

日本原子力研究所 Japan Atomic Energy Research Institute

JAERI-Mレポートは、日本原子力研究所が不定期に公刊している研究報告書です。 入手の問合わせは、日本原子力研究所技術情報部情報資料課(〒319-11茨城県那珂郡東 海村)あて、お申しこしください。なお、このほかに財団法人原子力弘済会資料センター (〒319-11茨城県那珂郡東海村日本原子力研究所内)で複写による実費頒布をおこなって おります。

JAERI-M reports are issued irregularly.

Inquiries about availability of the reports should be addressed to Information Division Department of Technical Information, Japan Atomic Energy Research Institute, Tokaimura, Naka-gun, Ibaraki-ken 319-11, Japan.

②Japan Atomic Energy Research Institute, 1989
 編集兼発行 日本原子力研究所
 印 刷 いばらき印刷(株)

放射化断面積の測定

日本原子力研究所東海研究所物理部

加藤 敏郎*•河出 清*•山本 洋*

(1989年6月8日受理)

半減期が1分から20分程度の短寿命核生成断面積を、13.4 MeV から14.9 MeV の中性子エネ ルギーの範囲にわたり測定した。測定した反応は、N, P, V, Fe, Ni, Cu, Sr, Zr, Mo, In の 試料に対する(n, 2n), (n,p), (n,n'p), (n, α)反応のうち15反応である。長 寿命核生成の⁵⁸Ni(n,t), ⁹²Mo(n, n' α), ¹⁴¹Pr(n,t)反応についても測定した。

14 MeV または熱中性子照射で生成される短寿命の半減期の測定を 0.05 ないし 0.8 パーセントの誤差で行なった。測定したのは、¹³ N, ¹⁸ F, ²⁸ Al, ³⁷ S, ³⁸ K, ⁴² K, ⁵² V, ⁶² Cu, ^{94 m} Nb, ^{116 m} In の 10 核種である。

本報告書は、日本原子力研究所が名古屋大学に委託して行った研究の成果である。 東海研究所 : 〒319-11 茨城県那珂郡東海村白方字白根2-4 *名古屋大学

Measurement of Activation Cross Sections

Toshio KATOH^{*}, Kiyoshi KAWADE^{*} and Hiroshi YAMAMOTO^{*}

Department of Physics Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

(Received June 8, 1989)

Fifteen neutron activation cross sections for (n,2n), (n,p), (n,n'p) and (n, α) reactions producing short-lived nuclei have been measured in the energy range of 13.4 to 14.9 MeV for N, P, V, Fe, Ni, Cu, Sr, Zr, Mo and In. Cross sections for ⁵⁸Ni(n,t), ⁹²Mo(n,n' α) and ¹⁴¹Pr(n,t) reactions were also measured.

Half-lives of ${}^{13}N$, ${}^{18}F$, ${}^{28}A1$, ${}^{37}S$, ${}^{38}K$, ${}^{42}K$, ${}^{52}V$, ${}^{62}Cu$, ${}^{94m}Nb$ and ${}^{116m}In$ were measured with relative uncertainties of 0.05 to 0.8 percent. These short-lived nuclei were produced by 14 MeV or thermal neutron irradiations.

Keywords: Activation, Cross Section, 14 MeV Neutron, Short-lived Nucleus, Half-life, Measurement

This work was performed under the contract between Japan Atomic Energy Research Institute and Nagoya University. * Nagoya University

İİ

目

次

1. 序	1
2. 放射化断面積の測定	··· 1
2.1 実験方法	1
2.1.1 放射化法	••• 1
2.1.2 中性子照射	2
2.1.3 誘導放射能の測定	3
2.1.4 崩壊データ	••• 4
2.1.5 補正	••• 4
2.1.6 誤差の評価	·· 5
2.2 測定結果	6
3. 半減期の精密測定	6
3.1 実験方法	6
3.2 線源の調整	7
3.3 結果	7
4. まとめ	8
謝 辞	8
参考文献	9
付録1 Relation between the d-T neutron energy and the	
incident deuteron energy	38
付録 2 Detection efficiency of the Well-type Ge detector	39
付録3 Gamma-ray spectra of samples irradiated by 14 MeV	
neutron	40

Contents

1. Introduction						
2. Measurement of Activation Cross Sections						
2.1 Experimental Method	1					
2.1.1 Activation Method	1					
2.1.2 Neutron Irradiation	2					
2.1.3 Measurement of Induced Activities	3					
2.1.4 Decay Data	4					
2.1.5 Correction	4					
2.1.6 Evaluation of Errors	5					
2.2 Experimental Results	6					
3. Precise Measurement of Half-Lives	6					
3.1 Experimental Method	6					
3.2 Preparation of Sources	7					
3.3 Results	7					
4. Conclusion	8					
Acknowledgements	8					
Reference	9					
Appendix l Relation between the d-T Neutron Energy and the						
Incident Deuteron Energy 3	38					
Appendix 2 Detection Efficiency of the Well-Type Ge Detector 3	39					
Appendix 3 Gamma-ray Spectra of Samples Irradiated by 14 MeV						
Neutrons 4	40					

.

1. 序

中性子に対する各種元素の断面積のデータは評価ずみデータとしてまとめられ,原子力の利用, 核融合炉の開発に広く用いられている。中性子エネルギーが14 MeV 付近では(n, 2n),(n, p),(n,n'p),(n, a)等の反応が起こり,材料の放射化・損傷等の重大な問題になる可能 性がある。現在実験データのない場合は種々のモデルに基づいた計算が用いられている。したが って,可能な限り測定したデータを提供することは計算方法の信頼性向上にも貢献するものと期 待される。これまで反応生成核が20分程度以上の比較的長寿命のデータは,最近日本原子力研 究所炉工学部と名古屋大学工学部との協力研究により系統的な測定が26元素を対象として110 反応について行なわれ¹⁰,かなり整備されてきた。他方,半減期が20分程度以下になると寿命 が短いために,測定が困難になり,極端に少ない。また,測定された値も測定者が異なると食い 違う場合が多い。

この研究では中性子エネルギーが 13.4 MeV から 14.9 MeV の範囲にわたりN, P, V, Fe, Ni, Cu, Sr, Zr, Mo, In の試料に対する(n, 2n), (n, p), (n, n'p), (n, α) 反応のうち 15 の短寿命核生成反応断面積を測定した。とくに β^+ 崩壊で r線をほとんど放射しな い場合の測定法を新たに工夫した。これにより測定対象を拡大することができた。

散乱中性子(低エネルギー中性子)の影響を考慮した解析もおこなった。さらに、中性子源の 強度が強力であることを利用し、断面積の小さい⁵⁸ Ni(n,t),⁹² Mo(n,n'α),¹⁴¹ Pr(n, t)反応断面積も測定した。短寿命核種の半減期測定を¹³ N,¹⁸ F,²⁸ Al,³⁷ S,³⁸ K,⁴² K,⁵² V, ⁶² Cu,^{94m} Nb,^{116m} In の 10 核種について行なった。Table 1 と Table 2 に測定した反応と半減 期を示す。

2. 放射化断面積の測定

2.1 実験方法

2.1.1 放射化法

放射化法は測定対象核種を含む試料を中性子照射し、生成された放射性核種の放射線を測定し、 その強度から断面積を求めるものである。ここではr線の強度とエネルギーをGe 検出器で測定 した。この結果から次の式で断面積(σ)をもとめることができる。

C: *r* 線計数

- N: 試料の原子核数
- *σ*: 放射化断面積

- ♦ : 中性子束
- ε_f : γ線検出効率
- I_r: 1崩壊あたりのr線放出率
- λ : 生成核の崩壊定数
- ti : 照射時間
- t c : 冷却時間(照射直後から測定開始までの時間)
- t m : 測定時間
- 2.1.2 中性子照射
- (1) 照射装置

中性子照射は大阪大学工学部の強力 14 MeV 中性子工学実験装置(OKTAVI AN)で行なった。生成核種が1分から20分程度の短寿命の場合には気送管式照射台を用いた。

試料はポリエチレンカプセルに入れトリチウム回転ターゲットから 15 cm の位置へ圧縮空気 で送り照射後減圧してもどした。移送時間は送りの場合は約 5 秒, もどりは約 2 秒であった。 気送管は d^+ ビームに対し, 0°, 45°, 70°, 95°, 120°, 155° の 6 方向, 中性子エネルギーに 換算して 14.9 MeV から 13.4 MeV の間で中性子エネルギー間隔がほぼ等しくなるようにして 設置した。照射台の位置確認のため-95° 方向にも設置した。

 d^+ ビームの加速エネルギーが 300 keV, 電流は 5 mA の場合に 15 cm の位置での中性子束 は(2~5)×10⁷ n/cm²・s であった。

(2) 中性子モニター

中性子エネルギーは ⁹⁰ Zr(n, 2n) ⁸⁹ Zr(T_{1/2} = 3.27d)反応²⁾ ξ^{93} Nb(n, 2n) ^{92m}Nb(10.15d)反応³⁰ の断面積のエネルギー依存性の違いを利用して求めた(Zr/Nb法)⁴⁾。 断面積比とエネルギーの関係を Fig.1 に示す。気送管相互の角度の精度は良いので個々の値は 用いないでd⁺ ビームのエネルギー(E_d)をパラメーターとして相対論的計算で最もよく一致 する E_d の値を求め、それに基づく中性子エネルギーを各角度での中性子エネルギーとした。 Fig 2 にみられるように E_d = 130 keV がよくあうことがわかる。

付録1に種々のdエネルギーに対する中性子エネルギーの値を示す。試料の広がり(1cm×1cm)によるエネルギーの不確定さは±30 keV 程度(95°方向で最大となる)になる。

中性子束モニターとしては、この実験では²⁷ Al (n, p)²⁷ Mg(9.46m)反応の断面積を同時 におきる²⁷ Al (n, α)²⁴ Na 反応⁵⁾ を基準にして精度よく求めてモニター反応とした。こ の実験の測定対象は寿命が短いので通常用いられる⁹³ Nb (n, 2n)反応および²⁷ Al (n, α) 反応はモニターとして不適である。基準として用いた²⁷ A ℓ (n, α)反応の断面積の値は Table 3 にしめす。また、これに基づいて求めたオクタビアン施設での²⁷ Al (n, p)反応の便宜的 な断面積値は Table 4 に示してある。実際には 1 cm × 1 cm × 0.2 cm のアルミ箔で照射試料 をはさみ、2 枚のアルミ箔から求めた中性子束の平均値を試料位置の中性子束とし、それから 求める反応の断面積を求めた。長寿命核種生成反応の場合には中性子束モニターは⁹² Mo (n, n' α)⁸⁸ Zr 反応には⁹³ Nb (n, 2n)反応³⁾ を用い、⁵⁸ Ni (n, t)⁵⁶ Co 反応には同時に起 こる⁵⁸ Ni (n, p)反応¹⁾を、¹⁴¹ Pr (n, t)¹³⁹ Ce 反応には同時反応の¹⁴¹ Pr (n, p) を用い

- 2 -

た。ただし、¹⁴¹Pr(n,p)反応の値は改めて⁹³Nb(n,2n)反応を基準にして決定した。 照射中の中性子束の時間変動はフィッションカウンターを用い、3秒または6秒のマルチス ケーリングでその計数を記録し、その計数を用いて補正した。

(3) 照射試料

照射試料は天然組成のもの,または濃縮同位体(Separated Isotope, S.I.)を用いた。 金属箔は1cm×1cmの正方形(厚さ: 0.1~0.3 mm)の形で,粉末試料は秤量後,薬包紙で 1cm角の正方形に包んで用いた。Table 5 および Table 6 に純度,組成比などを示す。

2.1.3 誘導放射能の測定

(1) Ge 検出器

中性子照射によって生成された誘導放射能は Ge 検出器で測定した。使用した検出器の特性 は Table 7 に示してある。検出器の先端には β 線を防ぐために 5 mm 厚のアクリル板をつけて ある。検出器上での試料の位置の検出効率への影響を調べるために、⁸⁵Srをろ紙(1 cm × 1 cm)に一様にしみ込ませた線源を検出器上で左右に動かして検出効率を調べた。Fig.3 にそ の結果を示す。これからわかるように置き方の誤差を±0.3 mm 以内とすれば、影響は0.3 パ -セント以内である。

検出効率は5 cmの位置で²⁴ Na, ⁵⁶ Co, ¹³³ Ba, ¹⁵² Eu, ¹⁵⁴ Euを用いて決定した。サム ピークの補正は行なってある。効率の誤差は 300 keV 以上で, 1.5 パーセント, 80 keV から 300 keV の間で3 パーセント, 80 keV以下で5 パーセント程度と考えられる。線源強度が弱い ときは試料を検出器の表面 0.5 cmの位置で測定した。この場合には5 cm と 0.5 cm で同一線 源でエネルギーの関数として検出効率の比を求める方法⁶⁾で効率の校正をおこなった。Fig.4 にその結果を示す。図中の黒丸は²⁴ Na の 1368 keVの r 線の場合でコインシデンスサムの影響 がある。この方法による効率校正の誤差は 1.0 パーセント程度である。微弱長寿命核種の測定 にはウエル型 Ge 検出器を用いた。同検出器のボトムの位置での効率は付録 2 に示すように表 面に置いたときに比べて5 倍以上の効率が得られた。ボトムの位置での検出効率は上で述べた 方法で5 cmの位置に効率校正した。 r 線ピーク面積は関数フィテイングよりも精度のよい加 えあわせ法^{6,7,8)} によって求めた。

(2) *β*⁺放射核の測定法

生成核種のなかには主に陽電子のみを放出するものがある。この場合には試料を 10 mm の アクリル板ではさんで陽電子を止め発生する消滅 r 線を測定して生成量を求めた。このアクリ ル板の厚さが十分かどうか確かめるために、板厚を変えて 511 keV の消滅 r 線の検出効率を測 定した(Fig.5参照)。 β + の最大エネルギーが 3 MeV までは十分止まることがわかる。また、 β + の広がりの影響を調べるために 20 mmの位置(ほぼ点線源とみなせる)と 0.5 cm の位置 での検出効率の比を E_{max}の関数として測定した。比較のために広がりのない r 線源として ⁸⁵ Sr の 514 keVの r 線を用いた。結果をFig.6 に示す。この結果から β 吸収板を用いれば 1 パ - セント以内の誤差で β + 放射核を 511 keV r 線源と考えてよいことがわかる。

-3 -

2.1.4 崩壊データ

対象となった核種とモニター核種の半減期($T_{1/2}$)とr線エネルギー(Er), r線放出率(I_r)をTable 8 に示す。

2.1.5 補正

中性子照射、放射能測定の際に考慮した補正は以下の項目である。

- 1) 中性子束の時間変化,
- 2) 散乱中性子の影響,
- 3) コインシデンスサム, ランダムサム,
- 4) 試料の厚みによる測定位置のずれ,
- 5) 試料による r 線の自己吸収,
- 6) 妨害反応による流れこみ。

以下にこれらの補正について述べる。

(1) 中性子束の時間変動

この補正はフィッションカウンターによる計数をマルチスケーリングで行なって求めた。 Fig.7にその結果を示す。この影響は1パーセント以下である。

(2) 散乱中性子の影響

発生した中性子がまわりの構造材で散乱されて低エネルギー中性子となって試料に当たることがある。d +ビームに対して70°方向で二結晶法により測定された中性子スペクトル⁹⁾をFig. 8 に示す。10 MeV 以下に散乱の影響がみられる。10 MeV 以下を散乱中性子として補正する。 補正は¹²C(n,n')のピークを除いて図に示すようなスペクトルに置き変えて次式で寄与の割 合(FC)を見積もった。

(Σは0から10 MeV までの和をとる)

φ(E_i) : エネルギーE_iでの中性子束

- **σ**(E_i): エネルギーE_iでの反応断面積
- $\phi_{x,\sigma_{x}}$: 散乱中性子成分を除いた高エネルギー部分全部がエネルギーx に集中 しているものとみなした中性子束と反応断面積

カットオフエネルギー(この場合は 10 MeV)の決め方でこの FC は 30パーセント程度の変化があるのでこの補正に対する誤差は 30 パーセントとする。補正係数 f。は次のようになる。

$$f_{s} = \frac{\{1 - FC(n, x)\}}{\{1 - FC_{A1}(n, \alpha)\}}$$
 (3)

ここでFC(n,x), FC_{A1}(n, α)は対象核種および基準の²⁷Al(n, α)反応のFC である。低エネルギーまで断面積測定データのあるものについてはFCを求めた。結果をTable

- 4 -

8まよびFig.9に示す。補正の一例として²⁷Al(n,p)²⁷Mgの場合の結果をFig.10に示 す。補正の結果は Ikeda¹⁾の結果と一致する。

(3) コインシデンスサム, ランダムサム

r 線がカスケードに放射される場合にはコインシデンスサムを補正する必要がある。補正には全検出効率が必要なので⁵⁴ Mn, ⁵⁷Co, ⁶⁵Zn, ¹³⁷Cs を用いて測定した(Fig.11 参照)。実線は平行に <math>r 線が入射するものとして測定点にあわせた計算値である。これから5 cm 離れていても1~2パーセントのサム効果があることがわかる。サム効果を考慮した核種は²⁴ Na,⁵⁶Co, ^{62m}Co, ^{62g}Co, ⁸⁸ Rb である。計数率が1k cps 以上になるとランダムサムによるパイルアップロスが問題となる。¹³⁷Cs とパルサーで測定したパイルアップロスの例をFig.12 $に示す。本研究では増幅器の波形整形は 2 <math>\mu$ s でおこなった。

(4) 試料の厚みによる測定位置のずれ

試料の厚みのために線源の検出器に対する距離が実際的には遠くなる。 0.5 cm \geq 5 cm の位置での検出効率の比から実効距離(x_0)⁶⁾を求め近似的に逆二乗則がなりたつものとして次式から補正係数(f_0)を計算でもとめた。

ここで、t は試料の厚み(mm)、xoは実効距離(mm)、4.90(mm)は通称0.5 cmの精確な値(mm)である。単色r線の計算例をFig.13 に示す。

(5) 試料による自己吸収

試料と検出器の距離は 5 cm なので r 線は平行入射とみなせ、かつ試料の厚みはほとんどの 場合 100 mg / cm² 以下なので次式で補正係数を求めた。

 $f_a = 1 / (1 - 0.5 \sigma \mu t)$ (5)

σは試料の密度,μは質量減弱係数¹⁰⁾, tは試料の厚みである。この誤差は補正量の20 パーセント程度とみなせる。

(6) 妨害反応による流れこみ

別な反応を経由して目的核と同一の核種が生成される場合や測定核種と同一のr線を放出す る核種が生成される場合には、その補正をする必要がある。たとえば、 98 Mo (n, n'p) 97m Nb の測定の際に、 98 Mo 濃縮同位体試料に含まれる少量の 97 Mo による 97 Mo (n, p) 97m Nb 反 応が起こり、生成核からはこの両反応の区別がつかないので、この補正をする必要がある。

2.1.6 誤差の評価

誤差の評価は実験からの誤差 $\delta_{e}(\%)$ と解析に用いる崩壊データ 11 および基準反応断面積からの核データ誤差 $\delta_{r}(\%)$ に分けて考慮し、全誤差 $\delta_{\iota}(\%)$ を

として求めた。以下におおよその値を示す。

(1)	実験誤差δ。	
	試料の秤量:	0.1%
	中性子束の時間変動:	< 0.1 %(補正量の約 20 %)
	統計誤差:	0.5~40%(²⁷ Mg の統計誤差を含む)
	ピーク面積の出し方:	0. 5 %
	検出効率:	1.5% (E $_{\gamma}$ \geq 300 keV), 3% (E $_{\gamma}$: 300 \sim
		80 keV), 5 $\%$ (E $_{\gamma}$ $<$ 80 keV)
	0.5 cmと5 cmでの効率校正:	1.0%
	コインシデンスサム:	< 0. 5 %
	ランダムサム:	< 0. 5 %
	試料の厚みの補正:	0. 5 %
	r 線の自己吸収:	0~1.0%(補正量の約20%)
	散乱中性子の評価:	補正量の 30 %
	²⁷ A1 (n , p) ²⁷ Mg 反応断面積:	0.5% (統計誤差のみでよい)
(2)	核デ-タに関する誤差δ _r (%)	
	²⁷ Al(n,α) ²⁴ Na 反応断面積:	3.0%
	r 線放出率(Ι _γ):	0~20%
_	半减期:	0~5%
	合計 (1) + (2) :	3. 6 ~ 40 %

十分に統計誤差を小さくできる場合には実験誤差2.0%,全誤差3.6%程度で断面積を決定で きる。実験誤差では検出効率の誤差が大きく,核データでは基準反応断面積の誤差が大きい。

2.2 測定結果

短寿命核生成反応断面積測定の結果を Table 9 および Fig.14 に示す。長寿命核生成反応断面 積は Table 10 と Fig.15 に示す。Table 9, 10 には δ_e , δ_r および δ_t を, Fig.14, 15 には δ_e のみを示してある。付録 3 に 14 MeV 中性子で照射された試料からの r 線スペクトルを示す。

3. 半減期の精密測定

放射化断面積の測定の際に必要な核データの一つに生成核の半減期がある。本研究では14 MeV 中性子や熱中性子照射で生成される短寿命核の半減期もGe 検出器を用いて測定した。

3.1 実験方法

これまでに報告されている短寿命核の半減期の値には誤差の範囲を越えて相互にずれている場

合が少なくない。考えられる原因としては、以下のことがある。

- (1) 不純物の混入
- (2) 不感時間,パイルアップの補正が不十分であること

(1)の不純物の混入については、半減期の測定のデータはほとんど 1975 年以前の古いデータで あり、検出器の分解能が良くなく、わずかな不純物の混入が見過ごされていたものとおもわれる。 (2)については、短寿命核測定では短い測定時間内で十分な統計を得るために測定開始時にはかな り高計数率の測定となるために重要になる。この補正は通常はパルサーを用いて(パルサー法) 補正するが、5k cps 以上になるとパルサー法にも限界があることが指摘されている⁷⁾。本研究 ではパルスと短寿命核種を同時に測定するパルサー法と、補正用線源(¹³³ Ba または ¹³⁷ Cs) と短寿命核を同時に測定する線源法を併用して両者の一致している範囲の計数率内のデータのみ を用いることとした。

パルサー法の特徴としては次のことがあげられる。

1) 統計的ゆらぎがない。

- 2) バックグランドの少ない任意の高い波高部分に入れられる。
- 3) r線スペクトルを乱すことがすくない。

4) r線ピークとピークの形が少し異なる上に自分自身ランダムサムをつくらない。 線源法としては次のことがあげられる。

- 1) 信号がr線そのものによるものであり、理想的である。
- 2) 統計的ゆらぎがある。
- 3) 任意の位置にいれることが出来ない。
- 4)対象とするr線よりやや低いエネルギーの線源を用いるので、時間的に減衰変化する コンプトンバックグランドの影響を受け、ピーク面積を求める際に誤差の入りこむ可 能性がある。

二つの方法の併用により両者の特徴を取り入れた補正が出来るものと思われる。

半減期の1/3~1/4の時間間隔のスペクトルマルチスケーリング(SMC)を行い,磁気テー プまたはフロッピーディスク上に書き込み,および10半減期の間,崩壊を追跡した。測定後, 最小二乗法で解析した。

3.2 線源の調整

¹⁸ F, ²⁸ Al, ³⁷ S, ⁵² V, ⁶² Cu および ^{116 m} In, は名古屋大学工学部の Van de Graaff 型加速 器のd-Li 中性子源で, ¹³ Nと³⁸ KはOKTAVIAN で, ⁵² V, ^{94 m} Nb および ⁴² K は立教大学の原 子炉で照射した。⁴² K は ⁴² Ar - ⁴² K ジェネレーターからミルキングでも取り出した。

3.3 結果

得られた結果を Table 11 と Fig. 16 に示す。これまでの結果は今回の結果と比較的よく一致 しているが, ¹⁸ F, ³⁷ S, ³⁸ K はややずれている。

4. ま と め

放射化法により中性子エネルギー 13.4 MeV から 14.9 MeV の範囲で、15種の短寿命核生成 反応断面積と3種の長寿命核生成反応断面積を(n, 2n)、(n, p)、(n, n'p)、(n, t)、 (n, α)、(n, n' α)反応について測定した。陽電子崩壊の場合に消滅 r線を測定する場合に は 10 mmの アクリル 板を利用すれば通常の r線源と同様に扱えることがわかった。微弱長寿命 核の測定ではウエル型 Ge 検出器が威力を発揮した。短寿命核の半減期精密測定を 10 核種につ いて行い、パルサー法と線源法の併用により信頼性の高い結果を得ることができた。

謝 辞

この研究は日本原子力研究所からの委託研究として行なわれた研究である。同研究所核データ センターの五十嵐信一氏,浅見哲夫氏,中川庸雄氏には研究の遂行上,お世話になった。実験は 大阪大学工学部の強力 14 MeV 中性子工学実験装置(OKTAVIAN)を用いて,同大学の住田健 二教授,高橋亮人助教授,飯田敏行氏のご援助により行なわれた。また,杉本久司氏,伊達道淳 氏,吉田茂生氏には同装置の運転を献身的にして頂いた。以上の方々には深く感謝いたします。 ウェル型検出器の使用にあたっては名古屋大学アイソトープセンターの小島貞男氏にお世話にな った。感謝いたします。実験の実施,データの解析に協力した名古屋大学の学部4年生および大 学院生の加藤功騎,吉田宏之,後藤 雄,長 明彦,宮地正英,柴田理尋の諸君に感謝します。

参考文献

- Ikeda, Y., Konno, C., Oishi, K., Nakamura, T., Miyade, H., Kawade, K., Yamamoto, H., Katoh, T.: JAERI, 1312 (1988)
- Pavlik, A., Winkler, G., Vonach, H., Paulsen, A., Liskien, H.: J. Phys. G; Nucl. Phys. <u>8</u>, 1283 (1982)
- 3) Nethaway, D. R.: J. Inorg. Nucl. Chem. 40, 1285 (1978)
- 4) Lewis, V. E., Zieba, K. J.: Nucl. Instr. Meth. <u>174</u>, 141 (1980)
- 5) "Evaluated Neutron Data File, ENDF/B-V", ENDF/B Summary Documentation, compiled by R. Kinsey, ENDF-201, 3rd edition, Brookhaven National Laboratory (1979)
- Kawade, K., Ezuka, M., Yamamoto, H., Sugioka, K., Katoh, T.: Nucl. Instr. Meth. 190, 101 (1981)
- 7) Debertin, K., Schötzig, U.: Nucl. Instr. Meth. 140, 337 (1977)
- 8) Yoshizawa, Y., Iwata, Y., Kaku, T., Katoh, T., Ruan, J., Kojima, T., Kawada, Y.: Nucl. Instr. Meth. 174, 109 (1980)
- 9) Takahashi, A., Ichimura, E., Sugimoto, H., Katoh, T.: JAERI-M 86-080 393 (1986)
- 10) Storm, L., Israel, H. I.: Nucl. Data Tables A7, 565 (1970)
- 11) Browne, E., Firestone, R. B., Shirley, V. S.: "Table of Radioactive Isotopes" John Wiley & Sons, New York (1986)

JAERI-M 89-083

•

Reaction	T _{1/2}	Reaction	T _{1/2}
$14_{N(n,2n)}$ 13_{N}	9.96m	⁶³ Cu (n,α) ^{60m} Co	10.47m
$31_{P(n,2n)}30_{P}$	2.50m	⁸⁸ Sr(n,p) ⁸⁸ Rb	17.8m
$(n,\alpha)^{28}$ Al	2.241m	⁹⁴ zr(n,p) ⁹⁴ Y	18.7m
⁵¹ V(n,p) ⁵¹ Ti	5.76m	⁹² Mo(n,2n) ^{91g} Mo	15.49m
⁵⁴ Fe(n,2n) ^{53g} Fe	8.51m	⁹⁷ Mo(n,p) ^{97m} Nb	1.0m
⁶⁰ Ni(n,p) ^{60m} Co	10.47m	⁹⁸ Mo(n,n'p) ^{97m} Nb	1.0m
⁶² Ni(n,p) ^{62m} Co	13.91m	¹¹³ In(n,2n) ^{112m} In	20.9m
(n,p) ^{62g} Co	1.50m		
⁵⁸ Ni(n,t) ⁵⁶ Co	77.1d	¹⁴¹ Pr(n,t) ¹³⁹ Ce	137.66d
92 _{Mo(n,n'a)} ⁸⁸ Zr	83.4d		

Table 1 Measured activation cross sections

Table 2 Nuclides of half-life measurement

Nuclide									
¹³ N,	¹⁸ F,	²⁸ A1,	³⁷ S,	³⁸ K,	⁴² K,	⁵² V,	⁶² Cu,	^{94m} Nb,	ll6m _{In}

. .

Table	3	Cross section	of	the
		2^{7} Al(n, α) ²⁴ Na	rea	ction

En(MeV)	Cross Section(mb)
14.96	1 1 3 . 4 2 ± 3 . 4 0
14.92	1 1 3.9 3 ± 3.4 2
14.84	114.97±3.45
14.71	116.65±3.50
14.53	1 1 8 . 9 7 ± 3 . 1 4
14.32	121.28±3.64
14.10	1 2 3 . 6 3 ± 3 . 7 1
13.95	125.02±3.75
13.81	125.93±3.78
13.68	126.77±3.80
13.55	1 2 7 . 6 2 ± 3 . 8 3
13.33	128.50±3.86

Table 4 Conventional cross section of ²⁷Al(n,p)²⁷Mg reaction at OKTAVIAN Facility

En(MeV)	Cross Section(mb)
14.87	66.82
14.64	69.40
14.35	72.66
14.02	76.36
13.70	79.95
13.40	83.32

* not corrected for the scattering of neutron * error within 0.5 %

JAERI-M 8	9 - 083
-----------	---------

Samp	le Purity	Weight	Reaction
	(%)	(mg)	
N	99.99	70	14 _{N(n,2n)}
P	99.999	60	$31_{P(n,2n),(n,\alpha)}$
v	99.99	80	⁵¹ v(n,p)
Cu	99.9	90	⁶³ Cu(n,α) ^{60m} Co
Sr	99.999	80	⁸⁸ Sr(n,p)
Zr	99.8	65	$94 \text{zr}(n,p)^{94} \text{Y}$
In	99.99	70	¹¹³ In(n,2n) ^{112m} I
Ni	99.7	2600	⁵⁸ Ni(n,t)
Mo	99.95	1000	92 _{Mo(n,n'α)}
Pr	99.999	200	141 _{Pr(n,t)}

Table 5 Samples of natural abundance

Table 6 Samples of separated isotope

S.I.	Enrichment	Weight	Reaction	Impurity	
	(%)	(mg)		(१)	
⁵⁴ Fe	97.20	70	⁵⁴ Fe(n,2n) ^{53g} Fe	56(2.75), 58(<0.01)	57(0.05),
60 _N i	99 . 65	70	⁶⁰ Ni(n,p) ^{60m} Co	58(0.29), 62(0.03),	61(0.03), 64(<0.08)
62 _N j	i 97,01	40	62 _{Ni(n,p)} 62m,g _{Co}	58(3.45), 62(1.40),	60(6.12), 64(0.20)
92 _{MC}	97.01	70	92 _{Mo(n,2n)} 919 _{Mo}	94(0.86), 96(0.43), 98(0.51),	95(0.54), 97(0.26), 100(0.40)
97 _M	94.25	50	⁹⁷ Mo(n,2n) ^{97m} Nb	92(0.22), 95(0.59), 98(3.07),	94(0.24), 96(1.34), 100(0.30)
98 _M	o 98.3	70	98 _{мо(п,п'р)} 97 _{мNb}	92(0.14), 95(0.22), 97(0.58),	94(0.1), 96(0.34), 100(0.31)

Detector	Efficiency	Resolving	Object of
	(%)	power(keV)	measurement
Vertical HpGe	12	1.75	Short-lived nuclei
Horizontal HpGe	16	2.00	Al monitor foil
Horizontal Ge(L	i) 10	1.92	^{92m} Nb, ⁸⁹ Zr(for energy)
Vertical HpGe	23	2.00	^{92m} Nb, ⁸⁹ Zr(for energy)
Well type Ge	25	2.14	Long-lived weak activity

Table 7 Ge detectors

Table 8 Nuclear data used for the present measurement

Reaction	^T 1/2	E (keV)	I (%)	Q(MeV)	F.C. (%)**
$27_{Al(n,\alpha)}^{24}Na$	14.959h	1368.6	99.994(3)	-3.13	2.1
(n,p) ²⁷ Mg	9.46m	843.8	73(1)	-1.83	6.2
$14_{N(n,2n)}13_{N}$	9.96m	511*	199.62	-10.55	0
³¹ P(n,2n) ³⁰ P	2.50m	511*	200	-12.31	0
(n,α) ²⁸ Al	2.241m	1778.7	100	-1.94	
⁵¹ v(n,p) ⁵¹ Ti	5.76m	319.7	93.0(4)	-1.69	2.4
⁵⁴ Fe(n,2n) ^{53g} Fe	8.51m	377.9	42(8)	-13.38	0
⁶⁰ Ni(n,p) ^{60m} Co	10.47m	58.6	2.0(1)	-2.46	
⁶² Ni(n,p) ^{62m} Co	13.91m	1163.5	68.1(14)	-4.48	
(n,p) ^{62g} Co	1.50m	1129.1	11.3(7)	-4.46	
⁶³ Cu (n,α) ^{60m} Co	10.47m	58.6	2.0(1)	1.69	
⁸⁸ Sr(n,p) ⁸⁸ Rb	17.8m	1836.0	21.4(12)	-4.53	
⁹⁴ zr(n,p) ⁹⁴ Y	18.7m	918.8	56(3)	-4.10	
⁹² Mo(n,2n) ⁹¹⁹ Mo	15.49m	511*	187.4	-12.68	0
⁹⁷ Mo(n,p) ^{97m} Nb	1.0m	743.4	97.95(10)	-1.89	
⁹⁸ Mo(n,n'p) ^{97m} Nb	1.0m	743.4	97.95(10)	-8.39	0
113 In (n, 2n) $112m$ In	20.9m	155	12.8(4)	-9.60	0
⁵⁸ Ni(n,t) ⁵⁶ Co	77.ld	2598.4	16.95(8)	-11.07	0
⁹² Mo(n,n'a) ⁸⁸ Zr	83.4d	393.7	97.3(1)	-5.61	
¹⁴¹ Pr(n,t) ¹³⁹ Ce	137.66d	165.9	79.99(16)	-5.93	

* annihilation gamma-ray

** contribution of scattered neutron

• • N (n, 2n)	¹³ N (9.9	96m)			³¹ P (n, 2n) ³⁰ P (2	.50m)	
En(MeV)	σ (mb)	δe(%)	δr(%)	δt(%)	σ(mb)	δe(%)	δr(%)	δt(%)
14.87	7.20	2.6	3.0	4.0	15.0	5.0	3.0	5.8
14.64	7.28	2.8	3.0	4.1	13.2	4.5	3.0	5.4
14.35	7.07	2.9	3.0	4.2	11.1	4.6	3.0	5.5
14.01	5.84	3.0	3.0	4.2	6.0	5.7	3.0	6.4
13.70	4.63	3.3	3.0	4.5	3.0	8.8	3.0	9.3
13.40	3.59	2.7	3.0	4.0	1.1	13	3.0	20
³ P(n, a) ²	• A 1 (2.2	24m)		- (**)	⁵¹ V(n,p)	31 Ti (5	.76m)	
En(MeV)	σ(mb)	δ _. e(%)	δr(%)	δt(%)	σ(mb)	δe(%)	δr(%)	δt(%)
14.87	116	3.6	3.0	4.7	30.8	5.3	3.0	6.1
14.64	116	3.5	3.0	4.6	33.0	4.9	3.0	5.7
14.35	126	3.4	3.0	4.5	33.8	4.9	3.0	5.7
14.01	134	3.4	3.0	4.5	33.8	4.6	3.0	5.5
13.70	130	3.5	3.0	4.6	32.3	5.0	3.0	5.8
13.40	135	2.6	3.0	4.0	34.4	4.1	3.0	5.1
54 Fr = /- 9	-) 53 F 🖓 -	 (9 E1-)		<u> </u>	69 NT : (n		(10 47-)	
$\frac{\Gamma e(n, 2)}{\Gamma n(MeV)}$	<u>(mb)</u>	(0. 51m) Se(9)	8 - (9)	5+(9)	$\frac{1 \times 1(n, n)}{\sigma(nb)}$	00 (q)	(10.47m) Sr(9)	δ+(9)
				01(%)				
14.87	10.9	5.4	19	20	74	8.0	5.9	10
14.64	9.0	5.5	19	20				
14.35	5.3	6.4	19	20				
14.01	2.1	9.8	19	21	95	8.0	5.9	10
13.70	0.22	80	19	90				
13.40					100	8.0	5.9	10

Table 9(a) Formation cross section of short-lived nuclei

* δ_{\bullet} : experimental error, δ_{r} : error of nuclear data,

 $\delta_{t}^{2} = \delta_{0}^{2} + \delta_{r}^{2}$

 \star $\,$ error of neutron energy is estimated as about 50 keV $\,$

^{6 2} N i (n, p)) ⁶² Co (1	L3.91m)	⁶² Ni(n,p) ⁶² Co (1.50m)					
En(MeV)	σ(mb)	δe(%)	δr(%)	δt(%)	σ(mb)	δe(%)	δr(%)	δt(%)
14.87	19.5	6.9	3.6	7.8	26	17	6.9	19
14.64	18.3	7.1	3.6	8.0	33	23	6.9	24
14.35	16.7	6.5	3.6	7.4	25	19	6.9	20
14.01	17.5	5.2	3.6	6.4	21	16	6.9	17
13.70	11.9	11	3.6	12	17	40	6.9	41
13.40	13.1	5.3	3.6	6.4	16	15	6.9	17

Table 9(b) Formation cross section of short-lived nuclei

^{• •} C u (n, a)	⁶⁰ ⊷Co (]	** Sr(n,p)** Rb (17.8m)						
En(MeV)	σ(mb)	δe(%)	δr(%)	δt(%)	σ(mb)	δe(%)	δr(%)	δt(%)
14.87	8	31	5.9	32	23	12	6.4	14
14.64	11	30	5.9	31	20	11	6.4	13
14.35	8	40	5.9	40	22	10	6.4	12
14.01	9	34	5.9	35	18	11	6.4	13
13.70	14	21	5.9	22	12	21	6.4	23
13.40	9	22	5.9	23	14	11	6.4	13

⁹⁴ Zr(n, p))°⁴Y (18.	7m)		92Mo(n, 2	2n) °' ″Mo	(15.49m)	
En(MeV)	σ(mb)	δe(%)	δr(%)	δt(%)	σ(mb)	δe(%)	δ Γ (%)	δt(%)
14.87	6.6	12	6.1	13	221	3.2	3.0	4.4
14.64	7.7	10	6.1	11	203	3.1	3.0	4.3
14.35	5.6	12	6.1	13	176	3.1	3.0	4.3
14.01	5.7	11	6.1	12	136	3.0	3.0	4.2
13.70	5.3	12	6.1	13	89	3.3	3.0	4.5
13.40	4.2	10	6.1	12	46	3.3	3.0	4.5

⁹⁷ Mo(n,p)) ⁹⁷ Nb (]	⁹⁸ Mo(n, n'p) ⁹⁷ Nb (1.0m)						
En(MeV)	σ(mb)	δe(%)	δr(%)	δt(%)	σ(mb)	δe(%)	δr(%)	δt(%)
14.87	4.9	12	6.7	14	1.2	30	6.7	31
14.64	3.4	20	6.7	21	1.0	35	6.7	36
14.35	4.2	19	6.7	20	0.5	40	6.7	41
14.01	3.4	17	6.7	18				
13.70	3.3	21	6.7	22				
13.40	3.6	20	6.7	21				

Table 9(c) Formation cross section of short-lived nuclei

En(MeV)	σ (barn)	δe(%)	δr(%)	δt(%)
14.87	1.41	8.1	4.3	9.2
14.64	1.39	6.3	4.3	7.6
14.35	1.32	7.0	4.3	8.2
14.01	1.24	10	4.3	11
13.70	1.32	7.2	4.3	8.4
13.40	1.06	6.1	4.3	7.5

.

⁵⁸ Ni(n,t) ⁵⁶ Co	· · · · · · · · · · · · · · · · · · ·		
En(MeV)	σ(µb)	δe (ξ)	δr (ξ)	δt(%)
14.87	30.7	18	4.7	19
14.63	24.8	19	4.7	20
14.43	17.8	21	4.7	26
14.16	11.6	25	4.7	26

Table 10 Formation cross section of long-lived nuclei

* based on the cross section of the ⁵⁸Ni(n,p)⁵⁸Co reaction

* error of the neutron energy is estimated as about 100 keV

⁹² Mo(n,n'a) ⁸⁸ Zr							
En (MeV)	σ(μЪ)	δe (ξ)	δr (ξ)	δt(%)			
14.87	151	13	3.0	14			
14.64	111	19	3.0	20			
14.38	94	16	3.0	17			
14.08	56	25	3.0	25			

* based on the cross section of the "Nb(n,2n)" Nb reaction

141 _{Pr(n,}	t) ¹³⁹ Ce	5		141 _{Pr(n}	,p) ¹⁴¹	Ce		
En(MeV)	σ(µb)	δe (ξ)	δr(%)	δt(%)	σ(µb)	.δe(%)	δr (%)	δt(%)
14.87	332	15	4.5	16	9.73	3.4	3.0	4.5
14.67	358	14	4.5	15	10.10	3.4	3.0	4.5
14.44	276	14	4.5	15	9.65	3.4	3.0	4.5
14.19	240	14	4.5	15	9.31	3.4	3.0	4.5
13.89	203	16	10	19	8.72	9.5	3.0	10
13.43	150	18	6.2	19	7.86	5.4	3.0	6.2

* The cross section of the (n,t) reaction is based on the ¹⁴¹Pr(n,p) reaction, and that of the (n,p) reaction on the ⁹³Nb(n,2n) reaction

JAERI-M 89-083

uclide	Production	γ-ray	^T 1/2	2
	reaction.	E _{(keV}) Present	Ref.11
13 _N	¹⁴ N(n,2n)	511	9.962(20)m	9.965(4)m
18 _F	19 _{F(n,2n)}	511	109.48(8)m 1	09.77(5)m
28 _{Al}	²⁷ Al(n, _Y) ²⁸ Si(n,p)	1779	2.239(9)m	2.2406(5)m
37 _s	37 _{Cl(n,p)}	3027	4.96(4)m	5.05(2)m
³⁸ к	³⁹ K(n,2n)	511	7.569(34)m	7.636(18)m
⁴² ĸ	⁴¹ K(n, _Y) from ⁴² Ar	1525	12.344(6)h	12.360(3)h
52 _V	55 _{Mn(n,α)} 51 _{V(n,γ)}	1434	3.757(5)m	3.75(1)m
62 _{Cu}	63 _{Cu(n,2n)}	511	9.722(39)m	9.74(2)m
94m _{ND}	93 _{Nb(n,y)}	871	6.232(28)m	6.26(1)m
116m _{In}	¹¹⁵ In(n,γ)	1294	54.12(6)m	54.15(6)m
	uclide 13_N 18_F 28_{Al} 37_S 38_K 42_K 52_V 62_{Cu} $94m_{Nb}$ $116m_{In}$	Production 13_N $14_N(n,2n)$ 18_F $19_F(n,2n)$ 28_{A1} $27_{A1}(n,\gamma)$ 28_{A1} $27_{A1}(n,\gamma)$ 37_S $37_{C1}(n,p)$ 38_K $39_K(n,2n)$ 42_K $41_K(n,\gamma)$ 52_V $55_{Mn}(n,\alpha)$ $51_V(n,\gamma)$ 62_{Cu} $94m_{Nb}$ $93_{Nb}(n,\gamma)$ $116m_{In}$ $115_{In}(n,\gamma)$	uclideProduction Y-ray reactionY-ray $E_{\gamma}(keV)$ 13 _N 14 _N (n,2n)51118 _F 19 _F (n,2n)51128 _{A1} 27 _{A1} (n, γ) 28 _{Si} (n, p)177937 _S 37 _{C1} (n, p)302738 _K 39 _K (n,2n)51142 _K 41 _K (n, γ) from152552 _V 55 _{Mn} (n, α) 51 _V (n, γ)143462 _{Cu} 63 _{Cu} (n,2n)51194m _{Nb} 93 _{Nb} (n, γ)871116m _{In} 115 _{In} (n, γ)1294	uclideProduction Y-ray reaction $T_{1/2}$ Present ^{13}N $^{14}N(n,2n)$ 511 $9.962(20)m$ ^{18}F $^{19}F(n,2n)$ 511 $109.48(8)m$ 10 $^{28}A1$ $^{27}A1(n,\gamma)$ $^{28}Si(n,p)$ 1779 $2.239(9)m$ ^{37}S $^{37}C1(n,p)$ 3027 $4.96(4)m$ ^{38}K $^{39}K(n,2n)$ 511 $7.569(34)m$ ^{42}K $^{41}K(n,\gamma)$ from ^{42}Ar 1525 $12.344(6)h$ ^{52}V $^{55}Mn(n,\alpha)$ $^{51}V(n,\gamma)$ 1434 $3.757(5)m$ ^{62}Cu $^{63}Cu(n,2n)$ 511 $9.722(39)m$ ^{94m}Nb $^{93}Nb(n,\gamma)$ 871 $6.232(28)m$ $116m_{In}$ $^{115}In(n,\gamma)$ 1294 $54.12(6)m$

Table 11 Result of half-life measurement

JAERI-M 89-083

Fig. 3 Relation between detection efficiency and source position on the detector

Fig. 4 Ratio of detection efficiencies at 0.5 cm at 5.0 cm

Fig. 5 Detection efficiency of the annihilation gamma-ray as functions of absorber thickness

JAERI-M 89-083

Fig. 6 Ratio of detection efficiencies for the 514 keV gamma-ray(⁸⁵Sr) and the annihilation gamma-ray

Fig. 7 An example of correction for the time variation of neutron flux

Fig. 8 Neutron spectrum at OKTAVIAN measured at the direction of 70° for the deuteron beam

Fig. 9 Contribution of scattered neutron with energy less than 10 MeV

Fig. 11 Total detection efficiency of vertical HpGe detector

Fig. 12 Relation between pile-up loss and counting rate

JAERI-M 89-083

Fig. 13 Correction for the source thickness

Fig. 14(a) Formation cross section of short-lived nuclei by 14 MeV neutron

Fig. 14(b) Formation cross section of short-lived nuclei by 14 MeV neutron

- 28 -

short-lived nuclei by 14 MeV neutron

JAERI-M 89-083

short-lived nuclei by 14 MeV neutron

Fig. 14(e) Formation cross section of short-lived nuclei by 14 MeV neutron

- 31 -

short-lived nuclei by 14 MeV neutron

Fig. 14(g) Formation cross section of short-lived nuclei by 14 MeV neutron

Fig. 14(h) Formation cross section of short-lived nuclei by 14 MeV neutron

Fig. 15(b) Formation cross section of long-lived nuclei by 14 MeV neutron

Fig. 16 Comparison of measured half-lives.

- 37 -

Ŷ	
energ	
eron	
deut	
ident	
le inc	
nd th	
gy ai	
ener	
utron	
T ne	ve).
he d-	elati
een t	rgy(r
betw	l enei
ttion	utror
Rela	gree, Inr:ne
来 1	eg:de e). E
付	gy, d lativ
	ener. m-re
	itron ev(no
	t deu ener
	5 5

	energy(relativ
deg:degree,	ve). Enr:neutron
incident deutron energy.	neutron energy(non-relativ
B	6

cn: neu	ורנסוו בויבו צז יויי					172	120 LeV		Ed=	140 keV	Ed=	150 keV
Ed=	100 keV	Ed=	110 keV	ц Е Ч	120 KeV		En MeVI	Enr(MeV)	deg	Enr(MeV)	deg	Enr(MeV)
deg	Enr(MeV)	deg	Enr (MeV)	deg	ENT (Mev)		14 8971	11.8718	0	14.9066	0	14.9404
0	14.7601	0	14.7987	D 9	14.8335	ט כ		2898 11	10	14,9034	'n	14.9371
i0	14.7574	0	14.7959	n I	14.8023	י ה ד		11 8595	10	14.8938	10	14.9271
10	14.7493	10	14.7874	10	14.8241				- -	14.8778	15	14.9106
15	14.7360	15	14.7734	15	14.8094	C 1	14.0044	14.0446	10	14.8557	20	14.8876
20	14.7174	20	14.7539	20	14.7890	02	1040.41) U 3 C	11 2225	25	14.8585
25	14.6939	25	14.7291	25	14.7631	25	14.8161	14.1409	n (1 c	0170111		14.8234
	14.6655	30	14,6993	30	14.7319	30	14.7836	14.7633	20		2 G 2 G	11.7876
) () (14.6326	35	14.6647	35	14,6957	35	14.7458	14.7255	0 0 7			0701.F1
) () ,	14 505.L	40	14.6256	40	14.6547	40	14.7031	14,6829	4 0	14.7101		11 6057
		- 1	14.5823	- 1	14.6094	45	14.6558	14.6356	10 7	14.6610	0 (7 li	
n (7		20	14 5359	0 C	14.5602	50	14.6044	14.5843	50	14.6077	5 1	+000.+T
010		5 16) (C) (C	11 5073	55	14.5493	14.5292	5 ວິ	14.5504	00	11/0.41
0 0 0 0	14.4010		1404047		14 4514	60	14,4910	14.4709	60	14.4898	60	14.5083
60	14.4105				1000011	5 5	14.4299	14.4098	65	14.4264	65	14.4425
65	14.3569	00				000	14.3665	14.3465	70	14.3606	70	14.3744
70	14.3015	21	14.31/0			- r	F102 F1	14.2814	75	14.2930	75	14.3043
75	14.2446	75	14.2572	c /	14,2034	- c		11 2150	80	14.2241	80	14.2330
. 80	14.1865	80	14.1963	80	14.2058	5 0			ο'α ο α	14.1545	85	14.1609
85	14.1278	85	14.1346	85	14.1414	с х х	14.10/9			2780 FI	06	14.0887
06	14.0689	06	14.0728	06	14.0768	06	14.1006	14,0807	ס ע ה כ	14.0041	, c , c	14.0168
) U 0 0	14.0102	95	14.0113	95	14.0125	95	14.0336	14,0138	с с Л	CT0.41		12.0150
	12 9572	100	13.9505	100	13.9490	100	13.9675	13.9477	100	13.946/		07+0.01 07+0.01
		105	8008 11	105	13.8867	105	13.9027	13.8830	105	13.8795		10.00.01
c 1 1			11 8199		13.8262	110	13.8396	13.8200	110	13.8142	110	13.8087
110	13.8400				10.000	115	13.7788	13.7593	115	13.7512	115	13.7435
115	13.7800	011				120	13.7207	13.7012	120	13.6910	120	13.6813
120	13.7356	120	10.1.01	07T	1011101	105	13.6657	13.6462	125	13.6340	125	13.6223
125	13.6872	C 7 T	13.0.21	C 7 T	1000 01	1 2 0	13.6142	13.5947	130	13.5806	130	13.5671
130	13.6419	130	13.0252	1 20			11 5664	13.5470	135	13.5312	135	13.5160
135	13.5999	135	13.2813	135	1000.01		11 5000	13 5035	140	13,4861	140	13.4694
140	13.5615	140	13.5411	140	8120.51) ti # •		12 1641	145	13.4455	145	13.4275
145	13.5270	145	13.5050	145	13.4842	0 0 7 1		10111011	150	13.4099	150	13.3906
150	13.4966	150	13.4732	150	13.4510		70++•0T) (C) (C) (C	12 2793	155	13,3590
155	13.4706	155	13.4460	155	13.4226	100		*>>*		12.2540	160	13.3329
160	13.4491	160	13.4234	160	13.3991	160	2080.01	10.2.51	201		165	13.3124
165	13.4322	165	13.4057	165	13.3807	165	13.3760	13.309			170	13.2977
170	13.4200	170	13.3930	170	13.3674	170	13.3623	13.3431		10.01 11110 1110	2 1 1	13 2888
	13.4127	175	13.3853	175	13,3594	175	13.3539	13.3348	0.1	13.3113		12.2000
	1010 21	180	13.3828	180	13.3568	180	13.3512	13.3320	180	13.3084		0007.01
N 0.1	>>T F - 0 T	· · ·										

•

付録 2 Detection efficiency of the Well-type Ge detector

付録 3 Gamma-ray spectra of samples irradiated by 14 MeV neutron

EXPLANATION

Sample: BN	⇒1)
Time: 600s-58s-600s	⇒②
•: ${}^{14}N(n, 2n){}^{13}N$	⇒3
Det.: 12% HPGe	⇒4)
Source Distance: 0.5cm	⇒(5)
Absorber: アクリル 1.0cm	⇒6

- ① Sample
- ② Irradiation time, cooling time, time of measurement
- ③ Reaction
- ④ Detector
- ⑤ Source distance of measurement
- 6 Absorber for measurement of positron
- * Neutron energy: 14.9 MeV

Fig. A.3.2

- 43 -

JAERI-M 89-083

- 44 -

- 45 --

JAERI-M 89-083

.

Fig. A.3.6

Source Distance: 0.5cm 1 : i ; : ŝ νэλιις and path of ł

JAERI-M 89-083

1500

1000

500

0

°0 ا

:

i

1

Ż

:

έ 17

ļ . Fig. A.3.7

- 47 -

3 17 2 2 2 8 3 J 05

V9,6keV

Ē

Ż

εO 1 68295 π

1000

ż

JAERI - M 89 - 083

. Det.: 12% HPGe Source Distance: 0.5cm Sample: ⁶²Ni(97%) Time: 180s-40s-180s ●: ⁶²Ni(n, p)^{62m}Co O: ⁶²Ni(n, p)^{62w}Co : 3500 -3000 -Fig. A.3.9 2500 1173.0kev •O 1163.3keV 1129.0keV ●O 2000 ε0168295 T ε 5 3 ft 2 6 1 8 6 1 0 5 0168695 1 τ ε ż Ż ا 0

- 49 -

JAERI-M 89-083

JAERI-M 89-083

JAERI-M 89-083

JAERI-M 89-083

- 56 -

Source Distance: 0.5cm Sample: ⁹⁷Mo(94%) Time: 180s-50s-180s ●: ⁹⁷Mo(n, p)^{97m}Nb Det.: 12% HPGe 1500 743.3kev 🔵 . . . Fig. A.3.18 1000 i I. ; 1 500 1 -I 1 0 20168195 1 έ z Z 0168195 1 έ °0 ſ

JAERI-M 89-083

Fig. A.3.19

JAERI-M 89-083

- 60 -

4000 İ U = 11.3 In(n, 2n)^{11.2 m}In
 U = 11.3 In(n, 2n)^{11.2 m}In
 L = 11.5 In(n, Y)^{11.6 m}In
 L = 12% HPGe Source Distance: 0.5cm Time: 900s-81s-900s Sample: In 3500 ▼ V9X6.2271 3000 ▼ ЛЭЯД 1201 176 М ▼ 1593.6keV ▼ 2500 1097.3keV ▲ 2000 ° ۱ <u>ا</u> 0 و ا 0ء ،0۱ ۱0،

Fig. A.3.21

.

表1 SI 基本単位および補助単位

擑		名称	記号
長	さ	メートル	m
質	撮	キログラム	kg
時	間	砂	s
U	流	アンペア	Α
熱力学派	盟度	ケルビン	K
物質	飍	モル	mol
光	度	カンデラ	cd
平面	角	ラジアン	rad rad
立 体	角	ステラジアン	sr

表3 固有の名称をもつ SI 組立単位

쁐	名称	記号	他の SI 単位 による表現
哥 波 数	ヘルツ	Hz	s ⁻¹
カ	ニュートン	Ν	m·kg/s²
王 カ , 応 カ	パスカル	Pa	N/m ²
エネルギー,仕事,熱量	ジュール	J	N∙m
L 率, 放射束	ワット	W	J/s
121 気 量 , 122 荷	クーロン	С	A⋅s
龜位, 竈庄, 起電力	ボルト	v	W/A
浄 電磁 容 量量	ファラド	F	C/V
電 気 抵 抗	オ ー ム	Ω	V/A
コンダクタンス	ジーメンス	s	A/V
滋 束	ウェーバ	Wb	V·s
滋束密度	テスラ	T	Wb/m²
インダクタンス	ヘンリー	Н	Wb/A
セルシウス温度	セルシウス度	°C	
光 束	ルーメン	lm	cd∙sr
照 度	ルクス	lx	lm/m²
放 射 能	ベクレル	Bq	s ⁻¹
吸 収 線 量	グレイ	Gy	J/kg
線 📠 当 🏦	シーベルト	Sv	J/kg

表2 SIと併用]される単位
----------	--------

名称	記号
分、時、日	min, h, d
度,分,秒	, , , т
リットル	1, L
r /	t.
電子ボルト	eV
原子質量単位	u

1 eV=1.60218 × 10^{-19} J 1 u=1.66054 × 10^{-27} kg

表4 SIと共に暫定的に 維持される単位

2	3 称		記	号
オンク	ベストロ・	- 4	Å	
バ	-	ン	b	,
バ	_	ル	ba	ir
ガ		N	G	al
+	<u>а</u>		C	i
レン	トゲ	ン	F	ł
ラ		۲	ra	ıd
V		ム	re	m

1 Å= 0.1 nm=10⁻¹⁰ m 1 b=100 fm²=10⁻²⁸ m² 1 bar=0.1 MPa=10⁵ Pa 1 Gal=1 cm/s²=10⁻² m/s² 1 Ci=3.7×10¹⁰ Bq 1 R=2.58×10⁻⁴ C/kg 1 rad = 1 cGy = 10⁻² Gy 1 rem = 1 cSv = 10⁻² Sv

表

表 5 SI 接頭語

倍数	接頭語	記号
1018	エクサ	E
1015	~ 9	Р
1012	テラ	Т
10°	ギガ	G
10 ⁶	メガ	М
10 ³	+ D	k
10²	ヘクト	h
10'	デカ	da
10-1	デシ	d
10^{-2}	センチ	с
10-3	ミリ	m
10-6	マイクロ	μ
10-9	ナノ	n
10-12	ピコ	р
10-15	フェムト	f
10-18	アト	а

(注)

- 表1-5は「国際単位系」第5版,国際 度量衡局 1985年刊行による。ただし、1 eV および1 uの値は CODATA の1986年推奨 値によった。
- 表4には海里、ノット、アール、ヘクタ ールも含まれているが日常の単位なのでこ こでは省略した。

barは、JISでは流体の圧力を表わす場合に限り表2のカテゴリーに分類されている。

 EC閣僚理事会指令では bar, barn および「血圧の単位」 mmHg を表2のカテゴリ ーに入れている。

カ	N(=10 ⁵ dyn)	kgf	lbf
	1	0.101972	0.224809
	9.80665	1	2.20462
	4.44822	0.453592	1
粘	度 1 Pa·s(N·s	s/m^2 = 10 P(37	アズ)(g/(cm·s))

们没	•	$1 \text{ rass}(\text{N} \cdot \text{s/m}) = 10 \text{ r}(3 \cdot \text{J} \times \text{J}(\text{g})(\text{cm} \cdot \text{s}))$
動粘度		$1 \text{ m}^{2}/\text{s} = 10^{4} \text{St}(\pi h - 2\pi)(\text{cm}^{2}/\text{s})$

圧	MPa(=10 bar)	kgf/cm ²	atm	mmHg(Torr)	lbf/in²(psi)
	1	10.1972	9.86923	7.50062 × 10 ³	145.038
カ	0.0980665	1	0.967841	735.559	14.2233
	0.101325	1.03323	1	760	14.6959
	1.33322 × 10⁻⁴	1.35951 × 10 ⁻³	1.31579 × 10 ⁻³	1	1.93368 × 10 ⁻²
	6.89476 × 10 ⁻³	7.03070 × 10 ⁻²	6.80460 × 10 ⁻²	51.7149	1

т	$J(=10^{7} \text{ erg})$	kgf• m	kW•h	cal(計量法)	Btu	ft • lbf	eV	1 cal = 4.18605 J (計量法)	
イル	1	0.101972	2.77778 × 10 ⁻⁷	0.238889	9.47813 × 10⁻⁴	0.737562	6.24150 × 10 ¹⁸	= 4.184 J (熱化学)	
キー・仕事	9.80665	1	2.72407 × 10 ⁻⁶	2.34270	9.29487 × 10 ⁻³	7.23301	6.12082 × 10 ¹⁹	$= 4.1855 \text{ J} (15 ^{\circ}\text{C})$	
	3.6 × 10 ⁶	3.67098 × 10 ⁵	1	8.59999 × 10 ⁵	3412.13	2.65522 × 10 ⁶	2.24694 × 1025	= 4.1868 J (国際蒸気表)	
野・	4.18605	0.426858	1.16279 × 10 ⁻⁶	1	3.96759 × 10 ⁻³	3.08747	2.61272 × 10 ¹⁹	仕事率 1 PS(仏馬力)	
熱量	1055.06	107.586	2.93072 × 10⁻⁴	252.042	1	778.172	6.58515 × 10 ²¹	$= 75 \text{ kgf} \cdot \text{m/s}$	
¥]	1.35582	0.138255	3.76616 × 10 ⁻⁷	0.323890	1.28506 × 10 ⁻³	1	8.46233 × 10 ¹⁸	= 735.499 W	
	1.60218 × 10 ⁻¹⁹	1.63377 × 10 ⁻²⁰	4.45050 × 10 ⁻²⁶	3.82743 × 10 ⁻²⁰	1.51857 × 10 ⁻²²	1.18171 × 10 ⁻¹⁹	1		

換

算

放	Bq	Ci	吸	Gy	rad	照	C/kg	R	線	Sv	rem
射	1	2.70270 × 10 ⁻¹¹	収線	1	100	射線	1	3876	画出	1	100
HE	3.7×10^{10}	1	1948.	0.01	1		2.58×10^{-4}	1	<u>sa</u>	0.01	1

(86年12月26日現在)

5