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Preface 

One day, Mr. Re '-archer visited Miss Eliese Janudac and had a conversation -with her 
about recent research v. orks in science. ** 

Mr. Researcher; "Almost all researchers today are using the electronic computer. This is, 
seems to me, quite nonsense." 

Eliese; " W h y ? " 

Mr. Researcher; "Because, the electronic computer does work very fast in numerical com-
putation, but it's incompetent and it's also unkind. So then every researcher should spend much 
time and much money to computing work, not to his own research work." 

Eliese, with a pu2zled look; "I don't understand what you're going to say ! What's the 
reason for incompetence o£ electronic computer ?" 

"Well," Mr. Researcher explained, "Suppose Mr. A has written a source program with 
several mistakes which are quite trivial, for example, a comma was missed or a period was 
used instead of a comma, so on. The electronic computer points out the program error for 
the first mistake and stops to work, so that Mr. A can correct it but not the others. In other 
words, the computer points out every program error in every run of compiling process. Similar 
problems happen in also writing the input data. So I would say that the only a few percent 
of all machine running time is actually used for real computing work." 

Eliese; "Oh my goodness! Your saying is based on your own way 1 You are not saying 
that the researcher's mistake should be corrected by himself, but that the electronic computer 
should correct the researcher's error. I don't think it's fair!" 

Mr. Researcher; "You're probably right! But " 

Eliese; "Wait! I would emphasize that every people should read carefully the computer 
manual or the program manual in order to avoid the mistakes. Now, here is a manual for the 
Program ELIESE-1. I would like to recommend it to all who are going to use ELIESE-1." 
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I . Introduction 

This is the manual of 1BM-TOSO code named as ELIESE-1, which can be used for calcu-
lations of any kinds of cross sections for elastic and inelastic scattering of neutrons, protons and 
alpha particles by means of optical model and of HAUSER-FESHBACH'S method in compound nuclear 
process. The Program ELIESE-1 lias been prepared by a working group on fast neutron cross 
sections, as one of the 1963 projects of Japanese Nuclear Data Committee which is an ad-hoc 
committee of the Atomic Energy Society of Japan. The members of the working group, con-
tributors to ELIESE-1, are composed of people from several laboratories, universities and com-
panies in Japan, so that it should be emphasized that the completion of ELIESE-1 is due to an 
excellent collaboration of such people 

Although the similar programs are available by request at the present time, ELIESE-1 has 
some advantages in working with the cross section evaluation. These advantages may be seen in 
the detailed description of ELIESE-1 on succeeding sections. It, however, does not imply that 
the Program ELIESE-1 is the best one, but that many improvements have been included taking 
account of user's convenience. The policy in making the code was that every user could use 
it with more results but with less pains. This is reflected in ELIESE-1 as the fact, for example, 
that it. is quite easy to prepare the input data by means of relative address. In order to find the 
unexpected errors if any in ELIESE-1, the calculated results were compared carefully with those 
by other programs, ABACUS-2, etc., for typical examples. The comparison of the results by 
ELIESE-1 with those by other codes will be given in a later section wheie the running time 
and the stability against mesh size are also illustrated. It is expected, however, that further im-
provements might be required in the next step of code development. Some of the modifications 
are already under planning, and more refined program will be available in near future as Pro-
gram ELIESE-2. 

As mentioned in the first paragraph, the Program ELIESE-1 is used in calculating the cross 
sections of elastic scattering and of inelastic scattering leaving a few of the low-lying excited 
states because of the characteristics of optical model and HAUSER-FESHBACH'S method. Originally, 
however, it has been required to calculate the cross sections of inelastic scattering exciting also 
the higher excited levels. In these cases, the effects of competing processes play an important 
role. With the Program ELIESE-1, it is possible to take account of the competition between 
nucleon emitting processes. For example, (ft, p) reaction can be included as the only competing 
process in calculating the cross sections of (n, n'). As the competing processes in above example, 
the inclusion of (/1, f ) and (n, a) reactions seems to be one of the important subjects in prepar-
ing the Program ELIESE-2. 

In sections 2 and 3 of this manual, the mathematical descriptions of optical mcde-1 and of 
HAUSER-FESHBACH'S method are given. It is not our objective to mention the physical view point 
but to explain the formulas used in ELIESE-1. The methods of numerical evaluation of formulas 
described in sections 2 and 3 are explained in section 4. Following sections, 5 to S, are devoted 
to describing the Program ELIESE-1 itself. Brief explanations about sub-routines and symbols 
used in ELIESE-1 are given in sections 5 and 7, respectively. Section 6 is used in explaining 
the method of preparing the input data for initial case and for succeeding cases. The list of tha 
Program ELIESE-1 appears in section 8. Typical examples of calculated results using ELIESE-1 
are s-huwr. i:: .-f.'rion 9 with few remark.-. 
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Although all the members of t he working group on fast neutron cross sections should be 
responsible for Program ELIESE-1, the present manual has been prepared by not all but a few-
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Sections written : 
2 S . IGARASHI* 
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4 S . IGARASHI* 
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A. Mathemat ica l Descr ipt ion o f S h a p e 

Elastic Sca t ter ing Process 

This section is dev-.-^d to describing the analysis of the elastic scattering process in terras of 
the optical potential moo.-iI!, so we are not concerned with the physical problems but with the 
mathematical description of the optical model. The optical potential is a very useful tool not 
only in analysing the scattering phenomena but in understanding the nuclear reactions by means 
of distorted wave approximation or of compound nucleus model. 

In EL1ESE-1, the calculations are restricted to only neutrons, protons and alpha particles 
since the masses of these panicles are already set in the Program. Cross sections, energies and 
lengths are expressed in units of milli-barns, MeV and fermis, respectively. 

2. 1 Schroedinger equations 

Base radial Schroedinger equations of this program, in center of mass system, are written as 

- ^ ( r ) ̂"'(r) =̂ 0, (2.1) 

~ C^D^soM = 0, (2.2) 
where 93c(r), ^so(r) and 5J3Co>1(r) are the central, spin-orbit and Coulomb potentials, respectively. 
The wave functions <Pil**(.r) and (r) are the radial wa've functions corresponding to spin up 
and spin down. For alpha particles, spin-orbit force is zero, then eq. (2. 2) is identical to eq. (2.1), 
Wave number k in eqs. (2.1) and [2. 2) is defined by 

k = ( 2 t i E l f i - y i \ (Z 3) 

where ft and E are reduced mass and relative energy between an incident particle and a target 
nucleus, respectively, and are given as follows; 

where m and M are masses of incident particle and target nucleus and E0 is the energy ia 
laboratory system. 

2. 2 Potential form and parameters 

2 . 2 . 1 Central nuclear potential 
In the optical model, we can write the central nuclear potential as 

So W ^ S a W + S S a M , " (2.6) 
where 3?Cr(0 is the real part and 33ct(r) is the imaginary part, respectively, 

i) Real part SBCK(r) 
W e assume Woods-Saxon form for QJcrM and represent as 

S S c i W — ^ V c S r c R(r). (2.7) 
ft* 
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where ffceC7") Is the shape function written as 

3CRO) = , , R f ^ — D T T T ' (2- 8) 1-rexplO—Ra)/aa} 
4 

and V c is the well depth parameter expressed by 

VC=VCB-T-VC.J (£— 12ZZ'e*jRc) -R CV",R„,O-RV.R„,I-£3 (A T -Z ) /A . (2 .9) 

This well depth parameter V c is asssumed to be linear form in the energy including the sym-
metric term for charged particles. The parameter Ro in eq. (2. 8) is the nuclear radius at which 
potential depth becomes half value of the maximum. With the conventional nuclear radius para-
meter n> and mass number A, we have 

X Ra=raA™. (2,10) 
The parameter go in eq. (2. S) is the diSuseness parameter of nuclear surface. 

2) Imaginary part 3?ci(r) 
Imaginary part of the central nuclear potential 5>Ct(r) is represented as 

SaCr) "^.(WiScffj +W&a(r». (2.11) 
The first term in parentheses stands for the volume absorption of the incident particle and the 
second term for the surface absorption. Shape functions tjci(r) and SFcsO") are respectively 
written as 

' (• -1 ; Uniform (2.12) 

&=.<>) = 1 Woods-Saxon (2-12') L 1-rCXp ((» i?i)/<2i} 

t?cs(r) = 
e x p { - C ( r - R s ) / ^ 2 } ; Gaussian (2-13) 

4.exp{(r--R s) /6} Derivative Woods-Saxon (2.13') 

Radial parameter Rt is defined in the same way as i?0 with parameter n instead of r0 

A;i = n A1/3. (2.14) 
Parameter Rs is defined by 

Rs=RO-T-Cr, (2.14') 
where CR is any constant value which determines the position of the center of surface potential. 

Well depth parameters IV", and TV"S in eq. (2.11) are assumed to be linear form with respect 
to the energy, 

IV, = IV-,.o-rir1.J.£. (2.15) 
and 

Ws = IKs, o -r Ilrs, t • E. • (2.16) 
A remark is necessary with regard to uniform volume absorption potential. In adding this 

volume absorption potential to any surface absorption potential, joining point of these two poten-
tials is defined by 

r lc=R>-ul /ln;_IVVtt''Ij for Gaussian (2.17) 
and 

n c = R s - f i l n a for Derivative Woods-Saxon (2.18) 
where n is 

«= {2IVS—IVi- 2l/\vsz— IVs- WjlIWi' " (2.19) 

Therefore, in the case of uriform volume absorption plus any surface absorption, we must repre-
sent the imaginary part of the nuclear central potential as 
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5 3 ; r^rIC (2.20) 

r>r I C (2.21) 

2 . 2 . 2 Spin-orbit potent ia l 

Spin-orbit force is -written in the Thomas form, 

«J r>_2fir. Fso-rflVko 1 e.xp{("i—Ra")Jaa} ,o o.j\ -tSsôrJ — 7T-; 77 5TT5—Tv1 » ' \ - ft- r <z0 (l-fexp{(r—i?o)/«o}j" 
where Cso is defined with r-mcson mass 

Cso=(nlm = cy . (2.23) 
Here c is the light velocity and m- is defined by 

ffiz=\(jfiz t-i-tnz—i-mz'). (2.24) 

Well depth parameters are the same form as (2.9), (2.15) and (2 16), and are written as 
Vs^Vso.o-i-Vso.iE, (2.25) 

Wso= Wso.ol-Wso.iE. (2.26) 

2 . 2 . 3 Coulomb potent ial 

Coulomb potential in the interior region is defined with the assumption of uniform charge 
distribution, and therefore represented as 

S J c „ 1 ( r ) = - | f ^ i ( 3 - - ^ - ) ; r^Rc, (2.27) 

: r>i? e . (2.2S) 

where J?c is written with parameter rc as 
Rc=rcAl'\ (2.29) 

In the Program ELI ESE-1, sign is used for the parameter r c in order to discriminate the kind 
of the incident particles. 

We now integrate the eqs. (2.1) and (2.2) numerically, as explained in section 4. They 
are connected smoothly to their asymptotic solutions at the matching point. 

2. 3 Matching radius 

In this sub-section, we intend to explain the definition of the matching radius rM- At this 
point, we may consider the wave functions to have their symptotic forms, that is, the value of 
each potential must be negligible order of magnitude in comparison with incident energy. Thus, 
the matching radius rM is defined as the maximum value of the solutions of the following equa-
tions, 

-p-9Sca(ri , )£10-\ (2 .30) 

(2.31) 

and the condition r ^ R c . 
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2. 4 Asymptotic form of wave function 

Asymtotic expression for wave function consists of the incoming and outgoing parts. Well 
known expression is 

VI^HR' • n^P)-RF'WT'JP.). (2.32) 
where « i t o ( p ) is defined with the spherical Neumann and Bessel functions (or Whittaker func-
tions) multiplied by their argument, p=£r . The wave functions u / ' V p ) and uil~?(p) stand 
for the outgoing and incoming waves, respectively. 

uf* :>(p)=G,(P)±iF1(p) . (2.33) 
In eq. 12.32), ft50 is called the scattering amplitude and is related with the scattering phase 
shift as 

j?,<*3=exp(2 idt
M~). (2.34) 

This amplitude is the most important quantity and can be obtained by joining the interior wave 
function to its asymptotic wave function smoothly at pM = k rM. 

The maximum angular momentum is defined by the following condition, 
iGi(psi)JGo(.Pa)jI> 106. (2.35) 

In the case of neutron, the condition (2.35) means that the penetrabilities of the partial waves 
effective to the process are larger than 10"'. 

Next, we describe the method of obtaining the irregular solutions of asymptotic wave equa-
tions, Gi(pTs. They are derived by the recurrence formula15 

- - J - C T F+Fy-G^ (P«)J . (2.36) 

where ? is Coulomb parameter defined by 

' (2.37) 

For the neutron, i] is, of course, zero, and 
GO(PM) = cos AM, " (2.3S) 

GX(PM) = — c o s pM-r sinpM. (2.39) 
PIL 

If an incident particle is proton or alpha "particle, we must find Ga(p) and Go'(p) at the asymp-
' totic radius Pa (see section 4). Asymptotic radius pA is defined by:> 

. P a = 2 ? ; for (2.40) 
= 2 ? - f 9 ; for )?<4. (2.41) 

The Coulomb wave equation for s-wave 

< ^ ( I - ^ ) G o = 0 (2-42) 

is integrated from pA to pM. Using G0(/M) and GO'(PU), we obtain GI(pM) from 

G,(PM) - G A ' ( P M ) | . (2.43) 

Now we have had GO(PM) and GI (pu ) . Thus any GI(pM) is obtained by the eq. (2.36). 
Regular wave functions Fi(Pu)'s are obtained by means of well known STEGUX and 

ABRAMOVITZ'S downward recurrence method3'. In section 4, we shall explain this method in 
detail. 
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Derivatives of GtiPa) and Fi(J>u) may be obtained from the formula 

-- ~ C^l^-W^uiCp*)} , (2.44) 
where Xi(pu) stands fn- either Gi(/?u) qt Ft(Psi)-

2. 5 Scattering amplitude 

Scattering amplitude .;iCO is given by the formula 

, / : " ' — '-Ji— iV; (PM) (2-45) 
•where f t * 1 is the logarithmic derivative of the interior wave function defined at r=r M , 

Corresponding quantity for the incoming and outgoing wave functions in the asymptotic regiun is 

2. ^ Cross sections 

We have defined /„„ by the formula (2.35). This is somewhat larger than the largest 
value of the angular momenta which contribute effectively to the cross sections. This latter value 
of the angular momentum is indicated by a notation /„,, c , and defined by the condition 

ffc(W)/'MS~1ffc<»^10-\ (2.48) 
I 1=0 

where crc
c'J is the partial cross section of the formation of compound nucleus. This cross section 

is obtained by using the transmission coefficient 
r,<*>(£) = ! - ( 2 . 4 9 ) 

and is written as 

<7c < n =-^-{a- f - l )T , c o 4- ir / - 3 } xlO. (2.50) 
Cross section of the formation of compound nucleus is then 

ffc='x!C<rc«>. ' (2.51) 1=0 
Elastic scattering and total cross sections for neutrons are calculated by the formulas 

ffr^'s^tf+Dll-^'lH/U-^-M'lxlO. (2.52) 
K- 7 = 0 

and 
<Ti=ot-r<?c- (2.53) 

Formulas (2.52) and (2.53) cannot be used for the charged particles, because of the Coulomb 
scattering. 

Differential elastic scattering cross section for neutrons is calculated as follows, 

where 
-̂ ={|A(0)|*+|i}(0)|=}xlO, (2.54) 

MO) = p,( oos0), (2.55) CR 1=0 
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and 
1 'mC 

-6(5) j S (2.56) 

Coefficient of the Legendre expansion of the formula (2.54) is necessary for the reactor cal-
culations, and is expressed hy tjge formula 

1 c /,+l/2 /.+1/2 1 
£ S S CZffJifeft; 

X 5ReC(l (1 - x 10, (2.57) 
where Z is the 2-coefEdent given by B l a t t and B i e d e n h a b n 0 , and is repressed in a general form 

Z{hhhh; sL) = 
X (2.7i4-1) l / I(2ji-r-l)1/1 (Ji/;001 £.0) Wfjiji Izj* - sL). (2 .57-1) 

The Z-coeffirient above does not vanish if the following conditions are satisfied: 
Conditions 

1- Zi-f/ i-M-=even 
2. \l-s\<.j£l+s 
3. 
4. U i - L l ^ j z K j ^ L 

In eq. (2.57-1), W i h j i l z j : ; i L ) is so-called Racah coefficient5' and is given as 

W(abcd; ef) = CCa-i-i-e)!(a-f«?-£)! (i-fe-ajl (c-H^-e)! (c+e-d)l 
X (d-~e—c)l ( a - f c - / ) ! (<z-r / -c)I ( c - h / - « ) ! 

X (6-S-<*- / -=)! =! ( c±f-a-d+£)\ ( e - f - / - 6 - c - f r ) ! } . (2 .57-3) 

In eq. (2.57), is expressed by jy, corresponding to j=l~ll2. 
For elastically scattered protons, differential cross section is also given by the formula (2.54), 

but A(8) and B(d) are somewhat different from (2.55) and (2.56). The corresponding expres-
sions are 

A(Q) =fc t ^ t ' e V " { ( / f 1) (1 - 7<<0) - (cos0). (2.5S) 

and 
1 'aiC 

B(P) =7^7- v .iV(cosS). (2.59; Ik i=o 
Coulomb scattering amplitude fc(Q) is given by 

/ e (0 )^ 2 . s ~4 / 2 ) expC- f T ln ( s in : CO/2) )^2 Z - c7o ] - (2.60)" 

Phase shift of the Coulomb scattering <7j is given by the recurrence relation 

=V+irt(l-l+iy) ( l - f- iy) c : i a. r 61) 

V-UXl-l-iV) ' ; 

where 

V f. 4S . ? ' - 1 6 0 ^ - H 2 S 0 | 
12(16+V s) 1 ' ' ^ O a S - f ^ 1 ) 1 ' 1 0 5 ( 1 6 - ^ ) * ] " K J 

Sometimes we are interested in the Rutherford ratio of the elastically scattered protons. Cross 
section of the Rutherford scattering is 
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and then Rutherford ra-' «jf the cross ^eStion is defined by the formula 

When alpha partick uii incident particle, w e can write the scattering amplitude 
5 = (2.65) 

and therefore. -

\a(0)=/c (2.66) - c /=o 
.B(0)=O. (2.67) 

2. 7 Chi square deviation 

Experimental and calculated angular distributions of scattered particles may be compared by 
means of the chi square "deviation, 

J ' v2"68) 

where a is a normalization factor which is a measure of the discrepancy of the absolute values 
between experimental and calculated cross sections, and is given by 

. _ ~ L ( J g " ( f l ) ) * J /o 
£t>"(0}/Ja"(0);F ' 1 ; 

where o < x (0) and a , h (0 ) are experimental and calculated differential cross sections, and Jan(d~) 
is the experimental error in differential cross section. In our program, it is also possible to cal-
culate the chi square deviation setting a to unity. 

2. 8 Legendri polynomials 

Legendre polynomials are computed by the following relations, 

P„ (cos0) = l, (2 .70) 

P , ( cos0 )=cos0 , (2 .71 ) 

P u \ (cos 6) = y ^ y { ( 2 2 4 1 ) cos Pi (cos 0") —I P i ( c o s 0 )} , (2 .72) 

Pi , (aK0)= i^{cos0.P, (cos0) - .P, t , (cos0)} . (2.73) smt/ 

2. 9 Transformation of the cross sections from center of moss 
system (CMS) to laboratory system (LAB) 

i) Angles 
Let us define the parameter y as follows, 

- ( s r t i r 
•where primed quantities are referred to those of final stage and the energies are in center of mass 
system. Relations between Vr.e scattering angles in CMS and LAB ar; 
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C2.75) 

or A 

ii) Cross sections 
Relation betv.-een angular distributions in CMS and LAB is V - _(l-i-27cosgc^7-y*(d<j\ „ 

\ d n ) L - | l - fycos0 c | \dQ)c { J 

2. 10 Recurrence formula for Coulomb phase factor exp(2zff/) 

Relation given by the formula (2.61) can be separated into real and imaginary parts; 

= ^ (e—) ] - j ] . (2.78) 

3 m ( ^ 0 = . (2. 79) 

For the- s-wave phase shift, cr0 has been given by the formula (2. 62) and then one can obtain 
the Coulomb phase shift associated with any /-value, using the above recurrence relations. 
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3. M a t h e m a t i c a l Descr ipt ion o f C o m p o u n d N u c l e a r Process 

— H a u s e r - F e s h b a c h ' s M e t h o d — " 

\ -

In this section, we consider the nuclear process via the compound nucleus formation, in the 
case of the incident and outgoing particles being neutrons. Target and residual nuclei are specified 
by their spin I, parity T. and excitation energy s(=E—E'). No-.v w e consider the case of the 
inelastic scattering of neutrons which will he expressed as ( E I x - + E ' 

3. 1 Angular distribution of the inelastic scattering process 

Angular distribution of the inelastically scattered neutrons is calculated by the following for-
mula 

d(TCEl7u~*E'I'r.r) = (£/-_>£'/'-')p̂ (cos0), (3. i) 
dU i=o 

where 
1 (—\i-v OT-L. J3i(£/if-*£7'8')=aTr 9/. * V ^n(zl)zt,J{EIJL) 8«- ( 2 / - r l ) j n <tjn j / 

x Ho>n(.r.'l')T,,x.i' (£' I'JQ x 10. (3- 2) 
j't' 

Here J and II are spin and parity of the compound system, and is introduced by taking 
account of parity conservation, 

0>n(7:l)=±\n+(-y-\. ( 3 . 3 ) 

In eq. (3. 2), z J ^ E I J L ) is ' •" • 

t,„'{EIJ L) = Tt>(EI-)Z(Jjlj; -2-L)\V(JJjJ; IL), (3.4) 

where Ti'(EI:;) is the same quantity given by the formula (2.49), and Z-coefRcient and Racah 
coefficient are mentioned in eqs. (2.-57-1) to (2. 57-3). In the final'state, as the reciprocal process, 
T(E7 / ' r ' ) is calculated with emitted neutron energy and angular momentum. In the denomina-
tor of the formula (3.2), Ojn is the sum of 7V corresponding to all possible nuclear states; 

j+r j+i'2 
2 3 wn(r.l)T^EI-^. (3.5) 

ei= y=iy-/i /=u-V2i 
In general, we should take all possible nuclear reactions into account, such as (n, p), {n, a), 

(n, y) and so on, but in our program («, p) process can only be considered as a competing pro-
cess. Besides, the contributions from highly excited levels which are in continuum region, are 
not included in this program. We intend to improve these points in future. 

3. 2 Exc-Jation function 

By integrating the eq. (3. 1) over the angles, the excitation function is obtained as 

o(Elr.->E' I'rJ)=AzB<i{EIr.-*E' • (3.6) 
where Bo(EIr.-*E' 1'rJ} is 

Sk- (2/4-1) JIJ <jjn ji 
x ^aVK.-'l')Tr''(£'/'"') x 10. (3. 7) 

• ft' 
Total inelastic scattering cross section is then 
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<7io(£J-)= o(EI—-*!?J'r'). (a 8) 

3. 3 Compound elastic scattering cross section 

Compound Mastic scattering cross section is defined by setting ( E ' l ' z ' ) equal to ( £ 7 = ) . 
Then, angular d'-.tribution of the compound elastic process is 

Gr •CET—') —' \n = S BLCEIzjPL(casd), y (3.9) an x,=o 
where -

g i ( £ J = ) = . (3 .10) 
8k~(2I—l) jnaJa }t 

Integrating this over the angles, we obtain the compound elastic scattering cross section, 
<7.?(£/-) —A~B a ( E I z ) , (3.11) where 

BoiEl--) = — v 2 Z ± l G o J j z ( = z ) T y ( £ / r ) ) z . (3.12) 
S r - ( 2 / — 1 ) j u vjjt it 

In these calculations, we must take care of the relations between angular momenta. The 
selection rules on the angular momenta are as follows: 

i) Z.=even and 0 < Z . < M i n ( 2 4 . , c , 2i'„. lC)-
ii) •/=>!•=0, if 7 is half odd integer. 

= 1/2, if J is integer. 

iii) J . . . < J ^ M i n ( / = „ c - r / - i - | - , J ' + y ) 

iv) \J-l\<j<J~I 

v) \ j -

U'-j-l&'^J'-T-j&'^c 
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4. M e t h o d s o f Numerical Calculations 

V • 4 . 1 Basic constants 
v 

Some basic constants set in the program are 
w . = l . OOS9S2 
m „ = l . 007593 
m<,=4.003570 
Cso= (1.42926) s . 

\i/2 

(4.0) 

= ° - 2 1 S 7 1 3 5 ' (4.1) 

p h e l = Q 0688747, (4.2) 

-^"-Csq=0. 097717S, (4.3) 

4. 2 Initio? values of wave functions 

In numerical integration of Schroedinger equations, we must have the values of the wave 
functions at first two mesh points as the starting values of the functions. We can obtain these 
values by power series expansion of the functions; 

= (4.5) 
»=o 

Relations between expansion coefficients are -

vhere 

'and 

. (4.6) 

(4.7) 

(/+1). (4.8) 

to^Cso^so+nVso) e 2 Z r
( : R n v J r , (4.9) ft" <2o (l-rexpl(>—Kt)lat\j-

In eq. (4. 6), we assume that the potential values at these mesh points are nearly constant. In 
particular, Gaussian and derivative Woods-Saxon potential values at these mesh points are reset 
to the constant values in the program. First four values of the expansion coefficients are 

r W » } - (4. m 
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and 

where is a normalization constant and can be set to unity. 

4. 3 Numerical Integration of wave functions 

\T}ie method used for numerical integration is the Fox-Goodwin's two points method. Eqs. 
(2.1) and (2.2) are rewritten as 

d T r ^ (4.14) 

"With Fox-Goodwin's method, we can write this equation as follows; 

(24-J -^Q/^h))-<pt*\n)~ ( 1 - i t fQ ,<•>(«-1) ) («-1) 
9>/*>(n+1)= 2 — " 

l-jgtfWCn+l) 
(4 .15) 

where k is the step length in this numerical integration, and n indicates the mesh point. Deriva-
tive of the function is calculated by Lagrange's six points method; 

- ?% t r f ( i»+ -2 ) )+ -| - fe<*>(»+ l ) -^« , ( i« - l ) ) j . (4.16) 

4. 4 External wave function FV(/0m) 

In section II, we have shown the method by which the function G/(Pn) and the maximum 
angular momentum /„„ are defined. Using la„ and Gi(Psi) for l<la,t, we will explain the 
method33 of the calculation of Fi(_Pu) in this section. 

Let 

Z c l > =k . , -H0 , • (4.17) 

i=7!?,+l=0, (4.18) 

and 
F;...CO = 10-36- (4 .19) 

With these starting values, we can obtain F((/7m) corresponding to lower /-values by the follow-
ing recurrence formula; 

(4 .20) 
For I—0, we obtain the normalization factor by means of Wronskian's rule, 

a = ( l - r r * ) w ( f t < " G > - G o f i n , ) 1 (4 .21) 
and 

F,(pM)=F,«>G?M) /a. (4 .22) 
If Fi(Pm~) has the correct value, Wronskian's rule must be satisfied for / < / » „ ; 

Ft' (pu)C, (PM) ~ F, (PM)GI' (pjj) = 1, (4. 23) 
if it has not, above method is repeated by resetting Zcn as / C I } +5. 
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4. 5 CoulomS wave function for s-wove 

At p=pu, we can calculate Go and Go' by means of tbe following formulas.2' 
i) 
In this case, we set ,Oa = 2j? and -

Go(Pa) ~l~23404016J? , /6{l-f0.04959570165)?_4/3—0.008SS88888S97"2 

V " -t-0.002455199181 7_l0/3—0.0009108958061 i?~4-r0.00025346S41157~16/3}, 
\ 

and 
Go'(Pa) --= - 0 . 7 0 7 S S 1 7 7 3 4 R , / S { L - 0 . 1 7 2 S 2 6 0 3 6 9 ? R = ' 3 

- T - 0 . 0 0 0 3 1 7 4 6 0 3 1 7 4 ) ? " 2 — 0 . 0 0 3 5 8 1 2 1 4 8 5 0 8 / 3 

- F - 0 . 0 0 0 3 1 1 7 8 2 4 6 8 0 R ? - * - 0 . 0 0 0 9 0 7 3 9 6 6 4 2 7 1 ? " 1 4 ' 3 ] . 

ii) ? < 4 
Let pA~9-r2i} and <p=pA—^-ln(2pA)-r<7o, then Go and Go' are given by 

GO(PA) =s-costp—t-smip, 
and 

where 

and 

They are calculated by means of the relations; 
SN+1 ̂ A N S N BNT RI 

= Antn 4" BnSr., 

G o ' = S - c o s p — T-sinp, 

and 

*S"n+l — ^ Bn Tn 
PA 

— T^T^n^n » 
PA 

Coefficients An and Bn are respectively given by 

2*4-1 

and 

A„ = 

B„ = 

2(/I-T-1)PA V. 

n'—wCn-M) 
2(n4-l)pA ' 

The initial values are 
T So=l, 

ta-0, 
So = 0, 
TO = 1-(T?/PA), 

iii) Numerical integration of Go and Go' from pA to pu 

Wave equation for Go is rewritten as 

d'Go 
dp 

(4 .24) 

(4 .25) 

(4 .26) 

(4 .27) 

(4 .28) 
(4 .29) 
(4 .30) 

(4-31) 

(4 .32) 
(4 .33) 

(4 .34) 

(4 .35) 

(4 .36) 

(4 .37) 

(4 .3S) 
(4 .39) 
(4 .40) 
(4 .41) 

(4 .42) 

This equation is integrated- from pA to by means of Fox-Goodwin's method. Therefore, we 
must find the initial values at-two mesh points. In our program, these initial values are calcu-
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la ted by means of KcanTs five points method; 

GoCl)=G,(0)~̂ Go'(C)-f-̂ -r{367y-(OjGoCO)-f540/(l)G.(l) 
. A I 4 4 U 
^ -282/C2̂ o(2)-M16/(3)GOC3)-21/(4)G,(4)}, (4.43) 

G.(2, =Go(0) —2ncGo'(0"» f , \nh<? 1S4S/(0)G0(0)4-2304/(1̂ 0(1) 
1 4 4 0 

-480/(2)G0(2)̂ -256/(3)Go(3)-48/(4}G,f4i}, (J.4i"» 9 

\ 1 4 4 0 

+486/(2jGo(2)-4-540/C3)Gl,C3)-81/(4:GaC4;1}, (4.45: 
GoC4)=G0(0)-4ftc.<?o'(0)+1̂ V{1792/',0)G0(0)-r6144/Ci;.G.Cl) 

-f1536/(2)G»(2)-f204S/(3:Go(3) -M)}. (4.45.) 
These are simple algebraic equations and easily solved. Arguments of Go'«) and f(n) mean 
the n"1 mesh point and h. Is step length of this numerical method. Go(3) and Go(4) are used 
as initial values of Fox-Goodwin's method. Derivative at p=pu is given by sneans of the same 
method as the formula (4.16). 
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5. P r o g r a m Description 

5. 1 Machine specifications * 

T h e Program ELIESE-1 has been written for an IBM 7090 FORTRAM-II with a 32,768 
words memory and at least two tape units. 

2 General description of the program 

The Program ELIESE-1 is composed of the main-program and 31 sub-programs. CHART 
1 shows the flow-chart of ELIESE-1 main-program. The ELIESE-1 sub-programs may be 
divided into four classes listed below: 

J. Input Routine reads the i ipct data required for the actual .compcitaiioa. 
SUBROUTINE INPUT 

2. Computation Routine computes cross sections and chi-square deviations for a given set of 
input data. 

PREP SUBROUTINE ANGLE 
WELL SUBROUTINE SPHBE3 
GZERO SUBROUTINE PICARD 
GOASMA SUBROUTINE GFLMAX 
RUTH SUBROUTINE POTEN 
INIT iL) SUBROUTINE INTEG (I.) 
ETASIG t,L) SUBROUTINE LEGEND 
AMPAB SUBROUTINE BLL 
LABRAT SUBROUTINE CHISOS 
COMPND SUBROUTINE COMJP vL, A) 
CLBGD (A)* SUBROUTINE ZETC (A)* 
WRACA (A)* SUBROUTINE ZFACT (A)* 

* Function type sub-program 
3. Output Routine generates the calculated results. 

SUBROUTINE O U T P U T SUBROUTINE INLIST 
SUBROUTINE OUTIN SUBROUTINE ALOCK 
SUBROUTINE BLOCK iFAP language) 

4. Check Routine finds out an overflow and/or a divide check condition. 
SUBROUTINE OFLOW (L, A) 

The program assumes the presence of the following FORTRAN elementary function sub-
routines : -

LOGF (natural logarithm) " SINF (sine) 
COSF (cosine) EXPF (exponential) 
SQRTF (square root) <VTAx\F(arc-tangenr) 

5. 3 Detailed descriptions of the specific routines of the program -

1. SUBROUTINE PREP sets up a reduced mass, a wave number, potential well depth 
parameters, a matching radius, Coulomb parameters and other basic quantities used 
in the computation. 

2. SUBROUTINE ANGLES sets up angle points and angular variables. 



18 FORTRAN-II Program for Analysts of T^bsric and lnelasdc Scattering Crass Sections JAERI 1095 

o. SUBROUTINE WELL computes the potential shape functions at each mesh pornt. 
4. SUBROUTINE SPHBES generates the functions GiQpj, -Fi(p), Gi'(p) and Fz'(P) for 

neutron, and determines t i e maximum angular momentum 
5. SUBROUTINE GZER& computes the functions G>Cf°) and G°'(P) at p = p A for charged 

partide. 
6. SUBROUTINE PICARD computes the functions G0(p-rA). Go(p+2ft), G a {p~3L} 

and G»Cp—Ahj for charged particle. 
7. SUBROUTINE GOASMA integrates the Coutenb v-ave equation for G»(p) from pK 

^ to Pu, and generates the derivative Go'(Psi)-
8. . SUBROUTINE GFLMAX generates the functions Gj(p), Fi(jp). Gi'CP) and Fi'(.p, for 

" charged particle, and determines the maximum angular momentum / = „ . 
9. SUBROUTINE RUTH computes the Rutherford scattering amplitudes and the cross-

sections. 
10. SUBROUTINE PCrT-aN computes the potential values at cadi mesh point. 
11. SUBROUTINE INIT (L) sets up the starting values for the numerical integration of 

the internal wave equations. 
12. SUBROUTINE INTEG (L) integrates the internal -cave equations up to pUl and gene-

rates the derivatives, 
13. SUBROUTINE ETASIG (L) computes the scattering amplitudes the penetrabilities 

7 y and the reaction cross section, and determines im,»c-
14. SUBROUTINE LEGEND generates the Legendre polynomials. 
15. SUBROUTINE AMPAB computes -4(0), B\0) and the differential cross section. 
16. SUBROUTINE BLL computes the coefficients of the Legendre expansion of the differen-

tial cross section for neutron scattering. 
17. SUBROUTINE LABRAT transforms the differential cross sections from center of mass 

system to laboratory system. 
18. SUBROUTINE CH1SOS computes the chi-square deviation of the differential cross 

sections in the center of mass system. 
19. SUBROUTINE CO.MPND computes the cross section of the compound nuclear process 

by means of liiuiEa-FssuBACH's method. 
20. SUBROUTINE COMJP (L. A) computes a j n expressed by (3.5). 




