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-~ Preface

One day, Mr. Re rarcher visited Miss Eliese Janudac and had a conversation with her
about recent research wrks in science. #

Mr. Researcher; “Almast all researchers today are using the electronic computer.  This is,
seems to me, quite nonsense.”

Eliese; “Why ?> . -

Mr. Researcher; “Decuuse, the electronic computer does work very fast in numerical com-
putation, but it's incomptent and it’s also unkind. So then every researcher should spend much
time and much money o computing work, not to his own research work.”

Eliese, with a puzzled look; “I don’t understand what youre going 10 say! What’s the
reason for incompetence of electronic computer 2

“Well,” Mr. Researcher explained, “Suppose Mr. A has written a source program with
several mistakes which are quite trivial, for example, a comma was missed or a period was
used instead of a comma, so on. The electronic computer points out the program error for
the first mistake and stops to work, so that Mr. A can correct it but not the others. In other
words, the computer points out every program error in every run of compiling process. Similar
problems happen in also writing the input data. So I would say that the only a few percent
of all machine running time is actually used for real computing work.”

Eliese; “Oh my goodness! Your saying is based on your own way! You are not saying
that the researcher’s mistake should be corrected by himself, but that the electronic computer
should correct the researcher’s error. 1 don’t think it’s fair I

Mr. Researcher; “You're probably right! But »

Eliese; “Wait! I would emphasize that every people should read carefully the computer
manual or the program manual in order to avoid the mistakes, Now, here is 2 manual for the
Program ELIESE-1. [ would like to recommend it to all who are going to use ELIESE-L.”
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l. Introduction

This is the manual of IBM-709%0 code named as ELIESE-1, which can be used for calcu-
lations of any kinds of cross sections for elastic and inelastic scattering of neutrons, protons and
alpha particles by means of optical model and of Hauser-Frsusaci’s method in compound nuclear
process. The Program ELIESE-1 has been prepared by a working group on fast neutron cross
sections, as one of the 1963 projects of Japanese Nuclear Data Committee which is an ad-hoc
committee of the Atomic Energy Society of Japan. The members of the working group, con-
tributors to ELIESE-1, are composed of people from several laboratories, universities and com-
panies in Japan, so that it should be emplasized that the completion of ELIESE-1 is due to an
excellent collaboratior of such people.

Although the similar programs are available by request at the present time, ELIESE-1 has
some advantages in working with the cross section evaluation. These advantages may be seen in
the detailed description of ELIESE~1 on succeeding sections. It, however, does not imply that
the Program ELIESE-1 is the best one, but that many improvements have been included taking
account of user’s convenience. The policy in making the code was that every user could use
it with more results but with less pains. This is reflected in ELIESE~1 as the {act, for example,
that it is quite easy to prepare the input data by means of relative address. In order to find the
unexpected errors if any in ELIESE-1, the calculated results were compared carefully with those
by other programs, ABACUS-2, etc., for typical examples. The comparison of the resuits by
ELIESE-1 with those by other codes will be given in a later section whete the running time
and the stability against mesh size are also illustrated. It is expected, however, that further im-
provements might be required in the next step of code development. Some of the medifications
are already under planning, and more refined program will be available in near future as Pro-
gram ELIESE-2. . '

As mentioned 'in the first paragraph, the Program ELIESE-1 is used in calculating the cross
sections of elastic scattering and of inelastic scattering leaving a few of the low-lying excited
states because of the characteristics of optical model and Hauszr-Fesusaci’s methed.  Originally,
however, it has been required to calculate the cross sections of inelastic scattering exciting also
the higher excited levels. In these cases, the effects of competing precesses play an important
role.  With the Program ELIESE-1, it is possible to take account of the competition batween
nucleon emitting processes. For example, (n, p) reaction can be included as the only competing
process in calculating the cross sections of (i, 2/). As the competing processes in above example,
the inclusion of {2, 7) and (n, @) reactions seems to be one of the important <ubjects in prepar-
ing the Program ELIESE-2.

In sections 2 and 3 of this manual, the mathematical descriptions of optical medel and of
Hauser-Fes:sacH’s methed are given. It is not our objective to mention the physical view point
but to explain the formulas used in ELIESE-1. The metheds of numerical evaluation of formulas
described in sections 2 and 3 arz explained in section 4. Following sections, 5 to S, are devoted
to describing the Program ELIESE-1 itself. Brief explanations about sub-routines and symbols
used in ELIESE-1 are given in sections 5 and 7, respectively. Section 6 is used in explaining
the method of preparing the input data for initial case and for succeeding cases. The list of tha
Program ELIESE-1 appears in section 8. Typical examples of calculated results using ELIESE-1

are sootwn B oseation O with o few renarks,
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~
2. Mathematical Description of Shope

Elastic Scattering Process

"

This section is devri:d to describing the analysis of the elastic scattering process in terms of
the optical potential modul!?, so we are not concerned with the physical problems but with the
mathematical description of the optical model. The optical potential is a very useful tool not
only in analysing the scattering phenomena but in understanding the nuclear reactions by means
of distorted wave appro:imation or of compound nucleus model.

In ELIESE-1, the calculations are restricted to only neutrons, protons and alpha particles
since the masses of these particles are already set in the Program. Cross sections, energies and
lengths are expressed in units of milli-barns, MeV and fermis, respectively.

2. 1 Schroedinger equations

Basic radial Schroedinger equations of this program, in center of mass system, are written as

{%-L(‘:—lhﬁ—:-&%c(r)-:-z&‘sso(r) -—‘l‘c,.;(r)]@“")(r) =0, @n
(£~ 1D s Bl = (4 DB~ Beaa D eI =0, @2
Led 2 rt

where Be(r), Voo(r) and Ve, (r) are the central, spin-orbit and Coulomb potentials, respectively.
The wave functions ¢*’(r) and ¢1(r) are the radial wave functions corresponding to spin up
and spin down. For alpha particles, spin-orbit force is zero, then eq. (2. 2) is identical to eq- (2. 1).
Wave number £ in egs. {2.1) and (2.2} is defined by .

k= (2uElR2)"2, (2.3)

where # and E are reduced mass and relative energy between an incideat particle and a target
nucleus, respectively, and are given as follows;

__ mM ‘ :

Y ] 24
M o
- m-:-.f‘\IEo' . 29

where m and A are masses of incident particle and target nucleus and E, is the energy in
laboratory system.

2. 2 Potentiof #orm and porameters

2.2.1 Centrol nuclear potential
In the optical model, we can write ‘the cgntral nuclear potential as
Be(r) =Ber(r) +iBVer(r), ’ (2.6)
where Begr(r) is the real part and Be;(r) is the imaginary part, respectively.
i) Real part Ber(r)
We assume Woods-Saxon form for Vez(r) and represent as

mc,cr)=3ﬂ’-:-vcmn(r>. - 2.7
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where Fex(7) is the shape function written as
Jer(r) = 1 s
1-+exp{(r—Ro)/ao}
-~
and V¢ is the well depth parariéter expressed by
VC=V.C,Q+VC,1 (E- I.ZZZ'eZIRc) +(V|yu:0 +V.,=,1’E) (AT_Z)IA (2‘ 9)
This well depth parameter V¢ is asssumed to be linear form in the energy including the sym-
metric term for charged particles. The parameter Ry in eq. (2. 8) is the nuclear radius at which
potential' depth becomes half valve of the maximum. With the conventional nuclear radius para-
meter 73 and mass number A, we have
A Ro=r AlA, (2.109
The parameter ap in eq. (2.8) is the difiuseness parameter of nuclear surface.
i) Imaginary part Ve, ()
Imaginary part of the central nuclear potential R;(r) is represented as

(2.8)

Ba(r) =2 (Wi () + Wies)- @11

The first term in parentheses stands for the volume absorption of the incident particle and the
second term for the surface absorption. Shape functions Fei(r) and Fes(r) are respectively
written as

: -1 ;  Uniform (2.12)
Falr) = [ 1 . - o '
T (G—Rola] ‘Woods-Zaxon .12
exp{—((r—Rs)/8)3} ; Gaussian (2.13)
gcs(r) = 4-exp{(r—Rs)/b} . et ’ - . ,
exp (= ROBITE Derivative Woods-Saxon (2.13")
Radial parameter R; is defined in the same way as Ry with parameter ry instead of r,
B=r A8, (2.14)
Parameter Rs is defined by
Rs=Ry+Cs, ‘ (2.147

where Cr is any constant value which determines the position of the center of surface potential.
Well depth parameters 177 and W5 in eq. (2. 11) are assumed to be linear form with respect
to the energy,
Wi=WLo+W 1 E, (2.15)
and
We=We 0= W 1-E. . (2.16)
A remark is necessary with regard to uniform volume absorption potential. In adding this
volume absorption potential to any surface absorption potential, joining point of these two poten-
tials is defined by

re=Rs—0VIn(iWe/l¥y  for Gaussian 2.17)
and -~

ric=Rs+blna for Derivative Woods-Saxon (2.18)
where @ is '

a=Q2Ws—W- 2VWI—Ws- WiH/Wi (2.19)

“Therefore, in the case of uriform volume absorption plus any surface absorption, we must vepre-
sent the imaginary part of the nuclear central potential as
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Ba()=2EWiFal) ; r<ne 2.20)
2%“ng6(7‘)‘ A; r>ric - (2.21)
2.2.2 Spin-orbit potenticl )
i Spin-orbit force 1s written in the Thomas form, -
&
_2¢ ~ VaoitiWs 1 exp{(r—Ru)/ao} 9
- e = e W e (G = R @2
where Cso is defined with =-meson mass
so= (% [m=¢c)> (2.23)
Here ¢ is the light velocity and m- is defined by
mg=%—(m;r:—m:-+m=o). ’ .29
Well depth parameters are the same form as (2.9), (2.15) and (2 16), and are written as
Vso=Vs0,0+ Vo1 E, 2.25)
Wso=Wao,0-- Wso,1 E. (2.26)

2.2.3 Coulomb potential

Coulomb potential in the interior region is defined with the assumption of uniform charge
distribution, and therefore represented as

T g @

_2p 2Z'¢
T
where R¢ is written with parameter r¢ as
Re=rc AW, (2.29)
In the Program ELIESE-1, sign is used for the parameter r¢ in order to discriminate the kind
of the incident particles. .
‘We now integrate the egs. (2.1} and (2.2) numerically, as explained in section 4. They
are comnected smoothly to their asymptotic solutions at the matching point.

; >R, (2.28)

2. 3 Matching radius

In this sub-section, we intend to explain the definition of the marching radius ry. At this
point, we may consider the wave functions to have their symptotic forms, that is, the value of
each potential must be negligible order of magmtude in comparison with incident energy. Thus,
the matching radius 7y is defined as the maximum value of the solutions of the following equa-

tions,

“zl_;‘(l‘ca(m) <104, (2.30)
-~
& L) <104 | @.31)

and the condition r,>R..
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2. 4 Asymptotic form of wave function

Asymtotic expression for wave function consists of the incoming and cutgoing pans.  Well
known expression is -
-~
N 2 H Py — 1 o), (2.32)
where #,%*?(0) is defined with the spherical Neumann and Bessel functions (or Whittaker func-
tions) multiplied by their argument, p=%r. The wave functions %"’{0) and % ?(p) stand
for the outgoing and incoming waves, respectively. R
w3 (p) =Gi(0) =i Fi(p). » (2.33)
In €. T2.32), 7% is called the scautering amplitude and is related with the scattering phase
shift 9,4 as
7 =exp(20£). (2.39)
This amplitude is the most important guantity and can be obtained by joining the interior wave
function to its asymptotic wave function smoothly at oy=Fkru.
The maximum angular momentum /.., is defined by the following condition,
(Gi(p) [Go(0u)3*> 105 (2.35)
In the case of neutron, the condition {2.35) means that the penetrabilities of the partial waves
effective to the process are larger than 1076,
Next, we describe the method of obtaining the irregular solutions of asymptatic wave equa-
tions, Gi(p)’s. They are derived by the recurrence formula®

Y 25 W PO A N
G = reztire| @D gy + o G

"‘}_(’72+l=)"=G¢-1(Pu)}. (2.36)

where 7 is Coulomb parameter defined by
g=£ i‘;‘:ez- . : ' 2.37)

For the neutron, 7 is, of course, zero, and
Go(Ou) =005 P, T (2.38)
Gi(pn) =7’]';'C05 Oy singy. : (2.39)

If an incident particle is proton or algha particle, we must find Go(0) and Gy'(p) at the asymp-
“totic radius pa (see section 4). Asvmptotic radius 0a is defined by®

pa=27 ; for =>4, (2.40)
=27+9 ; for <4, 2.41)
The Coulomb wave equation for s-wave
G, (1-22)
—_—+|1- Go=0 2.42)
d e " (
is integrated from g, to py. Using Go(ry) and Go'(py), we obtain Gi(py) from
— ( ;._1_)@( —~Gy' (i \} 2.43
Gi(owm) V',[,g_‘_l{ 7= 2l C° ) ~Ga' (Pt . (2.43)

Now we havé had Go(py) and Gl(;;_:,). Thus any Gi{py) is obtained by the eq. (2. 36).
Regular wave functions Fy(0y)’s are obtained by means of well known Stzcux and
ABrRAMOWITZ'S downward recurrence method®?. In section 4, we shall explain this method in

detail.



JAERI 109 2. Mathematical Description of Shape Elastic Scattering Process 7

Derivatives of Gi(py) and Fi(£y) may be obtained from the formula

!_i_l_ ((l pj) _p)}‘,fp,)_(([_ )2-!-7‘2)’1"1(,‘1@“)} (2.44)

where Xx(Pu) stands § either Gg(ﬂ\,) QI‘ Fl(p\])

X (o=

2. 5 Scottering amplitude

Scattering amplitude ;=2 i given by the formula 5.,'
f. = —(Jl—iSI) 2, (0y)
j (€3] Pro— 5
". St his) w (o) (2.4%)
where fi¢= i the logarithmic denvative of the inierior wave function defined at r=ry,
de / ]
) - > ~ Cz)
fito=r, [ o] (2.46)
Corresponding quantity for the incoming and outgoing wave functions in the asymptotic regiun is
. du,t=? /
-+ - (z)
Atisi=pu] o ]pM 2.47)

2. 3 Cross sections

We have defined /., hy the formula (2.33). This I... is somewhat larger than the largest
value of the angular momenta which contribute effectively to the crass sections. This latter value
of the angular momentum is indicated by a notation /...c, and defined by the condition

lracc—1
Uc(lnuc)/ lgf,; G <104, (2.45)

where 0ct”? is the partial cross section of the formation of compound nucleus. This cross section
is obtained by using the transmission coefficient

TE(E) =1— [7.7}3, (2.49)
and is written as
acm.—.-}:t,_. {(I+ 1) T+ 1T % 10. : (2.50)

Cross section of the formation of compound nucleus is then
Imasc .
Oc= > o, (2.51)
=0 .

Elastic scattering and total cross sections for neutrons are calculated by the formulas

Oe= —’k‘: S'. {+D =22 1= 3 X 10, (2.52)
and ‘
O0r=0,+0c. (2.53)

Formulas (2.52) and (2.53) cannot be used for the charged particles, because of the Coulomb
scattering.
Differential elastic scattering cross section for neutrons is calculated as follows,

’
d cr,

={|A@) |2+ |B(0)]3} %10, ' (2.54)
where . ’
A() =L "i* {C 1—1)(1-77:‘*’)+1(1—1’:‘ %)} Pi(cost), (2.55)

2k i=o
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and
1 o > 5 s )
B(6) =3z l.;so {08 —735) P Loost). (2.56)

Coefficient of the Legendre expansion of the formula (2. 54) is necessary for the reactor cal-
culations, and is expressed by t}e {ormula
B 1 feme 1,+L L+ 1,; —— —L
“T8ESon= u.—t.x A=ih-i2l j=li—12 @ik 51037
XNe{(Q—1,7) (1—7,7)*) x 10, 2.57)
where Z is the Z-coefficient given by Bratr and BrEpexuarx®, ard is rkpressed in a general form
Zhjrlejz; sL)=(—2)~a** L (2L 1)1 (2L, 1)

L= XAV 5+ )V (L 00| LO) Wily jilsja; sL).  (2.57-1;
The Z-coefficient above does not vanish if the following conditions are satisfied:
Conditions

1. UL+l2+L=even

2. |I-s|Zi<Ll+s I
3. |h-Li<h<h+L .
4. |h—Li<p<h+L

In eq. (2.57-1), W{lijilaj2; sL) is socalled Racah cociﬁc:ent” and is given as

W(abed; ef)=[{a+b—e)l{ate—)(b+e—a)l(c+d—e)l {(c+e—d)!
x ([d+e—)l{atc—f) (a+f—c ) {c+-f=a) (b+d— I (b+f—d)!
x @+ f-){(a+b+re+ ) {e+dte+ N a+e+ 1)1 (b+d+-F+ 1)1} 52
XE(—)‘(a-I—b—’rc+d+1—:)!I‘(a+b—-e—-=)!(c+d—c—:)!{a+c—f—:)!
X(b--d—- —2)2l{e+f—a—d+)e+f—b—ct2)l). (2.57-3)
In eq. (2.57), 7.f*? is expressed by 1/, corresponding to j=I=1/2.
For elasiically scattered prowons, differential cross section is also given by the formula (2, 54),

but A(f) and B(f) are somewhat d‘f{exent from (2.355) and (2.56). The corresponding expres-
sions are

(2.57-2)

A(ﬂ)—fc(ﬁ)——ﬁxe—”‘{(l DA—)HIA-72) Pi(cost),  (2.55)
and

Laxe ' :
BO) =57 Sewnp=1)- P cost), @.59,
Coulomb scattering amplitude fc(f) is given by
—7 ) . AN 4 o
f® =mﬂpi-lﬂln(&n (612)) +24a0). (2. 60}

Phase shift of the Coulomb scattering 0; is given by the rccurrence relation
ot = UL+ip(l=1+in)... .- (1+77)
(=—in)d—1—in).----- (l-—-n])

coide, (2.61)
where

o 7 {Z -1ls YR/AN Y R
dg——v-r-—lnLl TH <+ -L,—tan '(—I)—[tan 17 Stan (-,;—)—,-mn ‘(3-)]

-

-«

7 |y T—48 ,z;‘—IGOq’-Z—IQSD}
12(16-;-112)[T30(16-r)‘ 105Q06+72)° | °

(2.62;

Sometimes we are interested in the Rutherford ratio of the elastically scattered protons. Cross
. section of the Rutherford scattering is
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(&%) = 7o, 2.69)
and then Rutherford ra~’ oI the cross geftion is defined by the formula
dos)  _doe /(dﬂe)
(dQ)R~=.-- - d21\d2/r 2.69)
When aipha partick I, wn incident particle, we can write the scattering amplitude
=g =gy, & (2.65)
and therefore, -
A" . 1:::
M) =fe b +57 B2l Q-2 Pileost), (2.66)
B(8)=0. (2.67)

2. 7 Chi square deviation

Experimental and calculated angular distributions of scattered particles may be compared by
means of the chi square deviation,
o () —a o= (§) }2
2_ ——e e S
Ze —g[ Ao (8) )

where @ is a normalization factor which is a measure of the discrepancy of the absolute values
between experimental and calculated cross sections, and is given by
v[o"(a) st (6)]
—_ L (de=x(6))?
2{e(03/da=x(0))* ’

where ¢°*() and o**(0) are experimental and calculated differential cross sections, and Ao®=<(f)
is the experimental error in differential cross section. In our program, it is also possible to cal-
culate the chi square deviation setting a to unity.

{2.68)

(2.69)

2. 8 Legendrs polynomials

Legendre polynomials are computed by the following relations,

Poloos) =1, @)

Py(cost) =cos, @70

Proi(00s8) = {21+ Deos Pi{e0s6) — LPialeosO)], (2.72)
N i+l . -

B (COSB)-—-:in—a—{cosg'Pl(CO:HJ—‘qu(CO;H)}. (2. 73)

2, 9 Transformation of the cross sections from center of moss
system {CMS) to lchoratory system {LAB)
-

i) Angles :
Let us define the parameter vy as follows,

r\1/2 172 ’
y= (T E) , .74
M \E .
where primed quantities are referred to those of final stage and the energies are in center of mass
system. Relations betwesn Yhe scattering angles in CMS and LAB ar2
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<), — '7+0050c .
cosy= (1-+2ycosbc-+v2)H2’ . (2.75)
or A
. 6 ~ .
“ tunb, = sinU¢ . X 76
tant v -+-cosf; ) (2.76)
i) Cross seatinns
Relation betv:ecen angular distributions in CMS and LAB is g -
- {o) _(1+ 27co<0c—7”)"2(da)
v “ 7
'\.‘ (dQ) | 1+-cosfc] dQ ' (2.77)

2. 10 Recurrence formula for Coulomb phase foctor exp(2i0))

Relation given by the formula (2. 61) can be separated into real and imaginary parts;

20 1er) == Qi’i__’/_ 240y _2_7}_(.{__1)_. 2404 3
e (o) =( (LT Re o = (F2E L gm(e ], @.78)
Sm (o) = [%:%i—’LSm(eml)] LE%E%"—Q&%“ (eﬁw)]. (2.79)

For the s-wave phase shift, g, has been given by the formula (2.62) and then one can obtain
the Coulomb phase shift associated with any /-value, using the above recurrence relations.



JAERI 1036 4

3. Mathematicol Description of Compound Nuclear Process
—Hauser-Feshbach’s Method”— o

Int this‘section, we consider the nuclear process via the compound nucleus formation, in the
case of the incident and outgoing particles being neutrons. Target and residual nuclei are spacified
by their spin I, parity = and excitation energy é(=E—E'). Now we consider the case of the
inelastic scattering of neutrons which will be expressed as (EIz—E'I'x").

3. 1 Angular distribution of the inelastic scattering process

Angular distribution of the inelastically scattered neutrons is calculated by the following for-
mula

d(T(EIu.d_;)E’I’A-') ':%' BL(EIJ-%E' I”')PL(COSe) (3. 1)

where

g L (@ADL
BL(EIIB E'l'z ) 8k3 (2[-}-1)‘;—/] o }:_la’ﬂ(ul)‘-lx}(EIJL)

X o= It (E'I'J L) x 10. 3.2)
jl‘f
Here J and [T are spin and parity of the compound system, and wg(z{) is introduced by taking
account of parity conservation,

onGh=21M+ =Yzl @3
In eq. (3.2), TL/(EIJL) is ~
T/ (EIJL)=TJ(EIz)Z(jlj; —;-L) W(iJjJ; IL), (3.4

where TW(EIz=) is the same quantity given by the formula (2.49), and Z-coefficient and Racah
coefficient are mentioned in egs. (2.-57-1) to (2. 57-3). In the final state, as the reciprocal process,
Tpi'(E’I'z") is calculated with emitted neutron energy and angular momentum. In the denomina-

tor of the formuia (3.2), ¢y is the sum of T/ corresponding to all possible nuclear states;
J+I jEle A
o= < Y wp(zDTIEIR). (3.5)
51- i=lJ-1) 1=17=12i

In general, we should take all possible nuclear reactions into account, such as (n, p), (2, ),
(n, ) and so on, but in our program (n, p) process can only be considered as a competing pro-
cess. DBesides, the contributions from highly excited levels which are in continuum region, are
not included in this program. We intend to improve these points in future.

3. 2 Excitotion function

By integrating the eq (3.1) over the angles, the excitation function is obtained as
S(Elz-»E 'z =4z By(EIz-E'I'%"), . (3.6)
where By(EIn-EI'T') is
. . 1 s T ; L
Bo(EI, —>E I ) Sk" k')I-‘-l\ ]” qu i_i.(l)ﬂ(ul)Tr’(EIA.)

< Nawgn Uy Ty (BT Ry k10, (3.7)
jl

Total inelastic scattering cross section is then
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6o{EIz)= =} o{EIz->E'I'z?). 3.8
Er

3. 3 Compound elastic scattering cross section

Compound elastic scattering cross section is defined by serting (E’I' =) equal to (EIZ).
Then, angular :tritution of the compound elastic process is

——-—gﬂ— 5 B,-_(EI:)P,(cosﬁ) e (3.9)
where -
BL(EID) =—erl® ((2J—1)\"w,, (=D (EITLY (3.10)

8E(21+1) Jﬂ UJH
Integrating this cver the angles, we obtain the oompound elastic scattering cross section,
G (EIZ)=JAzB(EIx), (3.11)
where
10 27
8&*(21--1) 77 Gm‘
In these calculations, we must take care of the relations between angular momenta. The
selection rules on the anguiar momenta are as follows:
1) L=even and 0<L<Min(2luic, 28 nuc)-
1) Jaw=0, if I is half odd integer.
=1/2, if I 1s integer.

iii) J.x.SJSMin(I,.,c—I-I-E-—;-, z',..c+1'+%)

Bo(EIZ)= [V‘wg(-l)Ti(EI‘)]’ (3.12)

) W-I<i<I+I <1,,“c+.;__

IJ—I’ l Sj' SJ+I' Sl'muc+-‘;-

-

W = FISI it Sl

L'~ KV 5 Sl e
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4. Methods of Numerical Calculations

3
\ - 4. 1 Basic constants
Some basic constants set in the program are
m1a=1. 005952 l
my=1.007593
a=4. 003870 { .0
Cso=(1. 429262
172
(.?fg) =0. 2167135, (4.1
2""‘2 2t 0, 0688747, 4.2)
2““ e Cis=0. 0977178, (4.3)
_pzz'e _Z,Z;-:( )“ z v(ﬁ_)m
p=flfe Le =0.15745222' (&) . (4.9

4. 2 Initiai valvues of wave functions

In numerical integration of Schroedinger equations, we must have the values of the wave
functions at first two mesh points as the starting values of the functions. We can obtain these
values by power series expansion of the functions; -

¢;(”(r)=Ea,,,"’ paticy A (4_ 5)
n=0

Relations between expansion coefficients are -

an,z"’=m{(k’~'—‘l‘c(ﬂ ~ 3%y )a-z-:.x"’
TRV M S (4.6)
where ..
Beo =L, 4.7
- B =— (1+1), . (4.8)

exp{(r— Ry)/a,)}
(1+exp{(r—Ro)fa}}?
In eq. (4.6), we assume that the potential values at these mesh points are nearly constant. In
particular, Gaussian and derivative Woods-Saxon potential values at these mesh points are reset
to the constant values in the program. First four values of the expansion coefficients are

=1

%socr)——ﬁceo——cvso—zu )

(4.9)

a, = "(l-*—l) (r)ao,;‘*’, (4.10)
a:,c“’ "gzli»{( RS -%};-:—’-)aa RS A ¢ E I ’} ) (41D
as, = 3(21_*_4){(&" + c(r)— R )m x(”-'-bt("meo(r)az t"’} (4.12)
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'

and .
a.,,c‘)=2?2’_l‘_11__5){(k=+mc(r) - 3}27)@,.& 345 o (s, €
&~ 4 %ao.x(‘)} . (4.13)

where ao,:%*? is a normalization constant and can be set to unity.

-

4. 3 Numerical integration of wave functicns

A\ The method used for numerical integration is the Fox-Goodwin's two points method. Egs.
{2.1) and (2.2) are rewritten as

(€D
dz;;z =QE () g, (4.14)

With Fox-Goodwin’s method, we can write this equation as follows:
eq H

(2_!_%;12@(:)(,1)) 08 ()~ (1_5;12@‘(:)("_ 1))@ (n—1)

0 (n+1)=

1_112;1'2@(*7(”4._ 1)
(4.15)

where k is the step length in this numerical integration, and 2 indicates the mesh point. Deriva-
tive of the function is calculated by Lagrange’s six points method;

_ﬁ_ C2) __1_{_1_ €2 (0t Y 5, C2) {9y — _|__3_ €Iy
L i (n) = {5 (O (1) = 91 (1= 3)) + 7508 (n—2)

—(p,(*’(n+2))+%(¢z(=)(n-}—l)*—¢l(’)(n—1))}- (4.16)

4. 4 External wove function Fy(par)

In section 1I, we have shown the method by which the function Gi(0y) and the ma:‘:imum
angular momentum /I, are defined. Using L. and Gi(py) for I<lny, we will explain the
method® of the calculation of Fi(py) in this section,

Let
W=l +10, . - . (4.17)
Fl(}n)x +1=0: ’ ,(4. 18)
and
F[(n“)=10-36. . (4. lg)

With these startisg values, we can obtain Fi(0u) corresponding to lower [-values by the follow-
ing recurrence formula;

o=l 1D (s 4o PO~ D) e ),
(4. 20)

For I=0, we obtain the normalization factor by means of Wronskian’s rule,

a= 1+ (FoVG— GoF ), (4.21)
and ..

Fi(en) =Fi (o) . : : (4.22)
If Fi(ox) has the correct value, Wronskiar’s rule must be satisfied for I</le.y;

Fi (o)Gilow) = Fi(0u)GY () =1, (4.23)

if it has not, above method is repeated by resétting I as IV 45.
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4.5 Coulomb wave function for s-wave

At p=py, we can calculate Go and G,' by means of the following formulas.?

iy 7=4

In this case, we set £,=2p and e
Go(pa) = 1.2234040167%6{1+0.04959570165 743 — 0.008558686289 72
\ - --0.002.155199181 -10/3—-0.0009108358061 4 +0.00025346841 1551843},
AN (4.24)
and
Go'(ps) == —0.7078817734771/8 {1 - 0.17262603697~/3
--0.0003174603174 -2~ 0.003581214850 7~/3
+0.0003117824680p~4—0.0009073966427 p=14/3} (4.25)
i) p<4
Let p,=9-+27 and ¢0=p,—7+In(20,) 00, then Gy and Go' zre given by
Go{Pa) =s-cosp—12-sing, (4.26)
and )
Go' (0a) =S-cosp— T +sing, _ 4.27)
where
s=3sm (4.28)
t=2tnl (4- 29)
S=32Sn, (4.30)
and
T=XT, (4.31)
They are calculated by means of the relations;
Spe1=Ansn— Batn, (4. 32)
tn1= Antn=-Basn, (4. 33)
Sper=AaSu=BaTum 221, (4.39)
A -
and o
Trsr=AnTr+Bn Sn——‘;i, .. (4.35)
A -
Coefficients A, and B, are respectively given by
_ 2n+) )
A, BEICESATN 7, (4. 36)
and
—P=n(ntl) .
B, Rt Tewn Lyl (4.37)
The initial values are
T so=1, , (4.38)
=0, . (4.39)
So=0, - - (4.40)
To=1—(n/os)- . (4.41)
iii) Numerical integration of Go and Gy’ from ga to oy
Wave equation for Gy is rewritten as
26 (27 1\a - ro)- '
a0 —( o )Gn—-—f(ﬂ) G, . (4.42)

This equation is integrated- from s to £ by means of Fox-Goodwin’s methed. Therefore, we
must find the initial values at-two mesh points. In our program, these initial values are calcu-
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lated by means of Picards five poirts method ;
Go(1)=Gu(0) ~AGo' () -.Lﬁ}ﬁ {367 £(0;Go(0) +340(13Ga(1)
T —282f(26u(2) H1I6£(3Go(3) —2L (4G (A}, (4.43)
Gu(2)=Go(0;—2hcGa' (034 4140 ke {848 £(0)Ga(0) +2204 f(1;Ga{ 1)
—480£(2)Go(2) + 256 (3)Go(3) —BF (NG}, (243

\ - - GoRs=Go(0;—3hGo" () 1:40k&{lSZBf(O}Gn(O)-l~4212f(1)Ga'\1}

~ 1-486 f(25Ga(2) +510£(33Go(3) —81 f(4,Ga(A1}.  {4.45:
Go(4) =Go{0) — 4A:Go' (0) +ﬁ4——()—hc={l792  F10;Ga{0)--6144 f(1.Go (1)
41536 £ (2)Ge (232045 £ (3, Go(3) +-0}. (1.46)
These are simple algebraic eguations and easily solved. Arguments of Gy/n} and f{ni mean
the n™ mesh point and k. Is step length of this numerical method.  Go(3) and Gp{4) are used
as initial values of Fox-Goodwin’s method. Derivative at =gy is given by means of the same
method as the formula (4. 16).
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’~

3. Program Description

-
.

" 5.1 Mochine specifications ¥

The Programi ELIESE-1 hes been wrinen for an IBM 7000 FORTRAM-II with a 32,768
words memory and at least two tape units.

5. 2 Genercl description of the program

The Program ELIESE-1 is compesed of the main-program and 31 seb-programs. CHART
1 shows the flow-chart of ELIESE-1 main-program. The ELIESE-1 sub-programs may be
divided into four classes listed below:
1. Ynpat Routine reads the inpet data requred for the acmal computation.
SUBRQUTINE INPUT
2. Computation Routine computes cross sections and chi-square deviations for a given set of

input data.
SUBROQUTINE PREP SUBROUTINE ANGLE
SUBROUTINE WELL SUBROUTINE SPHBES
SUBROUTINE GZERO SUBROUTINE PICARD
SUBROUTINE GOASMA SUBROUTINE GFLMAX
SUBROQUTINE RUTH SUBROUTINE POTEN
SUBROUTINE INIT (L) SUBROUTINE INTEG (1)
SUBROUTINE ETASIG:L)  SUBROUTINE LEGEND
SUBROUTINE AMPAB SUBROUTINE BLL
SUBROUTINE LABRAT SUBROUTINE CHIZOS

SUBRQOUTINE COMPND SUBRQUTINE COMJP (L, A)
SUBRQUTINE CLBGD {Aj* SUBROQUTINE ZETC {a}*
SUBRQUTINE WRACA (A)* SUBROUTINE ZFACT (A)*
* Function type sub-program ’ :

3. 'Output Routine generates the calenlated results.
SUBRQUTINE OUTPUT SUBROUTINE INLIST
SUBROUTINE OUTIN SUBROUTINE ALOCK
SUBROUTINE BLOCK (FAP language)

4. Check Routine finds out an overflow and/or & divide check condition.
SUBROUTINE OFLOW (L, A)

The program assumes the presence of the following FORTRAN elementary function sub-

Toutines :.

LOGF (natural logarithm) * SINF  (sine)
COSF  (cosine) EXPF (exponential)
SQRTF (square root) *ATANF (arc-tangenr)

S. 3 Detciled descriptions of the specific routines of the program

1. SUBROUTINE PREP sets up a reduced mass, a wave number, potential well depth
parameters, a matching radius, Coulomb parameters and other basic quantities used
in the computaticn.

2. SUBROUTINE ANGLES sets up angle points and angular variables.
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SUBROUTINE WELL computes the potential shape functions at each mesh pont.

SUBROUTINE SPHBES generates the functions G:{p), Ful0). G {0) and F'(n) for
neutron, and &eterrrﬁzu:s the maximum angular momentum I.,.-

SUBRGUTINE GZER® computes the functions Go{0) and Go'(0) at o=, for charged
parnicle.

SUBROUTINE PICARD computes the functions Go(p<4), Go(p-2k), Golp<3k)
and Gy p-+~1k) for charged particle,

SUBROUTINE GOASMA integrates the Coulomb wave equa.:on for Ga(p) from p,
10 Py, and generates the derivative Go’ (pse)-

“ SUBROUTINE GFLMAX generates the functions Gy ), Fi(0), G’ (0) and Fi'ip, for

'~

charged particle, and determines the maximum angular mementum Z.,,.

SUBROUTINE RUTH computes the Rutherford scattering amplitudes and the cross
sections.

SUBROUTINE PEGTEN computes the potential values at each mesh point.

SUBRQUTINE INIT (L) sets up the starting values for the numerical integration of
the internal wave equations.

SUBRQUTINE INTEG (L) integrates the internal wave equations up to fy, and gene-
rates the derfvatives,

SUBROUTINE ETASIG (L) computes the scattering amplitudes 7,6+, the penetrabilities
T and the reaction cross section, and determines /_,,c-

SUBROUTINE LEGEND generates the Legendre polyvnomials.

SUBROUTINE AMPAB computes A(6), Bi#) and the differential cross section.

SUBROUTINE BLL computes the ooefficients of the Legendre expansion of the differen-
tial cross section for neutron scattering.

SUBROUTINE LAERAT transforms the differential cross sections from center of mass
system to laboratory system.

SUBROUTINE CHISOS computes the chi-square deviation of the differential cross
sections in the center of mass system.

SUBROUTINE COMPND computes the cross section of the compound nuclear process
by means of Havszr-Fesypacy's method. “

SUBROUTINE COMJP (L, A) computes g7 expressed by (3. 5).





