Analysis Based on Generali	zed Perturbation Theory
- Application to Sodium Void Worth in D	FBR – 68
	Toshikazu TAKEDA (Osaka Univ.)
5. Summary Talk (1)	Tohru MURATA (NAIG) 81
6. Topical Discussion	
A. Nuclear Data for Burn-up Calculation in	FBR 82
Chairman:	Yuji SEKI (FBEC)
6A.1 LMFBR Benchmark Calculation Intercompa	arison for Fuel Burn-up 82
	Masayuki NAKAGAWA (JAERI)
6A.2 Burn-up Experiments of JOYO Fuels	Tetsuo IKEGAMI (PNC) 91
6A.3 Sensitivity Analysis of Fast Reactor F	Burn-up Reactivity 102
Atsushi ZUKERAN	(HTC) and Takashi NATANABE (KHI)
B. Nuclear Data for Fusion Integral Experim	ment 119
Chairman:	Yasushi SEKI (JAERI)
6B.1 Comment on Nuclear Data from FNS Integ	gral Experiments 119
	Hiroshi MAEKAWA (JAERI)
6B.2 Nuclear Data Problems for Integral Exp	periments at OKTAVIAN 135
	Akito TAKAHASHI (Osaka Univ.)
6B.3 Present Status of the Nuclear Data for	Fusion Neutronics Integral
Experiments	Shin IWASAKI (Tohoku Univ.) 146
7. JENDL-3 and Related Topics Chairman:	Hiroyuki MATSUNOBU (SAEI) 171
7.1 Status of JENDL-3 Compilation	Tetsuo ASAMI (JAERI) 171

۷

7.2 Current Status of Joint Evaluated File 18	86
Yasuyuki KIKUCHI (JAERI)	
8. Panel Discussion on Future Plans for Nuclear Data 18	88
Chairman: Yukinori KANDA (Kyushu Univ.)	
(1) Nuclear Data Measurements with JAERI Linac 18	88
Motoharu MIZUMOTO (JAERI)	
(2) Nuclear Data Measurements with Dynamitron at Tohoku University 19	93
Shin IWASAKI (Tohoku Univ.)	
(3) Neutron Experiments with Pelletron Accelerator at T.I.T	97
Masayuki IGASHIRA (TIT)	
(4) Measurements of Neutron Cross-Sections at KUR	00
Katsuhei KOBAYASHI (KUR)	
(5) Requirements for Nuclear Cross-Sections from FBR Design 21	14
Yasuyoshi KATO (FBEC)	-
(6) From a Viewpoint of Fusion Reactor Neutronics 21	18
Yasushi SEKI (JAERI)	
(7) Nuclear Data Needed for Nuclear Safety Evaluation at Fuel Facility 22	20
Naoki YAMANO (JAERI)	
(8) Nuclear Data Needs for Other than Reactor Calculation	25
Tohru MURATA (NAIG)	
(9) Discussion between Panelists and Participants 22	29
). Summary Talk (2) Shungo IIJIMA (NAIG) 23	35

1. 開会の言葉

原田 吉之助+

Opening Talk Kichinosuke HARADA⁺

今年も世話人の方々の努力によりまして、魅力的なプログラムの研究会を開催できることにな りました。この研究会も年中行事になっておりますので、参加者の皆さんの関心を呼ぶような、 重要でかつ新鮮な主題を遠ぶのに御苦労なさったことと存じます。今年はシグマ研究委員会が発 足してから20年目に当ります。委員会活動もすっかり軌道に乗って最盛期にあると言えると思い ます。この時点で、今まで辿ってきた道程を振返り、反省すべき点は反省し、今後の活動の進め 方について議論しあうことは大変有意義なことです。プログラムの2、3、8はこうした配慮か らアレンジされたテーマであり、今年の研究会の特色であろうと思っております。

いつも申しあげることですが、研究会を面白く有効的なものにするには参加者全員の活発な発 言が必要です。

世話人の方々の折角の**御苦労も、参加者のご協力**がなければ徒労に帰することになります。活 発な討論が展開されて、研究会が成功裡に終ることを念じて、開会の挨拶とします。

+ 日本原子力研究所, Japan Atomic Energy Research Institute

2. 20周年記念講演:シグマ研究委員会20年を振返って

中嶋 龍三

シグマ委員会の過去を回想するにあたって、主として発足以来数年間の想い出を中心にして述 べる。 volunteers の集まりであるシグマ委員会が、20年間活動を続けることができた背景を 知りかつ反省することが、これから将来に向かって大きく発展するための糧ともなれば幸いであ る。

> It is twenty years ago now! ---- Retrospection of JNDC in the past 20 years ----

> > * Ryuzo Nakasima

Some recollections of the early Japanese Nuclear Data Committee, a group of volunteers, are presented at the 20th anniversary of its establishment. It is hoped that the knowledge about the past 20 years could be put into the future activities of JNDC.

1. はじめに

シグマ専門委員会が日本原子力学会に設立され、ほとんど同時にシグマ研究委員会が日本原子 力研究所に設置されてから、いまちょうど 20 周年を迎えようとしている。この 20年間をあらた めて振返ってみるといろいろなことが想い出されるが、つらいと思ったこと、しまったと思った こと、不満に思ったこと、腹立たしく思ったことなどがすべて、今になってみると楽しい想い出 に転化されて、この 20 年間を一緒に歩んできた私としてはむしろ、シグマ委員会というコミュニ・ ティーに感謝している次第である。

シグマ委員会は、正式には1963年2月に発足したのであるが、実際には核データの問題を何 とかしなければならないという動きが、日本でももっと以前からあったようである。私は1962年 夏に3年振りに日本に帰ってきたのでそれ以前のことはさっぱりわからないが、大塚(電源開発)、 立花(原発)、寺沢(日立)、森田(MAPI)氏らが、原研の百田、大野、杉江、高橋(博) 桂木氏らと、核データ整備の問題について策をめぐらしていたと仄聞した記憶がある。1962年 の秋頃から、私もちょいちょいこの仲間の何人かに引張り出されて核データの問題について話合 ったが、核データ活動の場をつくるなどという企画的な問題ではなく、むしろその活動の技術的 な面での話合いにおつき合いしたに過ぎない。

当時の記録によれば、原子力学会の企画委員であった大塚、野沢(原研)、深井(NAIG)、 森田の諸氏が、学会にシグマ専門委員会を設置し1963年度原子力平和利用研究委託金を受ける。

• 法政大学 Hosei University

よう提案され、前記の諸氏に安氏(東大)を加えて設立準備会が開かれたのが1963年1月であ る。したがって、シグマ委員会の産みの親は今までに名前を挙げた12人の人たち、およびその人 たちに積極的に助力していた当時の若い人たち、たとえば原研の浅見(哲)、岡本氏らやNAIG の飯島氏らであるというべきであろう。そして、シグマ委員会を今日あるまでに発展させた育て の親は、現在までにシグマ委員会で仕事をしてきた人たち全員である。

いま考えると全く慌ただしい約3週間であったが、兎に角、第1回シグマ専門委員会が開かれ たのが1963年2月14日である。委員数19名で、主査に百田氏、幹事には安、立花、大野,高橋 の諸氏が選ばれた。

2. 委員会初期を回顧して

シグマ委員会が産声をあげた 1963 年2月には、ちょうど、米国の Rice 大学創立 50間年記念 行事の一つとして、Fast Neutron Physics に関する国際学会が 2月 26 日から 28 日まで開 かれた。最近のように裕福な日本ではなかったせいか、この学会にはシグマ委員会に関係した人 は誰も出席しなかった。ここで、Harwell の Bretscher は核データの必要性を非常にわか りやすく説明している。出席していた核物理学者たちが彼の講演に対してどのような反応を示し たかは知るよしもないが、しかしもし、シグマ委員会が発足した頃にこのような話をきく機会が あったとしたら、私のような炉物理知らずの委員会メンバーでもかなり明確に問題点を知ること ができ、そしてもっと効果的に委員会活動に寄与できていたかも知れない。残念ながら、当時の 日本の Bretscher(s) の話は私にとってはむずかし過ぎて、核物理と炉物理・炉工学との接点を 見出すことに苦心したことだった。

シグマ委員会は、実際作業を進めるために3つの作業グループ、すなわち高速中性子グループ、 共鳴中性子グループ、熱中性子グループを編成したのであるが、実をいうと、そのそれぞれのグ ループが作業方針を決めて活動を開始した、いわば三才児の魂形成期について話す資格は私には ない。というのは、核構造の評価をしていた米国の核データ・グループを Washington, D.C. から ORNL に移そうという話がもちあがり、その相談のために半年から1年ぐらいきて、しい という旅費・滞在費先方もちの甘い誘いに乗って、私は、4月初めの重イオン反応国際学会出席 後半年余り米国に滞在していたからである。この時期の米国における核データ活動に一言触れて おくと、BNL のシグマ・センターではデータ収集のコンピュータ化がほぼ確立していた。ORNL では、McGowan が荷電粒子反応断面積のデータ収集を開始しだしたところで、グラフからの 数値読取機を使って作業していた。また Naval Research Lab. の Toms という女性は、 独力で光核反応の厖大な文献収集結果を纒めていた。

さて、10月末に帰国した私は、シグマ委員会の作業班としては高速中性子グループに属したの であるが、ここでは未知断面積の理論計算のために、光学模型と Hauser-Feshbach 理論の 計算機コードの作成と濡発模型や捕獲断面積計算の勉強が行なわれていた。はじめ奇異に感じた のは、滞米中に非常に元気そうな手紙を何回かくれた原研の杉江さんが、私が帰ってきてから会 合の場にあまり出てこられなくなったことである。杉江さんは光学模型のある意味での専門家で あって、シグマ委員会の初期における大きな成果の一つである ELIE SE-1 の作成に非常に貢献 された。シグマ委員会の設立とそれに続く高速中性子グループの基盤づくりに、委員会メンバー

- 3 -

の中で数少ない核理論屋としてたいへん苦労されたのであろう。その後何回か会う機会はあった が、シグマ委員会が発足してから1年余りにしてついに、杉江さんが病気のために戦列を離れざ るを得なくなったのはまことに残念なことであった。

シグマ委員会のいわゆる本委員会は、私の留守中に4回も開かれたという記録がある。前述した 1963年度原子力平和利用委託金を受けてその作業を実施することになったのであるが、発足 直後に IAEA からの呼びかけがあって International Nuclear Data Scientific Working Group (INDSWG)のメンバーに加わることになったので、勉強すべきことや なすべき仕事をいっぺんに抱えこんで転手古舞したことであろう。しかしこの時期に、本委員会 の役割として"日本のシグマ・センターの計画・立案"という目的を冒頭にうたったということ は、実に立派だと私は思う。当時のシグマ委員会は、若々しい意欲的なコミュニティーだったの である。これは、主査を含む2、3人の人を除いた大部分の委員会メンバーが、働き盛りの30 才代であったことによるのかも知れないが、しかし実直で頑固な主査のリーダー・シップによる ところが大きかったといえよう。

このような委員会メンバーの若さと主査の性格とは、一面ではシグマ委員会の活動にとって非 常にプラスしたと胸を張っていうこともできるが、他方では真面目過ぎて融通性がないために、 マイナスとまでいわないまでも、シグマ委員会活動の広報・宣伝が下手だったり、議論に結構無 駄な時間つぶしをしたりしたのではないかともいえる。その典型的な一つの例は、炉定数作成を シグマ委員会で行なうかどうかという議論であって、委員会発足後しばらくしてから始まって 1964年12月に炉定数グループが誕生するまで続けられた。設立すべき"日本のシグマ・センタ ー"として、それまでの BNLシグマ・センターのイメージをもっていた核物理サイドのメンバ ーは、この議論を通じて結構勉強させてもらったともいえるが、炉定数作成をしたいと希望して いた炉物理サイドのメンバーは、この期間中むしろいらいらしていたのではなかろうか。本委員 会の報告や議論は抽象的で定性的過ぎる、という批判が何回か提起されたことがある。

シグマ委員会の若いメンバーは困惑したりいらいらすることがあるくらい、主査は万事に非常 に慎重であった。委員会活動が2年目に入った頃、米国の多分 Goldstein から CINDA reader を引受けてほしいという手紙がきて、そのためにまずテストを受けることになった。 主査を含めた原研核物理の委員会メンバーと私の計7人が実に半日がかりで、問題として与えら れた1つだったか2つだったかの論文についてのCINDA記入をした記憶がある。1965年にな ると、ENEAの欧米核データ委員会(EANDC)に日本を加える可能性を審議するので、誰か 1人試験を受けにこいという話がもち込まれて、結局、5月半ばに Los Alamos で開かれ る第8回 EANDC 会議で私が受験することになった。このとき主査から与えられたのは、「受 験する以上是非とも合格してほしい。しかし、毎回 EANDC会議に出席する予算が認められるか どうかわからないので、うっかり合格してもらっても困る。」という難題であった。主査は出発 の日に羽田空港までこられて、出発ぎりぎりまで「合格してこい。でも合格しても困る。」とい われ、ついにこの難題を背負ったまま私は太平洋を越えたのであった。

この 1965 年はシグマ委員会設立前後と同じくらい忙しい年であったが、 シグマ委員会がある 意味ではその後の委員会活動に対して自信をもつことができた年だともいえる。私個人としては、 前記 EANDC 第8回会議に出席する約2週間前に BNLで5日間閉かれた ENEA と USAEC 共

- 4 -

催の中性子断面積評価に関するセミナーに出席して、核データ評価に取組みはじめた欧米各国の 代表者たちの熱っぽい議論に大いに刺激された。このセミナーを真似たわけではないのだが、8 月には東海研で第1回高速中性子断面積研究会が開かれて、多分にぎこちなさはあったものの、 ここで、シグマ委員会過去2年間の経験をふまえて評価活動にふみ切る意欲を示したのである。 この年の9月には INDSWG 第4回会議が東京で関かれた。この機会に、シグマ委員会メンバー と INDSWG メンバーとの合同会議が、1~2時間であったと思うが行なわれた。数名のシグマ 委員会メンバーが各グループ活動を紹介して、それに対して質疑応答が行なわれたのであるが、 INDSWG メンバーからとくに示唆的コメントが得られたかどうか、私の記憶にはない。しかし、 INDSWG の各メンバーは具体的に日本における活動を把握したであろうし、またシグマ委員会 の各メンバーはそれぞれに、国際的な核データ活動に寄与し得るという自信をもったことと思う。

1966年に入ると、INDSWG やEANDCメンバーとしての活動が軌道に乗りはじめた。しかし どんな場合でも、前述の CINDA記入と同じように慎重に慎重に、それこそおそるおそる本委員 会に提案して承認をとりつけ、大の男たちが何人も集まっておっかなびっくり事を始めたのであ る。1965年末から論議されていた JNDCニュースは1966年初めに刊行されたが、この編集に は主査を含めた数名の委員会メンバーが参画した。これも1965年から議論が続き、1966年中頃 に作成された日本の測定要求リストに対しては、要求精度の検討という面倒な作業もあって主査 をはじめとして10名以上のメンバーが関係した。同じようにして、日本の Progress Report はこの年の後半に作成された。両国際委員会で議論されていた標準断面積の評価作業として、C の全断面積評価をシグマ委員会で行なうということが1966年末の本委員会で認められ、この年に 原研に移った五十嵐氏を含めた4人の原研メンバーが作業を担当することになったが、主査、塚 田氏、私の3人がその相談相手となって、それから3年余りもこの問題におつき合いするはめに なった。これについては、船頭多くして船が山に登ったのではないか、と皮肉られた記憶がある。

1964年頃からデータ・シートによるデータ収集作業と計算機によるデータ格納・検索とを開 始していたが、とくに高速中性子関係では、中性子データだけでなく荷電粒子反応や光反応も含 め、入射エネルギーも中間子が顔を出さないかぎりということで、とくに上限を設けていなかっ たように思う。この収集作業の言い出しっぺは私だということになっていたらしく、不必要デー タの収集だとか、とくに中性子データは CINDA と重復する無駄な作業だなど、要するに全く無 意味な作業ではないかという批判が本委員会のたびに私に集中したことを記憶している。当時の 私が、今日のような荷電粒子断面積データ収集に対する IAEA を中心にした国際的趨勢を予測 していたわけでは、もちろんない。ただ、核データ評価を行なうためにできるだけ使いやすい独 自の形式で文献、数値データを整理しておきたいという純粋な気持の他に、荷電粒子反応データ も収集してあれば、まず、いろいろな計算機コードのチェックやそれらを使った委員会メンバー の個人的な仕事に対してネタを提供できるだろうし、第二に、委員以外の核物理屋たちにもデー タ提供ができればシグマ委員会活動の宣伝にもなるであろう、という不純な気持もあったように 思う。このデータ・シートによる組織的な収集作業は、委員会メンバーがそれぞれある特定の核 データ評価を担当するようになった 1969年頃まで続けられた。

1965年を一つの境としてシグマ委員会が核データ評価活動を開始しだした1966年頃、記録に

- 5 -

よれば,原研の委員会メンバーからは,原研の人をシグマ委員会活動に引張り込み過ぎるという 批難が起こり,これに対して原研外部の委員会メンバーからは,それはあまりにも外部委員に頼 り過ぎた勝手な主張だというやりとりが本委員会で行なわれた。本来ヴォランティアの集まりと して発足したシグマ委員会であったはずなのだが,いざ実際作業をはじめてみると,それまで隠 されていた個々の人間感情がちらちら顔を出すようになるのは無理もない。

初期の着実なシグマ委員会活動の成果は、もちろんこれに情熱を捧げた委員会メンバー全員の 努力によるものであるが、しかし委員会メンバー以外の多くの人たちの協力も見逃がせない。そ の中で、とくに強く私の印象に残っているのは IBMプログラマーだった中村実さんである。几帳 面でしかも有能な彼の協力がもし得られなかったら、評判のよかった ELIESE-1の完成はもっ と遅れたか、あるいはもっと平凡なコードに終っていたであろう。また、10年近くにわたって主 査の秘書役をつとめていた田中姚子さんの献身的な働きは、シグマ委員会の初期を語る際にはど うしても欠かせない。優れた英語能力をいかして国際協力関係の仕事をてきぱき進めてくれたば かりでなく、複雑なシグマ委員会の一般事務を手ぎわよく処理してくれた。彼女は、やんちゃな シグマ委員会のよき母でもあったのである。シグマ委員会初期の回顧を終るにあたって、これら の人たちに改めて感謝したいと思う。

3. 委員会成長期について

発足してから約4年間でその基礎固めをしたシグマ委員会は、その後いわば成長期に入る。 前述したように、シグマ委員会は当初その目標として * 日本のシグマ・センター * の設立を第 一に打出していた。この目標は、1968年度に原研で核データ研究室が発足し、さらにこの研究室 が1977 年度には核データ・センターになったことによって一応達せられたわけである。しかし、 誕生してきた核デ-タ・センタ-は当初考えていたシグマ・センターとは、たとえば組織的なデ - タ収集・整備という点などでかなり異なっている。これは、その10年余りの間に国際協力の ネット・ワークが大いに機能するようになったこと、また、大型計算機の利用が著しく普及した ことによるもので、むしろ当然の成行であった。この核データ・センターを、やがてアシア諸国 の地域的国際核データ・センターに発展させようという話が、最近のシグマ委員会ではしばしば もちあがる。 20 年前には夢想だにしなかったこの雄大な構想に対して、 私はあえて反対はしな いが賛成もしない。賛成しかねる理由は多々あるが。今の私にとっては,この核データ・センタ ーがまず日本の核データ・センターとして全国の核物理屋も含めた利用者たちに認められるため にはどうあるべきか、ということを勉強したり考えたりすることで精一杯である。シグマ委員会 |初期の * こわごわ * 時代から成長期の * のびのび * 時代に入ると、足もとを見ないで外に見栄を はるような風潮が、本委員会(運営委員会)での議論でちょいちょい感じられるようになったと みるのは、私の杞憂に過ぎないのであろうか。

核物理, 炉物理両サイドのシグマ委員会メンバーが, 共通認識にたって打出した日本の評価済 み核データ・ライブラリー, JENDLの作成というもう一つの目標については, ENDF, UKNDL, KEDAKなどが利用できるようになると不必要ではないか, ということが本委員会では大分論じ られた。しかし 1960年には, 炉定数グループ・メンバーが委員会メンバーでない原研の人たち と協力して、上記諸外国のデータ・ファイルを基にしながら JAERI -FASTセットを作成した。 そしてシグマ委員会が、各メンバーがそれぞれにデータの収集・評価を行なってきた実績をふま えて、委員会独自の評価済み核データ・ファイルの作成開始に踏み切ったのは 1973 年で、その 4年後には JENDL - 1としてこれが日の目をみることになる。しかしそこまでに到る過程には いろいろな悩みがあって、主査を含めた数人の間での議論では、シグマ委員会と原研核データ研 究室との関係にまで遭ったこともある。それらは兎も角として、実際にのびのびと評価作業を進 めた委員会ワーキング・グループのメンバーの努力が、JENDL-1として開花したのである。

ベンチマーク・テストなどで明らかにされた JENDL- 1の不備を修正し、また収納核種数を かなり増やした JENDL- 2が、今まさに完成されようとしている。さらに、高速炉、熱中性子 炉、核融合炉用のライブラリーとして十分に有効性を発揮するように、評価核データの質の向上 を主目的として JENDL- 3の作成が今年度から開始された。シグマ委員会が、日本の評価済み 核データ・ライブラリーの作成に取組み始めてから今年で10年を経過したわけである。当時は それぞれの所属機関で新進あるいは中堅だった委員会メンバーも、今では中堅以上の幹部級にな っているということも考慮して、ときには過去を振返りながら、強固な協力体制のもとに JENDL - 3の完成を目指していくことを期待したい。

シグマ委員会も発足以来 10 年以上も経過すると各委員会メンバーの作業も定着してきて、各 ワーキング・グループ以外に CINDA グループ, WRENDA グループ, 熱中性子文献 グループ, Progress Report や核データ・ニュース編集者など分担が固定されたが、これらのどこにも 主査が顔を出さないようになった。これは "こわごわ"時代と "のびのび"時代との大きな違い である。のびのび時代の主査の委員会に対する寄与の一つは、シグマ委員会の活動・成果の広報・ 宣伝であると思うのだが、過去にはそれが十分であったとは私には思えない。

私が腹を切ってシグマ委員会を辞めなければならない、と思ったことが今までに何回かある。 最も痛切にそれを感じたのは、前述した荷電粒子データの収集であった。本委員会ばかりでなく、 当時のワーキング・グループの人たちからも非難されて結局終止符をうったのであるが、どうい う形で結着をつけるかで非常に悩んだものである。最近になって、私はr線や中性子の厚いター ゲット収量の計算のために、古い文献データではあったがそれを利用しながら往時の苦痛をむし ろなつかしんだことだった。(この件では、浅見烟さんと岡本さんにお世話になった。)

最近つらい思いをした一つの例は、崩壊熱評価ワーキング・グループの問題である。ワーキン グ・グループが結成されてから3年以上もたっているのに何の進歩もないではないかとことある たびに厳しく批判された。私が、1000 核種以上の崩壊データを原論文に遡って収集・検討して いたために、グループ作業は大幅に遅れていたのである。そして、やっと収集・処理を終って総 和計算をしてみた結果が測定結果と非常に喰違うということがわかったとき、それまで長い間の 批判に増えて悪戦苦斗しながらデータの収集と処理に打込んできた私は、全く暗沸たる思いであ った。その日原研からの帰りに特急の中で、実験データ採択の誤りに気付いたのはワンカップの 効果ではなく、失意の私を慰めてくれ、そして次の計算の方針について議論してくれた吉田さん (NAIG)のお蔭であった。1~2週間後に知らされた吉田さんの計算結果によって、私は救わ れたのである。 4. おわりに

シグマ委員会の設立20周年にあたって、私だけがあまりにも愚痴を並べたてたきらいなきに しもあらずだが、委員会メンバー諸氏もそれぞれに過去を想出して戴きたい。おそらく、私の知 らなかった別のところで、喜びや満足あるいは悩みや不満を個人的に感じていたことであろう。 できれば委員会メンバー全員がそれらをさらけ出し、お互いにそれらを他山の石としてシグマ委 員会の将来の発展に貢献したいものである。

> O Freunde, nicht diese Töne! Sondern lasst uns angenehmere anstimmen, und freudenvollere! L. van Beethoven

おゝ友よ、こんなみじめな調子ではない! もっと心持よい、もっと喜びに満ちた歌を うたおうではないか!

討 論

Q:原田 吉之助(原研)

話の中に、(1) シグマ委員会がこわごわ時代からのびのび時代に移行できたのは、主査がワー キング・グループに顔を出さなくなったからだ、また、(2) 主査はワーキング・グループでの仕 事を熟知していなければならない、と一見矛循するような主張があったが、どう理解すればよい のか。

A:中嶋 龍三(法大)

(1)について、のびのび時代に移行できたのはむしろ、割当てられたそれぞれの作業に対して各 メンバーが慣熟し、かつ自信をもつようになったことが最大の理由である。主査が顔を出さない からのびのび作業できるようになった、ということではない。(2)について、主査は、本委員会あ るいはとりわけその運営委員会での報告、または各グループの作成した報告書などによって実情 を把握し、納得できなければそのグループ作業に顧を出してまでも各グループの作業内容を熟知 すべきだということであって、そうすることが対外広報のために必要ではないかと思う。

私がいいたいことは要するに、作業分担者がいい意味でのびのび作業する(時にはちょっぴり 暴走する?)ようになったと同時に、主査(あるいは外部委員会などへの出席者)が逆の意味で のびのびし過ぎて、シグマ委員会活動の現状を明確に把握せず、十分な広報活動が行なわれなか ったのではないか、というのびのび時代のある時期に対する反省である。((のびのびには、伸 び伸びという意味の他に延び延びという意味も含ませたい気持が私にはあった、ということを付 記しておく))

3. 核データ活動の進展

Review of the Nuclear Data Activity in JNDC

3.1 断面積計算コード開発の成果

五十嵐 信一十

シグマ研究委員会で行った断面積計算コード開発の様子を振返ってみる。背景として、核デー タ評価などの活動についても触れ、シグマ研究委員会活動の簡単な年表を示す。最後に、現在シ グマ研究委員会で使用可能な断面積計算コードを表にしてまとめたものを示す。

On the Development of Nuclear Model Codes for Cross-Section

Calculations in JNDC

Sin-iti Igarasi⁺

A review of JNDC activity on the development of nuclear model codes for cross-section calculations is presented. A rough chronology of the JNDC activity is made, and activities of the nuclear data evaluation and other works in JNDC are briefly mentioned as background. Table of the codes available in JNDC is presented.

1. はじめに

シグマ委員会を中心とした過去20年間の核データ活動を顧みると、非常に多くの計画が立案 され、実行されている。しかも、その大部分はかなりの成果を挙げて終了、もしくは現在なお進 行している。そう言う中にあって、シグマ委員会で開発された断面積計算コードの役割とそれら が果した成果について光を当ててみる、と言うのが筆者に与えられたテーマである。

ー般に、計算コードは研究を実施する際の道具である、と言うことに異議はないものと思う。 従って、計算コードを作る際にはそれが用いられる研究とその研究において行われる計算の内容 に強く依存する。シグマ委員会で開発した計算コード類もこの点では同じである。従って、シグ マ委員会の活動の進展と共に計算コードの種類も増え、多様化してきているのは自然の成り行き である。

先きの購漬にもあったように、シグマ委員会発足の引き金になったのは、原子力平和利用研究 委託費が未知斯面積の理論計算のテーマに交付されたことであった。当時は未だ高速炉は将来の 話できりなく、熱中性子炉の設計計算が主流であった。従って、この交付金によって作られた計

+ 日本原子力研究所 Japan Atomic Energy Research Institute

算コードも大部分は熱中性子散乱断面積用のものであった。熱中性子炉の炉心にも速中性子は存在するから、速中性子断面積のデータも必要である。交付金による研究対象には速中性子断面積の計算も入っていて、この計算に必要な計算コードが2つ程作られた。これが後年高速炉用核デ - タの評価計算につながって行くことになる。

熱中性子散乱断面積のデータは、一部を除いて、ほとんど整えられ、この関係の研究はやがて 終息する。一方、速中性子断面積のデータは現在でもなお不十分である。高速炉が開発の対象と して取り上げられるようになった 1965 年当時のデータが十分なものでなかったのは当然である。 シグマ委員会の研究対象が速中性子のデータに集中した明確な理由はここにあった訳である。こ うして、速中性子断面積の評価が部分的に取りあげられ、計算コードも速中性子断面積計算を対 象として徐々に作られ、数を増して行くことになる。

1970年代に入ると、我が国独自の評価ずみ核データライブラリー、JENDL,の作成が主要な テーマになって行く。この時期になると核データ評価を対象とした計算コードが諸外国でも多数 作られるようになり、我々にも利用可能になってくる。JENDL作成が忙しくなるにつれ、手間 のかかる断面積コードを独自に作る余裕がなくなって行き、これら外国製のコードを利用する方 向になってきている。現在、核データセンターにはこれらの外国製計算コードが使用可能な形に 整備され、国産のコードと共に核データ評価に利用されている。

この報告では、シグマ委員会の歩みを4年ごとの期間に区分し、それぞれの期間に行われた核 データ評価活動とそれに関連して作られ、使われた断面積計算コードについて述べる。また、外 国製のコードの最近の傾向についても触れ、今後の核データ評価において、これらのコードをど のように利用すべきかを考えてみる。次章では NEA データバンクにある断面積計算コードを眺め、 第3章で日本のコード開発の歩みを見てみて、いろいろな問題を考えてみることにする。

2. 世界の様子

る。

原子核模型に基づく核反応断面積計算コードはシグマ委員会発足以前から核物理研究者の手で 作られていた。当時の代表的計算コードとしては米国の ABACUS - 2¹⁾を挙げることができる。 これは光学模型と Hauser - Feshbach の方法を用いたコードで、 IBM-7090 及び 7094 用に作られていた。

計算コードの開発が計算機の進歩に大きく依存することは言うまでもない。断面積計算コード もこの点は同じであって、時代と共にコードの種類が増え、コードの内容も豊富になってきてい る。Table 1 に、NEA^(*)のデータバンクから出ているコードアブストラクトから現在データバ ンクにある断面積コードを拾い出し、入手した年代との関係を示してみた。作られた時期とデー タバンクが入手した時期は異るけれども、大凡の様子は見ることができる。

一見して判ることは、1970年以降に多くのコードが集中していることである。これは計算機の発達により、コード作成が容易になったことが1つの要因である。しかし、それだけでコード

*) 経済協力開発機構(OECD)の中の原子力機関(Nuclear Energy Agency)。データパン クはNEAの1つの部として核データ及び計算コードの収集・整備・配布などのサービスを行ってい

- 10 -

の数がこのように増えることはない筈で、何らかの必要性がそれに伴っていなければならない。 この Tableが示していることに関する限り、その理由は核データ活動の世界的広がりであると考 えられる。特に、核データの評価を念頭に置いた断面積計算コードの作成が各国において行われた 成果である。先きに述べた ABACIIS - 2が作られた頃には、核物理の研究のみを対象にした計 算コード作成が行われていて、後年それらを核データの評価に用いようとすると計算時間がかかり すぎるとか、或る所は必要以上にくわしく計算するようになっているのに他の所は非常におろそ かであったり、必要な出力がなかったり、入力がやたらに複雑であったりして、不便な点が多々 指摘された。こう言う点を改善して、核データ評価に使うことを目的とした断面積計算コードを 作るべきであることが 1971 年にウィーンで開かれた「核データの評価に関するパネル」²⁾で勧 告されている。「able 1の傾向はこの勧告が直接作用した訳ではないが、核データの評価活動 が盛んになり、核物理の研究のみに止まらず、広く核データ評価計算にも使えるようなコード作 成が意識された結果であると思われる。

Table 1 にあげたコードがどのような核模型により、どんな物理量を計算することができる かを、機略ではあるが Table 2 に示した。 これを見ると、核分裂断面積とガンマ線生成断面積 を計算できるコードは未だ数も少なく、貧弱そうである。もっとも、私が多いだけが良い訳では ないから、こう言う言い方は正しくないが、例えば核分裂断面積が計算できるコードのうち2件 は大分古いもののようである。先きに述べたパネルでも勧告されたことであるが、同じ核模型に より似たような機能を持っている計算コードについては同じ問題を与えて計算し、その結果を比 較検討してみることが必要である。最近、この計算コードの相互比較が計画され、国際的規模で 実施されていることは大変結構なことである。

Table 1 と 2 とから、 Pre - Compound や Direct Interaction Model のコードが 最近その数を増やしてきているようである。それと同時に、光学模型、統計模型と上述の模型を 取り入れた総合的な計算ができるような計算コードも現れてきている。これは一面で大変良いこ となのであるが、コードが大きくなり複雑になって、使いにくいものになってしまう恐れも心配 される。それにもう一つの気がかりは、計算機が大型化し、計算が容易になってくると、安易な 計算が多くなり、折角求めた出力を簡単に捨ててしまうなどの無駄が増えることである。計算結 果も実験データのように取っておき、次の計算に利用するようなことを考えれば、計算コードを 大型化して使いにくくせずに、小型の使い易い計算コードを組み合せて、結果的には計算時間も 少く効率の良い計算ができるのではないかと考えられる。Table 1, 2 の傾向の裏の問題とし て入力の簡素化と共に考慮したいことである。

3. シグマ委員会では

この章ではシグマ委員会が発足した昭和38年(1963年)から現在までを4年ごとに区別し, それぞれの期間で行われた断面積計算コードの作成とその利用,および核データ評価活動の違展 の様子を見て行く。また、その時々の関連した事柄を背景として入れて行く。 3.1 昭和38~41(1963~1966)年度

前述のように、シグマ委員会は原子力平和利用研究委託費を受け、未知断面積の理論計算を行 うことが一つのきっかけとなって昭和 38 年に発足した。同時に国内活動、国際協力なども行う ことを決めているが、それらについては先きの講演で述べられているから、ここでは必要な場合 を除いては特に触れないつもりである。さて、この委託金による研究では熱中性子散乱断面積、 共鳴パラメータ、速中性子断面積が主な対象になった。共鳴パラメータについては断面積を求め るのではなく、パラメータの収集を行った。その意味で、他の二つとは性格を異にしているので、 ここでは触れない。

昭和38年当時は未だ高速炉を扱っている研究者は居なかったが、そろそろ話題になりかけていた。しかし研究者の多くは熱中性子を対象にしていた。従って、委託金による研究でも熱中性子散乱断面積を計算するいろいろな模型を使った計算コードが作られた。Table 3に示した自由ガス模型、Nelkin 模型、Egelstaff - Schofield 模型、非等方結晶模型などによる断面積計算コードがそれで、これらのコードマニュアル^{3~6)}と委託研究報告書「熱中性子散乱の理論模型による計算結果と検討」とが作られている。熱中性子散乱の研究は熱中性子炉の開発当初から行われており、この当時にはほとんどの断面積が求っていて、特に委員会を作ってやらなければならないような問題は無くなっていた。シグマ委員会ではこの期間以後は熱中性子散乱の問題を対象からはずしている。従って、計算コードの開発もこの期間だけのものである。

一方,速中性子断面積の方は高速炉から核融合炉の開発へと進むにつれてその需要はますます 増えるのであるが、この時期の状況は非常に貧弱なものであった。測定されている核データは質、 量共に少く、熱中性子炉の計算に用いられていたデータも極めておそまつであった。こう言う状 況であったから、未知断面積の理論計算が委託金の対象になった訳である。ここで作られたのが 光学模型と Hauser – Feshbachの統計模型を組み合せた ELIESE-1と蒸発模型によるSTEVE - 1 である。これらによる断面積計算の結果は「核物理理論による後視的断面積の数値解析に関 する試験研究」と言う長い名前の報告書になっている。

ELIESE-1は計算上いろいろな工夫がなされている。例えば、角運動量の量子数の上限や原 子核と入射粒子との相互作用ポテンシャルの内部と外部の波動関数の接続位置などを計算機が判 断して決めるようにしている。これらの量は通常入力データとして扱っているが、ELIESE-1 ではこうすることによって入力量を少くしている。また、入力形式に工夫をし、連続して計算を 行う場合の入力量を軽減するようにしている。計算精度と計算速度については前述の ABACUS - 2と比較し、ELIESE-1の方が優れていることを確認してある。これらの点はコードマニ ュアル⁷⁾に詳述してある。

STEVE-1は3次粒子放出まで考慮した計算コードであるが、この委託金による試験研究以後に角運動量効果を考慮した1次粒子放出の計算をできるようにしたSTEVE-2と、これを2次粒子放出までに拡張したSTEVE-3とが作られている。

この期間の後半には統計模型及び直接反応模型を使った捕獲断面積計算コード RACY⁸⁾と統 計模型による核分裂量の計算コード STAF⁹⁾が作られ、また、ELIESE-1を光学模型ポテン シャルパラメータ (OMPと略称)の自動探策ができるように拡張した ELIESE-2¹⁰⁾が作られ ている。 RACY は役に構造材核種や核分裂生成物核種の捕獲断面積計算に用いられている。 ま た、 ELIESE - 2はそれ自身による断面積計算の他に、中性子透過係数や全断面積だけの計算 部分を取り出した特定目的のコードの母体になってこれらの量の計算に用いられている。

Table 3 にはこの期間に行われた二つの高速中性子断面積研究会を示しているが、シグマ委員 会独自の研究活動が発表の対象になる所までは行かず、上記計算コードによる試験研究がわずか に2~3件額を見せているにすぎない。まだ揺籃の中で手足をばたつかせていた時期だった訳で ある。

3.2 昭和 42 ~ 45 (1967 ~ 1970)年度

これまでの4年間を振り返えり、そろそろ核データの評価と炉定数の作成を始めなければなら ない、と言う気運が起ってきていた。また、シグマ委員会の活動など国内の核データ活動の中心 になり、且つ、国際協力の窓口になるような核データセンター設立の具体的運動も行うべき時期 に差しかかっていた(Table 4参照)。

核データ評価では幾つかの部分的評価が行われるようになった。中性子のしきい反応断面積の 評価を神田一中嶋¹¹⁾が、2 Me V 以下の炭素の全断面積の評価を西村ら¹²⁾が²³⁸ U の非弾性散 乱断面積計算を五十嵐ら¹³⁾が、Cr, Fe, Ni, Mo の中性子捕獲断面積の計算を中村ら¹⁴⁾が 行った。断面積計算コードでは²³⁸ U の非弾性散乱断面積計算のために、ELIESE-2 を更に拡 張して、連続レベルを仮定した計算や競争過程の効果、共鳴幅のゆらぎ効果 などを考慮した ELIESE-3¹⁵⁾が作られた。ELIESE-3にはその他非極所ポテンシャルの使用、連続レベルの パリティ分布の考慮など多くの内容が組み込まれている。Cr などの中性子捕獲断面積計算には RACYが用いられた。この二つの計算は後に Helsinki で開かれた核データの国際会議^{13,14)} に提出され、また、国内的にも炉物理計算に用いられた。

炉定数の作成では桂木ら¹⁶⁾ により JAERI −FAST−SET が作られた。これに関連した²³⁹Pu のkeV以下の領域の核データ評価¹⁷⁾ や坂田らによる熱中性子炉用核分裂生成物核種の核データ 評価¹⁸⁾ などが行われた。この時期は核データ評価があまり進展しないことに業を煮やした炉物 理の人達が核データの評価を自らの手で試みた時代でもあった。

昭和45年頃から原研ではFACOM 230 - 60を導入し、それに伴って計算サービス体制の 大幅な改革を行った。これによって計算機の使用が非常に便利になり、従来 IBMなどの外部計 算機会社を利用してコード開発や計算を行わざるを得なかった不便さが解消した。この時期を利 用して結合チャネル計算コード、JUPITOR-1¹⁹の整備が行われた。このコードの原本は CDC 1604 用に作られていたのを御子業らが一旦東大の HITAC 5020 E 用に変換し、そのコピ を FACOM 230 - 60 用にも用いることにした²⁰。原本にも幾つかの誤りがあったが、変換の際 に犯した誤りを見つけるのに大変苦労した。

評価の試みや計算コードの整備などが進み、また実験の方もようやく高速炉を対象としたエネ ルギー領域のデータ測定が盛んになるなどして、この時期の終盤には核データ評価を本格的に行 う下地が整ってきていた。この機運は重要核種の²³⁵U,²³⁶U,²³⁰Pu,²⁴⁰Pu,Ni,Fe,Cr,Na, Oの核データ収集と評価及び核分裂生成物核データの評価を行うクループを核データ専門部会内 に置くことにより具体的作業を始めることで益々昂りを見せ、次期以降の発展へとつながって行 く。

- 13 -

3.3 昭和46~49(1971~1974)年度

核データの評価が本格的に行われるようになり、前述の ²³⁸ U, ²³⁹ U, ²³⁹ Pu, ²⁴⁰ Pu について は1ke V ~ 15 MeV のいわゆるスムーズパートの核データ評価と共鳴パラメータの評価とがそ れぞれ独立の作業グループによって進められた。この評価活動で得られた結果は後に JENDL – 1の重要なデータとして採用されることになる。また、高速炉用核分裂生成物核種の核データ評 価も本格的に行われた。この評価活動では前述の RACY や ELIESE-3が盛んに用いられた。 光学模型ポテンシャルパラメータを、比較的測定データの多い全断面積を使って求めるための TOTALCSコードも作られた。これは ELIESE-3の一部を利用して、測定データを入力に加え、 これを再現するようにパラメータを自動探索するコードである。 ELIESE-3が入射エネルギ - 1 点について弾性散乱の角度分布からポテンシャルパラメータを自動探索するのと対をなすも のである。

こうして、核データ評価もいよいよ自前のデータを求めることを目指して行われるようになり、 それまでに何回か開かれた研究会ではほとんど聞かれなかった核データの評価の生きた話が第3 回中性子断面積研究会では聞くことができた(Table 5 参照)。この時期には欧米でも核データ の評価が盛んになりかけていて、それに伴う問題も起ってきていた。これらの問題を検討するた めに、1971年に「核データ評価のためのパネル」²⁾ と題した専門家会議がウィーンで開かれて いる。この中で、特に理論計算コードについては、純物理的研究を目的とした作られ方をしてい るものが多く、そのために核データ評価に使う場合に必ずしも使い易くない点が指摘されている。 例えば、必要以上に角運動量を取っているとか、エネルギー点は1点きり入力できないとか、断 面積相互の関係を考慮していないとか、と言った問題である。また、似たような計算コードにつ いて、どれが信頼できるのかを相互比較によって検討してみる必要があることも指摘されている。 これらの問題は我々も現実の問題として直面し、解決してきたものもあるが、今日でもなお問題 として残っているものもある。

核データの評価が進むにつれて、使用する実験データの数も増え、その利用の仕方も多様化し て行く。実験値を評価結果と重ねて同一のグラフに書き、それを用いて比較検討するために、実 験データを格納検索するシステム NESTOR²¹⁾やグラフを作成する SPLINT²²⁾などが作られ た。これは今日でも大いに利用されている。

核データの評価についての問題点が少しづつ明らかになり、また、核データ評価に必要なデー タ処理システムが整備されてくると、過去に行った核データ評価を再検討し、更に良いデータを 求めたくなる。核分裂生成物核種の核データ評価グループではこう言う観点からの評価法の見面 しを行い、新しく、核データの評価に使い易く、そのための諸機能を持った計算コード、CASTHY²³⁾ を作り、これによって計算をやり直した。このコードは光学模型と統計模型を組み合せている点 では ELIESE - 3と同じであるが、RACYの捕獲断面積計算部分を拡張して組み込み、更にこ のコードでは直接求めていない(n, 2n), (n, p)などの反応断面積を入力として入れ、 これらの影響を考慮した非弾性散乱や捕獲断面積などを求めるようにしている。計算機が大型化 し、計算速度が着しく速くなった今日ではこの入力した断面積も直接計算する多重崩壊過程を含 んだコードが作られているが、CASTHY は今日なお JENDLのための評価計算に使用されてい る。 核分裂生成物核種の再評価はこうして行われ、50年に開かれた Washington 会議で発表され、好評を得た。こうした核データ評価活動の成果を見て、いつまでも外国製の ENDF/P な どのデータを頼っていずに、独自の評価ずみ核データライブラリー(Japanese Evaluated Nuclear Data Library, JENDL)を作ろうと言う機運が生れてきて、49年度からそ の具体的作成と編集作業が開始されるようになった。

3.4 昭和50~53 (1975~1978)年度

JENDL-1の評価と編集が昭和49年度から始まった。JENDL-1には主として既存の評価 ずみ核データを相互比較し、その時点で最良と思われるデータを採用することにした。勿論これ だけで必要なデータがそろう訳ではないので、不足のデータについてはそれぞれ上述の相互比較 を担当した人達か、または JENDL-1の編集を担当した当時の核データ研究室室員が評価値を 求めた。

JENDL-1の編集は51年3月に終了し、ベンチマークテストを行ってその適用の信頼性を 検討したうえで52年10月に完全公開し、当時のNEA中性子核データ編集センターに送った。 この間、核データ研究室は昭和51年7月に政府の認可組織として原子核データ室になり、シグ マ委員会発足時の念願の1つであった核データセンターに一歩踏み出した。翌52年7月には名 称も現在の核データセンターに変え、名実共に日本の核データセンターになった。

JENDL - 1の完成と核データセンターの発足という輝かしさはあったが、核データの評価に 関連する本当の困難や問題は次の JENDL - 2の作成に持ち越されている。JENDL - 2の作成 は昭和52年度から開始されているが、初めのうちは JENDL - 1 で問題になった Cr, Fe, Ni などの MeV 領域の構造の扱い方や重い核種のデータ相互間の関係、あるいは核分裂生成物核種 の計算に用いる核模型パラメータの系統性などの検討に時間を取られた。JENDL - 2では独自 の核データ評価を行ってデータを整えなければ意味がないことから、これらの問題のかなりの部 分は力づくでの解決を計っている。例えば、大量の実験値を端末の CRT 上に写し出し、それら のデータを目でなぞっておき、適当な所を指示して計算機にその数値を読ませる、と言った方法 である。このために、核データ評価システム NDES²⁴⁾が作られ、JENDL - 2の核データ評価 では大いに活躍する(Table 6参照)。

こういうやり方は一方において理論計算を食欲させる。もっとも核データの評価に用い得る理 論の限界もあって、既存の計算コードでは追えない構造が多いことは確かである。しかし、理論 計算の適用範囲を広げる工夫や努力は必要である。 JENDL-2 作成のこの期間にはそれを行う 余裕がなく、既存の断面積計算コードのみに頼るだけであった。

3.5 昭和54~57(1979~1982)年度

JENDL - 2の作成は、動燃事業団からの要請に応えて、日米協同の大型高速炉モックアップ 実験解析 (JUPITER 計画) に使うことになったため、一部の重要核種の評価・編集を先行さ せた。そして、これらの核種を中心としたベンチマークテストを行ってその信頼性を確かめ、 JUPITER 計画の日本観基礎データとして用いた。これはそれなりの成果はあったが、JENDL - 2全体の作成計画を著しく犠牲にした。そのために、一部の重要核種のデータ評価と編集が選 れ、ようやく、57年12月に予定核データの編集を終了し、公開できるようになった。

JENDL - 2 作成が未だ途中段階の 54 年頃から次の JENDL-3 に格納すべき核種とデータの 種類の検討を行う JENDL - 3 検討小委員会が設けられ、そこでの結論としてガンマ線生成の核 データと二重微分断面積データを新しく加えることになった。これらは JENDL - 2 では扱はな かったデータであるばかりでなく、これらを計算する理論模型コードも必ずしも十分整っている とは言えなかった。そこで、55 年度と 56 年度にはシグマ委員会の核データ専門部会内に核デー タ評価コードワーキング・グループを置き、理論模型コードの整備を行うことにした。

シグマ委員会で作成したコードで現在なお使用に耐え得るものは勿論,国内で作られて核デー タセンターが提供を受けたもの、および NEA データバンクを始め、外国から提供を受けたコー ドを集め、それらが原研の計算機で使用できるように整備する作業を行った。Table 7 にこれ らのコード名と内容の簡単な記述を示した。

国内ではこのように、JENDL-3の内容を充実させるための準備が行われていたが、国際的 には従来の協調体制を壊すような動きが出はじめていた。先づ、米国が西欧諸国に NEA データ パンクを通して提供していた ENDF/Bをその第5版から提供しないことにした。 これに対抗 して、次に西欧諸国が独自の評価ずみ核データファイル (Joint Evaluated File,略して JEF)を作る計画を打ち出し、NEA データパンクを中心として計画が樹てられ、実行に移され た。NEA データパンク加盟国として日本も応分の協力をせざるを得ない状況が生じてきた訳で ある (Table 8参照)。

こうした動きは、或る点で JENDL-3の立場を強くしているのであるが、それだけに内容の 質が問われることにもなる。核データの評価は勿論実験データなしには十分には行えないが、実 験データの手のとどかない所を補う計算法の充実が評価ずみ核データの内容を良いものにする。 そういう観点から、外国でも核データ評価法の検討や理論計算コードの整備に力を入れてきてい るのが最近の特徴である。米国と西欧の確執は不幸であるが、これを機に西欧の核データ評価活 動も組織化されてくるものと思われる。我々も JENDL-3 作成を対象として、より良い核デー タを得るために、組織立った評価法、計算法を探し求めることが必要になってきている。

4. 将来に向けて

核データの評価及び断面積計算コード開発の歴史を長々と述べてきた。振り返ってみると、シ グマ委員会の初期の頃は断面積コード開発ばかりで、核データの評価はなかなか始動しなかった。 ところが、JENDL-1の作成などに関わる核データの評価活動が盛んになると理論模型による 断面積計算コードの開発は少しも行われなくなってしまっている。JENDL-3作成ではこの不 均衡を改めようとしているが、計算コードの自主開発はとても間に合いそうにないので、既存の コードを利用することにならざるを得ない。

Table 7 に、現在核データセンターにあって使用可能な断面積計算コードを示したが、これら のコードの基礎になっている核模型と計算できる物理量の備からコードをはりつけてみたのが Table 9 である。全体の分布傾向は Table 2 に良く似ていて、このような分布が断面積計算コー ドの世界的傾向になっていることを示している。第2章でも述べたように、核分裂断面積計算コ

- 16 -

- ドとガンマ線生成断面積計算コードは質、量ともに乏しい様に思われる。これらに関連したコ - ドの充実が今後の課題の一つであろう。

歴史的に見ると、光学模型や統計模型の計算コードが多く作られていることは当然のことであ る。最近は、Pre -Compound や Direct Reaction の計算コードも増えてきている。今後は これらを組み合せた総合的なコードが増えてくるものと思われる。すでに GNASHや HAUSER * 5などではその試みが行われている。計算機が大型化し、計算速度が速くなると、この種の総 合化は一段と進むであろう。

計算コードが総合化され大型化し、実験データも豊富になってくると、核データ評価のやり方 も、これらをどのように使いこなし、処理して行くか、と言う点でこれまでとは違った方法を考 えなければならなくなるであろう。計算方法や核模型に内在する不確定さと実験値が持っている 誤差とから評価値の精度を求めることも今後の重要な課題になるであろう。 JENDL - 3 以後に 向けて、これらのことを今から考えておくことが必要であり、これに沿ったコードの整備を進め るべきである。

参考文献

- Auerbach, E.H.: ABACUS-2, BNL6562 (1962, Unpublished), Auerbach, E.H. and Moore, S.O.: Phys. Rev. <u>135</u> B895 (1964).
- Neutron Nuclear Data Evaluation, Technical Reports Series No.146, IAEA (1973).
- 3) 桂木 学,石黒幸雄,筒井恒夫:自由ガス模型コードのマニュアル(FREE コード), JAERI - 1084 (1965).
- 4) 嶋田昭一郎: Nelkin 模型のコードマニュアル JAERI-1085 (1965).
- 5) 松岡謙一, 新井公雄: Egelstaff Schofield 模型コードのマニュアル, JAERI - 1094 (1965).
- 6) 飯島俊吾, 鴇沢正道:非等方結晶に対する模型のコードマニュアル(UNCLE コード), JAERI – 1087 (1965).
- Program ELIESE-1, FORTRAN-II Program for Analyses of Elastic and Inelastic Scattering Cross Sections, JAERI-1096 (1965).
- 4) 中村 久,八谷雅典:高速中性子捕獲断面積の計算、RACY-Program, JAERI-memo(公開) 3300 (1968).
- 9) 中村 久,八谷雅典:統計理論による核分裂の計算(STAF-Program), JAERI-memo(公開) 3853 (1970).
- 10) Igarasi, S.: Program ELIESE-2, A FORTRAN-W Program for Calculation of the Nuclear Cross Sections by Use of the Optical Model and Hauser-Feshbach's Method JAERI 1169 (1968).
- 11) Kanda, Y. and Nakasima, R.: Review of Some Fast Neutron Cross Section Data, Proc. of International Conf. for Neutron Cross Section and Technology, Vol.2, 193 (1968), Washington D.C. (1968).
- 12) Nishimura, K., Igarasi, S., Fuketa, T. and Tanak, S.: Evaluation of the Total Neutron Cross Section of Carbon up to 2 MeV, JAERI 1218 (1971).
- 13) Igarasi, S., Nakamura, H., Murata, T. end Nishimura, K.: Analysis of Neutron Inelastic Scattering by ²³⁸U, 2nd Int. Conf. of Nuclear Data for Reactors, CN-26/27 (1970), Helsinki (1970).
- 14) Nishimura, K. Asami, T., Igarasi, S., Hatcha, M. and Nakamura, H.: Fast Neutron Capture Cross Sections of Cr, Fe, Ni and Mo: 2nd Int. Conf. of Nuclear Data for Reactors, CN-26/28 (1970) Helsinki (1970).
- 15) Igarasi, S.: Program ELIESE-3; Program for Calculation of the Nuclear Cross Sections by Using Local and Non-Local Optical Models and Statistical Model, JAERI 1224 (1972).
- 16) Katsuragi, S. et al.: JAERI Fast Reactor Group Constants Systems Part I, JAERI 1195 (1970); Part II, JAERI 1199 (1970).
- 17) Katsuragi, S.: On the Evaluation of ²³⁹Pu Data in the keV and

Resolved Resonance Region, JAERI 1162 (1968).

- 18) 坂田 肇, 永山 哲, 大竹 厳:核分裂生成物の崩壊チェインの研究, JAERI - 1194 (1970).
- 19) Tamura, T.: Computer Program JUPITOR-1 for Coupled-Channel Calculations ORNL-4152 (1967).
- 20) 若井正道,五十嵐信一、御子紫 修,山路修平: JUPITOR-1 使用手引, JAERI-memo(公開) 3833 (1969).
- 21) 中川庸雄:私信.
- 22) 成田 孟、中川庸雄、金森善彦、山越寿夫:SPLINT、実験データと評価ずみデータを同 軸座標上に同一スケールで作図するコード、JAERI - M 5769 (1974)。
 中川庸雄:SPINPUT:SPLINTの入力データ作成用プログラム、 JAERI - M 9499 (1981).
- 23) Igarasi, S.: Modified Methods of Neutron Cross-Section Calculations,J. Nucl. Sci. Technol. <u>12</u> 67 (1975).
- 24) 中川庸雄:核データ評価用コードシステム, 1978年核データ研究会報告, JAER! - M 8163, 51, (1979).

	65-67	68-70	71-73	7476	77-79	80-82
STATISTICAL MODEL	HAFEVER NEARREX SASSI SAUD-EX		COMNUC- CASCADE STAX-2 2-PLUS	AQUELARRE ELIESE-3 MARE PELINSCA THRES-2	FISPRO-2 GNASH MODESTY TNG	CERBERO HAUSER*5 STAPRE
OPTICAL MODEL	SMOG		STAX-2	AQUELARRE ELIESE-3 HADES PELINSCA	GNASH	CERBERO CRAPONE ERINNI HAUSER*5 SCAT-2
COUPLED CHANNEL		JUPITOR-1	2-PLUS			CHUCK-2 ECIS-79
PRE-COMPOUND MODEL					MODESTY TNG	AMALTHEE HAUSER*5 PREANG STAPRE
DIRECT, DWBA	DANG	JULIE			·	CHUCK DWUCK-4 HAUSER*5

Table 1 Chronological Table of the Nuclear Model Codes, from the NEA Data Bank Collection

JAERI-M 83-041

	TOTAL	ELASTIC	INELASTIC	CAPTURE	FISSION	REACTION	PHOTON	OTHERS
STATISTICAL MODEL		2-PLUS AQUELARRE CERBERO COMNUC- CASCADE ELIESE-3 GNASH HAUSER*5 MODESTY NEARREX PELINSCA SASSI STAX-2 TNG	2-PLUS AQUELARRE CERBERO COMNUC- CASCADE ELIESE-3 GNASH HAFEVER HAUSER*5 MODESTY NEARREX PELINSCA SASSI STAPRE STAX-2 TNG	CERBERO COMNUC- CASCADE FISPRO-2 GNASH HAUSER*5 MODESTY NEARREX SAUD-EX TNG	COMNUC- CASCADE HAUSER*5 NEARREX	COMNUC- CASCADE ELIESE-3 GNASH HAUSER*5 MARE MODESTY NEARREX STAPRE THRES-2 TNG	COMNUC- CASCADE GNASH PELINSCA TNG	
PRE- CONFOUND			AMALTHEE GNASH HAUSER*5 PREANG STAPRE TNG			AMALTHEE GNASH HAUSER*5 PREANG STAPRE TNG		

Table 2 Nuclear Model Codes, from the NEA Data Bank Collection

JAERI-M 83-041

Table 2 (つづき)

	TOTAL	ELASTIC	INELASTIC	CAPTURE	FISSION	REACTION	PHOTON	OTHERS
OPTICAL MODEL	AQUELARRE CERBERO CRAPONE ELIESÉ-3 ERINNI HADES HAUSER*5 PELINSCA SASSI SCAT-2 SMOG STAX-2	AQUELARRE CERBERO CRAPONE ELIESE-3 ERINNI HADES HAUSER*5 PELINSCA SASSI SCAT-2 SMOG STAX-2						CRAPONE
COUPLED CHANNEL	2-PLUS CHUCK-2 ECIS-79 JUPITOR-1	2-PLUS CHUCK-2 ECIS-79 JUPITOR-1	2-PLUS CHUCK-2 ECIS-79 JUPITOR-1			CHUCK-2		
DIRECT, DWBA		DANG	DANG DWUCK-4			DANG JULIE		

.

JAERI - M 83-041

.

.

•

Table 3

• 昭和 38 ~ 41 年度 ((1963 ~ 1966)
端中田 38 2 41 年度 熱中性子散乱断面積。 自由ガス模型, Nelkin 模型, Egelstaff-Schofield 模型 非等方結晶模型。 速中性子断面積。 ELIESE-1, STEVE-1,(3次粒子放出)。 STEVE-2, (角運動量効果,1次粒子放出)。 STEVE-3, (2次粒子放出まで拡張)。 RACY,(捕獲断面積)。 STAF,(核分裂断面積)。 ELIESE-2,(OMPの自動探索)。	核常数に関する原子力平和利用 研究委託費。(38年度のみ) 未知断面積の数値計算。 報告書: 核物理理論による微視的断面積 の数値解析に関する試験研究。 熱中性子散乱の理論模型による 計算結果と検討。 INDSWG初出席(38年5月)。 EANDC及び ENEA/CCDN に加入(41年1月)。 高速中性子断面積研究会、 (40年8月24~26日) 借り物の計算のみ。 第2回高速中性子断面積研究会 (41年8月18日~20日) ELIESE - 2によるOMP系統 性の検討(河合氏ら)。 STAFの紹介(中村、八谷)。

Table 4

(1967 ~ 1970)
熱中性子散乱関係のデータ 活動を終了。 核データ研究室発足(43年4月)。 Helsinki Conference(45年6月)。
 Washington Conference (43年3月)。 Panel on Nuclear Data Compilation (BNL,44年2月)。 Knoxville Conference (45年3月) 第1回中性子断面積研究会 (43年2月15~17日)。 第2回中性子断面積研究会 (44年2月13~14日)。
, Ni , Fe, Cr , Na, O, 高速炉用 データ収集を開始。

- 24 -

Table 5

→昭和46 ~ 49 年度	(1971 ~ 1974)
236U, 238U, 238Pu, 240Pu,	核データ評価パネル (ウィーン)
1ke V~15 Me V 及び共鳴バラ	(46年8月)。
メータ評価。	中性子標準参照データパネル
	(47年11月)。(ウィーン)
高速炉用 FP 28 核種の核 データ	核データの応用パネル (パリ)
評価	(48年3月)。
TOTALCS, RACY,	第3回中性子断面積研究会
ELIESE-3.	(47年11月9~11日),
NESTOR, SPLINTの作成。	(ようやく自前の仕事で埋る),
	戦後生れ初登壇。
JENDL-Oの整備。	EANDC 17 回会議東京で開催
CAPTR-1 (北沢)。	(48年.3.月)。
	FP 核データ専門家会議
FP27核種の核データ再評価,	(ボローニャ)(48年11月)。
CASTHY。	Washington Conference
JENDL - 1 作成開始。	(50年3月)。
1	,

Table 6

昭和50~53年度	(1975 ~ 1978)
JENDL - 1 用核データの評価 重核、中重核、FP 核種 CAS THY,その他。 JENDL - 1 編集終了 (51年3月),ペンチマークテ	超アクチニウム核データ諮問 グループ会合(カールスルーエ) (50年11月)。 中性子核データ評価への核理論利用 諮問グループ会合(トリエステ) (50年12月)。
スト終了(52年3月)。	²³³ U, ²³⁵ U, ²³⁸ U, ²³⁹ Pu核分裂 断面積専門家会議(アルゴンヌ)
JENDL-1 公開 (52 年 4 月).	(51 年 7 月)。 原子核データ室発足,(51 年 7 月)。
NEA DATA BANKへ送付 (52年10月)。	核データセンター発足(52年7月)。 FP核データ諮問グループ会合 (ペツテン)(52年0月)
JENDL-2 ff成開始 (52年4月), NDES完成(53年)。	(スワラン) (32年3月)。 構造材核データ専門家会合(ゲール) (52年12月)。
構造材核データの見直し,重核 の相互関係重視。	Harwell Conference(53年9月)。 1978 核データ研究会(12月20, 21日)

- 26 -

Table 7 Nuclear Model Codes Available in JAERI NDC

- CAPTR-1 (by H. Kitazawa).
 Capture cross section calculation.
 Direct, collective and statistical models are used.
 Only El-transition is used.
- CASTHY-2 (by S. Igarasi). Total, capture, elastic scattering and inelastic scattering cross sections. Spherical optical model and statistical model are used. Calculation of capture-γ ray spectrum is possible.
- 3. CHUCK-2 (by P. D. Kunz).

Total, elastic scattering and inelastic scattering cross sections, and angular distributions. Gome reaction cross-section calculation is also possible.

Coupled channel calculation is used.

- DIRCAP (from M. Mizumoto).
 Direct capture cross-section calculation.
 Spherical potential model is used.
- 5. DUCAL (by K. J. Yost).

Capture γ -ray spectrum calculation.

Statistical model is used. Dipole and quadrupole transition model is used both for electric and magnetic radiation.

- DWBA-2 (by H. Yoshida).
 Distorted Wave Born Approximation calculation.
 Only zero range interaction is used.
 Inelastic scattering and direct reaction cross sections are calculated.
- 7. DWUCK-4 (by P. D. Kunz).

DWBA calculation. Zero range interaction only. Almost the same as DWBA-2.

8. ECIS (by J. Raynal).

Total, elastic scattering and inelastic scattering cross sections, and angular distributions.

Coupled channel calculation model is used.

9. ELIESE-3 (by S. Igarasi).

Total, elastic scattering and inelastic scattering cross sections, and angular distributions. Polarization, asymmetry, rotation and depolarization of the scattered particles are also calculated. Spherical optical model and statistical model are used. Automatic parameter search for optical potential is available.

10. FISCAL (by Y. Kikuchi).

Fission cross section calculation. Statistical model with single and double humped fission barriers is used.

11. GNASH (by P. G. Young).

Reaction cross sections and energy spectrum calculation. Statistical and pre-equilibrium models are used.

12. GROGI (by J. R. Grover).

Reaction cross sections and energy spectrum calculation. Statistical model is used.

13. GUPITOR (by A. Mori).

Direct capture cross section calculation.

Deformed optical model is used.

JUPITER-1 was used to calculate the neutron wave functions in the open channels.

14. JUPITER-1 (by T. Tamura).

Total, elastic scattering and inelastic scattering cross sections, and angular distributions. Polarization of the scattered particles is also calculated. Coupled channel model is used.

PREANG (by J. M. Akkermans).
 Emission spectra and angular distributions of the emitted particles.
 Pre-equilibrium model is used.

16. RESCAL (by S. Komoda).

Resonance cross section calculation. R-matrix theory is used.

17. SPRAUT (by S. Igarasi).

Automatic parameter search code with S_0 , S_1 and R. Spherical optical model is used.

- 28 -
- 18. TOTALCS (by S. Igarasi). Automatic potential parameter search with total cross section. Spherical optical model is used.
- 19. DWBA-4 (by H. Yoshida). Distorted Wave Born Approximation calculation. Finite range interaction is used. Stripping, pick-up, knock-on, reaction and inelastic scattering cross sections are calculated. Two step process is also included.
- 20. HAUSER*5 (by F. M. Mann).

Statistical model, pre-equilibrium model and statistical model for direct reactions are included. Any type of particle is available. Fission, capture and three-body calculations are included.

•

Table 8

昭和54 ~ 57 年度	(1979 ~ 1982)
ガンマ線生成核データ評価	超アクチニウム核データ諮問グル
開始,	- プ会合(カダラッシュ)
DIRCAP,	(54年5月)。
DUCAL,	核分裂のシンポジウム(ユーリッヒ)
GNAS H,	(54年5月)。
GROGI,	Knoxville Conference
HAUSER • 5	(54年10月)。
	FP核データ専門家会議(ボローニャ)
評価コード整備	(54年12月)。
CHUCK-2,	1979 年核 データ研究会
DWBA – 2,	(54年12月10,11日)。
DWUCK-4,	中性子願諮問グループ会合
ECIS,	(デブレッセン)(55年3月)。
PREANG,	10 ~ 50 MeV 中性子断面積シンポジ
DWBA-40	ウム(BNL)(55年5月)。
	核データの評価方法会合(BNL)
	(55年9月)
	1980年核データ討論会
	(55年12月10,11日)。
	JENDL-3 検討小委員会
	JEFの開始

۰.

	TOTAL	ELASTIC	INELASTIC	CAPTURE	FISSION	REACTION	PHOTON	OTHERS
STATISTICAL MODEL		CASTHY-2 ELIESE-3 GNASH HAUSER*5	CASTHY-2 GNASH GROGI HAUSER*5	CAPTR-1 CASTHY-2 GNASH GROGI HAUSER*5	FISCAL HAUSER*5	ELIESE-3 GNASH GROGI HAUSER*5	CASTHY-2 DUCAL GNASH GROGI	
OPTICAL MODEL	CASTHY-2 ELIESE-3 HAUSER*5 TOTALCS	CASTHY-2 ELIESE-3 HAUSER*5						SPRAUT
COUPLED CHANNEL	CHUCK-2 ECIS JUPITOR-1	CHUCK-2 ECIS JUPITOR-1	CHUCK-2 ECIS JUPITOR-1	CAPTR-1 GUPITOR		CHUCK-2		
PRE- COMPOUND			GNASH HAUSER*5 PREANG			GNASH HAUSER*5 PREANG		
DIRECT, DWBA			DWBA-2 DWBA-4 DWUCK-4	DIRCAP		DWBA2 DWBA4 DWUCK-4		

٠

Table 9 Nuclear Model Codes Available in JAERI Nuclear Data Center

JAERI-M 83-041

討 論

Q: 久武 和夫 (東工大)

核分裂とガンマ線生成のコードがあまりないと言われたが、これらの理論に良いものがない と言う反映ではないか。

A:五十嵐 信一(原研)

それはあるかも知れない。核分裂について言えば核データセンターの菊池氏と九大の大沢氏 が作成を試みているが、菊池氏の場合は未完のままになっている。大沢氏のコードは公開にな っているのかどうか本人に聞きたい。ガンマ線生成の方は国産では CASTHY - 2位きりない が、これも未完成で、外国製のものにも未解決の問題が残っている。

C:神田 幸則(九大)

今迄に核データセンターで作成,試算,整備された計算コードの現状を具体的に各コードを 分類してほしい。例えばこのコードは直ぐ使える,これは手を加える必要あり,これは再生不 能と言った段階をつけて表にしてほしい。この研究会の報告書の表に示して頂けると有難い。 A:五十嵐 信一(原研)

古いコードまで含めて御要望に応えるには各コードを調べてみなければならないので時間的 に無理である。御要望に完全に応えてはいないが、比較的最近の状況として、使用可能なコー ドを Table 7 に挙げておいた。マニュアル等が不備の面もあるが、これらのコードの整備、 試算は FACOM M-200 で行っている。

Q: 椙山 一典 (東北大)

実験データや炉物理の activity が評価作業にどの様な影響を与えているか、または与えたか。

A:五十嵐 信一(原研)

核データの評価は核データの実験値から真の値を求めることから始まる。従って実験値の良 し悪しは評価作業に大きく影響する。精度の良い信頼性の高い実験値をどんどん出して欲しい。 しかし、一般に実験値は特定のエネルギー領域とか、特定の核種について求められているにす ぎないのが現状であって、他の欠けたデータは計算で補なわざるを得ない。特に、20MeV以 下の全領域にわたって必要な物理量を必要な核種についてすべて実験値で埋めることは不可能 である。計算ニードは実験値のない所を補間するのに必要な道具であり、また、この補間のた めに計算パラニータの系統性も調べる必要がある。

核物理の実験データは核データ評価の基礎データとして、また、炉物理の実験データは評価 で得られた核データの検証に使われている。

Q:岩崎 信(長北大)

例えば Hauser - Feshbach 法のコードは沢山あるが、そのうちどれを用いるか、その判 断はどうするのか、あるいは結果にあまり差がないのか。

A:五十嵐 信一(原研)

どのコードが良いかは使用目的によって異るので一概には言えない。NEA データバンクが 中心になってゴードの国際比較を結合チャンネル模型,統計模型, Pre -Compound 模型に ついて行なっており,我々もこれに参加している。現在統計模型について検討中であると思う。 これらの比較によってかなりのことが判るのではないかと期待している。

C:飯島 俊吾(NAIG)

多くのコードが作られているが CASTHYをはじめ、マニュアルが登録されていないものが 多い。核データセンターで努力して用意して欲しい。

3.2 断面積実験データのレビュー

椙山 一典*

日本における核データ研究のうち、この20年間における中性子反応断面積測定の状況をレビ ューした。そのため、昭和30年以来シグマ研究委員会から刊行されている"Japanese Progress Report to the EANDC"のEANDC(J)1L(1965)からNEANDC(J)-83/U(1982)を参考にして年代表を作成し、これをもとにして20年間の推移をさぐってみ た。さらに、日本における核データ測定の問題点も考えてみた。

The experimental work on the neutron cross-sections in Japan

Kazusuke SUGIYAMA*

The author presents a brief historical survey of developments in the last twenty years on experimental activities of the neutron cross-sections in Japan. A review is given on a figure and a table classified by neutron sources and the measurements which are referred to the Japanese progress reports to the EANDC and the NEANDC. The paper deals with distinctive features and problems for the experiments in Japan.

1. はじめに

我国における核データ研究、とくに中性子反応断面積の実験的研究は過去20年間に、「何が」、 「どのように」行われてきたのであろうか。シグマ委員会20周年を機に、このことをふりかえ てみることはそれなりに意味のあることであり、これを基にして今後のあり方を考える、あるい は何かを引き出せることができれば意義も大きいことであろう。

まず,我国における中性子顔、中性子断面積の線源(エネルギー)別、および断面積の種別に ついてまとめてみよう。これは、過去における核データ研究の推移のみならず、そのもとになっ ている考え方も明らかになると考えたからである。なお、ここでは、中性子反応断面積に限定し ており、荷電粒子反応を考慮していないし、崩壊テータについても調査を拡けなかった。その理 由は、その範囲をどこまで含めるかについての criteria をもうけることが困難であったからで ある。また,シグマ委員会刊の progress report に報告されなかったものは含めなかったこ とをお断りしておく。

2. 我国における断面積研究に用いられた中性子源

改めて述べるまでもなく、中性子反応実験には中性子類が不可欠で、それを大別すると

RI中性子源,原子炉,加速器

があげられる。

① RI中性子孫については、シグマ委員会有史以前は別として、最近の 20 年間では ³⁵² Cf 以 外に用いたという報告例はない。しかし、検出器の校正などにはよく用いられてはいる。

② 研究用原子炉は核データ研究によく用いられると考えられがちであるが、我国ではそうではないようである。 JRR - 2, KUR, YAYOI が主であり、武蔵工大炉も個性ある研究に供されている。原子炉は崩壊データ研究のために RI製造が主力となっているのであろうか。

③ Electron Linacは、それによる発生中性子がWhite であることから広いエネルギー範囲にわたる中性子断面積研究に有力な手段となりうる。はたして、原研、京大炉のLinacは断面積測定専用器として設置された。

④ 我国には、バンデグラフなど直流高電圧加速器が十数台ある(東北大、原研、筑波大、電総研、東工大、東大、法政大、名大、京大、阪大、九大など)が、中性子実験に使用されてきたのは4台を数えるにすぎない。

⑤ コッククロフト型の低電圧加速器は、別名"neutron generator"と呼ばれているように、大戦后は特に中性子実験によく用いられている。我国では、京大、甲南大、立教大および 九大のものが過去に活躍しており、最近には、阪大オクタビアンと原研FNSが「頭角を現して」 きた。

⑥ そのほかの加速器、とくにサイクロトロンは我国に6~7台あるが、本格的に中性子核データに関して実験を行っているものは殆どなく、最近は重イオン核物理用が主力である。

以上の中性子顔について、中性子断面積測定への使用状況を図に示してみたものが Fig. 1 で ある。棒線の太さは使用の頻度を示している。

3. 測定された断面積

上記の中性子顔を用いて測定されてきた中性子断面積を線顔別に示したのが Table 1の4つの 表である。ここでは年代に従って配列してあり、測定核種、エネルギーおよび断面積の種別も記 してある。

この Table 1 では、シグマ委員会発足の 1963 年頃からの例を上げてあるが、それ以前にも幾 つかの測定は行われている。「昭和 30 年度原子力平和利用研究助成金」 が学術振興会から交付 され、その報告書に既に実験報告がある。当時は設備の点からコッククロフトが主力でトリチウ ムターゲットの入手可能となった時期で、 14 MeV 中性子による断面積測定であった¹⁾。これに 続いて、原研設立と同時に 2 MV のパンデグラフが設備され、幾つかの測定が行われた²⁾。これ

- 35 -

らの測定は報告をみるかぎり、原子力開発の基礎としての核データという明確さはなかったよう で、むしろ中性子核物理学の実験といえよう。この事情は、その後の原研5.5 MV バンデグラフ による精力的な測定における立場でも引き継がれているようである。核データ実験屋の立場につ いては、本研究会の第1回ともいうべき「第1回高速中性子断面積研究会(1965)」における 園田先生の Concluding Remarks³⁾に、そして引続いて1968年の「第1回中性子断面積 研究会」における free discussion⁴⁾に述べられており、甚だ興味のあることである。

Table 1をながめて我国の中性子断面積測定の特徴ともいえる事項が幾つかあるので、それ を上げてみよう。

- ① 原子炉を用いたビーム実験は、1960年代以来、殆ど行われなくなった。これは熱中性子 領域での要求が無くなったためであろうか。
- ② 原子炉による断面積実験は、reactor neutron によるドジメトリィを目的とした測定が1968年頃から精力的に行われ成果を上げている。
- ③ 原研,京大炉の Linac はビームパワ増強以来,著しい成果を上げた。第2回高速中性子 5) 研究会(1966)で、更田氏は幾つかの理由を上げてビーム増強を熱望しているが、正にそ れが実現したものといえよう。これら両者は同一テーマの実験を行っているのではなく、
 - 原研: F. P. 核種, Resonance Parameters と ocap
 - 京大炉:積分的実験(assembly から漏洩スペクトル, 核データファイルの assessment

という明確な分担(?)を行っているのは見事であるといえる。

④ linac による White neutron に比べ monoenergetic に pointwise の測定を行う 直流高電圧加速器では、原研2MV および引続く5.5 MVが後分断面積測定において大きな 成果を上げたといえるであろう。ことに、Mobley magnet 設置により国際的にみても一 級の設備といえる。タンデム・バンデグラフ建設のためとはいえ、1977年以来その稼動を パッタリ止めてしまったのは、何としても惜しいものである。その時期から、東北大ダイナ ミトロンと東工大ペレトロンが稼動を始めたのはその空間を埋めるという救いになった。こ の両大学では、原研5.5 MV バンデグラフでの測定と少し異なり、

東北大: DDX (二重微分断面積), (n, x, r)

東工大: (n, r)

というdata productionで相補的な研究を進めている。

1976年以前の原研バンデグラフの実験では核反応模型の実験的検証に力がそそがれてい たようであるが、東北大・東工大の実験では evaluated data file の検証に成果を上げ ているのは興味のあることである。

- ⑤ コッククロフト加速器では14 Me Vの一点での測定が多いが、九大ではそれなりに可成りの成果を上げていたといえる。一方、立教大の実験は核物理学を研究目的としている点で九大とは少々異質である。
- ⑥ 米国や欧州での核断面積と可成り果っているのは我国の測定対象にトランス・ウラニウム or アクチノイド核種が非常に少ないという点である。これはα放出核種の取扱いに対す る法的規制が厳しいことと、それに対する設備的手当がなされていないこと、さらにターゲ

.

ット入手困難によるものであろう。原子力発電をエネルギー供給源の中心に据えようとする 我国において、特に原研において、この状況は改善されるべきことの一つといえよう。

- ⑦ 核断面積測定における問題の一つに、精度(precision `and accuracy)がある。これは~~般に「実験誤差」の形で表現されているが、これについて現在と過去とでは、その取扱い方が陥分と変ってきていることがいえる。その差は、核物理学上の測定における誤差の取扱いと核データとしての測定という場合の取扱い or 考え方の差といえる。
- ⑧ 核融合炉開発の機運は核データ測定上にも強く反映してきており、東北大における目的も これに向っているし、阪大オクタビアンと原研FNS はその過程で誕生したものである。後 者は積分的実験を主としており、従来から国際的評価も高い成果を上げているのに対し、前 者はこの数年精力的な DDX 測定の急激な data produce は国際的に注目され始めている。

4. 国際会議における寄与

中性子断面積測定の結果は学協会等の刊行雑誌に寄稿されるのが通例であるが、国際会議等に 提出して批判を受けようとすることもある。核データ活動のパロメータとして国際会議への提出 論文の数が何程かを見ることも興味のあることである。これを調べてみたものが下記である。

1966年	Washington	0
1967年	Paris	0
1968年	Knoxville	1
1970年	Helsinki	4
1973年	Paris	0
1975年	Washigton	4
1976年	Lowell	2
1978年	Harwell	3
1979年	K noxville	7
1982年	Antwerp	8

これでみる限り国際会議への提出論文は着実に増加しているといってよいであろうが、二桁に ならぬのはやはり恥しいと思われる。

5. むすび

以上我国における中性子断面積実験の状況を概観してきた。Table 1 から、さらに種々な事柄 が引き出せると思う。また、その背後には実験の悩みも幾つか現れてくるように思われる。今後 の問題として上げられるものの一つは、核データの利用者と評価者から測定者への批判・要望で ある。核物理学上の測定を行っているのならいざ知らず、核データ測定(原子力開発の基礎とし ての)を行ってゆく限り、これなくして断面積測定実験の発展伸長はありえないであろう。この ことは、いうは易く行うは難しというべきか。

- 37 -

参考文献

 Yasumi, S.: Nuclear Reactions Induced by The 14 MeV Neutrons, J. Phys. Soc. Japan <u>12</u> (1957) 443,

Kumabe, L : Co⁵⁹ (n, α) and Mn⁵⁴(n, α)V⁵² Reactions Induced 14.8-MeV Neutrons, J. Phys. Soc. Japan <u>13</u> (1958) 129,

Kumabe, L : Alpha Particles from the Interaction of 14.8-MeV Neutrons with Medium Nuclei,

J. Phys. Soc. Japan 13 (1958) 325,

Yuasa, K.: Differential Elastic Scattering of 14 MeV Neutrons in Al, Fe, Pb and Bi for Large Angles,

J. Phys. Soc. Japan 13 (1958) 1248,

Hosoe, M. and Suzuki, S. : Gamma Rays from Neutron Inelastic Scattering of Mg, Al, Fe, and Bi, J. Phys. Soc. Japan 14 (1959) 443.

2) Tsukada, K., Tanaka, S. and Maruyama, N.: Inelastic Scattering of Neutron by the TOF Method,

J. Phys. Soc. Japan <u>16</u> (1961) 166,

Nishimura, K.: Gamma Rays from Inelastic Scattering of Neutrons by Fe, Cu, Zn, Ge and Se.

J. Phys. Soc. Japan 16 (1961) 355,

Sakisaka, M. : Sample Sandwiched Plastic Scintillators for Activation Measurements by use of Fast Neutrons,

J. Phys. Soc. Japan 16 (1961) 1869,

Tanaka, S. : Elastic Scattering of Neutrons from Al, Si, P, S and Zn, J. Phys. Soc. Japan 19 (1964) 2249,

Nishimura, K., Okano, K. and Kikuchi, S. : Studies of Excitation Cross Sections of $(n,n'\gamma)$ Reactions,

Nucl. Phys. 70 (1965) 421=

3) 圈田 正明: JAERI 1102 (1965) 高速中性子断面積研究会報告 p. 110.

4) JAERI 1171 (1968) 第1回中性子断面積研究会報告 p.94.

5) 更田豊治郎: JAERI 1126 (1966) 第2回高速中性子断面積研究会報告 p. 108.

- 39 -

Γ.

Reac	tor	Eì	ectron Lin	ac	Van de G	raaff, Pell	etron, Dyna	mitron	Cockcroft-Walton				
5x10 ¹⁴ -5x10 ² e Er, Dy, Eu 131 _{Eu} Transmission Crystal spoct.	V Thermal 235U FP Ea. spect.	Ag - 25 ru Captr	132 eV Au ⁵⁹ Co Iclides ure Reson. param.	< keV Cd Transmission		3,5 - 8,5 MeV Co _r Ag,in,Ta, <i>i</i> (n,n') Level density	0.3 - 2.6 M Au Γε,Co,Nl, Zn,Mo,Ag, (n, n'γ γ σ _{ex}	teV Cu, Cd,Sn)	13 - 15 MeV Sb, Zn Activation ^o n,2n	lė MeV ⁶⁴ Zn Activation Th _a p Th _a np			
0.01-1.0 eY 1475m Transmission Crystal Spec.	Thermal 233,235 U Fission yield	Thermal ²⁴¹ Am ⁴ J	10-350eV Cd, Sb ^G t			í~3.3 MeV Fe, Nl, ₩ (n,n),(n,n') ơ (E)	2-7.5 MeV Cu, As, Br Nb, I, La (n,n'), Neutron spec	t.	14 MeV ⁴⁰ Ca (n,p),(n,np) E _p Distrib. Nucl.Temp.	2.5 MeV 14 MeV ¹⁴ N ⁹² Mo ₂ Au ₂ Ag (n, α) Activation ^E α σ _{n,2n}			
0.098 eV 149 _{Sm} Reson. param.	Thermal 147,149 _{5m} 143 _{Nd} o _{n,0}	Thermal Ti, Ai Cap	Same, above	4.14, 7.64eV W Reson. param,	100-200keV 139 _{5a} o _t	Same 9,5- above S, (n,n di	3MeV . , Zn)Xn,n') 8	1.7,2.2MeV Fe,Cu,Ni,Zn (n, n'γ) γ-spect	14 MeV 175 Lu 165 Ho 141 Pr, 197 Au (n, a) Ea distributio	, ¹⁸¹ Ta			
10 ⁻³ -1eV 155,157 _{Gd} 9	Thermai 149 _{Sm} , 151 _{Eu} 155,137 _{Gd} 164 _{Dy} _c	Thermal ¹⁰⁷ Ag Cap Y	3-330eV Re _g	0.8-3keV ⁵⁹ Co Reson, param,	10-240keV La, Pr G _t	2a, Cu (n,n)(n,n) do	4,5-6MeV 4.8 S, Zn Ał, (n,nχ(n,n') (n,r <u>dσ d</u>	-244eV 0,5-11 , Si ¹³³ C; 1)(n,n') (n, n' 1)	HeV 14 Me s 6,7 _{L1} 3 (n,n) <u>do</u> (1 do (1 do (1	V LèMeV 2ς ⁴⁰ Ca ¹⁹ Co η,η ¹ σ _{η,} ρση,ηρ			
Thermal The 155 147 157 Gd 149 141	rmat 0,077eV 149 _{5m} 5	Reactor neutron ⁴⁶ Tl 209 _{Pb} 3 nuclides	3-330e¥ Re	, ,	10-240keV La, Pr	i.a-2.2₩c¥, Fe (n,nXn,n')	4,8-8MeV, At,Si,S, Cu, Zn (n,n)(n,n')	0,3-LMeV 133 _{Cs} (n, n'γ)	14.1 MeV 1 ⁹ Be, B, (10 _B F (n,n)(n,n')	4 MeV 14.3 MeV C,O,AI, D D			
	7x10 ¹⁴ -5x10 ² e 2x10 ¹⁴ -5x10 ² e Er, Dy, Eu 131Eu Transmission Crystal spect. 0.01-1.0 eV 1495m Transmission Crystal spect. 0.098 eV 1495m Reson. param. 10 ⁻³ -1eV 135,157Gd qt Thermal Tilv 137 Gd 147 Gd	Reductor 3x10 ¹⁴ -3x10 ² eV Thermal Er, Dy, Eu 235U 131Eu Transmission FP En. Crystal spect. spect. 0.01-1.0 eV Thermal 149 _{5m} 233,233U Transmission Fiscien Crystal spect. yield 0.098 eV Thermal 149 _{5m} 147,149 _{5m} 149 _{5m} 147,149 _{5m} 149 _{5m} 147,149 _{5m} 197 _{5m} 143 _{Nd} param. on, a 10 ⁻³ -1eV Thermal 135,157 _{Gd} 149 _{5m} ,151 _{EU} 155,157 _{Gd} 164 _{Dy} 164 Dy other 133 147 149 _{5m} 147 133 147 149 _{Sm} 147 133 147 149 _{Sm} 149 _{Sm}	Neutron Presentation Copy to the presentation Copy to the presentation Presentation	Reductor Electron List of the sector $3\pi 10^{14} - 3\pi 10^2 eV$ Thermal 132 eV Er, Dy, Eu 233_U $Ag - Au$ $3^{90}Co$ $131 Eu$ Transmission FP En. Capture Reson. Crystal spect. spect. Set of the sector Description Description 0.01-1.0 eV Thermal Thermal 10-350eV Cd, Sb Transmission Fission σ_f Cd, Sb Transmission Fission σ_f σ_t 0.098 eV Thermal Thermal Same above 149 Sm 147,149 Sm Ti, Ai Same above 197-1eV Thermal Thermal Same above 10 ⁻³ -1eV Thermal Thermal 3-330eV 135,157 Gd 149 Sm, 151 Eu 107 Ag Re 135,157 Gd 149 Sm 46 Ti 3-330eV 135 147 149 Sm 46 Ti Re 137 Gd 149 Sm 209 pb 3-330eV	ReductorElectronLittle $3\pi 10^{14} - 3\pi 10^2 eV$ Thermal132 eV keV $2\pi 10^{14} - 3\pi 10^2 eV$ Thermal132 eV keV $2\pi 10^{14} - 3\pi 10^2 eV$ 233 233 $4\pi - Au$ $3^{10}Co$ Cd $131 Eu$ TransmissionFP EnCaptureReson. TransmissionTransmission $201 - 1.0 eV$ ThermalThermal $10 - 350 eV$ $149 Sm$ $233, 233_U$ $281 Am$ Cd, SbTransmissionFission σ_f σ_c 0.098 eVThermalThermalSame $149 Sm$ $167, 149 Sm$ Ti, Ai $10^{-3} - 1eV$ ThermalThermal $135, 157, Cd$ $149 Sm, 151 Eu$ $107 Ag$ $135, 167$ $149 Sm, 151 Eu$ $107 Ag$ $135, 167$ $149 Sm, 151 eV$ $3-330 eV$ $135, 167$ $149 Sm, 147 $	Next Col Electron Electron Volt de d $3\pi 10^{14} - 3\pi 10^2 eV$ Thermal 132 eV < keV	Reductor Electron Linde Von de Gradit, Peri 1 $3\pi 10^{14} - 3\pi 10^2 eV$ Thermal 132 eV < keV	NeucloiElectronLindcVolt de Gradit, Perfettron, Dyno $3\pi 10^{14} - 5\pi 10^{2}$ eVThermal132 eV $3.5 - 8.5$ MeV $0.3 - 2.6$ MEr, Dy, Eu235UAg - Au 3^{97} CoCd $Co_{A}g_{1}n_{1}Ta_{1}Au$ $Pe_{c}Co_{1}N_{1}A_{2}n_{1}Mo_{1}N_{2}$ TransmissionFP En.CaptureReson. param.Transmission $(n_{1}n)$ $(n_{1}n')$ $(n_{1}n')$ Crystal spect.gettThermal10-350eVII-3.3 MeV2-7.5 MeVC01-1.0 eVThermalThermal10-350eVII-3.3 MeV2-7.5 MeVC1495m233,235U241 AmCd, SbFe, NI, WCu, As, BrTransmissionFission σ_{f} σ_{f} σ_{f} I00-200keVSame 4.5-3MeVC098 eVThermalThermalSame 4.14, sbove100-200keVSame 4.5-3MeV1695m147,1495mTi, AiWReson. param. σ_{f} σ_{f} 10^{-3-1eV}Thermal3-330eV0.8-3keV10-240keVL7-2.24MeV 4.3-6MeV 4.3-135,157Cd1495m151_EU107AgRe 9^{-2} CoLa, Pr σ_{f} σ_{f} 135,157Cd1495m151_EU107AgRe 9^{-2} Co σ_{f} σ_{f} σ_{f} 135,157Cd1495m51_EU107AgRe 9^{-2} Co σ_{f} σ_{f} σ_{f} 135,157Cd1495m51_EU107AgRe 1^{-3} CoLa, Pr σ_{f} σ_{f} 13514	ReductorExectionExectionChildVoir de Grunn, Perfection, Dynamit from $sato^{14}$ - $sato^{24}$ Thermal132 eVkeV3,5 - 8,3 MeV0,3 - 2,6 MeV $sato^{14}$ - $sato^{24}$ 235_U 39_Co CdCo,Ag,In,Ta,AuPe,Co,NI,Cu, Zn,Mo,Ag,Cd,Sn $renominationFP En.Crystal spect.23 moclidesCo,Ag,In,Ta,AuPe,Co,NI,Cu,Zn,Mo,Ag,Cd,SnCrystal spect.SeptureReson.param.Transmission(n,n)(n, n' Y)Level densityR01-1.0 eVThermalThermal10-330eVI.33 MeV2-7.5 MeVR01-1.0 eVThermalThermal10-300eVI.33 MeV2-7.5 MeVR01-1.0 eVThermalThermal10-300eVI.33 MeV2-7.5 MeVR01-1.0 eVThermalThermalCd, SbPe, NI, WCu, Ag, BrMb, I, LaTransmissionFristenCrystal Spec. yield\sigma_f\sigma_fNeutron spect.C0095 eVThermalThermalSameabove5.44eV1.7,22MeV1895an167,1695anTI, A1W100-200keVSameabove5.3MeV1.7,22MeV1895an167,1695anTI, A1Reson.param.\sigma_f\sigma_f\sigma_f\sigma_f10-3-1eVThermalThermal3-330eV0.8-3keV10-240keV1.7-22MeV4.3-6MeV4.3-6MeV135,157Cd1695an,151gu197AgRe59CoLa, PrZnCu, S, ZnA1, S1133c135,157Cd1495an1495an$	Reductor Electron Linic Volt de Grouti / Feiletron, Dynomitron Cockcro 3stiol ¹⁸ -3stio ² eV Thermai 132 eV ckeV 3.5 - 8.5 MeV 0.3 - 2.6 MeV 13 - 15 MeV 13 23 235 23 Capture Reson. Capture Capture Capture Statistics Statistics			

٠.

È ł

. :

1969	Reactor Neutron 232 46 1209 209 9 nuclides 9 nuclides 0 n,p,0 0,n,a 9 yield 0 n,n',0 0,2n		ikeV-24 Fe Neutror spect.	MeV 1.4	-2.2MeV 1.3- Fe La, 207 (n,n'Υ) (n,n)(n,n') (n,1 do dΩ	3.6MeV 4.8-8 ,Pr, Sam 'Pb abo n)(ດ,ກ') d ອ ປີກີ	iMeV 0.5-1M e ¹³³ Cs ve (n,n'Y <u>da</u> da	ieV)	14.1NieV D (n,p) da dn	14.1MeV 14.1MeV H, D ²⁰⁹ Bi (n,nXn,p) (n,nXn,n') <u>dg</u> <u>dg</u> <u>d</u>
1970	Reactor Fission neutron 235 _U , 241 _{Am} 232 _{Th} ,237 _{Np} Mass 8 _n ,2n 8 _f	on , ¹⁰³ Rh, ¹¹⁵ In đ _{n,n} ,			1.5-3.3 Me 120 _{Sn} , 139 _{La,} 209 _{Bi} , Gd, 1 (n,n), (n,n') <u>d g</u> <u>d R</u>	V , ¹⁴¹ Pr, Er	0.5-1.2 133 _{Cs} (n,n' Y Energy	MeV 5) 7 levels	14.1 MeV ¹⁴ N, (n,n)(n,n') <u>dg</u> dΩ	13 - 15 MeV 90,92 _{Mo} ơ _{n,p} ơ _{nd,} ơ _{n,2n}
1971	Thermal Thermal 233U, ²⁴¹ Am Be,BeO,Pb Mass yield ^{of} t	0.002-0.3eV Be 4	10-300eV Pd Reson. param.		1.7-3MeV 47TI, 54Fe Mn,p	3.4-4.9MeV 113 _{In} (n,n') <u>do</u> d <u>o</u>	4-3NeV 21. 232Th, C, 237Np (n σ ₁ (n,	5MeV 3.1MeV , S 28SI, ³⁶ F ,n) 120 _{Sn} ,n') (n,n'γ) <u>dσ</u> <u>dΩ</u>	²c,	13 - 15 MeV 92 _{Mo,} 90 _{Zr} a _{n,2n} an,2n a _{n,p} a _{n,p}
1972	Reactor neutron Thermal Senting 233,235 23 N(n,p) 7 A(n,a) 115 In(n,n) 113 In(n,n) Wass 233 U(n,2n) yield Gav	1,eV 100 keV 1 181 _{Ta} C y	10,eV 2-8MeV 300'eV 238 Pd 238 Ho Capt. Ield	ikeV-10MeV Al, Fe, Th Neutron spectra	1,4-5,6, 207 _{Pb} (n,n) (n,n') <u>do</u> <u>do</u>	5.2-8 Me¥ ⁹⁴ Mo _s Mo (n,n) (n,n') <u>d ต</u> <u>d ฏ</u>	17.96 MeV C (n,n) (n,n?) <u>da</u> dft	2-3 MeV 120 _{Sn} (n,n'γ) σ _{ex}		14.1 MeV Fe, ²⁰⁹ Bi (n,n),(n,n') <u>do</u> GA
1973	Same Reactor Thermal above neutron (n,a) 232 _{Th} (n,a) 231 _{Pa} 28 _{Ni} (n,2n) σ_{NV} σ_{cap}	12eV k 30keV 30k 238 _U Ta Ha Trans, ca	keV <2 keV 24 keV a, In W C, I nu apture Trans. Scatt. Capt.	keV ikeV 10MeV Be,O Pb Ag,I, ,Au,U Neutroi spect. Gap	2-3MeV 120 _{Sn} (n,n') <u>do</u> do	3.6-4.9MeV 231 _{Pa} 0 _f	18.3 MeV 32 ₅ (n,nXn,n') da da	1.3-4Me¥ ⁹⁴ Mo (n,n' Y) Y-spect.	15,2 MeV Pe, Cr ^O cap	14.1MeV Fe, In (n,xn') DDX

.

.

.

:

·	1974	0.002-0.3eV	Fast reactor	Same above	< 50ke¥	24 ke\	/ 1keV 10MeV	5.1-8NeV	9.6 MeV	21,5 MeV	1,5-4 MeV	14.1 MeV	14.6 MeV	
·-		Be	24 _{Mg} .238 _U 21 nuclides		151 153 _{Eu}	n-p 232. scatt.	Th Fe ^a t SUS	96 _{Mo}	237 _{Np}	32 ₅	74 _{Mo}	6,7 _{Li} , 9 _{Be} ¹⁰ 6, Fe	Nd,Sm,Yb,L	บ
	7	Temp. effect _{Ct}	(n,p)(n,#) (n,2n)(n,1) σ			⁹³ Nb,Ag 165 _{Ho} , 1	¹²⁷ I ⁹⁷ Au Neutra	m (n,n),(n,n') do dN	⁰ n,2n	(n,n),(n,n) dg dQ	(n,n'ץ)	(n,n),(n,n') 	^Ծ ո,2ո ո,2ո	•
	1975.	Reactor neutron	Thermal	<5keV	20 eV 24, 30 keV	146k	l keV 10 MeV	5,1-8MeV	4,5-7MeV	1.5-3 MeV	5,3 MeV	14.2 MeV	14.1 MeV	14.8NeV
		⁹⁴ Nb, 165 _{Dy}	233,235 _U	59 _{Co}	238 _U k Ta	n, Cs, 1, Th	Al Fe+Pb	94,96 _{Mo}	'Li	94 _{Mo}	Al, Cu	Al, Cu	V, Au	⁵⁶ Fe
1		σ _{cap}	lsomer yield	y spect,	Trans- mission	⁰ сар.	Neutron spectra	(n,n) da da da	(n,n),(n,n') dg dg	(n,n'Y)	(n,xY) d (E _{XY})	(n,xy)	(n,n') d g d î	տ ո,ր
	1976	Thermai	Fission neutron	< [.2iee]	7 20 eV 30 keV	24,147kc	V ikeV 10MeV	5.9-7.8 MeV	21.5 Me¥	3.2-7 MeV		14.7 MeV	14.1 MoV	14.6Mc¥
		235 _U	232 _{Th} 231 _{Pa}	1.79 _{Tb}	238 _U	Fe,Si, ¹³⁾ 235	Cs LIF	90,92 _{Zr}	32 ₅	• _{Be}		O,Na,Al,Cu Fe,Cu,Pb	Cu,A s, Nb, Ag	Zr,No
		Mass yield	Trans- mission Of	Reson. param,	at	a cap	Neutron spectra	(n,n) (n,n) da ชิลิ	(n,n) (n,n) 40 412	(n,n) (n,n') <u>d.</u> dQ	<u> </u>	(11, X Y) 0 (E _{XY})	(n,n') second. neutron	^σ ութ <mark>σ</mark> ո, դ σ _{B,2n}
	1977	Fission neutron	Fission neutron	< 2keV	5 keV 500keV 4	1 keV SôkeV	l keV 10 [°] MeV		5,6-7.7 MeV		14 MeV	13-15 MeV	14.1MeV	14.6MeV
		235,238 _U	39 _{Co}	79 _{Br} 165 _{Ho} 183	143 2 143 146	232 _{Th}	Li Zr Ta	l.	115 _{ln}		9 _{Be}	9 _{8e} , 12 _C	9 _{Be}	Fe,Co,Ni,
		Decay heat	ō _{n,2n}	Reson	ITT Nd	ocap	Neutron spect,		o ⁿ 'u,		⁰ n,20	(η, t γ)(η, η' γ)	(n,2n)2a	^a n,p ^a n,a a <mark>n,2</mark> n
	, 4075 44, 4 14, 6 74, 6			-k						<u> </u>				
-	••••					,	· .	1		,				
	1							:						

.

•

JAERI-- M 83--041

· ·

1978	Reactor Fila Insulton Inst 93_Nbj-199[4g 124 36_n,n' 3 24_Mg197 Au 12 12 nuclides 3 3n,p 3	sien itron Sb Icap	2 eV <15 keV SkeV 238 U 79 81 Br Reson, Reson, param, param,	7 3 keV 100keV 147 149 Sm 0 t 0 cap	3 keV 5 ke' 3 000koV 3000k 151 133 c 133 cu ^a cap ^a cap	V 10 keV eV 10 MeV 23 (Cl ² 2)n 232Th 232Th Neutron spectra	אסט	5,3 - 7 MeV AI, NI, Cu, Nb $(n,x\gamma)$ $\sigma(E_{x\gamma})$	13.6 Me¥ ⁹³ Nb (n,n') DDX	lė,6 MeV Ti, Mn, Cu, Zn Sr, Y, Cd, In, Te Activation σ _{n,} p,σηα ^g n,2n
1979	Thermal Fineutron neutron neut	ission eutron 5,58 _{Ni} ⁹ Co 27 ₁ a,n'	<15 keV Ru Reson. param,	i,3 keV 75 keV ¹⁸¹ Ta Capt.Y	3 keV 700 keV Ag ^o cap	i keV i0 MeV Mo Neutron spectrum		9.8-6.4 MeV Sn, Ba (n,xγ) σ(E _{xγ})	1.5 MeV 232 _{Th} Fission neutron	14.1 MeV 14.5 MeV 6 _{Li} 238 (n,d),(n,E) Mass, Energy E _d , do distribution
1980	Fission neutron 27 _{A1} ³⁹ Co 70 _{Ge} , ⁹⁰ Sr 8 _{n,2n}	- meV 20 eV Th ^o t	< 2 keV <2,5keV 147 139 149 Sm Reson, Reson param, param	/ 0.1keV 1 17keV 7 85 1 87 Rb Reson, 0 param,	JkeV 3 keV SkeV 700keV 133 _{Cs} 107 109 _{Ag} Cap.Y Reson. param.	20keV 1 ke 1 MeV 10MeV 238 U Th,Ti 203- σ _t Neutra spect	V 3 keV 400 V 80keV hO ³⁶ Fe Sn 71 on Capy Ca	keV 0,5 1. 5.7MeV 232 _{Th} 23: (л,п) р.ү (п,п') Fi dØ ne dR	6MeV 15.2MeV Th C, Ai Ti, Mo ssion (n,xn') utron DDX	14 MeV C, Li Ai,Pb (n,xn') DDX
1981.	Thermal Fas (²⁵² Cf) reac Mn-bath 93, 199 ^o H/ o _{Mn} 8 _{n,}	n ¹ Pissic ctor 232 _{Cf} 95,97, Hg ⁴⁸ Ti n ¹ Ti _{n,p}	n <300eV <	7keV 2 123 _{Sb} 1 107 109 _{Ag} Reson. param.	24keV 3-80keV 1 MeV 181 Ta Au,Pd σ _t Cap,γ	/ 1 keV 10MeV Fe,Ni, Neutron spect.	200keV 400keV 600keV ¹⁶⁵ Ho Nb,Mc σ _{Cap}	7 1 5.5 2.2MeV 7M 232Th Al,5 Ni (n,n'γ) (n, σex (U data	i 3.2MeV eV 7e, Fe,Ni n') (n,xn') ŋ) DDX	14MeV 14.1MeV 14.6MeV 14.8MeV D,Be, 6_{Li} 5_{Gre} Mo O,Cu $\sigma_{tr,p}$ (n,xn') (n,d) $\sigma_{n,p} \sigma_{rn,2n}$ DDX (n,t) $\sigma_{11,11p}$
1982	Thermal Mo,A1,S ^o t			4 keV 123 _{3b} ^o t			15 - 620keV Ho, Ta, Au Cap Y	5-7 1 13 1 Li (n,x -DE	Ney 15.2MeV Ney Fe,Ni,Cr n') (n,xn') DDX	14 MeV 14.9λleV Be,Fe,Ni,Cr ⁷ Li Νυ,λίο,Ρό (π, χη) σ _{η,η} 't DDX

٠

•

.

. .

討 論

C:西村 和明(原研)

"原研でないとアクチノイド核種の核データの測定はできない"という点について。原研で Pu 試料の入手は可能であったが、加速器等に附属した実験室にそれらを取扱う施設がついて いないので、現状では原研でも残念ながら測定できない状況にある。原研の創生期に先見性を もって人材・予算などの対策をたてておくべきであったと思う。

C:肥田 和穀(NAIG)

軽水炉からデータの要求がもう無くなったようであるとの話であった点について。近い将来, 燃料の高燃焼度化, ウランやプルトニウムのリサイクルなどが予想され, そのような場合には trans Puの核データが重要となってくると考えられる。そのようなことがあるということ を考えておいて欲しい。

A: 椙山 一典 (東北大)

そのような場合も、トランス Puなどのターゲットの入手が大きな問題となろうし、取扱設 備が問題であろうと思う。東北大の平川グループがやっているように、fission chamber の形に少量を密封して使用する方法を考えるのも一つの方法だと思う。

Q:川合 将義(NAIG)

大学における断面積測定のテーマ選定について。

- データの accuracy と precision に対して、学問的興味もあってか precisionを目 指した測定が優先しているのではないだろうか。オクタビアンでの測定もそのように理解で きるが如何か。
- ② 核データ利用者は WRENDA に要求データのリストを要求精度を含めて提出しているが、 測定者は、測定のないデータあるいは要求を満たしていないデータのどちらに主眼を置いて いるのであろうか。精度に関しては、データ間の食い違いの解決も含まれていると思う。
- A:椙山 一典(東北大)

①テーマの選定については、個々の研究者によって異っていると思うが、私見では「核デー タ」というからには accuracy が重要であると思う。 precision をいくら高くしたように 思っても、 systematic error について十分考慮していないとそのデータは実用上の価値を 低くすると思う。核物理学上の核理論モデルとの比較を目的とする実験では precision を上 げることに意を注いでいると思う。例えば、雑誌 * Nuclear Physics * の論文と Nuclear Data for Technology の国際会議の論文とを比べてみると、実験誤差の取扱いに対する 測定者の意識はかなり異っていることがわかる。核データ測定者は最近 covariance などか なり真剣に取り組んでいる。オクタビアンのデータについては、高橋先生からコメントがある と思うが、今のところは data production が急で誤差解析はこれからされてゆくと思って いる。②これも私見であるが、「核データ」測定者は恣意的に測定しているわけでなく、 WRENDAをかなりみて検討している。一般的にいえば、食い違いの多いデータを並べて、そ の測定法など検討し、それを明らかにしようとする意志で測定を考える例が多いといえる。要 求精度についても、それなりに測定法を考え検討しているが、私見では、利用者の要求精度は かなり厳しくとても測定できない要求もあるようだ。

C:五十嵐 信~(原研)

日本の測定は確実に増えているということで力強いが、世界的には中性子データの測定は減 少の方向にある。こういう時期に日本のデータ測定が頑張ることは大切なことなので、測った データはどんどん外へ出て欲しい。

4. 最近の話題から Special Topics

4.1 前平衡過程の理論

岩本昭

前平衡過程の理論のレヴューを行う。最初に通常のエキシトン模型の定式化を紹介する。次に この模型を用いて、角度及びエネルギーの2重微分断面積を計算する方法につき議論する。最後 にこの模型を拡張して、(d,t,³He,α)などの複合軽粒子放出を計算する試みを紹介する。

Theory of Preequilibrium Process

Akira IWAMOTO*

Theoretical treatments of the preequilibrium process are reviewed. First part is devoted to the review of ordinary exciton model. In the second part, this model is applied to the double (angle, energy) differential cross section. In the last part, the exciton model is generalized to calculate the complex particles (d, t, ³He, ⁴He) emission.

1. 序 論

前平衡過程と通常呼ばれている現象を定義する為には、例えば図1に示されるような放出粒子 のエネルギースペクトルを観察する。この図では陽子入射による放出陽子のスペクトルが示され ているが、図の左端(低エネルギー部分)は調ゆる蒸発スペクトルと呼ばれる現象で、逆に右端 (高エネルギー部分)は直接反応から生じる離散的スペクトルが見られる。この2つの非常に性 質の異なったスペクトルの中間に、連続的ではあるが蒸発スペクトルとは呼べない、かなり広い 範囲に渡るスペクトルが存在している。通常この部分を前平衡過程によるスペクトルと称し、そ の背後にある反応機構を前平衡過程と呼ぶ。この過程を記述する1つの直観的な模型として、 Griffin によるエキシトン模型²²がありこれを中心に以後話を進めてゆくが、この模型によると 前平衡過程を直接過程と複合核過程の中間的な過程として位置づける。このことを理解するため には、直接過程と複合核過程の各々の特後を知る必要があるが、それを簡単にまとめたものが表 1に示されている。このような性格の現象を記述する為、図2に概念的に示されるように2体の 核力により系がだんだん複雑な状態へ向い、その途中である確率をもって粒子が放出されると考 えるのがエキシトン模型である。次節でこのエキシトン模型の計算に必要な種々の量の計算法を 示す。 2. エキシトン模型(マスター方程式の方法)

(a) 状態密度 P_a(E)

エキシトン模型では状態を指定する物理量として、励起エネルギーE、粒子数p、空孔数hを 用いて、その他の自由度については指定しない。最も重要な量の1つとして(p,h,E)を指定 したときの状態密度 $\rho_{p,h}$ (E)が必要となる。エキシトン模型では通常1粒子状態密度gを定数 (~A/13)と考え、これをもとに $\rho_{p,h}$ (E)を計算する。 ρ_{L_0} (E) = $\rho_{0,1}$ (E) = g として

$$\rho_{p,0}(E) = \frac{1}{p} \int_{0}^{E} \rho_{p-1,0}(E-E') \rho_{l,0}(E') dE' = \frac{g(gE)^{p-1}}{p!(p-1)!},$$

$$\rho_{0,h}(E) = \frac{1}{p} \int_{0}^{E} \rho_{0,h-1}(E-E') \rho_{0,1}(E') dE' = \frac{g(gE)^{h-1}}{h!(h-1)!},$$

$$\rho_{p,h}(E) = \int_{0}^{E} \rho_{p,0}(E-E') \rho_{0,h}(E') dE' = \frac{g(gE)^{p+h-1}}{p!h!(p+h-1)!},$$
(1)

のようにして計算するが、この最後の式はEricsonの公式³⁾と呼ばれて、エキシトン模型の計算 に一般的に用いられる。実際の計算に際しては Pauli の禁制原理よりくる補正項を(1)式に入れた 公式を用いることも多い。

(b) 遷移確率 w_{m→n}

図2に示したような、2体の核力による状態mから状態nへの単位時間当りの遷移確率を w_{m→n}とする。Fermiの黄金律より次のように書ける。

$$w_{m \to n} = \frac{2\pi}{\hbar} |M|^2 \rho_n' \tag{2}$$

ここで行列要素 Mは, エキシトン数 mからエキシトン数 n (n=m-2, m, m+2) への零ではな い行列要素の平均値で, 簡単のため Mは m, n に 依存しないと仮定した。状態密度 ρ'_{n} は n エキシ トン状態のうち, mエキシトン状態から2体の核力でゆける状態の状態密度である。ここで $w_{1\to 3}$ は ρ'_{3} が $\rho_{2,1}$ (E) となるので

$$w_{1 \to 3} = \frac{2\pi}{\hbar} |M|^2 \rho_{2, 1}$$

= $\frac{2\pi}{\hbar} |M|^2 \frac{g (gE)^2}{4}$ (8)

一方この w1→3 は次のようにも書ける。

w_{1→3} =v ø₀ ρ₀ ∝ (光学ポテンシャルの虚数部分) (4)

ここで*Φ*。は核物質中での核子 - 核子散乱の全断面積, v は 2 核子の相対速度, ρ₀ は核物質の密 度である。

さて(2)式に表われた ρ_{a} と書かれた量を計算する必要があるが、これの計算には $w_{m \to m+2}$ の場合 の例としては次の関係から出発する。

$$w_{m \to m+2} = \frac{1}{\rho_{p,h}(E)} \int_{0}^{E} \{w_{1 \to 3}(u) \ \rho_{p-1,h}(E-u) \ \rho_{1,0}(u)\}$$

 $+w_{1\rightarrow 3}(u) \rho_{n, b-1}(E-u) \rho_{0, 1}(u) \} du$

この式の右辺第1項は粒子-粒子散乱を表わし,第2項は空孔-空孔散乱を表わす。同様な式が w_{m→m-2} に対しても書下だせる。ここで上式の右辺の積分をする際に(3)式を仮定して,且つ|M| がエネルギーに依存しない定数と仮定すると

$$\begin{cases} w_{m \to m+2} = \frac{2\pi}{\hbar} |M|^2 \frac{g^2 E^2}{2 (m+1)} \\ w_{m \to m-2} = \frac{2\pi}{\hbar} |M|^2 g \frac{p \cdot h \cdot (m-2)}{2} \end{cases}$$
(5)

一方,(3)式の代りに(4)式を仮定して次のような実験式

$$\mathbf{w}_{1\to3} = 1.4 \times 10^{21} \,\mathrm{u} - 6 \times 10^{18} \,\mathrm{u}^2 \quad (\mathrm{s}^{-1}) \tag{6}$$

を仮定すると次式を得る。

$$\begin{cases} \mathbf{w}_{m \to m+2} = 1.4 \times 10^{21} \,\mathrm{E} - \frac{2}{m+1} \cdot 6 \times 10^{18} \,\mathrm{E}^2 \\ \mathbf{w}_{m \to m-2} = \frac{(m-1) \,(m-2) \cdot \mathbf{p} \cdot \mathbf{h}}{(\mathrm{gE})^2} \,(1.4 \times 10^{21} \,\mathrm{E} - \frac{2}{m-1} \,6 \times 10^{16} \,\mathrm{E}^2) \end{cases}$$
(7)

いづれの場合にも w_{m→m+2} = w_{m→m-2}とおいて平衡分布でのエキシトン数を求めると

$$n_{eq} = \sqrt{2gE}$$
(8)

が求まる。

(c) 粒子放出確率 <u>dW</u>

図2のような遷移をしている間に、単位時間当りWの確率で粒子放出を起すとする。放出粒子のエネルギー・を決めたうえでの放出確率を<u>dW</u>と書き、これを以下で求める。再び黄金律を用いて

$$\mathrm{dW} = \frac{2\pi}{\hbar} |V|^2 \rho_{\mathrm{A}} (U) \frac{\mathrm{d}^3 \mathrm{p} \int \mathrm{d}^3 \mathrm{r}}{(2\pi\hbar)^3}$$

ここでVは粒子放出の行列要素である。ここで

$$d^3 p = \sqrt{2m \epsilon} m d \epsilon d Q$$

を代入して

$$\frac{\mathrm{dW}}{\mathrm{d}\epsilon} = \frac{2\pi}{\hbar} \cdot |V|^2 \rho_A(U) \frac{\mathrm{m}\sqrt{2\mathrm{m}\epsilon}}{(2\pi\hbar)^3} \cdot 4\pi \cdot \mathbf{v}$$

ここ v は規格化の体積である。ここで未知の行列要素 V を求める代りに、粒子放出の逆過程すな わち粒子捕獲過程を考え、その断面積を σ_{inv} とおくと

$$\sigma_{\rm inv} = \frac{v}{v} \frac{2\pi}{\hbar} |V'|^2 \rho_{\rm A+1}$$

詳細つりあいの繊維を当てはめ、粒子捕獲に関する行列要素 ∇'が粒子放出の ∇ に等しいとおく と、以上に与えた2式より次の関係が求まる。

$$\frac{\mathrm{dW}}{\mathrm{ds}} = \frac{\mathrm{m}\,\mathrm{s}\,\sigma_{\mathrm{lav}}}{\mathrm{s}^{2}\mathrm{t}^{3}} \frac{\rho_{\mathrm{A}}}{\rho_{\mathrm{A}+1}} \tag{9}$$

この式が放出確率の基礎となるが、複合核反応の場合には右辺の状態密度の部分が

$$\frac{\rho_{A}}{\rho_{A+1}} \sim \exp\left\{\left(\sqrt{2 \, \mathrm{aU}} - \sqrt{2 \, \mathrm{aE}}\right)\right\}$$
$$\sim \exp\left\{-\left(\frac{\Delta \mathrm{E}}{\mathrm{T}}\right)\right\}$$

となる。但してこで

$$4E = E - U \qquad T = \frac{1}{\sqrt{\frac{\partial}{\partial E}}} (\ell_n \rho_A) = \sqrt{\frac{2E}{a}}$$

でちる。さてエキシトン模型の場合には、各エキシトン状態nに対してEricsonの式を用いて

$$\left(\frac{\mathrm{d}W}{\mathrm{d}\epsilon}\right)_{n} = \frac{\mathrm{m}\epsilon\sigma_{inv}}{\pi^{2}\hbar^{3}} \frac{\left(\rho_{A}\left(\mathrm{U}\right)\right)_{n}}{\left(\rho_{A+1}(\mathrm{E})\right)_{n}} \tag{1}$$

を使う。なお(9)~(1)式を実際に使用する際にはスピンの重率(2S+1)を右辺にかける。 エキシトン模型による粒子放出のエネルギースペクトルは次式で表わされる。

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\epsilon} = \sigma_{\mathrm{cap}} \sum_{\mathrm{fl}} \tau(\mathrm{n}) \left(\frac{\mathrm{d}\mathrm{W}}{\mathrm{d}\,\epsilon}\right)_{\mathrm{fl}} \tag{2}$$

ここで σ_{cap}は入射粒子が捕獲される断面積であり、τ(n) はエキシトン状態 n に系が滞在する滞 在時間を表す。このτ(n)を次節でマスター方程式より求める。

(d) マスター方程式

時刻t に系がnエキシトン状態にある確率をp(n,t)と書くと、次の形の方程式が得られる。

$$\frac{\mathrm{d} p(\mathbf{n}, \mathbf{t})}{\mathrm{d} \mathbf{t}} = \sum_{m} \mathbf{w}_{m \to n} p(\mathbf{m}, \mathbf{t}) - p(\mathbf{n}, \mathbf{t}) \left\{ \sum_{m} \mathbf{w}_{n \to m} + \mathbf{W}_{n} \right\}$$
(13)

この方程式をマスター方程式と呼ぶ。(2)式で定義した滞在時間 τ(n) は,上式のp(n,t)と次の 関係にある。

$$\tau(\mathbf{n}) = \int_{0}^{\infty} p(\mathbf{n}, t) dt \qquad (14)$$

そこで(13式の両辺を時間積分すると:(n)に対する次の形の方程式が得られる。

$$p(n, t=\infty)-p(n, t=0) = \sum_{m} W_{m\to n} \tau(m) - \tau(n) \left\{ \sum_{m} W_{n\to m} + W_{n} \right\}$$

ここで左辺の第1項は零($W_a \neq 0$ の場合), p(n,t=0)= $\delta_{n_n n_0}$ の関係(n_0 はt=0でのエキ シトン数,通常3)から

$$-\delta_{n,n_0} = \sum_{\mathbf{n}} W_{\mathbf{m} \to n} \tau(\mathbf{m}) - \tau(\mathbf{n}) \left\{ \sum_{\mathbf{n}} W_{\mathbf{n} \to \mathbf{m}} + W_{\mathbf{n}} \right\}$$
(9)
この式は違分数の形で厳密に解くことができるが、ここでは簡単の為

$$w_{m \to m+2} \gg w_{m \to m-2} \tag{6}$$

の近似を行った場合の解を与える。この近似は mが(8)式で与えられる n n より十分少さい場合に は良くなり,数値計算をすると比較的高エネルギーの粒子放出の場合には常に良い近似になるこ とが示される。この仮定のもとではマスター方程式協の解は次のようになる。

$$\tau (n) = \frac{D_n}{W_{n \to \mu+2} + W_n} \tag{17}$$

۵0

٠.

ここで depletion を表わす Daは

$$\mathbf{D}_{n} = \frac{n_{T}}{i} \frac{\mathbf{w}_{i \to i+2}}{\mathbf{w}_{i \to i+2} + \mathbf{W}_{i}} \tag{3}$$

で与えられる。この10~09式を03式に代入すると前平衡状態からの粒子放出のエネルギースペク トレが得られる。

3. 2重微分断面積

エキシトン模型を拡張して、各放出エネルギーに対する角分布を計算する模型につき述べる。 この為の1つの方法として、(1)式で与えたマスター方程式を拡張して放出される粒子の進行方向 のを新しい変数として導入する模型がある。^{5),6)}そこでは確率q(n, Q, t)を導入して、これは時 刻tに系がnエキシトン状態にあり且つ注目している粒子の進行方向がQである確率と定義する。 それゆえ次の関係式が成立つ。

$$\int \mathbf{q} (\mathbf{n}, \boldsymbol{\mu}, t) d\boldsymbol{\mu} = \mathbf{p} (\mathbf{n}, t)$$

さてこのg(n, Q,t)に対して次の形のマスター方程式

$$\frac{dq(n, \boldsymbol{\varrho}, t)}{dt} = \sum_{m} \int d\boldsymbol{\varrho}' q(m, \boldsymbol{\varrho}', t) W_{m \to n} (\boldsymbol{\varrho} \to \boldsymbol{\varrho}) -q(n, \boldsymbol{\varrho}, t) \left\{ \sum_{m} \int d\boldsymbol{\varrho}' W_{n \to m} (\boldsymbol{\varrho} \to \boldsymbol{\varrho}') + W_{n} \right\}$$

を仮定する。ここで導入した遷移確率 $w_{m \to n}$ ($\Omega' \to \Omega$) はエキシトン数 mから n への運移と共に、 粒子の進行方向が Ω' から Ω へ変化する確率を表わし、次式で与えられる。

$$w_{m \to n} (\Omega' \to \Omega) = w_{m \to n} \cdot G (\Omega \to \Omega')$$

$$G (\Omega \to \Omega') = \sigma (\Omega \to \Omega') / \int \sigma (\Omega \to \Omega') d\Omega'$$
(21)

このように、角度部分の遷移が他の部分と切離せると仮定し、 $\sigma(\Omega \rightarrow \Omega')$ には核子 – 核子散乱の 激分断面積を用いる。このG($\Omega \rightarrow \Omega'$)は $\Omega \ge \Omega'$ の間の角度にしか依らないことから次の関係式 が成立する。

$$\int G \left(\boldsymbol{\Omega} \rightarrow \boldsymbol{\Omega}' \right) \mathbf{P}_{1} \left(\cos \theta' \right) d\boldsymbol{\Omega}' = \boldsymbol{\mu}_{1} \mathbf{P}_{1} \left(\cos \theta \right)$$
⁽²²⁾

QとQ'の間の角度を[∂]とすると、G(Q→Q')に対する最も簡単な近似は核子-核子散乱の断面積が重心系でほぼ等方的であることから、核内核子のフェルミ運動を無視して核子-原子核の 重心系で

$$G\left(\boldsymbol{\Omega} \to \boldsymbol{\Omega}'\right) = \frac{\cos\theta}{\pi} \cdot \theta\left(\frac{\pi}{2} - \theta\right)$$
⁽²³⁾

と置く。^{5),6)} この場合には22式で定義されたµ₁が簡単に求まる。一方20式の解は求める q (n, Q, t) を多重極展開することにより簡単な形に求まり、⁶⁾,特に100式のような近似をすると、次のように 書ける。

$$\tau(\mathbf{n}, \boldsymbol{\Omega}) = \int_{0}^{\infty} q(\mathbf{n}, \boldsymbol{\Omega}, \mathbf{t}) d\mathbf{t}$$
$$= \tau(\mathbf{n}) \sum_{i} \frac{2i+1}{4\pi} (\mu_{i})^{\frac{1}{2}(n-n_{0}+1)} P_{i}(\cos \theta)$$

このように定義した (n, Q)を用いると、求める2重微分断面積は

$$\frac{d^2 \sigma}{d \epsilon d \rho} = \sigma_{abs} \sum_{n} \tau (n, \rho) \left(\frac{dW}{d \epsilon} \right)_{n}$$
(25)

23式で仮定したように,核内のフェルミ運動を無視する近似に対して, Pauli 原理を考慮しつつ これを取入れる計算も行われて⁷⁾,90°より後方の角分布がかなり変化することが示された。

しかしながらこれ等の取扱いては25式に見られるように τ (n, Ω)の部分には放出エネルギーの 依存性がなく、 $\left(\frac{dW}{d\epsilon}\right)_n$ の中には逆に Ω の依存性がない。物理的には核子 – 核子散乱での放出粒 子のエネルギーと角度は強い相関をもち、高速粒子は前方ピークになり低速粒子は等方分布に近 くなる。この効果を取入れるため、マスター方程式()をさらに拡張して放出粒子の角度 Ω と共に、 そのエネルギー ϵ も同時に指定した場合の確率 q (n, Ω , ϵ , t)を考え、これに対するマスター方 程式

$$\frac{\mathrm{d}q(n, \mathcal{Q}, \varepsilon, t)}{\mathrm{d}t} = \sum_{m} \int \mathrm{d}\mathcal{Q}' \int \mathrm{d}\varepsilon' q(m, \mathcal{Q}', \varepsilon', t) w_{m \to n} (\mathcal{Q}' \varepsilon' \to \mathcal{Q}\varepsilon) -q(n, \mathcal{Q}, \varepsilon, t) \left\{ \sum_{m} \int \mathrm{d}\mathcal{Q}' \int \mathrm{d}\varepsilon' w_{n \to m} (\mathcal{Q}\varepsilon \to \mathcal{Q}'\varepsilon') + W_{n} \right\}$$

から出発する試みもなされている。⁸⁾ここで遷移確率 $w_{n \to m} (\mathfrak{g} \epsilon \to \mathfrak{g}' \epsilon) d\mathfrak{v} d\mathfrak{l} d\mathfrak{g}$ $w_{n \to m} (\mathfrak{g} \epsilon \to \mathfrak{g}' \epsilon') = w_{n \to m} G (\mathfrak{g} \epsilon \to \mathfrak{g}' \epsilon')$

のように仮定され、G($\Omega e \rightarrow \Omega' e'$)については核物質中の核子-核子散乱の2重微分断面積(含 Fermi 運動, Pauli原理)より計算する。この場合には式の形がやや複雑になるので省略するが、 $q(n, \Omega, e, t)$ を多重極展開するテクニックは矢張り有効で、カスケード的な過程を非常に簡単 に計算できる。数値計算の結果は、高速放出粒子の前方の角分布が大きく改善されることを示す。

4. 復合軽粒子の放出

今まで述べた定式化は放出粒子が陽子又は中性子の場合に適用できるが、以下ではd,t,³He, ⁴He 等の複合軽粒子が放出される現象を取扱う。これをエキシトン模型で取扱う試みが文献9で なされたが、高エネルギー複合粒子の断面積の計算値は実験値に比べて1桁以上小さくなった。 この不一致を解消する為の試みが幾つかあるが、物理的に納得できる仮定の下で広いエネルギー 範囲(0~200 MeV 程度)で使用可能なものはなかった。この問題を解決する為に、我々は次の ように考えた。¹⁰⁾

先ず着目する複合粒子を核表面付近の核子で構成する確率F_{1,m}(*)を考える。ここで1は Fermi面以上の粒子の個数,mはFermi面以下の粒子の個数で,1+mが複合粒子の構成核子数 であり、*は放出粒子のエネルギーである。ここで重要なことは従来の取扱いと違って、複合粒 子を構成する際にFermi面以下の核子をも動員する点で、これは問題としている複合粒子の内部 構造を理論の中に取入れることにより可能となる。 a 粒子が放出される場合につき、このF_{1,m} (•) がどのようになるかが図3に示されている。ここでF_{4,0}は4個ともFermi面以上の粒子より a 粒子を作る確率で図より分るように放出 a 粒子のエネルギーが高くなると1に近づく。これは a 粒子の内部運動が一定の波動関数で定まっている為必然的に生じるが、放出エネルギーが低く なると、他の成分 F_{1,m} が値をもつようになってくる。各 F_{1,m}を加えた値 S F_{1,m} はこの図では 1になっており、これは a の基底状態の波動関数が一意的に定まっていて、且つ基底が完全系を なすことに対応している。実際の計算では a 粒子が核表面付近に形成される確率を計算するので

 $\Sigma F_{l,m}(\epsilon) = \text{const} < 1$ 27 となっている。さてこのように計算された $F_{l,m}$ を用いると、エキシトン状態 n から複合粒子放 出の単位時間当りの確率は(1)式の代りに次の形になる。

$$\left(\frac{\mathrm{dW}}{\mathrm{d}\epsilon}\right)_{n} \approx \frac{(2s+1)m \epsilon \sigma_{i\mu\nu}}{\pi^{2} \bar{n}^{2}} \sum_{l,m} F_{l,m} \frac{(\rho_{A-(l+m)+l}(U)^{*})_{n}}{(\rho_{A+l}(E))_{n}}$$
(23)

ここで残留核の終状態の状態密度 P.(U) は次式で与えられる。

$$\rho_{A^{-}(1+m)+1}(U)_{n}^{\bullet} = \rho_{p-1,h}(U)$$
(29)

23式より分るように、従来の模型とは異なり Fermi面以下の粒子のpick -up 的な過程を導入す る点で新しく、且つこの新しい項は29より分るように状態密度の点で全部の核子が Fermi面以上 の項に比べて有利になる。実際この過程を入れない場合には複合粒子の放出は実験値に比べて大 巾に小さいが⁹⁹, これを取入れると結果は一変する。その1例として図4に¹²⁰ Sn +p 反応に於け る陽子とα粒子の放出スペクトルの実験値と計算値の比較が示されている。この図より分るよう に従来の計算では (p, a)反応の断面積が実験値に比べて大巾に不足していたのが⁹⁹ 著しく改善 されている様子が分る。このような改善は種々の標的核及び種々の入射エネルギーに対して一様 に起り、どの場合もかなり良い実験値との一致が見られた。¹⁰⁰計算の中では (p, a)反応の場合, 2p - 1h 状態から F_{1,3}成分を通して放出される部分が最大の寄与を与えている。最近,¹¹⁰ 同じ模型 による計算が a 放出だけでなく、d、t、³He 放出についても計算され、その結果これらの複合粒 子放出に対してもパラメータを調節することなしに広いエネルギー範囲で種々の標的核につき、 計算値は実験値を良く再現することが示された。

REFERENCES

- 1) Bertrand F.E. and Peele R.W. : Phys. Rev., <u>C8</u>, 1045 (1973).
- 2) Griffin J.J. : Phys. Rev. Lett., 17, 478 (1966).
- 3) Ericson T. : Adv. Phys., 9, 425 (1960).
- Kikuchi K. and Kawai M. : "Nuclear Matter and Nuclear Reactions", North Holland, Amsterdam (1968).
- 5) Mantzouranis G., Weidenmüller H.A. and Agassi D. : Z. Phys., <u>A276</u>, 145 (1976).
- 6) Yoshida S. : Proc. IPCR Sym. "Macroscopic Feature of Heavy-Ion Collisions and Pre-equilibrium Process", Hakone, IPCR Cyclotron Progress Report Supplement 6, 359 (1977).
- 7) Ziyang S. et al. : Z. Phys., A305, 61 (1982).
- 8) Iwamoto A., and Harada K. : to be published.
- 9) Cline C.K. : Nucl. Phys., A193, 417 (1972).
- 10) Iwamoto A. and Harada K. : Phys. Rev., <u>C26</u>, 1821 (1982).
- 11) Sato K., Iwamoto A. and Harada K. : to be published.

				複合核過程					前平衡	直接過程					
角	5	,	布				様		ф	間	前	方	ピ		2
エネ	いギー	-スペク	フトル		連		続		連	続	離		散		的
反	応	機	構	統	計	的	平	衡		59	非		平		衡
ſ				複	難	な	配	位		间	間	単	な	配	位
反	応	時	間		長		い		中	間	短				い
理	₽	à	î	Ha	Hauser — Feshbach				excition	DWBA, CC					

表1 核反応の分類

図1 62 MeVの陽子を⁵⁶ Fe 標的核(散乱角 37°)及び ⁵⁴ Fe と⁶⁰ Ni 標的核(散乱角 40°)に当てた場合の放 出陽子のスペクトル。文献1より。

- 55 -

図2 核子入射の場合に、2体の核力により系が平衡化する 過程を概念的に示す。図中の矢印は遷移確率の大きさの 程度を表わしている。

図3 α粒子の形成確率を放出エネルギ ーEαの関数として示す。文献10) より

図4 62 MeVの購子を¹²⁰ Sn 標的核に 当てた場合の陽子及び a 粒子のスペ クトルの実験値及び計算値(実練) 文献 10) より

討 論

Q:岩崎 信(東北大工)

Formation factor の計算法を簡単に説明して欲しい。

A:岩本 昭(原研)

複合粒子の内部波動関数を調和振動子型に仮定して、内部変数に対する位相空間の体積を特定の条件(例えば1粒子はFermiエネルギー以上で他の3粒子はFermiエネルギー以下)の下で計算することにより、状態数を計算する。実際の計算にあたってはさらに近似が必要で、それについては、文献10)を参照にすること。

Q: 飯島俊吾(NAIG)

Pre-equilibrium 過程の絶対値は、特別のパラメータ内に決るのか。そのさい、複合核断 面積との関係はどうなるのか。また、Compound nucleus process の大きさは、差し引きで 決るのか。

A:岩本 昭(原研)

前平衡過程の計算では実際には多くのパラメータが入っている。我々の立場は従来の模型で (P, P') 反応をあわせるようにして,決られたパラメータの値を固定して,それ以外にほぼ パラメータなしに計算される形成確率F_{1,m}を導入することにより,複合粒子のエネルギース ペクトルをあわせた。また我々は当面高エネルギー粒子の放出のみを考えていたので,協式の ような近似のもとに計算したため,複合核反応の部分は計算できていない。今後は、協式のよ うな仮定を取り除き,複合核反応の部分も含めて統一的に計算することを考えている。

Q:字野正宏(早大)

この理論では, 放出複合粒子の大きさは α 粒子程度までが適用可能範囲なのか。また, 重 イオン反応への拡張はどうなのか。

A:岩本 昭 .

アイデアそのものはより重い複合粒子放出の場合にも同じく適用できるが、実際に形成確率 F_{1,m}を計算することが非常に困難であり、 全く別の近似法を開発する必要がある。重イオン ン反応で、例えば α 粒子が放出される現象にこの理論を適用することは可能であり、実際今後 そのような計算を行いたいと考えている。

4.2 理論の内在誤差を考慮した新しい統計法

字野 正宏*

測定値の誤差が広範囲にわたるような実験データを、より適切に取り扱い得る新しい統計法に ついて述べる。とくに1例として、実験データに合わすべき理論式が1次式である場合について、 新統計法の定式化を説明し、簡単な計算例を紹介する。

A New Statistical Method with Consideration of

the Intrinsic Error of Theory

Masahiro UNO*

A new statistical method is discussed. This method enables us to deal justly with experimental data with a large variety of errors. As an example, its formulation is explained for the case in which the theoretical expression to be fitted to experimental data is a linear function, and simple model-calculations are presented.

1. はじめに

何らかの関数的関係にあると考えられる2つの変数x,yについて、N個の測定点($x_i, y_i \pm e_i$)($i=1, 2, \dots, N$)が与えられたとき、これらのデータをもとにして、関係式y=f(x)の最も確からしいと推定される解析的表示を求める(すなわち曲線をあてはめる)ことが、我々の問題である。ここでは簡単のため、携座標xには誤差がなく、縦座標yだけに誤差。があるものとし、さらに。は標準偏差を表すものとする。また、f(x)の関数形は、理論的考察から少くとも近似的には定まっているものとすれば、問題はf(x)に含まれるパラメータの最確(良)値を、N個のデータから決定することに帰着する。

このような問題に対しては最小2乗法が多く用いられるが、さらに与えられたデータの性格により、通常は次の2通りの方法が採用されている。

等荷重最小2乗法: ^N_i (y_i-f(x_i))² を最小化。

② 測定誤差の逆2乗の重み付最小2乗法:

N_i
$$\frac{(y_i - f(x_i))}{e_i^2}$$
を最小化

* 早稲田大学, Waseda University

①はデータの精度が比較的揃っているときに有効、②はデータの精度が不揃い(ただし、誤差・ がオーダーまでは違わない程度)のときに有効と考えられる。ところが実際の問題の中には、デ ータの精度が不揃いでしかも誤差・がオーダーまで違っているような場合もある。この種の問題 に対しては、②もあまり有効な方法とは言えなくなる。何故なら、②では極端に精度の良いデー タだけが重視されて、誤差の大きいものは事実上無視されてしまうからである。誤差の大きいデ ータが無視されるのは、一見合理的なように思われるが、場合によっては不都合なときもある。 例えば、我々が質量公式研究の対象としている原子核質量データでは、安定核領域から遠く離れ た核種のデータは、多少誤差が大きくても質量公式に貴重な新しい情報をもたらしてくれるとい う利点が有り、誤差だけの問題では捨て難いのである。一方、誤差の小さいデータが重視される のも合理的なように思われるが、これも不都合なときがある。例えば、極端に強気な実験家がい て誤差を不当に小さく見積ったとすると、理論式のパラメータ値はこのデータに不当に強く支配 されてしまうのである(実験データの誤差がかなり主観的に見積もられることは、大いに有り得 ることである)。

上のような問題に対する適切な統計法が従来は見当らなかったので,研究者によってはデータ の誤差を一律に一定だけ増して用いるような方法をとっている場合もあるが,これでは少し勝手 過ぎるように思われる。そこで,この種の問題をもっと合理的に取り扱う方法はないかというの が,我々が新統計法を考案するに至った動機である。

2. 新統計法

2.1 基本的な考え方

新統計法において最も本質的なことは、理論式y =f(x)の中のパラメータ値がどんなにうまく 還ばれたとしても、また実験精度が向上してデータの誤差がどんなに小さくなったとしても、な お残る理論式の誤差を考慮する点である。このような誤差を理論の内在誤差(intrinsic error) と呼び、αと記すことにする。内在誤差αの存在は、厳密な意味での正確な理論を除くすべての 近似理論にとって必然的であるが、このような誤差の大きさを純理論的に評価することは、多く の場合困難である。そこで、この内在誤差αを理論内のパラメータとして導入し、この値もデー タとの比較によって決定しようというのが、新統計法の意図するところである。より具体的なイ メージは、上記①、②のような通常の統計法では、N個のデータ点と合わすべき理論式は曲線で あるが、新統計法では、それがFig.1に示されているような内在誤差α程度の幅をもった帯状の 筋となることである。

理論式f(x)の中のパラメータの最確(良)値および内在誤差 α の値の決定法は,確率論の原 理に従って定式化される。ここでは1例として,理論式が1次式f(x) = ax + bの場合の具体的 な定式化を次の節^{¬¬}与える。一般に,理論式がより高次の場合に対しても,定式化は全く同様の 手続きに従って遂行することができる。 2.2 定式化ー理論式が1次式の場合-

N個のデータ点 $(x_i, y_i \pm \epsilon_i)$ (i=1, 2, ..., N) に, 理論式 y = ax + b で表される直線をあ てはめる場合の定式化を説明する。

上述の基本的考え方に従って、この理論式には内在誤差αが付随しているものとする。ここで、 •_i, αはいずれも標準偏差を表すものとする。まず始めに、データ y_iに対応する量の真の値を考 え、これを Y_iと書く。これに関して我々が知り得ることは、 次の 2 つの確率的情報だけである。 1 つは、真の値 Y_iが理論値 ax_i+b のまわりに標準偏差αで分布しようとする傾向をもっている ことであり、これは誤差関数

$$\boldsymbol{\phi}_{th} (Y_i; a, b, \alpha) = \frac{1}{\sqrt{2\pi} \alpha} \exp \{-(Y_i - ax_i - b)^2 / 2 \alpha^2\}$$
(1)

によって表される。もう1つは,真の値Y_iは測定値y_iのまわりに標準偏差 ε_i で分布しようとす る傾向をもっていることであり,これは

$$\boldsymbol{\varphi}_{\exp}(\mathbf{Y}_{i};\mathbf{y}_{i}, \epsilon_{i}) = \frac{1}{\sqrt{2\pi} \epsilon_{i}} \exp\{-(\mathbf{Y}_{i} - \mathbf{y}_{i})^{2}/2 \epsilon_{i}^{2}\}$$
(2)

によって表される。これらを用いると、真の値が $Y_i \sim Y_i + dY_i$ の範囲に見出される確率は積 $\boldsymbol{\theta}_{th}$ ・ $\boldsymbol{\theta}_{exp} dY_i$ で与えられ、従ってN個のデータ ($x_i, y \pm \epsilon_i$)の組が生起する確率は

$$\begin{split} \overline{\Psi}(\mathbf{y}_{i}'\mathbf{s}; \boldsymbol{\epsilon}_{i}\mathbf{s}, \mathbf{a}, \mathbf{b}, \boldsymbol{\alpha}) \\ &= \frac{N}{i\underline{\Pi}} \left[\int_{-\infty}^{\infty} \boldsymbol{\varphi}_{th} \left(\mathbf{Y}_{i}; \mathbf{a}, \mathbf{b}, \boldsymbol{\alpha} \right) \boldsymbol{\varphi}_{exp} \left(\mathbf{Y}_{i}; \mathbf{y}_{i}, \boldsymbol{\epsilon}_{i} \right) d\mathbf{Y}_{i} \right] \\ &= \left\{ \frac{N}{i\underline{\Pi}} \frac{1}{\left(2\pi \left(\boldsymbol{\epsilon}_{i}^{2} + \boldsymbol{\alpha}^{2} \right) \right)^{1/2}} \right\} \cdot \exp \left\{ -\frac{N}{i\underline{\Pi}} \frac{\left(\mathbf{y}_{i} - \mathbf{ax}_{i} - \mathbf{b} \right)^{2}}{2\left(\boldsymbol{\epsilon}_{i}^{2} + \boldsymbol{\alpha}^{2} \right)} \right\} \end{split}$$
(8)

で与えられる。

次に、この確率すを用いて、理論式中のパラメータ a, b の最確(良)値 a_0 , b_0 および内在誤 差 α の値を決定する。最確値 a_0 b_0 に関しては、確率論の原理に従って確率すを最大にする a, b の値として求められる。すなわち、

$$I(a, b, \alpha) = \sum_{i=1}^{N} \frac{(y_i^{-}ax_i^{-}b)^2}{\epsilon_i^2 + \alpha^2}$$
(4)

を最小化することと同等であり、正規方程式 $\partial I / \partial a = 0$ 、 $\partial I / \partial b = 0$ を解いて具体的な表式が次のように得られる。

$$a_0 = \frac{2SV - TU}{4SW - T^2}, \ b_0 = \frac{2UW - TV}{4SW - T^2}$$
 (5)

ててで

$$S = \frac{1}{2} \prod_{i=1}^{N} \frac{1}{\epsilon_{i}^{2} + \alpha^{2}}, \quad T = \prod_{i=1}^{N} \frac{x_{i}}{\epsilon_{i}^{2} + \alpha^{2}}, \quad U = \prod_{i=1}^{N} \frac{y_{i}}{\epsilon_{i}^{2} + \alpha^{2}},$$
$$V = \prod_{i=1}^{N} \frac{x_{i}y_{i}}{\epsilon_{i}^{2} + \alpha^{2}}, \quad W = \frac{1}{2} \prod_{i=1}^{N} \frac{x_{i}^{2}}{\epsilon_{i}^{2} + \alpha^{2}}$$

である。ここで注意すべき点は、上の a_0 , b_0 の式はいずれも内在誤差 α を含んでいることである。つまり、 α の値が決まっていれば a_0 , b_0 が上式で与えられるということであるから、これらの式と内在誤差 α を決定する方程式は無矛盾、すなわち連立方程式として解かれねばならないのである。そこで次に α を決定する方程式について述べる。これについても確率 σ を最大にする値として求められそうだが、この方法は今の場合有効ではない。我々はむしろ、内在誤差 α についてはその本来の意味から出発して、次のように自己無矛盾的に決定する方法を採用する。はじめに、 $\sum_{i=1}^{N} [Y_i - ax_i - b]^2$ という量の期待値を次のように計算する。

$$< \Sigma 4 Y_{i}^{2} >$$

$$= \frac{\int_{-\infty}^{\infty} da \int_{-\infty}^{\infty} db \int_{-\infty}^{\infty} \cdots \int_{i}^{\infty} \sum_{i=1}^{N} (Y_{i} - ax_{i} - b)^{2} H \prod_{j=1}^{N} dY_{j}$$

$$= \frac{\int_{-\infty}^{\infty} da \int_{-\infty}^{\infty} db \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} H \prod_{j=1}^{N} dY_{j}$$
(6)

ここて分布関数Hは

$$H = \prod_{j=1}^{N} \left[\Phi_{tb} \left(Y_{j}; a, b, \alpha \right) \Phi_{exp} \left(Y_{j}; y_{j}, \varepsilon_{j} \right) \right]$$

で与えられる。この< SAY²>は、真の値と理論値との残差平方和に相当するから、内在誤差の 本来の意味から

 $\langle \Sigma \Delta Y_{i}^{2} \rangle = N \alpha^{2}$ (7)

と置くのは合理的である。この式は両辺にαを含み、従ってαの方程式であるから、これをαの 決定方程式として採用する。既に述べた通り方程式(5)はαを含み、また方程式(7)は a₀, b₀を含ん でいる。従って、これらを連立方程式として解くことにより、理論式中のパラメータの最確(良) 値 a₀, b₀ および内在誤差αの値が同時に決定される。

以上が定式化の骨子であるが、新統計法を首尾一貫したものとするために、さらにもう少し詳細な議論が必要である。上の(7)式で、我々は α^2 にデータの個数Nをそのままかけた。通常の統計解析ではN-(パラメータの個数)をかけることが多く行われるが、我々の新統計法ではパラメータ値決定のために必ずしもパラメータの個数だけデータが使われたかどうか明らかでなく、従って、N-(パラメータの個数)をかけるという処方に合理性が見出されないからである。そこで、これに代わる処方として、 α^2 にはNをかけ、代わりに(6)式の $<\Sigma 4Y_i^2 >$ の計算においてY_iについてだけでなくパラメータ a, bに関しても平均をとった。これはパラメータ値にも不定性を認める立場であるが、この立場に立つと、理論式 y =: ax + bにはすでに述べた内在誤差だけでなく、パラメータの不定性から生じる誤差も付随していると考えるのが合理的である。このような誤差を内在誤差(intrinsic error)と対比して外在誤差(extrinsic error)と名付ける。外在誤差は確率更をパラメータ a, bの分布と見て

$$\times \exp\left\{-\left(2+\frac{T}{\sqrt{SW}}\right)u^{2}-\left(2-\frac{T}{\sqrt{SW}}\right)v^{2}-\frac{N}{i^{2}-1}\frac{\left(y_{i}-a_{0}x_{i}-b_{0}\right)^{2}}{2\left(\epsilon_{i}^{2}+\alpha^{2}\right)}\right\}$$
(8)

と書き直すことにより求めることができる。ただしここでは変数変換(a,b)→(u,v):

$$\begin{cases} u = \frac{1}{2} \left(\sqrt{W} \left(a - a_0 \right) + \sqrt{S} \left(b - b_0 \right) \right) \\ v = \frac{1}{2} \left(\sqrt{W} \left(a - a_0 \right) - \sqrt{S} \left(b - b_0 \right) \right) \end{cases}$$
(9)

によって分布の正規化(分散行列の対角化)を行った。上のずからu, vの標準偏差。, v, が

$$\sigma_{u} = \left[2\left(2 + \frac{T}{\sqrt{SW}}\right) \right]^{-1/2} , \quad \sigma_{v} = \left[2\left(2 - \frac{T}{\sqrt{SW}}\right) \right]^{-1/2}$$

と与えられる。一方, u, vを用いて理論式を書き直すと

$$\mathbf{y} = \left(\frac{\mathbf{x}}{\sqrt{\mathbf{W}}} + \frac{1}{\sqrt{\mathbf{S}}}\right)\mathbf{u} + \left(\frac{\mathbf{x}}{\sqrt{\mathbf{W}}} - \frac{1}{\sqrt{\mathbf{S}}}\right)\mathbf{v} + \mathbf{a}_0\mathbf{x} + \mathbf{b}_0 \tag{1}$$

と表されるから,外在誤差は

$$d(\mathbf{x}) = \left[\left(\frac{x}{\sqrt{W}} + \frac{1}{\sqrt{S}} \right)^2 \sigma_u^2 + \left(\frac{x}{\sqrt{W}} - \frac{1}{\sqrt{S}} \right)^2 \sigma_v^2 \right]^{1/2}$$
 (2)

と求められる。

さらに、新統計法では理論式 y =ax+b による計算値 y に付与すべき理論誤差が

$$\delta y(x) = \{ \alpha^2 + [\Delta(x)]^2 \}^{1/2}$$
 (13)

で与えられることも重要な特長の1つである。

2.3 模擬データによる計算例

すでに述べた通り、新統計法は $[\alpha^2 + \epsilon, 2]^{-1}$ を重みとする最小2 乗法になっている。これから、 極限の場合として通常の統計法に移行することを容易に見ることができる。すなわち、 $\alpha \rightarrow \infty$ で 等荷重最小2 乗法と一致し、 $\alpha \rightarrow 0$ で測定誤差の逆2 乗の重み付最小2 乗法と一致する。ここで はこれらの統計法を比較するため、8 個の模擬データを用いてこれらに直線をあてはめる問題に 対して、3 種の統計法による計算結果を図に示した。Fig.2-a には等荷重最小2 乗法による結 果、Fig.2-b には測定誤差の逆2 乗の重み付最小2 乗法による結果、およびFig.2-cには新統 計法による結果が与えられている。Fig.2-a では、誤差棒を見なければ大変良い直線が引かれ ているように見えるが、誤差棒を意識するとやや不公平な感を免れない。またFig.2-bでは、中 央部の極端に精度の良い2、3 個のデータだけに結果が支配されてしまっている。それに対して Fig.2-c では、かなり合理的な幅をもった直線が引かれているように見られるがいかがであろう か。諸賢の評価にまつこととしたい。

3. まとめ

以上述べて来たように、新統計法は精度が不揃いのデータを、できる限り公平に取り扱うこと

を可能にしてくれるものである。さらに新統計法では,理論式 y =f(x) によって計算された理 論値 y のもつ誤差を, (引式のような形で与えることができることも利点の1つである。これによ って,理論式の内挿あるいは外挿によって未知量を予測する場合 に,予測値に信頼度まで付与で きるため,より有効な予測が可能となる。

最後に,幅(信頼帯)を考慮する統計法として通常行われる検定理論(X²-検定など)と新統 計法の違いについて触れておこう。通常の検定理論では、まず理論式中のパラメータの最良値を 何らかの統計法で決定し、しかる後にその理論式の信頼帯を検定するという手続きがとられる。 すなわち,最良値と信頼帯の間の相関は無視され、それぞれ独立に決定される訳である。これに 対して,新統計法では最良値と信頼帯(内在誤差)の相関が考慮され、両者が consistent に決 定されることが、重要な相違点である。

なお,新統計法を原子質量公式研究に適用した場合の結果が,参考文献1),2)にあるので,そ ちらも参照して頂ければ幸いである。

参考文献

- 1) M. Uno and M. Yamada, Prog. Theor. Phys. 65(1981), 1322.
- M. Uno, M. Yamada, Y. Ando and T. Tachibana, Bulletin of Science and Engineering Research Laboratory, Waseda University No. 97 (1981), 19.

JAERI-M 83-041

Fig. 1 Meaning of the intrinsic error X attached to the theoretical expression, $y \approx f(x)$.

Fig. 2-a Model-calculation with equally weighted least-squares method.
JAERI-M 83-041

Fig. 2-b Model-calculation with ordinary weighted least-squares method.

Fig. 2-c Model-calculation with the present method. The resulting intrinsic error $\alpha = 21$.

討 論

Q: 飯島俊吾(NAIG)

こう理解して良いか。Fitting 式に巾を持たせて実験値に fit し,実験値の誤差を含めて巾 を再評価して, consistentにそれを行っている。

A: 宇野正宏(早大)

その通りだと思う。

- Q:竹田敏一(阪大)
 - (1) αの物理的意味について;αは信頼度と関連していると考えてよいか。
 - (2) 信頼度を例えば 95%という風に指定できるのか。

A: 宇野正宏(早大)

(1) 信頼度とαは定数倍のような関係で,直接関連している。

(2) 我々の定式化では、内在誤差αを標準偏差にとっているが、信頼度を例えば 95%としたければ、αに適当な定数をかけたものを内在誤差(信頼帯)と見直せばよい筈である。

Q:植之原雄二(九大)

仮に,理論に誤差がなく,データの誤差棒もデータのばらつきを正しく表わしているならば, $\alpha=0$ であるので,(7)式は $< \Sigma A Y_i^2 >= 0$ となる筈であるが,(6)式の定義で $< \Sigma A Y_i^2 >= 0$ となるか。

A: 宇野正宏(早大)

指抗されたような場合には、 α の決定方程式である(7)式が確かに $\alpha = 0$ だけを解として 持ち、 そのときには(6)式中の分布関数 H が δ 関数となる。また、 $Y_i = ax_i - b = 0$ だから $\langle \Sigma \Delta Y_i^2 \rangle = 0$ となる。

Q:加藤恭義(FBEC)

この統計法は Deming の最小2 乗法と考え方においてどこが違うか。

A: 宇野正宏(早大)

Deming の内部分散(internal varience)および外部分散(external varience)の考え 方は、それら2つの分散の consistencyが達成されたとき、我々の統計法とほぼ同等なものに なりそうだが、この consistency について Demingは言及していない。また、このときの内部 分散、外部分散と我々の内在誤差、外在誤差とは異るものであるから、我々は intrinsic error, extrinsic error という用語を用いて、英語では区別している。 Q:植之原雄二(九大)

内在誤差 α と各実験データの誤差を合成した量 $(s_i^2 + \alpha^2)^{-1}$ を各実験データ y_i の重みとして いるが、この場合、仮に実験データの共分散 $\langle dy_i \rangle \ge 0$ でも、内在誤差 α が各 x_i 点で独 立とは必ずしも仮定できない。従って、厳密に言うと最小にする量は $\sum_{s_1^2+\alpha^2}^{N} \frac{(y_i - ax_i - b)^2}{s_i^2 + \alpha^2}$ とは ならない。各 x_i 点での α の相関についてはどのように考えているか。

A: 字野正宏(早大)

αの相関を考慮する定式化も可能と思うが、非常に複雑なものとなるだろう。我々の立場では、もしこの相関が大きいならば、それは始めに選んだ理論式の関数形が不適当であったと考え、改めて関数形を選び直せということになる。

4.3 一般化摂動論による感度解析

-FBRボイド反応度への適用-

竹田 敏一*

一般化摂動論に基づき2次元体系で感度係数を計算するコードSAGEPの内容を説明し、高速 臨界集合体の核特性の感度係数計算結果について議論する。中性子束分布及び固有値は拡散方程 式を満たすものとし、感度係数も拡散理論に基づき導出する。一般化中性子束並びに一般化随伴 中性子束を差分方程式により計算する際、解の発散をさける方式の有効性について数値的に調べ る。高速臨界集合体ZPPR-9 炉心の固有値、Na ボイド反応度、反応率比、反応率分布に対す る感度係数をJENDL-2B-70 群断面積セットを用い計算する。 JENDL-1 及び JENDL-2B フ ァイルの²³⁹Pu (n,f)断面積の差によりNa ボイド反応度は 15%程度異なる事を示し、0.5~2 KeV における²³⁹Pu (n,f)断面積が高速炉の核特性に重要な役割を持つ事を明らかにする。

Sensitivity Analysis Based on Generalized Perturbation Theory ---- Application to Sodium Void Worth in FBRs

Toshikazu Takeda*

The calculational procedure of a SAGEP code is described which calculates sensitivity coefficients in a two-dimensional model by means of generalized perturbation theory, and sensitivity coefficients calculated in a fast critical assembly are discussed. Sensitivity coefficients as well as neutron fluxes and eigenvalues are calculated on the basis of diffusion theory. The applicability of a round-off-error elimination method is numerically tested in calculating generalized normal and adjoint fluxes.

Sensitivity coefficients for eigenvalue, sodium void worth, reaction rate ratio, and reaction rate distribution in a fast critical assembly ZPPR-9 are calculated by using the JENDL-2B-70 group cross section set. It is seen that the difference between JENDL-1 and 2B 239 Pu(n,f) cross sections in energy range from 0.5 to 2 KeV produces a difference of 15 % in calculated sodium void worth, and the cross section in that energy range plays an important role in neutronic properties in FBRs.

* 大阪大学工学部,

1. 酱 嘗

原子炉炉内核特性を精度よく計算するためには、臨界集合体の解析等により得られた計算値と 測定値の比C/E 値を有効に活用する必要がある。C/E 値は使用される断面積データ並びに計 算法に依存するので,各微視的中性子断面積に対する炉心特性量の感度係数が与えられておれば、 断面積ファイルの見直しあるいはアジャストメントを行う事も可能になる。感度係数は異なる2 種の断面積ですりを用いた輸送計算あるいは拡散計算の結果の差より直接計算できるが、変化す る断面積の種類が数多くある場合、即ち種々の核種の各エネルギー群ごと各反応タイプごとの断 面積を変化さす場合には計算時間が膨大になる。一般化摂動論を用いると着目する核特性量が定 まると一般化中性子束分布及び一般化随伴中性子束分布を一旦計算すれば、各断面積に対する感 度係数は断面積変化により生じる中性子束分布の変化を直接計算しなくても精度よく求まるので 計算時間の短縮につながる。また、1次元モデルによる感度係数は炉中心から離れた核特性量を 取り扱う際にはモデル化に伴なう誤差が生じるため精度の点で使用の限界がある。現在の大型計 算機の計算のスピードアップを考えると、2次元体系で感度係数を作成する方がより望ましい。

ここでは臨界性,中心反応率比,反応率分布,各種反応度価値の断面積変化に対する感度係数 を2次元体系で一般化摂動論に基づき計算するSAGEPコードの内容並びに高速炉における感度 係数計算結果について議論する。計算は高速臨界集合体 ZPPR-9 炉心の2次元RZモデルで行い, 臨界性,中心反応率比,Naボイド反応度価値の感度係数をJENDL-2B-70群断面積セット⁽¹⁾ を用い求めた。Naボイド反応度,臨界性に対するJENDL-1,2BファイルによるC/E値の差 を感度係数を用いて議論する。

2. 感度係数に対する基礎方程式

中性子束及び随伴中性子束は次式で示される拡散方程式並びにその随伴方程式の解として与え られる。

$$(A-F) \phi \equiv P\phi = 0 \tag{1}$$

(2)

 $(\mathbf{A}^{\bullet} - \mathbf{F}^{\bullet}) \phi^{\bullet} \equiv \mathbf{P}^{\bullet} \phi^{\bullet} = \mathbf{0}$

A, F は演算子 A, F の随伴形であり, A, F は具体的には次式で定義される。

 $\mathbf{A}\phi = -\mathbf{\nabla} \cdot \mathbf{D}^{\mathbf{g}} \mathbf{\nabla} \phi^{\mathbf{g}} + (\Sigma_{\mathbf{x}}^{\mathbf{g}} + \Sigma_{\mathbf{x}}^{\mathbf{g}}) \phi^{\mathbf{g}}$

$$-\sum_{g \neq g} \Sigma_{s}^{g' \rightarrow g} \phi^{g'}$$
(3)
$$F \psi = \chi^{g} \Sigma_{s} \nu \Sigma_{s}^{g'} \phi^{g'} k_{eff}$$
(4)

(8)、(4)式に用いられた拡散パラメータは通常よく用いられているのでその説明は省略する。

感度係数を計算しようとする核特性量のうち中心反応率比,反応率分布は中性子束と断面積と の積をエネルギーについて積分したいわゆるリニヤーな積分量であるが,k_{eff}および各種反応度 価値の計算式には随伴中性子束が導入されておりパイリニヤーな積分量となっている。ここでは, パイリニヤー積分量に対する感度係数計算法について述べる。 k_{eff}および各種反応度価値は一般に次式で表される。

$$R = \frac{\langle \phi^* H_1 \phi \rangle}{\langle \phi^* H_2 \phi \rangle}$$
(5)

ここで H₁, H₂は断面積に依存した演算子であり、ブラケットは空間及びエネルギーについての積 分を示す。いま断面積が $S \rightarrow S + \delta S$ に変化した場合の中性子束並びに随伴中性子束の変化分を $\delta \phi$, $\delta \phi^{\circ}$ と書くと、Rの変化 δR は次式により与えられる。

$$\frac{\delta R}{R} = \left\{ \frac{\langle \phi^* \delta H_1 \phi \rangle}{\langle \phi^* H_1 \phi \rangle} - \frac{\langle \phi^* \delta H_2 \phi \rangle}{\langle \phi^* H_2 \phi \rangle} \right\} + \langle \delta \phi \left\{ \frac{H_1^*}{\langle \phi^* H_1 \phi \rangle} - \frac{H_2^*}{\langle \phi^* H_2 \phi \rangle} \right\} \phi^* \rangle + \langle \delta \phi^* \left\{ \frac{H_1}{\langle \phi^* H_1 \phi \rangle} - \frac{H_2}{\langle \phi^* H_2 \phi \rangle} \right\} \phi \rangle$$
(6)

(6)式で δ φ • δ φ^{*} のような 2 次の 微小量は無視した。(6)式の第1項は断面積の変化による演算子 Hi 並びに Ha の変化を直接表しており,第2項及び第3項は中性子束及び随伴中性子束の変動に よる寄与を示している。この第2項及び第3項を一般化中性子束及び一般化随伴中性子束を用い て書き換える。一般化中性子束Γを次式の解として定義する。

$$P\Gamma = \frac{H_1 \phi}{\langle \phi^* H_1 \phi \rangle} - \frac{H_2 \phi}{\langle \phi^* H_2 \phi \rangle}$$
(7)

ここでPは(1)式で定義される拡散演算子である。一般化随伴中性子束Γ^{*}は次式により定義される。

$$P^{*}\Gamma^{*} = \frac{H_{1}^{*}\phi^{*}}{\langle \phi^{*}H_{1}\phi \rangle} - \frac{H_{2}^{*}\phi^{*}}{\langle \phi^{*}H_{2}\phi \rangle}$$
(8)

(7),(8)式を(6)式に代入し,

.

 $P\delta \phi = -\delta P\phi \tag{9}$

$$\mathbf{P}^* \boldsymbol{\delta} \boldsymbol{\phi}^* = - \boldsymbol{\delta} \ \mathbf{P}^* \boldsymbol{\phi}^* \tag{1}$$

なる関係式を用いると 限は以下のようになる。

 $\delta \mathbf{R} / \mathbf{R} = <\phi^* \, \delta \, \mathbf{H}_1 \, \phi > / <\phi^* \mathbf{H}_1 \, \phi >$

 $\prec \phi^* \delta \operatorname{H}_2 \phi > \not < \phi^* \operatorname{H}_2 \phi >$

 $- < \varGamma^* \delta \operatorname{P} \phi > - < \varGamma \delta \operatorname{P}^* \phi^* >$

(LI)

(1)式が一般化摂動論に基づく感度係数計算の基礎式であり、着目する核特性量が定まると一般化 中性子束及び一般化随伴中性子束は(7)、(8)式により計算される。これらは断面積の変化に依存せ ず感度係数の計算では δ H₁, δ H₂, δ P, δ P^{*}のみを各断面積の変化に合わせて変えればよいの で、(1)式は多数の断面積に対する感度係数の計算に通している。

一般化中性子東Гは(7)式で定義されるが,(1)式により分かるように演算子Pは特異演算子であ るため、Pの逆演算子を用いて「を計算しようとすると解は発散してしまう。そこで以下のよう にして一般化中性子束を求める。まづ、演算子Pを(1)式に示されるようにA、Fで書きあらわし 核分裂をn回引き起こして生じる一般化中性子束をL。と書けばL。は以下の式を満たす。

$$A \Gamma_0 = H_1 \phi / \langle \phi^* H_1 \phi \rangle - H_2 \phi / \langle \phi^* H_2 \phi \rangle$$

$$A\Gamma_{n} = F\Gamma_{n-1} \tag{3}$$

この時、一般化中性子束は

$$\Gamma = \sum_{n=0}^{\infty} \Gamma_n \tag{4}$$

により計算される。 Γ_n ($n \rightarrow \infty$)は0 に収束する事が理論的に証明されており,実際的にも $n \ge 10$ 項まで取れば十分に精度のよい解が得られる。 Γ_n の数値計算の際に生じる誤差を取り除くため次 式の操作を行う。

$$\Gamma_{a} = \Gamma_{a} - \phi < \Gamma_{a} F^{*} \phi^{*} > / < \phi F^{*} \phi^{*} > \qquad (13)$$

(時式を用いると(2)式右辺のソース項を差分化する際に近似を用いても感度係数は十分な精度で求 められる。この事をNaボイド反応度に対する²³⁹ Pu(n,f)断面積の感度係数計算を例として 説明する。Naボイド反応度計算では(2)式右辺第1項の分母は

$$\langle \phi^* H_1 \phi \rangle = \sum_{g} \int d\vec{r} \{ \Delta D^g \text{grad} \phi^{*g} \text{grad} \phi^g + \phi^{*g} (\Delta \Sigma_{g}^{g} + \Delta \Sigma_{r}^{g}) \phi^{g} - \phi^{g} \sum_{g' \neq g} \Delta \Sigma_{g}^{g' \rightarrow g} \phi^{*g'} \}$$
(6)

(17)

(1**8**)

(19)

ø

となる。ここでムはボイドになる事による断面積変化を示す。分子を次の方式1で計算する場合 には40式の右辺をSとすれば数値的に

<∲*S >≠0

となり、方式2で計算すると

となる。

方式1:
$$\int_{V_{i}} d\vec{r} H_{i} \phi = -\Delta D_{i}^{g} \int_{V_{i}} d\vec{r} p^{2} \phi^{g}$$

$$+ (\Delta \Sigma_{ai}^{g} + \Delta \Sigma_{ri}^{g}) \phi_{i} V_{i}$$

$$- \sum_{g' \neq g} \Delta \Sigma_{si}^{g' \rightarrow g} \phi_{i}^{g'} V_{i}$$

$$\vec{j} = - \int_{V_{i}} ds (\vec{n} \cdot \Delta J)$$

$$+ (\Delta \Sigma_{ai}^{g} + \Delta \Sigma_{ri}^{g'}) \phi_{i} V_{i}$$

$$- \sum_{g' \neq g} \Delta \Sigma_{si}^{g' \rightarrow g} \phi_{i}^{g'} V_{i}$$

但し 4J は領域 V₁ がボイドになった事による中性子流の変化分であり、(4)とぬ式の主な違いはボ イド領域外では(4)式の値は零となるが、(4)式では石辺第1項がボイドに接する領域で零にならな い事である。Table 1 に方式1,2 により²³⁹ Pu (n,f)断面積に対する Na ボイド反応度の感 度係数を誤差を取り除く(4)式を使用した場合と使用しない場合に対して示す。方式2を用いれば

- 71 -

協式が満足されているので計算に協式を用いる必要もないが、方式1を用いると協式を用いない と結果も信用できない事がわかる。

3. 結果と議論

炉心容積 4600 ℓ の高速臨界集合体 Z PPR - 9²における k_{eff}, Naボイド反応度,中心反応率比, 反応率分布に対する感度係数を, 2 節に示した方法に基づき作成した感度係数計算コードSAGEP により計算した。計算は Fig. 1 に示す RZ 体系で行い,断面積セットとして JENDL-2B-70 群 セットを用い燃料ドロワーの非均質性は無視して RZ 体系の荷重スペクトルを用いて 16群および 7 群のミクロ断面積を作成した。Na ボイド反応度価値に対する感度係数は 16 群で求め,他の特 性量の感度係数は 7 群で計算した。Table 2 に炉中心の 9 ドロワー (3 行 3 列) が軸方向に密着 面より±20.32 cm (±9 inch) ボイドになった場合 (Fig. 1参照) の Na ボイド反応度に対する 感度係数を示す。2 KeV以下のエネルギー領域における²³⁹ Pu (n, f)断面積並びに²³⁶ U(n, r) 断面積の感度係数が大きい。Fig. 2 に示した JENDL-1 および 2 の²³⁹ Pu (n, f) 断面積より両 ファイルの差は 1 KeV 付近で大きく, JENDL-2B 断面積は JENDL-1 にくらべ数+% 小さい事 がわかる。JENDL-2B を用いた ZPPR-9 集合体の Na ボイド戸応度に対する解析結果⁴¹より C / E 値は炉中心で 1.14,軸方向ブランケットでは 1.55 となる事が指摘されている (Fig. 3)。 ²³⁹ Pu (n, f)断面積を JENDL-1 並みに 0.5~2 KeV のエネルギー範囲で 20% 程度増加させると C/E 値は炉中心で 1.14→1.14→0.430×02-0.429×0.2=0.97と 17% も減少する事が感度係数に より推定できる。

つぎに k_{eff} に対する感度係数について議論する。Table 3に²³⁹ Pu (n,f),²³⁹ Pu (n,r),²⁴⁹ U (n,r) 断面積の感度係数を示す。計算は7群で行っているのでNaボイド反応度の場合のように詳細に エネルギー範囲を区切っていないが 0.1~1KeVの²³⁹ Pu (n, f)断面積を 20% 大きくすると k_{eff} 計算値は 0.84% 4k / k 増加する事がこの表より予想される。Table 4 には 2 PPR - 9 及び 10集 合体に対する JENDL - 2B 断面積を用いて得られた k_{eff} のC/E 値が示されてあるが⁰,上記の ように²³⁹ Pu (n, r)断面積を増加すると 2 PPR - 9 集合体のC/E 値は 1.001 となる。

Table 5には中心反応率比²³⁸ U-capture/²³¹ Pu -fissionに対する感度係数を示す。²³⁸ Uに よる中性子捕獲量は増殖特性を計算する上で重要な反応率であるが、ZPPR-9 および 10 集合体 での上記スペクトルインデックスについては 6 %程計算値が過大評価されている。⁴⁾ 1 KeV 付近 の²³⁹ Pu (n, f) 断面積を 20% 変えても²⁸ c/⁴⁹ f 比は 1~2 %しか変化しないが、過大評価が改 善される方向に向う。

Table 6には一例として²³⁵U(n,f)反応率の径方向分布に対する²³⁹Pu(n,f)断面積の感度 係数を示す。反応率分布は炉中心で規格化したので中心での感度係数は零になる。²³⁹Pu(n,f) 断面積が1KeV付近で20%変化しても反応率分布に対する影響は高々1%程度である事がわか る。

4. まとめ

高速臨界集合体での感度解析により以下の結論が得られた。

 (1) JENDL-2B 断面積ファイルを用いた計算では高速臨界集合体 Z PPR-9の Naボイド反応度 を炉中心で 15%程度過大評価したが、JENDL-1 並みに 1 KeV付近の²³⁹ Pu(n, f) 断面積を20
 %程度増加させると Na ボイド反応度は 15%程度減少し、測定値とよく一致した。

(2) 同じく k, ff も 0.8% Ak/k 増加し, 固有値に対する影響も大きい事がわかった。

(3) 反応率比並びに反応率分布に対しても感度係数を通して断面積の影響を検討でき,感度係数 を一旦計算しておけば核特性量の解析に有用であり,今後燃焼特性に対する感度係数を作成する 事が望まれる。

制辞

本研究の逐行に当り日本原子力研究所の菊池康之氏,日本原子力事業の亀井孝信氏,吉田正氏, 飯島俊吾氏に一般化摂動論に関する議論並びにJENDL-2Bによる計算結果につき議論していた だき深く感謝致します。さらにコード作成については阪大の原氏に協力をしていただき感謝の意 を表明する。

参考文献

- 1) Kikuchi, Yet al.: J. Nucl. Sci. Technol. 17 (1980)
- 2) 金城勝哉,他:原子力学会昭和56年年会要旨集,B31~B36,(1981).
- 3) 菊池康之, シグマ委員会積分評価ワーキンググループ資料,
- 4) 西 裕士,他:原子力学会昭和 57 年年会要旨集, C 30~C 35.

Table 1	Effect of round-off error elimination on sensitivity coefficient
	of sodium void worth to ²³⁹ Pu(n,f) cross section

	Metho	d 1	Metho	d 2
	without Eq.(15)	with Eq.(15)	without Eq.(15)	with Eq.(15)
Sensitivity coefficient	-3.845	-1.088	-1.092	-1.057

Table 2 Sensitivity coefficient of sodium void reactivity in ZPPR-9

Group no.	Upper energy (eV)	²³⁹ Pu fission	²³⁹ Pu capture	²³⁸ U capture	238 _U scattering
1	1.05+7	0.0*	0.0	-0.0	-1.6
2	6.5 +6	0.6	0.0	-0.1	-4.5
3	4.0 +6	0.6	0.0	-0.2	-8.3
4	2.5 +6	-2.3	0.0	-0.4	-9.8
5	1.4 +6	3.3	-0.1	-2.5	-5.6
6	8.0 +5	2.5	-0.2	-3.7	-1.5
7	4.0 +5	18.0	1.0	-7.8	-4.2
8	2.0 +5	3.5	-0.3	-3.5	-2.2
9	1.0 +5	15.7	-0.8	-9.0	-3.9
10	4.65+4	0.9	0.5	1.1	0.4
11	2.15+4	-7.4	2.2	9.8	0.7
12	1.0 +4	1.0	0.9	1.9	0.4
13	4.65+3	2.8	-0.3	-1.7	0.3
14	2.15+3	-43.0	15.2	31.0	0.3
15	1.0 +3	-42.9	16.8	26.1	0.3
16	4,65+2	-39.0	15.4	18.4	0.1

* %Δk/k / Δσ/σ .

:

.

Group No.	Upper energy	²³⁹ Pu(n,f)	²³⁸ U(n,γ)	²³⁹ Pu(n,γ)
1	10.5Mev	0.009	0.000	0.000
2	4.0	0.043	-0.003	0.000
3	· 1.0	0.230	-0.066	-0.010
4	0.1	0.170	-0.116	-0.018
5	10 Kev	0.077	-0.059	-0.021
6	1	0.042	-0.024	-0.015
7	0.1	0.002	-0.001	0.000
Sum		0.580	-0.262	-0.066

.

Table 3 Sensitivity coefficient of keff in ZPPR-9

Table 4 C/E Value of keff in ZPPR-9 and 10 assemblies

.

.

ZPPR	9	10A	10B	10C	10D	average
C/E	0.993	0.991	0.993	0.991	0.990	0.9916 ± 0.0021

1

.

Group no.	²³⁹ Pu(n,f)	²³⁸ U(n,γ)	²³⁸ U ^(n,n) (n,n')	0 ^(n,n) (n,n')	Na ^(n,n) (n,n')	²³⁹ Pu(n,γ)	Fe ^(n,n) (n,n')
1	-0.011	0.0	+0.004	0.0	+0.001	0.0	+0.002
2	-0.067	+0.008	+0.031	+0.006	+0.005	0.0	+0.010
3	-0.400	+0.203	+0.041	+0.079	+0.034	-0.001	+0.018
4	-0.332	+0.384	-0.006	-0.009	-0.006	-0.011	-0.005
5	-0.151	+0.214	-0.003	-0.016	-0.007	-0.012	-0.009
6	-0.084	+0.082	0.0	-0.001	0.0	+0.002	-0.001
7	-0.003	+0.002	0.0	0.0	0.0	+9.001	0.0
Sum	-1.049	+0.894	+0.068	+0.059	+0.028	-0.020	+0.016

Table 5 Sensitivity Coefficient of Central ²⁸c/⁴⁹f

.

.

Table 6 Sensitivity Coefficient of ²³⁵U(n,f) Reaction Rate Distribution to ²³⁹Pu(n,f) Cross Section

Position*	45.24	87.55	90.24	118.40	121.84
Group no.					
1	+0.002	+0.005	+0.004	+0.007	+0.007
2	+0.005	+0.022	+0.020	+0.035	+0.031
3	+0.014	+0.063	+0.057	+0.100	+0.090
4	-0.003	-0.018	-0.017	-0.021	-0.014
5	-0.007	-0.033	-0.031	-0.049	-0.040
6	-0.009	-0.037	-0.033	-0.058	-0.049
7	0.0	-0.002	-0.002	-0.003	-0.002
Sum	+0.001	-0.001	-0.001	+0.011	+0.022

* Radial Distance from Core Center (cm)

-

Fig. 1 RZ model of a fast critical assembly ZPPR-9

Fig. 3 C/E value of sodium vold reactivity worths in ZPPR-9

-

討論

Q:山野直樹(原研)

²³⁹ Pu fission cross sectionの 14~15 群の感度係数はエネルギー群構造が 変化した時も 同じような値となるのかどうか。

A:竹田敏一(阪大)

Na ボイドワースに対する²³⁹ Pu (n.f) 断面積の 14 及び 15群の感度係数は非常に大きく, エネルギー群構造が変化した場合には Na ボイドワース そのものは変化するが,感度係数の変 化は少ないと思う。

C:菊池康之(原研)

Na ボイド係数に対して、2 KeV 以下の²³⁹ Pu の断面積が大きく効くのは adjoint flux は エネルギーの下から解くので、下のエネルギーの断面積の誤差が上のエネルギーに伝播して、 その勾配を大きく変えることにより、slowing down componentを変化させる。このadjoint spectrumの変化は直接計算でも確認された。

- 80 -

5. 総 括(1)

村田 徹

Summary Talk (1) Tohru MURATA

シグマ研究委員会は20周年を迎え、JENDL-3 完成へ向けて新しい局面に達している。また、 徐々にではあるが世代の交代がなされているが、このような時期に、過去を振返り、現在を反省 して、将来への展望を得ることは重要であると考えられる。このような意味で、委員会創設期よ り重要な役割を果たされ、現在も委員会で大いに活躍されている中嶋龍三氏の20周年記念講演は 意義深いものがあったと思われる。特に、初期の段階で、こわごわ国際舞台に出て行った様子な ど一般に知られていない情況など、我国の核データ活動も国際的に新しい役割を果すべき時期に 達していることを考えると、大いに今後参考とすべきものがあろうかと思われた。

我国における核データ活動の進展については理論及び実験の二面から、それぞれ五十嵐信一氏 及び椙山一典氏によって報告がなされた。理論関係では断面積計算コード開発のレビューがなさ れたが、JENDL-1、JENDL-2の評価で重要な役割を果した ELIESE や CASTHY コードの 他にも、実に様々なコードが開発、導入されていることを知ったが、これ等のコードを JENDL -3の評価に向けて、計算パラメータの整備も含め、利用しやすい形に整備することが急務であ ろうと感ぜられた。

実験関係では、中性子断面積測定の成果が述べられたが、特に、ここ数年来の進展が目覚まし く、国際会議で注目されるような報告がなされているとのことであった。しかし、中性子断面積 測定に対するマシンタイムの割当が少なく、データプロダクションが思うようになされ得ないこ とが指摘された。この点については原研のタンデムでも事情は同様であるとのことで、データの 現状が必ずしも満足すべきもののみではないことを考え併せると、今後何らかの措置をとる必要 のあることが痛感された。

第1日目後半では、最近の話題についての三件の講演がなされたが、いずれも将来の核データ 評価に有用なものであった。岩本 昭氏によって行われた前平衡過程の理論の紹介は、各ステッ プを追って説明がなされ分りやすく有益であったが、今後 JENDL-3の評価に向けて、一般の評 価者にも利用しやすい形にコード整備がなされることを期待したい。次に字野正宏氏により理論 の内在誤差を考慮した新しい統計法が報告されたが、これは核データ評価には欠かせない、実験 値をフィッティングする際に必要となる方式に新しい強力な方法を与えるもので、その活用が大 いに期待される。竹田敏一氏によって行われたFBR のNaボイド係数の一般化摂動感度解析では、 思わぬエネルギー領域での断面積の重要さが指摘され、核データ評価の際には、ともすれば重要 データの評価以外は安易に行うことが多いが、全エネルギー領域で、諸量を手抜きせずに評価す べきであると反省させられた。

以上,研究会第1日目の講演についての総括を述べたが,今後のシグマ研究委員会活動にいず れも有益であったと感ぜられた。なお,この総括は田中茂也氏が担当される予定であったが,同 氏が当日急病で欠席されたため代行したものである。

* 日本原子力事業 (株), Nippon Atomic Industry Group Co.

6. 利用者・評価者・測定者の討論

Topical Discussion

A FBR燃焼計算における核データの問題

Nuclear Data for Burn-up Calculation in FBR

6A・1 大型炉燃焼ベンチマーク計算における問題

中川 正幸+

NEACRP で提案された大型高速炉の燃焼ベンチマーク計算の国際比較が行われた。その結果, 燃焼に関連する核特性に対する核データ又は炉定数に起因する不確さが明らかとなった。特に, 重い核の断面積の不確さは,燃焼反応度に対し、0.5% 4kの不確さを与えること,LFとつ断面積 のばらつきもかなり大きいことが分った。ここでは,専門家会議で検討された問題の中から,主 要な点について述べる。

LMFBR Benchmark Calculation Intercomparison for Fuel Burn-up Masayuki NAKAGAWA⁺

Intercomparison calculations have been made for the NEACRP LMFBR benchmark problems on fuel burn-up. The uncertainties of calculated parameters are related to the variance of nuclear data or multi-group data. In particular, the present data accuracies of heavy isotope cross sections cause the significant uncertainty (about 0.5% Δk) for the burn-up reactivity. The comparison of lumped fission product cross sections shows still high spread among the laboratories. The brief description is given for the topics discussed at the special meeting.

1. はじめに

高速炉の実用化に向けて炉心設計では、原型炉から大型実用炉の段階に入って来た。実用炉で は特に炉心の燃焼特性は、経済性や運転計画にとって重要になって来る。NEACRP では、既に 大型炉の核特性に関する国際比較のためのベンチマーク計算を行ったが、それに続いて 1980 年 に燃焼特性に対するベンチマーク計算を提案した。これは、各種の燃焼に関連する核特性に対す る、核データとその処理法に起因する不確さを明らかにすることを目的としている。その結果は、 1982 年 4 月にカダラッシュ研究所における専問家会議で検討された。¹⁾その内容を中心として、 特に問題となった燃焼反応度について述べるが、全体の報告書は近く出版される予定である。

2. 参加機関と核データ

ベンチマーク計算を行った機関名とその核データ又は炉定数を表1に示す。これらの中で adjust された核データは、CARNAVAL4、KFKINR1及びFGL-5である。FPデータに関 しては、フランスが、Phenixの照射燃料を用いた積分実験の結果を使ってadjust を行っている。 核データファイルから出発した機関は、詳細スペクトルコードで基本モード計算を行い27又は 25 群の定数を作成し、炉心計算を行うように指定されている。計算の対象となった炉心は、図1 に示すような体積 9950 ℓのナトリウム冷却型高速炉であるが、詳細は参考文献(2)に記載されてい るので省略する。燃焼計算の条件は、3000 MW,で360日全出力運転を行った時を、燃焼末期と する。比較の対象となったパラメータを表2に示す。これらの大部分は、燃焼初期と末期につい て求める。

3. 燃焼反応度

今回の国際比較で最も重要な差が生じたものの一つが燃焼反応度である。表3に比較を示す。 ðk EFF(1)は、全燃焼反応度、同じく(2)は、ブランケットにおける Pu の 蓄積による反応度の増 加、(3)はFPの蓄積による反応度損失、そして(4)が、炉心における燃料核種の変化に伴う反応度 変化である。これから、全反応度で0.5% 4kの標準偏差が生じていることが分る。ちなみに、燃 焼反応度の目標精度は、5~10%とされていることを考えれば、これは重要な差であることがわ かる。その内訳としては、炉心の燃料核種の燃焼によるものが最も大きく、次いてFP の蓄積に よる反応度変化の予測精度である。前者に関しては、核種及び反応に関してCEA で感度解析が 行われ,誤差の主な原因が,²³⁶Uの捕獲断面積によるものであることが明らかとなった。今回の 比較では、238g、の一群平均断面積における標準偏差は、2.1%であるが、それでも全体の42%は、 これに起因することが判った。なお、現在、出されている断面積の要求精度は、²³⁸ g、の場合3 %という厳しい値となっているが、例えこれが達成されたとしても、約0.4% Akの燃焼反応度の 予測誤差が²³⁸σ,から生じることになり、大変厳しい精度が必要となる。この様に、炉心燃料の 燃焼による反応度変化に不確定さが大きくなるのは,一つには大型炉心であることと,燃料の体 積比が大きく,内部増殖比が高いことも原因している。つまり、燃焼するPuと生成するPuが反 応度的にみて,バランスしており,²³⁴σ。と²³⁹ Pu のσ』の相対値に,極めてセンシティブである ためと考えられる。実験炉や原型炉では、燃焼反応度は、専ら Pu の燃焼による反応度損失 が効 いて来るので、2380の感度は小さくなる。

例えば、ENDFB/5を用いたANLと、JENDL2を用いたJAERIの結果について、Puの生成量を比較して見ると、表4に示すように、内側炉心でかなり大きな差があり、これが燃焼反応度に大きく効いている。この差が生じる主な原因として、ANLとJAERIの断面積の比をとると、 $^{238}\sigma_{c}$ は、1.015であり、 $^{239}\sigma_{a}$ は、0.982となる。つまりこれらはいづれもPuの生成量に対しJAERIの値を小さくする方向になる。このように、燃焼反応度の計算精度を良くするには、 $^{238}\sigma_{c}$ と $^{239}\sigma_{a}$ の絶対値の精度を上げるのが困難とすれば、相対値の精度を上げることが大切となろう。

4. FP断面積

今回のベンチマーク計算で、もう一つ問題になった点は、FPの断面積の標準偏差が予想外に 大きくなった点である。先に示したように、反応度変化に対してもFPの寄与は、約16%の標準 偏差があり、これは、lump FPの一群断面積のそれとコンシステントである。 表5に、一群平 均の吸収断面積の比較を示す。この表の上段は、各国が計算したベンチマーク炉心のスペクトル を用いて加重平均した値であり、下段は、全てスーパーフェニックス | 炉心のスペクトルで加重 平均したものである。CEAのLFPは、個々の単体 FP断面積をadjust して作成したデータか ら lump 化したものを、更に、LFPとして adjust して作ったものであるが、他国との間にかな りの差が見られる。またスペクトルを統一したものは、標準偏差が小さくなる。つまり中性子ス ペクトルの影響はかなり大きいことと、吸収断面積のエネルギー依存性にも差があると思われる。 その他LFPに関しては、非弾性散乱の効果が15~20%と無視できないこと、FPの移動効果があ ること(CEA では5%±3%としている)、Yieldにも不確定さがあること等が指摘できる。

今回得られた平均値は、全ての結果の単純平均であるが、ENDFB /4 の LFP はかなり小さい 吸収断面積を与えるので、これを除外すれば、約 10%程度の不確さと見て良いのではないか。今 後 FP の精度を上げるためには、 LFPの形で評価するための積分実験が重要と考えられ、炉物理 分野の人の努力も必要であろう。次に個々のアイソトープの一群吸収断面積で、差が著るしかっ たものを表 6 に示す。ここには、平均値に対する JENDL 1 の比も示されている。

5. その他

その他に比較されたパラメータの内から、いくつかの結果を示す。表7は、高アクチナイド核種の生成量について、JAERIと平均値及び標準偏差を示めしたものである。²³⁶Puは、崩壊定数と分岐比に問題があるために生じたものである。Cm以外は、はぼ目標精度内にあるといえよう。表8は、中心反応率比を比較したものであるが、JENDL-2は、C49/F49が最も大きいことが特筆される。C28/F49は、標準偏差が大変小さい。これは、ZPPR-9、-10におけるC/Eがかなり大きいことと比べて見ると大変興味深い。またこれらの量の燃焼初期と末期の相対変化量の標準偏差も小さく、燃焼によるパラッキはあまりないと云える。最後に、参考のために、各機関の一群平均吸収及び核分裂断面積を比較したものを表9に示す。特に、標準偏差が大きいのは、²⁴⁰Puと²⁴¹Puの吸収断面積である。

なおこの発表をするに当り、MAPIの関雄次氏並びにNAIGの吉田正氏から有意義なコメントを頂いた。感謝します。

参考文献

1) 中川正幸:日本原子力学会誌 24(00 P. 788 (1982)

 Lesage, L.G. et al., ANL-80-78, NEA-CRP-L-243, "Proc. the NEACRP/IAEA Specialists Meeting on the International Comparison Calculation of a Large Sodium-Cooled Fast Breeder Reactor (1980)

	Table 1	Organization and Nuclear	Data
_	Organization	Cross Section File	FP data
	ANL	ENDFB/5	ENDFB/5
	Australia	ENDFB/4	ENDFB/4
	CEA	CARNAVAL4*	ENEA-CEA*
	enea	ENDFB/4	ENEA
	EIR	ENDFB/4	ENDFB/4
	JAERI	JENDL-2B	JENDL-1
	KFK	KFKLNR1*	ENDFB/5
	UK	FGL-5*	Bartram et al.

* Adjusted library

Table 2 Burn up reactivity change

	1		1	·	1
ORGANIZ.	 &KEFF(1) 	 & KEFF (2) 	 6KEFF (3) 	 &XEFF(4)	1
	1			1	1
ANL	-0-01003	0.00565	-0.01940	0.00484	i
AUSTRAL.	-0.00541	0.00569	-0.01692	0.00690	! : ! :
CEA-2	-0.01275	0.00595	-0.01722	 · -0.00056	1
ENEA	 -0.00678	0.00547	 -0.01811 -	0.00666	
EIR-1	-0.00735	0.00535	-0.01269	0.00065	ļ
JAERI	-0.01474	0.00561	-0.0187.0	-0.00074	. .
KFK-1	-0+01582	0.00562	-0.02207	-0.00172	I · .
KFK-2	-0+01940	0.00487	-0.02181	-0,00239	1 :
KFK-3		0.0	0.0	· 0 • 0	l I
UKAEA	-0-01727	0.00575	-0.02124	-0.00113	
MEAN	-0.01217	0.00555	-0.01868	0.00139	
51. DEV.	0.00501	0.00031	0.00295	0.00370	 .

δKEFF(1) global reactivity loss per cycle δKEFF(2) reactivity gain due to Pu build-up in blankets δKEFF(3) reactivity loss due to FP build-up δKEFF(4) reactivity variation due to the core heavy isotope burn-up

Table 3 Calculated Core Parameters

Breeding ratio, Breeding gain,					
Fission rate distribution					
Central reaction rate ratio					
Sodium void worth					
Burn ap reactivity					
Irradiated fuel composition					
Neutron spectrum					
Concentration of fission products					
One group cross section (actimide, FP)					

Table 4 Comparison of 239 Pu production (δ_{kg})

	Inner core	Blanket
ANL	115	447
JAERI	94	438
Mean	107	435

Table 5 Lumped Fission Cross Section

	ANL	CEA	JAERI	UK	Mean	Std.	
σ _c 1)	0.547	0.44	0.561	0.52	0,500	0.08	(16%)
σ _c 2)	0.527	0.45	0.533	0.51	0.505	0.03	(7%)

1) Weighted with the benchmark spectrum

.

2) Weighted with Super-phenix 1 spectrum

Isotope	St.Dev.(%)	JENDL/Mean.
CS-135	66.1	2.1 ^a
Ru-103	52.5	
Zr-93	30.6	1.61
Sm-151	24.7	0.88
Sm-149	18.5	1.04
Ag-109	18.1	1.20
РЬ-107	17.7	0.99
LFP	16.1	1.12 b

Table 6	Status	of FP	isotope
	in JENI)L-1	

a B/4, B/5 too small

b B/4 small

	JAERI	Mean	Std.(%)	т.А.*
Np-237	1.58-6	1.50-6	18	
Pu-236	6.82-18	4.05-12	183	
Pu-238	3.74-7	3.71-7	16	0
Pu-242	3.31-5	3.37-5	7	o
Am-241	3.96-6	3.88-6	2	ο
Am-243	1.65-6	2.17-6	22	Δ
Cm-242	1.19-7	1.67-7	26	
Cm-244			48	

* Target accuracy

Table 8 Central Reaction Rate Ratio

EOC	C28/F49	F28/F49	C49/F49
JAERI	0,1612	0.0240	0.3172
ANL	0.1635	0.0231	0.2941
Mean	0,1635	0.0227	0.3004
Std.(10)	0.0020	0.0007	0.0096
BOC,Std.	0.0023	0.0008	0.0096

.

JAERI-M 83-041

Fission	Table 9 One group cross sections									
ORGANIZ.	l U-235		 U-238 	_ ~ ~	 . PU-23	9	 PU-24 	 0	 PU-24 	
**********	- = !		 				===:u==== 		, ========= !	
ANL	1.9825	50	0.041	9.0	1.850	50	0.371	00	2.504	30
AUSTRAL.	2.0349	20 i	0.040	BŌ	1.860	зò	0.358	80	2.6362	20
CEA-2	1.9390	00	0.039	50	1.806	0 Ņ	0.334	00	2.530	00 i
ENEA	2.0170	0	0.040	3 Q	1.843	oọ	0.354	B 0 '	2.608	
EIR-1	2.0499	95 	0.0399	∋ō	1.874	90	0.357	70	2.655	>0
JAERI	2.0108	0	0.0443	30	1.856	40	0.372	90'	2.6445	50 I
KFK-1	2.0581	9	0.0432	23	1.873	75	0.3700	54	2.5945	5
UKAEA	1 1.9800	0 1	0:0427	rọ i	1.830	1 00	0.351	1 1 0 C	2.7000	1
MEAN	2.0200	ខ	0.0415	57	1.8540	oz i	0.3589	55 I	2.6398	17
ST. DEV.	0.0425	1	0.0015	52 	0.0227	78 	0.0114	 C4 	0.0588	0 1 1 1 1 1 1 1 1 1 1 1 1
Capture		-~ : ! -	*******	· :		 		·≕⇒∣		·1
ORGANIZ.	U-235	 	U-238		Pu-239		PU-240	1 1 F	PU-241	
ANL	0.60820		0.3044 <u>0</u>	 	0.55630	 	0.59800	 	 0.4977ง	r :
AUSTRAL.	0.60680		0.31160	1	0.56860		0.57260	1	0.50540	1
CEA-2	0.59300	, (0.29200	2	0.56800	1	0.55200-	1 1 	0 49000	1 1
ENEA	0.61880		0-30840		0.56670	i (0.57010		0.51620	, ,
EIR-1	0.61370	(0.30450	 {	0.57730		0.57350		0.51050	
JAERI	0.64410	(.29990	1 1 1	0.59530	i e	0.61780	, (0.53350	
KFK-1	0.61784	(0.30539	• ? (•	0.56546	ic	. 53545	, (0.51903	
UKAEA	0.53500	ïC	.29200		.54800	(0	.62700)•62000 l	
MEAN	0.60290	C	• 3030 <u>0</u>	(.56489	0	• 561 20	0	.54585	
ST. DEV.	0.02818	C	.00653	C	0.01425	0	•07271 .	0	•05625 	

Fig.1 ベンチマーク炉心

討論

Q:瑞慶覧篇(日立)

CARNAVAL-4のFP lump cross sectionに対する migration effectのとり入れ方はどうなっているか。

A:中川正幸(原研)

MigrationによってFP ガスプレナムに移動し、反応度に寄与しないと考えている。

- C:飯島俊吾(NAIG)
 - FPガス migration の主なものは、¹³¹Xe と思う。¹³¹Xe は total FP poisoning に約3
 米寄与し、このうち~10%が放出されると考えられる。CEAの FP migration effect の評価 は大きすぎるように思う。

(2) ZPPR-9 等の解析ではいつも,積分測定のある反応のみを問題として居り、⁴⁹ α 値等は 重要性にもかかわらず,積分測定が無いということで,解析の表面に出て来ない。常陽のPIE データから, ⁴⁹ α or ⁴⁹ σ_a が得られるので,積分評価 WG として採り上げて欲しい。

Q:青木克忠(NAIG)

燃焼ベンチマーク問題における,²³⁹Npの蓄積効果はどの程度か。

A:中川正幸(原研)

我々の結果では、 0.15% & であった。フランスの結果もほぼ同じ程度であった。

Q:菊池康之(原研)

Pu 239 の生成量の誤差が²³⁸Uの σ₀の誤差によるものなら, blanket中の方が誤差が大きい 筈なのに、炉心中の方が大きいのは何故か。

A:中川正幸(原研)

blanket中では、Pu は生成される一方であるが、炉心では、生成と燃焼が互いに相殺され、 小さな誤差でも感度が大きいし、反応度への寄与も炉心の方がはるかに大きいためと考える。

C:山室信弘(東工大)

²³⁸ Uの o_c の測定の経験から、実験値の誤差は、現在±5 %と考えられる。これは knoxville 会議の時に ANLの Poenitz がレビューしていることからも判断できる。²³⁸ o_c/²³⁰ o₁のよう な相対測定であれば、その値の精度はもっと良くなると期待できる。これがお話のように重要 な核データであるならば、LINAC をもっている研究所、例えば原研で測定を試みることが望 ましいと思う。

6A・2 「常陽」燃料の燃焼度試験

池上 哲雄*

高速実験炉「常陽」では、これまでの運転で燃焼度として、集合体平均最高 40200 MWD/Tに 達している。燃焼度に関する試験も積極的に行われ、燃焼係数の測定、燃焼度測定装置での測定、 照射後試験での質量分析、燃焼集合体と新燃料との置換反応度が測定されている。これらの測定 は未だ完結しておらず、解析も予備解析の段階であるが、これまでのところ、実測値と計算値は 比較的よく一致している。今後は、データの蓄積をまって、より詳細な解析を行っていく予定で ある。

Burn up Experiments of JOYO Fuels

Tetsuo IKEGAMI

Fast experimental reactor JOYO obtained maximum burn up of 40200 MWD/T (bundle average) through its operation.

Burn up related experiments such as measurement of burn up coefficient, mass analysis, and fuel substitution reactivity measurements are successfully conducted. The experimental results agreed comparatively well with the predicted values.

高速実験炉「常陽」は,昭和 52 年 4 月の初臨界以降,第1 期炉心出力(50 MW),第2 期炉心 出力(75 MW)での運転を順調に終え,昭和 56 年 12 月末に,MK - 1 炉心(増殖炉心)での運 転をすべて終了した。この間の積算出力は 670000 MWHを越え,最高燃焼度(集合体平均)は 40200 MWD/Tに達している。

MK-I 炉心において,燃焼度に関する測定はいくつか行われているが,「定格運転サイクル での燃焼係数測定」,「燃焼度測定装置での測定」,「照射後試験での燃焼度測定」および「置 換反応度測定」の4つに大別できる。以下に,それぞれについて詳述する。

(1) 定格運転サイクルでの燃焼係数測定

定格出力到連後,毎日あるいは1日おきに,制御棒位置等から原子炉余剰反応度を求め,積算 出力に対する変化率から燃焼係数を求めた。余剰反応度の積算出力に対するプロットの1例を Fig.1に示す。運転初期に余剰反応度の落ち込みが大きいのは²³⁹Npの効果である。この²³⁹Np の効果とは,

 238 U $\frac{(n, 7)}{T^{12}}$ 239 U $\frac{\beta^{-}$ decay 239 Np $\frac{\beta^{-}$ decay 239 Pu T^{12} = 23.5min. T^{12} = 2.35day

のチェインにおいて、²³⁹ Pu の生成に時間遅れがあるための効果である。燃焼係数を求めるにあ

* 動力炉·核燃料開発事業団, Power Reactor and Nuclear Fuel Development Corporation

たっては、Fig.1において、²³⁹Npの効果が無視できる 600 MWD 以降のデータを1次式にフィ ッティングすることにより、平衡時の燃焼係数として求めた。

75 MW定格第1~第6サイクルでの燃焼係数測定結果をTable 1 に示す。各サイクルを通し ての燃焼係数は、-1.50×10⁻⁴~-1.57×10⁻⁴ % *d*K/K/MWD でよく安定している。一方,設 計計算値は、-1.45×10⁻⁴~-1.54×10⁻⁴ % *d*K/K/MWD⁽¹⁾で実測値に比して、絶対値が若干小 さ目だが、両者は比較的よく一致しているといえる。これは、MK-I 炉心の場合、内部転換比 が小さく(約20%)、燃焼係数の主成分はフィッサイル核種の原子数密度の減少である。従って、 ²⁸U(n, r)反応や、FP 等の不確定性の大きいものの寄与が小さかったためと思われる。

炉の運転中の反応度変化として、純粋の燃焼によるもの以外に、燃料の照射挙動によるドップ ラー効果や、軸方向膨張効果がある(すなわち、燃料の照射挙動により、同一出力であっても燃 料温度の異なる効果)。75 MW第3サイクルでは、 この効果は燃焼によるものの5~6% 程度 と予想され、燃焼の進んだサイクルほど、この効果が現われてくるものと予想された。また、各 サイクル間では、炉内燃料本数が異なり、炉内燃料の平均燃焼度も異なる。しかし、実測値がサ イクル間で比較的安定していることから、これらの効果は小さいものと推定される。今後、詳細 計算を行い検討する予定である。

²³⁹Np の効果は、75 MWで-4.1¢ という数値が得られ、計算値とよく一致した。

(2) 燃焼度測定装置での測定

燃焼度測定装置は、Fig.2に示す様に、ガンマ線測定装置、中性子測定装置、燃料スキャン装置、制御用コンソールおよび測定用ラックから成り、使用済燃料貯蔵プールに設置される。

現在のところ、本装置を用いた測定例は、燃焼度23000 MWD/Tの燃料集合体1体のみである。 軸方向ガンマ線強度の測定結果をFig.3 に示す。Fig.3 は300 KeV 以上の全ガンマ線で測定 したものである。この図に示せれているデータを4次式で最小自乗フィッティングし、軸方向ピ ーキング係数および制御棒による燃焼ピークのずれを求めた。その結果

。軸方向ピーキング係数 : 1.143

。制御棒による燃焼中心のずれ : 幾何学的中心より 16.7mm下方

を得た。

また、炉心とブランケットの境界は明瞭に区別でき、炉心部の長さは±2mm で 決定できるこ とがわかった。Fig.3において、上部ブランケット境界と下部ブランケット境界のガンマ線強度 分布の頓きは上部ブランケット境界の方が小さい。これは、上部ブランケット境界で、各燃料ピ ン内の炉心ペレット高さにバラツキのあることを示唆するもので、これを定量的に解析すること により、燃料スタック長の伸びを評価することを検討中である。

本燃焼度測定装置は、未だ絶対較正がなされていないため、相対分布しか意味をもたず、測定 結果から直接、燃焼度の絶対値を求めることができない。今後、絶対較正を行い、燃焼度の絶対 測定も行う予定である。

(8) 照射後試験での燃焼度測定

照射後試験として、これまで炉心燃料10数体、ブランケット燃料4体について、重元素(ウラ

- 92 -

• :

ン、プルトニウム)の質量分析及びネオジム法による核分裂数の測定が行われている。 測定された燃焼度は約 18000 MWD/T までである。

。ウランの組成

ウランの同位体比は、²³⁴U、²³⁵U、²³⁶U、²³⁶Uの4種類について得られている。

。プルトニウムの組成

プルトニウムの同位体比は,²³⁸Pu,²³⁹Pu,²⁴⁰Pu,²⁴¹Pu,²⁴²Puの5核種について得られて いる。その1例をFig.4に示す。データがばらついているように見えるが、これは、測定し た燃料ペレットの製造ロットが異なるためである。

。プルトニウム対重元素比

炉心部およびブランケット部におけるプルトニウム対重元素比(Pu/(Pu+U))の燃焼度 変化が得られている。

「炉心中心部においては、プルトニウム対重元素比は燃焼と共に単調に減少するが、炉心周辺部では、わずかに増加の傾向を示し、ブランケット部では、燃焼と共にプルトニウム含有率が増加するという結果を得ている。

- ●組成分析データから得た燃焼率と「常陽」運転監視用コード(SMART)による燃焼率を比較したものをFig. 5, 6 に示す。これより、「常陽」運転監視用コードは、組成分析データに比し、燃焼率を約10%過少評価していることがわかる。
- ここに、燃焼率とは次のように定義される。

 燃焼率= <u>核分裂数</u> × 100
 一般射前燃料中の全重原子数
 = <u>核分裂数</u>
 (核分裂数) + (照射後燃料中のU, Pu 数) × 100
 核分裂数= <u>指標 F.P.の原子数</u> 指標 F.P. の核分裂収率

(指標 FP としては¹⁴⁸Nd を使用)

燃焼率の測定誤差は,核分裂収率の誤差(2~3%)を除けば,~1%程度である。

これまでに測定された燃焼度は,約 18000 MWD/T までであるが, MK -I での最高燃焼度で ある 40200 MWD/T までのデータが近い将来得られる予定である。今後は,これらのデータを ベースに詳細解析を行っていく予定である。

(4) 置換反応度測定

燃焼の進んだ燃料集合体と新燃料との置換反応度を測定することにより, 燃焼計算法の評価に 必要なデータを得ることを目的として行った。

湖定は、75 MW第5 サイクル終了時に、炉心の第0列から第4列までをトラバースする形で (Fig.6参照),燃焼度が約22000 MWD/T~約36000 MWD/Tの燃料集合体を新燃料に置換 し、その置換反応度を測定した。結果をTable 2 に示す。

この表の置換反応度の予測値は、以下のようにして求めた。

50 MW 定格第1 サイクルでの燃料の燃焼度(BU)の増加分(ABU)と原子数密度(N)の減

少分(AN)を計算する。このANと密度係数の設計計算値とから、50MW定格第1サイクルでの燃焼による反応度減少AKを計算する。このAKとBUの関係を用いて、置換する燃料集合体のBUから燃焼による反応度減少を算出した。

Table 2 より、4D1の燃料集合体を除いては、置換反応度の予測値と実測値はよく一致している。

今後は、より詳細な解析を行って検討を加えていく予定である。

参考文献

- (1) 「常陽」安全性確認のための炉心解析(1)報告書 第2分冊 東芝 1974年2月
- (2) 川島他: 性能試験に基づく「常陽」 炉心核設計の総合評価 東芝 SJ 201 81-181981 年 3 月

••

.

lst Çycle	-1.50 × 10 ⁻⁴ % % % % %
2nd "	-1.57
3rd "	~1.56
4th "	~1.51
5th "	-1.54
6th "	1.57

Ð

Table 1Measured Burn-up Coefficient during75MW Duty Cycle Operation

Table 2 Fuel Substitution Reactivity

location	burn up (MWD/T)	substitution reactivity (predicted)	substitution reactivity (measured)
000	35900	%∆K/K 0.15	%∆K/K 0.1482±0.0022
1D1	34800	0.13	0.1293±0.0022
2D1	31400	0.10	0.0945±0.0021
3D1	27200	0.066	0.0668±0.0021
4D1 .	22100	0.027	0.0352±0.0021

- 95 -

Į

8

1

JAERI-M 83-041

Fig. 1 Burnup Coefficient at 5th cycle of 75MW Duty Cycle Operation

Fig. 2 Fuel Burnup Measuring Apparatus

- 97 -

Fig. 3 Axial Distribution of gamma ray

Fig. 4 239Pu Isotopic Ratio vs. Burnup

- 98 -

: 、

Fig. 5 Conparison of Measured and Predicted Burnup in core Region

Fig. 6 Comparison of Measured and Predicted Burnup in Blanket Region

Fig. 7 Location of Substituted Fuel
討論

- Q:梅沢弘一(原研)
 - 1) 常陽の燃料の燃焼度はどのように求めたのか。

2) 燃焼度の実測データは計算手順及び使用データの検討の出発点となるので、測定データの 正確度の十分な吟味が重要であろう。その意味で、核分裂測定の為に選定する核種の種類、核 分裂収率データの検討がなお必要ではないか。

- A:池上哲雄
 - 1) 次式により求めた。

.

.

2) 御指摘の通りである。我々としても、特に Yield data については、詳細に検討を加えて いきたいと思っている。

Q:松延広幸(住友原工)

燃焼係数に就て

1) 燃焼初期の反応度係数の低下は²³⁹Npの蓄積によるものとの事だが, FP の蓄積による効 果も考える必要があるのではないだろうか。

2) グラフを見ると燃焼末期で燃焼係数が平行移動的に増加しているが、これはどういう訳なのか。

A:池上哲雄(動燃)

1) FP の書積による効果については,詳細に評価! ていない。しかし,²³⁹Np の書積による とすると計算値と実測値が良く合うので, FP の書積の効果はあっても量的には小さいと思わ れる。

2) この不連続点において、原子炉がスクラムされており、このスクラム、再起動に伴う余剰 反応度算出上の誤差と考えている。低出力状態では臨界点の再現性は良いのだが、高出力状態 でのスクラム、再起動時の臨界点再現性はどうしても悪くなる。

.

6A・3 高速炉燃焼反応度の感度解析

瑞慶覧 篤*,渡部 隆**

均質大型高速炉燃焼特性国際相互比較計算の結果,あきらかになった燃焼反応度の問題(標準 偏差 0.5% 4k)を核データ評価者の立場から検討した。簡単なため、中性子パランスを基本とし て,燃焼反応度の誤差評価式を導き,²³⁸ U と²³⁹ Puの核データの不確かさが燃焼反応度に及ぼす 効果を検討した。その結果,燃焼反応度に対する要求精度 0.2% は現在の核データの不確かさか ら推察して,達成しがたいことがわかった。その改善策の一つとして,積分データによる断面積 セットの調整を提案した。

Sensitivity Analysis of Fast Reactor Burn-up Reactivity ** Atsushi Zukeran^{*}, Takashi Watanabe

Large reactivity discrepancy (0.5% Δk , 1 σ) based on International Intercamparison for large fast reactor burn-up is discussed from the naclear data point of view. For simplicity, an error evaluation formula is analytically derived from the neutron balance, and the effect on the burn-up reactivity due to nuclear data uncertainties of 239 Pu and 238 U is investigated by using the analytical formula. As the result, it seems that the required accuracy for burn-up reactivity, 0.2% Δk , exists beyond the ability of current evaluated data as it is clear from the existing nuclear data uncertainties. And thus, the cross section adjustment by integral data, as an alternative approch, is proposed.

1. まえがき

1978年に均質大型高速炉の初期炉心に関する核特性の国際相互比較を行ったが、今回(1982 年)はひきつづいて燃焼特性の相互比較を行った。比較した核特性の中で特に核データとの関係で重要なのは燃焼反応度とアクチナイド核種の蓄積量の予測誤差である。その結果、以下に示 す注目すべき問題点が指摘された、

 (i) 燃焼反応度が断面積セットのちがいにによって大差を生ずる ---- 標準偏差= 0.50% (1 σ)
 (ii) JENDL-2B 核データファイルに基づく断面積セットはBOC, EOC において最も大きな ポイド反応度を与える ---- BOC で 2.7% Δk (約7 \$), EOC で 3.3% (約 10 \$), 参加各国の 平均値はBOC で 2.3%, EOC で 2.8%

(前) 照射済燃料の放射線源である高次アクチナイド核種の生成量に16~68%の大差を生ずる

^{*} 日立製作所・エネルギー研究所, Energy Research Lobaratory, Hitachi Ltd. **川崎重工業(株), Kawasaki Heavy Industry, Inc.

^{*)} $\beta_{eff} = 0.387\%$

例えば, Pu-238 : 16%, Am-241 : 22 , Np-237 : 68% その他, 1群断面積,反応率比,増殖利得等の比較があるが,ここでは割愛した。

燃焼反応度の差(0.5% dk)を生ずる主な原因は燃料核種(PuとUの同位体)の核データの不 確かさによることがあきらかにされた。その中でも²³⁶Uの中性子捕獲断面積 σ_c^{20} の不確かさが約 42%,²⁴⁰Puの σ_c^{40} が約32%寄与している。

この報告では,核データの立場から,(i)現状のこゝで核データの測定と評価を継続していけば, これらの問題点を解決できるのか,(i)核データ評価と並行して実施可能な方法は何かに主眼をお いてコメントする。

上で述べた問題点の全てに対する考察はやめ、ここでは最も重要な燃焼反応度の問題に焦点を しぼる。これはk_{eff}が最も忠実に核データの特性を反映し、計算法の不確かさが最も小さい核特 性量であるばかりでなく、高速炉設計上も重要な量であるからである。

2. 均質大型高速炉燃烧特性相互比較計算用炉心

相互比較計算用炉心の縦断面図をFig.1に示し、その主要炉心仕様を現在の設計研究の対象に なっている炉心(PNC実証炉)の仕様と比較してTable 1 に示す。この相互比較計算用炉心は 1975年にANLで開発された、熱出力 3260 MWt(電気出力 1250 MWe)の大型高速炉で、燃料ピ ン径 0.762 mm Ø の混合酸化物燃料を用いている。この炉心は Pu 富化度が内側炉心で約 10% 外 側炉心で約 13%であるので、現在建設中の SUPER - PHENIX 1の値 14%、18% にくらべて顕 著に小さい。これは比較計算用炉心が比較的太い燃料ピンを使用し、燃料装荷量と燃料体積比が 大きいからである。

3. 中性子バランスと燃焼特性

3.1 原子数密度の変化

燃焼による原子数密度の変化は、その核種の核データ(崩壊定数と断面積)だけでなく、崩壊 チェーン上の全ての先行核の核データの影響を受ける。さらに中性子の吸収によって核変換を行 うため、中性子スペクトルの影響も強く受ける。ところが、中性子スペクトルは炉心内に存在す る多数の核種の核反応と炉心形状等によって決まるので、燃焼によって原子数密度に変化がおこ ると、それに伴って中性子スペクトルも変化し、燃焼の進み方も変わってくる。

ここでは,原子炉の燃焼過程において,個々の核種の核データが原子数密度にどう影響するか を検討する。1例として,Fig.2に示す²³⁸ Uから²³⁹ Puへの変換の場合を考える。燃焼時間t秒 後の²³⁸ U,²³⁹ Np,²³⁹ Puの原子数密度をそれぞれ N¹(t),N²(t),N³(t)とすると,これらは方程 式

$$\frac{dNi(t)}{dt} + \lambda_i \cdot N_i(t) = \Lambda_{i-1} \cdot N_{i-1}(t)$$
(3.1)

$$\lambda_{i}^{*} = \lambda_{i}^{*} + \sigma_{i}^{*} \cdot \phi \tag{32}$$

の解である。ここで λ^i は核種iの崩壊定数、 σ_a^i は中性子吸収断面積、々は中性子束をあらわす。 A_{i-1} は核種(i-1)1個が単位時間あたりに生成される割合をあらわす、すなわち、自然崩壊の 場合は崩壊定数 λ ,中性子捕獲反応の場合は σ_c 々である。 λ_i^i は中性子を吸収して崩壊する場合 を考慮した実効崩壊定数である。ここで σ_a^i は寄生吸収断面積(parasitic absorption cross section)—(n, τ), (n, p), (n, d), (n, t), (n, He³). (n, α)等の反応断 面積— でなければならない。

²³⁸U, ²³⁹Np, ²³⁹Puの初期(t =0)の原子数密度をそれぞれN₁(t), N₂(t), N₃(t)とすると, 方程式(3.1)の解は

$$\begin{pmatrix} N_{1}(t) \\ N_{2}(t) \\ N_{3}(t) \end{pmatrix} = \begin{pmatrix} 0 \\ D_{1j} \end{pmatrix} \begin{pmatrix} N_{1} & (0) \\ N_{2} & (0) \\ N_{3} & (0) \end{pmatrix}$$

$$= \begin{pmatrix} D_{11} \cdot N_{1} & (0) \\ D_{21} \cdot N_{1} & (0) + D_{22} \cdot N_{2} & (0) \\ D_{31} \cdot N_{1} & (0) + D_{32} \cdot N_{2} & (0) + D_{33} \cdot N_{3} & (0) \end{pmatrix}$$

$$(3.3)$$

で与えられる。ここで変換マトリックスDの要素D_いは核種jから核種iが生成される割合をあらわし、次式で定義される。

$$D_{ij} = \begin{cases} 0 & \dots & j > i \\ \exp(-\lambda_j^* \cdot t) & \dots & j = i \\ \begin{pmatrix} i-i \\ \ell = j \end{pmatrix} \cdot \sum_{\ell=j}^{i} & \frac{\exp(-\lambda_1^* \cdot t)}{\prod_{\substack{r=j \\ (r \neq j)}}^{i} (\lambda_r - \lambda_1)} & \dots & j < i \end{cases}$$
(34)

Fig. 2に示した崩壊チェーンに対しては、 $\Lambda_1 = \sigma_c^{28} \phi$, $\Lambda_2 = \lambda_2$ であるから

$$D_{11} = \exp\left(-\lambda_1^{\bullet} \cdot t\right) \tag{3.5}$$

$$D_{21} = \frac{\sigma_c^{**} \phi}{\lambda_2 - \lambda_1} \cdot \{ \exp\left(-\lambda_1^* \cdot t\right) - \exp\left(-\lambda_2^* \cdot t\right) \}$$
(3.6)

$$D_{22} = \exp\left(-\lambda_2^* \cdot t\right) \tag{3.7}$$

$$D_{31} = \lambda^2 \cdot \sigma_c^{22} \phi \cdot \left[\frac{\exp\left(-\lambda_1^* \cdot t\right)}{(\lambda_2 - \lambda_1)(\lambda_3 - z_1)} + \frac{\exp\left(-\lambda_2^* \cdot t\right)}{(\lambda_3 - \lambda_2)(\lambda_1 - \lambda_2)} + \frac{\exp\left(-\lambda_3^* \cdot t\right)}{(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \right] (3.8)$$

$$D_{32} = \frac{\lambda_2}{\lambda_3 - \lambda_2} \cdot \left[\exp\left(-\lambda_2^{\bullet} \cdot t\right) - \exp\left(-\lambda_3^{\bullet} \cdot t\right) \right]$$
(3.9)

$$D_{33} = \exp(-\lambda_3^* \cdot t)$$
 (3.10)

で与えられる。

(3.3) 式からあきらかなように、²³⁹ Pu の原子数密度 N₃(t) は 1 世代前の核種²³⁹ Np からは 初期値 N₂(0)の D₃₂ 倍だけの「資産」を引き継ぎ、2 世代前の²³⁸ U からは N₁(0)の D₃₁ 倍の資産 を引き継いている。これらの資産は現在の貨幣価値の変動に似ている。すなわち、親の代に1 坪 1 万円だった地価は、現在では数 100 倍になっている所もある。この貨幣価値を決めているのが マトリックス要素 D₁₁ であり、その根本は親核種の中性子吸収による核変換の割合 $\sigma_c \leq 2$ 自分自 身が中性子を吸収して死滅していく割合 (exp (- ^{*}, •t)) との相乗効果である。一方, 初期の 原子数密度に関しても同様で, (33) 式において, N₁(0)に変化を与えると, N₁(t)だけでなく, N₂(t), N₃(t)も同時に変化する。

上で述べたように、原子炉の燃焼特性(例えば原子数密度)の不確かさを核データの不確かさ と関連づけようとすると、時間依存の係数 $D_{ij}(t)$ に対する感度解析を必要とする。例えば、²³⁹Np の半減期 $r_{1,o}^2$ の不確かさによる²³⁹Npの原子数密度 N₂(t)の不確かさは、

$$\frac{\delta N_2}{N_2} = \left[1 - \frac{(\lambda_2 t + D_{22}) \cdot N_2(0)}{D_{21} \cdot N_1(0) + D_{22} \cdot N_2(0)}\right] \cdot \left(\frac{\delta \tau_{1/2}}{\tau_{1/2}}\right)$$
$$\approx \left[1 - \frac{(\lambda_2)^2 t}{\sigma_c^{28} \phi} \left(\frac{N_2(0)}{N_1(0)}\right) \cdot \exp\left(+\lambda_1^* \cdot t\right)\right] \cdot \left(\frac{\delta \tau_{1/2}}{\tau_{1/2}}\right)$$
(3.11)

で与えられる。

3.2 中性子バランス

2章で述べた国際相互比較用炉心において、²³⁸Uと²³⁹Puの反応率が実効増倍率k_{eff} にどの 程度寄与しているか,また、その寄与率はエネルギーによってどう変化するかを中性子パランス によって検討する。k_{eff}は

$$k_{eff} = \frac{\langle \nu \Sigma_{f} \phi \rangle}{\langle \Sigma_{a} \phi \rangle + \langle DB^{2} \phi \rangle}$$
(3.12)
$$\langle \Sigma_{c} \phi \rangle : 中性子吸収反応率$$

$$\langle DB^{2} \phi \rangle : 中性子漏洩率$$

$$\langle \nu \Sigma_{f} \phi \rangle : 中性子强生反応率$$

で定義され、 k_{eff} は中性子発生率
 $v \Sigma_f \phi > と実効的な中性子吸収率 (< \Sigma_g \phi > + < DB² \phi >)$ の比である。Fig.3これらの反応率の k_{eff} への寄与率を総和が k_{eff} の値になるようにエネルギーの関数で示す。

Fig. 3からあきらかなように、寄与率は主として中性子束の大きさによって特徴づけられている。各種の反応率が k_{eff} に与える寄与率が最大となるのは、中性子発生項では第9群(46.5KeV $\leq E \leq 100 \text{ KeV}$) 吸収項では第10群(21.6KeV $\leq E \leq 46.5 \text{ KeV}$)である。中性子スペクトルの $\ell' - \rho 近傍では、この2つの項はほゞ同じ大きさであるのに対して、中性子漏洩項<math>\langle DB^2 \phi \rangle$ は 約10%(積分値)の寄与しか持たない。これは炉心が大型化した事による。ちなみに、原型炉で は約15%の中性子が炉心からブランケット領域に漏れる。

Fig. 3 に示した中性子バランスをさらに ²³⁹ U と ²³⁹ Puの主な核反応別に分解したものを Fig. 4 に示す。ここでも総和が k_{eff} を与えるように規格化してある。 ²³⁸ U の核分裂反応による中性 子発生項< $\nu \Sigma_f \phi$ >は約 1.4 MeV 辺から急激に立ち上がり、1 MeV近傍では ²³⁹ Puの寄与より大 きくなる。その結果、Fig. 3 に示した< $\nu \Sigma_f \phi$ >がもり上がっている事がわかる。

以上の事からあきらかなように、中性子パランスの中で中性子発生項の約70%は²³⁹ Puの核分 裂反応であり、中性子吸収項の約40%は²³⁶ U の中性子捕獲反応にもとづいている。従って、次 節で述べる燃焼反応度の感度解析では、²²⁶ Uと²³⁹ Pu の燃焼だけで近似する。

3.3 感度解析

3.3.1 実効増倍率に対する感度係数

実効増倍率 k_{eff}の定義式(3.12)を用いて、 均質大型高速炉の燃焼チェーンの主要部分である²³⁴ U→²³⁹ Np→²³⁹ Pu における各種の核データ、中性子束、原子数密度に対する感度解析を 行う。3.3 および 3.2 で詳しく述べたように、ここでは燃焼チェーンを²³⁸ U→²³⁹ Puで近似する。 この簡略化した燃焼チェーンに対する²³⁶ U の原子数密度 N₁(t)と²³⁹ Pu の原子数密度 N₂(t)は (3.3) 式を用いてあらわされる。一方、k_{eff} の定義式における各種の反応率は

$$\langle \mathbf{v} \Sigma_{f} \phi \rangle = \sum_{i} \sum_{g} N_{i}(t) \cdot \mathbf{v} \sigma_{f, i} \phi_{g}$$
(3.13)

$$\langle \Sigma_{a} \phi \rangle = \sum_{i} \sum_{g} N_{i}(t) \cdot \sigma_{a,i} \phi_{g}$$
(3.14)

$$\langle \mathrm{DB}^2 \phi \rangle = \sum_{g} \mathrm{D}_{g} \mathrm{B}_{g}^{2} \phi_{g} \tag{3.15}$$

で与えられる。 ここで $\nu \sigma_{i+}^i$, σ_{i-}^i はそれぞれ核種 i の中性子生成断面積,中性子吸収断面積を あらわし, ϕ_i は g群の中性子束を, t は中性子照射時間をあらわす。

k_{aff}に対する変数x(断面積,中性子束,原子数密度)の感度係数S_xを

$$S_{x} = \frac{x}{k} \cdot \frac{\partial k}{\partial x}$$
(3.16)

で定義する。k_{eff}の定義式(3.12)に(3.13)式~(3.15)式に代入して,個々の変数に対する感度係数S_{*}を求めると以下のようになる。

(i) 核種 i の原子数密度に対する 3 感度係数

$$S_{N}^{i} = (\nu \sigma_{f}^{i} - k \sigma_{a}^{i}) \cdot \frac{R^{i}}{\nu \sigma_{f}^{49} \cdot R^{49} + \nu \sigma_{f}^{26}}$$
(3.17)

$$R^{i} = \frac{N(t)}{N^{29}(t)}$$
(3.18)

(ii) g群の中性子生成断面積に対する感度係数

$$\mathbf{S}_{\nu \sigma_{f}}^{i, g} = \nu \sigma_{f_{i} g}^{i} \cdot \frac{\mathbf{R}^{i}}{\nu \sigma_{f}^{49} \cdot \mathbf{R}^{49} + \nu \sigma_{f}^{28}} \cdot \left(\frac{\phi_{g}}{\phi}\right)$$
(3.19)

(iii) g群の中性子吸収断面積に対する感度係数

$$S_{\sigma_a}^{i, g} = -k \sigma_{a, g}^{i} \cdot \frac{R^{i}}{\nu \sigma_{f}^{49} \cdot R^{49} + \nu \sigma_{f}^{28}} \cdot \left(\frac{\phi_{g}}{\phi}\right)$$
(3.20)

(V) g群の中性子スペクトルに対する感度係数

$$S_{\phi}^{g} = \frac{(\nu \sigma_{f,g}^{49} - k \sigma_{a,g}^{49}) \cdot R^{49} + (\nu \sigma_{f,g}^{24} - k \cdot \sigma_{a,g}^{24})}{\nu \sigma_{f}^{49} \cdot R^{49} + \nu \sigma_{f}^{24}} \cdot \left(\frac{\phi_{g}}{\phi}\right)$$
(3.21)

ここで 「のようにエネルギー群を示す派字 g がない断面積は1 群(平均) 断面積を示し、 。ⁱ* のように派字 g のついているものは g 群の値を示す。(i)~(iv)の感度係数の導出過程において、断面積の不確かさによる中性子漏洩項の不確かさは小さいと仮定して、無視した。

(!)~(!y)に示した感度係数を燃焼時間tの関数としてプロットすると、²³⁸ Uから²³⁹ Puへの2 核

■で近似したことにより、²³⁸ U の原子数密度 N²⁸(t) は片対数グラフ上で実効崩壊定数 ³/₂₈ を 勾配とする右さがりの直線になる。同様にして、²³⁸ Uの各種の感度係数も右さがりの直線に近い 変化を示す。これに対して、²³⁹ Pu の原子数密度 N⁴⁹(t)は右上がりで、次第に飽和していく傾向 を示し、各種の感度係数も同じ傾向を示す。

上で述べたように、崩壊チェーンを²³⁶ U と²³⁹ Pu の 2 核種で近似して、 k_{eff} に対する感度係 数を解析的に求めたが、Fig. 5には初期炉心の全ての燃料核種について、25群 1 次摂動論で求め た値を示す。²³⁹ Pu の核分裂あたりの中性子放出数 ν と核分裂断面積 σ_f の感度が顕著に大きいこ とがわかる。Fig. 5 では基盤の下にかくれて見えないが、²³⁸ U の中性子補獲断面積 σ_c の感度も 大きい。

3.3.2 燃焼反応度に対する感度係数

ここでは 3.3.1 で求めた k_{eff} に対する感度係数を用いて燃焼反応度に対する感度係数を導く。 k_{eff} を照射時間 t の関数 k(t)とすると、時間 t から t'まで照射した場合の燃焼反応度 ρ を

 $\rho = \mathbf{k}(t) - \mathbf{k}(t) \tag{3.22}$

で定義する。核データ x に誤差 ðx がある場合の燃焼反応度の誤差 ð ρ は

$$\delta \rho = \rho \left(\left\{ x + \delta x \right\} \right) - \rho \left(\left\{ x \right\} \right)$$
$$= k \left(t' \right) \cdot \left(\frac{\delta k(t')}{k(t')} \right) - k(t) \cdot \left(\frac{\delta k(t)}{k(t)} \right)$$
(3.23)

であらわされる。ここで $\{x\}$ は核データ x の集合をあらわし、その誤差 $\{\delta_x\}$ による k_{eff} の誤 差を δk であらわした。燃焼反応度の誤差 $\delta \rho / \rho$ は

$$\frac{\delta \rho}{\rho} = \frac{k(t')}{k(t') - k(t)} \cdot \frac{\delta k(t')}{k(t')} - \frac{k(t)}{k(t') - k(t)} \cdot \left(\frac{\delta k(t)}{k(t)}\right)$$

$$= \frac{1}{G} \left(\frac{\delta k(t')}{k(t')}\right) - \left(\frac{\delta k(t)}{k(t)}\right) + \left(\frac{\delta k(t')}{k(t')}\right) \qquad (3.24)$$

$$\rho = \bullet k(t) \qquad (3.25)$$

となり、 3.3.1 で求めた k_{eff}に対する誤差であらわすことができる<mark>。燃焼反応度に対する感度係</mark> 数は、

(i) 核種 i の原子数密度に対する感度係数

$$\mathbf{B}_{N}^{i} = \left\{ \left(1 + \frac{1}{\epsilon} \right) \cdot \mathbf{H}^{i} (\mathbf{t} : \mathbf{t}') - \frac{1}{\epsilon} \right\} \cdot \mathbf{S}_{N}^{i}$$
(3.26)

$$H^{i}(t;t') = \frac{N^{28}(t)}{N^{28}(t')} \cdot \frac{R^{i}(t')}{R^{i}(t)} \cdot \frac{\nu \sigma_{f}^{49} \cdot R^{49}(t) + \nu \sigma_{f}^{28}}{\nu \sigma_{f}^{49} \cdot R^{49}(t') + \nu \sigma_{f}^{28}}$$
(3.27)

$$R'(t) = \frac{N'(t)}{N^{2}(t)}$$
(3.28)

(ji) g 群の中性子生成断面積に対する感度係数

$$\mathbf{B}_{\boldsymbol{\nu}\boldsymbol{\sigma}_{\mathrm{f}}}^{i,\,\mathrm{g}} = \left\{ \left(1 + \frac{1}{\epsilon}\right) \cdot \mathbf{H}^{i}\left(t\,;t'\right) - \frac{1}{\epsilon} \right\} \cdot \mathbf{S}_{\boldsymbol{\nu}\boldsymbol{\sigma}_{\mathrm{f}}}^{i,\,\mathrm{g}}$$
(329)

- 107 -

(ii) g群の中性子吸収断面積に対する感度係数

$$B_{\sigma_a}^{i, g} = \left\{ \left(1 + \frac{1}{\epsilon}\right) \cdot H^i(t; t') - \frac{1}{\epsilon} \right\} \cdot S_{\sigma_a}^{i, g}$$
(3.30)

(IV) g群の中性子束に対する感度係数

$$B_{\phi}^{i, g} = \left\{ \left(1 + \frac{1}{\varepsilon} \right) \cdot \frac{1 - (1 + \varepsilon) \cdot k(t) \cdot A^{g}(t')}{1 - k(t) \cdot A^{g}(t)} - \frac{1}{\varepsilon} \right\} \cdot S_{\phi}^{i, g}$$
(3.31)

$$A^{g}(t) = \frac{\sigma_{a,g}^{49} \cdot R^{49}(t) + \sigma_{a,g}^{28}}{\nu \sigma_{f}^{49} \cdot R^{49}(t) + \nu \sigma_{f}^{28}}$$
(3.32)

となる。

4. 核データの測定値と要求精度

Fig. 6 に²³⁸Uの中性子捕獲断面積の測定データと JENDL-2B の評価値を示す。 評価値は約 1 MeV以上のエネルギー領域では測定値より低い値を取っているが、1 MeV以下では Spencer 達の低い値(〇〇印)を除けば、測定値の平均値に近い値を採用している。

Table 2には測定値の共分散マトリックスと標準偏差値を示す。 7.73 KeV 以下の低エネルギー(共鳴)領域を除くと,標準偏差値(1σ)は 13.3 ~74.1%の範囲にあり,平均値は 22.4 %となる。

上述の標準偏差値を²³⁸Uの中性子捕獲断面積(約500 KeV 以下では吸収断面積)の不確かさ とみなして,感度係数式(3.21)を用いて, k_{eff}に対する誤差をエネルギー群毎に計算した値を Table 3 に示す。

k_{eff}に最も大きな不確かさを与えるエネルギー領域は約60KeV以下の非分離共鳴領域である ことがわかる。燃焼反応度の感度係数は(3.26)~(3.32)式に示したようにk_{eff}の感度係数に 比例するので, k_{eff}の誤差より大きくなる。従って,要求精度(0.2% *d*k)を満足させることは 困難であると考える。

5. 断面積セットの積分データによる調整

評価済核データをより信頼度の高いものに改良していく方法として、ここでは高速炉の模擬臨 界実験データや原子炉の運転実績データを用いた断面積セットの調整(adjustment) について 述べる。

評価済核データから作成された多群断面積セットを基本として、この断面積セットを用いて計 算した臨界実験や稼動中の原子炉の核特性が実測値とあうように、多群断面積を修正していく方 法を断面積セットの調整と言う。断面積セットの調整は、原子炉の核特性を再現できる新たな断 面積セットを与えてくれるだけでなく、その調整過程で得られた情報は核データ評価に強力な支 援を与え、核データ評価と断面積セットの調整を反復することによって、評価済核データは限り なく実値に近づくことが予想される。 Fig.7に調整済断面積セット JACSS (JENDL Adjusted Cross Section Set)(仮称)を 得るまでのあらゆる段階を示す。Fig.7には個々のプロックの機能と情報の流れを示したので、 個々の説明は省略し,注目すべき点だけについて述べる。Fig.7で断面積調整上の中心的な段階 は、最小2乗法(LSQ)による調整部分(?)であるが、調整に用いられる入力データは慎重に検討 された質のよいものであることが、信頼度の高い調整済断面積セットを得るための前提条件であ る。そのためには、多数の模擬臨界実験の解析等で計算値と実験値の詳細な比較・検討が必須条 件である。一方,共分散マトリックス(covarianœ matrix)は最小2乗法における荷重を与え、 核データの変動幅を限定する働きをする。これは核データ評価の一環として推進しておく必要が ある。

あとがき

大型高速炉の燃焼特性,特に燃焼反応度に与える核データの不確かさの影響を簡便法で検討した。基本は中性子バランスであるが,燃焼に伴う中性子スペクトルの効果は,その変化量が与えられている場合を想定した。その限りにおいては一次摂動論に属する。結果は初期炉心のk_{eff}の 感度係数と燃焼の効果をあらわす簡単な関数で燃焼反応度に対する感度係数を与えうることを示した。

Note Gara Demonstration	Reactor			
Main core rarameter	commercial	NEACRP Core		
1. Dimensions				
diameters (cm) (IC/OC/blanket)	243/325/405	273/353/446		
core height (cm)	100.0	101.8		
blanket height (cm) (radial/axial)	40.3/35.0	46.7/33.0		
2. Volume				
core (£) (IC/OC)	8270 4640/3630	9950 5977/3969		
blanket (l) (radial/axial)	7860/5790	9824/6466		
3. Volume Fraction (fuel/coolant/structure)	40.5/22.4/37.	1 41/38/21		
4. Control Rod	31	(1)*		
5. Fuel (initial core)		-		
Pu isotope ratios (w/o) (Pu239/Pu240/Pu241/Pu242)	58/24/14/4	65/19/9.8/2/4		
Pu inventory (Pu-fiss,t)	3.28			
Pu enrichment (IC/OC)	10.6/13.6	10/13		
Pin diameter (cm)		0.762		

Table 1 Comparison of Main Core Parameters

*) single central rod

- 110 —

) 82	00,10 0 10		
2			
26	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
25	0 3 4 4 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9		
54	04777 04777 04770 047070 047070		
23	040414040		
	00010010		
21	00000 44404 00000 44404 000004040		
2	00238390550 00238390550 00538390550		
19	088.42MU14141		
18	12212212212		
17	000000000000000000000000000000000000000		
18	00000000000000000000000000000000000000		
:	0322232564564565		
14	000000000000000000000000000000000000000		
13	018898886866979800		
12	0 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
11	00044000 111 00040040044000044000		
10	0440290412910400011800 ,0440290412910400011800		
٥	00000000000000000000000000000000000000		
	00000000000000000000000000000000000000		
~	000000000000000000000000000000000000000		
-0	00000000110288888888900		
ŝ	084144970000000000000000000000		
٠.	00000000000000000000000000000000000000		
ູ້	0	8 5	•••
1 × 1	00	30	8 <u>9</u> 0
5 -	011 401 N#N466 N 84 N 00 N6 N NN N 0000 000	29.50	300
85	444N4KON99448FFN846N98N44NN9MN9	50	nno
##*	NBN00000000000000000000000000000000000		0000
(KEV.	4 8 0 6 6 6 6 6 6 6 6 6 6 6 0 0 0 0 0 0 0	CKEV	0000
·EL0	$\begin{array}{c} d d d d d d d d$	ELO	2002
-	~~~~~~~~~~~~~~ ~ ~ ~~~~~~~	H -	N 10 10 10

Table 2 U-238 Capture Cross Section Covariance

- 111 -

.

Group No.	Lower Energy	Cross Section Error (%)	Sensitivity	k-contribution
1	8.3 MeV		-2.85(-3)	
2	6.5			
3	5.1	13.3		-0.038
4	4.0	92.3	-9.13(-3)	-0.843
5	3.1	. 19.0		-0.173
6	2.5	40.5	-1.93(-2)	-0.782
7	1.9	27.2	11	-0.525
8	1.4	74.1	-3.46(-2)	-2.564
9	1.1	44.6	11	-1.543
10	0.8	27.2	-1.26(-2)	-0.343
11	0.63 ·	26.8	11	-0.338
12	0.50	21.6	-2.00(-2)	-0.432
13	0.40	17.2	11	-0.344
14	0.31	15.6	**	-0.312
15	0.25	17.4	-2.53(-2)	-0`. 440
16	0.20	16.8	11	-0.425
17	0.15	18.2	้า	-0.460
18	0.12	18.7	-3.63(-2)	-0.679
19	0.10	19.7	*1	-0.715
20	77. KeV	21.8	11	-0.791
21	59.	19,4	-5.83(-2)	-1.131
22	46.	18.1	11	-1.055
23	36.	19.9	"	-1.160
24	27.	15.9	-7.56(-2)	-1.202
25	21.	15.3	11	~1.157
26	16.	19.0	11	-1.436
27	12.	21.2	-6.93(-2)	-1.469
28	10.	21.6	11	-1.497
29	7.73	19.2	n .	-1.331
30	5.98	4.6	-5.06(-2)	-0.233
31	4.65	4.2	¹ п	-0.213
32	3.60	7.4	. 11	-0.374

Table 3 k_{eff} error due to cross section error

- 112 -

•

Fig. 2 ²³⁸U decay chain and the simplification

- 113 -

ł

Fig. 3 "Gross" Neutron Balance of NEACRP Benchmark Core.

JAERI-M 83-041

Fig. 4 Main Isotopic Neutron Balance of NEACRP Benchmark Core.

JAERI-M 83-041

 \mathbf{r}

والمحاجب والمح

Fig. 5 Sensitivity Coefficients for Criticality (KEFF)

- 117 -

Fig. 6 U-238 Capture Cross Section. Solid Line Means JENDL-2 Evaluated Data.

Fig. 7 Flow Diagram for Cross Section Adjustment.

B 核融合積分実験における核データ

Nuclear Data for Fusion Integral Experiment

6 B・1 FNS積分実験からの核データへの要請

前川 洋

FNSを用いた過去1年間の積分実験の中で,次の3つの実験結果とその解析について述べる。 ①Li2O-C体系中のトリチウム生成率分布,②Li2O平板体系からの角度依存中性子リークス ペクトル,③SUS 316の誘導放射能。

Comment for Nuclear Data from the FNS Integral Experiments Hiroshi MAEKAWA⁺

Among the integral experiments that were carried out during last one year at FNS, the following three experimental results and their analyses are discribed. 1) Tritium production-rate distribution in a Li_2O-C assembly, 2) Angle dependent neutron leakage spectra from Li_2O slab assemblies, 3) Induced activity of Type 316 stainless steel.

1. はじめに

昨年の研究会で、核融合炉物理用中性子 (FNS)を用いて最初に実施したプランケット 模擬 実験について報告した。その後、Li₂O-C体系中のトリチウム生成率分布を⁶Li(n, α)³ T, ⁷Li(n, n'α)³ T 反応にそれぞれ分離して測定する追加実験やLi₂O 平板体系からの角度依存リ ークスペクトルを TOF 法で測定する実験が行われた。また、SUS 316の誘導放射能についても 追加実験が行われ、絶対値で比較できるようになったので報告する。

2. Li ,0-C 球体系中のトリチウム生成率分布

Li₂O-C 体系は酸化リチウムおよび黒鉛ブロックをステンレス製の引出しに入れ、それをス テンレス製の格子管集合体に挿入し、全体として球になるよう組立てられた。実効外半径は中心 ポイド、酸化リチウム、黒鉛の各領域でそれぞれ 3.3、224、46.8 cmである。トリチウム生成率分 布は次の 2 つの方法で測定した。天然および⁷Li (99.952 atom%)の粉末を圧縮成形したベレッ ト (10 mm #×5 mm, ~0.7g)を d⁺ ビームに対して 0°方向に配置した実験孔付きのLi₂Oブロ ック (16.6×16.6 の実験孔は 0°方向に直角に置いた。)の4ヶ所の実験孔に入れ、照射した。照 射中の純中性子発生量は 4.80×10¹⁵ であった。照射したペレットは R. Dierkx の開発した方法⁽¹⁾

⁺ 日本原子力研究所, Japan Atomic Energy Research Institute.

に従って処理し、液体シンメレータにより生成したトリチウムを測定した。LiFのTLDの自己 照射法⁽²⁾による測定では Hawshaw 社製のTLD-600 (⁶Li: 95.62 atom %) とTLD-700 (¹Li : 99.993 atom %) の粉末を 2 mm ϕ × 12 mm のパイレックスガラスに封入したものを用いた。 TLD は上記 Li₂CO₂ ペレットと同じ位置の他に d⁺ ビームに対して 90 °方向にも設置した。 照 射中の総中性子発生量は 5.9×10^{15} であった。Fig.1 に実験体系の水平断面図をサンプルの設置 位置と共に示す。照射後、13日間放置してトリチウム以外の減衰を待って、400 °C、1 時間のア ニーリングを 2 回行った。その後、特別に製作した低パックグランド 遮蔽容器の中に 2215 時間 (約3 ケ月) 放置し、生成したトリチウムからの β 線による自己照射を行い、TLD リーダでそ の線量を測定した。測定データはサンプルの中の⁶Li、⁷Li の原子数密度を考慮し、⁶Li(n, α) ³T.⁷Li(n, n' α)³T および全トリチウム生成率を算定した。

解析は1次元輪送計算コードANISN⁽³⁾で行った。使用した断面積セットは中性子に対して135 群のGICX FNS⁽⁴⁾でENDF/B-Nの核データファルからNJOYコードで処理して作成した。な お、¹²CはENDF/B-V、⁷Li(n, n' α)³T反応はP.G.Young⁽⁵⁾の評価値を使用している。入力 した中性子スペクトルは使用した水冷ターゲットをできるだけ正確にモデル化してモンテカルロ 法で計算した結果⁽⁶⁾を用いた。計算モデルをFig.2に、各領域の原子数密度をTable I に示す。

実験結果を計算結果と共に Fig.3 に示す。 TLD の実験値は Li₂ CO₃ の 5.3 cmの実験値で規格 化した。異なる二つの方法による測定値は互に良く一致した。⁶Li(n, α)³T の計算値は中心付 近を除き,実験を良く再現している。モンテカルロ法で計算した中性子顔スペクトルは TOF 法 で測定した結果と 2 MeV 以上で良く一致しているものの, 2 MeV 以下は群の幅も広く,実験値 がないため、確認が行われていない。2 MeV の中性子顔スペクトルを人意的に 変えて計算した 結果は⁶Li のトリチウム生成率に対して中心付近で大きく変化することが判った。²³⁵U の核分 裂率分布に対してこの影響は少く、⁶Li のトリチウム生成率の計算には低エネルギー側の中性子 顧スペクトルを正しく入力する必要があり、2 MeV 以下の中性子顧スペクトルを近い将来測定す る予定である。一方、⁷Li (n, n', α)³T 反応によるトリチウム生成率の計算値は実験値を良く 再現しており、P.G. Young の評価値を支持している。もし、ENDF/B-Nのデータを使用する と 10~15% 純度計算値が大きくなる。別途、実施した⁷Li₂CO₃ ペレットによる 15 MeV におけ る⁷Li (n, n' α)³T の断面積の測定結果は P.G. Young の評価を支持している。

3. Li 。0 平板体系からの角度依存リークスペクトル

実験の配置をFig.4に示す。Li₂Oの実験体系はターゲットから20cm 難して設置し,背面中 心付近からもれてくる中性子スペクトルを中性子飛行時間法(TOF法)で測定した。実験体系 は Li₂O ブロックを中空のアルミの格子管で組上げた枠の中にステンレス製の引出しおよび格子 管なしに直接組立てた。(Fig.5) Li₂O ブロックは前述の Li₂O-C体系で使用したブロックと 具なり、Li₂Oの成形体の密度は理論密度の75.5%であり、0.2 mm厚のステンレス缶に封入され ている。実効半径は31.4 cm で厚さ5.06, 20.24, 40.48 cm の3種の体系で測定した。コリメー タおよび検出器シールドは2重回転式のゴニオメータの上に乗っており、測定角度に応じて常に コリメータと検出器の軸が実験体系の背面中心に合せられる。測定角度は0°, 12.2°, 24.9°, 41.8°, 66.8°の5点で,飛行距離は約7mである。検出器は5cm \$<5cm ONE 213 シンチレータで, 2-バイアス法の採用により0.5MeV以上のスペクトルを効率良く測定できた。検出器の効率曲 線はモンテカルロ計算および実験により作成した。コリメータで限定される体系の被測定面積は 簡単なモデルにより計算したが,実験的に求めた結果と非常に良く一致した。実験の詳細は数値 的結果も含め,別途報告されている。⁽⁷⁾

実験に対する解析は次の3つの方法で行われた。

 i) 2次元輸送計算コード DOT 35⁽⁸⁾と前述の断面積セット C¹CXFNS およびすべての核デー タを ENDF / B−W から採用した GICXFNS 1

ii) DDXを利用した直接積分型の2次元輸送計算コード BER MUDA-2DN⁽⁹⁾と ENDF/B-N から作成した 51 群の断面積セット⁽¹⁰⁾

iii) DDX を利用したモンテカルロコード MORSE - DDX とENDF / B-Nから作成した断面積
 (ii)
 セット

上記いづれの解析においても、中性子顔スペクトルとして、同じTOF 測定系で得られた実験 値を入力した。実験結果をGICXFNS を用いた DOT 3.5の解析結果と共に Fige. 6~8 に示す。 実験と計算の角度依存スペクトルは、絶対値による比較にもかかわらず全体として良く一致して いるものの、部分的には大きな差が見られる。エネルギー領域を3つに分けて積分的に評価し、

(計算値/実験値)の形で比較した結果をFig.9に示す。弾性散乱が主として効いている10MeV 以上でP.G. Young の評価値から離れる方向であり、⁷Li(n.n'α)³T で 15% 程度減少した部 分を弾性散乱に組入れるのが良くないことを示している。

BERMUDA-2DN および MORSE ~ DDX による解析結果^(IIX12)も上記 DOT 3.5の結果とほぼ同様の結果が得られている。今後, 媒質を変えた体系による同様の実験データを書積することにより総合的評価を行う予定であるが、DDXを含む核データファイルの出現により,より良く実験結果を再現する解析結果が得られるものと期待される。

4. SUS 316 の誘導放射能

「お数計用として開発された線量評コードシステム THI DA⁽¹³⁾の妥当性を評価することを目的と し、次期装置等の設計で構造材として採用されている SUS 316の誘導放射能を測定した。⁽¹⁴⁾予備 的な実験結果については昨年の本研究会でも報告したが、その後本実験を実施したのでその結果 を述べる。

SUS 316 のサンプル ($10mm\phi \times 2t$) を2 で述べた Li₂O-C 体系の σ 方向中心から 12.6 と 23.1 cm に置き,中性子発生率約 2.3×10^{11} n/s で8 時間照射した。サンプルからの誘導放射能 は照射後約 14 時間および1 ケ月後,60 cc のGe (Li) 検出器で測定した。同様の実験を体系な しの状態でターゲットから 10 cm 離した位置にサンプルを置いて行った。実験結果の例をTHIDA による計算結果と共に Figs. 10~11 に示す。また、(実験値/計算値)の比で表わしたグラフを Figs. 12~13 に示す。最も τ 線強度の高いエネルギー群($810 \sim 900$ KeV)において、1 日以内 の短時間冷却では実験値が若干計算値よりも高く(主な核種: ⁵⁶ Mn)、1 ケ月程度の長時間冷却 では約 12%実験値が低い(主な核種: ⁵⁴ Mn, ⁵⁶ Co)。全 τ 線線量の実験値と計算値は今回の実 験における冷却期間の範囲内では 12%以内で一致しており,設計の目標である 20% 以内を満し ている。この実験の結果からTHIDAコードシステムの妥当性が示されたものの,一部大きく差 のある生成核種 (^{\$1}Cr, ^{92 m}Nb, ⁵⁹Fe など)があり,使用している核データライブラリーの更 新が必要である。そのためには,核データファイルの中のこれらの核種の生成断面積の精度向上 が望まれる。

5. あとがき

FNS を用いた実験が始まって1年余,その間、特性試験をまじえながら種々の実験が行われ た。今回報告した TOF 実験も FNSの強力なパルス中性子性能と実験設備が威力を発揮した。 1000Ciのトリチウムを含む回転ターゲットを用いたビームテストもすでに終了し、多量のトリチ ウムの取扱い経験も得られた。今後はこの強力な中性子顔により誘導放射能やドジメトリーの研 究が進展するものと期待される。1983 年からは FNS を用いた JAERI – DOE の協力研究もスタ ートすることになっている。FNS による積分実験は始まったばかりであり、その有効性は示せ たものの、核データや計算法に要請するには実験データはまだまだ不十分であり、煤質や形状を 変えた実験データの蓄積が必要である。

参考文献

- (1) Dierckx, R., Nucl. Inst. Meth. 107, 397 (1973)
- (2) 前川 洋,「熱蛍光線量計によるトリチウム生成率分布の測定」, JAERI-M 6055 (1975)
- (3) Engle, W.W., Jr., "A User's Mannual for ANISN", K-1693 (1967), Oak Rigde National Laboratory
- (4) 関泰.私信
- (5) Young, P.G., Trans. Am. Nucl., <u>39</u>, 272 (1981)
- (6) Seki, Y., et. al., "Monte Carlo Calculations of the Source Characteristics of the FNS Water Cooled Type Tritium Target", To be published in J. Nucl. Sci. Technol.
- (7) Oyama, Y., Maekawa, H., "TOF Measurement of Angle-Dependent Fast Neutron Spectra from Li₂O Pseudo-Cylindrical Spab Assemblies", To be published in JAERI report
- (8) Rhoades, W.A., Mynatt, F.R., ORNL/TM-4280 (1979)
- (9) 鈴木友雄,他,「2次元中性子輸送コード BER MUDA-2DN」 JAERI-M82-190 (1982)
- (10) 鈴木友雄,私信
- (11) 中川正幸,他:私信
- (12) Maekawa, H., et al., "Measurements of Angular Flux on Surface of Li₂O Slab Assemblies and Their Analysis by a Direct-Integration Transport Code BERMUDA", Fifth ANS Topical Meeting on Fusion Reactor

Technology, Knoxville, Apr. 26-28, 1983

- (13) 飯田浩正,五十嵐正仁, THIDA -- 核融合装置線量率計算システム --- , JAERI -M 8019(1978)
- (14)池田裕二郎,他,「核融合炉構成材の放射化実験 SUS 316中の誘導放射能」,原子力 学会分科会 C-33 (1982)

.

Nuclido	Nuclide density		$(10^{24} \text{ atoms/cm}^3)$					
Nuclide	Void		L120)	Graph	ite	Latti	ce
⁶ Li			3.355	-3*				
7 _{Li}			4.1855	-2				
0			2.2605	-2				
С					6.9298	-2		
Cr	1.751	-3	1.935	-3	1.751	-3	5.632	-5
Mn	8.185	5	9.632	-5	8.185	-5	4.159	-3
Fe	6.349	-3	7.030	-3	6.349	-3	4.821	-4
NI	7.303	-4	8.106	4	7.303	-4		

Table I Nuclide Densities of Each Region in Li₂-C Assembly

* Read as 3.355×10^{-3}

Fig. 1 Horizontal section across the center of Li₂O-C assembly

Fig. 2 Calculational model of Li₂O-C assembly

Fig. 3 Tritium priduction-rate distribution in Li_2O-C assembly

Fig. 6 Angle-dependent neutron leakage spectra from 5.96 cm thick $\text{Li}_{2}0$ slab assembly

Fig. 7 Angle-dependent neutron leakage spectra from 20.24 cm thick Li₂O slab assembly

Fig. 8 Angle-dependent neutron leakage spectra from 40.48 cm thick $Li_{2}0$ slab assembly

Fig. 9 Integral comparison of angle-dependent leakage spectra from Li₂O slab assemblies

Fig. 10 Comparison of gamma-ray emission rate between the measured and calculated values .

Fig. 11 Comparison of gamma-ray emission rate between the measured and calculated values

- Fig.12 Experimental to calculational ratio of induced activity of Type 316 stainless steel
- Fig.13 Experimental to calculational ratio of induced activity of Type 316 stainless steel

. .

討論

C:神田幸則(九大)

Young 0^7 Li に関する評価では、⁷Li (n, n' α)の値を下げた分を⁷Li (n, n)の値を上げ た。 (n, n' α)は良い結果を与えるが、 (n, n)は良くないとの積分実験からのコメントは、 全断面積を下げた方が良いと理解してよいか。

他の non -elastic 断面積にくり込んだ場合,積分実験の解析で、その影響がわかるか。

A:前川 洋(原研)

全断面積は一般に良い精度で測定されており、 (n, n' a) の値を下げた分は他の nonelastic 断面積にくみ込むべきと考えている。これらを明らかにする感度解析は成されていな いし、どの non-elastic 断面積にどの程度くみ込むべきであるかは現時点では言及できない が、実験結果を良く説明できる配分があるものと思われる。

.

6 B・2 オクタビアン積分実験と核データの問題

高橋一亮人

オクタビアンで行われた平板及び球体系の積分実験とDDX 実験及びそれらの解析を比較する ことにより、二次中性子データの問題点をのべる。C, Li, Fe, Pb について比較例を示す。 C のENDF/B-V データも積分実験と良く一致するには致っていない。Li, Pb については, ENDF/B-Nデータを大きく改良する必要がある。

Nuclear Data Problems for Integral Experiments at OKTAVIAN Akito TAKAHASHI

Problems in secondary neutron data are discussed, by comparing between integral experiments of plane or spherical assemblies, measured DDX data and their analyses. Examples are shown for Li, C, Fe and Pb. Integral experiment of graphite sphere does not agree with analysis even by using ENDF/B-V data. ENDF/B-IV data for Li and Pb should be largely improved.

1. 序

核融合炉用の核データおよび輸送計算法の検証のための積分実験として、オクタビアンでは平 板・球状体系を用いた漏洩中性子スペクトルの測定・しきい箔による反応率分率の測定が行われ ている。^{1),2)} これらの実験は、ENDF/B-N核データを用いた一次元S_Nコード NITRAN、 ANISN やモンテカルロコードによる計算と比較検討され、実験との不一致の大部分の原因が核 データ側にあると思われるようになった。一方、中性子放出二重微分断面積(DDX)が将来輸送 計算に使えるようにするための第一ステップとして、DDXの直接測定とENDF/Bデータからの 合成 DDX の比較³⁶もオクタビアンにおいて行われている。

積分実験と計算との比較, DDX実験とENDF/B-Nの比較の双方においてみられる実験と計 算の不一致の様子は一貫性がみられる。そこで、本報告では、この一貫性に焦点をあてて、C, Li, Fe, Pb の例について、核データ(特に二次中性子データ)の問題点を明らかにしてみたい。

2. 炭素(黒鉛)

積分実験は直径 90 cm の黒鉛球を用いて,その中心で DT 中性子を発生させ,しきい反応率及 び中性子もれ流束スペクトルを測定した。用いたしきい反応は,⁹³Nb (n, 2n)⁹²Nb^m,²⁷Aℓ (n, α)²⁴Na,⁵⁶Fe (n, p)⁵⁶Mn が高速中性子用スペクトルインデックスとして,¹¹⁵In

[•] 大阪大学工学部, Faculty of Engineering, Osaka University.

(n, r)¹¹⁶Iff が熱中性子用である。中性子もれ流束スペクトルは, NE 2135^{**}×2^{*}検出器を 用い TOF 法で測定された。DT中性子発生量は,ターゲット裏面に取りつけたアルミ及びニオブ 箔の放射化量より決定した。

図-1に、中性子もれ流束スペクトルの実験と計算との比較を示す。計算は、ENDF/B-V の核データを用いてNITRANによるSit・135群の解析を行ったものである。全般に、良い一致 が得られているように見受けられる。しかし、詳しくみると、10 MeV ふきんで計算が過小評価. 6~7 MeV のビークで計算の過大評価、3 MeVふきんで計算の過小評価となっている。球内部の 情報は、箔による反応率分布のみであるが、図-2 に実験と計算の比較をC/E のグラフとして 示している。4 つの反応について得られた C/E はすべて右下がりの傾向にある。また、熱中性 子分布を表す In (n, r)反応の C/Eが、球全体にわたり1よりかなり大きくなっているのは興 味のある結果である。C/E が右下がりとなる理由は、計算において前方への中性子輸送が過小 評価されているためと考えられる。球体系においては、高速中性子(スペクトルインデックス: Nb、Aℓ、Feの反応)の前方輸送の過小評価は、球からの漏洩の過小評価に絡がる。このこと から、熱中性子分布の C/E が1より大きくなったことが説明出来ると思われる。

NI TRAN 計算での角中性子束の収束性は、Sio で充分であることがたしかめられている⁴⁰の で、上記の過小評価の原因は、二次中性子の角分布データの不備に求められるべきであろう。別 の積分実験として、平板黒船からの角度依存放出スペクトルをTOF 法で測定し、ENDF/B – Vを用いた NITRAN 計算と比較したのが図ー3である。前方 0°においては、¹² Cの第1~3 レ ベル非弾性散乱の寄与を表すピーク(11.85,7 MeV ふきん)のところで計算がかなり過小評 価となっているのが見受けられる。また、後方 135°においては、二番目のピーク(第一レベル非 弾性散乱の寄与)で計算が過大評価となっている。図-4 に炭素の DDX実験値から得られた、第 1~3 レベル非弾性散乱断面積の角分布データを ENDF/B-V のそれと比較して示す。第1, 第3 レベルにおいては、実験は ENDF/B-V より前方散乱が強い結果となっていて、図-3 に 示した結果と一貫している。レベル非弾性散乱の角分布を手直しするだけで、図-2 に示したC /Eが1に近い平行な線となるかどうかは、未だチェックされていない。しかし、ENDF/B-V の二次中性子角分布データが未だ不充分であるのは明らかである。

3. 天然リチウム

図-5に、平板リチウムからの角度依存放出スペクトルの実験と計算の比較を示す。用いた体系の横方向大きさ(50×60 cm)が14 MeV 中性子平均自由行程(約15 cm)の尺度でみて、小さすぎるため比較は3次元モンテカルロ計算(NIMOS⁵⁾実練)と行わなければならない。5~10 MeV 領域で実験と計算の大きな不一数がみられる。前方(0°,45°)では計算の過小評価、後方(135°)では過大評価である。また前方の低エネルギー側で計算が過小評価となっている。5~10 MeV 領域にみられる不一致は、図-6 に示した DDX の実験と ENDF/B-Nデータの比較でみられる不一致の傾向と一貫している。⁷Li(n,n'a)T反応のうち、⁷Liの第二単位(Q 値 - 4.63 MeV)を励起するチャンネルは、離散レベル散乱として独立に扱わねばならぬことが DDX 実験値よりわかり、ENDF/B-N においてこの取扱いをしていないことが図-5の5~10
MeV 領域の不一致の主因となっている。

図-6の比較で、もう一つの大切な事実は、後方(145°)にみられる不一致である。ENDF/ B-Nでは、⁷Li(n, n'a)T反応のしきい値が約2.46 MeV であるところから、14 MeV入射中 性子によるこの反応の二次中性子は(14-2.46=11.54 MeV)より下方に分布(C系等方)する としている。しかし、DDX実験結果は、4.63 MeVレベルピークより高エネルギー側には、⁷Li (n, n'a)T反応の二次中性子が発生していないことを示している。このため全体の(角度積分 した)二次中性子スペクトルはENDF/B-Nのものよりかなり軟化していると考えられる。この ように⁷Li(n, n'a)T反応がQ=-4.63 MeV より大きな負値で起るとして二次中性子分布を 与え、Li球のトリチウム増殖率を解析した以前の計算⁴によると 20% 程度増殖率を減らす結果 となっている。したがって、ENDF/B-Nを修正して⁷Li(n, n'a)T 二次中性子データを正し く与えることは非常に重要である。ENDF/B-V では当初Nと同じデータを採用していたが、 最近 P. Young(LASL)が再評価してDDX型二次中性子分布が与えられるように改定された。⁶

4. 鉄

図-7に鉄平板からの角度依存放出スペクトルの実験値と計算値の比較を示す。全般的一致は、 前二材料に比して良いと言える。実験誤差が大きくそれほど明確ではないが、詳しくみると、前 方の5 MeV以上の領域で実験値がやや高くなっており、後方では逆転している。この傾向は、図 -8に示すDDX実験デーゲとENDF/B-Nの5~13MeVでの不一致の傾向と同じである。Fe のENDF/B-N データもまだ問題を残していると言える。DDX実験データの3 MeV 以下の振 舞は実験の系統エラー(NE-213 効率の決定?)を表していると思われるので再実験する予定で ある。(効率の決定は、一材料のラン毎に回路設定が異るので、そのつど求めている。波高のし きいを高くしたランでの低エネルギー側しきい付近にエラーが考えられる。)

5. 鉛

 鉛球殻の中心で DT 中性子を発生させ、約95 m 離れた位置に置いた NE 218 検出器を用いて TOF 法により中性子もれ流束スペクトルが測定された。¹⁾ もれ流束スペクトルをエネルギー積分 することにより、鉛球殻による DT 中性子増倍率が決定された。増倍は、Pb (n, 2n)反応(し きい値 6.7 MeV)により起る。解析は、一次元 S_Nコード NITR AN 及び ANISN を用い、核デ ータとしては ENDF / B – N を用いた。球殻の厚さは、3 cm、6 cm、9 cm、12 cm の4種類であ る。図 – 9 に中性子もれ流束スペクトルの実験と計算の比較を示す。 顔中性子(14~15 MeV) によるピーク以外で実験が高めにでている。また 1~10 MeV 域のスペクトルは、実験の方が硬 い。表 – 1 に増倍率(0.3~15 MeV の積分値)の実験と計算の比較を示す。なお、同表で4~15 MeV とそれ以下の部分増倍率を示したのは⁷Li (n, n' a)T 反応の実効しきい値に対応させたも のである。実験は、6 cm 厚さの球殻で17%、9 cm 厚さの球殻で25% 程、計算値より大きな増 倍率を与えている。 図-10にPbのDDX 実験値とENDF/B-N の比較を示す。二次中性子のうち8MeV以下は、 (n, 2n)反応によるものと考えられるが、この領域で実験値はENDF/B-N よりかなり大き くでている。またスペクトルも硬めとなっている。特に前方での不一致が大きい。ENDF/B-Nでは (n, 2n)は等方とされているが、実験は若干の角度依存性があることを示している。 DDX のうち Pb (n, 2n)のQ 値-6.7 MeV をこえるエネルギー領域 (0~8 MeV; 添が 14.7 MeV のとき)が (n, 2n) 中性子に対応すると考えて、この領域でDDX をエネルギー積分す ることにより、角度依存の (n, 2n)反応断面積が求められた。更にそれを角度積分して、(n, 2n)反応断面積を求めたところ、ENDF/B-Nの値 (15~13.5 MeV の平均値)より 22%大き な値が得られた。DDX 実験から得られたこれらの結果は、先の積分増倍実験の結果と全く一貫 している。ENDF/B-N の (n, 2n)断面積は約 20% 大きめに修正する必要があり、二次中性 子データもエネルギー分布を硬めに修正した上、角度分布も加えた方が良いことがわかる。

6. 若 言

DDX実験により二次中性子核データの問題点をミクロなところより明らかにして、 データの 改良に用いうることを示した。しかし DT 炉核設計等の工学利用において、どの程度の質の核デ ータが要求されるかは、むしろ積分実験とその計算による解析から明らかにすべきである。今回 示したような積分実験と計算の不一致の傾向と原因が、二次中性子 DDXデータの不一致な点より 一貫性をもって説明できたことは; DT 中性子の輸送が DDX のような微分データに敏感であり、 積分実験が有用な手段であることを、我々に教えている。

オクタビアンでは、今回示した元素以外の元素材料やコンクリート、SS のような混合材料に ついても積分実験を行っている。また、約40元素について14 MeV 入射中性子による DDX デー タを測定しようとしている。したがって、今回以外の材料についても今回と同様な知見が得られ つつある。

新养

本報告は,阪大工学部原子力住田研ニュートロニクスグループ(高橋,山本淳治,他)が行っ ている一連の研究より,本テーマに関するものを抜き出して,高橋が代表して報告したものであ る。同グループメンバーに感謝する。また,DDX実験は,文部省料研費の補助を受けて行われ たものである。

参考文献

- 1) Takahashi, A., et al: Contributed paper, 12th SOFT, B26, KFA Jülich, Sept. 1982
- 2) 藤本幸生,他:日本原子力学会1982年分科会,C37
- Takahashi, A., et al: Contributed paper, Conf. Nuclear Data for Science and Technology, Antwerp, Sept. 1982
- 4) Takahashi, A., Rusch, D.: KfK-2832/I, II (1979)

- 138 -

- 5) Yamamoto, J., et al: J. Nucl. Sci. Technol., <u>19</u>, 276 (1982)
- 6) Young, P.: Progress Report, LA-9468-PR (1982)

.

JAERI-M 83-041

Fig. 1 直径 90 cm黒鉛からの中性子のもれ流束スペクトル

Fig. 2 黒鉛球中反応率分布の計算(C)と実験(E)の比

Fig. 3 Leakage spectra from graphite slabs

Fig. 5 Leakage current spectra from natural-lithium slabs

- 142 --

Fig. 7 鉄平板からのスペクトル(厚さ10 cm)

Fig. 8 Selected DDXs for Fe

Fig. 10 Selected DDXs for Pb

Energy Range(Hev)		Thickness				
		3 cm	. 6 CR	9 cm	12 cm	
	Experiment	1.22±0.01	1.41±0.01	1.59±0.03	1.60±0.09	
15,0 0.3	NITRAN(S19)	1.124	1.214	1.270	1.296	
	ANISN (P5516)	1.131	1.234	1,309	1.359	
	Experiment	0.60±0.01	0.65±0.02	0.54±0.03	0.41±0.02	
15.0 4.0	NITRAN(S19)	0.756	0.599	0.468	0.363	
	ANISH(P5516)	0.774	0.627	0,502	0.401	
	Experiment	0.42±0.01	0.76±0.01	1.05±0.01	1.19±0.09	
4;0	NTTRAN(S19)	0.365	0.514	0,800	0.932	
0.3	ANISN(P5816)	0.356	0.606	0.805	0.957	

Table	1	Partia1	Neutron	Multiplication	of	Lead
100,20	-		1100022011	TOTETPTTCGCTON	OT.	nean

討論

Q:中川正幸(原研)

Li の DDX 測定結果と ENDF/B-4 の比較した図について,エネルギーの低い方で Exp. が高まっているのは、⁷Li (n, n' α) T 反応断面積が原因であるのか、特にその角度分布が違っているためか,絶対値についても違うのか?

A:高橋亮人(阪大)

角度分布・反応のQ値のとり方がB-4で違っているのが主因である。反応断面積について は、1 MeV 以下のデータを加えてから求めてみるつもりである。

Q:中川正幸(原研)

⁷Li $(n, n' \alpha)$ のしきい値が後方で弾性散乱より大きくなっているのは、ファイルとしてど こに欠陥があるのか。

A:高橋亮人(阪大)

反応の角度分布もしくはカイネマティックスがファイルに与えられていればこのようにならない。しかし、しきい値はB-4で2.46 MeV としているが、実効的には 4.63 MeV とすべきであると思う。

6 B・3 核融合積分実験に関連する核データの現状

岩崎 信*

ここ数年での,高速中性子の中性子輪送関連の核データの実験的研究の現状を簡単にサーベイ をした。特に中性子二重微分断面積(DDX)の測定については,全般的なまとめを行った。近 年·14 MeV 付近で,特に日本に於いて DDX 核データの生産が進み,相互比較が可能になってき た。その1例を紹介する。又,良く話題となるトリチウム生成反応⁷Li(n,n't)⁴Heの断 面積について,最近の研究の動きについてもふれる。

> Present status of the nuclear data for fusion neutronics integral experiments

> > Shin IWASAKI*

Present status of the nuclear cross section data for the analysis of the fusion neutronics integral experiments has briefly been described. It has been emphasized that double differential cross sections (DDX) for various nuclei have recently been measured at the source energy of about 14 MeV and comparison between the experimental data has become possible.

Recent topical problem on the tritium production cross section 7 Li(n,n't) 4 He has also been discussed.

1. はじめに

核融合の核設計に関する核データの数は大変多い。従って、当然積分実験に関連してくる核デ ータの数も、又多くなるので、時間的、スペース的制約から、ここでは議論の対象を絞る。現在 $2^{(2)}$ その主な研究対象核種は、 $2^{(2)}$ 、その主な研究対象核種は、 $2^{(2)}$ 、その主な研究対象核種は、 $2^{(2)}$ 、その主な研究対象核種は、 $2^{(2)}$ 、その 妻なものばかりである。さらに、原研シグマ研究会核融合核データWGの整備計画においては、 原研 FNS での積分実験との関連で、上記核種の内⁺印のついたものを先ず重点的に整備する方 針といわれている。そこで、これらの核種を中心に、高速中性子輪送問題に関係した核データの 現状を述べる。又、 7 Li (n,n't) He反応の断面積についてもふれる。

[•] 東北大工学都 Tohoku University

2. 新面積3,定の現状

2.1 全断面積·弹性,非弹性散乱断面積

米国ノックビルにおける核データ国際会議(1979.10)以降の、上記対象核種の各断面積の主 な測定例をまとめたのが Table 1 である。これをみると、大部分は、米・国立又は大学研究所 で行なわれており、他下のこの分野での寄与は大変小さい。そして、 WRENDA³⁾等で最高点核 種として要求が高い割には、特に最近の測定は少ない。

2.1.1 全断面積

全断面積は、他の断面積の基本となるだけに重要である。一般に、測定値の推定誤差は小さい にも拘わらず、測定値間に誤差の範囲を大巾にこえて系統的喰い違いが存在し、評価者を悩ませ ている。しかし Table 1の測定例は⁴⁾(Fig. 1~5), ENDF/B-V との値との比較から、Fe の 20 MeV以上を除いて、1~3%以内に収束してきている様である。これは、最近の測定技術 の発達と、誤差に対する注意がかなり払らわれた結果といえよう。ただ一つ気のついた事は、 ORNL のC の測定値と B-V との比較(Fig. 1-b)で、12~15 MeVで明確な系統的不一致が 見られる点である。

2.1.2 弹性,非弹性散乱断面積

弾性散乱断面積は、評価の上では、光学ポテンシャルパラメータの決定に不可欠である。ANL 5) のグループはSUSの材料である Cr, Fe, Ni について、1~4 MeV で, 精密な測定を行い (Fig. 6)その結果の誤差を8~12%と見積った。TUNLのグループの一連の1P 核種(⁶⁷Li, ⁹Be, ^{10,11}B, ^{12,13}C, ¹⁴N, ¹⁶O)の測定は、7~15 MeVの範囲で行なわれ、Table 1の中ではき わだった存在である。彼らの個々の核種に対する結果は Nucl, Sci, Eng (NSE)に報告され ているが、全体のまとめが今年のアントワープの会議に報告された(Fig. 7)。彼らは、断性散乱 角度分布を、グローバル光学ポテンシャルでフィッティングを試みたが、大きな不一致が存在す ると指慮している。彼らの報告の中で注意したいのは、⁷Liのデータである。⁷Liの第1励起状 態は 480 keV で、充分に基底状態と離れている様に見えるが、測定系の分解能と、運動学的エネ ルギーの広がりの影響が大きく、実際には分離がむずかしい。彼らは、先の NSE での報告は、 2つをまとめて扱っている。しかしアントワープでの報告では、図(Fig. 7)によれば、弾性散 乱だけになっており、断面積の値も NSE での報告とは逢っている様に思われるので、確認が必 要であろう。

離散レベルの非弾性散乱断面積の測定しいくつかおこなわれているが、やはりエネルギー分解 能の点から、Cを除いて、低い励起レベルに限られている(Fig. 8)。Cについては、あとでふ れる二重微分断面積の測定の一環として、阪大グループが行ったもので、Ex=9.63 MeVの第4 レベルまで明確に測定された⁸⁾(Fig. 9)。評価値との比較では、B – V は実験値を比較的良く 再現するようである。東北大のグループは、Fe と Ni C第1、第2 レベルまでの測定を行い、 約) 統計模型と結合チャンネル模型を用いて解析し、直接反応の寄与の重要性を指慮した。 2.2 連続領域に注目した二重微分断面積の測定

中性子放出又は生成二重微分断面積は、核融合炉中性子輸送問題で重要視され,その測定も盛 んになってきた。このデータは、断面積評価の点からは、前平衡過程を含む統一的核反応理論の 発展をもたらす点で重要である。

二重微分断面積の測定をまとめてみたのが Table 2 である。これらを 3 つのカテゴリーに分類 する。1つは、普通の散乱実験と同様にシリンダー状サンプルを用いて、TOF法で角度分布を 測定したもの、2 つめは、リング状サンプルを用いた高分解能 TOF 測定、そして 3 つめは、こ れ以外のもので、白色中性子顔を用いたもの、一角度の測定のもの、角度積分した測定等である。 1 のグループのデータの特徴は、そのまま微分データとして用いることはできるが、非弾性散乱 の連続領域の計数が少ないので、統計エラーが大きい事、又それを克服するため大きなサンプル を用いたり、飛行距離を短かくしているため分解能が悪い点である。2 のグループの特徴は、上 記とは逆で、サンプルが大きくとれるので、統計の問題が少なく、高分解能で測定できる点にあ る。しかし一方、入射エネルギー(中性子顔)は、14 MeV (T+d 反応) に限られ、かつ、散 乱角度を変えると、入射エネルギーも変るという欠点がある。

Table 2 を見て、まず気の付くことは、1975年に報告されたドレスデン工科大(TUD)の ¹¹⁾ グループによる一連の測定である(TUD-75)⁵⁰⁾ それは、全体で34核種に及ぶもので、数 値データも描っており、評価結果の検討に良く用いられている。しかし彼らの測定は、50 が70 (mm²)程度の、非常に大きなサンプルを用いていて、その大きさの補正はしているものの、充 分に補正しきれているのかどうか疑問が残る。

もう一つの特徴は、最近の測定では、日本CCグループの測定が大きな割合を占めている点で、 この事は JENDL の評価にとって大変有利な状況といえよう。

10~14 MeV 間では,TUNL のグループの測定(Fig.10)が,ほとんど唯一のものである。 しかし彼らは、収率の低い事や、S/N の悪さの問題から、その後継続した測定は行っていない 様である。この領域での日本の独自の測定が望まれる。

二重義分断面積測定結果の相互比較

Table 2をみてわかる様に、14 MeV付近では実験値がふえてきたので、一部相互比較が可能であ る。特にローレンス・リバモア研究所(LLL)の実験値と、同じ手法で最近大量のデータを生産 した阪大グループの実験値の比較は、同じ高分解能実験で、実験条件も似かよっているので興味 ⁴³ 深い。そこで、OSAKA-82、LLL-72、TUO-75 と TOHOKU2-82 をとりあげる、これ らは測定エネルギーや角度が異っているので厳密な比較はできないが、簡単に図上での比較をし てみたのが Fig. 11-a~Fig. 11-d である。

OSAKA とLLL の比較では、低いレベルの非弾性散乱のピークの位置や高さを比べてみると、 かなり良い一致を示しているが、いくつかの点でくいちがいも見られる。 Fe の場合で、 TUD (53°)、LLL(35°)と OSAKA (37°)の比較では、TUDはB−Nを示持し、LLLと OSAKA は不示特で高めで一致している。一方 TUD(53°)とLLL(65°) OSAKA(65°)の比較では、 TUDとLLL が比較的良く合っているのに、OSAKA は少し高めになっている。 Mo について、 TOHOKU 2(30°,70°) と OSAKA(40°) と比較したのが Fig. 11-d であるが、 OSAKA の データは TOHOKU2の値の中間を通っており、お互に consistent といえよう。 Ai のデータは、 ENDF/B-N, V.とも LLL のデータを採用しており、これが OSAKA のデータにより示持され ているといえる。

なお、シグマ研究委員会核融合遮蔽定数 WGの活動のなかで、中沢と井口が ENDF/B型ファ イルから DDX 作成コード (FAIR-DDX)を作ったので、これを用いて各実験データの客観的 比較が可能となろう。

4. ENDF/B-Vの現状

現在一部の例外を除いて非公開になっている ENDF/B-V の値が、B-N にくらべて、特に 高速中性子領域でどれほど改善されているかは興味のある所である。B-Vとの違いとか、どん 16) なデータを取り入れたかなどは、B-Vの Summary Documentation を見ることによってうか がい知れる。その結果、評価時期の関係で、最近の測定データが反映されていない事や、評価のやり 方が評価担当者によってまちまちで、二次中性子のエネルギーや角度分布に対する考慮が充分な されているとはいいがたく、全体として改善度は高くないと思われる。但し、ORNLのC・Y・ Fu らの担当した、C、F、Ca、Fe、Pb等では、比較的良く考えられている。このことは、D. M. Hetrick らが、14 MeV 中性子を入射した時に放出される二次中性子のスペクトルについて、 TUD-75 や CEA-72 の実験値と、B-Vの評価値を比較し、大体満足できのが FeとPbで、 Na、A1、Si がまあまあ良く、Cr 等は悪いと評価している事(Fig.12) と合致する。一方、 Los AlamosのGestel らは、ある核融合モデルをとりあげ、トリチウム増殖量やブランケット 発熱等の積分量について、関係する断面積、スペクトル及びその誤差(covariance)を用いて 感度解析を行った所、B-Vの値は、H、C、O については満足でき、Fe と Ni はまあまあで、 他の Cr、Cu、Wは満足できないとしてい¹⁸⁾。

5. 'Li(n, nt)'He反応断面積

この断面積は、核融合炉関係で最近の一番のトピックスで、日本の各研究会でとりあげられ、 ¹⁹⁾ そのたびに状況が変化している。昨年のこの会でとりあげられていて、LANLのP.G. Young が最近の測定データを取り入れて再評価を行った結果、従来のB-IVの値から平均で15% ほど 下った値になった。この事は、ここ数年の積分実験の傾向とも一致しており、妥当な値と評価さ れた。その後、H. Liskien らが Geel に於いて、トリチウム計数法により測定を行って、ほぼ 上述の評価値を示持する結果を、アントワープ会議で報告し注目された。このことから、Young の行った、covariance を考慮した最小自乗法による評価法の良さが証明されたといえる。但し、 彼らの実験の一つの問題点は、同じエネルギーで2回測定した点が2点あるが、それらの値が見 積り誤差以上にかけ離れていて、その内の1つは、B-IVの値よりも高めに出ている事である。 この事は実験の困難さと共に、系統的誤差が完全に評価しきれていない事を示している。Fig.

* General Atomic's well-documented Power Generating Fusion Reactor (PGFR)

- 149 -

13 には、⁷Li(n, n't)⁴He 反応の断面積を、文献(19)の中の図を少し訂正し、かつ新しいデ ータを付け加えて示した。

Young の評価値で注目される点の1つは、threshold 付近で今までにない構造をもっている ことである。これは単に、そのエネルギー付近の測定値が密集している事による単なる偶然のも のなのか、それとも核反応プロセスを反映したものなのか興味深い。Liskien は、上に述べた測 定とは別に、81年に比例計数管を用いて直接トリチウムのエネルギースペクトルの測定を行って ²³⁾ 断面積を出している(Fig. 14)。このデータは、トリトンのスペクトルを測定した唯一のもの であり、中性子スペクトルのデータも一緒にして、一つの核反応モデルを立て、評価がおこなわ れれば、単にトリチウム生成断面積だけでなく、中性子の二重微分断面積の評価の精度もずっと 向上するものと期待できる。これには、現在進行中の東北大グループの⁷Li (n, n't)⁴Heの二重 微分断面積の測定結果が報告されれば大いに役に立つものと思われる。

6. まとめ

核融合炉用重要核種について、最近の核データの測定活動状況や核データの問題点について述べた。特徴としては、精度の高い全断面積が得られている事と、二重微分断面積の測定がふえた事である。そして後者との比較から評価値(ENDF/B-N,V)の不備が明らかになってきたことは最近の大きな成果であり、JENDLの評価にも生かされるものと期待できる。しかし、今後の評価に充分に活用されるためには、今までのデータの精度を明確にすると同時に、エネルギーや核種の範囲の拡大が必要である。

7. 謝辞

この報告をまとめるにあたって、東北大椙山一典教授に多くの資料の提供をして頂いた。又東 北大馬場護氏には、⁷Li関係の断面積及びその測定に関して議論して頂いた。両氏に感謝致しま す。

- 150 -

参考文献

- 1) 例えば Proc. Advisory Group Meeting on Nuclear Data for Fusion Reactor Technology, Vienna, 1979, IAEA-TECDOC-223 (Vienna,1979)
- 2) 阕 秦: JAERI-M 9999, p239 (1982)
- 3) WRENDA 81/82 ; World Request List for Nuclear Data, Ed. N. DayDay, IAEA, INDC(SEC)-78/URSF (Vienna, 1981)
- 4) Larson, D.C. et al.,: Proc. Conf. Nucl. Cross Sec. Tech., Knoxville, 1979, NBS-Sp-Pub. 594, p34 (Washinton, 1980); Killie, J.D. et al., ibid p48; Lisowski, P.W. et al.: ibid, p524
- 5) Smith, A.B.et al.; ibid. p168
- 6) Gould, C.R. et al.: contributed paper to the Conf. Nucl. Cross Sec. for Sci. Tech., Antwerp, 1982
- 7) 馬場 護 : 私信
- Takahashi, A. et al.: contributed paper to the Conf. Nucl. Cross Sec. Sci. Eng., Antwerp, 1982
- 9) Hattori,K et al.: Report NETU-40, Tohoku Univ. Nucl. Eng., p3 (1982) (unpublished)
- 10) 高橋 亮人 : "核融合炉設計に於ける核的諸問題"研究会報告書 科研費核融合特別研 究総合総括班(1981)
- 11) Hermsdorf, D. et al.: Report Zfk-277 (d), Tech. Univ. Dresden (1975)
- 12) Beyerle, A. et al: Proc. Conf. Nucl. Cross Sec. Tech., Knoxville, 1979, NBS-Sp-Pub. 594, p139 (Washinton, 1980)
- 13) Kammerdiener, J.L., Report UCRL-51232 (1972)
- 14) Iwasaki, S. et al.: Report NETU-40, Tohoku Univ. Nucl. Eng., p7 (1982) (unpublished)
- 15) 井口 哲夫 : 私信
- 16) ENDF-201 ENDF/B Summary Documentation, BNL-NCS-17542, NNDL-BNL (New York, 1979)
- 17) Hetrick, D.M. et al: Proc. Conf. Nucl. Cross Sec. Tech., Knoxville, 1979, NBS-Sp-Pub. 594, p765 (Washinton, 1980)
- 18) Gestel, S.A.W. et al.: Report LA-8333-MS (1980)
- 19) 五十嵐信一 : Report JAERI-M 9999, p2 (1982)
- 20) Young, P.G.: Report LA-9468-PR (1982)

- 21) Liskien, H. et al.: cotributed paper to the Conf. Nucl. Cross Sec. Sci. Tech., Antwerp, 1982
- 22) Liskien, H.: Ann. Nucl. Energy, 8 p423 (1981)
- 23) 馬場 護: 私信

(以下は、Table 及びFig. についての文献)

- 24) ANL-79 Smith, A.B.: Proc. Internat. Conf. Nucl. Cross Sec. Tech., Knoxville 1979, NBS Sp. Pub. 594, p168 (Washinton, 1980)
- 25) CBNM-79 Cornelis, E.M.R. et al.: ibid., p159
- 26) CBNM-82 Knitter, H.-H. et al.: contributed paper to the Conf. Nucl. Cross Sec. Sci. Technology, Antwerp, 1982
- 27) CEBC-80 Haouat, G. et al: Report CEA-N-2134 (1980)
- 28) CEL-72 Clayeux, G. et al.: Report CEA-R-4279 (1972)
- 29) INR-79 Pasechnik, M.V. et al.: Proc. Conf. Nucl. Cross Sec. Tech., Knoxville, 1979, NBS Sp.Pub. 594, p893; Korzh, I.A. et al.: ibid., p898
- 30) IRK-79 Winkler, G. et al.: ibid., p150
- 31) IRK-80 Vonach, H. et al.: Proc. Symp. Neutron Cross Sec. from 10 to 50 MeV, BNL-NCS-51245, <u>I</u> p343 (New York, 1980)
- 32) KYUSHU-77 Irie, Y. et al.: Memoirs of the Faculty of Eng., Kyushu Univ., <u>30</u> p1 (1977)
- 33) LASL-77 Drake, D.M. et al.: Nucl. Sci. Eng., <u>63</u> 401 (1977)
- 34) LASL-79 Lisowski, P.W. et al.: Proc. Intern. Conf. Nucl. Cross Sec. Tech, Knoxville, 1979, NBS-Sp. Pub. 594, p524 (Washinton 1980)
- 35) LASL-80 Lisowskoi, P.W. et al.: Report LA-8342 (1980)
- 36) LLL-72 Kammerdiener, J.L.: Report UCRL-51232 (1972)
- 37) NBS-79 Killie, J.D.: Proc. Int. Conf. Nucl. Cross Sec. Tech., Knoxville, 1979, NBS Sp. Fub. 594, p48 (Washinton, 1980)
- 38) OHIO1-79 Knox, H.D. et al.: Nucl. Sci. Eng., <u>69</u> 223 (1979)

39) OHIO2-79 Yamanouchi, Y. et al.: Proc Conf. Nucl. Cross Sec. Tech., Knoxville, 1979, NBS Sp. Pub. 594, p146 (Washinton, 1980) 40) ORNL-76-Morgan, G.L. et al.: Report TM-6528/r1 (1978) 41) ORNL-79 Larson, D.C. et al.: Proc Conf. Nucl. Cross. Sec. Tech., Knoxville, 1979, NBS Sp. Pub. 594, p34 (Washinton, 1980) 42) ORNL-80 Larson, D.C.: Proc. Symp. Neutron Cross Section from 10 to 50 MeV, BNL-NCS-51245, 1 p34 (New York, 1980) 43) OSAKA-82 Takahashi, A. et al.: contributed paper to the Conf. Nucl. Cross Sections Sci. Eng., Antwerp, 1982 Salnikov, O.A. et al.: Yad. Fiz. 17 1001 44) PPEI-73 (1973)45) PPEI-74 Biruakov, N.S. et al.: Yad. Fiz., 19 1190 (1974) Salnikov, O.A. et al.: Proc. Intern. Conf. 46) PPEI-77 Neutron Phys., Kiev, 1977, 2 p129 (Kiev, 1977) 47) TOHOKU1-78 Baba, M. et al.: Proc. Conf. Neutron Phys. Nucl. Data, Harwell, 1978, p198 (Harwell, 1978) 48) TOHOKU1-79 Baba, M. et al.: Proc. Conf Neutron Cross Section for Tecknology, Knoxville, 1979, NBS Sp. Pub. 594, p43 (Washinton, 1980) 49) TOHOKU1-82 Hattori, K. et al.: Report NETU-40, Tohoku Univ. Nucl. Eng., p3 (1982) (unpublished) 50) TOHOKU1-83 Baba, M.: Private cominucation 51) TOHOKU2-79 Iwasaki, S. et al.: Proc. Conf. Neut. Cross Section for Tech., Knoxville, 1979, NBS Sp. Pub. 594, p73 (Washinton, 1980) 52) TOHOKU2-81 Iwasaki, S. et al.: Report NETU-38, Tohoku Univ. Nucl. Eng., p6 (1981) (unpublished) 53) TOHOKU2-82 Iwasaki, S. et al.: Report NETU-40, Tohoku Univ. Nucl. Eng., p7 (1982) (unpublished) El-Kadi, S.M. et al.: Proc. Conf. Nucl. Cross 54) TUNL1-79 Sec. Tech., Knoxville, 1979, NBS Sp. Pub. 594, P143; Nucl. Phys., A390 509 (1982)

55)	TUNL2-79	Beyerle, A. et al.: ibid., p139
56)	TUNL-82	Gould, C.R. et al.: contribution paper to
		the Conf. Nucl. Cross Sec. for Sci. and Eng.,
		Antwerp, 1982
57)	TUD-72	Hermsdorf, D. et al.: Report ZfK-277(0), Tech.
		Univ. Dresden (1975)
58)	UCDAV~79	Report UCD-CNL 192, Univ Calif. Davis (1979)

.

.

.

List of the Institutes (Abbre.)

,

.

ANL	; Argone National Lab. (USA)
CBNM	: Ccatral Bureau for Nuclear Measurements (Belg.)
CEBC	: Centre d'Etude de Bruyeres-le-Chatel (Fr.)
CEL	: Centre d'Etudes de Limeil (Fr.)
INR	: Institute for Nuclear Research of the Ukrainian
	Academie of Science (USSR)
IRK	: Institute für Rædiumforschung und Kernphysik der Øster.
	(Aus.)
KYUSHU	: Kyushu University (Jap.)
LASL	: Los Alamos Scientific Lab. (USA)
LLL	: Lawrence Livermore Lab. (USA)
NBS	: National Bureau of Standard (USA)
ORNL	: Oak Ridge National Lab. (USA)
PPEI	: Physics and Power Engineering Institute (USSR)
OSAKA	:Osaka University (Jap.)
OHIO	: Ohio University (USA)
TOHOKU	: Tohoku University (Jap.)
TUNL	: Triangle University Nuclear Lab. (USA)
TUD	: Technischen Universität Dresden (GDR)
UCDAV	: University of California, Davis (USA)

.

•

•

Table 1 List of recent total and scattering cross section measurements for the important elements in fusion neutronics experiments. Each symbol means that Institute (Abbre.)-Year, (Incident Neutron Energies/ Energy Range).

Element	Total C.S.	Elastic, Inel., C.S.	Coments
Li-6	NBS-79 (3-40)	TUNL-79 (7.5-14) OHIO1-79 (4.8,5.7,7.5)	
L1-7	NB5-79 (3-40)	TUNL-79 (7-14) OHIO1-79 (4.1,5.1, 6.4,7.5) TOHOKU1-79 (5.1,6.6,15.4) LASL-80 (5.9,9.8) TOHOKU1-83 (6.0,)	-
C-12	NBS-79 (3-40) ORNL-79 (0.5-60) LASL-79 (2.5-250) ORNL-80 (2-80)	TUNL-79 (9-15) * OSAKA-82 (13.5-14.8)	* ring geometry
0-16	ORNL-79 (0.5-60)	TUNL-79 (9.2-15)	
Cr	ORNL-80 (2-80) ANL-79 (1-4.5)	IRK-79 [*] (14) ANL-79 (1~4.5) INR-79 ^{**} (1.5,3)	<pre>* elastic for natural ele. ; inel. for A=52 ** A=50,52,54</pre>
Fe	CBNM-79 (0.03-2) UCDAV-79 (35,40,50) ORNL-79 (0.5-60) ANL-79 (1-4.5)	TUNL-79 (8,10,12) INR-79 (1.5,3) ANL-79 (1.0-4.5)	* A=54,56,57 ** A=54,56 *** A=54
Ni	OPNL-80 (2.0-80)	INR-79 [*] (1.5-3, 5-7) ANL-79 ^{**} (1.0-4.5) OHIO2-79 (24) TOHOKU1-82 (5.5,6.2,7.0)	* A=54,56,57 ** A=60 *** A=58,60

Table 2 Summary of double differential cross sections (DDX) measurements. Each symbol means that Institute (Abbre.)-Year (Incident Neutron Energies/Energy Range), ([Measuring Angles/Integral Measurement] for special case).

Element		White		
	Cylinder	Ring	Others	
- D	CEBC-80 (8.0,11.2)	OSAKA-82 (13.5-14.8)		
Li-6*	LASL-80 (5.96,9.83)			
Li-7 [*]	LASL-80 (5.96,9.83)			ORNL-76- (1-20) [50 ⁰ ,126 ⁰]
Li		OSAKA-82 (13.5-14.8)		
Be	LASL-77 (7-15) TOHOKU1-78 (3.2-7.0) CEBC-80 (8.0,11.2)			
В	LASL-77 (9.8.14)]
с*	TUD-75 (14.6) TOHOKU2-81 (15.2)	LLL-72 (13.3-14.9) OSAKA-82 (13.5-14.8)		
N 0 [*]		OSAKA-82		
F		(13.5-14.8)		
Al	TUD-75 (14.6) Tohoku2-79 (15.4)	LLL-72 (13.3-14.9) OSAKA-82 (13.5-14.8)	CEL-72 (14),[90 ⁰]	ORNL-76- (1-20),[127 ⁰]
Si	TUD-75 (14.6)		CEL-72 (14),[90 ⁰]	
Ca	TUD-75 (14.6)		CEL-72 (14),[90 ⁰]	
Ti	TUD-75 (14.6) TOHOKU2-81 (15.2)		IRK-80 (14.1),[Int]	ORNL-76- (1-20),[130 ⁰]

٠,

.

.

.

Table 2-2

Element	Monoenergy			White
	Cylinder	Ring	Others	
V	TUD-75 (14.6)			
Cr [*]	TUD-75 (14.6)	OSAKA-82 (13.5-14.8)		
Fe [*]	PPEI-74 (9.1) TUD-75 (14.6) TUNL-79 (7.5,10,12)	OSAKA-82 (13.5-14.8)	CEL-72 (14),[90 ⁰] IRK-80 (14.1),[Int.]	
Nİ	PPEI-74 (14.6) TUD-75 (14.6) TUNL-79 (7.5,10,12)	LLL-72 (13.3-14.9)	CEL-72 (14),[90 ⁰] IRK-80 (14.1),[Int.]	
Cu	PPEI~74 (9.1) TUD-75 (14.6) KYUSHU-77 (14.1) TUNL-79 (7.5,10,12)	OSAKA-82 (13.5-14.8)	CEL-72 (14),[90 ⁰] IRK-80 (14.1),[Int.]	ORNL-76- (1-20),[130 ⁰]
Nb	PPEI-73,74 (9.1,14.4) KYUSHU-77 (14.1) Tohoku2-79 (15.4)	LLL-72 (13.3-14.9) OSAKA-82 (13.5-14.8)	IRK-80 (14.1),[Int.]	ORNL-76- (1-20),[129 ⁰]
Мо	PPEI-74 (14.4) Tohoku2-82 (15.2)	OSAKA-82 (13.5-14.8)	IRK-80 (14.1),[Int.]	
₽b	TUD-75 (14.5) TUNL-79 (7.5,10,12) PPE1-74 (14.4)	LLL-72 (13.3-14.9) OSAKA-82 (13.5-14.8)	CEL-72 (14),[90 ⁰] IRK-80 (14.1),[Int.]	

•

.

٠

•

Fig. 4 Total cross section of carbon from 2.5 to 250 MeV, compared with ENDF/B-V. Taken from ref. 34.

Fig. 6 Mearsured differential elastic scattering cross sections of chromium (A), iron (B), and ⁶⁰Ni (C). Taken from Ref. 24

Fig. 5 A comparison of total cross section results for Fe obtained at U.C. Davis (58) at ORELA (41), at Karsruhe (by Cierjack), and at ORELA in 1972 (by Perey). Taken from the paper by J.C. Browne et al., (Proc. Symp. Neut. Cross Section from 10 to 50 MeV, BNL-NCS-51245, p215 (1980).)

Fig. 7 Neutron elastic scattering angular distributions for ${}^{6,7}_{\text{Li}}$, ${}^{9}_{\text{Be}}$, ${}^{10,11}_{\text{B}}$, ${}^{12,13}_{\text{C}}$, ${}^{14}_{\text{N}}$, and ${}^{16}_{\text{O}}$, compared to the spherical optical model calculations. Taken from ref. 56.

- 162 --

Fig. 8 Measured inelastic neutron excitation cross sections of Cr (A), Fe (B), and ^{60}Ni (C). Taken from ref. 24.

g. 10 Double differential cross sections for Fe, N1, Cu and Pb at 10-MeV incident energy. a); at 12-MeV
b). Taken from ref. 55.

Fig. 11 Comparison of several DDX data for Al a), Fe b), Ni c) and Mo d) measured at four institutes, i.e. LLL, TUD, TOHOKU and OSAKA (see Table 2). Taken from the refs. 36, 57, 53 and 43.

Fig. 12 Example of the comparison of the angle integrated cross sections between measured (ref. 57) and evaluated values (ENDF/B-V). Taken from ref. 17.

,

- 168 -

JAERI-M 83-041

討論

Q : 中川正幸(原研)

⁷Li (n, n't)α反応を構成する3つの反応チャンネル毎の断面積の測定は行われてい るか。

A : 岩崎 信 (東北大)

チャンネル毎に調べるためには、放出粒子を全部同時にとらえ、角度相関などを調べる 必要があるが、中性子入射反応の場合の放出荷重粒子をとらえることは実験的に大変困難 である。 1956 年に LASL の Rosen と Stewert ⁺⁾ d^{6} Li と⁷Li について、5 ~ 14 MeV で、すべての放出粒子のスペクトルと角度を原子核乾板を用いて測定したのと、1972年に ユーゴスラビアの B. Antolkovic が 14.4 MeV で同様な実験をしているのが 代表的測 定例であり、最近のは知らない。

いずれも大変むずかしい実験で,現在の理論解析のために充分な統計量と精度が得られ、 ているかどうかはわからない。この Liskien の測定もかなり工夫を行ってできたもので, t をカウンターで測定したほとんど唯一の例と思われる。

- +) L. Rosen and Stewert, LA-2643 (1956)
- ++) B. AntolkoviC, Nucl. Instr. and Meth., 100, P211 (1972)

7. JENDL-3を巡って JENDL-3 and Related Topics

7.1 JENDL-3作成の現状

浅 見 哲 夫+

JENDL-2の編集が終了したばかりであるが、シグマ研究委員会では約2年前にJENDL-3計画の骨子を固め、57年度からJENDL-3に収納する核データの評価作業に入った。 JENDL-3計画の概要とともにJENDL-3作成作業やその体制の現状について述べる。ま た、JENDL-3に収納予定の核種を諸外国の大型核データ・ライブラリーのそれと比較して、 JENDL-3の規模や特長について考察する。JENDL-3作成における今後の問題について も述べる。

Status of JENDL-3 Compilation

Tetsuo ASAMI

Japanese Nuclear Data Committee has already made a plan for JENDL (Japanese Evaluated Nuclear Data Library)-3, and has made to start works on the data evaluation for JENDL-3 since the current year. The status of the data evaluations and compilations as well as the outline of the plan for JENDL-3 are described. The variety of nuclides in JENDL-3 is compared with the ones of other large nuclear data libraries. Further problems on JENDL-3 compilations are also described.

1. はじめに

日本の評価済み核データ・ライブラリー JENDL (Japanese Evaluated Nuclear Data Library)の第3版, JENDL-3の作成作業は既に開始されているが,その前身であるJENDL -2は極く最近に編集が終り,公開の運びとなった。1977年に公開されたJENDL-1が,高 速炉開発に利用することを主眼としたのに対して, JENDL-2は高速炉の設計計算に利用する のはもちろんのこと,核融合開発や遮蔽計算などの分野への利用も,ある程度考慮して計画され た。JENDL-2の重要核種については,既にベンチマーク・テストも終えて実用性が確認され ているが,ライブラリー全体としての実用性は今後,多方面の分野で利用されて評価を受けるこ とになる。

+ 日本原子力研究所, Japan Atomic Energy Research Institute

このように、JENDL-2が誕生したばかりであるが、シグマ研究委員会ではすでに次期の JENDL-3計画の具体案の検討を行い、データ評価の作業を開始している。JENDL-3計 画の具体案及びそれらをまとめるに至った経緯等については既に報告があるので、^{1,2)}本稿では極 く簡単に触れるだけにして、JENDL-3の作成に向けて現在進行している評価作業の体制や評 価・編集上の問題点を中心に述べる。また、JENDL-3と諸外国の大型核データ・ライブラリ ーとの収納核種数の比較を行い、JENDL-3の位置付けを試みてみたい。

2. JENDL-3 計画の概要

JENDL-3は本格的な汎用核データ・ライブラリーとして、高速炉や核融合炉開発への利用 を中心に、また熱中性子炉の核設計にも原子炉や原子力施設の安全性評価、遮蔽計算等の原子力 の広範囲の分野での利用に応えることを目標に計画された。JENDLはJENDL-1からJENDL -2へと漸次本格的な汎用ライブラリーとしての形を整え成長してきたが多くの不満点も内蔵し、 また、収納核種の数はともかくとしても収納核データの種類では汎用と言うには若干気の引ける 点がないではなかった。これらの問題点を一掃し、真の日本独自の汎用大型核データ・ライブラ リーとして完成させるのがJENDL-3作成の大きな狙いであると言えよう。

(1) 中性子のエネルギー範囲の上限は 20 MeV にとゞめる。

- (2) 収納核種の追加は最小限にとゞめる。
- (3) r線生成核データを採り入れる。
- (4) 高エネルギー中性子に関する核データの精度の向上を図る。

中性子のエネルギー範囲の上限を20 MeV以上に拡張する意見もあったが、核融合炉開発への 利用を考慮しても20 MeVにとゞめることになった。ライブラリー全体としては、収納するデー タの質の向上に重点を置き、収納核種数の増加は最小限にとゞめることにしている。質の向上と しては、数MeV以上の高速中性子に対する核反応データの精度を改善することが強く要請され ているが、収納する核データの種類の増加などの精密化の意味も含まれている。また、収納デー タの内容を豊富にする観点から、ガンマ線生成核データの採用は大きな特徴と言える。評価デー タの質の向上に関しては多くの議論を必要とする問題であるが、こゝでは触れないことにする。 この問題は、今後、JENDL-2の収納データの検討を契機として JENDL-3のデータ評価 作業の過程で論議しなければならないと思われる。
3. JENDL-3 作成の体制とタイムスケジュール

JENDLは、これまでもシグマ研究委員会の全面的な協力のもとに、特に核データ専門部会 内の各ワーキング・グループ(以後、WGと略称する。)での作業を中心に原研の核データセン ターで編集が行われた。JENDL-3もこれとほゞ同じ体制のもとに評価・編集の作業が進めら れている。

Fig.1に現在のシグマ研究委員会の構成を示す。シグマ研究委員会では、 57 年度からは JENDL-3作成の作業を本格的にまた効率良く進めるに当り、核データ専門部会内のWGの再 編成を行った。Fig.2に編成がえの様子とともに、JENDL-3作成のスケジュールを示した。 57 年度より核データ専門会内に新たに編成されたのは、核データ評価WGとファイル作成WG である。前者はFig.1に示したように、4つのサブWGに細分化され、それぞれの作業範囲に応 じてデータの調査,理論計算のための計算コードの整備・検討,使用するパラメータや入力デー タの検討等が着々と進められている。各サーブWGでの進捗状況は様々であって、こいで個々の 活動状況を述べるのは適当でないので止めることにする。ファイル作成WGは、これまで核デー タセンターの編集グループが行っていたファイル化の作業を強化するためと、より広範囲の人に ファイル編集作業の経験を積んで貰うことを考慮して編成された。JENDL-3の評価データの ファイル化はこれからであって、57 年度では、このWGはJENDL-2の編集作業に終始した。

JENDL-3にガンマ線生成核データを収納することは夙に予想されており、また、その評価 作業にはかなりの時間とマンパワーを要することが予想されたので、シグマ研究委員会では、 53年度からガンマ線生成核データWGを発足させている。このWGではガンマ線生成断面積、2 次ガンマ線のスペクトル等の評価手法の検討、評価用コードの整備・検討を進め、代表的な核種 についてはすでにデータの編集を行っている。FP核データWGは、JENDL-1のデータ評価 のとき以来、継続してFP核種のデータ評価作業を行っている。

Fig. 2に示したように、JENDL~3は昭和 58 年度にデータ評価及びファイル化を終了し、 59 年度中に種々のベンチマーク・テストを行った後、60 年度頭初(1985 年 4 月)に公開する 予定で作業が進められている。

4. JENDL-3と諸外国ライブラリーとの比較

JENDL-3の完成が予定されているのは約2年後であるが、現時点でその予想される規模を 現存する諸外国の大型ライブラリーのそれとを比較して、JENDL-3の大よその位置付けをして みたいと思う。規模と言ってもJENDL-3の評価データがすでにあるわけではなく、収納核種 の数や種類を規模の目安にしてみる。もちろん、収納する核種だけでそのライブラリーの優劣を 決めることはできないが、収納核種からそのライブラリーの大よその規模なり、ライブラリーの 特長なりの一端を垣間見ることができるであろう。

現在,世界の大国は国力(?)を象徴するかのようにそれぞれ大型の核データ・ライブラリー を持っている。主なものとしては、米国の ENDF/B-1V, ENDF/B-V, ENDL,英国 の UKNDL,西独の KEDAK,ソ連の SOKRATOR などがある。これら大型ライブラリー の編集の年代や改訂の経緯を Fig.3に示した。 SOKRATOR は特殊なフォーマットを採用し ていたため(最近, ENDF/B-Vのフォーマットを採用することになったとの情報がある。), 日本で使用した例がなくて詳細は殆んど判っていない。また, UKNDLは 1973 年版以降は ど うなっているのか不明である。KEDAKも KEDAK-3 以降の現状が描めていなかったが,最 近, KEDAK-4の存在が報ぜられている。しかしながら, これらの英国や西独のファイル作 成の作業は鎮静化の方向にあり,現在, ヨーロッパの各国は共同して共通のファイル JEF(Joint Evaluated File) を作成する方向に動いている。これについては次の報告で詳しく述べられ る筈である。

このような動向を考慮して、ここではJENDL-2及び-3の収納核種をENDF/B-IV, ENDF/B-V, ENDL78のそれと比較してみる。これらライブラリーにおけるアクテニド の収納核種の比較をTable 2に示した。JENDL-3のアクチニド収納核種は、ENDF/B-IVのそれと比べるとかなり多いがENDF/B-Vに比べるとかなり不足している。ENDL78 のアクチニド核種の収納数はかなり多く、ENDF/B-Vのそれに近いものであることが目立つ。 ENDF/BではIVからVへ移行する段階で収納核種数を大幅に増加させたことが特徴的である。 JENDL-3ではJENDL-2に対してアクチニド核種の追加を行わず、収納データの質の向 上に重点を置いているが、今後のデータ利用の動向を見極めて収納核種の種類について再検討の 必要があるかも知れない。

中重核から重核にかけての範囲では、FP核種が大部分を占める。Table 1 に示した JENDL - 3の収納予定核種のうち FP核種については未だ流動的であり、またそれ以外の重要核種につ いては、上記のどのライブラリーでも似た傾向にあるので、次は軽・中重核(Z≦29) につい て収納核種の比較を行う(Table 3)。特徴的なことは、ENDF/BやENDLの収納核種は 軽核以外については天然元素を対象にしているのに対して、JENDLでは天然元素のほかそれに 含まれる安定核種についても評価データを収納していることである。このような JENDL での 措置は、近年とくに必要性が強調されている放射能計算、放射線損傷の評価、Kerma factor の計算の際には非常に重要である。JENDLで天然元素に含まれる安全核種をすべて対象にし たこと以外は、上記のライブラリーの間で収納核種の採り上げ方はほご同じ傾向にある。JENDL - 3では、この質量領域で新たに He、P、S、Cℓ、Ar、Kの核種を追加して他の大型ライブラ リーと匹敵する形となる。

次に、JENDL-3の特長の1つであるガンマ線生成核データを採り入れる核種を他のライ ブラリーのそれとを比較して示したのがTable 4である。JENDL-3で初めてガンマ線核デ ータを採用することになったため、そのデータを扱う核種は必要最低限に絞ったことから、Table 4に見られるように、JENDL-3での収納核種はENDF/B、ENDLのそれに比較してか なり限られたものになっている。言うまでもなく、収納核種の数と同時にそれに含まれる評価デ ータの質についても注目しなければならないので、収納核種数だけでライブラリーの偏信は言々 できないが、JENDL-3でも今後はガンマ線生成のデータを含んだ核種の種類を増やさない と利用面でかなり制約されることが考えられる。その点、ENDL 78ではガンマ線生成核データ を含んだ核種の種類の多いことが特長となっている。

以上のように、収納核種の種類から見たとき JENDL-3は ENDF/Bや ENDLのような

大型ライブラリーと肩を並べるに至ったと言えるのではなかろうか。問題はそれに含まれる評価 データの質にあるが、それについては今後、各核種毎の個々の評価データに関する詳しい議論を 待たねばならない。

.

5. 今後の問題点

JENDL-3作成の作業は進行しているが、JENDL-3計画の中で特殊目的ファイル及び誤 差ファイルの扱いについても未だ明確になっていない部分がある。特殊目的ファイルとしては、 FP(Fission Products)ファイルの作成が決まっているだけで他は作成の方向にあるだけで ある。しかしながら、現在、シグマ研究委員会の「特殊目的核データに関する ad - hoc小委員 会」でこの点を含む問題の検討を行っているので、その小委員会での結論からはっきりした方向 が示されるものと期待している。誤差ファイルについては、利用者からの要望は多いものの共分 散マトリックスを作成する費用とマンパワーを考えたとき、JENDL-3計画では明確な方針が 出せず誤差ファイルの利用についての世界の趨勢を見守る形をとった。たゞデータの評価者には、 データ評価の過程でできるだけ評価データの誤差の評価を行っておくことが指示されたに留まっ ている。これについては早急に明確な指針を出す必要があろう。

その他の点については、JENDL-3の編集に携わる者としての立場から思いつくままに挙げ てみる。

: - タ評価の分担の再確認

全般には1核種1評価者の形で評価作業が進められているが,1部のデータは核反応の種類 別で評価が行われているために作業の空隙や重複がないように,また評価データ間に矛盾のな いように作業の分担を十分に確認して置く必要がある。

軽核データの評価体制

軽核データの評価に対しては、未だWGが構成されていなくて、データ評価の分担も明確に なっていない。軽核データの評価には多くの困難な問題が予想されるので一層データ評価の体 制を確立する必要がある。

データ評価者とファイル化グループとの連携

ファイル化のグループは、評価者からの評価データの提供を受けてファイル化の作業を行う が、ファイル化の作業を正確にまた迅速に行うためには両者の間のコミニュケーションを余程 良くしてあかないと支障を来たすことが過去の経験からの教訓として挙げられる。

JENDL-2からのフィードバック

JENDL-2は誕生したばかりで、多方面に利用され評価を受けるのはこれからであるが、 JENDL-2 での問題点を的確にまた早急に把握して JENDL-3の作成作業に反映させる必要がある。

追加核種の検討

JENDL-3では収納核種の追加は最小限に留める方針で作業を進めているが、先にも述べたように、他の大型ライブラリーと対抗するためにも、また新しい要求に対処するためにも、計画がある程度進行した時点で収納核種の検討が必要と思われる。

参考文献

- 五十嵐信一: "JENDL-3のスコープ", JAERI-M 9523 (1980年核データ討論会 報告) (1981) p. 199.
- (2) 浅見哲夫,五十嵐信一: "JENDL-3 作成計画", 日本原子力学会誌 23, 904(1981)

<u>18</u> 131<u>10</u>, 133<u>8</u>, 135<u>8</u>, 28, 132<u>20</u>, 134<u>0</u>, 135<u>84</u>, 136<u>4</u>, 137₆₄, 134<u>64</u>, 160₆₄ JENDL — 2 で追加した核種 0. 228.0. 239.0. 240.0. 241.0. 242<u>.0</u> 2428.0. 2428.0. 243.0. 243.0. 240.0. 243.0 ····· JENDL-1 収納核種 u, 100, 113, 103, 104, 144, 145, 1. ²⁰⁴19, ²⁰⁶19, ²⁰¹19, ²⁰⁰19, ²³⁶10, ²³²10, ²³²10, ²³⁴10, ²³⁴100, ²³⁴ e S 2 9 2 2 π 5 2 2 2 99 m. 100 m., 101 m. 102 m. 101 m. 106 m. Table 1 JENDL - 3 収納予定核種 <u>110</u>, 102<u>10</u>, 100<u>10</u>, 105<u>10</u>, 106<u>10</u>, 100<u>10</u>, 110<u>10</u> <u>100</u>, 100<u>46</u>, 100<u>46</u> <u>100</u>, 111<u>00</u>, 112<u>00</u>, 113<u>00</u>, <u>110<u>00</u>, <u>116<u>00</u></u></u> 130xe, 131xe, 132xe, 134xe, 135xe, 136xe 10, 11, 14, 14, 15, 14, 14, 17, 14, 140, 100, 1r. 92r. 91r. 92r. 92r. 92r. 41r. <u>cu, 63cu, 63cu</u> za (⁶⁴za, 65_{za,} 63_{za,} 68_{za, 70_{za)}} 136ae, 137ae, 138ae 60H1. 61H1. 52H1. 64H1 140 ce. 141 ce. 142 ce 144 ce 2. 121 B. 123 B. 124 *ar, U'sr, User, 20gr 0Kr. 4Lr. 5Lr. ae (⁶⁹ca, ⁷¹ca) Br (⁷⁷Br, ⁸¹Br) ه. <mark>ده</mark>. و े हित्स स्थि 5 Ξl 31 z (³⁸z, 40₅, 41₈) <u>co. 40co. 43co. 43co. 46co. 46co</u>. 4<u>6co</u> 71 (4671, 4771, 4871, 4971, 5971) 12, 440, 440, 370, 440 96 ct. ²⁰ct. ³²ct. ³³ct. ⁵⁴ct # (³²8, 33₅, 34₈, 36₈) He (²⁴He, ²⁵He, ²⁶He) £1 (281, 2921, 3021) ci (³⁵ci, ³⁷ci) W. 5 ار 2

- 177 -

Table 2 収納核種の比較(アクチニド, Z ≥ 90)

* 限定公開

JAERI-M 83-041

Tell Cir Johnson and the relationship to the Annal

- 178 -

Table 3(1)収納核種の比較(軽・中重核, $Z \leq 29$)

ଷ
3
Table

•

Z Nuclidae JENDA-2 JENDA-2 JENDA-2 -V SU-Y LUNY IS ENDAYA ENDA ENDAYA (1975) ENDA/A 24 CO O O O O O O 24 SU O O O O O O O 25 O	Г		ſ		ſ	ſ	
24 Cr-Mat 0 0 0 0 0 0 350 0 0 0 0 0 0 0 0 351 0 0 0 0 0 0 0 0 0 25 54 0 0 0 0 0 0 0 0 25 84-55 0 0 0 0 0 0 0 0 26 84-85 0	2	Nuclide	JENDL-3 (1985?)	JENDL-2 (1983)	ENDF/B -V (1979)	ENDF/B -IV (1975)	ENDL78 (1978)
30 0	24	CT-Nat	0	0	0	0	0
32 32 0		8	0	0			
33 0 0 0 0 25 10 0 0 0 0 26 74 0 0 0 0 0 26 74 0 0 0 0 0 0 26 54 0 0 0 0 0 0 0 26 54 0 0 0 0 0 0 0 0 21 60-19 0 0 0 0 0 0 0 0 28 10 0		52	0	0			
54 0		ន	0	0			
Xi Mar-55 O </th <th></th> <th>54</th> <td>0</td> <td>0</td> <td></td> <td></td> <td></td>		54	0	0			
X6 Fe-Nete O<	25	Ha-55	0	0	0	0	0
34 0	26	Pe-Nat	0	0	0	0	0
36 0		54	0	0			
57 0 23 60 23 N1-Mat 28 0 28 0 28 0 29 0 29 0 29 0 20 0 21 0 28 0 61 0 61 0 62 0 64 0 63 0 64 0 65 0		56	0	0			
38 0		57	0	0			
21 Co-19 0 <th></th> <th>58</th> <td>0</td> <td>0</td> <td></td> <td></td> <td></td>		58	0	0			
N1-Nate O </th <th>21</th> <th>Co-59</th> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	21	Co-59	0	0	0	0	0
58 0 60 61 61 0 61 0 62 0 64 0 63 0 64 0 63 0 63 0 64 0 63 0 64 0 65 0	28	N1-Nat	0	0	0	0	0
60 61 0 61 61 0 62 64 0 63 64 0 63 64 0 63 64 0 64 0 0 65 63 65 63		58	0	0			0
61 0 62 0 62 0 0 23 0-44 63 0 65 0 65 0 65 0 63 0 65 0 63 0 65 0 63 0 65 0 65 0 65 0 65 0 65 0 65 0 65 0 65		60	0	0			
62 0 63 0 0 64 0 0 0 23 0 0 0 0 663 0 0 0 0 0 65 0 0 0 0 0 0 65 0		19	0	0			
64 0 0 29 Ch-Wat 0 0 63 0 0 0 0 65 0 0 0 0 0		62	0	0			
23 Cu-Wat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		64	0	0			
63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ຊ	Cu-Mat	0	0	0	0	0
65 0 0		63	0	0			
		65	0	0			

•

.

-

Table 4 ガンマ線生成核データの収納核種の比較

z	Muclide	JENDL-3 (1985?)	ENDF/B -IV (1975)	ENDL78 (1978)	ENDY/B -V (1979)	z	Nuclid e	JENDL-3 (1985?)	ENDF/B -IV (1975)	ENDL78 (1978)	ENDF/B -IV (1979)	z	Nuclide	JENDL-3 (1985?)	ENDF/B -TV (1975)	ENDL78 (1978)	ENDF/B -V (1979)
1	<u>K-1</u>		0	0	0	40	Zr	0		0		92	U-236			0	
_	2		0	0	0	41	Nb-93	0	0	0	0		237			0	
3	1.1-6	0	0	0	0	42	Мо	0	0	0	0		238	. 0	0	0	0
	7	0	0	0	0	47	Ag-107			0			239			0	· ·
4	Be-9	+ 0	0	0	0		109			0			240			0	
5	B-10		0	0	0	48	Cd			_0		93	Np-237			0	
	11			0		50	Sn		_	_0		94	Pu-239	0	0	0	0
6	C-12	0	0	0	0	56	Ba-138			0	0		240		0	0	0
7	N-14		0	0	0	63	Bu	0		_0			241			0	0
8	0-16	0	0	0	0		-151	0	0		0		242			0	0
9	2-19		0	0	0		153	0	0		0		243			0	
III	Na-23	0	0	0	0	64	Ga			0		95	Am-241			0	0
12	Mg	0	0	0	0	67	Ho-165			_0			242			0	0
13	A1-27	0	0	0	0.	72	Шf	0				1	243			0	0
14	Si	0	0	O.	0	73	Te-181	0	0	0	0	96	Cm-242			0	
15	P-31			0	0	74	W	0		0			243		1	0	0
16.	5-32			0	0		-182	~	0		0		244			0	0
17	C1		0	0	0		183		0	1	0		245			0	0
18	Ar	· · ·		0			184		0		0		246			0	0.
19	K.		0	0	0		186		0		0		247			0	
20	Cs	0	0	0	0	75	Re-185			_0			248			0	
22	TI	0.	0	0	0		187			0			Bk-249			0	
23	V		0		0	78	Pt			0		1	Cf-249			0	
	-51			0		79	Au-197			0			250			0	
24	Cr	0	0	0	0	82	РЪ	0	0	0	0		251			0	
25	¥m-55		0	· 0	0	90	Th-231			0			252	·		0	
26	Te	0	0	0	0		232			0							
27	Co-59		0	0	0		233			0							
28	Wi	0	0	0	0	92	V-233			0							
29	Cu	0	0	0	0		234	1	1	0		Г	1			1	
31	Ga	1		0	T	T	235	0	10	0	0						1

- 181 -

1

Fig. 1 シグマ研究委員会の構成

- 182 -

:

Fig. 2 JENDL - 3 作成のスケジュールと核データ専門部会内WG の編成

- 183 -

- 184 -

1

JAERI - M 83-041

飰 踚

C:吉田 正(NAIG)

JENDL – 3 では r線生成核データの収納が目玉商品の1つになっている。しかし、現状で は fission にともなう delayed r のデータをどこで評価し、ファイルにどう収めるかが検討 されておらず宙に浮いている。 prompt rと同程度の寄与のある delayed r がない r線生成 データファイルでは使用上大いに困る。この点、早いうちに policy を明確にしておいて欲し い。

Q:瑞慶賢 篤(日立)

JENDL-3 作成の主目的である質の向上は当然であるが、評価済み核データ・ファイルとしての"質"とは何かを考えてみると、各種の積分データで改良度はまちまちである場合が多い。何をもって質が向上したと考えるか。

A:浅 見 哲 夫 (原研)

各種のベンチマーク・テストで良い結果を収めるのが1つの目安であるが、そのような積分 テストだけで質を判定するわけではない。该物理の立場から見て、個々の数値が妥当なもので あるか、精度は良いかと言ったことも見る必要がある。また、これまでのJENDLでは殆んど 考慮しなかった高エネルギーでの直接過程の影響等も正しく考慮することも必要である。

C:菊 地 康 之(原研)

JENDL-2の熱中性子炉への適用テストの結果, thermal region の評価も不十分なもののあることが分った。

Q:川 合 将 義(NAIG)

核データ利用者の立場からは、質の高い核データが欲しい訳で、明らかに質が悪いものであ れば自前のものであっても使う気にはならない。JENDL-3計画を見ると、質・量ともに充 実させることが述べられているが、マンパワーの点から両方を満たすのはかなり困難であると 思う。そこで重要核種に焦点を絞って質の高いデータを出した方がJENDLを受け入れ易くな ると思うがどうか。

A:浅 見 哲 夫 (原研)

先に述べたように、JENDL-3ではJENDL-2から核種を大巾に増やさない方針である。 新たに追加する核種はFP以外では牧核種に過ぎず、他の核種についてはこれまでのデータの 見直しや改善を行うだけなので、そのようなことにはならないと思う。しかしながら、FP核 種については検討して核種数をある程度絞った方が良いかも知れない。

Q:前川 洋(原研)

核融合炉ブランケットの模擬実験を行っている立場からは JENDL – 3を部分的にでも必要 な核種である⁶Li, ⁷Li, C, O, Fe, Ni, Cr, Mo について使用したい。 その目標時期は いつか。

A:浅 見 哲 夫(原研)

各々の核種のデータ評価が何時終るかは未だ正確に把握していない。できるだけ努力をした いが、現段階では遅くとも1984年3月までに評価・ファイル化が終る予定としか言えない。

7.2 Joint Evaluated Fileの現状

菊池康之+

Current Status of Joint Evalnated File

Yasuyuki KIKUCHI

Joint Evaluated File (JEF)は、欧州(日本も含まれる)の共通評価済み核データライ ブラリーで、ENDF/B-Vの非公開性に対抗して、1980年に提案され現在作業が進められて いる。

その計画は2つの Phase に分けて考えられており、Phase - Iでは既存の評価済データファ イルから最も信頼できるものを選んで作成することとし、1982年末に作業を終了する予定とな っている。Phase - Iでは、Phase - Iで完成したファイル JEF-I のペンチマークテストを 行い、必要な場合には独自の再評価を行うことになっている。現在は Phase - Iの最終段階であ り、Phase - IIの具体化が検討されている。

JEF計画の今までの経過は Table 1 に示す。当初 NEACRP において Campbell (英), Küsters (独), Bouchard (仏)の3人から提案された経緯から、まずは NEACRP のAdhoc Working Group として作業が進められたが、1981年の NEA Steering Committee で NEA Data Bank の事業として正式に承認され、現在は NEA Data Bank を事務局 として作業が進められている。

日本はこの計画に対して、JENDL-3が最優先との立場から、Phase-Iまでは承認したが Phase-IIについては態度を保留してきた。欧州側はこの保留の意味を、「NEA Data Bank がJEF-IIに関与する事の承認の保留」と考えて非常に憂慮していた様子であったが、日本と しては、Phase-IIの実作業分担を保留したのみで、Phase-II計画を否定する気は毛頭なかっ た。1982年9月の第2回 Scientific Coordinating Group Meeting で、私がこの事情 を説明した際には、欧州側から非常に感謝されてかえって戸惑った位であった。

日本からのJEFに対する実際の貢献としては、JEF-Iに対しては要求に応じてJENDL -1,2のデータを提供し、かなりの核種(重要な Actinide を含む)のデータが、「現時点で最 も信頼できるデータ」として採用されている。一方、Phase-IIに関しては、JEF-Iのベンチ マークテストを行う事、要求に応じてJENDL-3のデータを提供する位であろうと予想される。 最後にJEFの公開性の問題であるが、NEA Data Bank 加盟国に対しては作業の貢献に 関係なく公開、その他の国には非公開が原則である。これに対してKüsters から「ENDF/B - Vが公開にしているFPや Actinide も非公開とは行き過ぎ」との異義も出され、一方IAEA から研究協定による Actinide データのテスト等で無駄を省くため Actinide データは公開にし て欲しいとの要望も寄せられており、これらの扱いはさらに検討される事になった。私としては、 できるだけ公開の範囲を拡げる事が望ましい姿と考えている。

JEFの非公開性と評価レポートの公刊に関しては、「各評価者は、その評価値を数表の形で

あろうと自由に公刊して良い。ただし、その評価値が JEF に採用されていると言ってはならない。」との Camphell の見解が皆に承認された。しかし、ベンチマークテストのレポートに関しては、まだ統一見解は得られていないようである。

C:飯 島 俊 吾(NAIG)

JEF - ILと JENDL - 3の関係で、及び腰にならずに JENDL - 3の1部を JEF - IIに 提供する見返りに、 JEF - IIの評価の一部を JENDL - 3に提供させる様な、 JEF をもっ と利用する考え方はできないものか。

C:大竹 厳(富士電機)

r - production data の様な、そっくり利用できるようなデータの評価が依頼できれば 依頼した方が良いとは思うが、元々 JEF の核種選定のスコープは狭く(高速炉炉心設計のみ)、 JENDLとはその点で大きく異なる。したがって、多分 JENDLとして利用できる範囲は少い のではないだろうか。

A:菊 池 康 之 (原研)

ŧ

JEFとJENDLとのバーターは良い考えであるが、JENDLは原則的に公開、JEFは非 公開なのでその調整が問題であろう。ただ評価レポートとJEFの非公開性との関係に準じて、 JENDLで公開しても、「これはJEFのデータだと言わなければ良い」との考え方も成立し うるので、今後この点も考慮して対処すべきであろう。

Table 1 JEF 計画の経緯

1980. 9	第 23 回 NEACRP
	JEF 計画の提案,採択
1980 11.20	第1回 NEACRP ad - hoc Working Group 会合
	Policy, scope の決定
1981. 4. 9	第2回 NEACRP ad - hoc Working Group 会合
	Phase - I 作業分担決定
1981. 9.16	第3回 NEACRP ad - hoc Working Group 会合
	NEA Steering Committee へ JEF 計画作業の勧告
1981. 10.	NEA Steering Committee
	JEF 計画承認, NEA Data Bank が事務局へ
1982. 3.30	第1回 Scientific Coordinating Group 会合
	Phase - I の選定作業,Phase - Ⅱの計画立案
1982. 9.8	第2回 Scientific Coordinating Group 会合
	Phase – I の選定作業, Phase – II の計画具体化
1983. 1.20	第3回 Scientific Coordinating Group 会合
	Phase-Iの総括,ベンチマークテストの計画,
	Phase~II計画の NEA Steering Committee への勧告

8. 核データ将来計画パネル討論 一実験データの充 実に向けて—

Panel Discussion on Future Plano for Nuclear Data

此度の研究会では、新しい試みとしてパネル討論を行った。神田幸則氏(九大)を座長として、 核データの測定の将来計画及びそれに対する核データ利用者側からの要望について8名のパネリ ストの方に、それぞれの立場からの躊躇を受け、参席者を含めて討論を行った。以下に示すのは その討論を再現したものである。はじめにパネリスト8名の方の講演内容にほご沿った報告文が あり、その後で討論の記録を示してある。討論の内容の成文化は松本純一郎氏(原研)及び柴田 恵一氏(原研)が行った。こゝに厚く御礼申し上げる。 (編集委員会)

> (1) 原研リニアックによる核データの測定 水本元治^{*}

> > Nuclear Data Measurements with JAERI Linac * Motoharu MIZUMOTO*

原研リニアックは. 昭和48年に本格運転を開始した。この装置の主な使用目的は,飛行時間法 (TOF法)を用いた中低速中性子の断面積測定である。図1に加速器および測定小屋の概観図 を示す。加速器は120 MeV に電子線を加速する5本の加速管(S-Band 2857 MHz)により 構成されている。中性子の実験では中央のビームラインが使用されている。中性子は重い核種に よる光中性子反応(r, xn反応)により発生させるのが一般的で,原研ではターゲットとして 水で冷却した金属タンタル板を,中性子の減速材としてボロン入りポリエチレンを用いている。 この反応による中性子はほゞ等方に放出されるため、ターゲット室から放射状に設置された5本 の飛行管により、4 つの実験が同時に行なわれている。(現在1本の飛行管は中性子束のモニタ ー用に供せられている。)表1に現時点での加速器の主な特性を示す。また年間のビーム稼動時 間に平均ほゞ2000時間であり、大半は中性子断面積測定に用いられている。

次にターゲットから放出される中性子スペクトルを示す。55 m飛行管を使用して測定したもので、図2に⁶Li ガラス,¹⁰B-NaI 検出器によって得られた中性子束が比較されている。 スペクトル中に見られる構造は、中性子ビーム中のフィルター(ガンマフラッシュ抑制用、パッ クグランド規格化用)にある Pb, Na, Al などの共鳴によるものである。スペクトルは大ま かにエネルギーのベキ乗で表現することが出来る。短パルス運転(20 ns)では、全体として10²² (中性子/秒)の中性子が発生する。

原研リニアックでは、主に原子炉開発に必要な核分裂生成物(F・P 核種)の keV 領域の捕獲 断面積測定,ならびに低エネルギー領域での共鳴パラメータの解析とその物理的な性質の研究を 行ってきた。表2に最近測定した F・P 核種の種類、測定エネルギー範囲および精度、また実験 ・日本原子力研究所 Japan Atomic Energy Research Institute の際のリニアックの運転条件を記した。検出器としては大型液体シンチレーション検出器が用い られている。最近では年間4~6核種の測定が通常行なわれるようになった。サンプルとしての 濃縮同位元素は、オークリッジのアイソトーププールから借用したもので、数10gの量が必要と される。図3に一例として¹⁰⁹ Agの実験結果を示す。この核種では既存のデータ間に約2倍の 食い違いがあったが、我々の値はその中間を通ることが示された。300 keV以上の高エネルギー 部では非弾性散乱との競争による断面積の落ち込みが見られる。

表3では共鳴解析が行なわれた核種のリストを示す。測定は主に⁶Liガラスを用いて行なわれ, 最長190m飛行管の測定も行なわれている。測定エネルギー範囲の上限は核種の共鳴準位間隔に よって限定されるが、中性子強度や、測定のエネルギー分解能によるところが大きい。これらの 測定によって中性子強度関数(Strength Function),平均準位密度,平均輻射巾などの精度 の良い値が得られている。図4に例として⁸⁷ Rb(0.00275 atom/b)の測定結果を示す。共鳴 の形が左右対称でないのはS-波中性子による共鳴であり、ポテンシャル散乱との下渉による。

またその他にも、U. Ta などの全断面積の精密測定がFe フィルター法を用いて行なわれており、中性子捕獲によるガンマ線スペクトルの測定も計画されている。

Table 1 JAERI Linac parameters and performances

Electron Energy	40 - 190 MeV
Operating Frequency	2857 MHz (S-Band)
Pulse Repetition Rate	12.5 - 300 pps
Pulse Width	15 nsec - 2 usec
Maximum Peak Current	6 A (20 nsec) - 600 mA (1 µsec)
Maximum Beam Power	4.5 kW (short pulse)
Neutrons per Second	several x 10 ¹² (short pulse)
Number of Flight Paths	5 (18.5 – 190 m)

Table 2 Average capture cross section measurements at 52 m

Target	Energy	Accuracy	Linac	condit	ions.
Nucleus	Range (keV)	(%)	Current (A)	Rep. (pps)	Pulse width (ns)
151-153Eu	3 - 100	5 - 15	1.0	150	100
Eu, ¹⁴³⁻¹⁴⁸ Nd	5 - 300	5 - 15	1.8	150	30, 80
147-149Sm	3.3 - 300	5 - 15	2.7	300	30, 80
107~109Ag	3.2 - 700	4 - 7	5.0	300	20, 80
137 _{Ba} 155-157Gd	3.2 _~120		5.0 [·]	300	15,80
Others Ta,	¹³³ Cs, ⁸⁵ Rb,	^{nat} Ag, Au			

Table 3 Resonance parameter measurements

Target	Energy	Flight path length
Nucleus	Range (eV)	(m)
2 38U		190
ТЪ	3 - 1200	47
79-81Br	30 - 10000 (⁷⁹ Br)	47, 190
	30 - 15000 (⁰¹ 8r)	
147-149Sm	1.5 - 2000 (¹⁴⁷ Sm)	52, 56
	1.5 - 2000 (¹⁴⁹ Sm)	
La	70 - 2500	52
Cs	50 - 2000	52
107~109Ag	1.5 - 7000	52, 56, 190
85-87Rb	200 ~10000 (⁸⁵ Rb)	47, 190
	200 - 5000 (⁸⁷ Rb)	
¹³⁷ Ba	1.5 -20000	56, 190
155-157Gd	2.5 - 500 (¹⁵⁵ Gd)	
	2.5 - 1500 (¹⁵⁷ Gd)	
¹²³ Sb	20 - 6000	47, 190

-

Fig. 3 Average capture cross sections of ¹⁰⁹Ag.

(2) 東北大ダイナミトロン施設における核データの 測定

岩崎 信*

Nuclear Data Measurements with Dynamitron at Tohoku University Shin IWASAKI*

1. 実験股間の概要

加速器

ダイナミトロン加速器 メーカ :米国 Radiation Dynamics, Inc. (RDI) 電 圧 :最大ターミナル電圧45MV シングルエンドマシン イオン源:デュオプラ~マトロン イオン :現在,軽イオン(H,D,He)のみ パルス :スイーパーとバンチャーを用いた高圧ターミナル方式 周波数: 2 MHz ~ 3.906 KHz パルス巾: 1.5~2 ns FWHM 電流値 : DC: 0.1 #~mA パルス:~few #A (peak~mA) 使用中性子源 D+d 反応 (3.8MeV~7.6 MeV) T+d 反応 (16.4 MeV ~ 21 MeV) $(0 \sim 3.6 \text{ MeV})$ T+p反応 ⁷Li + p 反応 (0~2.5 MeV) ⁷Li+d 反応 (0~20 MeV 違続) thick target ビームコース 中性子実験用 3コース(182に2コース増設) 固体物理実験用 1コース ビーム調整用 2コース 中性子実験用測定器、測定システム 5" \$ × 2" , 2" \$ × 2" NE 213 シンチレーション検出器多数 70 cc Ge(Li) 検出器1:7線生成断面積測定 HPGe 検出器 (78 cc) 1:各種実験用,新規 100 × 75 × 800 (m³) 大型 NE 213 シンチレーション 検出器 及び、シールド・ゴニオメータ システム1 整備中

• 東北大学, Tohoku University

核分裂箱(U, Pu, Th等): of 測定用

他に、各種補助的検出器等多数

- 波高分析, データ解析装置
 - NAIG Dシリーズ (2次元) + TOSBAC 40C CANBERRA 88 (多次元) + ECLIPS - 140 : 整備中
- 2. 実験テーマ
 - 現在4~5グループを形成し、数年のテーマで行なわれている。
 - (1) 散乱実験グループ1 馬場,平川他
 軽核(Li, Be),中重核(Fe, Ni),重核(Th)等について,主に4~7
 MeVの領域での σ_eℓ(θ) σ_{inel}(θ)の測定と,理論解析。
 - (2) 散乱実験グループ2 岩崎, 椙山他 核融合炉材料(C, A ℓ, Ti, Nb, Mo ……)等の主に 15 MeV以上でのDDXの測 定と解析。
 - (3) r線測定実験グループ 板垣, 椙山他 核融合炉材料核種のr線生成断面積の測定 Th 等の(n, n'r)の測定 σ(n, n'e)の測定法の開発
 - (4) 核分裂断面積測定グループ 神田,馬場,平川他
 Th,U,Pu等の of の測定
 [¬]の測定
 - (5) 積分実験グループ 神田, 平川他
 - Fe, C, Li の平坂体系放出中性子スペクトルの測定
 - (6) その他, 必要に応じて作られる。

3. 実験環境の特徴と展望

ダイナミトロン加速器の設置されている高速中性子実験室は、いくつかの実験設備を置ける様 に考えられたので、比較的広いスペース(25 × 20 m²)をもっており(図1)、天井も比較的高 い。しかし実験室自体が半地下で、壁厚、天井厚が厚いし、床がグリッド構造になっていないの で、室内散乱のバックグランドには少し弱い点がある。

昨年まで中性子実験用ビームコースが一本であったため、ここですべてのグループが入れ替り 立替り実験を行ってきた。そのため、各実験毎に実験条件、配置、設備が異なるため、それらの セットアップと片付けに多くの時間と労力がとられると同時に、同じグループの実験の継続性や 再現性が保てなかった。これが3コースに増設されたことにより、実験装置は半固定にできるの で、能率も上り、継続性が保てる様になったことは大きな意味をもっている。

又先に述べた様に、新らしい検出器システムと、多次元波高分析データ処理装置系の導入によ

,

-

.

り、それぞれの実験において、バラエティに富んだ データの取りこみと、きめ細かいリアルタイ ム処理が可能となるので、実験効率が上り、実験精度が向上するものと期待している。

今後は,実験装置,加速器の制御,運転の(半)自動化や,データ収集のための周辺装置の強 化が課題と思われる。

(3) 東工大ペレトロン加速器を用いた中性子実験

井 頭 政 之

Neutron Experiments with Pelletron Accelerator at T.I.T. Masayuki IGASHIRA

我々の研究室(原子炉物理部門)で行なっている実験を大きく分けると,

1. ペレトロン加速器を用いた実験

2. 共同利用による京大炉 LINACを用いた実験

3. 14 MeV 中性子源を用いた中性子工学の実験

の3種類である。2の実験では、これまでに keV 中性子領域(2~80 keV)の捕獲断面積お よび捕獲カンマ線スペクトルの測定を行なってきたが、この実験については小林(京大炉)の報 告で述べられる。3の実験では、体系内の中性子スペクトルおよび透過中性子スペクトルの測定 を行なっているか、本バネル討論のテーマと少し異なるので割愛する。1.のペレトロン加速器を 用いた実験には、職員3名、大学院生6名が現在携わっており、今年度も既に10数週間の実験 を行なっている。以下、この実験に関して述べる。

東工大ペレトロン加速器が本格的に中性子実験に用いられるようになったのは、約3年間のイ オン源およびパルス化装置等の調整期間を経た1980年秋からである。現在のペレトロン加速器 の主な性能と中性子実験に用いたマシン・タイムを表1に示す。この時に開始された実験は、

- (1) 捕獲ガンマ線スペクトルの測定
- (2) ⁵⁶ Fe の共鳴の部分放射幅の測定

(3) 捕獲断面積の測定

である。中性子顔としては、現在まで、⁷Li (p,n)⁷Be 反応のみを用いているので、上記の 実験はすべて keV 中性子領域で行なわれている。これらの実験は、SN比の向上等の実験上の 改良を重ねながら、現在も引き続いて行なわれている。

(1)の実験では、 ガンマ線検出器としてコンプトン抑止型 NaI(Tℓ)検出器を用いて、 ガンマ 線エネルギー約0.5 MeV 以上の捕獲ガンマ線スペクトルの測定を行なっている。 この測定の特 徴は、 従来の測定データと比較して、 ガンマ線のエネルギー分解能が良いことと、 ガンマ線検出 器の応答関数が単純なため unfoldingの際に生じる誤差が小さく、 精度が良いことである。 現 在までに、 Nb, Mo, Sn, Tb, Ho, Ta, および Auの7元素について測定が終了している。 Nb~Ta については、 中性子エネルギー約400 keV における測定が行なわれ、 Au については、 入射中性子エネルキーに対する捕獲ガンマ線スペクトルの変化を調べるため、 15~600 keV の 6点について測定が行なわれた。 測定例として、 Au の結果の一部を図1. に示す。

(2)の実験では、ガンマ線検出器として高純度 Ge 検出器を用い、捕獲状態から低励起状態へ遷 移する際に放出される高エネルギー・ガンマ線を測定することにより、部分放射幅の測定を行な っている。今年 10 月に第 1 回目の本実験が行なわれ、共鳴エネルギー 27.7,34.1 および 38.3

• 東京工業大学原子炉工学研究所 Tokyo Institute of Technology

keVの共鳴についての測定が終了している。今後, 50 keV以下の共鳴について測定を広げる予 定である。

(3)の実験では、ガンマ線検出器としては特別に設計された環状NE - 213 検出器を用い、これにパルス波高重み関数法を適応して捕獲断面積の測定を行なっている。現在までに、¹³³Cs,
 ¹⁶⁵ Ho,および¹⁹⁷ Au の 3 核種について、中性子エネルギー 200~400 keV の 4 点での測定が終了している。

以上の実験のほか,昨年度から、コンプトン抑止型NaI(Tℓ)検出器を用いた²⁸Siの共鳴 の部分放射幅の測定も始められ,共鳴エネルギー 566.2 keVの共鳴についての予備実験が終了し ている。以上述べてきたように、ペレトロン加速器を用いた実験は、開始されてから約2年しか 経ておらず、現在も引き続き行なっている状態である。今後もしばらくは、核種および中性子エ ネルギー範囲を広げて上記の実験を行なう予定である。なお、来年度から、新たに polarization の実験準備を進める予定であることを、付記しておく。

加速電圧	0.4~3	MV
直流陽子ビーム電流	~100 A	A A
	パルス化陽子ピーム	
パルス幅	1.5 ns	ec
ピーク電流	1. 5~2	mA
くり返し周波数	2 MHz~62.5	kHz
平均電流	4.5~5.5 µA	@ 2 MHz
中性子実	験に用いたマシン・	タイム (hr)
1980 年度	1981 年度	1982 年度
600	800	1200

表 1 ペレトロン加速器の主な性能と中性子実験に 用いたマジン・タイム

図1 Au(n, r)反応から発生する捕獲ガンマ線スペクトル

(4) 京大炉における中性子断面積の測定

小林捷平

Measurements of Neutron Cross-Sections at KUR Katsuhei KOBAYASHI

はじめに

中性子断面積に関連する実験,研究は原子炉,電子線型加速器,バンデグラーフ加速器等,種 々の大型装置を中心に,従来より数多く進められてきている。しかしながら,原子炉の安全性, 経済性を評価する上で,今なお不十分とされるものも多々あると言われる。こうした観点から, 実験及び評価データの充実に向けて,今回原研にて企画された核データ研究討論の内,測定者パ ネリストの一人として、核データ測定に関連する実験の一端を紹介する。

ここでは,近年著者自身が直接に携わってきた中性子断面積測定に関連する研究課題及びその 結果の概要を述べるが,各研究の遂行に当っては諸先生方の御指導と御協力によるところが大き い。個々の研究内容の詳細については参考文献に譲りたい。

実験の方法と結果

著者らが近年進めてきた実験は主として電子線型加速器(ライナック)飛行時間法による中性 子全断面積及び捕獲断面積の測定,中性子スペクトルの測定,パンデグラーフ加速器による幾つ かの放射化箔反応断面積の測定,²⁵²Cf中性子源及びKURやYAYOI炉における標準的な核分 裂中性子スペクトル場を用いたスペクトル平均断面積の測定等であり,表1にこれらをまとめる。

まず、中性子全断面積ではフッ素、シリコン、チタン、トリウム についてエネルギー依存断 面積を測定してきた^{1)~5}。更に、鉄及びシリコンフィルターを使った 24keV 及び 146,55 keV の単色に近い中性子ビームによる水素、ベリリウム、炭素、酸素、トリウムの測定も行った⁶⁾⁷⁾。 図1に全断面積測定の実験配置図を示す。シリコン及びトリウムの全断面積測定の結果を図 2、 図3に示す。これらに共通していることは、ENDF/B-IVデータの見直しと修正の必要性が提 言されたことである。2 keV 近辺に見られるスカンジウムの全断面積はフィルタービーム設計の 観点から強い関心が持たれている。BNL での原子炉ビーム実験の結果より、従来のスカンジウ ム全断面積極小値が疑問視されることとなったため、著者らはRPI ライナック飛行時間法によ ってスカンジウム断面積の測定を行った(図4)⁸。極く最近では、Fujita が京大炉ライナック を用いて、2 keV 近辺の断面積極小値を測定している(図5)⁹。

京大炉グループでは、東京工大の山室教授グループと共に、ライナック飛行時間法により、主 として中性子捕獲断面積及び捕獲 r 線スペクトル測定を、長年にわたり続けてきている。図 6 は 鉄フィルター法による飛行時間分析実験の配置図を示す。これによって得た²³² Th(n, r) 反応 断面積測定のデータ例を図 7 に示す。トリウムのように、試料自身からのパックグランドが高く なる実験では、こうした中性子フィルター法が極めて有用な実験手法となる。エネルギーに依存 した捕獲断面積測定は図 6 中の鉄フィルターを取り除いて行った。²³² Th(n, r) 反応断面積測

* 京都大学原子炉実験所 Research Reactor Institute, Kyoto University

定の結果を図8に示す 。著者らの測定値は概して近年求められたデータに近く,旧来のデータ 及びこれらを基に評価作成されたENDF/B-IVデータとは,大きな相違を示した。著者らは化 学精製を行ったトリウムを使用することにより,試料からのr線バックグランドを著しく(約1 %まで)軽減することができた¹⁰。

捕獲 r 線検出器として、当初中性子に対する感度が比較的低いとされる C_6F_6 シンチレータを 使用していたが、その後 C_6D_6 シンチレータの使用を試みている。この検出器は中性子に対する 感度が更に低く、図 9 に C_6D_6 と C_6F_6 両シンチレータに対する中性子感度の比較を示した¹¹ しかし最近では、シンチレータの密度が高く、図 10 にも見られるように、高エネルギー r 線測 定にも適しているBGOシンチレータの使用が注目されている。

著者らに 10 数年以上にわたり, 原子炉材料集合体又はパイル中の中性子スペクトルをライナ ック飛行時間法によって測定し, DTF-IVやANISNコードによる輸送 理論計算の結果と比 較することによって, 原子炉核設計計算に欠くことのできない群定数評価を進めてきた。我々は 既に 15 種以上の試料について,実験と計算を行ってきている¹²⁾¹³。図 11 はトリヤパイル中の 中性子スペクトル及び金属トリウム散乱体による実験配置を,図 12 はそれぞれの実験結果並び に輸送理論計算の結果を示す¹⁴⁾¹⁵。これらの結果から,トリウムの群定数については,JEN DL-2よりもむしろENDF/B-IVから作成された定数による計算結果が全般的に実測値とよ く合致することが分る。

次に、著者らは高速中性子束を精度よく測定することを目的として、反跳陽子ラジェータとシ リコン検出器、又はCsI(Tℓ)シンチレータを組合せた陽子反跳検出器を試作した。これらの 応答関数をバンデグラーフ加速器を用いた単色中性子に対して測定すると共に、¹¹⁵ In(n,n') ^{115 m} In や¹⁹⁹ Hg(n,n')^{199 m} Hg 反応断面積の測定に応用した¹⁶⁾¹⁷⁾。 これらの結果を図13 ~ 16 に示す。¹¹⁵ In(n,n')^{115 m} In 反応断面積は従来値とよい一致を示したが,¹⁹⁹ Hg(n,n')

最後に、著者らは高速中性子スペクトルの標準的な中性子スペクトル場として²⁵² Cf や²³⁵ Uの 核分裂中性子場を使用し、核分裂スペクトル平均断面積、特に React or Dosimetry に関連 するしきい反応断面積の積分的な評価を進めてきた^{18~20}。最近では、こうした測定値に対しデ ータ間の相関を取り入れた誤差解析の方法とその結果に対する関心が高まっている²¹⁾²²⁾著者ら も、こうした実験、解析の手法を適用することによって、幾つかの²⁵² Cf スペクトル平均断面積 測定を行った²⁰⁾。得られた各反応の断面積、誤差及び相関係数行列を表2に示す。ここに示した 誤差値は分散のみを考えた従来の方法による誤差値の約半分となり、測定データの信頼度を高め る上で、データ間の相関を考慮した共分散行列法による解析の重要さが示された²⁰⁾。表3は

Mannhart が求めたデータ²³⁾と著者らが得たデータについて、共分散項を扱った計算コード BOLIK²⁴⁾を用いて最小自乗処理し、まとめた結果である。実験誤差の大きいデータのかかわ る相関係数は小さくなっている。また、核分裂反応と非核分裂反応間の相関係数は全般に小さい ことが分る。この原因については現在いところ明らかではないが、今後は核分裂・非核分裂間の 測定に注目したい。 おわりに

本報告は測定者のパネリストとして近年著者らが撓わってきた実験の概要を紹介するにとどめ た。一口に実験、測定と云っても、その目的、対象によって手法、使用する中性子源、装置、機 器、検出器等が違ってくる。しかしながら、得られる物理量は不変であることを考えれば、実験 値間の相違は単に統計的不確かさのみでなく、実験者にも予測できない系統的不確かさに起因す ることになる。従って実験を進める上では、明確な実験配置での測定、信号/雑音比の高い測定、 補正量の少ない測定、できるだけ分解能の高い測定等を心掛ける必要があろう。更に、できるだ け多くの人が種々の測定条件の下に得たデータの蓄積こそ、実験データのみならず評価値の充実 を図る上で極めて有用となる。この場合、各データについて、それらの相関を明示しておく事は 得られたデータの不確かさの要因を把握し、その信頼度を上げる上でも一層重要となろう。

参考文献

- T. Mori and K. Kobayashi: "Measurement of neutron total cross section of fluorine", unpublished.
- Y. Fujita: "Measurement of neutron total cross section of silicon", private communication.
- 3) K. Kobayashi, et al.: Annals of Nucl. Energy, 4, 449 (1977).
- T. Mori, et al.: "Measurement of neutron total cross section of titanium", to be published.
- 5) 小林捷平他: 日本原子力学会 昭和 56 年分科会, 昭和 57 年年会。
- 6) R.C. Block, et al.: J. Nucl. Sci. Technol., 12, 1 (1975).
- 7) K. Kobayashi, et al.: Nucl. Sci. Eng., 65, 347 (1978).
- 8) H.I. Liou, et al.: Nucl. Sci. Eng., 67, 326 (1978).
- 9) Y. Fujita: to be published.
- 10) K. Kobayashi, et al.: J. Nucl. Sci. Technol., 18, 823 (1981).
- 11) N. Yamamuro, et al.: J. Nucl. Sci. Technol., 17, 582 (1980).
- 12) I. Kimura: NBS Sp. Publ., 598, p.265 (1980).
- 13) I. Kimura, et al.: Proc. Intern. Conf. on Nucl. Data for Science and Technol., Antwerp, in print.
- 14) H. Nishihara, et al.: J. Nucl. Sci. Technol., 14, 426 (1977).
- I. Kimura, et al.: Japan-U.S. Seminar on Thorium Fuel Reactor, Nara, Oct. 18-22 (1982).
- 16) S. Yamamoto, et al.: Annu. Rep. Res. Reactor Inst., Kyoto Univ., 11, 121 (1978).
- 17) K. Sakurai, et al.: J. Nucl. Sci. Technol., 19, 775 (1982).
- 18) K. Kobayashi, et al.: J. Nucl. Sci. Technol., 13, 531 (1976).
- 19) I. Kimura and K. Kobayashi: 1st ASTM-Euratom Symp. on Reactor Dosimetry, Petten, Part II, p.142 (1975).

- 20) K. Kobayashi, et al.: J. Nucl. Sci. Technol., 19, 341 (1982).
- 21) W. Mannhart: PTB-FMRB-84 (1981).
- 22) D.L. Smith: ANL/NDM-62 (1981).

•

- 23) W. Mannhart: NEANDC(E)-212U, Vol. V, p.66 (1980).
- 24) M. Petilli: CNEN-RT/FI(80)18. (1980).

.

表1 近年進め	てきた中性子断面積測に	きの概要			
研究課題	実験配置	実験方法・装置	実験試料	被出路器	結果 (解析)
中性子全断面积	図1	linac TOF	Si, Ti, F,) "Liガラス	图 2, 图 5
(mimima)		1	Fe, Si, Sc) NaI (TE)	m1m1mum value r-、以皆 が見られた
捕獲断面積	X 6	linac TOF	Th,	C«F", C«D"	図 8
			Nb, I, Ho,	最近ではBGO	
			Ta, U, Cs ,		
フィルタービームによる	原則的には図1,6	linac TOF	Д,	C.F. C.D.	24, 55, 146 keV
実験(Fre, Si)	に同じ		Nb, Cs, Ta,		定点测定
			U, Ho,		上記の。(E)と一致
原子炉材料中の中性子ス	図 11	linac TOF	Th, Fe, Mo,	・Li ガラス	図 12
ペクトル			Ti , Cu, et c.	¹⁰ B- Na I-plug	輸送理論計算との比較
				NE-213	群定数評価/ENDF/B/
					/ JENDL /
単色中性子に対する中性	図 13	Ad G 加速器	Hg, In, Ni	陽子反跳檢出器	図 15, 図 16
子断面稳			Ti, Rh,	∫ ラジエータ, SSD	H(n,n)反応断面積による
				【 ラジェータ, Cs I	中性子束测定
²⁶² Cf 中性子源によるし	しきい反応箔の中性	need le-t ype の中性子	Al, Ni, Fe,	誘導放射能测定	表2,表3
きい反応平均断面積	子照射源より数㎝位	源(標準スペクトル場)	Co, In, Zn,	Ge (Li)	データ間の相関係数付
		放射化法	Au, etc.		
KUR, YAYOI 標準中	235 U核分裂板の	原子炉を使った ²³⁵ U 核	Al, Ni, Fe,	ы Ч	ュュュCf によるデータとの系統
性子場における実験	表面、グローリホー	分裂スペクトル (標準場)	Co, In, Zn,		的違いついても検討している
	ル中心。しきこ箔		etc.		

Reaction	⟨σ⟩ (mb)	Std. dev. (%)				Cor	relat	ion	mat	rix	(×1()0)			
Mg(n, p)Na	1.940	4.79	100												
*7Al(n, p)*7Mg	4.891	3.67	40	100											
²⁷ Al(π, α) ²⁴ Na	1.006	2.17	44	58	100										
**S(n,)) **P	72.52	4.08	41	45	52	100									
⁵¹ V(n, p) ⁵¹ Ti	0.7126	8.25	14	26	25	16	100								
54Fe(n, p) 54Mn	87.63	4.97	46	41	42	40	16	100							
⁵⁶ Fe(n, p) ⁵⁸ Mn	1.440	4.86	47	42	43	41	16	53	100						
⁵⁸ Ni(n, p) ⁵⁸ Co	118.5	3.45	39	55	62	50	24	40	41	1(10					
${}^{59}Co(n, \alpha) {}^{56}Mn$	0.2176	6.44	19	31	33	23	17	20	21	28	100				
⁵⁴ Zn(<i>n</i> , <i>p</i>) ⁵⁴ Cu	41.84	4.18	29	46	51	36	23	30	30	42	29	100			
119 [n (n, n') 118m ln	169.7	4.77	48	45	44	39	20	49	50	45	22	30	100		
¹¹⁵ In (<i>n</i> , <i>n'</i>) ¹¹⁸ mIn	201.0	4.08	56	54	52	46	24	60	61	53	26	36	66	100	
¹⁹⁷ Au(n, 2n) ¹⁹⁶ Au	5.267	4.30	28	49	50	31	29	32	33	46	32	45	39	47	100

-

表 2 ²⁵² Cf スペクトル平均断面積の測定結果²⁰⁾

* Normalized with (=) ("Al(n, a))=1.006 mb±2.2%

.

•

.

表 3 ²⁵² Cf スペクトル平均断面積

CF-252 SPECTRUM AVERAGED CROSS SECTIONS

о**ль**ят . %

	PROGI	RAM "	B 0	LI	к "													MG AL AL	24-N 27-N 27-N	P P A	1.9 4.8 1.0	15D+ 54D+ 12D+	00 00 00	4.87 3.53 1.96
	· _																	S	32-N	P	7.1	68D+	01	4.48
	C I	r-252 5	PEGIN	KUM A	VERAGE	DCR	USS SE	CI 10	NS (W	.M. PI	ROGRES	S +	к.кова	YASH:	US T	ITAN)		11	46-N	2	1.4	040+	01	2.15
																		11	47-N	۲	1.9	540+	01	2.09
																		1 I	48-N	P	4.2	060-	01	2.20
	CORRE	ELATION	MATR	XIX	(PRI	NTED	VALUE	HAS	BEEN	MULTI	PLIED	BY	100.)					v	51-N	P	7.1	46D-	01	8.81
			_	_														FE	54-N	Р	8.6	450+	01	2.11
	ROW/(COL 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	FΕ	56-N	P '	1.4	57D+	00	2.35
																		NI	58-N	Р	1.1	530+	05	1.66
	1	100																CO	59-N	A	2.1	82D-	01	7.33
	2	20	100															ΖN	64-N	Р	4.0	10D+	01	2.45 🖫
1	3	35	47	100														IN	13-N	N	1.6	19D+	02	2.25
20	4	22	25	37	100													IN	15-N	G	1.2	55D+	02	2.94 <u>s</u>
- J	2	28	39	73	30	100	100											IN	15-N	N	1.9	74D+	02	2.17 oc
1	7	20	38	71	30	76	71	100										AU	97-N	G	7.6	68D+	01	2.25 ü
	8	5	15	18	6	15	16	15	100									AU	7-N2	N	5.5	020+	00	2.49 🕏
	9	30	40	71	32	64	66	61	14	100								112	35-N	F	1.2	04D+	03	1.61
1	0	29	37	67	30	59	62	58	14	64	100							NP	237N	F	1.3	39D+	03	2.14
1	1	32	45	83	36	78	81	74	16	83	68	100						112	38-N	F	3.1	91D+	02	2.08
1	. <u>2</u>	26	10	66	28	10	19	18	15	18	17	20	100	100				PIL	239N	F	1.7	98D+	03	1.83
	4	32	42	70	30	62	64	63	17	62	59	70	19	55	100					•				
1	5	24	31	53	22	46	49	48	14	47	45	52	15	42	68	100								
1	ó	35	43	72	32	64	66	68	18	66	61	73	20	58	85	64	100							
1	7	30	42	69	29	62	63	61	17	62	58	69	19	55	83	64	84	100						
1	8	27	41	64	26	56	58	56	18	57	53	63	20	51	75	56	74	81	100					
2	Ň	Å	11	17	¥ 4	17	18	17	4 7	19	16	27	5	15	16	13	17	16	15	100				
ź	ĩ	5	7	12	6	11	12	10	٦	12	10	17	4	10	10	9 8	11	12	11	75	100	400		
2	2	7	10	17	8	15	16	15	4	16	14	24	5	13	15	11	15	15	13	73	61	70	100	

.

207

,

JAERI-M 83-041

8

- 208 -

3 ċ.

Figst The total cross section of scandium between 0.4 and 20 keV. The curve shows an *R*-matrix theory fit as described in the text. The primary interest centers on the broad minimum in the cross section near 2.0 keV, where we find a value for σ_T of 0.71 ± 0.03 b. Two small *p*-wave resonances are apparent below 2 keV; these have negligible effect on the position or size of the 2-keV minimum.

図4(1) スカンジウムの中性子全断面積⁸⁾

図5 スカンジウムの中性子全断面積極小値9)

図6 中性子捕獲断面積測定実験配置図

トリウムの飛行時間スペクトル

因 9 加速 7 秋 例 定 用 検 山 福 0 中 1 に対する 感度比較¹¹⁾

図10 C₆C₆とBGOシンチレータによる捕獲γ線測定の比較

-

図 11(1) トリアパイル中の中性子 スペクトル測定実験配置図

図 12(1) トリアパイル中の中性子スペクトル ¹⁵⁾

(1) Th slab, (2) Ta-target, (3) Pre-collimstor, (4) Concrete well, (5) Filght tube, (6) Collimator, (7) Concrete wall, (8) Ph-shield, (9)⁴L4 glass scintillator, (10) To wacuum pump

図 11(2) トリウム金属散乱体による中 性子スペクトル測定実験配置図

図 12 (2) トリウム金属散乱体に よる中性子スペクトル¹⁵⁾

(5) 核断面積に対するFBR設計側からの要望事項

加藤恭義

Requirements for Nuclear Cross-Sections from FBR Design Yasuyoshi KATO^{*}

我が国で開発されたJENDLファイルはJENDL-2に至り、質・量共にかなり充実してきた。 JENDLファイルJENDL-3への改訂が計画・着手され、今後、一層の充実が期待されている。 以下に、核断面積データの改訂における要望事項を、このファイルを用いて高速炉の設計を実施 する立場から記す。

1. 核設計上の要望事項

実証炉クラスの大型高速炉(~1000 MWe)の炉心臨界模擬実験が日米共同による
 JUPITER**計画として実施されている。JENDL-2Bを用いた解析結果(C)と実験値(E)の比較から明らかとなった点は表1に要約される。要望事項等の具体的な内容を次に示す。
 a)²³⁸U(n, 7)反応断面積の過大評価………臨界性は~0.8%小さく,²³⁸U(n, 7)
 /²³⁹Pu(n, f)は~8%大きく評価され、反応率分布の(C/E)に径方向依存性が見出された⁽¹⁾。これらは²³⁸U(n, 7)反応実効断面積の過大評価から生じていると予想される
 (1)~(2)。その原因として,²³⁸Uの非分離共鳴領域(4~149 keV)の共鳴パラメーター^{***}の評価方法が考えられる⁽³⁾。今後、上記の積分実験の解析結果を考慮して非分離共鳴パラメーターの見直しが望まれる。

- b)ボイド反応度の過大評価………ボイド反応度は30~40%大きく評価される⁽¹⁾。これは、 燃料核種の下記の断面積の評価に原因があると指摘され⁽⁴⁾、ボイド反応度の予測精度を向上 させるためにこれらの断面積の見直しが必要である。
 - 239 Pu (n, f) 0.8 ~ 6 keV
 - 240 Pu (n, f) 0.4 ~ 0.8 keV
- c) サンプル反応度の過大評価…………TaとMnのサンプル反応度は70~100% 大きく 評価される⁽¹⁾。これは、これらの核種の吸収断面積と共鳴パラメーターの評価に原因がある と予想され、今後、見直しが必要と考えられる。
- 2. 遮蔽線源評価上の要望事項

高速炉の遮蔽設計に関係する線源は次のように大別され,その生成反応と遮蔽設計箇所を表 2 に示す。

- a) 核分裂生成物(FP) …………… 炉心における核分裂により生成される。
- b) 放射性腐食生成物 (CP) ………燃料被覆管等の炉心部の構造材であるステンレス鋼
- * 高速炉エンジニアリング株式会社 FBR Engineering Co., Ltd.
- ** Japanese-United States Program of Integral Test and Experimental Researches.
- *** 非分離共鳴領域の共鳴パラメーターはこの領域の平均断面積が測定結果と合うように決定される。 この共鳴パラメーターは一義的に決らず、種々の値の組合せが可能となるが、組合せにより自己遮 蔽因子すなわち実効時面積は変る。

を構成する元素が放射化され、腐食により冷却材中に溶出される。

- c)冷却材…………冷却材であるNaとNa中の不純物が炉心部において放射化されて生成 される。
- d) カバーガス…………1次冷却系のカバーガスである Ar の放射化と Na 中の不純物とし て存在するKの炉心部における反応によって生成される⁴¹ Ar が主である。
- e) トリチウム……………炉心部における 3核分裂反応と制御棒内における (n, α) 反応等 により生成される。
- f) 炭素-14 ………原子炉容器室の雰囲気温度調節用のチッソ・ガスから生成される。

高速炉は軽水炉などとは使用する材料と中性子のエネルギーが違い,自ずと遮蔽線源の種類 は異なる。高速炉の線源を精度良く評価し,適正な遮蔽対策とするためには,上記の遮蔽線源 の生成に関する断面積について,不確定幅を低減させる努力を今後とも継続する必要がある。

3. 遠蔽解析上の要望事項

高速炉の遮蔽解析に使用している基本断面積とその処理コードおよび使用実績等を表3に示 す。また、核断面積に対する要望事項は以下の通りである。

- a) 中性子反応断面積………… 収容されている核種数の制約等から従来は ENDF/B 4を使 用してきた。今後、JENDLファイルに遮蔽解析に不足している核種を追加し、核計算と同 様、我が国で開発された JENDLファイルが遮蔽解析に使用できるよう早急に整備されるこ とが望まれる。
- b) r線生成断面積…………現在設計では, r線生成核断面積として, * POPOP-4 * ラ イブラリーが使用されているが, 「常陽」の炉体系廻りの遮蔽解析等を通じていくつかの問 題点が明らかになった⁽⁵⁾。JENDL-3 ではr線生成断面積の追加が計画されているが, 質 的にENDF/B4 と同等以上のr線評価済生成断面積が編集され, 早期に遮蔽解析および核 計算に利用できることが望まれる。

また、核計算では、JENDL-2B70等の形で~70群程度の多群標準ライブラリイが核デ -タ・センターにおいて作成され、利用者は基本断面積に戻らず、この群定数から核計算を行 なうことができる。遮蔽解析においても、これと同等な多群標準ライブラリイの編集が望まれ る。

4 崩壞熱評価における要望事項

崩壊熱の評価結果は、原子炉スクラム時のプラント熱過渡解析、崩壊熱除去系の設計および 燃料取扱系の除熱設計に使用され、計算精度の向上がプラント・コストの低減につながる。現 在、"もんじゅ"等の設計に使用されている崩壊熱計算コード"FPGS-3"⁽⁶⁾には表4に示 す基本核定数が使用され、不確定幅として±20~30%が見込まれている。

表4に示されているように、使用されている基本断面積はJENDL-1とENDF/B4 が中 心である。近年、"シグマ委員会-崩壊熱評価 W/G"で評価・編集されたJNDCファイル⁽⁷⁾⁽⁸⁾ によって、これまで問題となっていた短期冷却時の崩壊熱の測定値との不一致が大幅に改善さ れた⁽⁶⁾。今後、核種の拡張等により、上記のJENDL-1、ENDF/B4 に代るより信頼性の 高い崩壊熱データを与える崩壊熱評価用の基本断面積の編集が望まれる。

表 1. 核設計上の問題点と要望事項

项	B,	実験解析からの知見	設計へのインパクト	要望事项
²⁰¹ 10(1) 反	. 7)	・臨界性の過小評価 ・ σ ^t */σ ^t *の過大評価 ・ (C/E)の扱声向体存性	 ・ 臨界性の過小評価 ・ 増殖比の過大評価、 燃 歳反応度の過小評価 	 非分離共鳴バラメーター の見直レ(4~149 keV)
応		(反応率分布、制卸棒価值)	 出力分布、制御棒価値 の設計予測精度の悪化 	・(共鳴計算法の見直し)
			・ゼイド反応的の過去数点	• ³³⁹ Pu(n,f)の見直し
* 1	۲	- 20 - 40 年の場上収研		(6 KeV 以下)
反応	度	30~40 20025日入計1回	の外系剤物度の周ル	∗ ^{≇®} Pu(n, ſ)の見直し
		·		(04~0.8MeV)
サンプ 反応	ル 度	• Mn , Ta の過大評価	• 同 左	・σ _c (Mn)の見直し ・共鳴パラメーター (Ta)

表3. 遮蔽解析の現状と要望事項

\square		基本新面積	処理コード	使用実精	至真白边,
ф	性子	• ENDF/B 4	• SUPERTOG-JR		 JENDLの充実により入換え
r	生成	• POPOP-4	, • POPOP4-JR	・常闇炉体系廻り 遮蔽解析	 ・高速中性子に対する データの追加 ・評価方法の見直し
綟	輸送		• GAMLEG-JR	• もんじゅ」 理敏 解析	

Pu-241(熱) U-233(熱),Th-232(高速)

U-235(魚, 高速, 14MeV) U--238(高速, 14 MeV) Pu-239(魚,高速)

・全般に対する要望

核設計と基本断面和、処理コード、処理方法の整合

・エラー・ファイルの充実

・遮蔽設計用多群(70 ~ 100 群)標準 ・ イブラリーの作成

表4. 崩壊熱評価に使用している核データ*

錄顏	主要な生成反応	遮蔽箇所		11. ži	1 1	容核種類	ベース・データ	備 考
FP	・炉心における舷分裂	 ・炉上部方向貫通部& 岡隙部 ・1次Arガス&冷却系機器 				4		U-235(魚,高速,14M U-238(高速,14MeV
CP	* ⁵⁴ Fe(n, p) ⁵⁴ Mn * ⁵⁵ N1(n, p) ¹⁸ Co * ⁶⁹ Ni(n, p) ⁶⁹ Co, ¹⁸ Co(n, r) ⁶⁸ Co	•1次冷却系模器 •燃取系模器	FF	核分裂収	(AFL	10	•ENDF/B-N (Meek-Ruder評価済収串)	Pu-239(熱,高速) Pu-241(熱) U-233(熱),Th-232(i
	• ^{INI} Ta (n, r) ^{INI} Ta • ^{IN} Na(n, 2n) ^{IN} Na			断面	8***	59	• JENDL-1 • ENDE/B-N	
市坦权	• ²² Na(n, r) ²⁴ Na	・1次冷却糸廻り遮蔽壁		<u> </u>			• ENDF/B - N 56	(n, 7), (n, p)
カバーガス	• * Ar(n, 7) * Ar	・1次Arガス系機器、遮蔽壁	構	造材断面	ð t "	182	• ORIGEN	(n, 2n),(n,α) 吸収
	\cdot^{41} K(n,p) \cdot^{41} Ar, \cdot^{40} Ar(n,r) \cdot^{40} Ar						• ENDF/B N 1	(n, 7)
Т	•3 核分裂反応 • ¹⁰ B (n, 2 α) T, ⁶ Li (n, α) T	• 被嘲評価	T	クチニ	F	42	• ENDE/B V 31 • JENDL-1	(n, 2n), 吸収
C-14	• ¹⁸ N(n, p) ¹⁴ C	・炉容器室廻り空調系	r	線デー	9	644	• ENSDF(81/1)	
n	 ・ 炉心における核分裂 ・ 使用済嫌料の0(α、n) ・ 自発核分裂 	 ・ 炉容器室通り貫通部、間隙 部&遮蔽壁 ・ 端取系機器 		• もんじ •• 中住子	ッ設計の) 反応断面	屷墤熊評価 櫕	に用いられている『FPGS-3"	* 用に準備されているもの。

・炉物理側にて実施すべきもの

表2 連遊線源評価上の主要な核種と生成反応

参考文献

- 白方敬章, 加藍恭義, 貝瀬興一郎, "JUPITER 実験解析 JENDL 2B によるZPPR - 9, 10の解析 – , "JAERI – M 9999, P161 (1982)。
- (2) M.J. Lineberry, H.F. McFarlane, and P.J. Collins, "Physics Assessments of LMFBR Parameters", Proc. of the Topical Meeting on Advances in Reactor Physics and Core Thermal Hiydraulics, Kiamesha Lake, NY, Sept, 1982, NUREG/CP-0034, P.1 (1982).
- (3) J.L. Munoz-Ccbos, G. de Saussure, and R.B. Perez, "Sensitivity of Computed Uranium-238 Self-Shieldim Factors to the Choice of the Unresolved Average Resonance Parameters", Nucl. Sci. Eng., 81, 55 (1982).
- (4) 中川弘幸, "JENDL-2B70 セットによるナトリウム・ボイド反応度の過大評価について,"
 私信, (1982)。
- (5) 大谷暢夫,井上晃次,朝岡卓見,"「常陽」炉体まわり遮蔽解析(VI)-まとめと今後の課 題-, "昭和 56 年日本原子力学会年会要旨集,第1分冊, D-50(1981)。
- (6) 井原均, 吉田弘幸, 堀田雅一, 『FPGS-3 コードの改良と核データおよび r 線ライブラリ -の更新, 未公開資料(1982)
- (7) 井原均, 松本純一郎, 田坂完二, 秋山雅淵。吉田正, 中嶋竜三, "JNDC FP Decay and Yield Data", JAERI-M 9715 (1981).
- (8) T. Yoshida and R. Nakasima, "Decay Heat Calculations based on Theoretical Estimation of Average Beta- and Gamma-Energies Released from Short-Lived Fission Products", J. Nucl. Sci. Tech. <u>18</u>, 393 (1981)

泰十

From a Viewpoint of Fusion Reactor Neutronics Yasushi SEKI⁺

核融合炉のニュートロニクスで求めるべき特性値は第1図の下部に見られるようにいずれも中 性子束,ガンマ線束にレスポンス関数を乗じてエネルギーについて積分した反応率あるいはさら にそれを空間積分した形をしている。これらの特性値は核データをベースにいくつもの段階を通 って得られるが,現在のところ最大の誤差の原因は核データの不確かさにあると推定される場合 が多い。以下に各特性値と不確かさの原因となる核データの孤頚を挙げてみる。

1.	トリ	チウ	ム増	殖比 { [*] Li (n, nα)t 反応断面積 二次中性子角度分布データ
2.	核	発	熱	
3.	線	量	率	同 上
4.	誘導	動	扩能	放射化断面積

+ Yasushi SEKI

(7) 核燃料施設等の核的安全評価に必要な核データ

(原研) 山野 直樹+

Nuclear Data Needed for Nuclear Safety Evaluation at Fuel Facility Naoki YAMANO⁺

核燃料の再処理,再加工及び廃棄物処理など,いわゆる核燃料施設等の核的安全性評価として, 臨界,遮蔽及び熱に対する安全評価が挙げられる。これらの安全解析は互いに密接な関連がある にもかかわらず,それぞれの分野で独立した Data & Methodが用いられており,基本的なデ ータに関しても,その相互的な適用性及び精度についての評価はほとんどなされていないのが現 状である。しかしながら,これらの基本データは互いに共通となるものが多く,その統一化はさ ほど困難ではない。このように基本データの統一によって前述した臨界,遮蔽及び熱安全解析を 総合的に行う事が可能となり,従来独立して発展してきた解析手法の標準化を促進させる事にも つながる。以上の観点より「核的安全評価総合システム」の開発に着手しているが,その適用範 囲についても臨界,遮蔽及び熱解析の他に、インベントリ評価,核燃料サイクル評価に対しても 適用可能な設計を行っている。このシステムにおいて基本データは Table 1 に示す6 種類に分 類して格納されるが,データ作成にあたり,必要となる核データの現状と不足している部分につ いての議論を行う。

基本ライブラリ名	核データ	コメント
1. 中性子反応断面積	JENDL, ENDE/B	基本的には充実しているが
2. 中性子散乱マトリクス	JENDL, ENDE∕B	} ──部不足
3. 崩壊データ	ENSDF, JNDC	decay chainが不足
4. Yieldデータ	ENDF/B	核種が不足(アクチニド)
5. 放出粒子エネルギースペクトル	ENDF/B	不十分(中性子放出)
6. 二次ガンマ線データ	ENDF/B	不十分

Table 1 核的安全評価総合システムの基本データ

基本データの作成には Fig. 1 に示すように, 評価済核データ ENDF/B¹, JENDL², JNDC FP Decay Library⁴⁾他を参照するが, これら各々の基本データの特徴と現状をそれぞれま とめたものを Table 2 に示した。各項目ごとの説明を以下に述べる。

a) 中性子反応断面積

中性子輸送計算及びインベントリ評価に必要な核種についての(n, X)反応断面積である。 核種数は膨大なものとなるが、特にデコミッショニングに関係した反応⁵⁾をTable 2 に示した。 これらの核種は構造体及び遮蔽コンクリート中の不純物あるいはその崩壊系列に存在するもので あり、測定値が不足しているのが現状である。

Japan Atomic Energy Research Institute

b) 中性子散乱マトリクス

中性子輸送解析に必要な核種についての group to group transfer matrix であり、 核燃料施設等の解析には、現在のデータでほぼ満足出来ると考えられる。しかし核融合関係の材 料については、特に 5 MeV 以上の中性子エネルギーでの非弾性散乱マトリスクの再評価が必要 である。

c)崩壊データ

インベントリ評価及び燃焼計算に必要なデータであり,発熱量,放射線源の評価に用いられる。 短寿命核種の半減期等についてはシグマ委員会崩壞熱評価ワーキンググループの活動成果である JNDC FP Decay Library が貴重な存在である。しかし, Z = 96 以上の核種データ,特 に自発核分裂の $\overline{\mu}$ 値など不足している事情がある。

d) Yield データ

主として核分裂によるFPの収率データであるが,RiderーMeek 1977⁶,Rider 1981⁷⁾ 等のデータが存在する。評価済核データライブラリENDF/BーIV,Vではアクチニド核種にお けるデータが不足しており,JENDLー3では,ぜひ収率データの充実が望まれる所である。

e) 放出粒子エネルギースペクトル

自発核分裂及び (α , n) 反応によって発生する中性子源のエネルギースペクトルであるが, 自発核分裂について見ると, 評価済核データライブラリ ENDF/B-IV, Vには全般的に不備で ある。また induced fission についても Th, Pa, Np等についてのデータが不足している。 (α , n) 反応については最近,中性子発生数についての測定・評価⁸⁾が行われつつあるが,そ のエネルギースペクトルまで言及するものは少ない。(α , n) 反応は中性子源として重要であ るため, 微分断面積の測定及び計算コードの開発が望まれる。

f) 二次ガンマ線データ

遮蔽解析に必要なデータであるが、ENDF/B−IV では全般的に不備であり、信頼性が低いの が現状である。

この分野ではシグマ委員会のガンマ線生成核データ評価ワーキンググループの活動に期待する 所が大きく、JENDL-3 での充実が早く望まれる。

以上のように、核燃料施設等の核的安全評価には多岐に渡るデータを収集格納し、かつ評価す る事が必要である。現状の調査では、不足している情報も多く、測定に携わっている研究者の協 力かぜひとも必要であるのは言うまでもないが、測定データを評価し、利用者に使える型式に整 理する評価者の存在も重要となる。核データ利用者は漫然と評価済核データの作成を待つのでは なく、target accuracyを明確にして積極的に測定・評価を促す努力を行う必要があると考 える。また、核データ評価に当っては、preliminaryな評価値を積極的に積分実験の解析に使 用し、その結果をfeed-back する事により、より詳細な評価を行う必要があると考えられる。 核融合分野でのDDX測定・評価はその良い例であり、今後これらの積分実験のベンチマーク解 析結果及び誤差解析を核データ評価者に迅速に伝達可能な体制の充実が望まれる所である。 参考文献

- 1) Drake, M.K. (Ed.): BNL-NCS-50496 (ENDF102), (1975).
- Igarasi, S., Nakagawa, T., Kikuchi, Y., Asami, T., Narita, T.: JAERI-1261 (1979).
- Ewbank, W.B.: "Evaluated Nuclear Structure Data File (ENSDF) for Basic and Applied Research", paper presented at the 5th International CODATA Conference, Boulder, Colo., June 1976 (1976).
- 4) Yamamoto, T., Akiyama, M., Matumoto, Z., Nakasima, R.: "JNDC FP DECAY DATA FILE", JAERI-M 9357, (1981).
- 5) Matsunobu, H.: private communication.
- 6) Rider, B.F., Meek, M.E.: "Compilation of Fission Product Yields Vallecitos Nuclear Center": NEDO-12154-2(D) Class 1, (1977).
- 7) Rider, B.F.: "Compilation of Fission Product Yields Vallecitos Nuclear Center": NEDO-12154-3(C), ENDF322, Class 1, (1981).
- Nakasima, R.: "Neutron Yields from Bombardment of α-Particles", JAERI-M 82-117, (1982).

ライブラリ名	格納情報・核種	核データの現状・要望
中性子反応	(n, X)反応断面稅	JENDL-2 高エネルギー領域での非弾性散乱の再評価
断面税	臨界・遮蔽・インベントリ・デコ ベッショーング	K, Ca, Ni, Ag, Eu (n, 1) Ti (n, α)
	解析に必要な核種	Ca, Ni, Zn, Cd, Eu (n, 2n)
		Sc, Cu, Mo, Cd (n, p)
中性子散乱	group to group transfer matrix	JENDL-2 高エネルギー領域での非弾性散乱マトリスク
マトリクス	臨界・遮蔽解析に必要な核稙	の再評価
崩壊データ	半减期,崩壊形式,放出粒子個数,	短寿命核種は JNDC FP decay chain を採用
	放出粒子エネルギー,他	2 = 96を超える核種のデータ
-	インベントリ評価・燃焼計算に必要な核税	Spontaneous fission decay 萨值
Yield F - 3	自発核分裂及び induced fission による	Rider-Meek 1977, Rider 1981 のデータがある。
_	収容データ	ENDF/B は核種数が不足している。
	インベントリ。熟焼計算に必要な核種	('Th, Pa, Am, Cm, Cf)
放出粒子	自発核分裂及び(α, n)反応による	ENDF/B 自発核分裂によるエネルギースペクトルが不備
エネルギースペク	中性子エネルギースペクトル	induced fission についても Th, Pa, Np
71 4		が不足
	遮蔽解析において線源となる核種	(α,n)反応断面積の測定,評価が必要
二次ガンマ線	Yield, Spectrum	ENDF/B 全般的に再評価が必要。
ž - 4		格納データの信頼性が低い。
	進蔵解析に必要な核種	

Table 2 核的安全総合評価に用いる基本データの現状

- 223 -

Fig. 1 核的安全評価総合システム データ群及び解析モジュール

-

.

(8) 炉設計以外で使用される核データの要求 銜 村田 Nuclear Data Needs for Other than Reactor Calculation Tohru MURATA 原子炉及び核融合炉の炉物理設計以外で使用される核データに対する要求を調査し、主なもの を核データの種類ごとにその概要を以下にまとめた。調査した資料は、主としてWRENDA81/ 82 であり、この他に核燃料サイクル核データワーキンググループ報告(JAERI-M 9993),特 殊目的核データ ad-hoc 小委員会資料なども参考とした。 (α, n) 反応 利用目的:核燃料計量、使用済燃料遮蔽、廃棄物対策 核種:L1, Be, B, C, O, F, Mg, Aℓ, Ca 要求量:断面積/Thick Target Yields (精度 5, 20 %), 中性子スペクトル; $E_{\alpha} \leq 10 \text{ MeV}$ Priority : 2 コメント: Thick Target Yields の最近の測定が Bair⁽¹⁾, West⁽²⁾により行なわれて いる。¹⁸Oの断面積とUO。中のThick Target Yields の現状をFig.1, Fig.2に示 す。実験値間、評価値間にかなりの差が認められる。 (n, r)反応 利用目的:燃焼度測定解析、ドシメトリ 核種: 58Co, 95Zr, 106Ru, 133Cs, 134Cs, 140Ba, 153Eu, 154Eu, 238Np, 243Am 要求量:断面積(精度3~20%),共鳴積分; E_n=熱~共鳴領域, 10 MeV以下 Priority: 1 (¹³⁴Cs, ^{153,154}En, ²⁴³Am), 2, 3 (n, α)反応 利用目的:医療(放射線治療) 核種: 12C. 16O 要求量:α生成断面積(精度 10 %), αスペクトル; En ≤ 50 MeV Priority : 1 (${}^{12}C(n, n', 3\alpha)$), 2 コメント: 12 Cの(n, α)及び(n, n'3 α)断面積の実験値及び評価値の例⁵⁾を Fig.3, Fig. 4 に示す。 (n, 2n)反応

利用目的:再処理後Uの利用,²³⁸Pu利用(²⁰⁸Tℓ量評価) 核種:²³⁷Np 要求量:断面積(精度 10%); E_n = ²³⁵U 核分裂中性子 Priority : 1 コメント:データの現状については文献(6)参照。

* 日本原子力事業(株) Nippon Atomic Industry Group Co.

(n,f)反応 利用目的:核燃料計量、燃焼度測定 核種: ²⁵⁵U. ²³⁹Pu 要求量:即発ガンマ線強度; E r = 5 ~ 15 MeV (△ E r = 10 keV, 精度 2 %) , 遅発ガンマ 線強度; $E_r = 0.25 \sim 5 \text{ MeV}$ (T=1ms ~ 12 hr., $\triangle E_r = 2.5 \text{ keV}$, 精度 15 %), FP 収率 (²³⁵U に対しては⁹⁵Zr, ¹⁰⁶Ru, ²³⁹Pu に対しては⁹⁵Zr, ¹⁰⁶Ru, ¹³³Cs, ¹³⁴Cs, ¹⁴⁰Ba, ¹⁴⁴Ce); En = 熱~14 MeV Priority:1(¹³³Cs, ¹³⁴Csの収率), 2, 3 (7.f)反応 利用目的:核燃料計量 核種:²³⁸Pu,²⁴¹Pu,²⁴¹Am 要求量:断面積(精度 10 %),中性子発生量(精度 10 %),FP 収率(精度 10 %);E r ≤ 10 MeV Priority : 2 その他の核データ 利用目的:核燃料計量、燃焼度測定、破損燃料検出 要求量: 遅発中性子崩壞曲線; Be(n,p), ²³⁵ U, ²³⁸ U(n,f), ²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Pu (n,f), ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu(n,f)反応にともなうもの。(精度5%, Priority 2) FP 崩壊データ; ⁸⁷ Br, ⁸⁸ Br, ⁹⁰ Kr, ¹⁰³ Ru, ¹³⁵ I, ¹³⁷ I, ¹³⁸ I, ¹³⁹ I, ¹³⁹ Xe, ¹⁴⁰ La, ¹⁴⁴Ce, ¹⁵⁵Euの主要ガンマ線強度(精度1%, 10%, Priority 2,3) 重核崩壊デ-タ; ²³⁸ Pu, ²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Pu のガンマ線強度(精度 1%, Priority 1), ²³⁸ Pu, ²⁴⁰ Pu, ²⁴² Pu の自発核分裂半減期(精度1%, Priority 2), ²³⁸ Pu, ²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Pu, ²⁴² Pu, ²⁴¹ Am の崩壊熱(精度 0.3~1.5%) Priority 1, 2)

参考文献

Bair, J.K., Gomez del Campo, J.: Nucl. Sci. and Eng. <u>71</u> 18 ('79)
 West, D., Sherwood, A.C.: Priv. Comm. to Prof. Nakasima ('82)
 村田徹, 田村俊幸:日本原子力学会誌 24〔1〕, 2〔'82〕
 R. Nakasima: JAERI-M 82-117 ('82)
 Haouat, G. et al.: Nucl. Sci. and Eng. <u>65</u> 331 ('78)
 Igarasi, S.: JAERI-M 9999 p.2 ('82)

~ 227 ~

Fig. 3¹²C(n, α)⁵Be反応断面積の実験値と評価値⁵⁾

Fig. 4 ¹²C (n, n'3 α) 反応断面積の実験値と評価値⁵⁾

(9) パネル討論――パネリストと一般出席者の間の討論―― Discussion between Panelists and Participants

原 田 吉之助 (原研)

前日の話の中で,原研タンデムにおける中性子実験についてのコメントをいたべいたが,事実 と相違する部分もあると思われるので,誤解を解くために一言述べたい。

先ず原研のタンデムは中性子核データ測定のための専用の加速器として作られたものではなく, 多目的利用というキャッチフレーズで予算を獲得したものである。現在次の4つの主要テーマに ついて研究することになっている。

材料物性の研究。

2) 超ウラン元素・核化学の研究、

3) 重・軽イオンなど荷電粒子による核反応の研究,

4) 中性子核データの研究。

われわれは4つの主要テーマについて実験準備を進めて来たが、中性子核データの方が他に比 して幾分遅れ気味だったのは事実である。その大きな理由は、原研内でFNSが同様な目的の装 置を要求していて、これらが同時に予算を獲得することが難しかつたという事情による。決して われわれの間で冷飯を食わせていたということではない。

次にデータが出ていないということについては残念であるけれども、加速器の完成が遅れ、検 収が8月10日、それからオペレーターの運転訓練、実験開始が9月で、未だ3ケ月しか経って いない。完成が遅れた理由の一つは、中性子核データ研究のために、タンデムのターミナルにパ ルス化イオン源を設置する必要があったためで、これにテストを含めて約1年かゝっている。従 ってむしろ中性子核データの研究を遂行するという方針を堅持するために完成が若干遅れたとい ってもよい。

今後の実験については、主として核融合のために、8 MeV 以上の中性子核 データをやろうと 計画している。とりあえずは軽い核、たとえばC などの弾性、非弾性散乱をやり、将来は高エネ ルギー中性子による(n、2n)、(n、r) などをやる予定である。

最後に大学との協同研究について、あるが,現在タンデムの使用希望は大変に多く,所内だけ でも使用可能なマシン・タイムの2倍はある。原子炉と違って共同利用施設ではないので,所内 と大学の協力研究という形で外部と一緒に仕事をすることになっている。原研側のマン・パワー は十分でないので,今後もよろしく協力をお願いしたい。

岩崎 信 (東北大)

研究室の設備について、先の話の補足をしたい。われわれのところは45 MeV のダイナミト ロンをパルス・モードで運転し、中性子のTOF 測定を行っている。カバーできるエネルギー範 囲は数百keV から20 MeV であるが、たゞし7-14 MeV のエネルギー範囲が測れないという問 題がある。今までに二重微分断面積をいくつかのエネルギーで2つのグループが測定している。 それから核分裂断面積、ガンマ線生成断面積、また現在 Th の問題に関してその第1,第2 励起 準位からの内部変換電子線測定や、核分裂に関連して νの測定などが行われている。 川 合 将 義 (NAIG)

得られたデータを処理してはじめて断面積データになる訳であるが,現状で測定の準備を始め てから断面積データの結果を得るまでにどれだけ時間を要するものか,また処理のためのプログ ラムが不足しているのか否かということについて、測定者の方へお答え願いたい。

岩 崎 信 (東北大)

実験の対象によって事情は大分異ると思うが、われわれの測定している後分断面積を例にとる と、弾性散乱の前方は yield が大きくて測り易いが、後方とか非弾性散乱の 特に エネルギーの 高い部分は非常に yield が小さい。この辺のデータを十分にとるためには、1回の実験で太凡4 日からその倍位の時間が必要である。その解析のための標準的な処理プログラムは大体揃ってい ると思うが、しかし現在問題になっている Discrepancy などよりも重要な問題がそれ以外の ところに有りそうだと思っている。バックグラウンドについて、たゞスペクトルを眺めているだ けでは駄目で、たとえば実験中に生じた放射性物質からの寄与とか、もっと大袈裟に云えば実験 室全体の問題として検討しなければいけないのではないかと思っている。そういったことがこれ からの課題で、標準的には数ヶ月だが、本当の意味で公表し得るデータを出すには1年から2年 かゝるのではないかと思う。

井 頭 政 之 (東工大)

ガンマ線測定についてはデータ取得に時間がかゝる。先程の説明で100時間は大体1週間の連 続測定で,300時間は土,日も含めた2週間連続測定と考えて貰えば良い。

予備実験によってS/N 比の改善を重ねて本実験に入る訳だが、その予備実験に先立って実験 装置の準備がある。従って本測定によってデータを取り終えるまでに2~3年はか、るのではな いかと思う。データ処理のためにさらに1年間くらいか、るので、1種類の実験を最後までやり 終えるのに3年位か、るだろう。

飯 島 俊 吾 (NAIG)

第1の質問はUあたりの測定を行うのは管理上非常に難しいと聞いているが, 京大炉では²³⁸U やThの測定をしている。それは京大炉だから可能なので, 他の方では難しいというような理由 があるのか。

第2の質問は測定者が1年位の時間をかけてデータを出した時に、それを綺麗なグラフとして 公表し、数値的なデータの方が解らないという場合が多い。数値データの出版について何か考え があるか。また良い方法はないものだろうか。

小林捷平(京大炉)

Uや Th などの使用許可を取っているから出来るのだが、これは京大炉だから出来るといった ことではないと思う。他の研究室、研究所でも使用許可を取っている所は可能で、たゞ、目的と かテーマとか他の条件によるのであろう。

神田 幸 則(九大)

国内で他に測定可能なところを聞きたい。

水本元治(原研)

われわれのところでも²³⁸U,²³²Th の測定はしたことがある。たゞ前の説明でも問題になったが捕獲断面積のくいちがいがあるが、これを5%以上の精度で測定出来るというメドが立たな

い。これが現在Uや Th を測定しようということになりにくい主な理由である。

数値データの問題については、われわれのところは捕獲断面積の数値データも必ず出すことに している。たい国際会議などのように紙数の制限の有る場合は別である。

岩崎 信(東北大)

われわれではないが、他のグループがUなどいくつかの核種をfission chamberの形で使用している。従って使用可能である。

井 頭 政 之 (東工大)

ペレトロン実験室の場合は、一切使用許可を取ってない。数値データについては、われわれも 相互比較のさいに有った方が便利であると思う。数値データは自信が無いと出せないが、重要で あると思っている。

西村和明(原研)

昔の話であるが、²³⁵ Uの全断面積測定の予定を立て、許可申請を取り、局からの予算も獲得 した。ところが商事会社の手続きのミスで実験が出来なかった。恐らくその原因は、当時のアメ リカでの手続きの面倒さかあるいは商事会社側が商売にならぬと判断したためであろう。この話 が誤解を与えたかも知れぬか、とに角実験が出来なかった事実が有ったことを述べて置きたい。

神田幸則(九大)

数値データについてはパネリストだけの問題では無いと思うが, 飯島氏の質問は公表のさいに 数値データも載せてくれということか。

飯 島 俊 吾(NAIG)

データの数にもよると思うが、原子力学会誌やNSEは数値が多い方だがそれでも多過ぎると 切られることがある。この時には数値が埋れてしまって目につきにくいことになる。そういった 数値の出版の問題だが、学会誌辺りが唯一の方法なのか、あるいは核データセンター辺りの協力 でカバー出来ないものであろうか。われわれは数値データの形としてあることが望ましいと思っ ている。

神田 幸 則(九大)

学会誌に Techical data という分類もあるらしいが、実際には数値データだけが掲載され たことは無いと思う。従って実験結果の数値データだけを出版するという方法は無いだろう。利 用者側としては数値データを非常に欲しいということは有ろうが、それも限度の問題もある。何 か良いアイデアかコメントは?

長谷川 明(原研)

数値データについて、NEAデータ・バンクでEXFORに入れるという形で出版することが可 能である。特にNSEとか公刊されている出版物の場合は、必ず著者に対して後から数値データ を公開してくれという形で request が行っていると思う。従って著者がそれに対して数値デー タを送付すれば、それは直ちに EXFOR データとして登録され、さらに CINDA として登録さ れるから、全世界の利用者が取得できる。これは生データそのまゝでも良いので、そういう形で 使用されたら良いと思う。

神田 幸 則(九大)

それでは測定者がそれを怠らないでやって貰えば良いということで、この問題に関しては一区

切りつけたい。

村田 徹(NAIG)

 (α, n) 反応は比較的重要で、いろいろなところで要求が出されている。実験の方で α を加速出来る加速器を持たれているところはあるか。東工大の加速器はエネルギーが3 MeV で、この エネルギー範囲では一寸データになりにくいが、double charge でやって6 MeV 位まで加速 出来れば良いデータが取れるのではないだろうか。

(α, n) については、断面積測定とか thick target yieldについてはかなり実験は有る が、値がかなりばらついている。従ってその精度の向上に対する要求はある。それから中性子ス ペクトルについても現在われわれは大雑把な計算をしているが、測定がなされ、ばかなり有用な のではないだろうか。

井 頭 政 之 (東工大)

double charge にすればという話が出たが、それ程簡単に実現出来るものではなく、また yieldが非常に小さくなる。矢張り6~7 MeV まで加速出来る V.d.G. タイプのものを使用せ ねば無理であろう。やってやれないことは無いと云っても、ペレトロンで陽子ビームが 100 #A 瞬間的には 200 #A になるものが、double charge ではナノA位しかとれず、従ってデータ は非常に乏しいものになるだろう。

イオン顔を替えればもっと出るだろうが、それにしてもそんなに簡単に出来るものではない。 北 沢 日出男(東工大)

現在のDuoplasmatronではdouble chargeでやるのは非常に難しいと思う。イオン源 を替えれば可能性はある。今云われたのは非常に魅力の有る実験ではあるが、現状では無理であ る。

村田 徹(NAIG)

リニアックにおいては thick target をたゝいているのであろうが,その時の中性子 yield を比較的簡単に測定出来ないものか。核融合の場合に,綺麗なトカマクのプラズマが静止してい る間は問題ないが,それがランナウエイ・モードになるとかなり励起の高い電子が走り廻り,そ れが諸所の limitter などをたゝいて中性子がそこから射出される。これも遮蔽の問題上重要 であると考えられている。ランナウエイ・モードでは数十MeV の電子まで加速されることが有 り得るが,その thick target に対する実験データが有れば評価に役立つと思う。その辺の測 定の可能性はどうか。

水 本 元 治 (原研)

出て行く方の電子のエネルギーが 10 ~ 20 MeV になるとすると,原理的にやれないことでは ないと思うが,予定を立て,装置の準備を始めたりで多分数年がかりの計画になるだろう。たゞ 中性子のエネルギーからMeV 以上になると,たとえばわれわれのリニアックでは,ガンマ・フ ラッシュが出たり,リニアック自身が RF のノイズ顔であることから,TOF 測定は難しいかも 知れない。

小林捷平(京大炉)

放射化法で良ければ、箔をたゝいて測定出来るだろう。話に出ているのはphotoneutronの ことだと思うが、スペクトルについて TOFで測るより方法は無いだろう。電子の入った方向に 対する角度分布まで考えなければならないとすると非常に難しい。

加藤恭羲(FBEC)

高速炉において重要な²³⁸Uの分離領域を最近ORNLで4 keV から6 keV まで拡げようと試み ているが、将来分離領域が広がることは可能か。

水本元治(原研)

分離は可能だが、良い精度のデータをだすことはかなり難しい。

菊池康之(原研)

この問題に関して Antwerp 会議で review があった。ORNL では非分離共鳴による uncertaintyを減らすため 10 keVまで分離領域を拡げる計画であり、それは充分到達可能な目 標であるとのことだった。

山室信弘(東工大)

(1) 新しい仕事をしてデータをだせるようになるには、やはり3年位はかかる。しかし、3年 後には同種の仕事なら幾つかできるようになるので、3年に1つしか仕事ができないという訳で はない。

(2) 同一の実験でも補正の仕方により実験データが2つ以上でることがあるが、新しいものの 方がよく考えて補正がされているのでそちらを使ってほしい。

中島 豊(原研)

先程の²³⁸Uの分離領域の件であるが、4 keV 以上ではドップラー幅が大きくなるので全部の 共鳴を分離することはできない。大きい共鳴を取り入れて、それにバックグラウンドをたすのが 今のところ一番妥当な方法だと思われる。

北沢日出男(東工大)

核発熱計算のためにr線のスペクトルがどれ位の精度で求まっていれば充分か。

関 泰(原研)

核融合の場合,デザインがまだ決まっていないので核種を特定できない。r線についてはFNS で測定した例があり,鉄は計算値との一致が良くなかった。一般的に核発熱は内壁のところで30 %以内の精度でおさえたい。

原田吉之助(原研)

priority 1 でrequest した実験データの内、何%位実際に測られるものか。

飯 島 俊 吾 (NAIG)

FP の場合は,たいへんよく測られている。測られないものは,非常に測定の困難な希ガス等 である。

神田幸則(九大)

WRENDAを編集している五十嵐さんからコメントがあるのでは。

五十嵐 信 一 (原研)

priority 1 で request しているもので数年前から残っているものがたくさんある。それら は精度の要求が厳しいものである。データを要求する側も、可能な要求かどうかを考えてrequest してほしい。

大竹 厳 (富士電機)

 $\{ e_{i_1} \}$

ب مجز سام آم

非分離共鳴領域をとこまで分離領域にしてほしいというはっきりした意図は利用者例にないと 思う。利用者もよく検討してものを言うべきである。分解能に関しても、果たして高分解能の測 定が利用者にとって必要かどうか疑問である。

川 合 将 羲 (NAIG)

良いデータでもエネルギー的にぬけていると無駄になることがある。測定者がエネルギーをき ちっとカバーした良いデータをだせば、そのまま評価に採用できる。

神田 幸則(九大)

以上の議論からどれだけの測定ができ又どういうデータがほしいかを知ることにより、表題の 「実験データの充実にむけて」今後とも努力していきたい。 9. 総 括(2)

Summary Talk(2) Shungo IIJIMA*

飯島俊吾*

この研究会の総括から稍はづれるが,過去20年間の歩みと,現在及び今後の問題と展望の感想も含めて述べて見たい。

20年間の歩みとして、一つは、国内の核データ評価と測定活動が発展し、定着して来たこと が挙げられる。高速炉、核融合炉の設計や研究への適用丈でなく、軽水炉の倒からも設計、解析 の基盤としての核データ基礎の意義が理解されて来たように思える。後者の、この動機となった インベントの一つは、崩壊熱基準の暫定変更に関して、従来、日本でこのような基礎問題に対し て何も研究が行なわれていなかったことへの深刻な反省と憂慮であり、もう一つは、動力炉の国 産化に伴なって、設計者の責任がより重くなったことであろう。

いづれにせよ,種々の応用分野にまたがって,核データは,研究者,設計者,データ利用者を 結びつける,にかわ的な役割をもつようになって来たことが感じられる。

現在および今後の問題が第2日に報告,討議されたが,高速炉については,中川氏のNEACRP 燃焼ベンチマーク問題での,燃焼反応度予測の大巾なばらつきが印象深い。又,数日前,常陽 MK-2炉心が臨界となったが,最善をつくした設計予測値は,MK-1炉心の時と同じく,略 1%△kの過大評価となっていた。これらのずれは,今後,大型炉の設計に対する大きな警告で ある。特に,燃焼反応度については,池上氏の報告された常陽燃料照射後試験の活用も含めて, 理論的,実験的な諸研究が必要な分野であろう。なお,PNC炉心設計専門委員会で,吉田弘幸 氏の小委員会がこれらの問題を深く討議することになっていることを付加えておきたい。

核融合については, 阪大, 原研から, 新しい多量のDDX データ, スペクトル・データが報告 された。理論がこれに追いついて行かない状況であり, 今後, 理論の充実, データのベンチマー ク化と出版が要望される。

JENDL-3および Joint Evaluated Data File (JEF)計画について、夫々、浅見、 菊池氏から総括的な報告が行なわれた。浅見氏の話しの中でも述べられたが、JENDL-3 とそ の後について、出版物の強化を是非望みたい。又、断面積の adjustment については賛否種々 あろうが、日本がいつ迄もこの経験なしで良いとは思えない。又、瑞慶覧氏から、ガンマ線生成 断面積に対する要求精度は?という質問が行なわれたが、adjustment のプロセスを通じて、 こういった精度評価が行われる訳であり、その意味でも adjustment の副産物は大きいと考え られる。

核データ将来計画パネル討論では、国内の測定,データ利用の代表的な諸部門から現状,計画, 要望が述べられ,今更のように,核データ活動の発展を感じさせられた。司会の神田氏の大奮闘 にもかゝわらず,時間不足のため充分な討議が出来なかったのが惜まれるが,活動の広さを感じ させた点,今後につながるものを大いに期待出来よう。

* 日本原子力事業(株), Nippon Atomic Industry Group Co.

,

終りに、上に述べたパネリストの多くが、若手(古株もちらほらいるが)であったことは大変 心強く感じた。古株達は種々の悪条件にもめげず、シグマ委員会を発展させ、測定活動を盛んに する基盤を作って来だ訳で、こういった発言力、政治力を、これらの若手に伝えて行くのも、古 株の重要な任務と思うのである。

変な総括であるが,シグマ 20 年の今後の感想を述べさせて頂いた。