JAERI-M 85-101

NEANDC (J) 114/U INDC (JPN) 100/L

EVALUATION OF NEUTRON NUCLEAR DATA OF NATURAL NICKEL AND ITS ISOTOPES FOR JENDL-2

July 1985

Yasuyuki KIKUCHI and Nobuo SEKINE*

日本原子力研究所 Japan Atomic Energy Research Institute

JAERI-M レポートは、日本原子力研究所が不定期に公刊している研究報告書です。

入手の問合わせは、日本原子力研究所技術情報部情報資料課(〒319-11次城県那珂都東海村) あて.お申しこしください。なお、このほかに財団法人原子力弘済会資料センター(〒319-11茨城 県那珂都東海村日本原子力研究所内)で複写による実賃頒布をおこなっております。

 \leq_{λ}

JAERI-M reports are issued irregularly.

Inquiries about availability of the reports should be addressed to Information Division, Department of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan.

© Japan Atomic Energy Research Institute, 1985

編集業	発行	日本原子力研究所
FD	刷	日立高速印刷株式会社

JAERI-M 85-101

Evaluation of Neutron Nuclear Data of Natural Nickel and its Isotopes for JENDL-2 Yasuyuki KIKUCHI⁺ and Nobuo SEKINE^{*} Department of Physics Tokai Research Establishment,JAERI

(Received June 21, 1985)

Neutron nuclear data of natural nickel and its isotopes have been evaluated. Evaluated are the total, elastic and inelastic scattering, capture, (n,2n), (n,3n), (n,p), (n, α), (n,n'p) and (n,n' α) reaction cross sections, the resonance parameters, the angular and energy distributions of secondary neutrons in the energy range from 10^{-5} eV to 20 MeV. The evaluation has been made on the basis of recently measured data with the aid of the spherical optical model and statistical model. The results of the benchmark tests of JENDL-1 have been also taken into consideration. Special care has been taken on the background cross sections in the resonance region, the remaining resonance structure in the unresolved resonance region up to a few MeV, and grouping of the inelastic scattering levels in the natural nickel file. The problems left for future work are also discussed. The results of the present evaluation were adopted in JENDL-2.

Keywords: Natural Nickel, Isotopic Nickel, Evaluation, JENDL-2,

Background Cross Section, Resonance Structure, Level Grouping, Threshold Reactions

+ Office of Planning

* Research student from Faculty of Science, Tohoku University. Present Address: Hitachi Engineering Co., Ltd, Hitachi, Ibaraki 316

(1)

JAERI-M 85-101

JENDL-2のための天然および同位体ニッケルの中性子核データ評価

日本原子力研究所東海研究所物理部 菊池 康之⁺• 関根 信雄^{*}

(1985年6月21日受理)

天然および同位体ニッケルの中性子核データの評価を行った。評価した量は10⁻⁵ eVから 20 MeVにわたる全断面積,弾性および非弾性散乱,捕獲,(n,2n),(n,3n),(n,p), (n, a),(n,n'p),(n,n'a)反応の各断面積,共鳴パラメータ,二次中性子の角度及び エネルギー分布である。評価は球型光学模型や統計模型を利用しつつ,最近の実験データ に基づいて行った。JENDL-1のベンチマークテストの結果も考慮に入れた。特に注 意を払った点は,共鳴領域のバックグランド断面積,数MeV以下の非分離共鳴領域の共鳴 構造,天然ニッケルファイルの非弾性散乱レベルのグループ化である。将来に残された問 題も議論した。今回の評価結果はJENDL-2に採用されている。

+ 企画室

• 核融合特研生(東北大学理学部),現所属:日立エンジニアリング(株)

Ì

,

. . . .

ł

Contents

1. Introduction	1
2. Isotopic Abundances, Masses and Q-values	2
3. Thermal Cross Sections	3
4. Resonance Region	3
4.1 Resolved Resonance Parameters	3
4.2 Background Cross Sections	4
4.3 Resonance Integral	4
5. Cross Sections above Resonance Region	4
5.1 Total Cross Section and Optical Potential	4
5.2 (n,2n), (n,3n), (n,n' α), (n,n' p), (n,p) and (n, α) Reaction Cross	
Sections	5
5.3 Capture Cross Section	8
5.4 Elastic and Inelastic Scattering Cross Sections	8
6. Other Quantities	10
6.1 Angular Distributions of Emitted Neutrons	10
6.2 Energy Distributions of Emitted Neutrons	10
7. Discussion	11
7.1 Direct and Semi-direct Reactions	11
7.2 Threshold Reactions	12
8. Conclusion	13
Acknowledgment	14
References ·····	15
Appendix	177

目

次

1.	序	論		· 1
2.	同位	体存在比,	質量およびQ~値	2
3.	熱中	性子断面積		3
4.	共鳴	領域		• 3
4	. 1	分離共鳴パ	ラメータ	3
4	. 2	バックグラ	ンド断面積	4
4	. 3	共鳴積分 …		4
5.	共鳴	領域より上	の断面積	4
5	. 1	全断面積と	光学模型ポテンシャル	4
5	. 2	(n, 2n),	(n, 3n), (n, n' a), (n, n' p), (n, p) および (n, a)	
		反応断面積		. 5
5.	. 3	捕獲断面積		8
5.	4	弾性および	非弾性散乱断面積	8
6.	その	他の物理量		10
6.	. 1	放出中性子の	の角度分布	10
6.	2	放出中性子の	Dエネルギー分布	10
7.	議	論		11
7.	1	直接および≟	半直接過程反応	11
7.	2	しきい反応		12
8.	結	論		13
謝		辞		14
参	考文	献		15
附		録		177

1. Introduction

Neutron nuclear data of nickel are much required, because nickel is a main component of stainless steel and some threshold reactions of its isotopes are important for neutron dosimetry. Various evaluations have so far been made¹⁻⁸⁾. Every large evaluated nuclear data library contains the data of nickel. In spite of this, there still remain considerable discrepancies among the evaluated data.

For the first version of Japanese Evaluated Nuclear Data Library (JENDL-1)⁹⁾, a new evaluation of nickel data was made by Kikuchi et al.¹⁰⁾ in 1974. It was pointed out, however, through various benchmark tests^{11,12)} of JENDL-1 that the following drawbacks existed in the evaluated data of structural materials including nickel:

- The total and elastic scattering cross sections are overestimated considerably in the energy region above resolved resonances up to several MeV. This causes considerable underestimate of the diffusion coefficients.
- 2) As to the inelastic scattering to the discrete levels, the natural nickel file contains only a few levels of main isotopes (⁵⁸Ni and ⁶⁰Ni) and many low lying levels of a minor odd-mass isotope (⁶¹Ni).
- 3) As to natural nickel, the capture cross section is overestimated above several hundred keV and the inelastic scattering cross section is underestimated.
- As to the threshold reactions, the evaluation is rather rough except for some important ones.

Considering such a situation, a complete reevaluation of structural material nuclear data was planned for JENDL-2 in 1976. Completion of the entire compilation for JENDL-2 was scheduled at the end of 1981. At the early stage of compilation, however, the highest priority was put to

-1-

evaluation of the most important nuclides for fast reactors: 235 U, 238 U, 239 Pu, 240 Pu, 241 Pu, Cr, Fe and Ni, whose cross sections mainly determine characteristics of a typical fast reactor. This decision was made responding to an urgent request to use JENDL-2 for analyses in the JUPITOR project¹³⁾, joint USA-Japan mock-up experiments of large fast reactors using ZPPR facility.

The evaluation of the eight nuclides was completed in November 1979. Since then a combined library, called JENDL-2B library, consisting of JENDL-2 for the eight nuclides and of JENDL-1 for the others has been widely used for fast reactor analyses in Japan. Various benchmark tests have also been made and satisfactory results have been obtained^{14,15)}.

As to nickel, only the resonance parameters, cross sections and angular distributions (files 2,3 and 4 in ENDF/B format) of natural nickel were supplied to JENDL-2B with the data of ENDF/B-IV for the energy distributions (file 5). After that the data of isotopes were evaluated. The energy distributions of natural nickel were also evaluated and the file 5 was replaced by the new data. Final data were released in December 1982. As the evaluation of natural nickel was thus made before the evaluation of its isotopes, some inconsistencies remain inevitably between the natural nickel data and its isotope data.

The essence of the present evaluation was already published¹⁶⁾. Hence this report is intended to provide more complete information for users of JENDL-2. Many figures and tables are provided but less discussion on the evaluation method is given in this report. The status of the presently evaluated quantities are given in Table 1.

2. Isotopic Abundances, Masses and Q-values

The isotopic abundances were taken from the recommendation by

-2 -

Moxon³⁾. The exact masses and the Q-values of considered threshold reactions were taken from the compilation of Wapstra and Boss¹⁷⁾. They are given in Table 2.

3. Thermal Cross Sections

The data recommended in BNL-325, 3rd edition¹⁸⁾ were adopted as the 2200m/s values. They are given in Table 3 with the calculated values from the present resonance parameters.

4. Resonance Region

4.1 Resolved Resonance Parameters

Resonance parameters were evaluated for each isotope on the basis of various measurements listed in Table 4 by taking account of the other evaluation such as ENDF/B-IV, BNL-325, 3rd edition¹⁸⁾ and Moxon's work³⁾. For levels whose radiation widths Γ_{γ} are not known, $\Gamma_{\gamma} = 2$ eV was assumed for s-wave resonances and $\Gamma_{\gamma} = 1$ eV for p-wave ones of all the isotopic according to the recommendation by Moxon³⁾. The values of effective scattering radius were mainly taken from BNL-325, 3rd edition¹⁸⁾.

In order to reproduce the adopted thermal cross sections, c_{-2} following adjustment was made: Two negative resonances were a. c_{-2} 58 Ni and a negative resonance for each of 60 Ni and 61 Ni. Paration the first positive resonance at 4.6 keV were adjusted for 62 Ni. c_{-2} natural nickel, a negative resonance was added to 58 Ni at -28. c_{-2} without considering the thermal cross section data of each isc c_{-2} : Hence there remains the inconsistency in treatment of the negative o lowest positive resonances and in the thermal cross sections between the natural nickel and isotopic nickel data. Table 5 gives the status of resonance parameters together with the values of the effective scattering radius. Tables 6-10 gives the presently adopted resonance parameters

- 3 --

with the experimentally deduced values as well as various evaluated parameters.

4.2 Background Cross Sections

The resonance region is set up to 600 keV except for ⁶¹Ni. The present resonance parameters fail to reproduce the measured total and capture cross sections particularly in the energy region above a few tens of keV. The reason of this disagreement was investigated, and the disagreement was corrected by applying the positive or negative background cross sections. We will detail this problem in Appendix 1. Figure 1 shows the total and capture resonance cross sections of natural nickel with the measured data as well as the data of JENDL-1 and ENDF/B-IV. The resonance cross sections of the isotopic nickels are shown in Figs. 2-6.

4.3 Resonance Integral

The resonance capture integrals (the cut-off energy of 0.5 eV) calculated from the present resonance parameters and the background cross section are compared in Table 11 with the recommended values of BNL-325, 3rd edition¹⁸). They agree with each other for natural nickel and the main isotopes but are discrepant for 61 Ni and 64 Ni.

5. Cross Sections above Resonance Region

5.1 Total Cross Section and Optical Potential

As was pointed out in benchmark tests of $JENDL-1^{11,12}$, the remaining resonance structure in the unresolved resonance region up to a few MeV has an important role for self-shielding effects. In the present evaluation, we traced the resonance structure in high resolution measurements by Cierjacks et al.²⁷⁾ up to 3 MeV for natural nickel. This was made by the eye-guide method with Neutron Data Evaluation

-4-

System(NDES)²⁸⁾. Above 3 MeV, the evaluated data were obtained by smoothing the data of Cierjacks et al. The evaluated total cross section is shown in Fig. 7.

For each isotope, on the other hand, no high resolution data exist, and the evaluation was based on the optical model calculation. The potential parameters were obtained by Kawai²⁹⁾ so as to reproduce the total cross section of natural nickel by taking account of the systematic trends among neighboring nuclides such as Ti, V, Cr, Mn, Fe, Co and Cu. The potential parameters are:

V	$= 51.33 - 0.331 \times E_n$	(MeV)
W _s	\approx 8.068 + 0.112 × E _n	(MeV)
V _{so}	= 7.00	(MeV)
ro	$= r_{so} = 1.24$	(fm)
rs	= 1.4	(fm)
a	≭ a	(fm)
Ъ	≈ 0.4	(fm).

This set of parameters is applied to all the isotopes. The calculated total cross sections of 58 Ni and 60 Ni are compared with the measured data in Figs. 8 and 9, respectively.

5.2 (n,2n), (n,3n), (n,n'α), (n,n'p), (n,p) and (n,α) Reaction Cross Sections

These cross sections were evaluated for each isotope as follows.

(n,2n) reaction

For ⁵⁸Ni the data of JENDL-1, which were evaluated on the basis of numerous experimental data, were adopted and extended up to 20 MeV. For the other isotopes, on the other hand, experimental data are very scarce. Hence its shape was calculated with the evaporation model based

- 5 -

on Pearlstein's approximation³⁰⁾, and the cross section value was normalized at 15 MeV to the calculated value by Pearlstein with his semi-empirical formula³¹⁾; 510 mb for ⁶⁰Ni, 870 mb for ⁶¹Ni, 910 mb for 62 Ni and 1200 mb for ⁶⁴Ni.

The (n,2n) reaction cross sections of natural and isotopic nickels are shown in Figs. 10-15 with the measured data as well as the other evaluated data. The present data of natural nickel agree fairly well with the measured data by Auchampaugh et al.³²⁾, suggesting the reliability of the present evaluation for the other isotopes than ⁵⁸Ni.

(n,3n) reaction

The (n,3n) reaction channel is closed below 20 MeV for 58 Ni and 60 Ni, and is nearly closed for 61 Ni and 62 Ni. Hence we ignored this cross section for these nuclides. For 64 Ni, the shape was calculated with Pearlstein's approximation, and the same normalization factor as the (n,2n) reaction was applied to the (n,3n) reaction cross section. The (n,3n) reaction cross section of 64 Ni is also shown in Fig. 15.

(n,n'a) reaction

The $(n,n'\alpha)$ reaction cross section was evaluated only for ⁵⁸Ni. Its shape was estimated on the analogy of the ⁶⁵Cu $(n,n'\alpha)$ reaction cross section by considering the difference of Q-values. The ⁶⁵Cu $(n,n'\alpha)$ reaction was selected because of its numerous experimental data and its similar Z and A values to those of ⁵⁸Ni, and its shape was obtained by the eye-guide method. The absolute value of ⁵⁸Ni was obtained by normalizing the curve to the data of Seebeck and Bormann³³⁾ (30 mb at 14 MeV). The $(n,n'\alpha)$ reaction cross section of ⁵⁸Ni is shown in Fig. 16.

-6-

(n,n'p) reaction

The shape of the (n,n'p) reaction was estimated by taking account of the evaporation model calculation with the GROGI code³⁴⁾, and the absolute value was obtained by considering various measured data near 14 MeV; 480 mb at 14 MeV for ⁵⁸Ni, 60 mb at 14 MeV for ⁶⁰Ni, 13 mb at 14.7 MeV for ⁶¹Ni and 6 mb at 14.5 MeV for ⁶²Ni. This cross section was ignored for ⁶⁴Ni. The $(n,n'\alpha)$ reaction cross sections are shown in Figs. 17-20.

(n,p) reaction

For 58 Ni and 60 Ni, the data of JENDL-1, which were evaluated on the basis of numerous experimental data, were adopted and extended up to 20 MeV. For the other isotopes, the shape was estimated on the analogy of the 60 Ni (n,p) reaction cross section by considering the difference of Q-values. The absolute value was obtained by considering various measured data at 15 MeV; 90 mb for 61 Ni, 22 mb for 62 Ni and 4.5 mb for 64 Ni.

The (n,p) reaction cross sections are shown in Figs. 21-26, with the measured data.

(n,α) reaction

For each isotope, the cross section shape was estimated on the analogy of the ⁵⁹Co (n, α) reaction cross section by shifting the energy scale corresponding to the Q-value difference. The ⁵⁹Co(n, α) reaction was selected, because of its well-known cross section as a reaction for neutron dosimetry and of its similar Z and A values to those of nickel isotopes. The absolute values were obtained by some measured data; 130 mb at 14 MeV for ⁵⁸Ni and 21 mb at 14.5 MeV for ⁶²Ni, or by the calculated value by Pearlstein³¹⁾ with his semi-empirical formula; 56 mb

-7 -

at 15 MeV for 60 Ni, 34 mb at 15 MeV for 61 Ni and 6.9 mb at 15 MeV for 64 Ni. The (n, α) reaction cross sections are shown in Figs. 27-32.

5.3 Capture Cross Section

The capture, elastic and inelastic scattering cross sections were calculated with the statistical model code CASTHY³⁵⁾ for each isotope. The (n,2n), (n,3n), (n,n'p), (n,n' α), (n,p) and (n, α) reactions were taken into account as the competing processes. The level fluctuation was considered.

The γ -ray strength functions were obtained so that the calculated capture cross section might reproduce the experimental data of Ernst et al.³⁶⁾ for ⁵⁸Ni, ⁶⁰Ni and ⁶¹Ni and of Beer and Spencer²⁶⁾ for ⁶²Ni and ⁶⁴Ni. The obtained γ -ray strength functions are given in Table 12. For natural nickel, the y-ray strength functions were adjusted so that the calculated capture cross section might reproduce the experimental data of Gayther et al.^{3/)}: 9.6 mb at 450 keV. This adjustment was made without considering the capture data of each isotope and the obtained γ -ray strength functions are also given in Table 12. Though the γ -ray strength functions used in the evaluation of natural nickel are different from those used for the isotopes as seen in Table 12, the calculated cross sections of natural nickel agree with those constructed from the isotopic nickel data. The Berman³⁸⁾ type giant resonance profile function wa. dopted. The parameters of $\frac{60}{Ni}$ were used for all the nickel-isotopes and are given in Table 13. The capture cross sections of natural and isotope nickels are shown in Figs. 33-38 with the measured data.

5.4 Elastic and Inelastic Scattering Cross Sections

The inelastic scattering cross sections were calculated for each

isotope with CASTHY code. The level schemes were taken from Table of Isotopes, 7th edition³⁹⁾ and are given in Table 14. The level density parameters were evaluated by Yoshida⁴⁰⁾ from the resonance level spacing and the staircase plotting of low lying levels by taking account of the systematics among neighboring nuclei. They are given in Table 15.

The direct process was considered only for the inelastic scattering to the first excited state of the even-mass isotopes. They were evaluated on the basis of the measured data up to 7 MeV. Above 7 MeV, the direct processes were calculated with DWBA and added to the compound components calculated with CASTHY. The β_2 -values in the DWBA calculation are 0.187 for ⁵⁸Ni, 0.211 for ⁶⁰Ni, 0.193 for ⁶²Ni and 0.192 for ⁶⁴Ni. The inelastic scattering cross sections to the first levels of even-mass isotopes are shown in Figs. 39-42.

Special care is required in constructing the natural nickel data from the isotope data. Each isotope file has about 20 discrete inelastic levels. In the ENDF/B format, however, only 40 discrete inelastic levels are allowed. Hence all the levels of isotopes cannot be adopted in the natural nickel file. In JENDL-1, the lowest 40 levels were adopted as discrete levels and the other levels were added to the continuum levels. As a result, JENDL-1 contains only a few levels of the main isotopes and many low-lying levels of the minor odd-mass isotope. The shielding benchmark tests of iron¹²⁾, however, suggested that this treatment was inadequate. In JENDL-2, we combined some levels, whose Q-values are similar, to one level. Table 14 also shows the level grouping in the natural nickel file. The total inelastic scattering cross section of natural nickel is shown in Fig. 46. The present values agree well with the measured data of Broder et al. 42) below 5 MeV but look underestimated above 10 MeV. This problem will be discussed later. The total inelastic scattering cross sections of the

-9-

isotopic nickels are shown in Figs. 43-48.

Finally the elastic scattering cross section was adjusted by subtracting all the other partial cross sections from the total cross section.

6. Other Quantities

6.1 Angular Distributions of Emitted Neutrons

The angular distribution of the elastically scattered neutrons was calculated with the optical model for each isotope, and that of natural nickel was obtained by averaging the data of isotopes by using $a_{i}\sigma_{si}$ as weights (a_{i} and σ_{si} denote the abundance and elastic scattering cross section of isotope i, respectively). For inelastic scattering to the discrete levels, the angular distributions were also calculated with the Hauser-Feshbach model for each isotope, and isotropic scattering in the laboratory system was assumed for the inelastic scattering to the continuum levels, and for the (n,2n), (n,3n), (n,n'\alpha) and (n,n'p) reactions.

6.2 Energy Distributions of Emitted Neutrons

The energy distributions of emitted neutrons were evaluated for each isotope as follows: The simple evaporation spectrum was assumed for the inelastic scattering to the continuum states (MT=91). The same nuclear temperature was also applied to the $(n,n'\alpha)$ and (n,n'p)reactions. As to the (n,2n) and (n,3n) reactions, the successive evaporation model⁴³⁾ was assumed: The first neutron evaporates leaving the residual nucleus in an excited state higher than the neutron separation energy, and the second neutron evaporates from the excited state corresponding to the average energy of the first neutron, and so on.

- 10 -

In natural nickel file, we mixed the temperatures of ⁵⁸Ni and ⁶⁰Ni with the weights of 0.7 × σ (⁵⁸Ni) and 0.3 × σ (⁶⁰Ni), respectively, where σ denotes the cross section of the considered reaction.

7. Discussion

7.1 Direct and Semi-direct Reactions

The direct and semi-direct reactions were ignored in he present evaluation except for the inelastic scattering to the first level of the even-A isotopes, where the DWBA calculation was made. This assumption little affects the cross sections in the energy region below a few MeV, which are important for fission reactors. In fact the presently evaluated data were proved through benchmark tests^{14,15)} to be satisfactory for fission reactor calculations.

On the other hand, however, the direct and semi-direct processes become dominant for the high energy region such as 14 MeV. Recently the energy-angle double-differential cross sections (DDX) have been measured⁴⁴⁾ near 14 MeV for materials important for fusion reactors. The results of natural nickel are compared with the DDX calculated from JENDL-2^{*} in Fig. 49. The spectrum calculated with JENDL-2 shows considerable underestimate for emission neutron with energy from 6 to 12 MeV. This means that the inelastic scattering cross sections to the levels between 2 MeV and 8 MeV are much underestimated. On the other hand, the peak near 12.5 MeV is well reproduced by the present calculation, suggesting that the inelastic scattering cross sections to the first level, calculated with DWEA, are adequate. Furthermore, the DDX data apparently show the forward peak in the angular distribution of

* Two processing codes FAIR-DDX⁴⁵⁾ and DDXPLOT⁴⁶⁾ have been developed to calculate DDX from JENDL library.

-11-

inelastically scattered neutrons even to the continuum states. Such a behavior is not taken into account in the present evaluation.

The above comparison between the measured and calculated data of DDX suggests that the JENDL-2 data are insufficient in the cross section values and angular distributions of the inelastic scattering for fusion neutronics application where 14 MeV neutrons have a dominant role. This problem is an important subject for JENDL-3.

7.2 Threshold Reactions

Various threshold reactions are included. For reactions whose experimental data are numerous, such as the ${}^{58}Ni(n,2n)$, ${}^{58}Ni(n,p)$ and ${}^{60}Ni(n,p)$ reactions, we adopted the evaluation for JENDL-1, which was made by selecting lots of experimental data. For reactions whose experimental data are scarce, the evaluation was based on the simple evaporation model ${}^{30,34)}$ with compound nucleus approximation or on the analogy of the other well-known reactions by considering the difference of Q-values. These methods are rather arbitrary and considerable uncertainty remains on the values thus evaluated. More systematic evaluation is now in progress for JENDL-3 by taking account of the pre-equilibrium processes.

The $(n,n'\alpha)$ reaction was considered only for 58 Ni. Though the $(n,n'\alpha)$ reaction cross section is much smaller (about 1/5) than the (n,α) reaction cross section at 14 MeV, its contribution becomes the larger in the higher energy region. Furthermore, the measurements are often made for the total α -emission cross section. Figures 50-55 show the total α -emission cross section with the measured data. Naturally the present evaluated value consists of only the (n,α) cross section for ${}^{60}_{\rm Ni}$, ${}^{61}_{\rm Ni}$, ${}^{62}_{\rm Ni}$ and ${}^{64}_{\rm Ni}$.

For 58Ni, the (n, α) and (n, n' α) reaction cross sections were

- 12 -

JAERI-M 85-101

evaluated without considering the total α -emission cross section, and the total α -emission cross section is systematically larger than the recent measurements by Grimes⁴⁷⁾ and Kneff et al.⁴⁸⁾. The same tendency is observed for the natural nickel. On the other hand, the total α -emission cross section looks underestimated at 15 MeV for ⁶⁰Ni, ⁶¹Ni and ⁶⁴Ni due to negligence of the (n,n' α) reaction cross section. In order to know the helium production rate precisely, the (n, α) and (n,n' α) reaction cross sections should be evaluated for all the isotopes by considering the total α -emission cross section. This will be also made in JENDL-3.

8. Conclusion

The neutron nuclear data of natural nickel and its isotopes have been evaluated for JENDL-2. The present evaluation was made on the basis of recently measured data with the aid of the model calculation by considering the feedback from the benchmark tests^{11,12} of JENDL-1.

Special care was taken on the following points:

- The disagreement observed between the calculated and measured cross sections in the resonance region was carefully studied and the background conection was made. (See Appendix 1).
- 2) The remaining resonance structure observed in the unresolved region was adopted in the evaluation of the total cross section for the natural nickel file.
- The inelastic scattering levels were grouped into 40 pseudo levels in the natural nickel file not to miss the levels of the main isotopes.
 Results of the benchmark tests of JENDL-2 reveal reliability of the present data for fission reactor calculations.

On the other hand, the following problems have been pointed out: 1) The direct and semi-direct reactions were ignored. The comparison of

-13-

DDX data at 14 MeV suggests that the JENDL-2 data are not sufficient for fusion neutronics application.

Various threshold reactions should be evaluated more systematically.
 These problems will be solved in JENDL-3.

Acknowledgment

The authors wish to thank S. Iijima, H. Yamakoshi, T. Asami and S. Igarasi for their helpful discussion. They are indebted to T. Nakagawa for his advice in using NDES. They also thank T. Narita for his aid in treating numerical experimental data. Careful typewriting by T. Maejima is much appreciated.

-- 14 --

Ŋ

References

- Schmidt J.J.: "Neutron Cross Sections for Fast Reactor Materials, Part I : Evaluation", KFK-120 (1966).
- Bhat M.R.: "Neutron and Gamma-Ray Production Cross Sections for Nickel", BNL-50435 (1974) (for ENDF/B-IV).
- Moxon M.C.: "Neutron Cross Sections of Natural Nickel and its Isotopes below a Neutron Energy of 600 keV", AERE-R 7568 (1974).
- Guenther P., Smith A., Smith D., Whalen J. and Howerton R.: "Measured and Evaluated Fast Neutron Cross Sections of Elemental Nickel", ANL/NDM-11 (1975).
- Goel B: "Graphical Representation of the German Nuclear Data Library KEDAK, Part I : Nonfissile Materials", KFK 2233 (1975) (for KEDAK-3).
- 6) Bychkov V.M., Vozyakov V.V., Manoshin V.N., Pratonov V.P., Popov V.I.: Proc. 4th all Union Conf. Neutron Physics, Kiev, 18-22 April, 1977, Vol.4, p.91, INDC(CCP)-118/G (1977) (for SOKRATOR).
- 7) Howerton R.J. and MacGregor M.H.: "The LLL Evaluated Nuclear Data Library (ENDL) : Description of Individual Evaluations for Z=0-98", UCRL-50400 Volume 15, Part D, Rev.1 (1978) (for ENDL-78).
- Divadeenam M.: "Ni Elemental Neutron Induced Reaction Cross-Section Evaluation", BNL-NCS-51346 (1979) (for ENDF/B-V).
- 9) Igarasi S., Nakagawa T., Kikuchi Y. and Asami T.: "Japanese Evaluated Nuclear Data Library, Version-1 - JENDL-1 -", JAERI 1261 (1979).
- 10) Kikuchi Y., Nakabasami Y. and Matsunobu H.: Unpublished.
- Kikuchi Y., Hasegawa A., Takano H., Kamei T., Hojuyama T., Sasaki M., Seki Y., Zukeran A. and Otake I.: "Benchmark Tests of JENDL-1", JAERI 1275 (1982).
- 12) Kawai M., Yamano N. and Koyama K.: "Nuclear Cross Sections for Technology", Proc. Int. Conf., Knoxville, Oct. 22-26, 1979, p.586, NBS Special Publication 594 (1980).

- 15-

- Inoue T., Shirakata K., Kinjo K., Ikegami T. and Yamamoto M.: J. At. Energy Soc. Jpn., <u>23</u>, 310 (1981) [in Japanese].
- 14) Kikuchi Y., Narita T. and Takano H.: J. Nucl. Sci. Technol., <u>17</u>, 567 (1980).
- 15) Kikuchi Y. and Members of JNDC: "Nuclear Data for Science and Technology", Proc. Int. Conf., 6-10 Sept. 1982, Antwerp, P.615, D. Reidel Publishing Co. (1983).
- 16) Kikuchi Y. and Sekine N.: To be published in J. Nucl. Sci. Technol.
- Wapstra A.H. and Bos K.: Atomic Data and Nuclear Data Tables, <u>19</u>, No.3 (1977).
- 18) Mughabgab S.F. and Garber D.I.: "Neutron Cross Sections, Vol.1, Resonance Parameters", BNL-325, 3rd Edition (1973).
- 19) Perey F.G., Chapman G.T., Kinney W.E. and Perey C.M.: "Neutron Data of Structural Materials for Fast Reactors", Proc. Specialists' Meeting, Geel, 5-8 Dec. 1977, p.503, Pergamon Press (1979).
- 20) Syme D.B., Bowen P.H. and Gadd A.D.: ibid, p.703.
- 21) Farrell J.A., Bilpuch E.G. and Newson H.W.: Ann. Phys. US, <u>37</u>, 367 (1966).
- 22) Fröhner F.: "Neutron Data of Structural Materials for Fast Reactors", Proc. Specialists' Meeting, Geel, 5-8 Dec. 1977, p.138, Pergamon Press (1979).
- Hockenbury R.W., Bartolome Z.M., Tatarczuk J.R., Moyer W.R. and Block R.C.: Phys. Rev., <u>178</u>, 1746 (1969).
- Stieglitz R.G., Hockenbury R.W. and Block R.C.: Nucl. Phys., <u>A163</u>, 592 (1971).
- 25) Cho M., Fröhner F.H., Kazerouni M., Müller K.N. and Rohr G.: "Nuclear Data for Reactors", Conf. Proc., Helsinki, 15-19 June 1970, Vol.1, p.619, IAEA (1970).

- 16 --

- 26) Beer H. and Spencer R.R.: Nucl. Phys., A240, 29 (1975).
- 27) Cierjacks S., Forti P., Kopsch D., Kropp L., Nebe J., Unseld H.: "High Resolution Total Neutron Cross Sections for Si, Cr and Ni between 0.5 and 30 MeV", KFK 1000 (Supplement 1) (1968).
- 28) Nakagawa T.: J. At. Energy Soc. Jpn., 22, 559 (1980) [in Japanese].
- 29) Kawai M.: Paper Presented at 1979 NEANDC Topical Discussions, Geel, Sept. 1979.
- 30) Pearlstein S.: Nucl. Sci. Eng., 23, 238 (1965).
- 31) Pearlstein S.: J. Nucl. Energy. 27, 81 (1973).
- 32) Auchampaugh G.F., Drake D.M. and Veeser L.R.: Proc. Symp. Neutron Cross Sections from 10 to 40 MeV, BNL, May 3-5, 1977, p.231, BNL-NCS-50681 (1977).
- 33) Seebeck U. and Bormann M.: Nucl. Phys., 68, 387 (1965).
- 34) Gilat J.: "GROGI2 A Nuclear Evaporation Computer Code Description and User's Manual", BNL 50246 (1970).
- 35) Igarasi S.: J. Nucl. Sci. Technol., <u>12</u>, 67 (1975).
- 36) Ernst A., Fröhner F.H. and Kompe D.: "Nuclear Data for Reactors", Conf. Proc., Helsinki, 15-19 June 1970, Vol.1, p.633, IAEA (1970).
- 37) Gayther D.B., Thomas B.W., Thom B. and Moxon, M.C.: "Neutron Data of Structural Materials for Fast Reactors", Proc. Specialists' Meeting, Geel, 5-8 Dec. 1977, p.547, Pergamon Press (1979).
- 38) Berman B.L.: Atomic Data and Nucl. Data Tables, 15, No.4 (1975).
- 39) Lederer C.M. and Shirley V.S.: "Table of Isotopes", 7th Edition, Wiley-Interscience (1978).
- Yoshida T.: Paper Presented at 1979 NEANDC Topical Discussions, Geel, Sept. 1979.
- 41) Gilbert A. and Cameron A.G.W.: Can. J. Phys., 43, 1446 (1965).

-17-

- 42) Broder D.L., Gamalij A.F., Lashuk A.I. and Sadokhin I.P.: "Nuclear Data for Reactors", Conf. Proc., Helsinki, 15-19 June 1970, Vol.2, p.295 (1970).
- 43) Kikuchi Y.: "EVAPSPEC Manual", Unpublished.
- 44) Takahashi A., Yamamoto J., Murakami T., Oshima K., Oda H., Fujimoto K. and Sumita K.: "Nuclear Data for Science and Technology", Proc. Int. Conf., 6-10 Sept. 1982, Antwerp, p.360, D. Reidel Publishing Co. (1983).
- 45) Minami K. and Yamano N.: "FAIR-DDX : A Code for Production of Double Differential Cross Section Library", JAERI-M 84-022 (1984) [in Japanese].
- 46) Iguchi T. and Yamano N.: "DDXPLOT : A Program to Plot the Energy Angle Double-Differential Cross Sections", JAERI-M 84-033 (1984) [in Japanese].
- Grimes S.M., Haight R.C., Alvar K.R., Barschall H.H. and Borchers
 R.R.: Phys. Rev., <u>C19</u>, 2127 (1979).
- 48) Kneff D.W., Oliver B.M., Nakata M.M. and Farrar H.: Proc. Symp. Neutron Cross-Sections from 10 to 50 MeV, BNL, May 12-14, 1980, p.289, BNL-NCS-51245 (1980).
- 49) Garg J.B., Rainwater J. and Havens W.W.: Phys. Rev., <u>C3</u>, 2447 (1971).
- 50) Beer H., Spencer R.R. and Serman J.: "Projekt Schneller Brüter, 3, Vierteljahresbericht 1972", KFK-1272/3, p.121-24 (1972).
- 51) Moxon M.C.: "Neutron Capture in the keV Energy Range in Structural Materials for Fast Reactors", Proc. NEACRP/NEANDC Specialist Meeting, May 1973, Karlsruhe, KFK 2046, p.156 (1975).
- 52) Fröhner F.H.: "Nuclear Cross Sections and Technology", Proc. Conf., Washington D.C., March 3-7, 1975, p.929, NBS Special Publication 425 (1975).

- 53) Good W.M., Paya D., Wagner R. and Tamura T.: Phys. Rev., <u>151</u>, 912 (1966).
- 54) Hockenbury R.W., Kaushal N.N. and Block R.C.: "Linear Accelerator Project, Annual Technical Report Oct. 71 - Sept. 72", COO-3058-27, p.14 (1972).

•

. . .

4.1

a

.

1

. . . .

References for Experimental Data in Figures

El: Havens W.W., Jr. and Rainwaters L.J.: Phys. Rev., 83, 1123 (1951).

E2: Merrison A.W. and Wiblin E.R.: Proc. Roy. Soc. (London) Section A, 215, 278 (1952).

E3: Gatti E., Germagnoli E. and Perona G.: Nuovo Cimento, 11, 262 (1954).

E4: Hibdon C.T. and Langsdorf A.: Phys. Rev., 98, 223 (1955).

E5: Brown R.J. and Bollinger L.M.: Nucl. Sci. Eng., 4, 576 (1958).

- E6: Garg J.B., Rainwater J. and Havens W.W.: Phys. Rev., C3, 2447 (1971).
- E7: Tattersall R.B., Rose H., Pattenden S.K. and Jowitt D.: J. Nucl. Energy, A12, 32 (1960).
- E8: Carre J.C. and Vidal R.: "Nuclear Data for Reactors", Proc. Conf. Paris, 17-21 Oct. 1966, Vol.1, p.479, IAEA, Vienna (1967).
- E9: Spitz L.M., Barnard E. and Brooks F.D.: Nucl. Phys., <u>A121</u>, 655 (1968).
- E10: Malik S.S., Brunkart G., Shore F.J. and Sailor V.L.: Nucl. Instrum. Methods, 86, 83 (1970).
- Ell: Hibdon C.T., Langsdorf A. and Holland R.E., Phys. Rev., <u>85</u>, 595 (1952).
- E12: Gibbons J.H., Macklin R.L., Miller P.D. and Neiler J.H.: Phys. Rev., <u>122</u>, 182 (1961).
- E13: Cabe J. and Cance M.: "Measurements of the Neutron Total Cross-Sections of Be, ¹¹B, C, A1, Si, S, Ti, V, Ni, ²³⁵U, ²³⁸U, ²³⁹Pu between 100 keV and 6 MeV", CEA-R-4524 (1973).
- E14: Guenther P., Smith A.B. and Whalen J.: Nucl. Sci. Eng., <u>59</u>, 106 (1976).
- E15: Le Rigoreur C., Arnaud A. and Taste J.: "Measurement of Neutron Radiative Capture Cross-Sections of Chromium, Iron and Nickel from 70 keV to 550 keV", CEA-N-1661 (1973).

-20-

- E16: Perey F.G., Love T.A. and Kinney: "Test of Neutron Total Cross Section Evaluations from 0.2 to 20 MeV for C, 0, Al, Si, Ca, Fe and SiO₂", ORNL-4823 (1972).
- E17: Macklin R.L. and Gibbons J.H.: Phys. Rev., 159, 1007 (1967).
- E18: Green L. and Mitchell J.A.: "Neutron Cross Sections and Technology", Proc. Conf., Knoxville, March 15-17, 1971, CONF-710301, p.688 (1971).
- E19: Schwartz R.B., Schrak R.A. and Heaton H.T.: "MeV Total Neutron Cross Sections", NBS-Mono-138 (1974).
- E20: Cierjacks S., Forti P., Kopsch D., Kropp L., Nebe J., Unseld H.: "High Resolution Total Neutron Cross Sections for Si, Cr, Ni between 0.5 and 30 MeV", KFK 1000 (Supplement 1) (1968).
- E21: Farrell J.A., Bilpuch E.G. and Newson H.W.: Ann. Phys. US, <u>37</u>, 367 (1966).
- E22: Ernst A., Fröhner F.H. and Kompe D.: "Nuclear Data for Reactors", Conf. Proc., Helsinki, 15-19 June 1970, Vol.1, p.633, IAEA (1970).
- E23: Stoler P., Clement J. Goulding C. and Fairchild R.: "Neutron Cross Sections and Technology", Proc. Conf., Knoxville, March 15-17, 1971, CONF-710301, p.311 (1971).
- E24: Cho M., Fröhner F.H., Kazerouni M., Müller K.N. and Rohr G.: "Nuclear Data for Reactors", Conf. Proc., Helsinki, 15-19 June 1970, Vol.1, p.619, IAEA (1970).
- E25: Spencer R.R., Beer H. and Fröhner F.H.: "The Total Neutron Cross Sections of ⁵⁰Cr, ⁵²Cr, ⁶²Ni and ⁶⁴Ni in the Energy Region 10-300 keV", KFK-1517 (1972).
- E26: Eeer H. and Spencer R.P.: Nucl. Phys., A240, 29 (1975).
- E27: Boschung P., Lindow J.T. and Shrader E.F.: Nucl. Phys., <u>A161</u>, 593 (1971).
- E28: Smith A., Guenther P., Smith D. and Whalen J.: Nucl. Sci. Eng., <u>72</u>, 293 (1979).

- 21 -

- E29: Benveniste J.: Proc. 2nd UN Int. Conf. Peaceful Usages of Atomic Energy, Geneva, 1-13 Sept. 1958, Vol.15, p.3 (1958).
- E30: Auchampaugh G.F., Drake D.M. and Veeser L.R.: Proc. Symp. Neutron Cross Sections from 10 to 40 MeV, BNL, May 3-5, 1977, p.231, BNL-NCS-50681 (1977).
- E31: Prestwood R.J. and Bayhurst B.P.: Phys. Rev., <u>121</u>, 1438 (1961).
- E32: Jeronymo J.M.F., Mani G.S., Olkowski J., Sadeghi A. and Williamson C.F.: Nucl. Phys., <u>47</u>, 157 (1963).
- E33: Paulsen A. and Liskien H.: Nukleonik, 7, 117 (1965).
- E34: Chojnacki S., Decowski P., Gierlik E., Grochulski W., Marcinkowski A., Siwek K., Sledzinska I. and Wilhelmi Z.: "Ni-58 (n,2n) Cross Section in the Energy Range from 13 to 16 MeV", INR-680 (1965).
- E35: Bormann M., Dreyer F. and Zielinski U.: "Measurements of some Fast Neutron Cross Sections with the Activation Method", EANDC(E)-66, p.42 (1966).
- E36: Csikai J. and Peto G.: Acta. Phys. Acad. Sci. Hung., 23, 87 (1967).
- E37: Temperley J.K.: Nucl. Sci. Eng., <u>32</u>, 195 (1968).
- E38: Fink R.W. and Lu W.D.: Bull. Am. Phys. Soc., 15, 1372 (1970).
- E39: Hemingway J.D.: J. Nucl. Energy, 27, 241 (1973).
- E40: Araminowicz J. and Dresler J.: "Investigation of the (n,2n) reactions at 14.6 MeV for 42 Nuclides", INR-1464, p.14 (1973).
- E41: Qaim S.M. and Molla N.I.: Nucl. Phys., A283, 269 (1977).
- E42: Hudson C.G., Alford W.L. and Ghoral S.K.: Ann. Nucl. Energy, <u>5</u>, 589 (1972).
- E43: Lees E.W., Patrick B.H. and Lindley S.: "A Search for the 238 U(γ,α) 234 Th and 238 U(n,α) 234 Th and Measurements of the 60 Ni(n,p) 60 Co and 62 Ni(n,α) 59 Fe cross sections at 14.7 MeV Neutron Energy from Associated Monitor Foils", AERE-R-9390 (1979).

- 22 -

- E44: Adamski L., Herman M. and Marcinkowski A.: Ann. Nucl. Energy, <u>7</u>, 397 (1980).
- E45: Seebeck U. and Bormann M.: Nucl. Phys., 68, 387 (1965).
- E46: Kumabe I. and Fink R.W.: Nucl. Phys., 15, 316 (1960).
- E47: Glover R.N. and Weigold E.: Nucl. Phys., 29, 309 (1962).
- E48: Bramlitt E.T. and Fink R.W.: Phys. Rev., 131, 2649 (1963).
- E49: Cross W.G., Clarke R.L., Morin K., Slinn G., Ahmed N.M. and Beg K.: "Activation Cross Sections of Fe and Ni Isotopes for 14.5 MeV Neutrons", EANDC(CAN)-16, p.1 (1963).
- E50: Barrall R.C., Silbergeld M. and Gardner D.G.: Nucl. Phys., <u>A138</u>, 387 (1969).
- E51: Maslov G.N., Nasyrov F. and Pashkin N.F.: "The Experimental Cross Sections of the Nuclear Reactions for 14 MeV Neutrons", YK-9, p.50 (1972).
- E52: Weigel H., Michel R. and Herr W.: Radiochimica Acta, 22, 11 (1975).
- E53: Fukuda K., Matsuo K., Shirahama S. and Kumabe I.: "Activation Cross Sections on Fe, Co, Ni, Zr and Mo for 14.6 MeV Neutrons", NEANDC(J)-56/U, p.44 (1978).
- E54: Allan D.L.: Proc. Phys. Soc. (London), A70, 195 (1957).
- E55: March P.V. and Morton W.T.: Philosophical Magazine, 3, 577 (1958).
- E56: Allan D.L.: Nucl. Phys., 24, 274 (1961).
- E57: Preiss I.L. and Fink R.W.: Nucl. Phys., 15, 326 (1960).
- E58: Val'ter A.K., Gonchar V.Ju, Zaljubovskij I.I., Latyshev G.D. and Chursin G.P.: Izv. Akad. Nauk SSSR, Ser. Fiz., <u>26</u>, 1079 (1962).
- E59: Barry J.F.: J. Nucl. Energy, <u>16</u>, 467 (1962).
- E60: Debertin K. and Rossle E.: Nucl. Phys. 70, 89 (1965).
- E61: Bormann M., Dreyer F., Neuert H., Riehle I. and Zielinski U.: "Nuclear Data for Reactors", Conf. Proc., Paris, 17-21 Oct. 1966, Vol.1, p.225, IAEA (1967).

- 23-

E62: Okumura S.: Nucl. Phys. A93, 74 (1967).

- E63; Decowski P., Grochulski W., Marcinkowski A., Siwek K., Sledzinska I. and Wilhelmi Z: Nucl. Phys., All2, 513 (1968).
- E64: Paulsen A. and Widera R.: Proc. Conf. Chem. Nucl. Data, Measurements and Applicat., Univ. of Kent, Canterbury, 20-22 Sept. 1971, p.129 (1971).
- E65: Dresler J., Araminowicz J. and Garuska U.: "Cross Sections of the (n,p) Reactions at 14.6 MeV for 13 Nuclides", INR-1464, p.12 (1973).

E66: Smith D.L. and Meadows J.W.: Nucl. Sci. Eng., 58, 314 (1975).

- E67: Nemilov Ju.A. and Trofimov Ju. N.: "Cross Sections of (n,p) Reactions on Ni-58, Fe-56 and Zn-64 isotopes at Neutron Energies 7.6 - 9.3 MeV", YFI-25, p.46 (1977).
- E68: Wu N.W. and Chon J.C.: Nucl. Sci. Eng., <u>63</u>, 268 (1977).
- E69: Paulsen A. and Liskien H.: Nukleonik, 10, 91 (1967).
- E70: Levkovskij V.N., Vinitskaja G.P., Kovel'skaja G.E. and Stepanov V.M.: Nucl Phys., 10, 44 (1969).
- E71: Paul E.B. and Clarke R.L.: Can. J. Phys., 31, 267 (1953).
- E72: Van Loef J.J.: Nucl. Phys., 24, 340 (1961).
- E73: Strain J.E. and Cross W.J.: "14 MeV Neutron Reactions", ORNL-3672 (1965).
- E74: Paulsen A., Liskien H., Arnotte F. and Widera R.: Nucl. Sci. Eng., 78, 377 (1985).
- E75: Yu-Wen Yu and Gardner D.G.: Nucl. Phys., A98, 451 (1967).
- E76: Levkovsky V.N., Kovelskaya G.E., Vinitskaya G.P., Stepanov V.M. and Sokolsky V.V.: Izv. Akad. Nauk SSSR, Ser. Fiz., <u>8</u>, 7 (1968).
- E77: Belanova T.S.: Sov. Phys. JETP, <u>34</u>, 397 (1958).
- E78: Diven B.C., Terrell J. and Hemmendinger A.: Phys. Rev., <u>120</u>, 556 (1960).

- 24 -

- E79: Stavisskij Yu.Ya. and Shapar A.V.: Atomnaya Energiya, 10, 264 (1961).
- E80: Gayther D.B., Thomas B.W., Thom B. and Moxon M.C.: "Neutron Data of Structural Materials for Fast Reactors", Proc. Specialists' Meeting, Geel, 5-8 Dec. 1977, p.547. Pergamon Press (1979).
- E81: Towle J.H. and Owens R.O.: Nucl. Phys., A100, 257 (1967).
- E82: Rodgers W.L., Shrader E.F. and Lindon J.T.: "Neutron Scattering from ${}^{12}C$, ${}^{56}Fe$, ${}^{65}Cu$, ${}^{58}Ni$ and ${}^{60}Ni$ ", COO-1573-33, p.2 (1967).
- E83: Boschung P., Lindon J.T. and Shrader E.F.: Nucl. Phys., <u>A161</u>, 593 (1971).
- E84: Rodgers V.C., Beghian L.E., Clikeman F.M. and Mahoney F.S.: Nucl. Sci. Eng., 45, 297 (1971).
- E85: Konobeevskij E.S., Musaelyan R.M., Popov V.I. and Surkova I.V.: Izv. Akad. Nauk SSSR, Ser. Fiz, <u>35</u>, 2345 (1971).
- E86: Etemad M.A.: "Neutron Inelastic Scattering Cross Sections in the Energy Range 2 to 4.5 MeV. Measurements and Calculations", AE-481 (1973).
- E87: Sokolov L.S., Fjodorov M.B., Korbetskij E.V., Surovitskaja N.T. and Jakovenko T.I.: Ukrainskij Fizichnij Zhurmal, <u>18</u>, 263 (1973).
- E88: Korzh I.A., Mishchenko V.A., Mozhghukhin E.N., Golubova A.A., Pravdivyj N.M., Sanzhur I.E. and Pasechnik M.V.: Proc. 3rd All-Union Conf. Neutron Physics, Kiev, 9-13 June 1975, Vol.4, p.220 (1976).
- E89: Broder D.L., Gamalij A.F., Lashuk A.I. and Sadokhin I.P.: "Nuclear Data for Reactors", Conf. Proc., Helsinki, 15-19 June 1970, Vol.2, p.295, IAEA (1970).
- E90: Fujita I., Sonoda M., Katase A., Wakuta Y., Tawara H., Hyakutake M. and Iwatani K.: J. Nucl. Sci. Technol. 9, 301 (1973).
- E91: Joensson B., Nyberg K. and Berggvist I.: Arkiv for Fysik, 39, 295 (1969).

- E92: Takahashi A., Yamamoto J., Murakami T. Oshima K., Oda H., Fujimoto K. and Sumita K.: "Nuclear Data for Science and Technology", Proc. Int. Conf. 6-10 Sept. 1982, Antwerp, p.360, D. Reidel Publishing Co. (1983).
- E93: Grimes S.M., Haight R.C., Alvar K.R., Barschall H.H. and Bouchers R.R.: "Charged Particle Emission in Reactions of 15 MeV Neutrons with Isotopes of Chromium, Iron, Nickel and Copper", UCRL-81802 (1978).
- E94: Kneff D.W., Oliver B.M., Nakata M.M. and Farrar H.: Proc. Symp. Neutron Cross-Sections from 10 to 50 MeV, BNL, May 12-14, 1980, p.289, BNL-NCS-51245 (1980).
- E95: Dolja G.P., Kljucharjov A.P., Bozhko V.P., Golovnja V. Ja., Kachan A.S. and Tutubalin A.I.: Proc. 3rd All-Union Conf. Neutron Physics, Kiev, 3-13 June 1975, Vol.4, p.173 (1975).
- E96: Kapchigashev P. and Popov U.P.: Atomnaya Energiya, 15, 120 (1963).
- E97: Hockenbury R.W., Bartolome Z.M., Tatarczuk J.R., Moyer W.R. and Block R.C.: Phys. Rev., 178, 1746 (1969).
- E98: Grench H.A.: Phys. Rev., B140, 1277 (1965).
- E99: Perey F.G., Le Rigoleur C.O. and Kinney W.E.: "Nickel-60 Neutron Elastic- and Inelastic-Scattering Cross Sections from 6.5 to 8.5 MeV", ORNL-4523 (1970).
- E100: Kinney W.E. and Perey F.G.: "Ni Neutron Elastic- and Inelastic-Scattering Cross Sections from 4.07 to 8.56 MeV", ORNL-4807 (1974).

- 26 -

Table 1 Status of presently evaluated quantities

Quantities	Energy range(eV)*		Comments
	min	max	
a) Resonance data			Constructed from isotopic data
Resonance parameters	-2.85+4	6.0+5	
Capture resonance integral	5.0 -1		Table 11
b) Cross sections			
Total	1.0 -5	2.0+7	Figs. 1 and 7
Elastic scattering	1.0 -5	2.0+7	
Total inelastic scattering	6.85+4	2.0+7	Fig. 43
Inelastic scattering			
to the lowest discrete level (lst)	6.85+4	2.0+7	
to the highest discrete level (40th)	4.55+6	2.0+7	
to the continiuum levels	2.57+6	2.0+7	
Capture	1.0 -5	2.0+7	Figs. 1, 33 and A6
(n,2n) reaction	7.95+6	2.0+7	Fig. 10
(n,3m) reaction	1.68+7	2.0+7	
(n,n'a) reaction	6.51+6	2.0+7	
(n,n'p) reaction	8.31+6	2.0+7	
(n,p) reaction	1.0 -5	2.0+7	Fig. 21
(n, α) reaction	1.0 -5	2.0+7	Fig. 27
c) Angular distributions of secondary neutrons			Optical model
Elastic scattering	1.0 -5	2.0+7	
Inelastic scattering to the discrete levels	6.85+4	2.0 1 7	
d) Energy distributions of secondary neutrons			Evaporation model
Inelastic scattering to the continuum levels	2.57+6	2.0+7	Fig. 49
(n,2n) reaction	7.95+6	2.0+7	Fig. 49
(n,3n) reaction	1.68+7	2.0+7	
(n,n'a) reaction	6.51+6	2.0+7	
(n,n'p) reaction	8.31+6	2.0+7	
(n,p) reaction	1.0 -5	2.0+7	
(n,α) reaction	1.0 -5	2.0+7	

*2.0+7 denotes 2.0×10⁷.

-27-

<u>Cuantition</u>	Energy range(eV)*		Compatio
	min	max	Coments
a) Resonance data			
Resonance parameters	-2.85+4	6.0+5	Table 6
Capture resonance integral	5.0 -5		Table 11
b) Cross sections			
Total	1.0 -5	2.0+7	Figs. 2 and 8
Elastic scattering	1.0 -5	2.0+7	
Total inelastic scattering	1.48+6	2.0+7	Fig. 44
Inelastic scattering			
to the lowest discrete level (lst)	1.48+6	2.0+7	Fig. 39
to the highest discrete level (22nd)	4.55+6	2.0+7	
to the continiuum levels	4.60+6	2.0+7	
Capture	1.0 -5	2.0+7	Figs. 2 and 34
(n,2n) reaction	1.24+7	2.0+7	Fig. 11
(n,n'a) reaction	6.51+6	2.0+7	Fig. 16
(n,n'p) reaction	8.31+6	2.0+7	Fig. 17
(n,p) reaction	1.0 -5	2.0+7	Fig. 22
(n,a) reaction	1.0 -5	2.0+7	Fig. 28
) Angular distributions of secondary neutrons			Optical model
Elastic scattering	1.0 -5	2.0+7	
Inelastic scattering to the discrete levels	1.48 +6	2.0+7	
) Energy distributions of secondary neutrons			Evaporation mode:
Inelastic scattering to the continuum levels	4.60 +6	2.0+7	
(n,2n) reaction	1.24+7	2.0+7	
(n,n'a) reaction	6 . 51 +6	2.0+7	
(n,n'p) reaction	8.31+6	2.0+7	
(n,p) reaction	1.0 -5	2.0+7	
(n,α) reaction	1.0 -5	2.0+7	

*2.0+7 denotes 2.0×10⁷.

1 11 11

<u></u>			· · · · · · · · · · · · · · · · · · ·
Quantities	Energy range(eV) [*]		Comments
		max	· · · · · · · · · · · · · · · · · · ·
a) Resonance data			
Resonance parameters	-5.5 +3	6.0+5	Table 7
Capture resonance integral	5.0 -5		Table 11
b) Cross sections			
Total	1.0 -5	2.0+7	Figs. 3 and 9
Elastic scattering	1.0 -5	2.0+7	
Total inelastic scattering	1.35+6	2.0+7	Fig. 45
Inelastic scattering			
to the lowest discrete level (1st)	1.35+6	2.0+7	Fig. 40
to the highest discrete level (22nd)	3.94+6	2.0+7	
to the continiuum levels	3.96 +6	2.0+7	
Capture	1.0 -5	2.0+7	Figs. 3 and 35
(n,2n) reaction	1.16+7	2.0+7	Fig. 12
(n,n'p) reaction	9.70 + 6	2.0+7	Fig. 18
(n,p) reaction	2.08+6	2.0+7	Fig. 23
(n,a) reaction	1.0 -5	2.0+7	Fig. 29
c) Angular distributions of secondary neutrons			Optical model
Elastic scattering	1.0 -5	2.0+7	
Inelastic scattering to the discrete levels	1.35+6	2.0+7	
 Energy distributions of secondary neutrons 			Evaporation model
Inelastic scattering to the continuum levels	3.96+6	2.0+7	
(n,2n) reaction	1.16+7	2.0+7	
(n,n'p) reaction	9.70+6	2.0+7	
(n,p) reaction	2.08+6	2.0+7	
(n,a) reaction	1.0 -5	2.0+7	

* 2.0+7 denotes 2.0×10⁷.

	Quantities	Energy range(eV)*		Comments
• •		<u>min</u>	max	·
a)	Resonance data			
	Resonance parameters	-1.8 +3	6.85+4	Table 8
	Capture resonance integral	5.0 -1		Table 11
)	Cross sections			
	Total	1.0 -5	2.0+7	Fig. 4
	Elastic scattering	1.0 -5	2.0+7	
	Total inelastic scattering	6.85+4	2.0+7	Fig. 46
	Inelastic scattering			
	to the lowest discrete level (1st)	6.85+4	2.0+7	
	to the highest discrete level (20th)	2.51+6	2.0+7	
	to the continiuum levels	2.57+6	2.0+7	
	Capture	1.0 -5	2.0+7	Figs. 4 and 36
	(n,2n) reaction	7.95+6	2.0+7	Fig. 13
	(n,n'p) reaction	1.00+7	2.0+7	Fig. 19
	(n,p) reaction	5.49+5	2.0+7	Fig. 24
	(n,a) reaction	1.0 -5	2.0+7	Fig. 30
)	Angular distributions of secondary neutrons			Optical model
	Elastic scattering	1.0 -5	2.0+7	
	Inelastic scattering to the discrete levels	6.85+4	20+7	
)	Energy distributions of secondary neutrons			Evaporation model
	Inelastic scattering to the continuum levels	2.57+6	2.0+7	
	(n,2n) reaction	7.95+6	2.0+7	
	(n,n'p) reaction	1.00+7	2.0+7	
	(n,p) reaction	5.49+5	2.0+7	
	(n,a) reaction	1.0 -5	2.0+7	

.

* 2.0+7 denotes 2.0×10⁷.

--

A
-	· · · · · · · · · · · · · · · · · · ·	Energy ra	ange(eV)*	a .
Ç	Quantities	min	max	Comments
a) Res	sonance data			
Re	esonance parameters	4.6 +3	6.0+5	Table 9
Ca	pture resonance integral	5.0 -1		Table ll
b) Cro	ess sections			
То	tal	1.0 -5	2.0+7	Fig. 5
E1	astic scattering	1.0 -5	2.0+7	
То	tal inelastic scattering	1.19+6	2.0+7	Fig. 47
In	elastic scattering			
	to the lowest discrete level (1st)	1.19+6	2.0+7	Fig. 41
	to the highest discrete level (21st)	3.92+6	2.0+7	
	to the continiuum levels	4.03+6	2.0+7	
Ca	pture	1.0 -5	2.0+7	Figs. 5 and 37
(n	,2n) reaction	1.08+7	2.0+7	Fig. 14
(n	,n'p) reaction	1.13+7	2.0+7	Fig. 20
(n	,p) reaction	4.53+6	2.0+7	Fig. 25
(n	,a) reaction	4.44+5	2.0+7	Fig. 31
c) Angu seco	ular distributions of ondary neutrons			Optical model
E1a	astic scattering	1.0 -5	2.0+7	
Ind	elastic scattering to the discrete levels	1.19+6	2.0+7	
l) Ener seco	rgy distributions of ondary neutrons			Evaporation model
Ine t	elastic scattering to the continuum levels	4.03+6	2.0+7	
(n,	,2n) reaction	1.08+7	2.0+7	
(n,	n'p) reaction	1.13+7	2.0+7	
(n,	,p) reaction	4.53+6	2.0+7	
(n.	,α) reaction	4.44+5	2.0+7	

*2.0+7 denotes 2.0×10⁷.

.

Ť.

~ 31 -

6	4,,,,
	- M-

	Quantities	Energy ra	ange(eV)*	Comments	
	······	min	max		
a)	Resonance data				
	Resonance parameters	9.52+3	6.0+5	Table 10	
	Capture resonance integral	5.0 -1		Table 11	
b)	Cross sections				
	Total	1.0 -5	2.0+7	Fig. 6	
	Elastic scattering	1.0 -5	2.0+7		
	Total inelastic scattering	1.37+6	2.0+7	Fig. 48	
	Inelastic scattering				
	to the lowest discrete level (1st)	1.37+6	2.0+7	Fig. 42	
	to the highest discrete level (20th)	4.03+6	2.0+7		
	to the continiuum levels	4.15+6	2.0+7		
	Capture	1.0 -5	2.0+7	Figs. 6 and 38	
	(n,2n) reaction	9.81+6	2.0+7	Fig. 15	
	(n,3n) reaction	1.68+7	2.0+7	Fig. 15	
	(n,p) reaction	6.63+6	2.0+7	Fig. 26	
	(n,a) reaction	2.48+6	2.0+7	Fig. 32	
c)	Angular distributions of secondary neutrons			Optical model	
	Elastic scattering	1.0 -5	2.0+7		
	Inelastic scattering to the discrete levels	1.37+6	2.0+7		
d)	Energy distributions of secondary neutrons			Evaporation model	
	Inelastic scattering to the continuum levels	4.15+6	2.0+7		
	(n,2n) reaction	9.81+6	2.0+7		
	(n,3n) reaction	1.68+7	2.0+7		
	(n,p) reaction	6.63+6	2.0+7		
	(n,a) reaction	2.48+6	2.0+7		

* 2.0+7 denotes 2.0×10⁷.

Table	2	Isotopi	lc abur	dances,	exact	mass	es and	
	,	various	reacti	on Q-va	lues of	E Ni	isotope	s.

	⁵⁸ Ni	60 _{Ni}	61 _{Ni}	62 _{Ni}	64 _{Ni}
a) Abundance	*				2
(%)	67.86	26.21	1.19	3.66	1.08
b) Exact mas	** S				
(a.m.u.)	57.9354	59.9308	60.9311	61.9284	63,9280
c) Q-values	*				
(MeV)					
(n,2n)	-12.1970	-11.3890	-7.8206	-10.5980	- 9.6570
(n,3n)	-22.4657+	-20.3893+	-19.5276+	-18.7186+	-16.4959
(n,n'α)	- 6.3978	- 6.2910 ⁺	- 6.4650+	- 7.0815+	- 8.0858 ⁺
(n,n'p)	- 8.1711	- 9.533	-9.8617	-11.1376	-12.5371+
(n,p)	0.4022	- 2.4011	-0.5396	- 4.4589	- 6.5244
(n,a)	2.901	1.3555	3.5795	- 0.4373	- 2.4412

* Taken from the recommendation by $Moxon^{3)}$

** Taken from the compilation of Wapstra and Bos¹⁷⁾

+ Not evaluated in JENDL-2

				(barns)
	То	tal	Capt	ure
<u> </u>	Present*	BNL-325(3) ¹⁸⁾	Present*	BNL-325(3) ¹⁸⁾
Natural	21,20		4.429	4.43 ± 0.16
58 _{Ni}	30.62	30.4 ± 0.4	4.605	4.6 ± 0.3
60 _{Ni}	3.87	3.8 ± 0.2	2.801	2.8 ± 0.2
61 _{Ni}	12.12	12.1 ± 0.8	2.506	2.5 ± 0.8
62 _{Ni}	23.70	23.7 ± 0.5	14.20	14.2 ± 0.3
64 _{N1}	1.52		1,480	1.49 ± 0.03

Table 3 The 2200m/s cross sections

* Calculated from the resonance parameters.

ł

Table 4 Measured data on the basis of which the evaluation

of resonance parameters was made.

Isotopes	Type [*]	Measured Data
58	т	Perey et al. ¹⁹⁾ , Symme and Bowen ²⁰⁾ , Farrell et al. ²¹⁾
N1	C	Perey et al. ¹⁹⁾ , Fröhner ²²⁾ , Hockenbury et al. ²³⁾
60	Т	Symme and Bowen ²⁰⁾ , Stieglitz et al. ²⁴⁾ , Farrell et al. ²¹⁾
°°Ni	ເ	Fröhner ²²⁾ , Stieglitz et al. ²⁴⁾ , Hockenbury et al. ²³⁾
· 61	Т	Cho et al. ²⁵⁾
⁰¹ N1	С	Fröhner ²²⁾ , Hockenbury et al. ²³⁾
62	Т	Beer and Spencer ²⁶⁾ , Farrell et al. ²¹⁾
° Ni	С	Beer and Spencer ²⁶⁾
<u></u>	T	Beer and Spencer ²⁶⁾ , Farrell et al. ²¹⁾
^{. 04} Ni	С	Beer and Spencer ²⁶⁾

* T denotes transmission measurements, and C capture measurements

-34-

Tab1	e	5	Status	of	resonance	parameters
------	---	---	--------	----	-----------	------------

-

•

-

4

Taotana	Defined energy range			S-wave resonances			P-wave resonances			Effective scattering
isocope	Min (eV)	Max (keV)	No	negative (keV)	E min (keV)	E max (keV)	No	E min (keV)	E max (keV)	(fm)
58 _{Ni}	10 ⁻⁵	600	32	-28.5, -5	15.2	600	120	6.9	604	7.5
60 _{N1}	10 ⁻⁵	600	38	-5.5	12.5	595	69	1.3	567	6.5
61 _{N1}	10 ⁻⁵	68.6	32	-1.8	7.15	68.8	25	1.35	30.1	6.4
62 _{Ni}	10 ⁻⁵	600	33	non	4.6	592	49	8.9	601	6.2
64 _{Ni}	10 ⁻⁵	600	26	non	14.3	584	37	9.52	566	6.4

- 35 -

Table 6 Resonance parameters of ⁵⁸Ni

ENERGY ENEY	L	J	NEUTRON MIDTH *	ORNHA HIDTH *	HMS **	HISCELLANEOUS	MEFEMENCE
-28.8	0	0.5	7670	.2.0			JENDL-2
-20-5		0.5	11817.0	2.14		GT = 11819-0	ENDF-8-4
-28-5 ± 5-0	Ö	0.5		9.0 ± 0.6		HON = 98.0 ± 5.4	BNL 325(3)
-28.5	lä	0.5	7670	1 2.0 1			73HOXON 74HOXON
-28-5	Ŏ		16400 ±900	9		GNO = 98.0 ± 5.4	71GARG
-5.5	0	0.5	1060	1-01	*		JENOL-2
-5.5		0.5	1061	1.87 ().87)			73HDXON 74HDXON
	<u> </u>						
6-90	11	0.5	0.0225	1.0	0.020 ± 0.001	GT = 1.0225	JENUL-2 JENUL-1
6-89		0.5	0.023	0.6	0 122 - 0 002	GT = 0.623	ENDF-8-4
6-89	10'	0.5	0.022	1-0	0.022 - 0.005		73M0X0N
5-89	11	0.5	0.022	(1.0)	0.022 ± 0.002	005 - 8.3 • 0.4	74MOXON SOHOCKENBURY
6.90 .	1		f 0.021		0.020 ± 0.001		77PERET
12.63		0.5	0.025	(1-0)	0.024 ± 0.002		JENDL-2
12.6		0.5	0.031	1-0 -		CT = 1.031	JENOL-1
12.6	[ï	0.5	(0.03)	(1.0)			74M0X0N
12.6	1.		£ 0.02)		0.024 ± 0.002		59HOCKENBURY
	<u> </u>				0.001 0.012		
13.344		0.5	9-5 0-64	1.0	0.001 1 0.047	GT = 1.64	JENOL-2 JENOL-1
13.3	1 1 .	1.5	0.22	0.5	0.30 + 0.05	GT = 0.82	ENOF-8-4
13.3	h i í	0.5	0.47	1-0	0.00		73POKON
13.34	1	0.5	0.5	(1.0)	0.32 ± 0.03	GG\$ = 63.2 ± 6.0	74HOXON 69HOCKENBURY
13.34 ± 0.03	1 1				0.49 ± 0.10		728EER
13.344 ± 4	11		A 9.5 ± 0.3	0.712	0.661 ± 0.047		77PERET
13.42	1		4.9 ± 2.5				775THE 1
13.622		0.5	1.8	0-904	0.604 ± 0.015	07 . 1.4	JENOL-2
13.6		1.5	0-45	0.6		GT = 1.06	ENDF-8-4
13.66 ± G.04		0.5	1.08	1.0	0.57 ± 0.06		BNL325(3) 73HOXON
13.66	ī	0.5	1-18	1-0 1			74MOXON
13.66 ± 0.04	1				0.52 ± 0.15	003 = 101 +10	728EER
13.60 ± 0.03	1			0.004	0.63 ± 0.20		77FROEHNER
13.63	i		2.9 ± 1.2	0.004	0.001 - 0.010		775THE 1
15.2	0	0.5	1300	2.054	2.052 ± 0.064		JENDL-2
15.5	0	0.5	1200-0	2.14		GT = 1202.1 GT = 1402.1	JENOL-1
15.50 ±-0.04	ō	0.5	[▲] 1200 ±100	2.1 ± 0.7		HCH = 9-64 ± 0-80	BNL 3251 31
16.42	ŏ	0.5	1190	2.1			74MOXON
1 6 .5	0					GT = 1540 GND = 11.900	66FARRELL
16.3 ± 0.2	0		1140 ±30			GNG = 9.23 ± 0.24	71GARO
15.4 ± 0.1	a		1200 ±30	1.42 ± 0.10			75FROEHNER
15.4 ± 0.1	0	0.6	f[]40 J //	2.054	2.052 + 0.054		77FROEHNER 77FFREY
15-2011 ± 0-0255	ŏ		1368-9 ± 0-16				775YNE
16.5	1	0.5	0.02	1.0		GT = 1.02	JENOL-1
16-5		0.5	(0.02)	1-0 1			73M0X0N 74N0X0N
16.5							69HOCKENBURY
17.21		0.5	0.027 (1.0 1	0.026 ± 0.004	1	JENOL-2
17.2	h à l	0.5	(0.02)	0-1		UN = 1.02	73HOXON
17.2	1	0.5	(0.05) (1-0 1			74MOXON
17.21 ± 0.04	1				0.02 ± 0.01		77FROEHNER
17.21	<u> </u>		1 0.031				TIFERET
18-96		0.5	0.07) (1.0 1	U-067 ± 0-004	GT = (.075	JENOL-2
19.0	L .	1.5	0.033	0.6	0.07 . 0.01	GT = 0.633	ENOF-8-4
19-03 2 0-06	66'	0.5	0.067	1.0	0.01 # 0.01		73MOXON
19.03	1	0.5	1 170-0	1.0 1	0.063 + 0.010	005 ± 8.7 ± 1.3	74NOXON 69HOCKENBURY
19-03 ± 0-06	111				0.08 1 0.02		728EER
19-06 ± 0-04			t 0+001		0-067 + 0-004	ļ	77PEREY
20.011	1	0.5	1.5	0.319	0-263 + 0-008	<u>†</u>	JENOL-2
20.0		0.5	0.282	1.0	-	01 = 1.282 01 - 0.72	JENOL - 1
20.04 ± 0.06	11.				0.22 + 0.03		ENL 3251 31
20.0	•	0.5	0.75	1-0		I	73MOXON

ENERGY	L J	NEUTRON MIDIN	CANNA HEDTH	H45	HISCELLANEOUS	REFERENCE
20.04 20.0 20.04 ± 0.05 20.04 ± 0.04 20.011 ± 6	1 0	*5 0.26	()-0) 0.319	0.20 ± 0.02 0.24 ± 0.05 0.24 ± 0.05 0.263 ± 0.008	005 = 26.0 ± 2.7	74H0X0N 69H0CKENBURY 72BEER 77FROEHNER 77PEREY
21.123 21.1 21.1 21.16 ± 0.05 21.1 21.16 21.1 21.16 21.1 21.16 ± 0.05 21.15 ± 0.04	1 0 1 i 1 0 1 3 0 0 1 0 1 0	.5 4.7 .5 0.300 .5 8.4 .5 1.27 .5 1.28	0.782 1.0 0.6 1.0 (1.0 1	0.670 ± 0.020 0.56 ± 0.06 0.57 ± 0.10 0.57 ± 0.11 0.61 ± 0.11	GT = 1.300 GT = 9.0 GGS = 70 + 7	JENOL - 2 JENOL - 1 BHL 32513 1 73MOKON 74MOXON 69HOCKENBURY 72BEER 77ROEHNER
21.123 ± 3 26.04 26.08 ± 0.07 26.08 ± 0.07 26.08 ± 0.07 26.08 ± 0.07 26.08 ± 0.07 26.08 ± 0.04		* 4.7 # 2 .5 0.37 .5 0.333 .5 0.33 * 0.6 1	0.782 (1.0 1 1.0 (1.0)	0.670 ± 0.020 0.271 ± 0.007 0.25 ± 0.05 0.25 ± 0.06 0.25 ± 0.06 0.27 ± 0.06 0.271 ± 0.007	GT = 1.333	77FEREY JENDL-2 JENDL-1 BH.325533 74MOXOW 72BEER 77FROEHMER 77FROEHMER 77FEREY
26.615 26.6 26.6 26.67 ± 0.07 26.6 26.67 26.67 ± 0.07 26.65 ± 0.07 26.65 ± 0.04 26.615 ± 1 26.63 26.63		.5 2.1 .5 2.33 .5 0.64 .5 2.33 .5 1.1 " 2.8 ± 0.4 1.925 ± 0.5 2.03 ± 6.3 1.64 ± 0.34	1.4 1.0 0.6 1.0 (2.0)	0.847 ± 0.017 0.70 ± 0.07 0.70 ± 0.07 0.73 ± 0.14 0.78 ± 0.15 0.847 ± 0.017	GT = 3.33 GT = 1.44 GCS = 68 # 7	JENOL-2. JENOL-1 ENOF-8-4 BM, 325(3) 73HOKOH 74HOKOH 74HOKOH 728EER 77FROENNER 77FROENNER 77FROENNER 775YHE1 775YHE2 775YHE3
27 62 27 62	t 0. i	5 1 0.03) ¶ 0.031	1 1.0 1	0.031 ± 0.005 0.031 ± 0.006		JENDL-2 77PEREY
32.23 32.23	i 0 i	5 0.70 ¶ 4)	(1.0)	0.413 ± 0.021	1	JENDL-2 77PEREY
32.355 32.4 32.4 32.36 32.4 32.36 32.36 32.35 12.3		5 9.7 5 2.23 5 2.57 5 2.56 5 3.95 ⁴ 18.4 ± 1.2 15.0 ± 1.2 5.7 ± 0.9 5.7 ± 0.9	i.4 i.0 i.0 i.2 i.2 i.295	1.211 ± 0.041 1.38 ± 0.15 1.44 ± 0.15 1.26 ± 0.25 1.40 ± 0.25 1.211 ± 0.041	Q7 = 3-23 Q7 = 3.57 QG5 = 114 =12	JENDL-2 JENDL-2 JENDL-3 ENDT-B-4 BML 32513 1 73HDXDN 74HDXDN 59HDCKENBURY 728EER 77FR0EHMER 77FR0EHMER 77FK0E 775YHE1 775YHE2 775YHE3
34.20 34.2 34.2 34.24 ± 0.08 34.24 34.2 34.24 34.2 34.24 ± 0.08 34.23 ± 0.08 34.23 ± 0.08 34.23 ± 0.05 34.22		5 1.97 5 0.5 5 0.71 5 1.95 5 1.91 7 2 1 2.5 a 1.0 J.94 a 0.5	0.94 1.0 0.6 1.0 (1.0)	0.636 ± 0.025 0.656 ± 0.08 0.656 ± 0.08 0.69 0.70 ± 0.11 0.635 ± 0.025	07 = 1.5 67 = 1.31 005 = 49.5 = 5.0	JENDL-2 JENDL-1 ENDF-B-4 BML325131 73H0X0M 74H0X0M 69H0CKENBURY 72BLER 77FR0ENHER 77FR0ENHER 77FKE3
15-04 15-04	1 0.3 1	5 0.032 f 0.031	().0)	0.031 ± 0.005 0.031 ± 0.005		JENDL-2 77PEREY
16.009 15.1 15.1 15.2 15.2 15.12		5 16.7 5 0.007 5 1.43 5 6.12 5 1.60 1.60 14.5 ± 1.2 16.97 ± 0.5	1.24 1.0 0.6 1.0 (2.0)	1.15 ± 0.043 0.96 ± 0.10 0.98 ± 0.10 1.01 0.99 ± 0.15 1.214 ± 0.043	01 = 1.007 07 = 2.03 005 = 62 + 7	JENOL -2 JENOL -1 ENOL -1 ENOL -8-4 BNL 32513) 73HOXON 54HOXCN 54HOXCNENBURY 728EEN 77FROEHNER 77FROEHNER 77FROEHNER 775YHE
9.51 9.59 9.59 ± 0.10 9.5 9.59 ± 0.10 9.59 ± 0.10 9.59 ± 0.06	i 0.5 i 1.5 0 0.5 0 0.5	5 2.22 5 0.493 5 (1.3) 5 1.96	1-1 1-0 2-0 (1-0)	0.74 ± 0.028 0.66 ± 0.15 0.66 ± 0.13 0.66 ± 0.13 0.66 ± 0.10	CT = 1.493	JENOL - 2 JENOL - 1 BHL 3251 3 J 73HOXON 74HOXON 63HOCKEMBURY 72BEER 77FROEHNER

r	·····	r				
7E NOT - S		3£0.0 • 659.0	(0-1)	<u> </u>	\$*0 1	66.39
גענגענגע גענגענג גענגענא גענגענא גענגע גענאענע גענאענע	040 = 14:25 = 14:25		0 = 2.0 2.0 = 0.5 2.0 = 0.5	002+ 0006 002+ 0006 002+ 0006 002+ 0006 002+ 0006 002+ 0006 002+ 0006	0 5*0 0 0 0 0	83*3408 + 0*0183 83*508 + 0*01 83*0 + 0*0 83*0 + 0*5 83*0 + 0*3 83*0 + 0*3 83*0 + 0*3
996,044677 2,4400204 2,4400204 0,47325133 2,4742,474 2,4744 2,4	01 = 3660 1 = 3660 14.34 ± 0.80 14.34 ± 0.80		3.2 2.0 2.14 2.14 2.2 2.2	3290 3280 *500 3280 *500 3280 0 3280 0	S'0 0 S'0 0 S'0 0 S'0 0 S'0 0 S'0 0	0*09 980*59 2*09 2*07 9*29 9*29 9*29 9*29 9*25
1127463 1122463 1122464 11226664 11206664 11206664 11206664 1120666561 1120666561 112066651 112066651 112066651 112066651 112066651 11206665 11206665 11206665 11206665 11206665 11206665 11206665 11206665 11206665 11206665 11206665 11206665 11206665 11206665 11206665 11206665 1120665 1120665 1120665 1120665 1120665 1120665 1120665 1120665 1120665 1120665 1120665 1120665 1120665 1120665 1120665 1120665 1120665 1120665 1120655 1120555 1120655 1120655 1120655 1120655 1120655 112065555 112065555 1120655555555 1120655555555555555555555555555555555555		SHO'O ¥ EEP'I 91'O ¥ II'I 12'0 91'O ¥ I2'O	R 0 5*1	1.1 ± 7.91 ^A 0.5 ± 2.71 0.5 ± 1.81 0.5 ± 1.81 0.5 ± 1.81	1 1 1 1 1 1 1	\$1'32 81'32 91'32 91'33 81'32 # 0'10 91'5 91'5 91'5 91'5 91'5
חפאסר - 1 הפאמר - 2	53.1 = 10	5000 ¥ 68-1	0'1 95'1	55°0 5°51	S-1 1 S-0 1	019 61219
גערע 1 גערע 2 גערע 1 גערע 1 גערע גערע 1 גערע 1 גערע גערע גערע גערע גערע גערע גערע גער	285.1 = 10	(10.0 1 +98.0 44.0 90.0 1 +9.0 710.0 1 +88.0	<i>LDL</i> · 0	29220 29200 2912 2920 2920 2920	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80.12 90.15 90.15 90.10 # 0.10 90.10 # 0.10 90.10 # 0.12 90.1 # 0.5 90.1 # 0.5 90.1 # 0.5
ער 12,000 - 2 גוגער 2 גער 2 גוגער 2 גער 2 גער 2 גוגער 2 גוגער 2 גוגער 2 גוגער 2 גוגער 2 גער 2 גער גער 2 גער 2 גער 2 גער 2 גער 2 גער 2 גער גער 2 גער 2 גער גער 2 גער 2 גער גער 2 גער 2 גער גער 2 גער 2 גער גער 2 גער 2 גער גער גער גער גער גער גער גער גער גער	155-1 = 10	150.0 ± 168.0 21.0 ± 22.0 22.0 ± 22.0 150.0 ± 168.0 150.0 ± 168.0	221+1	194 0 + 10 194 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 +	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	89.95 69.95 69.95 69.95 99.92 99.95 50.0 ± 0.95 2.0 ± 0.95 2.0 ± 0.95 2.95 51.55 2.95
1.16ЕВЕА 11.1600ЕМНЕВ 2500ЕМВОРИК 2500ЕК МОРИК 250131 2600-9-4 7600-7 1600-5	002 = 19*5 * * 2*0 101 = 1*56 101 = 1*63	220.0 * E5.0 0.00 * 0.00 0.00 * 00.0 0.00 * 00.0 0.00 * 00.0 0.00 * 00.0 0.00 * 00.0	9°0 0°1 10°1)	L 0'3)	([] ([] \$*0 [\$*0 [24-11 24-12 24-20 = 0-00 24-30 = 0-12 24-3 = 0-5 24-1 24-3 24-3 24-3 24-3 24-3 24-3 24-3 24-12 2
LISTAR				SP-0 * ES-0	t	25·50
2124.55 214542 214542 134542 2145445 2145445 2145445 214044 214044 214047 21407 2147 2147 2147 2147 2147 2147 2147 214	0.▶ = 13	0:033 # 0:00 0:033 # 0:00 0:03 # 0:00 0:033 # 0:043	(5 .0) [10	310 ¥ 02 1752 ¥ 02 1752 ¥ 02 2140 310	5°0 (0 1 5°1 (1 1 5°1 (1 1	2:25 2:25 2:25 90:0 = 00:25 91:25 91:25 91:0 = 00:25 1:25 2:0 = 0:25 0:25 0:25 0:25
11PEREY		001-0 + 025-0		1 36	<u>, , ,</u>	58°.15
רעמר-5 געמר-5 געמר-5 געמר געמר געמר געמר געמר געמר געמר געמר	96-2 = 10 87.1 = 10 9.11≥ 8.76 = 800	001.0 * 165.1 001.0 * 050 01.0 * 85.1 01.0 * 85.1 01.0 * 85.1 01.0 * 85.1	(0'i) POS'I (0'Z) S'I 0'I 0'I 0'I 0'I	99:0 9:0 # 0'L 9:0 # 0'L 5:1 # 5'll 9:0 # 8'9 9'0 # 8'9 9'C 9'C 9'C 9'C 9'C 9'C 9'C 9	S'1 I I I I I I I I I I I I I S'0 I S'1 O S'1 I S'1 I	21'92 21'92 219'14
116EWE1 11ewoEhney 1ewof-5		600.0 * 111.0 600.0 * 111.0 600.0 * 111.0	(0-) (51.0 1 0.1 J	5.0 I	9010 = 96167 9010 = 96167 93186
1124463 1124465 1124461				5'51 = 0'30 5'51 = 0'8 5'52 = 0'42		+9-86 +5-86 +5-86
30N3N3J3N	SIGERITURE DOS	SM	HTOTH RHMO	H101H NONTUBN	r n	KINENCY

ENERGY (NEV.)	L J	NEUTION KIDTH	DANNA WIDTH (EV.)	HHS LEV)	MISCELLANEOUS	REFERENCE
95.4 55.4 ± 0.2 55.4 55.40 ± 0.15 55.40 ± 0.13 55.30		1.5 0-56 ₹ 1.5)	1.0	0.36 0.35 0.55 ± 0.00 0.629 ± 0.035	QT = 1.56	JENDL - 1 BNJ 32513) 69HOCKENBURY 728EER 77FROEHNER 77FROEHNER 77FEREY
60.00 68.0 58.0 ± 0.2 58.75 ± 0.20 58.56 ± 0.14 58.60		1.5 0.3 1.5 0.182 1 0.2 1	(1.0) 3-0	0.23 ± 0.021 0.24 0.24 0.30 ± 0.05 0.220 ± 0.021	GT = 1.182	JENDL-2 JENDL-1 ØHL325(3) 728EER 77FROEHNER 77FROEHNER 77PEREY
66.835 69.8 69.8 ± 0.2 69.60 ± 0.20 69.61 ± 0.15 69.835 ± 3 69.66 69.69 69.69		.5 5.8 .5 0.290 * 6.5 ± 1 13.6 ± 2.0 9.6 ± 3.0 5.1 ± 1.2	0.59 1.0 0.593	0.544 ± 0.030 0.46 0.46 0.58 ± 0.09 0.544 ± 0.030	GT = 1+298	JENDL-2 JENDL-1 BML32513J 72BEER 77FRDEHHER 77FRDEHHER 77FITEJ 77STHE2 77STHE2 77STHE3
77.97 78.0 ± 0.2 78.0 ± 0.2 76.2 77.95 ± 0.20 77.95 ± 0.15 77.97		.5 0.28 .5 0.136 ? 0.3)	(1.0) 1.0	0.216 ± 0.022 0.12 ± 0.03 0.12 ± 0.03 0.18 ± 0.05 0.216 ± 0.022	GT = 1.136	JENDL-2 JENDL-1 BNL325133 59HOCKENBURY 72BEER 77FROEHNER 77FROEHNER 77FROEHNER
01.22 81.1 81.3 81.3 81.0 ± 0.20 81.10 ± 0.15 81.22		.5 1.43 .5 0.575 \$ 2.5 3	(1.0) 1.0	1.176 ± 0.050 0.73 0.73 1.08 ± 0.20 1.176 ± 0.050	01 = 1.575	JENDL - 2 JENDL - 1 BNL 3251 3 1 Synckenbury 72BEER 77FROCHMER 77FROCHMER 77PEREY
82.778 82.7 ± 0.3 82.778 ± 2 82.84 82.84 82.84 82.84		.5 65.0 * 72.3 ± 3 &0.0 ± 3.0 74.0 ± 0.0 63.0 ± 3.0	2.44 2.429	2.350 ± 0.087 2.0 ± 0.5 2.350 ± 0.087		JENDL - 2 77F ROCHMER 77PEREY 77SYNE 1 77SYNE 2 77SYNE 3
83-1 ± 0-2. 63-10 ± 0-20 #3-0 63-10 ± 0-20	0 0 0	"110 ±40 5 110 ±40 "110 ±40	3.5 ±0.7 3.5 ±0.7 3.5 ±0.7		HCH = 0-38 ± 0-14	BNL 3251 31 74MDXON 69HOCKENBURY 728EER
83-29 83-28	1 0.	5 2.3 † 2)	(1.0)	0.696 ± 0.043 0.696 ± 0.043		JENDL-2 77PEREY
83.750 83.5 ± 0.3 83.750 ± 2 83.82 83.82 83.82 83.82 83.82		5 36.0 ^A 41 ± 2 25.4 ± 2.9 42.1 ± 7.2 36.4 ± 2.2	1.36 1.374	1.329 ± 0.059 1.5 ± 0.4 1.329 ± 0.059		JENOL-2 77F ROEHNER 77PE REY 77SYNEL 77SYNE2 77SYNE3
\$4.77 \$4.77	1 0.	5 0-2 † 0-2)	(1-0)	0-164 ± 0-022 0-164 ± 0-022		JENDL-2 77PERET
00.000 00.0 ± 0.2 00.4 ± 0.2 00.84 ± 0.20 00.70 ± 0.20 00.900 ± 7 00.83 00.83 00.83		\$ 8.1 5 0.29 6.1 ± 1.2 13.0 ± 3.0 13.0 ± 3.0 8.0 ± 1.5	0.06 1.0 0.092	0.79 ± 0.046 0.45 0.45 0.69 ± 0.10 0.795 ± 0.048	01 = 1.29	JENDL -2 JENDL -1 BNL 325131 720EER 77FROEHNER 77FREN 775YNE1 775YNE2 775YNE2 775YNE3
\$2.00 \$2.3 \$2.3 ± 0.2 \$2.25 ± 0.20 \$2.35 ± 0.22 \$2.56 ± 0.22 \$2.60		5 0.22 5 0.205 f 0.2 i	(1.0) 1.D	0.18 ± 0.024 0.17 0.17 0.25 ± 0.04 0.153 ± 0.024	GT = 1,205	JENDL-2 JENUL-1 6NL325131 728EER 77FRDEHMER 77FRDEHMER 77PEAEY
96.55 94.5 94.5 ± 0.3 94.45 ± 0.25 95.55 ± 0.25 95.55		5 1.5 5 0.016 f 2.5)	1.0) 1.0	1.20 ± 0.066 0.8 ± 0.2 0.9 ± 0.2 1.05 ± 0.15 1.207 ± 0.066	Q7 = 1.816	JENDL-2 JENDL-1 BNL 325/3) 728EEN 77FRDEMMER 77FRDEMMER 77PEREY
95-9 55-84	0.0	5 3.4	0.60	0.51 + 0.070		69HOCKENBURY
97.0 97.0 ± 0.3 97.00 ± 0.25 97.00 ± 0.25		6.333	1.0	0.5 ± 0.1 0.5 ± 0.1 0.66 ± 0.10	GT = 1-333	JENDL-1 BNL 325(3) 728EER 77FROENNER

ENERGY CREV 1	L L	Ĵ.	NEUTRON WIDTH	CANNA WIDTH LEV I	HHS LEV 1	MISCELLANEOUS	REFERENCE
96-84 96-98 96-30 96-08			1 i 1 4.i ± 2.0 1.3 ± 2.2 3.7 ± 1.05		0-486 ± 0.039		77PEREY 775YHE1 775YHE2 775YHE3
97.487 97.487 ± 4 97.577 97.577 97.577	 	0.5	14.7 * 14.7 ± 1.5 15.5 ± 1.9 13.2 ± 1.32 11.2 ± 0.7	0-365 0-365	0.375 0.375 ± 0.033		JENDL - 2 77PEREY 77SYNE1 77SYNE2 77SYNE3
101.295 101.1 101.1 ± 0.3 101 ± 0.25 101.1 ± 0.27 101.295 ± 6 101.30 101.30		0.5 1.5	4.5 1.0 4 7.1 ± 1.4 11.25 ± 3.25 2.95 ± 1.6 3.15 ± 0.98	1.62 1.0 1.428	1.189 ± 0.065 1.0 ± 0.2 1.0 ± 0.2 0.95 ± 0.24 1.189 ± 0.065	GT = 2.0	JENDL - 2 JENDL - 1 BNL 325131 69H0CKENBURY 728EER 77FRDEHNER 77FREFY 735YHE1 775YHE2 775YHE2
105.315 105.3 ± 0.3 105.3 ± 0.3 105.3 ± 0.25 105.3 ± 0.25 105.315 ± 4 105.36 105.36 105.36		0.5 1 <i>-</i> 5	18.4 9.0 4 [4.6 ± 1.4 25.4 ± 2.3 27.7 ± 6.3 21.7 ± 3.3	2-24 1-0 2-400	2.0 ± 0.132 1.8 ± 0.4 1.8 ± 0.4 1.60 ± 0.40 2.060 ± 0.132	GT = 10.0	JENDL - 2 JENDL - 1 BNL 325(3) GHOCKENBURY 728EER 77FROEHNER 77FROEHNER 775YRE 1 775YRE 2 775YRE 2
107-61 107-61 107-74	1	0.5	7.7 1 3 1 7.7 ± 1.9	1.68	1.377 ± 0.098 1.377 ± 0.098		JENDL - 2 77PERE Y 77SYNE I
108-198 107-7 107-0 107-7 ± 0-5 108-0 107-9 107-0	0 0 0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	1100-0 1400-0 1000-0 *1400 ±200 1250 1253	3.8 3.5 2.14 3.5 ± 0.8 2.0 3.5		G7 = 1403.5 G7 = 1002.1 HCH = 4.27 ± 0.61 G7 = 2000- GM0 = 5.114	JENDL-2 JENDL-1 ENDF-8-4 BNL325(3) 73MDXDN 74MDXDN 66FARRELL
107 108.0 ± 0.5 107.7 ± 0.5 107.6 ± 0.3 107.7 ± 9.5 108.189 ± 0.014 108.149 ± 0.0103	0 0 0 0 0	0.5	1470 ±170 ¹ 500 ±300 1400 ±300 ¹ 1500 1 ¹ 1100 ±50 1071-82 ± 0-35	3.5 ± 0.8 3.8 ± 0.9 • 3.8 ± 0.9		GNO = 4.47 ± 0.52	B9HOCKENBURY 71GARG 72BEER 75FROEHHER 77FROEHHER 77FROEHHER 77FEREY 77STHE
110.509 110.7 ± 0.3 110.7 ± 0.3 110.7 ± 0.3 110.7 ± 0.3 110.57 ± 0.3 110.57 110.67		0.5	4.8 1.86 4.8 ± 1.5 4.3 ± 2.5 9.8 ± 3.5 4.5 ± 1.5	0.995 1.0 0.995	0.623 \$ 0.052 1.3 \$ 0.3 1.3 \$ 0.3 1.1 \$ 0.3 0.623 \$ 0.052	CT = 2.86	JENOL-2 JENOL-1 BNL32531 SGHOCKENBURY 228EER 77FROEHNER 77FROEHNER 77FROEY 77FROEY 775YRE1 775YRE3
111-30 111-30	ł	1.5	0.86 13)	(1.0)	0.927 ± 0.059 0.927 ± 0.058		JENDL-2 77#EREY
117.733 117.5 117.5 117.5 ± 0.3 117.5 ± 0.3 117.75 ± 0.3 117.75 ± 0.3 117.75 ± 0.3 117.75 ± 0.3 117.82 117.82 117.82		0.5	10.6 0.667 • 10.6 ± 1.4 15.2 ± 2.5 16.5 ± 3.4 10.1 ± 0.7	1-028 1-0 1-028	0.939 ± 0.061 0.8 ± 0.3 0.8 ± 0.3 0.75 ± 0.25 0.939 ± 0.061	GT = 1.667	JENOL -2 JENOL -1 ENL 32513 J 72BEER 77FROCHNER 77FERET 77SYNEL 77SYNE2 77SYNE3
118-5 118-5 # 0-3 118-07	1 1 1	1.5	4.2	0.7	1.2 ± 0.4 1.2 ± 0.4		JENOL - 2 77FROEHNER 775YME 1
119.544 120.3 ± 0.3 120.3 ± 0.3 120.0 ± 0.3 120.0 ± 0.3 119.648 ± 4 119.75 119.75 119.75		1.5 0.5	7.2 * 6.5 ± 1.3 0.2 ± 2.4 12.0 ± 3.0 6.6 ± 1.2	1.61 3.3 ± 0.6 • 4.421	2.634 ± 0.114 3.3 ± 0.6 2.4 ± 0.8 2.634 ± 0.114		JENUL-2 ONL32513J 69HO2KENBURY 728EER 77FROCHMER 77FEREY 775YNE1 775YNE2 775YNE3
123-361 123-0 122-5 125-0 ± 0.5 123-8	0 0 0 0 0	0.5 0.5 0.5 0.5	436.0 630.0 700.0 *700 ±200 630	3.5 2.0 2.14 3.2 ± 0.6 2.0		OT = 632.0 GT = 702.14 WGH = 1.98 ± 0.57	JENOL -2 JENOL -1 ENDF-8-4 BNL 3251 31 73HDXDN

-40-

ENERGY LINEY 1	. L . J .	HEUTRON MEDTH	GANNA WIDTH	JANS . (EV)	MISCELLANEOUS	REFERENCE
124.34 122.5	0 1 . 0.5	617	3.2		61 = 1000	74MDXON 66FARRELL
124 123.0 ± 0.6 125.0 ± 0.5 124.0 ± 0.5 124.0 ± 0.5 124.0 ± 0.5 123.301 ± 0.0000	0 0 0 0 0.5	740 ±200 "760 ±250 700 ±250 ₹750 1 435+0 ± 0+35	3.2 ± 0.5 3.5 ± 0.6 ■ 3.5 ± 0.6	3.i t0.6	CNC = 2.057 CNC = 2.10 ± 0.57	69HOCKENDUYY 7 IGARG 72BEER 75FRDEHHER 77FRDEHHER 77FRDEHHER 77SYHE
125.27 125.27 125.27 125.27 125.27	1 0.5 1 1 1	4.1 10.8 ± 3.2 5.1 ± 3.0 3.0 ± 1.2	[1.0]			JENOL - 2 7757ME 1 7757ME 2 7757ME 3
126.83 126.83	1 0.5 1	7.3 7.3 ⊭ 2.0	(1.0)			JENDL-2 775YHE L
128.29 126.29	1 0.5	7.4 7.4 ± 2.4	[1-0]			JENDL-2 7757ME1
130.2 130.2 ± 0.4 129.91 129.91 129.91	1 0.5 1 1 1	20.5 20.0 ± 3.2 19.65 ± 3.2 20.95 ± 1.6	0.73	0.69 ± 0.14 0.69 ± 0.14		JENDL - 2 77F ROCHNER 775 YME 1 775 YME 2 775 YME 3
133.55 133.0 ± 0.4 133.55 133.55 133.55 133.55	1 1.5 1 1 1 1	21-0 18-5 ± 2-9 179-0 ± 3-5 22-1 ± 1-8	1.05	2.0 1 0.4 2.0 1 0.4		JENDL - 2 77FROEHNER 775YME 1 775YHE 2 775YHE 3
135.72 135.72	i 0.5	9.4 9.4 ± 2.5	(1.0)			JENOL-2 77STHE1
136-07 136-07	1 0-5 1	10.5 10.6 ± 2.5	(1.0)			JENOL-2 77SYME1
137.319 137.5 138.0 137.5 ± 0.7 137.5 137.5 137.5 136.0	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	2617-28 1760-0 2200-0 ⁴ 1760 ±200 1760 1760	2.2 2.0 2.14 2.0 (2.0)		07 = 1762.0 07 = 2202.1 $HCH = 4.75 \pm 0.54$ 01 = 3000 0.0 = 8.135	JENDL-2 JENDL-1 ENDT-B-4 BNL 325(3) 73R0X0M 66FARRELL
137.5 ± D.7 136.8 ± 0.7 137.319 ± 0.019	0 0 0.5 0	1760 ±200 ¶1760) 2617-25 = 0-52	* 2.2 ± 0.4		GKD = 4-76 + 0-54	71GARG 77FROEHNER 77SYRE
139.913 140.5 139.5 140.5 ± 0.8 140.5 140.5 140.5 139.5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	2867-4 3460-0 3000-0 ⁶ 3460 ±500 3460 3460	2.2 2.0 2.14 2.0 1 2.0		GT ≈ 3462.0 GT ≈ 3002.1 HLH ≈ 3023 ± 1.33 GT ≈ 3000 GM ≈ 8.051	JENOL-2 JENOL-1 ENOF-0-4 BNL325(3) 73noxon 74noxon 66FARRELL
140.5 ± 0.8 139.7 ± 0.7 139.913 ± 0.021	0 0 0.5 0	3460 ±490 13460) 2667+4 ± 0+62	₽ 2.2 ± 0.5		GNO = 9-23 + 1-31	71GARG 77FRDEHNER 775YHE
145-14 142-9 s O-8 145-14 [45-14 [45-14	1 1-5 1 1	133 141.0 ± 5.1 150.0 ±10.0 121.0 ± 5.0	1.2	2.4 ± 0.46 2.4 ± 0.46		JENDL-2 77FRDEHNER 77SYHE1 77SYHE2 77SYHE3
48.73 149.74 147.5 ± 0.0 147.5 ± 0.0 148.74 147.5 146.5 ± 0.0 146.73 148.73 148.73	1 1.5 1 0.5 0 0.5 0 0.5 1 1 1 1	136.5 160.0 175 150 175 ≥ 15 175 ≥ 15 176 ≥ 3.5 176 ≥ 3.5 141.0 ± 3.2 136.0 ± 5.0	1.25 1:0 0.8 1.0	2.5 ± 0.5 2.5 ± 0.5	01 = 161.0 01 = 160.6	JENDL-2 JENDL-1 ENDF-0-4 BNL325131 73HDXON 66FARRELL 77FROEMNER 775FWE1 775YME2 775YME3
151.32 150.5 ± 1.0 151.32 151.32 151.32	1 1-5 1 1 1	19-1 15-75 # 5-0 20-8 ± 3-3 19-1 ± 1-6	(0.9 1	1.7 1.7 ± 0.4		JENDL - 2 77F ROEHMER 775 YME I 775 YME 2 775 YME 3
151.73 151.73	1 D.5	7.5 7.5 ± 4.0	1 1.0 1			JENDL-2 775YNE1
156.5 156.5 156.5	1 0.5 1	80-0 75-0 ±18-0 95-0 ±12-0	(1.0)	<u></u>		JENOL - 2 7757HE2 7757HE3
156-92 156-92 156-92	1 0.5 1	56.0 50.0 ± 6.0 63.0 ±24.0	(1.0)			JENDL-2 7751HE1 7751HE2

-41 -

ENERGY (KEV.)	L .	J NEUTRON HIDTH	CANNA WIDTH (EV I	HINS LEV J	MISCELLANEOUS	REFERENCE
156.92	I.	102-0 ±18-0				775YHE 3
157.251 159.5 157.4 159.5 ± 0.9 159.0 159.0 157.0 159 = 1 159 = 1 159.5 ± 2.0		0.5 4980.8 0.5 6000.0 0.5 6250.0 0.5 *6000 ±1000 5040 0.5 7010 7360 ±2110 0.5 *6000 ;	3.0 2.0 2.14 2.0 (2.0) 3.0 ± (.0		07 ± 6002.0 07 ± 6252.1 HCH = 15.02 ± 2.50 07 = 6250 07 = 6250 040 = 15.774 DH0 = 18.51 ± 5.29	JENDL-2 JENDL-1 ENDF-3-4 8MJ25513) 73HDXDN 66FRRELL 7JCRRC 7JCRRC 77FRCEHMER
157.251 ± 0.032 161.12 161.0 ± 1.2		4960.9 ± 0.66	1.03	3.3		775YHE JENOL -2 77FROFHNFR
161.12	i	17.2 ± 3.1		3:3 • 1:1		775TRE 1
165.97 165.97 155.97 165.97		0.5 40.0 40.0 ± 4.0 32.8 ± 7.3 41.3 ± 4.1	(1.0)			JENOL - 2 7754HE1 7754HE2 7754HE3
166-98 167-0 ± 1-3 166-98		1.5 32.0 32.9 ± 3.5	[.03	2.0 ± 1.0 2.0 ± 1.0		JENDL-2 77FROEHNER 77SYNEI
168.675 169.0 167.5 169.0 ± 1.0 169.0 169.0 169.1 169.5		1 319.73 0.5 750.0 0.5 500.0 0.5 750 ±220 640 0.5 640	2.5 2.0 2.14 2.0 (2.0)		CT = 752.0 GT = 502.14 HCH = 1.82 ± 0.54 CT = 500 CHO = 1.222	JENOL - 2 JENOL - 1 ENOF - 8 - 4 BNL 325(3) 73ROXOM 73ROXOM 66FARRELL
169 ± 1 159.0 ± 2 168.675 ± 0.014	0	870 ±220 750 J 319-73 ± 0-62	\$ 2.5 ± 1.0		GNU = 2-11 ± 0.53	71GARG 77FROEHNER 77SYME
175-14 173-5 ± 1-5 175-14 175-14 175-14		1.5 72.5 76.5 ± 5.7 65.5 ± 10.0 70.5 ± 5.0	1.5	3.0 3.0 ± 1.0		JENOL - 2 77FROEHNER 775YHE 1 775YHE 2 775YHE 3
180+13 180+13	1 0 1).5 14.5 14.5 ± 8.8	(1.0)			JENOL-2 7757ME1
100-59 100-59 180-59 180-59	1 0 1 1	0.5 15.2 31.0 ±12.0 14.1 ± 2.5 18.2 ± 5.4	(1.0)			JENDL-2 7757HE1 77\$7HE2 7757HE3
161-20 161-20 161-28 161-28	1 0 1 1	0.5 13.7 10-8 ± 6-8 12-8 ± 2-9 21-7 ± 6-7	(1.0)			JENOL - 2 775 THE 1 775 THE 2 775 THE 3
182-9 182-9 182-9		20.5 22.0 20.5 ± 6.0 23.0 ± 2.5	(1.0)			JENDL - 2 7751ME2 7751ME3
184.53 184.74 183.5 183.5 183.5 183.5 183.5 183.6 183.6 1.7 184.53 184.53		1.5 140.3 1.5 227.0 5 127.0 220 227 ⁴ 240.5 421.5 131.0 x 9.0 161.0 x10.3 136.0 x 4.1	4.0 1.0 0.6 1.0	8.0 8.0 ± 3.0	GT = 228.0 CT = 127.6	JENDI - 2 JENDI - 1 END7 - 8 END7 - 8 END7 - 8 END7 - 8 END7 - 8 M M M M M M M M M M M M M M M M M M M
185.91 185.91 185.91 185.91 185.91	1 0 1 1 1	1.5 32.5 33.0 ± 4.0 47.4 ± 8.0 30.0 ± 3.0	(1.0)			JENOL - 2 775 ME 1 775 ME 2 775 ME 3
191.415 193.0 190.5 193.0 x 1.2 192.0 192.0 192.0 190.5		1.5 2381.32 1.5 3500.0 1.5 3000.0 1.5 3500 +500 3500 1.5 3620	3.0 2.0 2.14 2.0 (2.0 }		$GT = 3502.0$ $GT = 3002.1$ $HOH = 7.97 \pm 1.14$ $GT = 3000$ $DHQ = 5.873$	JENOL-2 JENOL-1 ENOF-8-4 8NL325(3) 73HDXON 74HDXON 66FARRELL
192 ± 1 193.0 ± 2.0 191.415 ± 0.021	0 0 0	4050 ±580 -5 13600 J 2381-32 ± 0.64	■ 3-0 ± 1-0		GND = 9.24 s 1.32	71GARG 77FROEHNER 775YME
196.06 195.06 196.09 196.08	1 D. 1 1	.5 0.3 0.7 ± 3.9 27.0 ± 0.5 0.0 ± 2.5	(1.0)			JENDL - 2 7751ME1 7751ME2 7751ME3
198-05	1 1.	-tu 22.5	1 1.9 1	3.5		JENOL · 2

ENERGY (KEV.)	L	J	NEUTRON WIDTH	CANNA HIDTH	HHS (EV I	HISCELLANEOUS	REFERENCE
0.5 * 0.961 20.961	1		22.5 ± 5.0		3.5 ± 1.2		77FROEHNER 77STHE 1
201.27 201.27		0.5	18.0 18.0 ± 5.0	([.0)			JENOL-2 7757HE I
202.43 202.43 202.43 202.43 202.43		0.5	11.5 14.5 ± 4.5 16.0 ± 8.0 9.4 ± 3.1	(1.0)			JENDL -2 7'TSYHE I 77SYHE 2 77SYHE 3
205.46 207.0 204.5 207.0 ±].5 207.0 204.5 207.0 204.5 207 ±].5 207 ± 1.5		0.5 0.5 0.5 0.5 0.5	6518.6 6800.0 7500.0 6820 ±1200 6820 6820	4.5 2.0 2.14 2.0 (2.0)		G1 = 6802.0 G1 = 7502.1 HOH = 14.95 ± 2.64 G1 = 7500 GNO = 16.585 GNO = 13.25 ± 2.64	JENDL-2 JENDL-1 ENDF-0-4 BML325131 73MOXON 74NOXON 65FARRELL 716ARC 72FROFHER
205-46 + 0-045	ŏ		6518-8 + 0-87				77STHE
207.16 207.18 207.18 207.18		0.5	285 382.0 ±100.0 285.0 ±100.0 185.0 ±100.0	()*()			JENOL - 2 7751me 1 7751me 2 7751me 3
216.52 215.24 215.8 215.0 ± 1.5 215.0 ± 1.5 215.0 ± 215.0 215.8 ± 2.0 · 216.52 216.52	1 1 1 0 0 1 1 1 1	1.5 0.5 0-5 0.5	190.0 245.0 245.0 *260 245 *262.5 \$17.5 *260 200.0 \$14.6 180.0 \$12.5 190.0 \$17.0	4.0 1.0 0.6 1.0	8.0 + 3.0	OT = 246.0 OT = 245.6	JEMUL-2 JENDL-; ENDF-B-4 BNL325131 73B0Xi0 66FARRELL 77FR0ENHER 775YHE1 775YHE2 775YHE3
217.9 217.9 217.9 217.9 217.9	1 1 1	0.5	23.0 34.5 ± 9.5 17.6 ±11.0 20.6 ± 5.0	1 1.0 1			JENDL-2 7757HE 7757HE 2 7757HE 3
230.9 230.9	1	0.5	78.5 78.5 ±11.0	1,0)			JENDL - 2 775THE 1
232.209 232.24 231.0 231.0 232.24 232.24 232.24 232.24 231.0	0 0 0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	4227-66 6000-0 6000-0 *6000 6000 6000	9.0 2.0 2.14 2.0 (2.0 (2.0)		GT = 6002.0 GT = 6002.1 WGH = 12.48 GT = 6000 GND = 12.484	JENOL - 2 JENOL - 1 ENOF - 8 - 4 BHL 325(3) 73HOXON 56FARRELL
230.4 ± 3.0 232.289 ± 0.033	0	0.5	16000 i 4227-66 ± 0-87	∎g ±4			77FROEHNER 775yme
236.0 236.0 236.0		0.5	14.5 6.7 ± 7.3 16.0 ± 3.1	(1.0)			JENOL -2 7757HE2 7757HE3
242.65 242.65 242.65 242.65 242.65		0.5	36-0 51-0 ±14-0 23-7 ± 9-0 36-0 ± 4-3	(1.0)			JENDL-2 775 YNE 1 775 YNE 2 775 YNE 3
243.85 243.86 243.85		0.5	24.0 17.0 ± 9.0 25.0 ± 4.0	1 1.0 1			JENOL - 2 775YHE2 775YHE3
245.105 244.24 243.0 243.0 ± 1.8 244.24 244.24 244.24 243.0	0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	136.43 250.0 *250 250 250 250 250	(2.0) 2.0 2.14 · 2.0 (2.0)		07 = 252.0 07 = 252.14 HGH = 0.51 07 = 250 040 = 0.507	JENDL-2 JENDL-2 ENDF-8-4 BNL325(3) 73HOXON 73HOXON 66FRRRELL
245.105 ± 0.031	0	0.5	138-43 ± 0-94	(1.0)			775THE
248.74 248.74 247.75 ± 1.8 247.75 248.74 247.5 249.39 249.39 249.39		0.5 0.5 0.5	343.0 343.0 350 343 360 250.0 250.0 250.0 250.0 250.0 251.0 251.0 251.0	1.0 0.6 1.0		GT = 344.0 GT = 3443.6	UENDL-1 ENDL-1 ENDF-8-4 DAL325131 73HOXON 66FARRELL 77STHE1 77STHE1 77STHE2 77STHE3
250.525 250.625 250.625 250.625 250.625		0.5	45.0 68.0 ±15.0 57.5 ±11.0 41.0 ± 4.4	(1.0)			JENDL - 2 775 YHE 1 775 YHE 2 775 YHE 3
254-10	1	0.5	23.5	1 1.0 1			JENOL +2

- 43 --

ENERGY (NEV.)	4	J	NEUTRON MIDTH	OWING NIDTH	HMG (EY)	MISCELLANEOUS	REFERENCE
254.18 254.18 254.18	1		26.0 ±11.2 23.5 ±14.0 21.5 ± 6.5		· · · · · ·		775YHE 775YHE2 775YHE3
254.85 254.86	ł	Q.5	32.0 32.0 ±10.0	(1.0)			JENDL-2 77SYNE1
258-27 258-24 258-24 257-5 259-27	1 1 0 0	0-5 0-5 0-5	77.0 75.0 (75) 77.0 ±15.0	(1.0) 1.0 1.0		CT = 76-0	JENOL-2 JENOL-1 73NDXON 66FARRELL 77SYHE1
267.7 267.7 267.7 267.7 267.7	1 1 1 1 1 1	0.5	36-0 80-0 ±14-5 9-0 ±15-0 36-0 ± 8-5	((.0)			JENOL-2 775 YNE i 775 YNE 2 775 YNE 3
269-44 269-44 269-44 269-44 269-44	1 1 1 1	0.5	71.0 54.0 ±13.0 71.0 ±25.0 76.0 ± 9.0	(1.0)			JENOL - 2 7757HE 1 7757HE 2 7757HE 3
271.606 271.24 271.5 270.0 ± 2.0 271.24 271.24 270.0	000000000000000000000000000000000000000	0.5 0.5 0.5 0.5 0.5	5510-2 6000-0 7500-0 6000 6000 6000	(2.0) 2.0 2.14 2.0 (2.0)		0T = 6002.0 0T = 7502.1 HOH = 11.55 0T = 6000 0N0 = 11.547	JENDL-2 JENDL-1 ENDT-B-4 BNL32513) 7390XDN 7490XDN 66FRRRELL
273.55		0.5	67.0	(1.0)			JENOL-2
273.55		0.5	67.0 ±10.0	[].D]			JENDL-2
277.3 278.40 278.40 278.46 278.46	1 1 1 1 1	0.5	61.0 ±16.0 152.0 114.5 ±16.0 142.0 ±22.0 169.0 ±10.0	(1.0)			775YHE I JENOL - 2 775YHE I 775YHE 2 775YHE 3
200.907 278-24 278-0 278-0 278-0 ± 2-0 278-24 278-2	00000	0.5 0.5 0.5 0.5	1522-1 2000-0 800-0 "2000 2000	1 2.0) 2.0 2.14 2.0		GT = 2002.0 GT = 802.14 HGH = 802.14 GT = 2000 GND = 3.793	JENDL-2 JENDL-1 ENDF-6-4 DNL325(3) 73HDXON 66FRARELL
200.907 ± 0.027	0		1522.1 \$ 1.1				775YHE
200-3 287-74 287-6 206-5 ± 2-0 207-74 206-5 200-3 200-3 200-3	1 1 0 1 1	0.5 0.5 0.5	196.0 200.0 200.0 215 200 215 ±15 210.0 ±20.0 196.0 ±31.0 197.0 ±14.0	1.0 J 1.0 D.6		GT = 201.0 GT = 200.6	JENDL-2 JENDL-1 ENDF-B-4 BNL325[3] 73NDXON 66FARKELL 773YNE1 773YNE2 773YNE3
287.5 287.5 287.5		0.5	63.0 61.5 ±14.0 64.0 ± 6.0	(1-0)	1 1 1		JENDL-2 775YHE2 775YHE3
300-01 300-01 300-01 300-01		0.5	33.0 \$0.0 ±20.0 30.0 ±14.0 32.0 ± \$.0	().0)			JENDL-2 775 THE 1 775 THE 2 775 THE 3
301 - 32 301 - 32 301 - 32 301 - 32 301 - 32		0.5	90-0 151-0 ±26-0 93-0 ±30-0 51-0 ±20-0	f 1.0 J			JENDL-2 775the1 775the2 775the3
304.74 304.24 303.0 a 2.0 303.0 a 2.0 304.24 304.74 303.5	0 0 0 0 0 0	0.5 0.5 0.5 0.5	760.0 760.0 760.0 760 760 760 760	(2.0) 2.0 2.14 2.0 (2.0)		GT = 752.0 GT = 752.14 HGH = 1.36 GT = 750 GNO = 1.361	JENDL-2 JENDL-1 ENDF-9-6 ØHL32513J 73H0XDN 74H0XDN 66FARRELL
307-28 307-74 307-74 308-5 307-28	1 1 0 1	0.5 0.5 0.5	155.0 50.0 (50) 155.0 s22.0	1.0 1.0 1.0		01 = 51.0	JENOL-2 JENOL-1 73NDXON 66FARRELL 775YNE1
316-97 316-97	1	0.5	71.0 71.0 ±22.0	1.0			JENDL -2 775 YME 1
321.22	1	0.5	96.0	1.0			JENOL - ?

- 44.--

. .

.

JAERI-M 85-101

$\frac{1}{2} \sum_{i=1}^{N_{i}} \frac{1}{2} \sum_{i=1}^{N_{i}} \frac{1}$

ENERGY (NEV)	L.	ال	NEWTRON MEDTH	GANNA MIDTH	EV J	HISCELLANEOUS	REFERENCE
321-22	1		\$6.0 ±25.0				775YHE1
325.2 328.24 325.0 327.0 a 2.0 327.0 a 2.0 328.24 326.24 326.24 325.0	0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	2000-0 2000-0 1500-0 2000 2000 2000 2000	(2.0) 2.0 2.14 2.0 (2.0)		07 ± 2002-0 07 ± 1502-1 HGH = 3-51 07 = 2000 QHO = 3-508	JENOL-2 JENOL-1 ENOF-0-4 ØNL325131 73HOXON 74HOXON 66FRRRELL
334.747 335.74 333.2 334.5 ± 2.5 335.74 334.5 334.5 334.747	-1 -1 -0 -0 -1	0.5 0.5 0.5 0.5	542.0 542.0 542.0 *624 562 *624 ± 32 *624 ± 32 552.0 ± 26.0	(1.0) 1.0 0.6 1.0	<u></u>	GT = 593-0 GT = 592-5	JENDL-2 JENDL-2 ENDF-3-4 BNL325(3) 73H0XON \$\$FARRELL 77SYHE1
343.3 343.3	1	0.5	151.0 151.0 ±10.2	().0)			JENDL-2 77STHEI
344.1 344.74 342.5 343.5 ± 2.5 344.74 343.5 343.5 344.1	1 1 0 0	0.5 0.5 0.5	222.0 560.0 560.0 *565 560 *565 ±25 222.0 ±22.0	(1.0) 1.0 0.6 1.0		GT = 561-0 GT = 560-6	JENDL-2 JENDL-1 ENDF-8-4 BM.32513) 73M0X0N 86FARRELL 775YHE1
349.0 350.24 348.0 349.0 350.24 350.24 350.24 350.24 350.24	0 0 0 0 0 0	0.5 0.5 0.5 0.5	1500-0 1500-0 1500-0 1500 1500 1500 1500	2.0 2.0 2.14 2.0 4 2.0 4 2.0 1		07 = 1502-0 07 = 1502-1 HOH = 2-54 07 = 1500 ONO = 2-539	JENOL -2 JENOL -1 ENOF -0-4 8NJ -25131 73m3XOM 74MDXOM 66FARRELL
367-58 368-74 367-5 368-75 368-75 368-74 368-74 367-5 367-50	1 1 0 0	0.5 0.5 0.5 0.5	200.0 425.0 425.0 443 425 *443 *17 260.0 ±32.0	(1.0) 1.0 0.5 1.3		GT = 427.0 GT = 42 5.6	JENDL-2 JENDL-1 ENDF-8-4 ØNL325(3) 73NDXDN 65FARRELL 775YHE1
358.7 358.7	1	0,5	148.0 ±32.0	(1.0)	_		JENDL-2 77STHE 1
367.0 360.24 367.0 367.0 367.0 368.24 368.24 367.0	0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	250.0 250.0 250.0 250 250 250	2.0 2.0 2.14 2.0 1 2.0 1		CT = 252.0 CT = 252.14 HOH = 0.41 CT = 250 CHO = 0.413	JENOL-2 JENOL-1 ENOF-8-4 0NL32513) 73403X0N 74403X0N 88FRRRELL
378.78 378.74 377.5 374.5 378.5 378.74 378.5 378.7 378.5		0.5 0.5 0.5 0.5	200-0 426-0 480-0 440 426 426 426 420 420 420 420 420 420 420 420 420 420	(1.0) 1.0 0.5 1.0		GT = 427.0 GT = 400.6	JENDL - 2 JENDL - 1 ENDF-0-4 0M, 325(3) 73MDXDN 66FARELL 775YHE
378.76 379.76	1	0.5	175-0 175-0 124-5	(1.6)			JENDL - 2 775YHE 1
308.74 367.6 309.74	1	0.5	480.0 4500 480	1.0 1.0		GT = 481.0	JENOL-1 BNL325(3) 73MOXON
304 -5 305 -24 302 -8 304 -0 306 -24 306 -24 306 -24 304 -0	0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	760-0 1900-0 1900-0 780 780 750	2.0 2.0 2.14 2.0 (2.0)		DT = 752.0 DT = 1902.1 HOH = 1.20 DN = 1.195	JENDL-2 JENDL-1 ENDF-8-4 BM, 325(3) 73M050M 74HD20M 66FRRRELL
367-382 367-74 367-74 366-6 367-382	1 0 0 1	9.5 3.5 0.5	403.0 50.0 (50) 403.0 136.0	(1.0) 1.0 1.0		97 = 51.0	JENOL-2 JENDL-1 73HOXON 66FARRELL 775YHE1
406.83 406.83		0.5	80.0 80.0 s25.0	1 1.0 1	-		JENOL-2 77519F1
400.43 400.43		0.5	120-0 120-0 +30-0	t (-0.)			JENOL-2 775YHE1
413.18	1	0.5	145.0	1 1.0)			JENOL - 2

ł

- 45 -

ENERGY LINEY 1	L J	NEUTRON HIDTH	CANNA NIOTH H	HHG EV 1	HISCELLANEOUS	REFERENCE
414.24 410.0 414.24 413.0 413.10		5 50.0 5 100.0 5 / 50) 145.0 e56.0	1.0 0.6 1.0		GT = 51.0 GT = 100.5	JENDL-1 ENDF-8-4 73H0X0N 66FARRELL 77STHE1
418.04 417.24 417.24 417.24 416.0 416.04	1 0.1 1 0.1 0 0.5 1	5 510.0 5 20.0 5 (20) 5 (20) 510.0 ±35.0	(1.0) 1.0 : 1.0 ;		GT = 21.0	JENOL-2 JENOL-1 73HOXON 66FARRELL 77SYHE1
418-74 418-74 415-0 417-D 418-74 418-74 418-74	00000000000000000000000000000000000000	5 5000.0 5 5000.0 5 105000.0 5 ⁹ 5000 5000 5 5000 5 5000	2.0 2.0 2.14 2.0 (2.0)		CT = 5002.0 CT = 10502.0 HCH = 7.74 CT = 5000 CNO = 7.736	JENDL-2 JENDL-1 ENDF-8-4 BHL325131 73MOXON 74MOXON 66FARRELL
429.55 427.24 426.0 427.24 426.0 427.24 426.0 429.56	1 0.5 1 1.5 1 1.5 0 0.5 1 1.5 1 1.5 1 1.5 1 1.5	5 180-0 5 900-0 5 41830 ±400 5 (800 5 ⁶ 915 ±15 180-0 ±31-0	(1.0) 1.0 1.0		CT = 901-0 H01 = 5-2	JENOL -2 JENOL -1 BML325(3) 73HOXON 66FARRELL 775YHE1
425.0 427.24 423.5 426.5 427.24 427.24 425.5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	5 8000.0 6 8000.0 * 8000 * 8000 8000 5 8000	2.0 2.0 2.14 2.0 (2.0)		GT = 8002.0 GT = 8002.1 HGH = 12.25 GT = 8000 GNO = 12.250	JENDL-2 JENDL-1 ENDL-0-4 BML325(3) 73NOXON 74NOXON 66FARRELL
432.7 436.74 436.74 436.74 435.5 432.7	I 0.5 1 0.5 0 0.5 0 J	195-0 20-0 (20) 195-0 #30-0	1-0 1-0 1-0		GT = 21.0	JENDL-2 JENDL-1 73HOXON 66FARRELL 77STHE1
446.50 446.24 446.24 446.0 446.59	1 0.5 1 0.5 0 0.5	248-0 20-0 (20) 248-0 #36-0	1.0 1.0 1.0		GT = 21.0	JENDL-2 JENDL-1 73HOXON 66F RRRELL 775 YHE1
451-05 452-24 452-24 451-0 451-85	1 0.5 1 0.5 0 0.5 0	370.0 20.0 { 20 } 370.0 ±36.0	1.0 1.0 1.0		GT = 21.0	JENOL-2 JENDL-1 73HDXON 66FARRELL 775YHE1
454,74 454,74 456,25 454,5 454,5 454,74 455,74 454,5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	3000.0 3000.0 2200.0 3000 3000 3000	2.0 2.0 2.14 2.0 2.0 2.0 1		DT = 3002.0 GT = 2202.1 HGH = 4.45 GT = 3000 DNO = 4.450	JENDL-2 JENDL-1 ENDF-8-4 BNL 3251 31 7390300 7440300 66FRRRELL
450.74 450.74 450.5	i 0.5 0 0.5 0	75-0 (75)	1.0 1.0	C	9T = 76.0	JENOL-1 73HOXON BEFARRELL
462.1 462.74 461.5 461.6 462.74 462.74 462.74 461.5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	750.0 750.0 750.0 *750 750 750 750 750 (2.0 2.0 2.14 2.0 2.0	G G H G G	67 = 752-0 67 = 752-14 604 = 1+10 67 = 750 60 = 1+104	JENDL-2 JENDL-1 ENDF-0-4 BNL325(3) 73HDXDN 74HDXDN 66FARRELL
475.7	1 1.5	300-0	0.6	G	iT = 300.6	ENOF-8-4
480.0	1 6.5	100.0	0.6	0	it = 100.6	ENDF-8-4
482.966 483.74 482.2 482.6 483.74 482.6 483.74 482.6 482.5	0 0.5 0 0.5	1875.0 (1967.0 (1960.0 *2000 1967 ************************************	}-0	C	7 = 1988-0 7 = 1050-6	JEAOL-2 JEAOL-1 ENOF-0-4 BNJ 25131 73HOXON 66FARRELL 775YHE1
495-5 495-74 495-2 495-5 495-5 495-74 495-5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	2000.0 2000.0 2000.0 2000 2000 2000 200	2.0 2.0 2.14 2.0 2.0	Di GT MC GT GT	7 = 2002-0 T = 2002-1 CH = 2-84 T = 2000 H0 = 2-841	JENOL - 2 JENOF - 1 ENOF - 0 - 4 BNL 325131 73NOXON 74NOXON 56FARRELL

	L	J	NEUTRON WIDTH	CANNA MIDIN (EV)	HHS (EV)	MISCELLANEOUS	REFERENCE
507-2 508-24	0	0.5	2000-0	2.0		GI = 2002.0	JENOL -2 JENOL - 1
507.0	Ö	0.5	2000-0	2.14		CT = 2002.1	ENDF-8-4
508-24	l i	0.3	2000	2.0			73M0X0N
507+B	ů	0.5	2000	1 2.0 1		GT = 2000 GNO = 2.609	56FARRELL
509-24		0.5	75.0	1.0		GT = 76.0	JENOL - I
508-0	0	0.5					66FARRELL
513.74 513.74 512-5		0.5 0.5	100+0 (100)	1.0 1.0		GT = 101.0	JENDL-1 73MOXON 66FARKELL
523.0 523.74	0	0.5 0.5	750.0 750.0	2.0 2.0		GT = 752.0	JENOL-2 JENDL-1
522-5 522-5	0	0.5	750-0 7750	2.14		GT = 752.it	ENDF-8-4 BNI 325(3)
523.74	l o	0.0	750	2.0			73MDX0N
522.5	0 0	0.5	/30	(2.0)		GT = 750 GNO = 1.036	66FARRELL
530.0		0.5	422.0	1.0	· · · · · · · · · · · · · · · · · · ·		JENDL-2
528.9	i	0.5	300.0	0.6		G1 = 300-6	ENDF-8-4
531.24 530.0		0.5	422 431 ± 9	1.0			73HDXON 66FARRELL
\$41.5 \$45.24	1	0.5	640.0	1.0		CT - 541 0	JENOL-2
54).1	1	0.5	420.0	0.6		CT = 420.6	ENOF-B-4
545.24 545.24 544.0		0.5	640 640 6542 ± 2	1.0			73MOXON 66FARRELL
554.69	1	0.5	1325.0	(1.0)		DT - 1501 0	JENOL -2
553.9		0.5	400.0	0.6		GT = 400.6	ENDF-8-4
555.74	► b	0.5	1600	1.0		WG[= 3.3	73MOXON
554.5 554.69		0.5	"1615 ±15 1325-0 ±80-0				66FARRELL 77SYME1
559-723 560-74	1	0.5	2025.0 1260.0	1 1.0 1		GT = 1261.0	JENOL-2 JENOL-1
559-2 559-5		1.5	^{140.0} ⁴ 1260	0.5		GT = 140-6	ENDF-8-4 BNL 3251 3 }
560.74 559.5		0.5	1260 *1263 ± 3	1-0			TOMOXON
560.023			2025-0 ±96-0				775YME 1
572.24	Ö	0.5	10000.0	2.0		0-50001 = 10	JENOL-2 JE (BL-1
558.8 571.0	ő	0.5	10600+0 *10000	2.14		GT = 10502.0 HGH = 13.23	ENDF-8-4 BNL325(3)
572.24 572.24		0.5	10000	2.0		1	73MOXON 74MOXON
571.0	0					GT = 10000 GNO = 13.234	GEFARRELL
575.5 574.5	1	0.5 0.5	300-0 300-0	0.6 0.6		61 = 300.6	JENOL-2 ENOF-8-4
500.5 500.74	0	0.5	2500-0	2.0		67 - 2502.0	JENOL-2
\$47.5	l õ	0.5	1900-D	2.14		GT = 1902-1	ENOF-8-4
508.74	ŭ	0.5	2500	2.0		MUH = 3-20	7340×0N
500-5	Ö	0.5	2700	1 2.0 J		GT = 2500 GND = 3,259	56FARRELL
600-0 601-24	0	0.5 0.5	6000.0 6000.0	2.0		GT = 6002.0	JENDL - 2 JENDL - 1
598.8		0.5	8000 (D	2.14		GT = 6002.1	ENDF -8-4
601 -24 601 -24	ļ	0.0 D E	6000	2.0			73MOX0N
600.0	Ö					GT = 6000 GNO = 7.746	GEFARRELL
803-975 808-7	1	0.5 1.5	\$25.0 300.0	(1.0) 0.6		GT = 300.6	JENOL - 2 ENDF - 8 - 4
803.875	1		\$25.0 x82.0				775THE 1
625.1	- I	1.5	200-0	0.6		GT = 200.6	ENDF-8-4
629.0		0.5	130.0	0.6			ENDE-8-4
631.2		0.5	400+0	0.6		GT = 400.6	ENDF-B-4

ENERGY INEY J	L	J	NEUTRON WIDTH	GANNA MIDTH (EV)	ян5 (£V)	HISCELLANEOUS	REFERENCE
635.3	· 0	0.5	3000+0	2.14		C1 = 3002-1	ENDF-B-4
642-5 649-85	1	0.5	600.0 1900.0 ±300.0	0.6		GT = 600.6	ENDF-8-4 7754HE 1

* A and B denote $g\Gamma_n$ and $g\Gamma_\gamma,$ respectively

**	WW5	=	gΓ _n Γ _γ /Γ	(eV),	GT = Γ	(eV)
	WGH	=	gΓ _n ⁽⁰⁾	(eV),	$GNO = \Gamma_n^{(0)}$	(eV)
	WGI	=	g ^r n ⁽¹⁾	(eV),	$GGS = \sigma_0 \Gamma_{\gamma}$	(b∙eV)

References

1

66Farrell	:	Ref.(21)	
69Hockenbury	:	Ref.(23)	
71Garg	:	Ref.(49)	
72Beer	:	Ref.(50)	
73Moxon	:	Ref.(51)	(Evaluation)
74Moxon	:	Ref.(3)	(Evaluation)
75Fröhner	:	Ref.(52)	
77Fröhner	:	Ref.(22)	
77Perey	:	Ref.(19)	
77Syme	:	Ref.(20)	

Table 7	Resonance	parameters	of	60 _{N1}
---------	-----------	------------	----	------------------

	L	J NEUTRON HIDTH *	Ganna Mioth*	HHS ##	HISCELLANEOUS **	REFERENCE
-5.5 -5.50 -5.50	0 0 0	0.5 222 52.5 0.5 52.5	2.85 5.5 5.5			JENDL -2 73H0X0N 74H0X0N
1.292 1.292 1.292 1.293 ± 0.009 1.292 ± 0.004 1.294 1.294 1.292 ± 0.004		0.5 0.0003 0.5 0.0003 0.5 0.001 0.5 0.0003 0.5 0.0003 0.5 0.0003	1.0 1.0 0.6 1.0 (1.0 1	0-0003 ± 0-0001 0-0003 ± 0-0001 0-0003 ± 0-0001	CT = 1.0003 CT = 0.601	JENDL - 2 JENDL - 1 ENDF - 8 - 4 BNL 3251 3 1 73H0X0N 74H0X0N 65H0CKENBURY 70ST 1EGL 112
2.257 2.257 2.257 2.257 ± 0.009 2.257 2.257 2.257 2.257 2.26 2.257 ± 0.009		0.5 0.073 0.5 0.073 1.5 0.034 0.5 0.073 0.5 0.071	1.0 1.0 0.6 1.0 1 1.0 3	0.065 ± 0.007 0.065 ± 0.037 0.068 ± 0.011	GT = 1.073 GT = 0.634 GC5 = 75.7 ± 8.0	JENDL-2 JENDL-1 ENDF-8-4 BNL325(3) 73HDXDN 74HDXDN 69HQCKENBURY 70STJEGL112
5.53 5.53 5.53 ± 0.02 5.53 5.53 5.53 5.53 5.52 5.53 ± 0.02		0.5 0.0593 0.5 0.0593 1.5 0.028 0.5 0.059 0.5 0.059	1.0 1.0 0.6 1.0 (1.0)	9.056 ± 0.009 0.055 ± 0.006 0.056 ± 0.009	CT = 1.0593 CT = 0.628 CCS = 25.9 ± 3.0	JENOL-2 JENOL-1 ENOF-8-4 BNL 325131 73HOKON 74HOKON 65HOCKENBURY 705TIEGL112
12.23 12.23 12.23 ± 0.03 12.20 12.22 12.2 12.2 12.2 ± 0.04 12.23 ± 0.03 12.23 ± 0.03		D.5 0.28 D.5 0.0706 D.5 0.044 D.5 0.045	(1.0) 1.0 (1.0)	0.22 ± 0.05 0.11 ± 0.02 0.042 ± 0.007 0.22 ± 0.05	GT = 1.0706 GC5 = 37 ± 4 HHC = 0.09 ± 0.02	JENOL-2 JENOL-1 BNL 325:31 73NOXON 74NOXON 63HOCKENBURY 70511EGL17 728EER 77FROEHNER
12.46 12.5 12.43 12.5 ± 0.1 12.47 12.46 14.5		0.5 2353.5 0.5 2560.0 0.5 2500.0 *2660 ±100 2110 0.5 2112	2.73 3.3 2.14 3.3 ± 0.3 3.3 3.33		GT = 2663.3 GT = 2502.1 HCH = 23.79 ± 0.89 GT = 2600 CH0 = 21.540	JENOL-2 JENDL-1 ENOF-8-4 BNL325(3) 73HOXON 56FARRELL
12.47 ± 0.06 12.4 ± 0.1 12.5 ± 0.1 12.3 ± 0.1 12.3 ± 0.1 12.3 ± 0.2 12.2244 ± 0.046	0 0 0 0 0 0 0	2660 ±100 1910 ±50 *2650 ±100 2660 ±100 0.5 \$2660 . 2353.5 ± 0.6	3.30 ± 0.30 3.4 ± 0.4 2.65 ± 0.28 ■ 2.73 ± 0.50		040 = 21.040 040 = 17.16 ± 0.54	7DSTJECLITZ 7igarg 72BEER 75FROEHNER 77FROEHNER 77FROEHNER 77SYME
13.62 13.62 13.62 13.60 13.616 13.6 13.6 13.6 13.6 13.6 13.62 13.62 13.62 13.62 13.62 13.62 13.62 13.62 13.62 13.62 13.62 13.63 13.65 13.65 13.62 13.63 13.62 13.63 13.62 13.63 13.63 13.62 13.63 13.62 13.63 13.62 13.63 13.62 13.63 13.62 13.63 13.53 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55		0.5 0.52 0.5 0.13 0.5 0.099 0.5 0.13	(1.0 3 1.0 1.0 (5.0)	0.34 ± 0.05 0.11 ± 0.03 0.090 ± 0.013 0.34 ± 0.05	GT = 1.13 HHC = 0.14 ± 0.03	JENUL - 2 JENUL - 1 BNL 325131 73HDXDN 74HDXDN G9HDCKENBURY 70511EGL1TZ 72BEER 77FRDEHNER
17.20 17.20 ± 0.05	1 O	0.5 0.064	(1.0)	0.06 ± 0.02 0.06 ± 0.02		JÊNDL-2 77FROEHNER
23.89 23.8 23.8 23.86 23.86 23.8 23.86 23.8 23.8 23.8 ± 0.10 23.86 ± 0.06 23.89 ± 0.06		.5 0.56 .5 0.613 .5 0.7 .5 0.7 .5 0.65 .5 0.55	(1.0) 1.0 1.2 1.0 (1.0)	0.72 ± 0.12 0.78 ± 0.10 0.78 ± 0.10 0.921# ± 0.140 0.72 ± 0.12	CF = 1.613 DT = 1.9 CGS = 85.7 +12.2 HHC = 0.60 = 0.12	JENOL-2 JENOL-1 ENOF-8-4 BNL325(3) 7300X0N 7400X0N 65H0CKENBUKY 70511EGL172 728EER 77F0CFMER
28.47 28.47 28.47 ± 0.07 28.47 ± 0.07 28.5 28.47 ± 0.07 28.47 ± 0.07	i 0 1 0 1 1 1 0	-5 0-11 -5 0-171 1-5 0-067	(.0) 1.2 (1.0)	0.10 ± 0.03 0.15 ± 0.05 0.08 ± 0.04 0.26 ± 0.05 0.10 ± 0.03	GT ≈ 1.371 GCS ≠ 23.2 ± 5.0 MMC ≠ 0.08 ± 0.02	JENOL-2 JENOL-1 BNL325131 74MDXDN 69HDCKENBURT 72BEER 77FROEHNER
28.650 28.6 28.7 28.60 x 0.10 28.64 28.64 30.0		.5 591.6 .5 650.0 .5 650.0 .5 ⁶ 850.2 .5 ⁸ 850 2100 752 .5 750	0.60 - 1.1 2.14 1.1 ± 0.1 1.1 1.1		GT = 851.1 GT = 652.14 MGH = 5.02 ± 0.59 GT = 1100 GMO = 6.3040	JENDL-2 JENDL-1 ENDF-B-4 BNJ 32513) 73HDXDN 74HDXDN 66FAMRELL

ENERGY (NEV.)	L J	NEUTRON NIDTH	CRIMIN HIDTH	HHG (EV)	NISCELLANEOUS	REFERENCE
28.64 ± 0.10 28.65 ± 0.05 28.60 ± 0.1 28.64 ± 0.1 28.64 ± 0.10 28.650 ± 0.001	0 0 0 0 0 0 0 0 0 0 5	800 ±50 590 ±40 *900 ±200 800 ±50 *800 ± 581.5 ± 0.23	1.10 ± 0.10 0.8 ± 0.3 0.6 ± 0.15 0.60 ± 0.15		GNO≈ 4.08 ±0.24	70571ECL112 71GARG 72BEER 75FRDEHNER 77FRDEHNER 77FRDEHNER 77SYNE
29.46 29.47 ± 0.06 29.47 ± 0.06 29.47 ± 0.06 29.47 ± 0.06 29.45 ± 0.06	1 0.5 1 0.5 1 1 1 0.5 1 1 1 0.5 1 1 1	0.042 0.0999 0.099	(1.0) 1.0 (1.0)	0.04 ± 0.01 0.09 ± 0.02 0.09 ± 0.03 0.04 ± 0.01	GT = 1.0909 HHC = 0.09 ± 0.02	JENOL-2 JENOL-1 BNL325(3) 74h03X0N 72BEER 77FRDEHWER
30.25 30.24 30.1 30.24 ± 0.08 30.1 30.20 30.2 30.2 30.2 30.2 30.2 30.2 20.24 ± 0.12 30.24 ± 0.08	1 0.5 1 0.5 1 1.5 2 7 C 0.5 1 0.5 1 0.5 1 1	0.52 0.471 0.22 0.475 0.5	1 1.0) 1.0 0.6 1.0 1 1.0)	0.34 ± 0.05 0.35 ± 0.06 0.321 ± 0.06 0.34 ± 0.05	GT = 1:471 GT = 0:82 GCS = 33 ± 5 HHC = 0:31 ± 0:06	JENOL-2 JENOL-1 ENOF-8-4 BM,325:3) 73HOXON 73HOXON 69HOCKENBURY 70511EGL172 726EER 77E0EHHEF
33.03 32.9 33.03 ± 0.06 32.9 33.01 33.01 33.01 ± 0.13 33.04 ± 0.06 33.03 ± 0.06 33.03 ± 0.06 33.03 ± 0.06	1 0.5 1 1.5 1 1.5 1 1.5 1 1.5 1 1.5 1 1.5 1 1.5 1 1.5 1 1 1	8.5 0.205 0.24 0.540 0.21 12.8 ± 3.1 7.1 ± 1.9	0.42 1.0 0.6 1.0 1.0	0.40 ± 0.03 0.40 ± 0.07 0.34 ± 0.06 0.351 ± 0.065 0.40 ± 0.07	G1 = 1.205 GT = 0.84 HHC = 0.33 ± 0.07	JENDL-2 JENDL-2 LENDL-1 ENDF-8-4 SKN 325533 73HOXON 70511EGL17 728EER 77FR0EHNER 775YNE3
33.55 33.3 33.3 ± 0.1 33.3 33.3 33.4 ± 0.1 33.4 ± 0.1 33.4 ± 0.13 33.40 ± 0.06 33.42 ± 0.06 33.55	1 0.5 1 0.5 1 0.5 1 1 0 0.5 1 0.5 1 0.5 1 1 1 1 1	3.1 0.25 0.3 0.235 0.24 1.7 ± 2.3 3.6 ± 1.3	0.25 J.0 0.6 I.0 I 1.0)	0.23 ± 0.04 0.20 ± 0.03 0.190 ± 0.031 0.23 ± 0.04	GT ≈ 1.25 GT ≈ 0.9 HHC ≈ 0.20 ± 0.05	JENDL-2 JENDL-1 END7-B-4 END7-B-4 END7-B-4 END7-B-4 BNL325(3) 73HOXON 74HOXON 73HOXON 73HOXON 73HOXON 728EER 77FROEHNER 77FROEHNER 775YNE2 775YNE3
39-52 39-4 39-5 20-1 39-5 20-1 39-5 39-5 20-15 39-5 20-15 39-54 20-15 39-52 20-10	1 0.5 1 1.5 ! 1.5 ! 0.5 ! 0 0.5 ! 0 1	0.75 0.325 0.27 1.30	(1.0) 1.0 1.0 1.0 3.0	D-43 ± 0-07 0-49 ± D-06 0-565 ± 0-100 0-43 ± 0-07	GT = 1.325 GT = 1.27 HHC = 0.41 ± 0.08	JENDL-2 JENDL-1 ENDF-B-4 DNL325(3) 73HDXDN G9HOCKENBURY 70511E0L172 728EER 77FROEHNER
43-050 43-06 43-06 43-06 43-06 42-9 43-06 42-9 43-06 12-23 43-1 ± 0-1 42-93 ± 0-11 42-93 ± 0-11 42-92 ± 0-11 42-92 ± 0.11 43-050 ± 0-0036	0 0.5 0 0.5	84.09 90.0 77.0 90 ±30 77 77 ±15 140 ±30 120 ±30 120 ±30 120 ±30 120 ±30 120 ±30	0.96 1.3 2.14 1.3 1.73 1.73 1.73 1.73 2.14 1.3 2.14 1.3 2.14 1.3 2.14 1.3 2.14 1.3 2.14 1.3 2.14 2.3 1.75 1.7	0.77 ± 0.12	GT = 91.3 GT = 79.14 WGH = 0.43 ± 0.15 GGS = 47 ± 6 GNO = 0.67 ± 0.15	JENDL -2 JENDL -1 ENDF -0-4 BNL 325(3) 73HOXOM 69HOCKENBURY 7057 IEGL IT 2 71GARG 728EER 75FAOEHNER 75FAOEHNER 775YRE
47.60 47.6 47.6 ± 0.1 47.6 ± 0.1 47.55 47.4 ± 0.22 47.60 ± 0.12 47.60 ± 0.12	1 1.5 1 0.5 1 0.5 1 0.5 0 1.5 0 1.5 0 0.5 1 0 1 1	1.04 9.23 0.7 10 0.76 1.41	(1.0) 0.9 1.2 0.9 ± 0.2 1.0 (2.0) 2.0 ± 0.4	1.02 ± 0.16 0.062 ± 0.130 1.02 ± 0.16	CT = 10.13 CT = 1.9 HGI = 0.49 HHC = 0.70 ± 0.16	JCNOL-2 JENOL-1 ENOF-8-4 ONL325131 73m0xun 74m0xun 70stiecl12 72beer 77FROEHWER
49.83 49.8 49.6 49.6 ± 0.1 49.6 ± 0.25 49.60 ± 0.12 49.60 ± 0.12 49.63 ± 0.12	1 0.5 1 0.5 1 0.5 1 0.5 1 1 0.5 1 1 1 1 1	0.43 0.351 0.45 0.345	(1.0) 1.0 0.6 1.0	0.30 ± 0.05 0.26 ± 0.04 0.257 ± 0.043 0.30 ± 0.05	01 = 1.351 07 = 1.06 MMC = 0.27 = 0.06	JENOL - 2 JENOL - 1 ENOF -0 - 6 BML 32513J 73HOXON 70511ECL 112 72BEER 77FROEMMER
50.00 50.99 50.9 ± 0.2 50.0	1 0.5 1 0.5 1 0 0.5	0.16 0.124 1 0.1 3	([.0] i.0 i.0	0.14 ± 0.03 0.11 ± 0.02	GT = 1-124	JENOL - 2 JENOL - 1 BNL 325131 73H0X0H

ENERGY (KEV)	L J	NEUTRON HIDTH	CANNA WIDTH (EV J.	HMS (EV)	MISCELLANEOUS	REFERENCE
50.8 ± 0.26 50.99 ± 0.15 50.86 ± 0.15				0.14 ± 0.03	HHC = 0.11 ± 0.02	705T EGL 1 Z 728EER 77FKOEHNER
51.57 51.64 51.5 51.5 ± 0.2 51.5 51.9 ± 0.26 51.64 ± 0.15 51.57 ± 0.15	1 0.5 1 1.5 1 1.5 0 0.5 1 1 1 1	0.92 0.266 0.36 0.84	(1.0) 1.0 0.6 1.0	0-48 ± 0-05 0-456 ± 0.078 0-48 ± 0.05	HHC = 0.38 = 0.08	JENDL-2 JENDL-3 ENDF-8-4 BML325131 73HDXON 69HOCKENBURY 705TIECL112 728EER 77FROEHMER
52.7 52.7 ± 0.27	0 0.5	1 0.1)	1.0			73HOXON 705TIEGLITZ
56.29 56.0 56.3 56.0 ± 0.2 56.3 ± 0.2 56.3 ± 0.28 56.00 ± 0.15 56.12 ± 0.15 56.29	1 0.5 1 0.5 1 0.5 1 1 0 0.5 1 1 1 1 1	2.6 0.266 1.06 0.60 2.2 ± 2.6 2.8 ± 1.3	0.35 1.0 0.6 1.0	0.31 ± 0.04 0.20 ± 0.06 0.374 ± 0.063 0.31 ± 0.04	07 = 1.266 07 = 1.65 HHC = 0.15 * 0.03	JENDL - 2 JENDL - 1 ENDF - 0 - 4 BHL 325131 73H0X0N 70511EGL 112 72BEER 77FR0EHHER 775YHE2 775YHE3
56.94 56.9 56.9 57.0 57.0 56.9 ± 0.2 56.9 ± 0.29 56.74 ± 0.15 55.78 ± 0.15 56.78 ± 0.15 56.94	1 0.5 1 1.5 1	0.91 0.282 0.32 0.71 0.94 ± 0.94 0.9 ± 0.39	0.57 1.0 0.6 1.0	0.35 ± 0.05 0.44 ± 0.09 0.416 ± 0.070 0.35 ± 0.05	GT = 1.262 GT = 0.92 HHC = 0.45 ± 0.09 ⁻	JE"DL-2 JENDL-1 ENDF-B-4 BML325(3) 73HDX0M 69HOCKENBURY 705TIECLITZ 72BEER 77FROEHNER 775YNE2 775YNE3
65.1101 65.42 65.3 65.42 ± 0.16 65.13 65.35 62.0	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	459-9 500-0 390-0 "500 ±150 440 440	1.90 2.1 2.43 2.1 x 0.3 2.33 2.39	<u></u>	GT = 502.1 GT = 392.43 HGH = 1.96 ⁻ ± 0.59 GT = 700 GN0 = 2.836	JENOL-2 JENOL-1 ENDF-0-4 BNL325(3) 73hoxom 74hoxom 66farrell
65.2 65.13 ± 0.40 65.3 ± 0.2 65.42 ± 0.16 65.4 ± 0.2 65.12 ± 0.16 65.1101 ± 0.0235	0 0 0 0 0 0.5	390 ±30 610 ±140 ⁶ 500 ±150 500 ±150 ⁶ 600 1 459.9 ± 0.75	2.43 ± 0.25 2.0 ± 0.4 1.79 ± 0.26 1.90 ± 0.30		GNO = 3.17 ± 0.78	69H0CKENBURY 705TIECLITZ 716RC 720FER 75FR0EMMER 77FR0EMMER 77FR0EMMER 77SYME
71.39 71.51 71.3 71.5 ± 0.2 71.3 ± 0.45 71.51 ± 0.18 71.39 ± 0.18	1 0.5 1 1.5 1 1.5 1 1 0 0.5 1 1 1 1	0.56 0.22 0.29 0.66	1 1.0 3 1.0 0.6 1.0	0.36 x 0.06 0.36 x 0.07 0.396 x 0.066 0.36 x 0.06	CT = 1.22 GT = 0.89 WHC = 0.33 ± 0.07	JENOL-2 JENOL-1 ENOF-8-4 BNL325(3) 73HOXON 705TIECL112 728EER 77FROEHNER
73.16 73.25 73.3 ± 0.2 73.2 72.8 73.2 ± 0.50 73.25 ± 0.10 73.15 ± 0.10	1 0.5 1 1.5 1 0 0.5	1.0 0.351 1.56	{ }.0 } }.0	0.50 ± 0.08 0.48 ± 0.09 0.610 ± 0.100 0.50 ± 0.08	GT = 1.351 HHC = 0.44 x 0.09	JENOL - 2 JENOL - 1 BML 325 (3) 73NOXON 69HOCK ENBURY 705T FEGL 1 T2 728EER 77F ROLHKER
78.08 78.25 78.3 ± 0.2 78.2 78.2 ± 0.55 78.26 ± 0.20 78.08 ± 0.20	0.5 0.5 0.5 0.5	0-28 0-333 0-875	(1.0) 1.0 1.0	0.22 ± 0.04 0.23 pt 0.04 0.308 ± 0.051 0.22 ± 0.04	GT = 1-333	JENOL-2 JENOL-1 BNL 325(3) 73HOXON 70511EGL112 728EER 77FROEHNER
79.74 79.98 80.0 ± 0.2 79.9 79.9 ± 0.58 79.98 ± 0.20 79.74 ± 0.20	1 0.5 1 1.5 2 0 0.5 1 1 1 1	0.59 0.19 1.75	1.03 1.0 1.0	0.37 ± 0.06 0.33 ± 0.07 0.447 ± 0.073 0.37 ± 0.06	GT = .19 ₩KC = 0.33 ≥ 0.07	JENDL-2 JENDL-1 BAL325/3) 73ndxdn 7051/EGL172 726EER 77FROENNER
81.61 81.96 82.0 ± 0.2 82.8 ± 0.3 81.95 ± 0.20 81.61 ± 0.20	1 0.5 1 0.5 1 0.5 1 0.5 1 1 1	0.33 0.282 ⁶ 110 x40 110 x40	(1.0) 1.0	0.25 ± 0.04 0.22 ± 0.05 0.25 ± 0.04	GT = 1.282 SND = 0.39 ± 0.14 H+C = 0.22 ≠ 0.05	JENDL - 2 JENDL - 1 BNL 3251 3 ; 71GARG 72BEER 77FROLMNEN

ENERGY IKEY J	I J	NEUTRON MIDTH	CANNA NIDTH	HMS	HISCELLANEOUS	REFERENCE
83.41 84.94 84.9 ± 0.2 84.7 ± 0.59 83.8 ± 0.3 84.94 ± 0.20 85.02 ± 0.20 83.41	1 0- 1 1- 1 1-	5 7.15 5 40.0 5 1 50 240 60 240 7.15 27.15 7.15 21.9	0.51 0.2 0.20 ± 0.04	0.48 ± 0.09	CT = 80.2 HCl = 1.61 CNO = 0.29 ± 0.14 HHC = 0.41 ± 0.08	JENDL - 2 JENDL - 1 BNL 32513 J 7051160,112 716000 728620 77878064460 7757462 7757463
86.6671 86.3 87.0 86.3 ± 0.2 86.80 86.7 84.5	0 0. 0 0. 0 0. 0 0. 0 0. 0 0.	5 341.9 5 330.0 5 310.0 5 4330 ±25 320 5 286	1.50 2.0 2.14 2.0 1.4		GT = 332.0 GT = 312.14 HGH = 1.12 = 0.09 GT = 500 GND = 1.742	JENDL - 2 JENDL - 1 ENDF - 8 - 4 BNL 3251 3 1 73MDXDN 56F ARRELL
87.0 86.8 ± 0.60 86.7 ± 0.3 86.33 ± 0.22 86.3 ± 0.2 86.35 ± 0.22 86.5671 ± 0.0067	0 0 0 0 0 0.3	330 ±25 (60 ±40 *330 ±25 330 ±25 5 *1330) 341+9 ± 2+3	1.4 ± 0.3 1.51 ± 0.30 ■. 1.50 ± 0.30		CNO = 0.53 ± 0.14	69HOCKENBURY 70577EGL172 710ARG 72BEER 75FROEHNER 73FROEHNER 73FROEHNER 73FROEHNER 73FROEHNER
67.9 87.69 67.9 ± 0.2 67.6 ± 0.61 67.69 ± 0.22 67.80 ± 0.22 87.9 67.9 67.9		5 8.0 5 0.47 6.3 ± 4.6 9.0 ± 1.9	0.8 1.0	0.73 ± 0.07 0.54 ± 0.13 0.73 ± 0.07	CT = 1.47 HHC = 0.64 ± 0.13	JENDL-2 JENDL-1 BHL 32513) 705TIEGL 112 72BEER 77FROEHNER 775YHE2 775YHE3
69.865 39.93 89.9 ± 0.3 89.93 ± 0.25 89.44 ± 0.25 89.665 89.865 89.865		5 16.0 5 0.205 7.5 ± 5.2 19.0 ± 2.9	0.21 1.0	0.21 0.17 ± 0.04 0.21 ± 0.05	07 = 1.205 HHC = 0.17 ± 0.04	JENDL -2 JENDL -1 DHL 32513J 72BEER 77FROEHNER 775YRE2 775YRE3
91.69 91.6 ± 0.3 91.60 ± 0.25 91.40 ± 0.25 91.40 ± 0.25 91.69 91.69		5 6.0 5 0.333 5.2 ± 4.8 6.6 ± 2.1	0.35 1.0	0.33 0.25 ± 0.05 0.33 ± 0.06	GT = 1.333 WHC = 0.25 ≠ 0.0°	JENOL - 2 JENOL - 1 JENOL - 1 JENEL - 1 JENEL - 1 JENEL - 1 JENEL - 1 JENEL - 2 JENEL - 1 JENEL
92.13 93.94 93.9 ± 0.3 93.3 ± 0.65 93.94 ± 0.25 93.94 ± 0.25 92.13 92.13		5 7.1 5 0.316 8.7 * 3.0 5.9 * 1.1	0.62 1.0	0-58 0-48 ± 0-10 0-56 ± 0-08	GT = 1.316 HHC = 0.48 ± 0.10	JEROL-2 JEROL-1 BRL325131 70STIEGL112 728EER 77FR0EHNER 77SYNE2 77SYNE3
96.5 ± D.58	1					70511EGL 112
97.051 97.5 98.6 97.5 ± 0.3 98.10 97.81 96.5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	6 835.8 1000-0 690.0 1000 ±200 940 940 940	1.20 1.0 2.14 1.0 ± 0.2 2.0 1.0		$GT = 1001.0$ $GT = 692.14$ $HGH = 3.20 \pm 0.64$ $GT = 1250$ $GN = 4.064$	JENOL-2 JENOL-1 ENOF-8-4 BNL325(3) 73MOXON 74MOXON 66FARRELL
97.2 96.1 ± 0.70 97.7 ± 0.4 97.20 ± 0.25 97.2 ± 0.3 96.79 ± 0.30 97.661 ± 0.011	0 0 0 0 0.5 0	870 ±70 1070 ±160 ¹ 1000 ±200 1000 ±200 ⁶ 870 J 835.6 ± 0.23	1.0 ± 0.2 1.13 ± 0.20 1.20 ± 0.25		GNO = 3.42 ± 0.51	69HOCKENBURY 705TJECL [T2 71GRRC 72BECR 75FROEHNER 77FROEHNER 77FROEHNER 77SYHE
99.44 99.24 99.2 ± 0.3 99.24 ± 0.25 99.94 ± 0.30 99.44 99.44	1 0.5 1 1.5 1 1 1 1 1 1 1	8-2 D-852 7-5 t 4-0 8-5 t 1-8	0.87 1.0	0.79 0.92 40.20 0.79 ±0.09	DT = .852 ##C = 0.92 ± 0.20	JENOL - 2 JENOL - 1 BNI 325: 3 1 720EER 77FROEMNER 775YME2 775YME3
101.10 101.9 101.9 ± 0.3 101.9 ± 0.25 101.10 ± 0.30	0.5 0.5 1 1 	0-10	(1.0) 1.0	0.15 ± 0.04 0.10 ± 0.05 0.15 ± 0.04	37 = 3-111 HC = 0.10 = 0.05	JENDL - 2 JENDL - 1 BNL 3251 3 J 728EER 77FROEMNER
107.479 100.3 106.0 100.3 ± 0.3	0 0.5 0 0.5 0 0.5	266-3 700-0 840-0 *700 ±100	1.35 1.1 2.14 1.1 ± 0.3		IT = 701. IT = 842.14 GH = 2.13 ± 0.31	JENDL - 2 JENDL - 1 ENDF -8-4 BNL 325(3)

ENERGY CKEV 3	LJ	NEUTRON WIDTH	Grinna Midth (EV.)	HHS . (EV 1	HISCELLANEOUS	NEFERENCE
107-8 108-3 106-0	0 0 0.5 0	660 695	2.0		G1 = 840 GM0 - 2,622	73NOXON 74NOXON 56FARRELL
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 0 0 0 0 0:5	610 ±60 1750 ±100 700 ±100 700 ±100 7610 ; 265-3 ±0-53	1.1 * 0.3 1.35 * 0.20 1.35 * 0.25		GNO = 5.29	70511EGL 112 71GRRG 728EER 75FROEHNER 77FROEHNER 775YHE
111.5 111.6 111.6 ± 0.3 111.3 ± 1.0 111.6 ± 0.25 111.46 ± 0.30 111.5 111.5	1 1.5 1 0.5 1 0.5 1 1 1 1 1	8.2 27.0 4.0 ± 8.0 9.25 ± 3.9	1.34 3.0 2.7 ± 0.6	2-30 ± 0-36 3-74 ± 0-80 2-30 ± 0-36	GT = 30.0 HHC = 2.7 ± 0.6	JENOL - 2 JENOL - 1 BN, 3251 3 J 7051 1EGL 1T 2 72 BEER 77 FROE HNER 77 SYNE 2 77 SYNE 3
[21.4 120.6 ± 1.1 120.6 ± 1.1 120.2 ± 0.35 121.4 121.4	1 1.5 1 1.5 1 1 1	18-8 27-4 ± 5-0 17-4 ± 2-5	0.97 1.3 ± 0.3	1.65 ± 0.1\$ 2.31 ± 0.50 1.85 ± 0.1\$		JENDL-2 ØNL325(3) 705TIEGLITZ 77FROEHNER 775YHE2 775YHE3
123.2 123.5 123.8 ± 1.2 123.8 ± 1.2 123.2 ± 0.4	1 0-5 1 1-5 1 1	1-94 0-538	(1-0) 1-0	0-66 ± 0-12	GT = 1-538	JENDL-2 JENOL-1 BNL 325(3) 70511EGL 112 77FROEHNER
127.7 126.5 127.74 126.5 127.7 127.7 127.7	1 0.5 1 0.5 0 0.5 0 1 1	61.0 40.0 40 43 ± 3 61.1 ± 5.75 51.0 ± 2.5	1 1.0 3 0.6		GT = 40.6	JENDL-2 ENDF-B-4 73H0X0N 66FARRELL 775YNE2 775YNE3
129.0 129.2 129.7 ± 1.3 129.7 ± 1.3 129.0 ± 0.4	1 0.5 1 1.5 1	32.0 1.0	(1.0) 1.0	0.97 * 0.15 0.97 * 0.16	GI = 2.0	JENOL-2 JENDL-1 BNL325(3) 70511EGL17Z 77FROEHNER
136.7 136.5 136.5 ± 1.4 136.5 ± 1.4 136.7 ± 0.5	i 1.5 i 1.5 i 0.5 i	15.7 3.7	(1-8) - 3.7 - 4-3 ± 0.9	3.25 ± 0.54 4.31 ± 0.90 3.25 ± 0.54	QT = 7.4	JENDL-2 JENDL-1 BNL 325(3) 7051 IEGL 112 77F ROEHNER
141.9 139.6 139.5 139.5 ± 1.4 139.74 139.5 ± 1.4 139.5 ± 0.6 141.9	1 1.5 1 1.5 1 0.5 1 0.5 0 0.5 0 1 1	41.0 3.5 70.0 70 40.5 ± 6.3 41.5 ± 2.6	1.6 3.5 0.6 4.0 ± 0.9	3.0 ±0.5 3.95 ±0.90 3.0 ±0.5	GT = 7.0 GT = 70.6	UENDL-2 JENOL-1 ENOF-8-4 MH_325131 73HOXOH 66FARRELL 70571EGL172 77FADEMHER 775YHE3
154.4 148.4 153.5 148.1 ± 0.4 154.4 154.4	1 0.5 1 1.5 1 0.5 1	140.0 1.5 200.0 185.0 ±20.0 135.0 ± 8.0	1.09 1.0 0.6	1-09 ± 0-18 1-09 ± 0-18	GT = 2.5 GT = 200.6	JENDL - 2 JENDL - 1 ENDF - B- 4 77F ROEHNER 775 YHE 2 775 YHE 3
158.0 158.4 158.4 157.24 157.24 158.4 156.0 156.4 ± 1.2 155.4 ± 0.5 154.0 ± 0.7 156	0 0.5 0 0.5 1 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	(440) 440.0 360.0 ⁸ 440 ±50 440 4419 ±39 440 ±50 440 ±50 450 440 ±50 440	0.70 2.0 0.5 1 2.0) 0.865 ± 0.17 0.70 ± 0.12		07 = 442.0 07 = 360.6 MGH = 1.11 x 0.13	JENDL -2 JENDL -1 ENDT -8 -4 6NL 32513) 7400X0M 667ARAEL 76511ECL 112 757ROENNER 7757RE
161.407 162.0 160.8 162.0 ± 0.4 162.1 161.62 160.0	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	1000.5 1400.0 1800.0 1400 ±200 1330 1330	2.2 2.2 2.14 2.2 ± 0.5 2.0 2.2		GT = 1402.2 GT = 1802.1 HGH = 3.48 ± 0.50 GT = 1800 GN = 4.511	JENOL-2 JENOL-1 ENDF-8-4 BNL325131 73HOXON 74HOXON 65FARRELL
162-1 ± 1,3 161 ± 1 161-7 ± 0.4 161-7 ± 0.5 160-8 ± 0.9 161-407 ± 0.017	0 0 0 0 0 0 0.5	1250 ±130 \$303 ±2000 ⁸ 1400 ±200 1400 ±200 ⁸ 1250 1 1009-5 ± 1.0	2.2 ± 0.5 1.9 ± 0.4 2.2 ± 0.4		040 = 13-20 + 5-00	705TIEGLITZ 71GARG 72BEER 75FROEMMER 77FROEMMER 77FROEMMER 775TME

ł

ENERGY LINEY J	Ti J	NEUTRON HIDTH	ORINA MIDTH (EV)	1445 (EV)	MISCELLANEOUS	REFERENCE
167.05 167.0 167.0 ± 1.0 167.05 167.05		.5 86.0 .5 3.0 75.5 ±11.0 60.5 ± 6.0	1.54 3.0	3.0 ± 0.8	GT = 5+D	JENOL-2 JENOL-1 77FROEHNER 775YME2 775YME3
173.7 173.7 173.7 ± 1.3		.5 20.0 .5 19.0	1.0 1.0	1.9 ± 0.5	GT = 20.0	JENDL-2 JENOL-1 77FROEHNER
145.409 186.5 186.2 186.6 ± 1.5 186.5 186.5 186.3 186.2		.5 9150.4 .5 5860.0 .5 8000.0 .5 ^5800 #800 .5660 .5 5870	3.2 2.0 2.14 2.0 (2.0 1	<u> </u>	GT = 5852.0 GT = 6002.1 WGH = 13.43 ± 1.85 GT = 6000 GNO = 14.303	JENDL-2 JENDL-1 ENDF-8-4 BNL325(3) 73HDXDN 74HDXDN 66FARRELL
196-5 ± 1-5 (86 ± 1 184-0 ± 1-5 185-409 ± 0-106	0 0 0 0	6000 +800 5700 +2300 -5 \$\$600 } 9150-4 + 2-2	• 3.2 ± 0.8		GNO = 13.22 + 5.34	7057 [EGL TZ 71GARG 77FROEHNER 77FROEHNER 775YHE
197.034 198.0 197.0 198.0 ± 1.8 198.0 196.5 197.0		.5 3692.3 .5 3100.0 .5 3500.0 .5 *3100 *350 .5 *3100 *350 .3280 .5 3290	4.1 2.0 2.14 2.0 (2.0)		07 = 3102-0 07 = 3502-1 H0H = 6.97 ± 0.79 07 = 3500 040 = 0.125	JENDL-2 JENDL-1 ENDF-B-4 BML32513) 73H0X0N 74H0X0N 66FRRRELL
198.0 ± 1.8 196 ± 1 195.0 ± 2.0 197.034 ± 0.046	0 0 0 0.1	3100 ±350 3500 ±2300 5 ¶3100 3 3692-3 ± 1.7	■ 4-3 ± 1-0		GNO = 7.90 ± 5.20	70ST LEGL 1T2 71GARG 77FROEMNER 77SY 1E
201.6 202.0 ± 2.5 201.6 201.6		.5 185.0 f120) 179.0 ±19.7 185.0 ± 7.58	1-4	2.8 2.8 ± 0.7		JENGL - 2 77FROEHNER 77SYME2 77STHE 3
207-24 207-24 206-0 206-0 ± 1-8 207-24 206-0		5 119.0 5 110.0 5 110.0 120 5 110 5 110 6 119 ± 9	1 1.0 1 1.0 0.6		GT = 111-0 GT = 110-6	JENDL-2 JENDL-1 ENDF-8-4 BML32S(3) 73HOXON 66FARRELL
214.\5 215.24 214.0 214.0 ± 1.0 215.24 215.24 214.0 214.15		5 95.0 5 94.0 5 94.0 74 5 94 ⁶ 102 ± 8 88.0 ±17.0 83.7 ± 6.5	(1.0) 0.6 0.6		GT = 94.6 G7 = 94.6	JENOL-2 JENOL-1 EMOP-8-6 BAL32513J 73HDXON 66FARRELL 775THE2 775THE3
220.1 221.24 220.0 220.0 ± [.0 221.24 220.0 220.1 220.1 220.1		5 70.0 5 98.0 5 98.0 106 5 98 ⁶ 106 * 8 38.0 * 28.0 83.0 * 11.0	(1.0) 0.6 0.6 0.6		CT = 966.6 GT = 967.6	JENOL-2 JENOL-1 ENOF-0-4 BKL325(3) 73moxon 66FARRELL 775YHE3
221-8 221-8 221-8	1 0.5 1 1	5 54.0 57.0 #28.0 53.0 ±10.5	(1.0)			JENDL - 2 7757 ME 2 775 T ME 3
230-2 230-24 225-0 225-0 ± 1-8 230-24 230-2 230-2 230-2	L 0.5 I 0.5 I 0.5 D 0.5	5 46.0 5 209.0 ⁶ 224 5 208 ⁶ 224 ±16 ⁶ 224 ±16 80.0 ±18.0 44.0 ± 7.0	(1.0) 0.5 0.5		GT = 208.6 GT = 208.6	JENOL-2 JENOL-1 ENDF-8-4 BNL325(3) 73HOXON 66FARRELL 775YHE2 775YHE3
231-06 231-06 231-06 231-06	1 0.5 1	5 82.5 84.0 ±20.0 82.5 ± 8.0	(1-0)			JENOL - 2 775THE 2 775THE 3
282.2 253.24 282.0 282.0 ± 2.0 283.24 282.0 282.2 282.2 282.2 282.2	1 0.5 1 0.5 1 0.5 1 0.5 0 0.5 0 1.5	5 420.0 5 870.0 5 540.0 810 5 870 8005 435 387.0 440.0 425.0 \$17.0	{ 1.0 0.5 0.6		07 = 870.6 CT = 540.6	JENQL-2 JENQL-1 ENQF-8-4 BNL325(3) 73hQX0H 66FARRELL 775YNE3
253-06 253-05 253-05	1 0.5	i 250.0 260.0 ±31.0 248.0 ±12.0	1 1.0 1			JENOL - 2 775YME 2 775YME 3
256-3	1 0.5	470-0	1 1.0 1			JENOL - 2

ENERGY	L J	NEUTRON HIDTH	CANNER HIDTH HHS (EV) (EV)	MISCELLANEOUS	REFERENCE
256.3 256.3	1	\$20.0 ±40.0 460.0 ±15.0			775THE? 775THE 3
257.8 257.8 257.0 257.8 ± 2.1 257.8 257.8 257.8 257.8 257.8 ± 2.1	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	3600.0 3600.0 3750.0 *3600 4600 3620 3630 3630 3600 ±800	2.0 2.0 2.14 2.0 (2.0)	GT = 3502.0 GT = 3752.1 HGH = 5.69 ± 1.18 GT = 3750 GHO = 7.690	JENDL-2 JENDL-1 ENDF-8-4 BML 325131 73HDXDN 56FARRELL 70511ECL17Z
273.0	1 0.5	150.0	0.6	GT = 150-6	ENDF-8-4
277.1 274.0 277.1 277.1	1 0.5 1 0.5 1	207.0 150.0 186.5 ±50.0 211.5 ±19.5	(1.0) 0.5	CT = 150.6	JENOL-2 ENDF-8-4 775YNE2 775TNE3
279.6 279.6 279.6 279.6 ± 2.3 279.6 ± 2.3 279.6 ± 2.3	0 0.5 0 0.5 1 0.5 0 0.5 0 0.5	750.0 750.0 700.0 8750 ±160 750 750 ±160	2.0 2.0 0.6 2.0	01 = 752.0 GT = 700.6 HGH = 1.42 ≈ 0.30	JENDL-2 JENDL-1 ENDF-8-4 BNL325131 73H0XDN 70STIEGL112
283.0 283.74 282.5 282.5 ± 2.4 283.74 283.74 282.5	1 0.5 1 0.5 1 0.5 0 0.5	620.0 620.0 620.0 647 620 620 647 ±27	1-0 0-5 0-5	GT = 620.6 GT = 620.6	JENOL-2 JENOL-1 ENDF-8-4 BNL32513) 73HDXCN 66FARRELL
292.3 293.74 292.2 292.5 ± 2.4 293.74 293.74 292.5 292.3 292.3	1 D.5 1 O.5 1 O.5 0 D.5 0 I.5	115.0 360.0 360.0 *378 360 *378 ±18 124.0 ±25.0 114.0 ±10.0	1 J-D J 0-6 0-6	CT = 360.6 CT = 360.6	JENDL - 2 JENDL - 1 ENDF - 7 - 4 OMI 325(3) 73MDXON 66F FRRELL 775YHE2 775YHE2
292-8 292-8 292-8	1 0.5 1 1	170+0 186+0 ±30+0 169+0 ±11+0	(1.0)		JENDL-2 775YHE2 775YHE3
295.65 295.5 295.85 296.65	1 0.5 1 0.5 1	130-0 800-0 100-0 ±37-0 130-0 ±11-0	(1.0) 0.6	61 = 600.6	JENDL-2 ENDF-8-4 775YME2 775YME3
302.0	1 0.5	150.0	0.6	GT = 150.6	ENDF-8-4
303.7	1 0.5	90.0	0.8	67 = 90.6	ENOF-8-4
307.0 307.24 305.3 306 £ 2.5 307.24 306.0	1 0.5 1 0.5 1 0.5 0 0.5	500-0 500-0 \$20-0 *525 500 *525 \$25	1-0 0-6 0-6	CT = 500.6 CT = 500.6	JENDL-2 JENDL-1 ENDF-8-4 BNL325131 73HOXON 66FARRELL
316.8 316.0 316.0 316.0 316.0 316.8 316.8 316.8 316.0	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	3200.0 3200.0 3200.0 *800 3200 3200 3200 3200	2.0 2.0 2.14 2.0 2.14 2.0 (2.0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	JENDL-2 JENDL-1 ENDF-0-4 BNL325(3) 73noxon 74noxon 66farrell
316-8 = 3-1	0	3200 +600			70STIEGLITZ
326.3 326.3 326.0 326.3 ± 2.5 326.3 326.3 326.3 325.0	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	6800.0 7002.0 9500.0 *7000 ±1100 7370 6900	2.0 2.0 2.14 2.0 (2.0)	GT = 6002.0 GT = 7002.0 GT = 8502.1 HOH = 12.25 ± 1.93 GT = 8500 GMO = 15.655	JENDL -2 JENDL -1 ENDF -8 -4 BNL 325131 73MOXON 74MOXON 66FARRELL
326.3 ± 3.3	0	6800 ±1100			70511EGL112
339.5 339.5 339.5 339.5 1 2.5 339.5 339.5 339.5 339.5 339.5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	7500-0 6600-0 4400-0 *6600 ±1500 8060 6950	2.0 2.0 2.14 2.0 (2.0)	CT = 7502.0 CT = 6502.0 CT = 6402.1 HCH = 11.16 ± 2.57 CT = 5250 CH = 9.500	JENDL-2 JENDL-1 ENDF-8-4 ØNL32513) 73ndxan 74ndxan 66farrell
339.5 1 3.5	0	7500 ±1500			70511EGL172
347.24 347.24 346.0	0 0.5 0 0.5 0 0.5	250.0 250.0 250.0	2.0 2.0 2.14	GT = 252.0 GT = 252.0 G1 = 252.14	JENDL-2 JENDL-1 ENDF-8-4

- 65 -

ENERGY (KEV)	L	10 ×	NEUTRON HIDTH	CANNA HIDTH	6845 (EV.)	MISCELLANEOUS	REFERENCE
347.24 347.24 346.0	0 0 0	0.5	10 2160	2.0 (2.0)		GT = 250 GNO = 0.440	73MOXON 74MOXON 66FARRELL
357.2 357.2 357.2 357.2 ± 2.6 358.44 358.44 357.2		0.5 0.5 0.5 0.5	1000-0 1000-0 1000-0 *2000 1000 1000	2.0 2.0 2.14 2.0 (2.0)		GT = 1002.0 GT = 1002.0 GT = 1002.1 HCH = 1.67 GT = 1000 GH0 = 1.765	JENDL-2 JENDL-1 ENDF-8-4 BNL325(3) 73HDXON 74HDXON 66FARRELL
359.4 359.74 358.5 358.5 ± 2.6 353.74 358.5	1 1 1 0 0	0.5 0.5 0.5 0.5	1076.0 1076.0 1076-0 #1113 1076 #1113 ±37	(1.0) 0.6 0.5		GT = 1077.0 GT = 1076.6 GT = 1076.6	JENDL-2 JENDL-1 ENDF-0-4 BNL325133 73MOXON 66FARRELL
376.74 375.5 375.5 375.5 376.74 376.74 376.74 375.5	0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	4000.0 4000.0 4000.0 #4000 4000 4000 400	2.0 2.0 2.14 . 2.0 (2.0)		CT = 4002.0 CT = 4002.0 CT = 4002.1 CT = 4000 CH = 6.905	JENOL-2 JENOL-1 ENDF-8-4 BML32513) 73HQXQN 74HQXQN 66FARRELL
379.0 379.74 378.5 378.5 378.5 378.5 378.74 378.5	1 1 1 0 0	0.5 0.5 0.5 0.5	220.0 220.0 226 226 220 220 226 220 226 ± 6	(i.0) 0.6 0.6		GT = 221.00 GT = 220.6 GT = 220.6	JENDL-2 JENDL-1 ENDF-8-4 BNL325(3) 73HOXON 66FARRELL
387.74 387.74 387.5 387.5 387.5 387.74 387.5	1 1 1 0	0.5 0.5 0.5 0.5	280.0 280.0 280.0 *290 280 *290 ±10	{ 1.0 } 0.6 0.6		GT = 281.0 GT = 280.6 GT = 280.6	JENDL-2 JENDL-1 ENDF-8-4 BNL325(3) 73HDXON 66FARRELL
393.0 393.24 392.0 392.0 393.24 393.24 393.24 392.0	1 1 1 0 0	0.5 0.5 0.5 0.5	266.0 266.0 266.0 *225 266 *275 ± 9	(1.0) 0.6 0.6		GT = 267.0 GT = 266.6 GT = 266.6	JENDL-2 JENDL-1 ENDF-8-4 BNL325(3) 73HDXQN 66FARRELL
297.4 398.24 397.0 397.0 398.24 397.0 398.24 397.0		0.5 0.5 0.5 0.5	312.0 312.0 312.0 ⁸ 321 312 ⁸ 321 ± 9	(1.0) 0.5 0.5		GT = 313.0 GT = 312.6 GT = 312.6	JENOL-2 JENDL-1 ENDF-8-4 DNL325(3) 73hoxon 66farrell
402.74 402.74 401.5 401.5 402.74 402.74 401.6	1 1 1 0 0	0.5 0.5 0.5 0.5	390.0 390.0 390.0 400 390 ⁴ 400 ±10	(1.0) 0.6 0.6		CT = 391.0 CT = 390.6 CT = 390.6	JENDL-2 JENDL-1 ENDF-B-4 ØNL32513) 73MDXON 66FRRRELL
406.4	1	0.5	200.0	0.6		CT = 200.6	ENDF-8-4
408.5 412.3 412.3 412.3 412.3 412.3 413.54 413.54 413.54 412.3		0.5 0.5 0.5 0.5 0.5	200.0 750.0 750.0 750.0 750 750 750 750	2.0 2.0 2.14 2.0 (2.0)		01 = 200.6 01 = 752.0 01 = 752.0 01 = 752.14 HGH = 1.17 01 = 750 040 = 1.242	EMDE-8-4 JENDL-2 JENDL-1 ENDF-8-4 BNL325(3) 73hDXDN 74hDXDN 66FARRELL
422.24 421.0 421.7 421.0 422.24 422.24 422.24 421.0	0 0 0 0 0 0	0.6 0.6 0.5 0.5	2000.0 2000.0 2000.0 2000 2000 2000 200	2.0 2.0 2.14 2.0 (2.0)		01 = 2002.0 61 = 2002.0 61 = 2002.1 HGH= 3.08 61 = 2000 640 = 3.282	JENOL - 2 JENOL - 1 ENDF - 8 - 4 DML 3251 3 J 73HOXON 74HOXON 66FRRRELL
426-5 426-5 427-0 426-5 427-74 427-74 427-74 426-5	0 0 0 0 0 0 0	0-5 0-5 0-5 0-5	500.0 500.0 500.0 500 500 500 500	2.0 2.0 2.14 2.0 1 2.0)		DT = 502.0 DT = 502.0 DT = 502.14 MCH = 0.77 DT = 500 DNO = 0.816	JENOL-2 JENOL-1 ENOF-8-4 BNL325(3) 73mdxon 74mdxon 66FARRELL
438.74	1	0.5	220.0	1 1.0 3		07 = 221.0	JENDL - 2

1.

ENERGY LIKEY 3	L		NEUTRON HIDTH	GANNA HIDTH LEV J	· HHG LEV D	MISCELLANEOUS	NEFERENCE
432.74 431.5 431.5 432.74 431.5	0	0.5 0.5 0.5	220-0 220-0 *230 220 *230 *230 *10	0.8 0.5		GT = 220.6 GT = 220.6	JENOL - 1 ENDF - 8 - 4 BNL 3251 3 1 7 370X0N 66F ARRELL
434.0	1	0.5	80.0	0.8		CT = 80.6	ENDF-8-4
437.24 437.24 436.5 437.24 437.24 437.24 437.24 436.0	0 0 0 0 0 0	0.5 0.5 0.5 0.5	1000-0 1000-0 1000-0 1000 1000	2.0 2.0 2.14 2.0 (2.0)		GT = 1002.0 GT = 1002.0 GT = 1002.1 GT = 1000 GNO = 1.615	JENOL-2 JENOL-1 ENDF-8-4 73HDXON 74HDXON 66FRRRELL
447.24 447.24 447.5 445.0 447.24 447.24 447.24 446.0	0 0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	3000 - 0 3000 - 0 3000 - 0 ⁸ 3000 3000 3000 3000	2.0 2.0 2.14 2.0 (2.0)		GT = 3002.0 GT = 3002.0 GT = 3002.1 WCH = 4.49 GT = 3000 GNO = 4.600	JENDL-2 JENDL-1 ENDF-8-4 BHL32513J 73HDXON 74HDXON 66FARRELL
454.24 453.0 453.0 453.0 454.24 454.24 454.24 453.0		0.5 0.5 0.5 0.5	1500.0 1500.0 1500.0 1500 1500 1500	2.0 2.0 2.14 2.0 { 2.0 }		GT = 1502.0 GT = 1502.0 GT = 1502.1 WCH = 2.23 GT = 1500 CHO = 2.384	JENDL-2 JENDL-1 ENDF-8-4 ØML32513) 73HDXON 74HDXON 56FARRELL
463-24 462-0 462-0 462-0 463-24 463-24 463-24 462-0	0 0 0 0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	1000-0 1000-0 1000-0 1000 1000 1000	2.0 2.0 2.14 2.0 (2.0)	- 1970 1970 1974 197 ₁ - 111	$\begin{array}{l} \text{GT} = 1002.0\\ \text{GT} = 1002.0\\ \text{OT} = 1002.1\\ \text{NGH} = 1.02.1\\ \text{NGH} = 1.47\\ \text{OT} = 1000\\ \text{OHO} = 1.576 \end{array}$	JENDL-2 JENDL-1 ENDF-8-4 BML325131 73H0X0M 74H0X0M 66FARRELL
479-1	1	1.5	100.0	0.6		07 = 100-6	ENOF-8-4
474.24 474.24 474.7 473.0 474.24 474.24 474.24 473.0	0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	500.0 500.0 300.0 *500 \$00 \$00 \$00	2.0 2.0 2.14 2.0 (2.0)		$\begin{array}{rrrr} & & 502.0\\ & & & 502.0\\ & & & 502.0\\ & & & 502.14\\ & & & WOH = & 0.73\\ & & & & 0.73\\ & & & & 0.780\\ & & & & 0.780 \end{array}$	JENDI-2 JENDI-1 ENDF-8-4 BML325(3) 73HOXON 74HOXON 66FARRELL
485-84 484-6 484-5 484-8 484-8 485-84 485-84 484-6	0 0 0 0 0 0	0.5 0.5 0.5 0.5	3750.0 3750.0 6600.0 *3750 3750 3750 3750	2.0 2.0 2.14 2.0 (2.0)		0T = 3752.0 GT = 3752.0 GT = 6602.1 HCH = 5.39 G1 = 3750 CNO = 5.786	JENDL-2 JENDL-1 ENDF-0-4 BNL325(3) 73HDXDN 74HDXDN 6GFARRELL
498.74 498.74 497.8 497.5 498.75 498.74 497.5		0.5 0.5 0.5 0.5	565.0 565.0 565.0 \$65 \$65 ⁸ 577.5 12.5	{ 1.0 } 0.5 0.5		GT = \$66.0 GT = \$65.6 GT = \$65.6	JENDL-2 JENDL-1 ENDF-D-4 BNL325(3) 73HDXON 66FRRRELL
498.0 499.0 499.0 499.0 499.0 499.2 499.24 499.24 496.0	0 0 0 0 0 0	0.5 0.5 0.5	\$000.0 \$000.0 \$5000 \$5000 \$5000 \$5000 \$5000	2.0 2.0 2.14 2.0 1 2.0 }	_	01 = \$002.0 01 = \$002.0 01 = \$002.1 HCH = 7.63 GT = \$000 CH0 = 7.628	JERUL-2 JENUL-1 ENOF-0-4 BHL 325131 73NOZON 74NOZON 66FRRRELL
\$03.74 \$03.74 \$02.5 \$02.5 \$03.74 \$02.5 \$03.74 \$02.5	1 1 1 0 0	0.5 0.5 0.5	325.0 325.0 325.0 ⁹ 333 325 ⁸ 332.5 ± 7.5	(.0) D.5 D.5		GT = 325.0 GF = 325.6 GT = 325.6	JENDL - 2 JENDL - 1 ENDF-8-4 DML 32513) 73HOXON BEFARRELL
\$12.74 512.74 \$11.5 511.5 511.6 \$12.74 511.5	1 1 0 5 5	1.5 1.5 1.5 1.5 1.5 1.5	1270.0 2556.0 860.0 2420 2566 1278 ± 6	(1-0) 0-6 0-6		G? = 1271.0 DT = 2565.6 GT = 850.6	JENDL-2 JENDL-1 ENDF-8-4 BML325(3) 73HDXDN 66FARRELL
518.0 514.74 514.5	0 0 0	0.5	2250.0 2250.0 1360.0	2+0 2+0 2+14		C7 = 2252.0 C1 = 2252.0 C1 = 1362.1	JENOL - 2 JENOL - 1 ENDF - 8 - 4

ENERGY CHEV 3	L	J	NEUTRON HIDTH	CRIMA HIDTH	11115 (EV)	MISCELLANEOUS	REFERENCE
\$13-5 514-74 \$14-74 \$13-5	000000	0.5 0.5	*2250 2250 2250	2.0 (2.0)		HOH = 3.14 + 6.3 07 = 2250 040 = 3.308	BNL325(3) 73MOKON 74MOKON 66FARRELL
\$20.3 \$21.84 \$20.0 \$20.3 \$21.54 \$21.54 \$22.3	0 0 0 0 0 0	0.5 0.5 0.5 0.5	\$000.0 \$000.0 2960.0 \$000 \$000 \$000 \$000	2.0 2.0 2.14 2.0 (2.0)		07 = 5002-0 01 = 5002-0 01 = 2952-1 HOH = 6.93 01 = 5000 CH0 = 7.486	JENDL-2 JENDL-1 ENDF-8-4 ONL325131 734030N 744030N 68FARRELL
527.0 526.24 526.5 525.5 525.5 526.24 526.74 525.5	0 0 0 0 0 0 0	0.5 0.5 0.5 0.5	3000+0 3000-0 3000-0 *3000 3000 3000	2.0 2.0 2.14 2.0 (2.0)		GT = 3002.0 GT = 3002.0 GT = 3002.1 HCH = 4.14 GT = 3000 GNO = 4.473	JENDL - 2 JENDL - 1 ENDF - 8 - 4 8NL 325(3) 73HOXON 74HOXON 66FARRELL
528.0	1	0.5	300.0	0.6		GT = 300.6	ENDF-8-4
534.24 533.20 533.0 534.24 534.24 534.24 533.0	0 0 0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	500.0 500.0 500.0 500 500 500	2.0 2.0 2.14 2.0 (2.0)		GT = 502.0 GT = 502.0 GT = 502.14 WGH = 0.69 GT = 500 GNG = 0.741	JENDL-2 JENDL-1 ENDF-8-4 BNL325(3) 73MDXDN 74MDXDN 66FARRELL
\$53.74 \$63.74 \$63.4 \$52.6 \$53.74 \$62.5	1 1 1 0 0	0.5 0.5 0.5 0.5	700.0 700.0 700.0 ⁶ 710 700 ⁶ 710 ±10	(1.0) 0.6 0.5		GT = 701.0 GT = 700.6 GT = 700.6	JENDL-2 JENDL-1 ENDF-0-4 BNL325(3) 73MOXON 66FARRELL
\$57.74 \$57.74 \$57.74 \$56.5 \$57.74 \$57.74 \$57.74 \$56.5	000000	0.5 0.6 0.5 0.5 0.5	500-0 500-0 800-0 ⁴ 500 500 500	2.0 2.0 2.14 2.0 1 [°] 2.0)		GT = 502.0°. GT = 502.0 GT = 602.14 HOH = 0.67 GT = 500 ONO = 0.728	JENOL-2 JENOL-1 ENOF-B-4 BM, 32513 J 73moxon 74moxon 66farrell
567.24 567.24 566.5 586.0 557.24 566.0		0.5 0.5 0.5 0.5	260.0 260.0 260.0 "260 260 "260 "260	1.0 1.0 0.5		GT = 261.0 GT = 261.0 GT = 260.6	JENDL-2 JENDL-1 ENDF-0-4 BNL 325(3) 73HOXON 66FARRELL
501.74 501.74 501.3 500.3 501.74 501.74 500.3	0 0 0 0 0 0 0 0	0-5 0-5 0-5 0-5	280-0 250-0 500-0 "250 260 260	2.0 2.0 2.14 2.0 (2.0)		GT = 252.0 GT = 252.0 GT = 502.14 WGH = 0.33 CT = 250 ONO = 0.357	JENDL - 2 JENDL - 1 ENDF-8-4 BNL 32513) 73HDXCM 73HDXCM 66FRRRELL
500.74 500.74 500.0 500.5 500.5 500.74 500.74 500.74	0 0 0 0 0 0	0.5 0.5 0.5 0.5	500.0 500.0 \$00.0 \$00 \$00 \$00 \$00 \$00	2.0 2.0 2.14 2.0 (2.0)		07 = 502.0 97 = 502.0 07 = 502.14 WCH = 0.65 07 = 500 CM0 = 0.711	JENDL-2 JENDL-1 ENDF-8-4 BNL325i3i 73HD300 74HD300 66FRRRELL
594.0 596.04 594.0 594.0 594.0 598.04 598.04 594.0	0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	2500.0 2500.0 2900.0 *2500 2500 2500 2500	2.0 2.0 2.14 2.0 (2.0)		GT = 2502.0 GT = 2502.0 GT = 2802.1 HOH = 3.24 GT = 250 CAU = 3.530	JENDL-2 JENDL-1 ENOF-8-4 BML 325(3) 73HOXON 74HOXON 66FRRRELL
604.0	0	Q.5	\$600.0	2.14		01 = 5502.1	ENDF-8-4
\$17.0	0	0.5	4500.0	2.14		01 = 4502.1	ENDF-B-4
\$27.0	0	0.5	7500.0	2.14		01 = 7502.1	ENOF-8-4
537.0		0.5	2000.0	2.14		GT = 2502.1	ENDF-8-4
	<u> </u>	6.0		£+14			CNUT-0-4

* A and B denote $g\Gamma_n$ and $g\Gamma_\gamma$, respectively

,

**	WW5 =	$g\Gamma_n\Gamma_\gamma/\Gamma$	(eV),	GT = Γ	(eV)
	GGS =	σ0 ^Γ γ	(b• e V),	WWC = $\Gamma_n \Gamma_\gamma / \Gamma$	(eV)
	WGH =	g ^r n ⁽⁰⁾	(eV),	$GNO = \Gamma_n^{(0)}$	(eV)
	WGI *	gΓ _n ⁽¹⁾	(eV)		

References

1

!

.

t

.

66Farre11	:	Ref.(21)	
69Hockenbury	:	Ref.(23)	
70Stieglitz	:	Ref.(24)	
71Garg	:	Ref.(49)	
72Beer	:	Ref.(50)	
73Moxon	:	Ref.(51)	(Evaluation)
74Moxon	:	Ref.(3)	(Evaluation)
75Fröhner	:	Ref.(52)	
77Fröhner	:	Ref.(22)	
77Syme	:	Ref.(20)	

ò

					61
Table	8	Resonance	parameters	οÎ	N1

ENERGY LINEY 1	L J	NEUTRON HIDTH #	DINNA NJOTH (EV.)	EV.	MISCELLINEOUS **	NEFENENCE
-1-8	0 1.	5 212	0.62			JENOL -2
1.354 1.354 1.355 ± 0.01 1.3554 1.354 1.354 1.354 1.354		5 0.92 1 5 0.315 5 0.315 5 0.32 (1.0 1.0 1.0 1.0 1.0	0.24 ± 0.03 0.24 ± 0.03 0.24 ± 0.03	07 = 1-315 HHD = 0-48 ± 0-060 OGS = 478 ±60	JENDL -2 JENDL -1 BNL 325131 73H0X0H 74H0X0H 69H0CKENBURY 72H0CKENBURY
2.36 2.35 ± 0.01 2.35 2.35 2.35 2.35 2.35	1 1.4 0 0.4 1 1.4	5 0+01 5 ₹ -0-01) 5 { 0-01) { 5 { 0-01} }	1.0 1.0 1.0)		GT = 1-01	JENDL - 1 BML 325(3) 73H0X0N 74H0X0N 69H0CKENBURY 72H0CKENBURY
3-14 3-14 3-14 ± 0-01 3-14 3-14 3-14 3-14	1 i.5 1 i.5 • 0 0.5 1 i.5	5 0-20 i 5 0-092 5 0-092 5 0-092 i	1.0) 1.0 1.0 1.0)	0.084 ± 0.018 0.084 ± 0.018 0.084 ± 0.018	GT = 1.092 HHD = 0.17 ±0.04 GGS = 71 ±14	JENOL - 2 JENOL - 1 BNL 325131 73hoxon 74hoxon 65hockenbury 72hockenbury
3.30 3.3 3.30 ± 0.01 3.30 3.30 3.30 3.30	1 1.5 1 1.5 0 0.5 1 1.5	24.0 (0.92 0.92 0.92 0.92 (0.92 (1.0) 1.0 1.0 1.0)	0.48 ± 0.06 0.48 ± 0.06 0.48 ± 0.06	GT = 1.92 MHD = 0.96 ± 0.12 GOS = 341 ±44	JENDL - 2 JENDL - 1 6ML 3251 3 J 73HDXON 74HDXON 59HOCKENBURY 72HDCKENBURY
(3.39)						72HDCKENBURY
(4.50)						72HOCKENBURY
6-38 6-36 ± 0-01 6-36 6-38 ± 0-02	t 1-5	0.52 (1.0)	0-17 ± 0-04 0-17 ± 0-04		JENDL-2 DNL32513) 72HOCKENBURY 77FROEHNER
5.47 5.47 5.47 ± 0.0] 5.47 5.47 5.47 5.46 5.46 5.46	l 1.5 l 1.5 0 0.6 l 1.5	15.7 (0.54 * 0.54 0.54 (1.0 1.0 1.0 1.0	0.47 ± 0.10 0.35 ± 0.10 0.35 ± 0.10 0.47 ± 0.10	GT = 1.54 HHD = 0.70 ± 0.20 DOS = 145 ^{°-} ±43	JENOL - 2 JENOL - 1 BM. 3251 3 J 73HOXON 74HOXON 59HOCKENBURY 72HOCKENBURY 77FROEHNER
7.12 7.12 7.11	0 0.5	A 3,54	1.0	0.78 ± 0.12	005 = 285 ±42	73MOXON 69HOCKENBURY 72HOCKENBURY
7.15 7.15 ± 0.02 7.15 ± 0.02 7.152 6.97 7.15 ± 0.02 7.15 ± 0.02 7.15 ± 0.02 7.15 ± 0.01		(74) 74.0 50 ± 5 74 74 23 74 74 74 ± 5	2.53 2.5 ± 0.4 2.5 ± 0.4 2.5 2.5 2.5 2.5 ± 0.5 2.55 ± 0.35	ų.,	DT = 76.5 HGC = 0.59 € 0.07 GNC = 0.28 HGM = 74 € 8 HGM = (74) HTI = 2.53 € 0.42	JENDL-2 JENDL-1 BNL32513) 73nDXDM 660D00 70CH0 72BEER ★★ 75FRDEHMER 77FRDEHMER ★★★
7.53 7.53 7.52	0 0.5	t 0.1 1	1.0			73NOXON 69HOCKENBURY 72HOCKENBURY
7.57 7.55 ± 0.02 7.56 ± 0.02 7.545 7.545 7.54 ± 0.02 7.54 ± 0.02 7.54 ± 0.02 7.57 ± 0.01	0 2.0 0 2.0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	(177 1 177.0 ⁹ 225 +20 177 177 236 177 177 177 ±15	2.19 2.3 ± 0.6 2.3 ± 0.6 2.3 2.3 2.3 2.3 ± 0.5 2.23 ± 0.35		0T = 179.3 MOD = 2.59 € 0.23 MOD = 2.79 MOM = 177 € 15 MOM = (177) MH = 2.19 \$ 0.14	JENDL - 2 JENDL - 1 BML 325 1 31 73HDXDN 65C00D 70CHD 72CHCR 75FRDEHHER 77FRDEHHER 77FRDEHHER
8.71 8.71 8.70	0 0.5	A 1.05	1+0	0.65 ± 0.13	305 = 196 ±36	73HOXON 69HOCKENBURY 72HOCKENBURT
8.76 8.74 8.73 ± 0.02 8.74 9.746 9.746 9.74 ± 0.20 8.75 ± 0.02 9.75 ± 0.02	0 2 0 2.0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	(6) 6.0 7.5 ± 2.5 6 6 8 6 ≥ 2	2.20 2.6 ± 0.8 2.6 ± 0.8 2.6 ± 0.8 2.6 ± 0.8	C b b b b b b b b b b b b b b b b b b b	07 = 8.6 00 = 0.090 + 0.027 09 = 6 + 2 09 = 6 ; 09 = 6 ; 09 = 7 ; 09 = 6 ; 09 = 7 ; 09 = 7 ; 09 = 7 ; 09 = 7 ; 09 = 0.30	JENDL - 2 JENDL - 1 BNL 3251 3 } 73H0X0N 74H0X0M 70CH0 73EEER 75FR0EHMER 75FR0EHMER

COMMO HIDTH NEUTRON HIDTH HISCELLANEOUS REFERENCE HH5 (EV) ENERGY L J IKEV) LEV I (EV I 1.0 1 0.09 1 0.02 JENDL -2 1 1.5 0.22 1 9.91 9.91 JENDL - 1 BNL 325(3) 74HOXDN 1 1.5 0.22 CT = HHD = 1.22 0.18 ± 0.06 \$ 0.02 1 9.93 9.90 1 0.02 1.5 0.099 (1.0) 0.09 ± 0.03 69HOCKENBURY 72BEER 9.93 # 0.02 1 HHC a 0.09 ± 0.03 1 72HUCKENBURY 77FROEHNER 0.09 ± 0.02 9.94 ± 0.06 1 1.0) JENDL-2 0.47 0.16 ± 0.02 1 1.5 C 10-2 10-20 ± 0-03 GT = HHD = 1.613 0.38 ± 0.10 JENDL - 1 BNL 325(3) 74MC XON i 0.613 1 1 10.18 ± 0.03 10.2 10.18 ± 0.03 1.5 0.24 (1.0) 0.19 ± 0.05 69HL CKENBURT 728EER 1 HHC = 0.19 ± 0.05 1 72HOCKENBURY 10.17 ± 0.06 0.16 ± 0.02 77FROEHNER 1 BNL 325(3) \$ 0.03 72HOCKENBURT BNI 325/31 1 0.03 72HOCKENBURY 1 0.03 BNL 3251 31 72HOCKENBURY { 75 75.0 90 75 75 67.7 2 1 1.75 IENDI -2 00000 1.7 2.0 76.7 0.80 ± 0.09 JENOL -1 BNL 325(3) GT = ±10 ± 0.4 HCO = ± 0.03 222 1.7 73M0X0N 74M0X0N 66G000 69HOCKENBURT CNO = 0.61 2 75 70CH0 728EER 1.7 ± 0.03 o ± 0.4 HCH = 75 2 2.4 72HOCKENBURY 75FROEHNER 77FROEHNER * 0.03 22 75 . 4 1.72 ± 0.25 0 HGH = (75) HH1 = 1.75 ± 0.30 1.5 1.30 (1.0) 1 0.29 ± 0.04 JENOL-2 JENOL-2 74NDXON 72BEER 72HDCKENBURY 77FROEHNER 0.31 ± 0.08 ± 0.03 1 \$ 0.03 HHC = 0.31 ± 0.08 0.29 ± 0.04 13.42 ± 0.03 1 2 2.0 1.70 JEND: -2 00000 1 61 1 61 61.0 76 61 61 1.6 1.6 1.6 1.6 GT = HCO = 62.6 0.65 ± 0.04 JENDL - 1 BNL 325(3) 1 0.03 **±** 5 1 0.4 2 73M0X0N 74M0X0N 22 75.6 GNO = 0.66 660000 22 61 70000 13.63 ± 0.03 13.5 72BEER 72HOCKENBURY ٥ 1.6 1 0.4 NGH = 61 2.4 13.68 ± 0.05 0 22 61 ± 4 1.65 ± 0.25 75FROEHNER 77FROEHNER WGM = (6) 6)) 1.70 ± 0.28 54641 :-1 17 3.1 IENDI -2 0 1 17.0 13 17 17 JENDL-2 JENOL-1 UNL325(3) 73MOXON 74MOXON 666000 3.1 3.1 i.o GT = 20.1 # 0.03 D ± 3 ± 0.5 HGO = 0.11 ± 0.03 3.1 ñ 1 õ 13.0 GNB = 0.11 69HOCKENBURY 70CHO 17 1 70CHO 726EER 72HOCKENBURY 75FROEHNER 77FROEHNER 14.02 13.9 14.05 + 0.03 n ī 3.1 ± 0.5 HCH = 17 . . 14.06 + 0.05 00 17 2.4 3.20 # 0.45 1 HCH = (17 3 HHI = 3.1 1 0.5 14.45 14.45 14.45 ± 0.04 14.45 ± 0.04 1.01 1.63 0.31 ± 0.05 JENDL - 2 1.5 i GT 2.5 0.60 ± 0.60 JENDL -1 BNL 3251 31 74HOXON 2 HO = 1 ł 1.5 0.4 1 1.0 1 0.30 ± 0.08 69HOCKENBURT

0.30 ± 0.08

1.515 0.34 ± 0.08

0.17 1 0.04

72HOCKENBURY 77FROEHNER

728EER 72HOCKENBURY 77FROEHNER

JENOL - 2 77FRDEHNER

JENDL -2

JENOL - 2

JENOL - 1 BNL 3251 3 H 74MOXON 69HOCKENBURY

ниС а

CT =

HHD :

HHC :

.

0.31 ± 0.05

0.18 ± 0.03

0.17 ± 0.04

0-18 = 0.03

0.11 # 0.02

9.94

9.87

10.17

10.I

10.90

10.9

11-4

11.4 11-0

11.0

12.67

12.64

12.64 12.64 12.4 12.6

12.64

12.64

12.6

12.67

13.42

13.43

13.43

13.3

13.67

13.63

13.60

13.63

13.3

13.63

14.06

14.02

14.02 14.02 13.7

14.0 14.02

14.3 14.45 ± 0.04

14.3

15.44

15-36 15-30 15-30 15-3

15.3 15.44 : 0.04

15.72

15.72 0.04

16.61

14.45 ± 0.04

15-36 + 0-04

1 0.04

1 0.04

t

L

ı

1 1

1 ı

ı.

ł

0

1

н

1.5

1.5

1.5

5

0.56

0.2

0.20

1817 1

1 1.0 1

(1.0)

1 1.0 /

2.3

- 61 -

ENERGY (KEV.)	L · J	NEUTRON HIDTH	GANNA WLDTH LEV 3	HHS (EV)	HISCELLANEOUS	REFERENCE
16.7 16.70 ± 0.05 16.70 16.7 16.3		817-0 *600 ±20 817 814 411	2.2 2.2 ± 0.4 2.2 2.2 2.2		GT = 819-2 HGO = 4-64 ± 0-15 GNO = 3-21	JENDL-1 8NL32513) 73HDXON 74HDXON 666000
16.7 16.70 16.70 ± 0.05 16.7 16.61 ± 0.10 16.61 ± 0.05		817 817 ±16	2.2 ± 0.4 2.07 ± 0.30		HCH = 817 ×16 HCH = 1817 } HHI = 2.3 ± 0.4	59HOCKENZURY 70CHJ 72BEER 72HOCKENBURY 75FRDEHNER 77FROEHNER
16.82 16.8 16.80 ± 0.05 16.80 ± 0.05 16.80 ± 0.05 16.82 ± 0.05	1 1.5 1 1.5 1 1 1 1.5 1 1 1 1.5 1 1 1	0.56 0.389 0.16	(1.0) 1.0 (1.0)	0-18 ± 0.03 0-14 ± 0.04 0-18 ± 0.03	CT = 1.389 \$440 = 0.28 ± 0.08 \$44C = 0.14 ± 0.04	JENDL-2 JENDL-1 BNL325(3) 74HDXON 72BEER 77FROEHNER
17.93 17.86 17.83 ± 0.05 17.86 17.86 17.86 17.86 17.8 17.8 17.86 17.86 17.86 17.86 17.86 17.96 17.99 ± 0.05 17.93 ± 0.05	0 1 0 1.0 0 1 0 1 0 1 0 1 0 1 0 1	1177 1 177.0 140 ±10 177 177 174 177 177 177 ± 8	4.1 1.5 ± 0.5 1.6 ± 0.5 1.6 1.6 ± 0.5 1.4 ± 0.4		DT = 178.6 HCG = 1.05 ± 0.08 GNO = 1.32 HCH = 177 ± 8 HCH = 177 ± 0	JENDL - 2 JENDL - 1 BML 325 (3) 73HDXDN 66G000 69HQCKENBURY 70CH0 72EBER 72HDCKENBURY 75FRDEHNER 77FRDEHNER
18.97 18.67 18.67 18.67 18.67 18.67 19.3 19.0 18.67 18.67 18.67 18.67 18.67	0 2 0 2.0 0 2 0 2 0 2 0 2 0 2	(59) 69.0 890 ±10 69 69 181 69	0.78 0.9 0.9 ± 0.3 0.9 0.9		$HHI = 4 - 1 \pm 0 - 7$ $CT = 69 - 9$ $HGO = 0.66 \pm 0.07$ $CNO = 1 - 34$ $HOH = 69 \pm 4$	JENOL - 2 JENOL - 1 BNL 32513 J 74HOXON 660000 65HOCKENBURY 70CHO 72RFFR
18-8 18-97 • 0-10 18-97 × J-05	0 2 0 2	69 ± 4	0.78 ± 0.11		HCH = (69) HHI = 0.:78 ± 0.13	72HOCKENBURY 75FROEHNER 77FROEHNER
20.35 20.25 20.25 ± 0.05 20.25 ± 0.05 20.4 20.25 ± 0.05 20.0 20.35 ± 0.05	L 1.5 L 1.5 L) O 1.5	0.22 0.22 0.099 ·	(1.0) 1.0 (1.0)	0.09 ± 0.02 , 0.09 ± 0.3	GT = 1.22 HHD = 0.18 ± 0.06 HHC = 0.09 ± 0.03	JENOL - 2 JENOL - 1 BNL 3251 3 J 741030M 69H0CKENBURY 728EER 72H0CKENBURY 77FR0EHNER
20.67 20.5 20.50 ± 0.05 20.55 ± 0.05 20.55 ± 0.05 20.4 20.67 ± 0.06	1-5 1.5 1 1.5 1.5 1	0.22 0.282 0.125	(.0) 1.0 4 1.0)	0.09 ± 0.02 0.11 ± 0.3 0.09 ± 0.02	GT = 1.282 HHD = 0.22 ± 0.06 HHC = 0.11 ± 0.03	JENDL-2 JENDL-1 BNL325(3) 74HOXON 72BEER 72HOCKENBURY 77FROCHNER
21.41 21.35 21.35 ± 0.05 21.40 ± 0.05 21.40 ± 0.05 21.3 21.41 ± 0.10	1 1.5 1 1.5 0) 1 1.5 0)	1.63 14.7 7.3	(1.0) 2.0 (1.0)	0-31 ± 0-10 0-86 ± 0-2 0-31 ± 0-10	CT = 16.7 HHD = 1.75 ± 0.40 HHC = 0.88 ± 0.20	JENOL - 2 JENDL - 1 BNL 3251 3 J 74HDXON 72HDEKENBURY 77FROEHNER
21.61 21.61 ± 0.10	l 1.5	4.42	(1.5)	0.55 ± 0.19 0.56 ± 0.19		JENDL-2 77FROEHNER
24.17 24.12 24.12 ± 0.05 24.12 ± 0.05 24.12 ± 0.05 24.12 ± 0.05 24.17 ± 0.07	1 1.5 1 1.5 1 1 1 1.5 1 1.5	1.94 2.57 0.56	(1.0) 1.0 (1.0)	0.33 ± 0.05 0.36 ± 0.09 0.33 ± 0.05	GT = 3.57 HHD = 0.72 ± 0.18 HHC = 0.36 ± 0.09	JENDL - 2 JENDL - 1 BNL 3251 3 1 74NOXON 728EER 77FROEHNER
24.62 24.62 ± 0.06 24.62 ± 0.06 24.62 23.8 24.8 24.62 ± 0.05 24.62 ± 0.05 24.62 ± 0.07 24.62 ± 0.07	0 1 0 1.0 0 1 0 1 0 1 0 1 0 1 0 1	(129) 129.0 97 ± 6 129 129 129 129 129 129 ± 10	1.4 1.4 1.4 ± 0.3 1.4 1.4 ± 0.3 1.41 ± 0.20	3.96 2].3	C7 = 130.4 HC0 = 0.52 ± 0.05 ON0 = 0.54 C55 ± 425 ± 120 HCH = 129 ± 10 HCH = 129 ± 1	JENOL - 2 JENOL - 2 JENUL - 1 BNL 3251 31 73h0X0h 65000 65000 65000 65000 65000 59h0CKC HURY 70CH0 72bECR 75FR0EHHER 75FR0EHHER
25.28	1 1.5	1.0	(1.0)	0.25 + 0.05		JENDL + 2

ENERGY (NEV.)	L .	J NEUTRON HIDTH	DANNA HIDTH LEV I	MMS (EV I	HISCELLANEOUS	REFERENCE
25.12 ± 0.06 25.12 ± 0.06 25.12 ± 0.06 25.21 ± 0.06 25.21 ± 0.07		1.5 0.33	1 1.0)	0.25 ± 0.06	HHC = 0.50 ± 0.12 HHC = 0.25 ± 0.06	BHL 325(3) 74HDXON 728EER 77FROEHNER
26.10 25.96 ± 0.06 25.96 ± 0.06 25.96 ± 0.06 25.96 ± 0.06 26.10 ± 0.10		1.5 0. 92 1.5 0.923 .5 0.31	(1.0) 1.0 (1.0)	0.24 ± 0.06 0.24 ± 0.06 0.24 ± 0.06	GT = 1.923 GHD = 0.48 = 0.12 NHC = 0.24 = 0.06	JENOL - 2 JENOL - 1 BNL 325131 74HDXON 728EER 77FROEHNER
26.58 26.45 ± 0.06 26.45 ± 0.06 26.45 ± 0.06 26.45 ± 0.05 26.58 ± 0.07		.5 0.56 .5 0.563 .5 0.22	[[.0]] [.0 [].0]	0.18 ± 0.06 0.18 ± 0.06 0.18 ± 0.05	GT = 1.563 HHD = 0.36 * 0.10 HHC = 0.18 * 0.05	JENOL-2 JENOL-1 BHL 325(3) 74HD3X0H 72BEER 77FROEHNER
27.22 27.1 27.10 ± 0.07 27.10 ± 0.07 27.10 ± 0.07 27.2 ± 0.07		.5 0.67 .5 0.667 .5 0.25	t 1.0) 1.0 t 1.0 i	0.20 ± 0.05 0.20 ± 0.05 0.20 ± 0.05	GT = 1.667 HHD = 0.40 # 0.10 HHC = 0.20 # 0.05	JENOL - 2 JENOL - 1 BHL 3251 3 1 7410X0H 728EER 77FROEHNER
27.78 27.65 27.65 ± 0.07 27.65 27.65 27.65 ± 0.07 27.76 ± 0.09		.5 10-0 .5 4.0 .5 0.67	[1.0] 1.0 [1.0]	0.45 ± 0.09 1.74 ± 0.85 0.45 ± 0.09	GT = 5.0 HHO = 0.80 ⊧0.20 GGS = 164 ⊧80 HHC = 0.40 ⊧0.10	JENOL - 2 JENOL - 1 BNL 3251 3 1 74NOXON 69NOCKENBURY 728EER 77FROEHHER
28.15 28.15 ± 0.06		.5 2.33	[].0]	0-35 ± 0-13 C-35 ± 0-13		JENDL-2 77FROEHNER
28.40 28.21 28.21 ± 0.07 28.21 28.21 28.21 28.21 28.21 28.21 ± 0.07 29.35 ± 0.07 28.46 ± 0.09	0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	(5) -0 3.0 6.3 ± 5.0 3 5 3 5 ± 4	i.03 3.0 ± i.0 3.0 ± i.0 3.0 3.0 ± i 2.2 ± 0.6	0.56 ± 0.20 0.56 ± 0.20	CT = 6.0 HCD = 0.038 ≠ 0.030 HCN = 5 ≠ 4 HCN = 5 }	JENDL - 2 JENDL - 1 BHL 3251 3 1 73H020H 70H020H 70EH0 72BEER 75FR0EHHER 75FR0EHHER
29.08 29-11 ± 0.07 29.11 ± 0.07 29.11 ± 20.07 29.11 ± 20.07 29.0 29.11 ± 0.07 29.3 ± 0.1 29.08 ± 0.00		(409) -0 409-0 "310 ±20 403 404 235 406 409 ±22	1.7 2.4 2.4 \pm D.4 2.4 2.4 2.4 2.4 2.4 1.6 \pm D.3		CT = 411.4 HCD = 1.82 = 0.12 CMO = 1.40 HCM = 409 +22 HCM = 409	JE NOL - 2 JE NOL - 2 JE NJL - 1 BIN 3251 3 3 7 3HOXION 660C0CD 65HOCK HURY 70CHO 72BE& 75F ROLINE R 75F ROLINE R
29.36		.5 3.0	(1.5)	0.50 ± 0.20	= 1.7 ± 0.4	JENOL-2
30.10 ± 0.00		5 0.28	(1.0)	0.11 ± 0.04		JENOL -2
20.64 20.64 x 0.00 30.64 x 0.00 30.64 30.64 x 0.00 30.2 30.8 30.64 x 0.06 30.65 x 0.06	0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	(15) 13.0 13.0 13 15 ± 10 423 13 13	2 2.0 2.0 1 2.0 1 2.0		GY ≥ 15.0 #20 ≥ 0.11 ± 0.06 GNO ≥ 2.47 HON ≈ 15 ± 6 HON ≈ 15 ± HAN ≈ 2 ± 1	JENDL-2 JENDL-1 BHL325131 73M030M 65000 65M0GKEMBURT 70CH0 728EER 77FR0EHHER
31.13 31.13 31.13 31.13 ± 0.00 31.13 31.13 ± 0.00		0 788.0 0 788.0 788 : 2 780 : 28 788 :	2.0 2.0 2.0 2.0 1 2.0 1		GT = 790.0 GT = 790.0 HOH = 798 = 528	JENOL - 2 JENOL - 1 73NOION 740JOON 70CHO 72BEER
31.03 31.03 31.03 ± 0.00 31.03 ± 0.00 31.03 ± 0.00 31.0 31.0 31.03 31.03 ± 0.00		0 10.0 0 10.0 ⁶ 12.5 ± 7.5 10 ± 6 382 8	2.0 2.0 2.0 (2.0)		GT = 12.0 GT = 12.0 HOD = 0.070 + 0.742 CHD = 2.20 HOM = 10 + 5	JEHOL - 2 JEHOL - 1 BHL 325:3: 7 JHO XGH 566000 59HOL RE HBUR Y 70CHO 70EF R
\$2.7	0 2.	0 220.0	2.0		G1 = 222.0	JENOL -2

ENERGY (KEV)	LJ	NEUTRON HIDTH	CRIMINA MIDTH MINS (EV) (EV)	HISCELLANEOUS	REFERENCE
32.7 32.70 ± 0.06 32.70 32.70 ± 0.06 32.7 32.70 32.70 32.70 ± 0.08	0 2.0 0 2 0 2 0 2 0 2 0 2 0 2	220.0 *265 ±25 220 220 ±10 120 220	2.0 2.0 (2.0)	CT = 222.0 HCO = 1.47 ± 0.14 CHO = 0.66 HCP = 220 ±10	JENDL - 1 BNL 325131 734020N 744020N 66000 702N0 7228EER
33.68 33.68 33.68 ± 0.08 33.68 33.68 33.8 33.8 33.8 33.8		\$8.0 \$8.0 \$50 ±10 \$8 58 123 \$8	2.8 2.8 2.8 ± 0.5 2.8 2.8 2.8	07 = 60.8 07 = 60.8 HC0 = 0.27 ± 0.05 040 = 0.67	JENDL-2 JENDL-1 BNL325(3) 73MDXDN 66G00D 69HDCKEMBURY 70CHD 72BEEP
33.68 ± 0.08	ŏ i			HCN=1 58 HH1= 2.8 ± 0.5	77FROEHNER
34.65 ± 0.1 34.65 ± 0.10	i 1.5	(0.1)	(1.0)		74H0XON 728EER
36.02 ± 0.1 36.02 ± 0.10	1 15	(0.1)	().0)		74HDXON 72BEER
37.13 37.13 37.13 ± 0.09 37.13 37.13 36.0 37.3 37.13 37.13 37.13 ± 0.09	0 2.0 0 2.0 0 2 0 2 0 2 0 2 0 2	133.0 133.0 180 = 20 133 . 133 294 133	3.0 3.0 ± 0.5 3.0 3.0 3.0 3.0	CT = 136.0 CT = 136.0 HC0 = 0.92 ± 0.10 CN0 = 1.55 HCH = 133 ± 12	JENDL - 2 JENDL - 1 BNL 325(3) 73H0X0N 74H0X0N 66G000 69H0CKENBURY 70CH0 728EER
37.13 ± 0.09	0 2	<u></u>		HGH = (133) HH] = 3.0 = 0.5	77FROEHNER
39.77 ± 0.11 41.34 41.34 ± 0.10 41.34 ± 0.10 41.34 41.34 41.34 41.34 41.34 41.3		176-0 176-0 ⁸ 150 ±20 176 176 243 176	2.0 2.0 2.0 1 2.0 1	GT = 178.0 GT = 178.0 HCQ = 0.74 ± 0.10 GNQ = 1.21	728EER JENDL-2 JENDL-1 BML325(3) 73MDXDN 6600D 69MDCKEN8URY 70CH0
43.25 43.25 43.25 43.25 43.25 43.25 43.25 43.25 43.25 43.25 43.25 43.25 43.25	0 2.0 0 2.0 0 2 0 2 0 2	10.0 10.0 12.5 ±10.0 10 133 10	2.0 2.0 2.0	GT = 12.0 GT = 12.0 HGG = 0.060 ± 0.048 GNO = 0.65 HGH = 10 ± 8	JENOL - 2 JENOL - 1 8NL 32513J 73HOXON 65CODO 70CHO 72BEER
43.61 43.6 43.61 ± 0.11 43.60 43.60 43.61 43.61 ± 0.11	D 2.0 0 2.0 0 2 0 2 0 2 0 2 0 2 0 2	30.0 30.0 # 37.5 x17.5 30 30 30	2.0 2.0 2.0 (2.0	G7 = 32.0 G7 = 32.0 HG0 = 0.18 ± 0.08	JENDL - 2 JENDL - 1 BNL 3251 3) 7310X0N 7410X0N 70CN0 728EER
45.49 45.49 45.49 ± 0-11 45.49 45.49 45.49 44.0 45.49 45.49 45.49 ± 0-11	0 1.0 0 1.0 0 1 0 1 0 1 0 1	66.0 66.0 50 × 6 66 66 169 56	2.0 2.0 2.0 1 2.0 1	CT = 68.0 CT = 58.0 HCO = 0.23 * 0.03 CHO = 0.80 MCH = 66 ± 8	JENDL - 2 JENDL - 1 BML 325(3) 73HOKON 660000 76CX0 728EER
46-16 46-16 46-16 ± 0-12 46-16 46-16 46-16 46-16 46-16 ± 0-12	0 1.0 0 1.0 D 1 0 1 0 1 0 1 0 1	54.0 54.0 40.5 2 6.0 54 54	2.0 2.0 2.0 1 2.0 i	GT = 56.0 GT = 56.0 HGQ = 0.19 ± 0.03 HCM = 54 ± ●	JENDL-2 JENDL-1 BNL32513) 73HDXON 74HDXON 69HDCKENBURY 70CHO 728EER
50.51 50.51 50.51 = 0.12 50.51 50.51 40.4 50.7 50.51 50.51 = 0.12	0 1.0 0 1.0 0 1 0 1 0 1 0 1	133.0 133.0 100 • 9 133 133 83 133	2.0 2.0 2.0 1 2.0 1	07 = 135.0 07 = 135.0 400 = 0.45 ± 0.04 CH0 = 0.38 409 = 133 ± 12	JENDL - 2 JENDL - 1 BN1325(3) 74030N 660000 69402KENBURY 70CH0 728EER
53.3 53.3	0 2.0 0 2.0	141-0 141-0	2.0 2.0	GI = 143.0 GI : 143.0	JENQL + 2 JENQL + 1

ENERGY	1.		NEUTRON WIDTH	CANNA MIDTH	105	niscellaneous	NEFERENCE
CHEY 1	-		(EV)	(EV)	IEV I		
53-30 ± 0-13 53-30 53-30 53-30 53-30 ± 0-13	000000000000000000000000000000000000000	2222222	A176 ±13 141 141 141	2.0 3		HCD = 0-76 = 0-06 HCM = 141 = ±10	BNL 3251 3 1 7 3HOXON 7 4HOXON 7 0CHO 7 28EER
54.81 54.81 54.81 ± 0.14 54.81 54.81 54.81 54.81 54.81	0 0 0 0 0 0	1.0 1.0 1 1 1 1 1	189-0 189-0 142 214 189 189 189	2-0 2-0 2.0 (2-0)		CT = 191.0 CT = 191.0 MGO = U.61 ± 0.06 MGH = 189 ±18	JENDL-2 JENDL-1 DNL 325131 73H0X0N 74H0X0H 70CH0 72BEER
56.49 56.49 56.49 ± 0.14 56.49 56.49 56.49 56.49 56.49 56.49	0 0 0 0 0 0	2.0 2.0 2 2 2 2 2 2 2	119.0 119.0 ¹ 149 113 119 119 119	2.0 2.0 2.0 (2.0)		CT = 121.0 GT = 121.0 HGU = 0.63 ± 0.06 HGH = 119 ±10	JENOL-2 JENOL-1 BNL 325(3) 73M0X0N 74M0X0N 70CH0 702H0 728EER
58-16 58-16 58-16 58-16 58-16 58-16 58-16 58-16	0 0 0 0 0	1.0 1.0 1	178-0 178-0 133 ±15 178 178	2.0 2.0 2.0 (2.0)		GT = 180.0 GT = 180.0 HGO = 0.55 ± 0.06	JENDL - 2 JENDL - 1 BAL 32513) 73H0X0N 74H0X0N 69H0CKENBURT
58-16 ± 0-15	o	i	178			HGH = 178 \$20	72BEER
54.07 54.07 54.07 ± 0.16 54.07 54.07 54.07 54.07 54.07	D 0 0 0 0 0	2.0 2.0 2 2 2 2 2 2 2 2	54.0 54.0 68 ± 6 535 535 535	2.0 2.0 2.0 (2.0)		GT = 56.0 GT = 56.0 HGO = 0.27 ± 0.02 HGM = 54 ± 2	JENDL-2 JENDL-1 BAL325131 73M0X0N 74M0X0N 70CM0 70CM0 728EER
65.87 65.87 65.87 ± 0.15 65.87 65.87 65.87 65.87 65.87	0 0 0 0 0	2.0 2.0 2 2 2 2 2 2	1430-0 1430-0 *1790 ±225 1430 1430 1430	2.0 2.0 2.0 1 2.0 1	<u> </u>	GT = 1432.0 GT = 1432.0 WGD = 6.97 # 0.09 WGN = 1430 #180	JENGL-2 JENGL-1 BNL 3251 31 73HOXGM 74HOXGM 70CHO 726EER
58.77 59.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 2.0.17	0 0 0 0 0	2.0 2.0 2 2 2 2 2 2	1100.0 1100.0 *1375 ±625 1100 1100 1100	2.0 2.0 2.0 (2.0)		GT = 1102.0 GT = 1102.0 MGO = 5.24 # 2.36 MGH = 1100 #500	JENDL-2 JENDL-1 BML325(3) 73HDXDM 74HDXDM 70CHO 728EER
70-8							69HOCKENBURY
89.6	1					<u> </u>	69HOCKENBURT
						L	

.

.

- * A denotes $2g\Gamma_n$ ** WWS = $g\Gamma_n\Gamma_{\gamma}/\Gamma$ (eV), $GT = \Gamma$ (eV) WWD = $2g\Gamma_n\Gamma_{\gamma}/\Gamma$ (eV), $GGS = \sigma_0\Gamma_{\gamma}$ (b·eV) WGO = $2g\Gamma_n^{(0)}$ (eV), WGM = $g\Gamma_n$ (eV) WWI = $g\Gamma_{\gamma}$ (eV), WWC = $\Gamma_n\Gamma_{\gamma}/\Gamma$ (eV) GNO = $\Gamma_n^{(0)}$ (eV)
- *** 1) gF reported in 72 Beer and 77 Fröhner should probably be read as $$\rm F_n$$
 - 2) gf_v reported in 77 Fröhner should probably be read as Γ_{γ} .
 - 3) $\Gamma_n \Gamma_v / \Gamma$ reported in 72 Beer should probably be read as $g \Gamma_n \Gamma_v / \Gamma$.

References

 66Good
 :
 Ref. (53)

 69Hockenbury:
 Ref. (23)

 70Cho
 :
 Ref. (25)

 72Beer
 :
 Ref. (50)

 72Hockenbury:
 Ref. (54)

 73Moxon
 :
 Ref. (51)

 74Moxon
 :
 Ref. (3)

 75Fröhner
 :
 Ref. (52)
					62
Table	9	Resonance	parameters	of	⁰¹ Ni

. .

ENERGY (KEV)	۲.	Ĵ	NEUTRON WIDTH *	CANNA HIDTH *	HHS##	HISCELLANEOUS	REFERENCE
2.34	1				<u> </u>		69HOCKENBURY
4.6 4.5 4.5 4.55 4.599 4.599 6.0 4.6 4.5 4.55 5.0		0.5 0.5 0.5 0.5	2026 1620-0 1700-0 *1600 ±160 2075 2075 2075 (1300 i 1340 ±90	2.376 2.31 2.14 0.75 ± 0.12 2.31 2.31 0.76 ± 0.12		CT = 1822.31 CT = 1702.1 HGH = 23.75 ± 2.29 CT = (10000) GMO = (130.0) GMO = 19.89 ± 1.34	JÉNDL-2 JENDL-1 ENDF-8-4 BNL325131 73HDXDN 74HDXDN 66FARRELL 65HDCKENBURY 716ARG
8-91 8-91 8-91 ± 0-1 8-91 ± 0-10		0.5 0.5 0.5	0-069 0-069 0-069	1.0 1.0 (1.0)	0.082 ± 0.016 0.082 ± 0.016	GT = 1.089 GT = 1.089	JENOL - 2 Jenol - 1 74moxon 75beer
9.42 9.42 9.42 ± 0.1 9.42 ± 0.10		0.5 0.5 0.5	0.315 0.315 0.32	1.0 1.0 (1.0)	0.24 ± 0.04 0.24 ± 0.04	GT = 1.315 GT = 1.315	JENDL - 2 JENDL - 1 74H0XDN 75BEER
17.69 17.69 17.69 ± 0.07 17.69 ± 0.07	1 1 1 0	0.5 0.5 0.5	0.15 0.113 0.15	1.0 1.0 (1.0)	0.13 ± 0.03 0.13 ± 0.03	GT = 1.15 GT = 1.113	JENDL-2 JENJL-1 74NDXON 758EER
24.46 24.46 24.46 ± 0.11 24.46 ± 0.11	1 1 7 0	0.5 0.5 0.5	0.205 0.205 0.21	1.0 1.0 1.0 1	0.17 ± 0.03 0.17 ± 0.03	GT = 1.205 GT = 1.205	JENOL - 2 JENOL - 1 74moxon 75beer
28.22 28.22 28.22 ± 0.14 28.22 ± 0.14	1 1 1 0	0.5 0.5 0.5	0.351 0.351 0.35	1.0 1.0 1.0 1	0.26 ± 0.04 0.26 ± 0.04	GT = 1.351 GT = 1.351	JENDL-2 JENDL-1 7410X0N 7586ER
29.29 29.29 29.29 ± 0.14 29.29 ± 0.14	1	0.5 0.5 0.5	1.0 1.0 1.0	3.0 1.0 (1.0	0.50 ± 0.07 0.50 ± 0.07	GT = 2.0 GT = 2.0	JENDL-2 JENDL-1 74MDXON 75DEER
34.28 34.28 34.28 ± 0.18 34.28 ± 0.18	1 1 1 0	0.5 0.5 0.5	0.563 0.563 0.56	1.0 1.0 (1.0)	0.36 ± 0.06 0.36 ± 0.06	CT = 1.563 CT = 1.563	JENOL-2 JENOL-I 74MDXON 758EER
36.04 36.04 38.04 ± 0.20 38.04 ± 0.20	1 1 1 0	0.5 0.5 0.5	3.35 3.35 3.35	1.0 1.0 (1.0)	0.77 ± 0.11 0.77 ± 0.11	GT = 4.35 GT = 4.35	JENDL - 2 JENDL - 1 74MDXON 75BEER
40.3 40.3 40.3 ± 0.3	1 0	0.5 0.5	0+136 0+136	1.0	0.12 ± 0.03	GT = 1.136 GT = 1.136	JENOL-2 JENDL-1 75BEER
41.0 41.0 41.0 ± 0.3		0.5	0.235 0.235	1.0 1.0	0.19 ± 0.04	GT = 1.235 GT = 1.235	JENDL-2 JENDL-1 758EER
42.87 42.87 38.5 42.87 ± 0.01 42.872 42.87 42.87 42.5	0 0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	340.0 340.0 250.0 ⁸ 340 ± 10 340 340	0.36 0.36 2.14 2.0 0.36		GT = 340.36 GT = 340.36 GT = 252.14 HGH = 1.64 ± 0.05 GT =(1000) GT =(1000)	JENOL-2 JENOL-1 ENOF-B-4 BNL325131 73HDXDN 74HDXDN SGFARRELL
42.87 ± 0.14	0		340 #15	0.36 ± 0.07			75BEER
44-8 44-8 44-8 ± 0-3		0.5 0.5	0.515 0.515	1.0 1.0	0.34 ± 0.07	61 = 1.515 61 = 1.515	JENCL - 2 JENCL - 1 75BEER
53.1 53.1 53.1 ± 0.3	0	0.5 0.5	0.176	1.0	0.15 \$ 0.05	GT = 1.176 GT = 1.176	JENOL - 2 JENOL - 1 75BEER
56-91 56-91 53-8 56-91 ± 0.02 56-5		0.5 0.5 0.5	56.0 56.0 100.0 * 56 2 4	0.28 0.28 2.14		GT = 56.28 GT = 56.28 GT = 102.14 HG1 = 2.5 GT = (200) GNO = (0.83)	JENDL-2 JENDL-1 ENDF-0-4 GNL325131 66FARRELL
56.91 + 0.19	• •		*56 ±17	0.28 ± 0.11	0.28 + 0.07	 	7SBEER
63.1 63.1 63.1 ± 0.4		0.5	0.37	1.0	Q.27 ± 0.07	GI = 1.37 GT = 1.37	JENDL - 2 JENOL - 1 758EER
74-0 74-0 74-0 * = 0-5	0	0.5	0.867 0.867	1.0 1.0	0.47 \$ 0.09	GT = 1.887 GT = 1.887	JENDL-2 JENOL-1 758FER
17.2	0	0.5	·/0+0	2.0		DT = 72.0	JENDL - 2

- 67 -

ENERGY (REV)	L J	NEUTRON HIDTH	GANNA NIOTH	NH5	MISCELLANEOUS	REFERENCE
77.23 76.0 77.23 ± 0.03 77.23 77.2 ± 0.3 77.2 ± 0.3	0 0.5 1 0.5 0 0.5 0 0.5 0 0.5	70.0 175.0 70 ± 7 70 70 ± 30 70 ± 30	2.0 0.6 2.0 (2.0)		01 = 72.0 D1 = 175.6 HCH = 0.25 ± 0.03	JENDL - 1 ENDF - 8 - 4 BNL 32513 J 7340200 744020N 758£ER
78-4 78-42 78-42 ± 0.04 78-4 ± 0.3	1 0.5 1 0.5 1 1 1 0	48.0 48.0 ⁶ 48 ± 7	0.14 0.14	0-14 2 0-04	GT = 48.14 GT = 48.14 HG1 = 1.4	JENDL-2 JENDL-1 BNL325(3) 758EER
89.3 ± 0.35	0	250 ±120			QNO = 2.64 ± 0.40	71GARG
93.4 93.4 93.4 ± 0.0	1 0.5 1 0.5 0	1.22 1.22	1.0 1-0	0.55 ± 0.12	GT = 2.22 GT = 2.22	JENQL-2 JENQL-1 758EER
94.7 94.7 93.5 94.7 ± 0.02 94.74 94.74 93.5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	2500.0 2500.0 2250.0 *2500 ±100 2500 ±100 2500 2440	0.56 0.56 2.14 2.0 0.56		GT = 2500.56 GT = 2500.56 GT = 2252.1 WGH = 8.12 ± 0.33 GT = 2250	JENOL-2 JENOL-1 ENOL-8-4 BNL 325(3) 73NDXDN 74NDXDN 86FARRELL
95.5 ± 0.40 94.7 ± 0.4	0 0	1620 ±400 2500 ±100	0.56 ± 0.13		CNO = 5.29 \$ 1.31	71GARD 750EER
103.3 103.3 103.3 ± 0.8	1 1.5 1 1.5 0	1.86 1.86	(.0 (.0	1.30 = 0.22	GT = 2.06 GT = 2.06	JENDL-2 JENOL-1 75BEER
105.6 105.6 104.7 105.65 ± 0.03 105.65 105.6 104.5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	4600.0 4600.0 3700.0 *4600 *200 4600 4600	1.4 1.4 2.14 2.0 1.4		GT = 4601.4 GT = 4601.4 GT = 3702.1 WGH = 14.15 ± 0.62 GT = 4500	JENOL-2 JENOL-1 ENOF-8-4 BNL325(3) 73M0XDN 74M0XDN 66FARRELL
104.5 ± 0.5 105.6 ± 0.4	0 0	3850 4600 ×200	1-40 ± 0-31		GNO = 11-90	71GARG 758EER
112.0 112.0 112.0 ± 0.9	1 0.5 1 0.5 0	4.26 4.26	1.0 1.0	0.01 ± 0.20	GT = 5-26 GT = 5-26	JENDL-2 JENOL-1 758EER
118-5 118-5 118-5 ± 1-1	1 1.5 1 1.5 0	3.17 3.17	1.0	1.52 ± 0.33	GT = 4.17 GT = 4.17	JENOL-2 JENOL-1 75BEER
137.4 137.4 137.5 137.5 138.74 137.5 137.5 137.4 ± 1.4	1 0.5 1 0.5 1 0.5 0 0.5	127.0 113.0 113.0 127 113 126.5 ±13.5	1.0 1.8 0.6 1.0	1.77 ± 0.44	CT = 128.8 CT = 114.8 CT = 113.6	JENDL-2 JENOL-1 ENOF-B-4 BNL325131 73HOXUN G&FARRELL 75BEER
145.0 145.0 145.0 ± 1.5	1 1.5 1 1.5 0	309.0 309.0	I • 55 J •55	3.09 * 0.62	GT = 310.55 GT = 310.55	JENDL-2 JENDL-1 75BEER
149.3 149.3 148.5 149.3 ± 0.1 149.3 149.3 149.3 148.5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	140.0 140.0 200.0 **140 140 140	2.0 2.0 2.14 2.0 4 2.0 4 2.0		$\begin{array}{l} 0T &= 142.0 \\ 0T &= 142.0 \\ 0T &= 202.14 \\ HCH &= 0.36 \pm 0.05 \\ 0T &= 200 \\ 0H0 &= 0.533 \end{array}$	JENDL-2 JENDL-1 ENDF-8-4 BNL325131 73MDXDN 74MDXDN 66FARRELL
148.5 ± Q.8 149.3 ± 0.7	0 0	200 140 ±70			CNO = . 0.53	71GARG 75BEER
160.5 160.5 160.5 = 1.0	1 1.\$ 1 1.\$ 0	21.9 15.1	1.45 1.45	2.72 * 0.60	GT = 23.35 GT = 16.55	JENOL - 2 JENOL - 1 758EER
100.2 100.2 105.2 ± 0.2 100.2 100.2 100.2 100.2 ± 0.9	0 0.5 0 0.5 0 0 0.5 0	90.0 90.0 90.2 90 90 90 (90)	2.0 2.0 2.0 (2.0 1		GT = 92.0 GT = 92.0 HOH = 0.21 ± 0.05	JENOL - 2 JENOL - 1 BNL 325(3) 73HOXON 74HOXON 75BEER
190.74 190.74 199.5 190.74 199.5	1 0.5 1 0.5 1 0.5 0 0.5 0	125.0 125.0 125.0 125.0 125.0 125.* 137.5 ±12.5	1.0 1.0 0.6 1.0		GT = 126.0 GT = 126.0 GT = 125.6	JENOL-2 JENDL-1 ENDF-8-4 73Hoxon 66FARRELL
214.7 254.7 214.7 ± 0.2 214.7	0 0.5 0 0.5 0 0.5 0	190.0 200.0 190 220 190 220	2.0 2.0 2.0		GT = 192+0 GT = 192+0 HGH = 0+41 = 0+04	JENDL-2 JENQL-1 BNL 325(3) 73MOXON

ļ.

	L	NEUTRON MIDTH	GANNA WIDTH NHS (EV) (EV)	HISCELLANEOUS	REFERENCE
214.7 214.7 ± 1.1	0 0.5	190 190 ±130	(2.0)		74MOXON 75DEER
217.74 217.74 216.5 217.74 216.5	1 0.5 1 0.5 1 0.5 0 0.5 0	175.0 175.0 175.0 175 190.5 ±15.5	1.0 1.0 0.6 1.0	GT = 176.0 GT = 176.0 GT = 175.6	JENDL-2 JENDL-1 ENDF-8-4 73Hoxon 66FRRRELL
229.5 229.5 230.2 229.5 ± 0.04. 229.5 229.5 229.5 229.5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	6180-0 6180-0 7250-0 6250 ±80 6160 6160 6180	2.0 2.0 2.14 2.0 (2.0)	CT = 6182.0 CT = 6182.0 GT = 7252.1 HCH = 13.05 ± 0.17 GT = 7250 CNO = 15.761	JENOL - 2 JENOL - 1 ENOF - 8 - 4 BML 325131 7370XDM 7470XDM 66FARRELL
229.5 ± 1.2	0	6180 ±160			758EER
243.23 243.23 243.2 243.2 243.2 243.2 243.2 242.2	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	780.0 780.0 1250.0 ^R 780 ±40 780 780	2.0 2.14 2.0 2.0 7 2.0	U1 = 702-0 GT = 782-0 GT = 1252-1 WGH = 1.58 ± 0.08 OT = 750 GNO = 1.591	JENDL-1 JENDL-1 ENDT-B-4 SNL325(3) 73HDXON 74HDXON 66FARRELL
243-2 ± 1-3	0	780 ±150		GT = 105 0	750EER
260.74 259.5 259.5 260.74 259.5	1 0.5 1 0.5 0 0.5	105.0 105.0 *113 105 *112.5 ± 7.5	1.0 0.6 1.0	01 = 106.0 01 = 105.6	JENDL-1 ENDF-8-4 BNL32513) 73H0X0H 66FRRRELL
273.74 273.74 273.1 272.5 273.74 272.5 273.74 272.5	L 0.5 L 0.5 L 0.5 J 0.5 - 0 0 0.5	315-0 315-0 315-0 "333 315 "332-5 ±17-5	1.0 1.0 0.6 1.0	GT = 316.0 GT = 316.0 GT = 315.6	JENOL-2 JENOL-1 ENDF-8-4 ØNL325131 73MDXON 66FARRELL
201.1 201.1 202.1 200.5 201.5 201.5 201.1 201.5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	4800.0 4800.0 5200.0 *4800 ±200 4800 ±200 4800	2.0 2.0 2.14 2.0 (2.0 (2.0)	GT = 4802.0 DT = 4802.0 GT = 5202.1 HGH = 9.06 ± 0.38 GT = 5500 DNO = 10.911	JENOL-2 JENOL-1 ENOF-8-4 BNI325(3) 73HOXON 74HOXON 66FARRELL
201.1 ± 1.6	0 0.5	4600 \$400	2.0	GT = 1502.0	JENOL-2
207,24 206,4 206,0 207,24 207,0 207,0 206,0 1200,0	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	1500-0 1500-0 1500 ±500 1500 1250	2.0 2.14 2.0 1 2.0 1	GT = 1502-0 OT = 1502-1 WGH = 2-81 * 0-93 GT = 1500 GNO = 2-950	JEMDL-1 ENDF-0-4 ONL325(3) 73M0XOM 74M0XON 66FARRELL 750EER
290.24 298.24 297.0 297.0 297.0 298.24 297.0 298.24 297.0	1 0.5 1 0.5 1 0.5 • • • • • • •	190-0 190-0 190-0 *200 190 *200 ±10	1.0 1.0 0.6 1.0	GT = 191.0 GT = 191.0 GT = 190.6	JENDL-2 JENDL-1 ENDT-D-4 BNL325131 737030N 66FARRELL
300.74 300.74 299.6 299.5 300.74 299.5	1 0-5 1 0-5 1 0-5 0 0-5 0	470.0 470.0 470.0 ⁸ 500 470 ⁸ 495 ±25	1.0 1.0 0.6 1.0	CT = 471.0 GT = 471.0 GT = 472.0 GT = 470.6	JENDL-2 JENDL-1 ENDF-8-4 DNL325(3) 73MDXON 66FARRELL
306.24 306.24 304.5 304.0 306.24 306.24 306.24 306.24	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	000.0 000.0 1000.0 900 000 900	2.0 2.0 2.14 2.0 1 2.0	GT = 802.0 GT = 802.0 DT = 1002.1 HCH = 1.45 GT = 800 GNO = 1.53]	JENDL-2 JENDL-1 ENDF-0-4 BNL32513J 73mdxan 74mdxan 66FARRELL
316.74 316.74 314.0 315.5 315.5 316.74 315.5	1 0.5 1 0.5 1 0.6 0 0.5	225.0 225.0 275.0 226 226 225 237.5 ±12.5	1.0 1.0 5.6 1.0	GT = 226.0 GT = 226.0 GT = 225.6	JENDL-2 JENOL-1 ENDF-8-4 GNL32513J 73MOXON 66FARRELL
320.24 320.24 319.5	1 0.5 1 0.5 1 0.5	366.0 366.0 366.0	1-0 1-0 0-6	GT = 357.0 GT = 357.0 GT = 356.6	JENDL - 2 Jengl - 1 Endf - 8 - 4

- 69 -

٨

,

ENERGY LINEV 1	LJ	J NEUTRON HIDTH	CRIMIN HIDTH	HHS (EV)	MISCELLANEDUS	REFERENCE
319-0 320-24 319-0	0 0	*375 0.5 356 *375 ±19	1.0			BNL 3251 31 73HOXON 66FARRELL
324.24 324.24 323.4 323.0 324.24 323.0		0.5 \$80.0 0.5 \$60.0 0.5 \$60.0 "\$60 0.5 \$60 "600 ±40	1.0 1.0 0.5 1.0		01 = 561.0 01 = 561.0 01 = 560.6	JENDL-2 JENDL-1 ENDF-8-4 ØNL325(3) 73MDXON 66FARRELL
328.24 328.24 328.0 327.0 327.0 328.24 328.24 328.24 328.24 327.0		0.5 \$500.0 0.5 \$500.0 0.5 \$500.0 0.5 \$5500 5500 0.5 \$5500 0.5 \$500	2.0 2.0 2.14 2.0 (2.0)		07 = 5502.0 07 = 5502.0 07 = 5502.1 WCH = 9.62 07 = 5500 CH = 10.186	JENDL-2 JENDL-1 ENDF-8-4 BN1325131 73MDXDN 74MDXDN 66FARRELL
345.44 345.44 345.0 344.2 345.44 345.44 345.44 344.2		0.5 7500.0 0.5 7500.0 0.5 7500.0 0.5 7500 0.5 7500 7500 0.5 7500	2.0 2.0 2.14 2.0 (2.0)		GT = 7502.0 GT = 7502.0 GT = 7502.1 WGH = 12.78 GT = 7500 GMO = 13.578	JENDL-2 JENDL-1 ENDF-8-4 BNL325(3) 73MDXDN 74MDXDN 86FARRELL
353.24 353.24 352.5 352.0 353.24 352.0 353.24 352.0		1.5 267.0 1.5 267.0 1.5 267.0 ⁸ 279 1.5 267 ⁸ 278.5 ±11.5	1.0 1.0 0.6 1.0		GT = 268.0 GT = 268.0 GT = 267.6	JENOL-2 JENOL-1 ENOT-8-4 BNL 325(3) 73H0XON 66F ARRELL
357.44 357.44 357.7 356.2 357.44 357.44 356.2		0.5 2000.0 0.5 2000.0 0.5 2000.0 0.5 2000 2000 2000 0.5 2000	2.0 2.0 2.14 2.0 (2.0)		01 = 2002.0 GT = 2002.0 GT = 2002.1 WGH = 3.35 GT = 2000 GN0 = 3.5§7	JENOL-2 JENOL-1 ENOF-8-4 BML325(3) 73MOXON 74MOXON 66FARRELL
345.27 345.27 344.7 344.0 365.24 364.0		0.5 187.0 0.5 187.0 187.0 194 0.5 187 193.5 ± 5.5	1.0 1.0 0.6 1.0		GT = 166.0 GT = 158.0 GT = 167.6	JENDL-2 JENDL-1 ENDF-8-4 BNL325131 73moxon 66FARRELL
375.74 575.74 375.5 374.5 374.5 375.74 375.74 374.5		0.5 250.0 1.5 250.0 1.5 250.0 1.5 250.0 250 0.5 250	2.0 2.0 2.14 2.0 (2.0)		$\begin{array}{l} GT &= 252 \cdot 0 \\ GT &= 252 \cdot 0 \\ GT &= 252 \cdot 14 \\ HGH &= 0.41 \\ GT &= 250 \\ GN0 &= 0.436 \end{array}$	JENDL-2 JENDL-1 ENDF-B-4 BNL325131 73HDXDN 74HDXDN 66F NRRELL
303 .74 303 .74 303 .5 302 .5 303 .74 303 .74 303 .74 302 .5		I.5 1250.0 I.5 1250.0 I.6 1150.0 I.5 ⁴ 1250 1250 I.5 1250	2.0 2.0 2.14 2.0 (2.0)		GT = 1252.0 OT = 1252.0 GT = 1152.1 WGH = 2.02 QT = 1250 CMO = 2.161	JENDL-2 JENDL-1 ENDF-8-4 6ML 325(3) 73HDXDN 74HDXDN 66FARRELL
389.74 389.74 389.5 389.5 389.74 389.74 389.74 389.74 389.5		1.5 4600.0 1.5 4500.0 1.5 4500.0 5 4500 4500 1.5 4500 1.5 4500	2.0 2.0 2.14 2.0 (2.0)		GT = 4502.0 GT = 4502.0 GT = 4502.1 HGH = 7.22 GT = 4500 CNO = 7.726	JENDL-2 JENDL-1 ENDF-8-4 BNL 325(3) 73moxon 74moxon 66farrell
402.44 402.44 402.2 401.5 402.44 402.44 402.44 402.44	0 0. 0 0. 0 0. 0 0. 0 0.	-5 1500.0 -5 1600.0 -5 1750.0 -5 1500 1500 -5 1500	2.0 2.0 2.14 2.0 (2.0)		GT = 1502.0 GT = 1502.0 GT = 1752.1 HGH = 2.37 GT = 1500 XNO = 2.540	JENOL-2 JENOL-1 ENDF-8-4 Onl325(3) 73moxon 74moxon 66FARRELL
404.54 404.5 403.8 403.3 404.54 403.3		.5 435.0 .5 392.0 .5 404.0 *392 .5 4035 *407.5 ±27.5	1.0 1.0 0.5 1.0		37 = 436.0 37 = 393.0 37 = 404.6	JENDL-2 JENDL-1 ENDF-8-4 BN132513) 73H0X0H 66FARRELL
471.54	1 0.	.5 800.0	1.0	la	it = 801.0	JENOL - 2

EVENOA	L	J	NEUTRON WIDTH	CANNA WIDTH H (EV.) (E	M5 V 1	MISCELLANEOUS	REFERENCE
421-54 420.7 420.3 421-54		0.5 0.5 0.5	000.0 000.0 *03 000	1.0 0.6		GT = 801.0 GT = 800.6	JENDL-1 ENDF-8-4 BNL 32513) 73HOXON
420.3	0	0.5	*813 ±13	2.0		GT = 1502.0	SEFARELL
423.9 423.0 424.24 424.24 424.24	0	0.5 0.5 0.5	1500.0 1500.0 1500 1500 1500 (2.0 2.14 2.0 2.0 1		DT = 1502.0 HCH = 2.31	ENDE-1 ENDE-1 6NL 325(3) 73HOXON 74HOXON
423.0	0					GT = 1500 GNO = 2,483	66FARRELL
434.24 434.24 434.7 435.0 434.24 434.24 434.24 434.24 433.0		0.5 0.5 0.5 0.5 0.5	6500.0 6500.0 6500.0 8500 6500 6500 6500 6500 6500	2.0 2.0 2.14 2.0 2.0	1	CT = 6502-0 CT = 6502-0 GT = 6502.1 HCH = 9-86 CT = 6500) JENDL - 2 JENDL - 1 ENDF - 8 - 4 BNL 325(3) 73MOXON 74MOXON 66FARRELL
445-24 445-24 445-0 446-0 445-24 445-24 445-24 446-0		0.5 0.5 0.5 0.5	350.0 350.0 350.0 350 350 350 350 1	2.0 2.0 2.14 2.0 2.0 2.0		(240 = 10.650 (37 = 352.0 (37 = 352.14 HOH = 0.53 (37 = 350 (37 = 350 (360 = 0.567	JENDL-2 JENDL-1 ENDF-8-4 BNL32513) 73H0X0H 74H0X0H 86FARRELL
467.74 447.74 446.5 447.74 446.5 447.74		0.5 0.5 0.5 0.5	150.0 150.0 350.0 1150 1	1.0 1.0 0.6 1.0		CT = 151.0 CT = 151.0 CT = 350.6	JENDL-2 JENDL-1 ENDF-8-4 73HDXON 66FARRELL
451.04 451.04 449.8 451.04 449.8		0.5 0.5 0.5	248.0 248.0 *250 248 *249 ± i	1.0 1.0 1.0		GT = 249.0 GT = 249.0	JENDL-2 JENDL-1 BNL 3251 3 1 7 3HDXDN 66FARRELL
451.24 451.24 451.2 450.0 451.24 450.0		0.5 0.5 0.5 0.5	231.0 231.0 236.0 236 231 *235.5 ± 4.5	1.0 1.0 0.6 1.0		GT = 232.0 GT = 232.0 GT = 600.6	JENDL-2 JENDL-1 ENDF-8-4 GNL325(3) 73HDXON 66FARRELL
459.24 459.24 459.24 459.2 459.2 459.2 459.2 459.2 459.2 4 59.2 4		0.5 0.5 0.5 0.5 0.5	\$00.0 \$00.0 \$50.0 \$500 \$500 \$500 \$500 \$5	2.0 2.0 2.14 2.0 2.0		$\begin{array}{rcl} GT &= 502.0\\ GT &= 502.0\\ GT &= 502.14\\ HGH &= 0.74\\ GT &= 500\\ GH0 &= 0.800 \end{array}$	JENDL-2 JENDL-1 ENDF-9-4 BNL 325(3) 73mdxdn 74mdxdn 66FARRELL
463.04 463.04 462.62 461.6 463.04 461.8		0.5 0.5 0.5	540.0 540.0 540.0 7550 540 550 ¢10	1.0 1.0 0.6 <i>}.0</i>		GT = 541.0 GT = 541.0 GT = 540.6	JENDL-2 JENDL-1 ENDF-0-4 Onl325(3) 73HOXON 66FARRELL
478.24 476.24 476.5 476.0 476.2 476.24 476.24 476.24	0 0 0 0 0 0 0 0 0 0	0.5 0.5 0.5 0.5	1500-0 1500-0 1500-0 1500 1500 1500 1500	2.0 2.0 2.14 2.0 2.0 3.0		CT = 1502.0 GT = 1502.0 GT = 1902.1 MGH = 2.18 CT = 1500 CH0 = 2.363	JENDL-2 JENUL-1 ENUF-8-4 Bhl32513J 73HOXON 74HOXON 66FARRELL
481.24 481.24 480.0 480.0 481.24 480.0		0.5 0.5 0.5 0.5	318.0 318.0 318.0 ⁹ 24 318 ⁹ 335 ±2;	1-0 1-0 0-6		CT = 319.0 CT = 319.0 CT = 318.6	JENDL-2 JENOL-1 ENDF-8-4 GNL325131 73MOXON 66FARRELL
409.74 409.74 409.5 409.5 409.5 409.74 409.74 409.74 400.5).5).5).5).5	4000.0 4000.0 4000.0 4000.0 4000 4000 4	2.0 2.0 2.14 2.0 2.0		91 = 4002.0 91 = 4002.0 91 = 4002.1 93 = 4002.1 94 = 5.72 94 = 5.72 95 = 4000 90 = 6.228	JENOL-2 JENOL-1 ENOF-8-4 BNL325(3) 73NOXON 74NOXON 66FARRELL
494.24 494.24 477.5	1 0 1 0 1 0).5 1.5 1.5	910.0 910.0 910.0	1-0 1-0 0-6	C	T = 091.0 F = 091.0 F = 090.6	JENOL - 2 JENOL - 1 ENDI - 1 ENDI - 1

5

.

ENERGY I KEV 3	L	J	NEUTION HIDTH	CANNA WIDTH	HHS (EV)	MISCELLANEOUS	REFERENCE
493.5 494.24 493.5		0.5 0.5 0.5	*934 890 *901 ±11	1.0		MGI = 2.8	8NL325(3) 73M0X0N 56FARRELL
499.24 499.24 499.2 496.0 499.2 499.2 499.24 499.24 499.24 498.0		0.5 0.5 0.5 0.5 0.5	1500.0 1500.0 1500.0 *1500 1500 1500	2.0 2.0 2.14 2.0 1 2.0 1		CT = 1502.0 CT = 1502.0 DT = 1502.1 HCH = 2.13 CT = 1500 CHO = 2.317	JENDL-2 JENDL-1 ENDF-B-4 BNL325133 73HDXON 73HDXON 66FRRRELL
509.74 509.74 509.1 506.5 509.74 509.74 509.74 509.5		0.5 0.5 0.5 0.5 0.5	500.0 500.0 1500.0 *500 500 500 500	2.0 2.0 2.14 2.0 (2.0)		$\begin{array}{l} CT & = 502.0 \\ CT & = 502.0 \\ CT & = 1502.1 \\ WCH & = 0.70 \\ CT & = 500 \\ CN0 & = 0.766 \end{array}$	JENDL-2 JENDL-1 ENDF-8-4 BNL325131 73M0X0N 74M0X0N 66FARRELL
513.2	1	0.5	170.0	0.6		GI = 170.6	ENDF-8-4
516.74 516.74 515.5 515.5 516.74 515.5		0.5 0.5 0.5 0.5	140.0 140.0 240.0 "145 140 "145 t 5	1-0 1-0 D-5 1-0		GT = 141.0 DT = 141.0 GT = 140.6	JENDL-2 JENDL-1 ENDF-8-4 BML325(3) 73HOXON 66FARRELL
523.24 523.24 522.45 522.0 523.24 522.0		0.5 0.5 0.5 0.5	360.0 360.0 360.0 *390 360 *390 ±10	1.0 1.0 0.6 1.0	<u></u>	CT = 301-0 CT = 301-0 CT = 380-5	JENDL-2 JENDL-1 ENDF-8-4 BML 325133 73HOXON 66FARRELL
530-24 530-24 529-0 529-0 530-24 529-0	1 1 1 0 0	1.5 1.5 1.5 1.5 1.5 1.5	925.0 1725.0 925.0 ⁴ 1690 1725 ⁴ 694 *31	1.0 1.0 0.5 1.0		C1 = 926.0 GT = 1726.0 GT = 925.6 MC1 = 4.7	JENOL-2 JENOL-1 ENDF-8-4 BML 325(3) 73HOXON 66F ARRELL
536.74 536.74 535.5 535.5 535.5 536.74 535.5		0.5 0.5 0.5 0.5 0.5 0.5	1600.0 1600.0 1600.0 *i390 1600 *1630 *30	1.0 1.0 0.6 1.D		GT = 1601.0 GT = 1601.0 GT = 1600.6	JENOL - 2 JENOL - 1 ENDF - 8 - 4 BNL 3251 3 1 73HOXON 66FARRELL
540.24 540.24 539.0 539.0 540.24 540.24 539.0		0.5 0.5 0.5 0.5 0.5	2000-0 2000-0 2000-0 2000 2000 2000 200	2.0 2.0 2.14 2.0 (2.0)		GT = 2002.0 GT = 2002.0 GT = 2002.1 HGH = 2.72 GT = 2000 GM0 = 2.989	JENDL-2 JENDL-3 ENDT-3 ENDT-8-4 6NL325(3) 73HDXDN 74HDXDN 66FARRELL
543.0	1	0.5	150.0	0.6		GT = 150.6	ENDF-8-4
544.4	1	0.5	150.0	0.6		GT = 150.6	ENOF-B-4
555-24 555-24 554-0 554-0 555-24 555-24		0.5 0.5 0.5	655.0 655.0 655.0 655 655 *655 *13	1.0 1.0 0.6 1.0		GT = 656.0 CT = 656.0 CT = 655.6	JENDL-2 JENOL-1 ENOF-8-4 BNL32513} 73moxon 66farrell
569.74 569.74 560.2 568.5 569.74 568.5 569.74 568.5	- - - 0	0.5 0.5 0.5 0.5	825.0 825.0 500.0 843 825 843 825 843 818	1.0 1.0 0.6 1.0		CT = 826.0 GT = 826.0 GT = 500.6	JENDL - 2 JENDL - 1 ENDF - 8 - 4 6NL 325: 3 J 73HOXON 66FARRELL
573.04 573.04 571.8 571.8 573.04 573.04 573.04 571.8	0 0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	4000-0 4000-0 3300-0 #4000 4000 4000	2.0 2.0 2.14 2.0 (2.0)		01 = 4002.0 01 = 4002.0 01 = 3302.1 404 = 5.29 01 = 4000 140 = 5.836	JENDL - 2 JENDL - 1 ENDF - 8- 4 BNL 325 (3) 73rdskom 74rdskom 66frrrel
542.24 542.24 541.6 561.J 542.24 542.24 542.24 542.24 542.0	0 0 0 0 0 0 0 0 0 0 0 0	0.5 0.5 0.5 D.5 0.5	500.0 500.0 1100.0 *500 \$00 \$00	2.0 2.0 2.14 2.0 4 2.0		01 : 502.0 11 : 502.0 13 : 1102.1 10H : 0.65 11 : 500 140 : 0.725	JENDL-2 JENDL-1 ENDF-8-4 ONL325131 73HOXON 74HOXON 66FRARCLL

ENERGY LIKEV 3	L	J	NEUTRON HIDTH	CANNA KIDTH (EV)	HHS (EV)	HISCELLANEOUS	REFERENCE
584.74 581.74	0	0.5	10000-0	2.0		GT = 10002.0	JENOL-2
593.0	1 8	0.5	10001.0	2.0		lot = 10002.0	ENDE-B-A
583.5	l ñ	0.5	*10000	e		HCH = 13.09	BNI 325131
594.74	l ñ	0.0	10000	2.0		10100	73H0X0N
584.74	1 8	0.5	10000	(2.0)			7400300
583.5	L N	0.5	10000	,		ot - 10000	66FARRELL
	1					GND = 14.471	
591.74	0	0.5	2000.0	2.0		GT = 2002-0	JENDL - 2
591-74] 0	0.5	2000.0	2.0		GT = 2002.0	JENOL - 1
590.5	10	0.5	2000.0	2.14		OT = 2002-1	ENOF-8-4
590.5	0	0.5	"2000			HCH = 2.60	BNL 3251 31
591.74	10		2000	2.0		1	73M0X0N
591.74	10	0.5	2000	1 2.0 1		{	74MDXON
590.5	0					61 = 2000	66FARRELL
						GNO = 2,880	
600.74	1	0.5	810.0	1.0		CT = 811.0	I JENOL-2
508.74	1 1	0.5	810.0	1.0		GT = 611-0	JENDL-I
599.5	1	0.5	375.0	0.6		G1 = 375.6	ENDF-8-4
599.5	1	0.5	⁹ 905			HGI = 2.2	ENL 3251 31
600.74	10	0.5	. 610	1.0			73H0X0N
599.5	• •	0.5	*625 ±15				66FARRELL
605.6	1	0.5	300.0	0.6		GT = 300.6	ENDF-8-4
611.0	• •	0.5	7000.0	2.14		GT = 7002+1	ENDF -8-4
621.5	1	0.5	300.0	0.6		0T = 300.6	ENDF-8-4
628.5	0	0.5	1300.0	2.14		GT = 1302+1	ENDF-8-4
631.0	1	1.5	500-0	0.6		G1 = 500.6	ENDF -8-4
635.5	1	1.5	600.0	0.6		GT = 600.6	ENOF-B-4
640.3	0	0.5	400-0	2.14		GT = 402-14	ENOF-8-4
642.5	1	0.5	300.0	0.6	·····	GT = 300.6	ENDF-8-4
653.0	0	0.5	9000-0	2.14		GT = 9002+1	ENDF -8 - 4

* A and B denote $g\Gamma_n$ and $g\Gamma_\gamma$, respectively ** WW5 = $g\Gamma_n\Gamma_\gamma/\Gamma$ (eV), $GT = \Gamma$ (eV) WGH = $g\Gamma_n^{(0)}$ (eV), $GNO = \Gamma_n^{(0)}$ (eV) WGI = $g\Gamma_n^{(1)}$ (eV)

References

66Farrell : Ref.(21)
69Hockenbury: Ref.(23)
71Garg : Ref.(49)
73Moxon : Ref.(51) (Evaluation)
74Moxon : Ref.(3) (Evaluation)
75Beer : Ref.(26)

				_	64
Table	10	Resonance	parameters	of	- 'N1

ENERGY LINEY 1	L J	NEUTRON HIDTH *	ORINA WIDTH IEV 3	1645 **	HISCELLANEOUS **	REFERENCE
9.52 9.52 9.52 9.52 9.52 9.52 9.52		5 6-9 (5 6-18 5 6-41 5 6-9 (1.0 1.0 1.0 1.0	1.73 ± 0.2 1.7 ± 0.2 1.73 ± 0.2 1.73 ± 0.2 1.73 ± 0.2	CT = 7-18 CCS = 473 = ≠70	JENDL - 2 ENDF - 8 - 4 BNL 325(3) 73HOXON 74HOXON 69HOCKENBUKY
4.3 4.3 3.8 4.3 ⊨ 0.2 4.3 3.8 4.3 3.8 4.3 4.3		5 2900.0 5 2900.0 5 000.0 5 2900 5 2900 5 5 2900 2900 5 2900 5	(.9 1.9 2.14 0.76 ± 0.15 2.0 1.9		GF = 2901.9 GT = 2901.9 GT = 802.14 HGH = 24.25 = 4.18 GT = 3000 GNG = 25.7	JENDL-2 JENDL-1 ENDF-B-4 BNL 3251 31 73HDX0H 56FRRELL 72HDDCKENBURY 73RFFE
14-8 14-8 ± 0-1 14-8 ± 0-1		5 0-316 5 0-316 5 0-32 1	1.0 1.0 1.0	0-24 ± 0-05 0-24 ± 0-05	GT = 1-316 GT = 1-315	JENDL - 2 JENDL - 1 74MOXON 75BEER
25.0 ± 0.1 26.0 25.8						BNL 325(3) 69HOCKENBURY 72HOCKENBURY
31.05 31.05 31.05 ± 0.15 31.05 ± 0.15 31.05 ± 0.15	1 0.5 1 0.5 1 0.5	5 3.0 5 3.0 5 3.0 (1.0 1.0 1.0 1.0)	0.75 ± 0.11 0.75 ± 0.11	GT = 4.0 GT = 4.0	JENOL - 2 JENOL - 1 74MOXON 72HOCKENBURY 75BEER
33.02 33.02 33.02 33.01 ± 0.04 33.01 33.02 33.02 33.2	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	5 #900.0 5 #900.0 950.0 5 #8900 ±500 #900 ±500	2.9 2.9 2.14 2.0 2.9		DT = 8902.9 GT = 8902.9 GT = 952.14 Mort = 48.40 ± 2.72 GT = 9500 GT = 9500 GT = 9500	JENDL-2 JENDL-1 ENDF-B-4 BNL 325/31 73HOXON 74HOXON 66FARRELL
1 33-5 ± 1-5 1 33-62 ± 0-10	o	6900 ±50	2.9 \$ 0.6			72HOCKENBURY 75BEER
39-2 (39-2)				•	······	69HOCKENBURY 72HOCKENBURY
45-1 [45-8]]						69HOCKENBURY 72HOCKENBURY
53.9						69HOCKENBURT
1 60.0 1			· · · · · · · · · · · · · · · · · · ·			72HOCKENBURY
62.8 62.5 64.0 62.4 62.8 ± 0.4	1 0.5 : 0.5	5.7 5.7	1.0 1.0	0.85 ± 0.18	GT = 6.7 GT = 6.7	JENDL-2 JENDL-1 69HOCKENBURY 72HOCKENBURY 75BEER
03.4 62.0						69H9CHENBURY 72HBCKENBURY
106.5 106.52 105.0 106.52 ± 0.08 106.52 105.0 106.5 ± 0.4	1 0.5 1 0.5 1 0.5 0 0.5 0 0.5	10.0 115.0 115.0 110 ±30 110 122.5 ± 7.5 110 ±50	1-0 1-0 0-5 1-0		GT = 111.0 GT = 111.0 GT = 115.6	JENDL-2 JENDL-1 ENDF-B-4 BNL32513) 73HDXON GGFRARELL 75BEER
129.3 129.32 120.0 129.32 ± 0.03 129.32 ± 0.03 129.3 129.3 129.3 129.3	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	1340-0 1340-0 1700-0 41400 ±50 1340 1340 t	2.0 2.0 2.14 2.0 2.0		0T = 1342.0 0T = 1342.0 0T = 702.1 $WOH = 3.89 \pm 0.14$ 0T = 1700 0H = 4.847	JENOL-2 JENOL-1 ENOF-0-4 BNL325131 73MOXON 74MOXON 66FARRELL
129-3 ± 0.5	0	1340 #70			040 2 4.847	75BEER
142.0 141.5 141.5 141.5 141.5 141.97 141.5 142.0 ± 0.6	I 0.6 I 0.5 I 0.5 0 0.5 0	176.0 176.0 144.0 *170 x20 *170 x20 *150 x10 *170 x70	1.0 1.3 0.6		OT = 171.0 GT = 171.0 GT = 140.6	JENDL - 2 JENDL - 1 ENDF - 0 - 4 8NL 3251 3 1 73MDXON 667 ARMELL 758EER
148.0 148.0 148.0 ± D.i 148.0 148.0 ± D.7 148.0 ± D.7 148.0 ± D.7	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	90-0 90-0 90 -0 90 +20 90 +70 (90 +70 (2.0 2.0 2.0 2.0 ;		01 = 62.0 01 = 82.0 60H = 0.21 + 0.05	JENOL - 2 JENOL - 1 BNL 3251 3 1 73HOXON 74HOXON 75HIFH
155-0	0 0.5	3900+0	2.0	i i	31 3902-0	JERDE 2

-74-

ENERGY JKEY J	1.	J NEUTRON HIDTH	CANNA NIDTH NHS (EV) (EV)	MISCELLANEOUS	NEFERENCE
154.96 155.1 155.0 ± 0.1 154.96 155.0 154.5 155.0 ± 0.7		0.5 3990.0 0.5 5000.0 0.5 93950 #100 3950 0.5 3900 0 3900 0	2.0 2.14 2.0 2.0 I	C1 = 3092.0 C1 = 5002.1 HCH = 10.04 ± 0.25 C1 = 5000 CN0 = 13.076	JENUL - 1 ENDF - 8 - 4 BNL 3251 31 73MOKON 74MOXON 66F ARRELL 75BEER
163.2 163.2 163.0 163.2 ± 0.1 163.2 163.2 163.0		0.5 140.0 0.5 140.0 0.5 300.0 0.5 160 ±20 140 0.5 140 (2.0 2.0 2.14 2.0 2.0)	GT = 142.0 GT = 142.0 GT = 302.14 WGH = 0.40 ± 0.05 GT = 300 GWO = 0.765	JENDL - 2 JENDL - 1 ENDF - 8 - 4 DNL 325(3) 73noxom 74noxom 66f Arrell
103.2 ± 0.0 177.7 177.7 177.5 177.7 ± 0.1 177.7 177.5 177.7 ± 0.8		140 180 0.5 470.0 0.5 470.0 0.5 500.0 0.5 470 230 0.5 470 1 470 1	2.0 2.0 2.14 2.0 2.0 2.0	CT = 472.0 CT = 472.0 CT = 502.14 HOH = 1.12 ± 0.07 CT = 500 CHO = 1.225	JENDL-2 JENUL-3 ENUL-3 ENUT-8-4 BNL325(3) 73HDXDN 73HDXDN 66FARRELL 75BEER
191.5 191.5 190.0 191.0 ± 0.2 191.5 191.0 191.5 ± 0.9		0.5 160.0 0.5 160.0 0.5 105.0 140 ±30 0.5 160 0.5 160 109.5 ± 4.5 160 ±110	1.0 1.0 0.6 1.0	GT = 161-0 GT = 161-0 GT = 161-0 GT = 105-6	JENDL-2 JENDL-2 ENDF-8-4 6ML325131 73HDX0N 66FARRELL 75BEER
205.3 205.3 205.3 ± 0.2 205.3 205.3 ± 1.1 205.3 ± 1.1		0.5 50.0 0.5 60.0 0.5 60 420 50 420 0.5 60 i 160 i	2.0 2.0 2.0 2.0 2.0	CT = 52.0 CT = 62.0 MCH = 0.13 ± 0.04	JENOL - 2 JENOL - 1 BNJ 325(3) 7309X0N 7400X0N 758EER
214.7 214.7 213.7 214.7 ± 0.3 214.7 213.7 214.7 ± 1.1		0.5 80.0 0.5 80.0 0.5 80.0 ¹ 90 ≠20 0.5 80 ¹ 155 ≠5 ¹ 80 1	1.0 1.0 0.6 1.0	C1 = 81.0 QT = 81.0 GT = 150.6	JENDL-2 JENDL-1 ENDF-8-4 ENDF-8-4 ENL325131 73HOXON G6FARRELL 758EER
219.6 219.8 221.0 219.8 ± 0.1 219.8 ± 1.1 219.8 ± 1.1		0.5 30.0 0.5 30.0 0.5 400.0 0.5 * 30 ±20 30 ±20 1.5 30 ((30 1	2.0 2.0 0.6 2.0 2.0	C1 = 32.0 C1 = 32.0 C1 = 400.6 HCH = 0.064 ± 0.043	JENDL - 2 JENDL - 1 ENDF - 0 - 4 BNL 3251 3 1 73HDXON 75BEER
226.9 226.9 226.9 ± 0.3 226.9 226.9 ± 1.2 226.9 ± 1.2		0.5 120.0 1.5 120.0 0.5 120 ±30 120 0.5 120 (120 (120)	2.0 2.0 2.0)	GT = 122.0 GT = 122.0 WGH = 0.25 ± 0.06	JENDL-2 JENDL-1 BNL 325131 73HOXON 74HOXON 75BEER
23; .9 231.95 231.0 231.95 ± 0.04 231.95 231.9 231.0		0.5 3770.0 0.5 3770.0 1.5 4000.0 1.5 %3770 190 3770 0.5 3770 (2.0 2.14 2.0 2.0 2.14	GT = 3772.0 GT = 3772.0 GT = 4002.1 MCH = 7.83 ± 0.19 GT = 4000 GM = 8.670	JENDL-2 JENDL-1 ENDF-8-4 DNL32513) 73HOXON 74HOXON 66FARRELL
231.9 ± 1.2 237.9 237.9 236.2 237.9 ± 0.1 237.9 235.7 235.7 237.9 ± 1.3		3770 ±160 1.5 320.0 1.5 320.0 1.5 395.0 1.5 395.0 1.20 ±40 1.5 320 1.402.5 ± 7.5 1.20 ±130	1.0 1.0 0.6 1.0	CT = 321.0 GT = 321.0 GT = 395.6	758EER JENOL - 2 JENOL - 1 ENDF -0 - 4 BNL 3251 3 J 73NOAUN GEFARRELL 75BEER
238.7 255.7 255.7 257.9 255.7 ± 0.3 255.7 ± 0.3 254.4 255.7 ± 1.4		-5 400.0 1-5 170.0 1-5 170.0 1-5 570.0 4 170 +40 1-5 170 *669 +19 *170 +150	1.0 1.0 0.6 1.0	CT = 400.6 CT = 171.0 CT = 171.0 CT = 570.6	ENDF-8-4 JENDL-2 JENDL-1 ENDF-8-4 BN1325131 73HOXON 66FARRELL 75BEEK
1977.7	0 0	1.5 2200.0	2.0	a . 2202.a	JENHE 2

ENERGY LKEV 1	LJ	NEUTRON HIDTH	CANNA NIDIH MAS	MISCELLANEDUS	REFERENCE
269-68 272-2 269-7 ± 0-1 269-68 269-7 268-0 269-7 ± 1.5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	2210.0 2200.0 *2210 #90 2210 2200 2200 2200	2.0 2.14 2.0 1 2.0)	CT = 2212.0 CT = 2202.1 HCH = 4.26 t 0.17 GT = 3000 GNO = 6.076	UENDL ~ 1 ENDE ~ 8 - 4 BYL 3251 3 1 73HOXON 74HOXON 66FARRELL 758EER
275-24 275-24 278-2 275-24 275-24 274-0	1 0.5 1 0.5 1 0.5 0 0.5 0 0.5	310-0 310-0 310-0 310 ⁸ 320 ±10	1.0 1.0 0.6 1.0	07 = 311.0 67 = 311.0 67 = 310.6	JENDL-2 JENDL-1 ENDF-E 4 73H0X0N 66F RRRELL
203.5 203.5 203.5 203.5 203.5 203.5 ± 1.6 203.5 ± 1.6	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	350.0 350.0 ^A 350 ±70 350 350 ±190 350 ±190	2.0 2.0 2.0 1 2.0	G1 = 352.0 G1 = 352.0 MCH = 0.66 ± 0.13	JENDL-2 JENDL-1 BHL325(3. 73H0XON 74H0XON 758EER
290.24 290.24 286.4 290.24 289.0	1 0.5 1 0.5 1 0.5 0 0.5 0	105.0 105.0 105.0 105 105 107.5 ± 2.5	1-0 1-0 0-6 1-0	GT = 106.0 GT = 106.0 GI = 105.6	JENDL-2 JENDL-1 ENDF-B-4 73HOXON 66FARRELL
299.24 299.24 299.0 298.0 ± 2.5 299.24 299.24 299.24 296.0	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	1000.0 1000.0 1000.0 1000 1000 1000	2.0 2.0 2.14 2.0 2.0	GT = 1002.0 GT = 1002.0 GT = 1002.1 WCH = 1.83 GT = 1000 GNO = 1.930	JENDL-2 .IENDL-1 ENDL-8-4 BNL 325131 73H0XDN 74H0XDN 66FARRELL
309.74 309.74 309.1 306.5 ± 2.5 309.74 309.74 308.5	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	1500.0 1500.0 1500.0 1500 1500 1500	2.0 2.0 2.14 2.0 2.0 1	CT = 1502-0 CT = 1502-0 CT = 1502-1 HGH = 2.70 CT = 1500 *- CHO = 2.851	JENDL -2 JENDL -1 ENDF-B-4 BNI 3251 3 J 73H0X0N 74H0X0N 66F ARRELL
321-24 321-24 320-0 321-24 320-0	(0.5 i 0.5 i 1.5 0 0.5	50-0 50-0 100-0 (50)	1.0 1.0 0.5 1.0	GT = 51.0 GT = 51.0 GT = 100.6	JENDL - 2 JENDL - 1 ENDF - 8 - 4 73HDXON 66F ARRELL
327.74 327.74 326.5 327.0 ± 2.5 327.74 326.5	1 0.5 1 0.5 1 0.5 • 0 0.5 • 0	585.0 585.0 585.0 *597 585 \$85 *596 *11	1.0 1.0 0.6 1.0	CT = 586.0 CT = 586.0 CT = 585.6	JENDL-2 JENDL-1 ENDF-8-4 BAL32513J 73HOXON 66FRRELL
334.24 333.0 333.0 ± 2.5 334.24 334.24 333.0	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	250-0 250-0 *250 250 250 250 4	2.0 2.14 2.0 2.0	GT = 252.0 GT = 252.14 HGH = 0.43 GT = 250 GNO = 0.459	JENDL-2 ENDF-0-4 DNL325:31 73HDXDN 74HDXDN 66FRRRELL
335.24 335.24 334.0 335.24 334.0 335.24 334.0	i 0.5 i 0.5 i 1.5 0 0.5	50.0 50.0 100.0 (50)	1.0 1.0 0.6 1.0	C7 = 51.0 C1 = 51.0 C7 = 100.6	JENDL-2 JENDL-1 ENOF-B-4 73H0XON 66FRRRELL
341-44 341-44 340-2 340-2 341-44 341-44 341-44 340-2) 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	500.0 500.0 500.0 *500 500 500 (2.0 2.0 2.14 2.0 2.0 2.0	GT = 502.0 GT = 502.0 GT = 502.14 HCH = 0.86 GT = 500 CNO = 0.910	JENOL-2 JENOL-1 ENDF-B-4 BNL32513J 73HOXON 74HOXON 66FARRELL
353.24 353.24 352.0 353.24 352.0 353.24 352.0	1 0.5 1 0.5 1 1.5 0 0.5 0	200.0 200.0 100.0 (200 1	1.0 1.0 0.6 1.0	GT = 201.0 GT = 201.0 GT = 100.6	JENOL-2 JENOL-1 ENOF 8-4 73HOXON 66FARRELL
362.54 360.54 360.3 360.3 360.3 360.54 360.54	1 0.5 1 0.5 2 0.5 0 0.5	715.0 715.0 725.0 726 715 728 #13	1.0 1.0 0.6 1.0	GT = 716.0 GT = 716.0 GT = 725.6	JENDL-2 JENDL-1 ENDF-0-4 BNL325131 73MDXUN 66FARKELL
#(d)=114	1 1.5	950-0	1.0	GI 951.0	JENDE 2

	<u>i</u> j	NEUTRON WIGTH	CANNA HIDTH MAG	MISCELLANEOUS	NEFENENCE
365.0 365.0 365.0 366.24 365.0	1 0.5 1 1.5 1 1.5 0 0.5 0 1.5	5 1870-0 5 950-0 5 1 *1957 5 1870 5 *943 ± 7	1.0 0.6 1.0	GT = 1071.0 GT = 1060.6 NGI = 7.3	JENOL-1 ENOF-8-4 BNL325131 73H020H GGFARRELL
369.24 369.24 367.6 369.24 368.0	1 0.5 1 0.5 1 1.5 0 0.5	5 200.0 5 200.0 5 100.0 5 1200)	1.0 1.0 0.6 1.0	GT = 201.0 GT = 201.0 GT = 100.6	JENOL-2 JENOL-3 ENOF-8-4 73HOXON 66FARRELL
372.74 372.74 371.0 371.5 372.74 371.5	i 1.5 i 0.5 i i.5 i (1.5 > 0 0.5	5 695.0 5 1365.0 5 455.0 5 1318 5 1365 5 ⁸ 685 ± 6	1.0 1.0 0.6	G1 = 696 -0 G3 = 13 66 -0 G1 = 465-6 HG1 = 5-3	JENDL -2 JENDL - L ENDF - B - 4 BML 3251 3) 73H0XON &&FARRELL
377.24 377.24 376.35 377.24 376.0	1 0.5 1 0.5 1 0.5 0 0.5 0	5 270.0 5 270.0 5 270.0 5 270 5 270 *275 ± 5	1.0 1.0 0.6 1.0	GT = 271.0 GT = 271.0 GT = 270.6	JENDL-2 JENDL-1 ENDF-8-4 73MDXDN 66FARRELL
360-15	1 0.5	5 150.0	0.6	GT = 150-6	ENDF-8-4
364.24 364.24 363.0 363.0 364.24 363.0	1 1.5 1 0.5 1 1.5 1 1.5 0 0.5 0 1.5	5 875.0 5 1730.0 5 600.0 5 1739 5 1730 5 ⁸ 870 ± 5	1.0 1.0 0.6 1.0	GT = 876.0 GT = 1731.0 GT = 600.6	JENOL-2 JENOL-1 ENDF-8-4 ØNL32513} 73HOXON 66FARRELL
390.24 390.24 368.4 369.0 390.24 390.24 390.24 389.0	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	5 6000.0 5 6000.0 7200.0 6000 6000 5 6000 (2.0 2.0 2.14 2.0 2.0	GT = 6002.0 GT = 5002.0 GT = 7202.1 WG's = 9.62 GT = 6000 GWG = 10.296	JENOL-2 JENOL-1 ENOF-8-4 GML325131 73M0X0M 74M0X0M 66FARRELL
393.74 393.74 392.75 392.5 393.74 393.74 392.5	1 0.5 1 0.5 1 0.5 0 0.5	i 230.0 i 230.0 i 130.0 *235 i 230 *235 ± 5	1.0 1.0 0.6 1.0	DT = 23).0 DT = 231.0 GT = 130.6	JENOL-2 JENOL-1 ENOF-8-4 SML325(3) 73HDXON 66FARRELL
396.74 396.74 395.5 395.5 396.74 395.5	I 0.5 I 0.5 I 0.5 I 0.5 O 0.5	810.0 810.0 810.0 ⁶ 815 810 ⁶ 815 810	1.0 1.0 0.6 1.0	GT = #11-0 GT = #11-0 GT = 810-6	JENUL-2 JENUL-1 ENUF-8-4 BM 325133 73M0X0N 66FARRELL
408.24 408.24 406.6 407.0 408.24 407.0	L 1.5 1 0.5 1 1.5 1 1.5 0 0.5 0 1.5	1010.0 2030.0 1020.0 1 *2020 2030 *1013 ± 3	1.0 1.0 0.5 1.0	GT = 1011.0 GT = 2031.0 GT = 1020.6 HG1 = 7.4	JENDL-2 JENDL-1 ENDF-8-4 BML325(3) 73HOROH 66FRRRELL
415.24 415.24 413.6 414.0 415.24 414.0	1 0.5 1 0.5 1 0.5 0 0.5	750.0 750.0 900.0 759 750 750 750	1.0 1.0 0.6 1.0	GT = 751.0 GT = 751.0 GT = 300.6	JENDL-2 JENDL-1 ENDF-8-4 BML325(3) 73MOXON 66FRRRELL
422 .04 422 .04 420 .8 420 .8 420 .8 422 .04 422 .04 422 .04 420 .8	0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	8000.J 8000.J 8000.J 8000 8000 8000 8000	2.0 2.14 2.0 2.0 2.0	GT = 0002.0 GT = 0002.0 GT = 0002.1 HGH = 12.33 GT = 0000 GM0 = 13.270	JENOL - 2 JENOL - 1 ENDF - 8 - 4 Oml 325(3) 73HOXON 74HOXON 66FARRELL
445.3	I 0.5	803.0	0.6	CT = 900.6	ENDF-8-4
456.74 456.74 455.5 455.5 456.74 455.5	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 0 0.5 0 0.5	470.0 470.0 800.0 1 *560 470 *455 ± 5	1.0 1.0 0.6 1.0	GT = 471.0 GT = 471.0 GT' = 800.6	JENDL-2 JENOL-1 ENOF-8-4 BNL325131 73HOXON 66FARRELL
460.74 4C0.74 459.5 459.5 459.5 460.74 459.5	1 1-5 1 0-5 1 1.5 1 1.5 0 0.5 0 1.5	540.0 1160.0 750.0 1 1100 1160 *540 + 0	1.0 1.0 0.6 1.0	G1 = 591.0 G1 = 1161.0 G1 = 750.6	JENOL - 2 JENOL - 1 ENOF - 8 - 4 BNL 3251 3 1 73M2XCM 66F RHKELL
46.7.74	1 0.5	985.0	1.0	GT 986+0	ut ND1 2

- 77 -

•

ENERGY INEV 1	۲.	J	NEUTRON HEITH	GANNA WIDTH LEV I	HHS IEV J	MISCELLANEDUS	REFERENCE
467.74 466.5 466.5 467.74 466.5		0.5 0.5 0.5 0.5 0.5 0.5	905-0 905-0 ⁸ 995 905 ⁹ 993 r 0	1.0 0.6 1.0		C1 = 986.0 C1 = 985-6	JENDL - 1 ENDF - 8 - 4 BNL 3251 3 1 73MDXON 56FARRELL
471.24 473.24 470.0 470.0 470.0 471.24 470.0).5 0.5 0.\$ 0.\$	530.0 530.0 530.0 "535 530 "535 s 5	1.0 1.0 0.6 1.0		GT = 531-0 GT = 531-0 GT = 530-6	JENOL - 2 JENOL - 1 ENDF - 8 - 4 BNL 3251 31 73HDXON 66FARRELL
472.0	1	0.5	130-0	0.6		GT = 130.6	ENOF - 8 - 4
473-1	1	0.5	1:0.0	0.6		G1 = 110.6	ENOF-8-4
480-24 480-24 479-0 479-0 480-24 479-0	1 1 1 0 0	0.5 0.5 0.5 0.5 0.5 0.5	1130-0 1130-0 1130-0 1130-0 1130 1130 11	1.0 1.0 0.6 1.0		LGT = 1131-0 GT = 1131-0 GT = 1130-6	JENDL -2 JENDL -1 ENDF -8-4 BNL 3251 31 73MDXON 66FARRELL
484-24 484-24 483-0 483-0 483-0 484-24 484-24 483-0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 0.5 0.5 0.5	5000-0 5000-0 5000-0 *5000 5000 5000 500	2.0 2.0 2.14 2.0 1 2.0		GT = 5002.0 GT = 5002.0 GT = 5002.1 MGH = 7.19 GT = 5000 GNO = 7.822	JENDL - 2 JENDL - 1 ENDF - 8 - 4 BNL 3251 3 J 73HDXON 74HDXON 66FARRELL
489-04 489-04 487-8 489-04 487-8 489-04 467-8	1 1 1 0 0	0.5 0.5 0.5 0.5	430.0 430.0 430.0 430 435 x 5	لد. : 1 ، 0 6 ، 0 1 ، 0		GT = 431.0 GT = 431.0 GT = 430.6	JENDL - 2 JENDL - 1 ENDF - 5 - 4 73HOXON 66FARRELL
500.74 500.74 499.5 499.5 500.74 439.5	1 1 1 • 0	C-5 0-5 0-5 0-5	530.0 530.0 530.0 *535 530 *535 ± 5	1.0 1.0 0.6 1.0		GT = 531.0 GT = 531.0 GT = 530.6	JENDL-2 JENDL-1 ENDF-9-4 BNL325(3) 73HDXON 66FARRELL
504.24 504.24 503.0 503.0 504.24 503.0	1 1 1 0 9	0.5 0.5 0.5 0.5	760.0 750.0 760.0 *766 766 760 *765 ± 6	i.0 1.0 0.6 1.0		GT = 761.0 G' = 761.0 GT = 760.6	JENOL - 2 JENOL - 1 ENDF - 8 - 4 BNL 3251 3 1 7370 XDN 66F ARRELL
512.9	1	0.5	200.0	0.6		GT = 200.6	ENOF-B-4
514.8	1	0.5	100.0	0.6		GT = 100.6	ENOF-8-4
52U.24 52U.24 519-0 519-0 520-24 513-0	1 1 1 0 0 0	0.5 0.5 0.5 0.5	475.0 475.0 700.0 ^R 477 475 ^R 478 ± 3	1.0 1.0 0.5 1.0		GT = 476.0 CT = 476.0 C1 = 700.6	JENOL - 2 JENOL - 1 ENOF - 8 - 4 BNL 3251 3 1 73HOXON 6EFR4RE_L
524.24 524.24 522.9 523.0 524.24 524.24 524.24 523.0	0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	1000.0 1000.0 2100.0 *1000 1000 1000	2.0 2.0 2.14 2.0 (2.0)		GT = 1002.0 GT = 1002.0 GT = 2102.1 HGH = 1.38 GT - 1000 GNO = 1.513	JENDL-2 JENDL-1 ENDF-8-4 DNL32513) 73HDXON 76F7RRELL
530.54 520.54 529.3 530.54 530.54 530.54 529.3	0 0 0 0 0 0	0.5 0.5 0.5 0.5	750.0 750.0 2300.0 750 750	2.0 2.0 2.14 2.0 (2.0)		GT = 752.0 GT = 752.0 GT = 2302.1 GT = 750 GNO = 1.129	JENOL-2 JENOL-1 ENDF-8-4 73mdajn 74mdajn 66farrell
537.74 537.74 536.5 536.5 537.74 537.74 537.74 536.5	0 0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5	10000.0 10000.0 10000.0 *10000.0 *10000 10000	2.0 2.0 2.14 2.0 1 2.0 3		GT = 10002.0 GT = 10002.0 GT = 10002.0 WGH= 13.65 GT = 10000 GN0 = 14.976	JENOL-2 JENOL-1 ENOF-D-4 BNL325131 73HOXON 74HOXON 66FARKELL
542.74 542.74 541.5 541.5 542.74 542.74	1 1 1 0	1.5 0.5 0.5 1 .5 0.5 .5	870.0 1700.0 1700.0 1700.0 1700 1700 *66.0 +10	1.0 1.0 0.6 1.0		GT = 871.0 GT = 1701.0 GT = 1700.6 GT = 1700.6 461. 4.5	JENDL - 2 JENOL - 1 ENDT - 8 - 4 BNL 37-51-31 73MDX0N 66FHRREL.

ENERGY LIKEY 1	L	J	NEUTRON HICTH	GANNA MIDTH LEV J	HHS LEV 1	MISCELLANEOU5	REFERENCE
553.24	0	0.5	2000+0	2.0		GT : 2002.0	JENOL-2
553-24	0	0.5	2000.0	2.0		GT = 20C2.0	JENDL-1
552.0	0	0.5	2000.0	2.14		G1 = 2002 · 1	ENDF-8-4
552.0] 0	0.5	2000			HGH = 2.69	BNL 325(3)
553.24	0		2000	2.0		i	73HOXON
553.24	10	0.5	2003	(2.0)			7480X0N
552.0	1.0					01 = 2000 0x0 - 2.050	DOPHKKELL
							<u></u>
566-24	1 1	0.5	890.0	1.0		GT = 891.0	JÉNOL-2
566-24	4 1	0.5	890.0	1.0		GT = 891-0	JENOL - 1
565.0	1 1	0.5	890.0	0.6		101 = 890+6	END -8-4
565.0			*900				BNL 325(3)
566.24		0.5	8001 A1	1.0		1	7310300
303-0	ſ		301 211				DOFHRRELL
577.24	0	0.5	4000+0	2.0		GT = 4002-0	JENOL - 2
577.24	0	0.5	4000-0	2.0		GT = 4002.0	JENOL - 1
576-9	0	0.5	3300+0	2.14		GT = 3002-1	ENDF-8-4
576-0	0	0.5	[#] 4000			WGH = 5.27	BNL 3251 31
577-24	0		4000	2.0			73H0X0N
577.24	0	0.5	4000	1 2.0 1		1	74H0X0N
576.0	0					GT = 4000	66FARRELL
	1					GNO = 5-819	
584.24	0	0.5	306.0	2.0		GT = 302.0	JENOL-2
584.24	0	0.5	300-0	2.0		GT = 302.0	JENOL-I
583.0	0	0.5	300.0	2.14		GT = 302.14	ENDF-8-4
583.0		0.5	*300			HCH = 0.39	BNL 325(3)
524.24			300	2.0		i	73H0X0N
584.24		0.5	300	(2.0)		CT . 200	74MCXON
203.0						GND = 0.434	DOFHERELL
603.8	e	0.5	11500+0	2-14		CT = 11502.0	ENDF-8-4
620-4	Э	0.5	9400-0	2.14	·····	GT = 9402.1	ENDF-8-4
628.8	0	0.5	3600-0	2.14		GT = 3602+1	ENDF-8-4
633.3	1	1.5	800 .0	0.6		0T = 800.6 **	ENDF -8-4
538-2	1	1.5	800-0	0.6		GT = 000.6	ENDF-8-4

* A denotes
$$g\Gamma_n$$

** WW5 = $g\Gamma_n\Gamma_{\gamma}/\Gamma$ (eV), $GT = \Gamma$ (eV)
 $GGS = \sigma_0\Gamma_{\gamma}$ (b·eV), $WGH = g\Gamma_n^{(0)}$ (eV)
 $GNO = \Gamma_n^{(0)}$ (eV), $WGI = g\Gamma_n^{(1)}$ (eV)

References

66Farrell :	Ref.(21)	
69Hockenbury:	Ref.(23)	
72Hockenbury:	Ref.(54)	
73Moxon :	Ref.(51)	(Evaluation)
74Moxon :	Ref.(3)	(Evaluation)
75Beer :	Ref.(26)	

Table 11	Capture	resonance	integrals	with
----------	---------	-----------	-----------	------

CAL OLT ENELY OF OUD EN	cut-of:	energy	of ().5	e۷
-------------------------	---------	--------	------	-----	----

		(barns)				
	Calculated	BNL-325 (3rd) ¹⁸⁾				
natural	2.2	2.2 ± 0.2				
58 _{Ni}	2.2	2.2 ± 0.2				
60 _{N1}	1.5	1.5 ± 0.2				
61 _{Ni}	2.4	1.6 ± 0.4				
62 _{Ni}	6.9	6.8 ± 0.2				
64 _{ni}	0.82	1.1 ± 0.2				

Table 12 The γ -ray strength functions used for natural nickel files and for isotope nickel files.

		(×10)
Isotope	Natural nickel file	Isotope nickel file
58 _{N1}	0.462	0.462
60 _{N1}	0.277	0.231
61 _{N1}	1.94	4.65
62 _{N1}	0.0952	0.138
64 _{N1}	0.0587	0.0767

¢,

Table 13 Profile function of giant resonance.

$$\sigma_{(E)} = \frac{2}{1^{E}1} \frac{\sigma_{m1}}{1 + [(E^{2} - E_{m1}^{2})^{2}/E^{2}\Gamma_{1}^{2}]}$$

$$E_{m1} = 16.30 \text{ MeV} \qquad E_{m2} = 18.51 \text{ MeV}$$

$$\sigma_{m1} = 34.10 \qquad \sigma_{m2} = 55.2$$

$$\Gamma_{1} = 2.44 \text{ MeV} \qquad \Gamma_{2} = 6.37 \text{ MeV}$$

- 80 --

	Natural	58 _{N1}		60 _N	1	61 _N :	L	62 _N	1	64,	11
	-Q(MeV)*	-Q(MeV)	1 [#]	-Q(MeV)	1*	-Q(MeV)	<u>1</u> #	-Q(MeV)	I *	-Q(MeV)	1
51	0.0674					0.0674	5/2				
52	0.2828					0.2830	1/2				
53	0.6556					0.6560	3/2				
54	0.9082					0.9088	5/2				
55	1.0144					1.0150	7/2				
56	1.0993					1.1000	3/2				
						1.1323	5/2				
57	1.1719					1.1857	3/2	1.1729	2+		
58	1.3320			1.3325	2 ⁺					1.3459	2 ⁺
59	1,4549	1.4545	2+			1.4580	7/2				
						1.6100	5/2				
						1.7298	3/2				
						1.808	7/2				
60	1.9768					1.978	9/2+	2.0486	0 ⁺		
						1.997	3/2				
						2.003	7/2				
						2.019	7/2				
						2.114	9/2+				
						2.123	1/2				
61	2.1582			2.1589	2+					2.275	0 ⁺
62	2.2840			2.2848	o ⁺	2.410	5/2	2.3018	2		
								2.3364	4+		
63	2.4601	2.4595	4 ⁺			2.460	7/2				
64	2.5049			2.5058	4					2.608	4+
65	2.6253			2.6262	3 ⁺					2.750	2+
66	2.7763	2.7757	2 ⁺					2.8912	0 ⁺	2.865	0 ⁺
										2.885	2 ⁺
67	2.9033	2 .9 026	1,								
68	2.9435	2.9428	0							2.971	2+
										3.028	0+
69	3.0390	3.0383	2		ъ			3.0582	2		
70	3.1179			3.1190	4 ⁺			3.1580	2	3.165	4 ⁺
				3.1241	2 ⁺			3.1765	4		
				3.1300	4						

Table 1	4 Disc	rete	level	s of	isoto	pic	nici	(el	and
	level	grou	ping	in n	atural	nic	ckel	f1]	le.

to be coatinued

Table 14 (continued)

	Natural	58 _{N1}		60 _N	 L	61 _{N1}	<u> </u>	62 _N	<u>ــــــ</u>	64 _N	<u>. </u>
M1	-Q(MeV)*	-Q(MeV)	I	-Q(MeV)	I, L	-Q(MeV)	ĩ۳	-Q(MeV)	IT	-Q(MeV)	I.
71	3.1853			3.1864	3+			3.2577	2+		
				3.1941	1+			3,2620	+		
72	3.2652	3.2645	2 ⁺	3.2694	2+			3.2699	2+	3.273	2+
								3.2774	4 ⁺		
73	3.3172			3.3183	0 ⁺			3.3703	1+		
74	3.3798			3.3810	4 ⁺					3.393	3+
				3.3936	2+						
75	3.4216	3.4208	3 ⁺					3.4620	4 ⁺	3.459	ı ⁺
								3.4860	o ⁺	3,483	4+
								3.5185	2 ⁺		
								3.5229	3 ⁺		
76	3.5248	3.5240	4 ⁺	3.5300	0 ⁺					3.560	3
		3.5313	o+								
77	3.5878	3.5942	1+	3.5890	з+					3.647	2 ⁺
78	3.6185	3.6202	4 ⁺	3.6197	3+						
79	3.6697			3.6710	4						
80	3.7277			3.7290	3			3.7570	3	3.748	4 ⁺
				3.7355	1						
				3.7410	0+						
81	3.7761	3.7752	4 ⁺					3.8493	1	3.795	1+
								3.8530	2	3.808	3 ⁺
					ъ			3.8600	2 ⁺	3.848	5
82	3.8701		+	3.8714	2						т
83	3.8998	3.8989	2' _+							3.965	4'
84	4.1089	4.108	2' .+								
85	4.2910	4.290	3' .+								
86	4.3440	4.343	6' ,+								
		4.349	4 								
87	4.3810	4.380	э ,+								
88	4.4020	4.401	4 0 ⁺								
07 00	4.4308	4.4498	0 2								
70	4 . 4 / 30	4.4/2	5								
91	2.5264	4.517		3.895	i	2.528		3.967	,	4.084	,

* The Q-values of natural nickel file was recalculated with the

effective mass of natural nickel so as to keep the threshold values.

Isotope	57	58	59	60	61	62	63	64	65
a (MeV ⁻¹)	5.00*	6.45	6.97	7.55	8.14	8.77	9.37	9.98	10.57
σ ² /√U (MeV ⁻¹ 2)	4.78	5.557	5.841	6.145	6.455	6.773	7.076	7.380	7.673
∆ (MeV)	1.2*	2.47	1.20	2.47	1.20	2.60	1.20	2.70	1.20
E (MeV)	6.33*	7.30	8.00	10.00	7.00	9.00	3.00	4.32	4.00
T _c (MeV)	1.44*	1.49	1.35	1.26	1.17	1.08	1.36	1.15	0.947
σ ² ** exp		5.95	6.58	4.47	5.17	4.26	4.34	5.03	4.30

Table 15 Level density parameters of Nickel isotopes.

:

* Values of Gilbert and Cameron⁴¹⁾
 ** The spin cut off parameters of the present work are given as

$$\sigma_{M}^{2} = 0.146 \sqrt{a(E - \Delta)} A^{2/3} \qquad E > E_{x}$$
$$= \sigma_{exp}^{2} + (\sigma_{M}^{2}(E_{x}) - \sigma_{exp}^{2}) \frac{E}{E_{x}} \qquad E < E_{x}$$

- 83 -

.ig. 1(a) Total and capture cross sections of natural nickel in the resonance region.

Fig. 1(b) Total and capture cross sections of natural nickel in the resonance region.

Fig. 1(c) Total and capture cross sections of natural nickel in the resonance region.

Fig. 1(d) Total and capture cross sections of natural nickel in the resonance region.

- 87 --

ĩ

- 88 -

Fig. 1(f) Total and capture cross sections of natural nickel in the resonance region.

JAERI-M.85-101

Fig. 2(a) Total and capture cross sections of $\frac{58}{Ni}$ in the resonance region.

JAERI-M 85-101

Fig. 2(b) Total and capture cross sections of ⁵⁸Ni in the resonance region.

Fig. 2(c) Total and capture cross sections of ⁵⁸Ni in the resonance region.

Fig. 2(d) Total and capture cross sections of ⁵⁸Ni in the resonance region.

JAERI-M 85-101

Fig. 2(e) Total and capture cross sections of ⁵⁸Ni in the resonance region.

Fig. 2(f) Total and capture cross sections of ⁵⁸Ni in the resonance region.

- 97 -

Fig. 2(g) Total and capture cross sections of ⁵⁸Ni in the resonance region.

JAERI-M 85-101

Fig. 3(a) Total and capture cross sections of ⁶⁰Ni in the resonance region.

Fig. 3(b) Total and capture cross sections of ⁶⁰Ni in the resonance region.

Fig. 3(c) Total and capture cross sections of 60 Ni in the resonance region.

Fig. 3(d) Total and capture cross sections of 60 Ni in the resonance region.

Fig. 3(e) Total and capture cross sections of 60 Ni in the resonance region.

Fig. 3(f) Total and capture cross sections of 60 Ni in the resonance region.

Fig. 3(g) Total and capture cross sections of 60 Ni in the resonance region.

Fig. 4(a) Total and capture cross sections of ⁶¹Ni in the resonance region.

Fig. 4(b) Total and capture cross sections of ⁶¹Ni in the resonance region.

Fig. 4(c) Total and capture cross sections of ⁶¹Ni in the resonance region.

JAERI-M 85-101

Fig. 4(d) Total and capture cross sections of ⁶¹Ni in the resonance region.

Fig. 4(e) Total and capture cross sections of ⁶¹Ni in the resonance region.

- 110 -

Fig. 5(a) Total and capture cross sections of ⁶²N1 in the resonance region.

Fig. 5(b) Total and capture cross sections of ⁶²Ni in the resonance region.

JAERI-M 85-101

Fig. 5(c) Total and capture cross sections of ⁶²Ni in the resonance region.

JAERI-M 85-101

Fig. 5(d) Total and capture cross sections of $\frac{62}{Ni}$ in the resonance region.

JAERI-M 85-101

Fig. 5(e) Total and capture cross sections of ^{62}Ni in the resonance region.

Fig. 5(f) Total and capture cross sections of ⁶²Ni in the resonance region.

Fig. 5(g) Total and capture cross sections of ⁶²Ni in the resonance region.

Fig. 6(a) Total and capture cross sections of $\frac{64}{Ni}$ in the resonance region.

- 119-

- 120 -

JAERI-M 85-101

Fig. 6(d) Total and capture cross sections of ⁶⁴Ni in the resonance region.

Fig. 6(e) Total and capture cross sections of ⁶⁴Ni in the resonance region.

Fig. 6(f) Total and capture cross sections of ⁶⁴Ni in the resonance region.

Fig. 6(g) Total and capture cross sections of 64 Ni in the resonance region.

Fig. 7(a) Total cross sections of natural nickel.

— 921 —

- 126 -

(ross Section (barns)

- 127 -

Cross Section (barns)

Fig. 10 (n,2n) reaction cross section of natural nickel.

-130-

1VEBI-W 82-101

-132-

(ross Section (barns)

Fig. 15 (n,2n) and (n,3n) reaction cross sections of ⁶⁴Ni.

Fig. 16 (n,n'a) reaction cross section of 58 Ni.

Fig. 17 (n,n'p) reaction cross section of 58 Ni.

- 136 --

(ross Section (barns)

- 138 -

- 139 -

20.0 NI-NAT NP 15.0 Neutron Energy (MeV) JENDL-2 Jendl-1 Endf/8-1V 10.0 -----5.0 _____ 0.50 9.9 0.30 0.20 0.10

(ross Section (barns)

Fig. 21 (n,p) reaction cross section of natural nickel.

-140 -

Cross Section (barns)

(n,p) reaction cross section of 58 Ni.

Fig. 22

- 141 --

Fig. 23 (n,p) reaction cross section of 60 Ni.

~ 143 -

Fig. 24 (n,p) reaction cross section of 61 Ni.

Fig. 27 (n,α) reaction cross section of natural nickel.

- 148 -

(ross Section (barns)

Fig. 32 (n,α) reaction cross section of ⁶⁴Ni.

- 151 -

Fig. 33 Capture cross section of natural nickel.

(ross Section (barns)

Cross Section (barns)

- 155 -

Fig. 37 Capture cross section of $^{62}\mathrm{Ni}$.

(ross Section (barns)

Cross Section (barns)

- 157 -

Fig. 39 Inelastic scattering cross section to the first 1.455 - MeV level of ⁵⁸Ni.

Cross Section (barns)

- 158 -

Fig. 42 Inelastic scattering cross section to the first 1.346 - MeV level of 64Ni.

- 162 --

Fig. 43 Total inelastic scattering of natural nickel.

Fig. 44 Total inelastic scattering of ⁵⁸Ni.

Fig. 45 Total inelastic scattering of 60 Ni.

Fig. 46 Total inelastic scattering of ⁶¹Ni.

Fig. 47 Total inelastic scattering of 62 Ni.

Fig. 48 Total inelastic scattering of ⁶⁴Ni.

- 167 -

Fig. 49(a) Energy-angle double differential cross section of natural nickel at 32°

Fig. 49(b) Energy-angle double differential cross section of natural nickel at 80°

Fig. 49(c) Energy-angle double differential cross section of natural nickel at 162°

Fig. 50 a-emission cross section of natural nickel.

- 172 -

-173-

Fig. 52 α -emission cross section of ^{60}Ni .

(ross Section (barns)

Appendix Background Cross Sections

It is desirable to give the resonance parameters up to the energy as high as possible for the structural materials, since the resonance structure has an important role in the self-shielding effects even in the unresolved resonance region up to a few MeV. Hence the resonance region was set up to 600 keV except for ⁶¹Ni in the present evaluation. Such a wide resonance region, however, causes the following problems.

The capture cross sections calculated from these resonance parameters are lower than the measured data in the energy range above about 200 keV. This underestimation comes from the level missing of the p-wave resonances, which is obvious in the staircase plotting of resonance levels as shown in Figs. Al \sim A5. We corrected this underestimation by applying a slight smooth positive background cross section. Some disagreement between the calculated and the experimental cross sections was also corrected by the background cross section instead of adjusting the resonance parameters. The capture cross sections of natural nickel with and without the background cross section are shown in Fig. A6 with the measured data.

On the other hand, the total and elastic scattering cross sections calculated from the present parameters are underestimated slightly in the lower energy region and overestimated considerably in the higher energy region above a few tens of keV. Hence we have investigated why this anomalous behavior of the total and elastic scattering cross sections occurs, and we have found the following two reasons:

A) Energy Dependence of Effective Scattering Radius

In the ENDF/B format, the effective scattering radius R is

- 177 -

required to be constant through the resolved resonance region. For a wide energy range such as up to 600 keV, however, the effective scattering radius is not constant but energy dependent. The optical model calculation shows that the radius of Ni isotopes decreases considerably with increase of the neutron energy as shown in Figs. A7 \sim All. The radius decreases often down to a factor of 0.7 at 600 keV. It is therefore evident that the constant radius approximation causes considerable overestimation in the higher energy region. However, this effect is not sufficient to explain the overestimate in the higher energy region.

B) Truncation Effect of Finite Resonances

The resonance shape of the elastic scattering cross section is asymmetric as shown in Fig. Al2 because of the interference between the resonance and potential scattering. Hence its contribution is positive in the higher off-resonance energy region and negative in the lower energy region. Consider an energy point. If there are many resonances both in higher and lower energy region as in the case of actual nuclei, the positive and negative contributions cancel out at this energy point.

In the evaluated data file, however, we take a finite number of resonances. Hence all the contributions of distant resonance levels are positive near the upper boundary of the resonance region, and are negative near the lower boundary. This situation is schematically shown in Fig. Al2.

In order to know how much this effect is, the cross section of 58 Ni was calculated by removing the resonance levels below 400 keV. The results are compared with those without removal of levels in

-178-

Fig. A13. The cross section value is reduced more than 20% in the off-resonance energy region. It is found that the truncation effect is as much as the effect of the energy dependence of the effective scattering radius described above.

It is revealed from the present study that the overestimation of the total and elastic scattering cross sections in the higher energy region is inevitable if we use the constant scattering radius. How should this overestimation be corrected? Applying the background cross section is a common way. In the present case, however, the background correction is very difficult particularly for the isotopes from the following reason: The overestimation becomes more than 3 barns at the off-resonance regions above 400 keV. On the other hand, the cross section minimum due to the interference often becomes as low as 0.5 barns. Therefore a smooth negative background correction causes negative cross section values at the energies of the cross section minima.

Consequently the background cross section must have strong energy dependence. It is a hard job to determine such an energy dependent background cross section, as so many resonance levels exist in the energy region considered.

To avoid this difficulty, we adopted the energy dependent effective scattering radius by modifying the ENDF/B format for internal use. We found that the overestimation could disappear with the following energy dependent radius:

- 179 --

$$R (fm) = 8.11 - 5.9 - \times E_n (MeV) \text{ for } {}^{58}\text{Ni},$$

$$= 7.0 - 5.0 \times E_n (MeV) \text{ for } {}^{60}\text{Ni},$$

$$= 6.4 - 8.3 \times E_n (MeV) \text{ for } {}^{61}\text{Ni},$$

$$= 7.66 - 4.29 \times E_n (MeV) \text{ for } {}^{62}\text{Ni},$$

$$= 7.37 - 3.7 \times E_n (MeV) \text{ for } {}^{64}\text{Ni}.$$

The present radius is also shown in Figs. A7 \sim All. The solid line in Fig. Al3 shows the cross section calculated with the energy dependent radius.

The energy dependent radius is not allowed, however, in the current ENDF/B format. We made a proposal^{A1)} to modify the ENDF/B format so as to accept the energy dependent effective scattering radius. At present we took the difference between the energy-dependent and constant radius calculations as the background cross section. Consequently, the background cross section has a resonance-like structure. Such a strongly energy-dependent background cross section, however, might distor the Doppler broadened cross section, if it is calculated directly from the resonance parameters and the background cross section. As to the natural nickel, the background cross section was produced by the eye-guide method before the present study. The eye-guide method was possible, because the cross section minimums are not so low as those of the isotopes.

Figures A14-A19 show the background cross section of natural nickel and the isotopes.

References

Al) Kikuchi Y.: "Nuclear Data for Structural Materials", Proc. IAEA Consultants' Meeting, Vienna, 2-4 Nov. 1983, p.169, INDC(NDS)-152/L (1984).

Fig.A.1 Staircase plotting of resonance levels of ⁵⁸Ni.

Fig.A.2 Staircase plotting of resonance levels of $^{60}{\rm Ni}$.

JAERI-M 85-101

background cross section.

- 185 --

- 186 -

Fig.A.13 Total cross sections of ⁵⁸Ni. The solid line is calculated with the finally adopted energy dependent effective scattering radius and the dotted line with the constant radius. The dashed line is calculated with the constant radius by removing the resonances below 400 keV in order to know the truncation effect.

- 192 -

JAERI-M 85-101

- 194 --

Λ

