JAERI-M 89-129

$$\begin{split} \mathbf{N} & \mathbf{E} | \mathbf{A} | \mathbf{N} | \mathbf{D} | \mathbf{C} \in \mathbf{J} \quad & \mathbf{I} \mathbf{4} \mathbf{I} \quad \mathbf{U} \\ \mathbf{I} | \mathbf{N} | \mathbf{D} | \mathbf{C} \in \mathbf{J} | \mathbf{P} | \mathbf{N} \quad & \mathbf{128} \quad \mathbf{L} \end{split}$$

放射化断面積データファイル作成(I)

1989年9月

山室 信弘^{*}• 飯島 俊吾^{**}

日本原子力研究所 Japan Atomic Energy Research Institute

JAERI Mによっとは、日本原子力研究所が不定期に公司している研究報告書です 入手の問合わせば、日本原子力研究所技術情報部情報資料課。〒319 11天城県那珂郡東海村) もて、お申しこしください。なお、このほかに財団法人原子力弘済会資料センター。〒319 11天城 県町珂郡東海村日本原子力研究所内。て復写による実費進布をおこなっております

JAERI M reports are issued irregularly

Inquines about availability of the reports should be addressed to Information Division, Department of Technical Information, Japan Atomic Energy Research Institute, Tokai mura, Naka gun, Toataki ken: 319-11, Japan

C. Japan Atomic Energy Research Institute, 1989

編集 兼発征	r H	本境	子力	研究所
印格	N H	立高速	印刷	株式会社

放射化断面積データファイル作成(1)

日本原子力研究所東海研究所物理部 山室 信弘*• 飯島 俊吾**

(1989年8月30日受理)

原子炉や核融合炉での中性子照射に伴う放射性核種生成の評価を行うため、放射化断面 積データファイルの整備が必要であり、最終的には2,000種類以上の放射化断面積データ が収納される予定である。そのために放射化断面積データファイルの作成作業が1987年 度より開始されているが、今年度はその作業の一部として、NiからWに至る14元素を対象 に中性子断面積の評価と整備が行われた。中性子エネルギーは10⁻⁵eVから20MeVの範囲が 扱われている。

本報告書では、まず簡易入力核断面積システム(SINCROS)による計算方法と結 果の検討を述べ、次にJENDL-3Tから断面積を採用した場合の処理方法を述べる。 計算結果は実験データと比較され結果の有用性が示されている。放射化断面積データファ イルとしては、ENDF/B形式におけるファイル8,9および10が用いられ、計算結果が これらのファイル形式に従ってディスクに収められた。

本報告書は、日本原子力研究所との昭和63年度契約ならびにシグマ研究委員会で行われた成果をまとめたものである。

東海研究所:〒319-11 茨城県那珂郡東海村白方字白根2-4

^{・ ㈱}データ工学

^{••} 日本原子力事業佛総合研究所

Activation Cross Section Data File (I) Nobuhiro YAMAMURO^{*} and Shungo IIJIMA^{**}

Department of Physics Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

(Received August 30, 1989)

To evaluate the radioisotope productions due to the neutron irradiation in fission or fusion reactors, the data for the activation cross sections ought to be provided. It is planning to file more than 2000 activation cross sections at final. In the current year, the neutron cross sections for 14 elements from Ni to W have been calculated and evaluated in the energy range 10^{-5} to 20 MeV.

The calculations with a simplified-input nuclear cross section calculation system SINCROS were described, and another method of evaluation which is consistent with the JENDL-3 were also mentioned. The results of cross section calculation are in good agreement with experimental data and they were stored in the file 8, 9 and 10 of ENDF/B format.

Keywords · Radioisotope, Activation, Neutron Cross Section, SINCROS, ENDF/B

This work has been performed under the Research-in-Trust in 1988 fiscal year from Japan Atomic Energy Research Institute (JAERI).

- * Data Engineering, Inc.
- ** NAIG Nuclear Research Laboratory, Nippon Atomic Industry Group CO., Ltd.

İİ

目

.

1.		序		文		• 1
2.		計	₽ ·	評価の	の方法	2
3.		結	果の)検討		5
	3.	1	C	Cu,Zr	,Nb,Mo,Ag,Cd,In,Sn,Sb,Ta の断面積	5
	3.	2	N	li, Eu,	,Gd,Wの断面積	45
4.		理調	論計	算に依	吏用したJCLと放射化断面積のファイル化	68
	4.	1	H	目論計算	章に用いたJCLと入力及び出力デ−タ	68
	4.	2	龙	射化的	新面積のファイル化	74
	4.	3	7	アイハ	▶8, 9,10の格納形式	77
5.	i	む	す	び		78
謝				辞		78
参	ŧ	5	文	献		79
付				録	放射化反応リスト	80

Contents

1.	Introduction	1
2.	Method of calculation and evaluation for activation	
	cross section	2
3.	Examination of results	5
3.1	Cross sections for Cu, Zr, Nb, Mo, Ag, Cd, In, Sn, Sb	
	and Ta	5
3.2	Cross sections for Ni, Eu, Gd and W	45
4.	JCL for a nuclear model calculation and production of file	
	for activation cross sections	68
4.1	JCL, input and output data for nuclear model calculations	68
4.2	Production of file for activation cross sections	74
4.3	Format of files 8, 9 and 10	77
5.	Summary	78
Ackno	owledgments	78
Refe	rences	79
Apper	ndix list of activation reactions	80

.

1. 序 文

原子炉及び核融合炉における中性子照射に伴って生ずる,放射性核種生成の評価を行うため, 放射化断面積データファイルの整備が進められている。今年度は、この整備作業の一環として 14元素に対する放射化断面積の評価が行われた。

対象となった元素はNi, Cu, Zr, Nb, Mo, Ag, Cd, In, Sn, Sb, Eu, Gd, Ta, Wであり, これらの元素のすべての安定同位体を標的として,中性子反応により放射化されて生ずる核種 の生成断面積を計算した。一部の核種では長半減期の放射性核種に限ったものもある。また, 生成核種の中には,ほとんど総ての核異性体を含んでいる。入射中性子エネルギーは10⁻⁵ eV から20 MeV まである。

中性子断面積の理論計算には、主に簡易入力核断面積計算システム第II版(SINCROS-II) が用いられた。計算の結果は実験データと比較され、計算結果の信頼性が検討された。

この計算システムは核異性体生成断面積が直接計算され、表示される点で本作業に極めて有 用なものであった。核異性体生成のない核種又は核異性体生成反応の重要度の低い核種につい ては、JENDL-3¹⁾より直接放射化断面積を引用したものもある。

以下第2章では放射化断面積の計算と評価の方法,第3章では実験データとの比較による結果の検討を述べる。また,第4章で理論計算に使用したJCLと入力データ及びファイル化の 方法を挙げ,第5章に本作業を終ってのむすびを述べる。

2. 計算・評価の方法

JENDL特殊目的ファイルの一つとして、放射化断面積ファイルの作成が進められているが、 本年度も昨年度に引続き、14元素の中性子反応で生ずる放射化断面積の計算が実施された。

放射化断面積の中には多くの核異性体生成断面積が含まれており、そのため以下に述べるように核断面積計算プログラムに改良が加えられ、精度の高い計算結果を求めることが目標とされた。本章では先ず計算・評価の方法のうち主にSINCROS-IIについて述べる。計算の方法 は対象元素により差違があるが、ここでは14元素中の多くの核種の計算に当たり用いられた方 法を概観する。

中性子反応によって生ずる放射化断面積の数は数千反応に及ぶ、これら多数の反応断面積を 精度よく求めるためには、核断面積計算に際し詳細計算コードの使用法の簡素化をはかる必要 がある。そのため1987年以来簡易入力核断面積計算システムの開発が進められ、その第1版 (SINCROS-I)については報告が行われている。²⁾この第1版は、既に公開されいくつか のグループによって利用されており、今回の計算に際しても用いられた。しかし、本年度は上 述14元素中の10元素の計算では、SINCROS-Iの改良版であるSINCROS-IIが採用されて いる。

SINCROS-II^{*)}の構成をFig.2.1 に挙げる。SINCROS-II が SINCROS-Iと比べ改良された主な点は次の 2 つである。

- ELIESE³⁾-GNASH⁴⁾ 結合プログラム(EGNASH) が(a)入力パラメータがさらに 少数となり,(b)中性子及び陽子光学ポテンシャルがそれぞれ2種類内蔵されて選択ができ るようになり,(c)必要な入力を行えば核異性体生成断面積が直接表示されることなどであ る。今後このプログラムをEGNASH2と略称する。
- (2) EGNASH2の計算結果は従来のファイル44のみでなくFig.2.1 に見るようにファイル 10,12,14などが必要に応じて保存される。このうちファイル10は計算された各エネルギー 点ごとに粒子ならびにガンマ線の放出スペクトルが含まれている。現在その結果の一部は 14 MeV 中性子によるDDXの実験データとの比較などに用いられているが、近い将来ケ ルマ因子などの計算に利用する予定である。

ファイル12は反応断面積の一覧で,核異性体生成断面積を含む。このファイルを処理してENDF/Bフォーマットで放射化断面積を収納するファイル10を直接作成できるプログ ラムXTOB10を開発し本作業に用いた。

ファイル14はCASTHYコード⁵⁾用の入力データが出力される。CASTHYによる(n, r), (n, n')反応などの検討が必要の場合利用できる。

ファイル44は従来のものでGAMFILコード⁶⁰によるENDF/Bの一般ファイルが作成 できるのは変わりがない。

*) SINCROS-Ⅱの詳細については別に報告の予定である。

JENDL-3¹⁾ファイルは、ようやく編集を終え間もなく公開される。

そこで核異性体断面積を含まない核種や、核異性体断面積の系統性が見出しうるものでは JENDL-3 の結果をそのまま利用できる。今回の評価で反応の全断面積をJENDL-3 より とり、核異性体生成をGNASH計算から求めた比から求めたものがある。従ってその評価・計 算の方法は改めて述べる必要はないと思われる。

このような計算・評価の方法の違いは後に述べるデータのファイル化の場合にも,その処理 法の違いとなってくる。今回はこれらの間の統一をとらず,それぞれの元素ごとに適当と思わ れる方法を採用した。

第3章でこれらの計算結果の検討を述べるが、そのうち3.1に挙げた元素はSINCROS-II によって計算したものであり、3.2のものはJENDL-3の結果を利用してまとめたものであ る。 SINCROS-II

Fig. 2.1 Composition of SINCROS-II

3. 結果の検討

計算の方法は第2章でも述べた通り、簡易人力核断面積計算システム第II版(SINCROS II)によって行ったものと、GNASHコード⁴⁾による核異性体生成比の計算と、JENDL~3¹⁾ に含まれるそれぞれの反応の全断面積を用いて行ったものとに分類される。そこで第3章でも まず3.1でSINCROS-II での計算結果を検討し、つづいて3.2でJENDL-3から引用し て行った方法の結果を検討する。

3.1 Cu, Zr, Nb, Mo, Ag, Cd, In, Sn, Sb, Taの断面積

ここで述べようとしている10元素の場合,SINCROS-II を用い,核異性体生成断面積を 含む多くの放射化断面積を計算し,直接実験結果との比較を行なっている。SINCROS-II ではTable,3.1.1のような核異性体に関するデータがあれば,これにより生成核種と準位の番 号を知り、これを入力することによって核異性体生成断面積の励起関数が直ちに与えられる。 第4章でこのような入力及び出力形式について述べる。以下元素ごとに計算結果と実験データ との比較・検討について主要な点を与える。

3.1.1 Cu の断面積

⁶³Cu 及び⁶⁵Cuの(n,α)反応によってそれぞれ⁶⁰Co(5.3年)及び⁶²Co(1.5分)を生ずる か, ⁶⁰Coと⁶²Coには核異性体がある。そこでこれらの核異性生成断面積も含む反応断面積の 計算を行ない, 基底状態生成断面積と区別して表示したのがFig_3.1.1 及び2に示されている。 従来の計算では基底状態及び核異性体生成を合計した(n,α)反応の全断面積のみ与えられて いた。今回は実験データと対応させる場合にも、これらの状態ごとの生成量と比較することが できる。

⁶⁰Co 及び ⁶²Co の核異性体生成データとしては加藤らの実験がある。⁷⁾実験結果はまだ予備 的なものであるが、計算値との一致は概ね良好である。⁶³Cu (n, α)反応の全断面積に関する Paulsen⁸⁾の実験は 10 MeV 付近で計算よりかなり高い値を与えている。Winkle⁹⁾の実験 値から考えても、再測定が必要なものと判断し、計算結果の修正は実行していない。

3.1.2 Zr の断面積

Zrの同位体^{90,91,92,94,96}Zrに対する計算のうち、主なものについてFig.3.1.3 から11まで に示してある。

⁹⁰Zr(n,2n)⁸⁹Zr では全断面積及び核異性体生成断面積で実験データと比較されている。 全断面積の14~15MeV で計算値がやや低いが、この計算によって⁸⁹Zr の基底状態(78.4 時間)の生成断面積が直接与えられている。⁹⁰Zr(n,p)⁹⁰Yでは1kedaらの核異性体生成断面 積(3.19時間)の実験データ¹⁰⁾との一致が良好のところから、より長半減期の基底状態(64.0 時間)の生成断面積の計算値の信頼性が高いものと考えられる。このような例は,⁹¹Zr(n, p) ⁹¹Y,⁹¹Zr(n, np)⁹⁰Yなど多数あり,SINCROS-II による計算法の特徴の一つであり, 従来の方法に比し格段の長所を持つものと言える。

基底状態生成のみを対象とする、³²Zr(n,p)⁹²Y(3.54時間),⁹⁴Zr(n p)⁹⁴Y(18.7m), ⁹⁴Zr(n,α)⁹¹Sr(9.5時間)などについても実験との一致が良好なことは、Fig. 3.1.8,10, 11に見る通りである。

SINCROS の計算ではすべて主成量を与えているので、例えば⁹²Zr(n, np)⁹¹Y の断面 積の中には⁹²Zr(n, d)⁹¹Y も含まれている。このような2粒子放出を含む反応断面積の場合 はFig. 3.1.9 に示すように実験との不一致を示す例も見られる。これらの例については今後 検討を要すると考えているが、断面積の絶対値が小さいことでもあり、差し当り実験値に規格 化することはすべて見送っている。

3.1.3 Nb の断面積

Fig. 3.1.12 及び 13 に⁹³Nb(n, 2n)⁹²Nb 及び⁹³Nb(n, α)⁹⁰Y 反応断面積の計算値と*長* 験データとの比較を示した。⁹³Nb(n, 2n)の全断面積ではしきい値から 12 MeVまで Frehaut¹¹⁾の結果との一致がやや悪い。Frehautが 1975 年Washington Conference に発表した論文中の数値¹²⁾は計算との一致が良いのであるが, 1980 年に改めて示したもので は数値が低くなったといういきさつがある。断面積の副標準値としても使われる⁹³Nb(n, 2n) ^{92m}Nb 反応の結果は全般的に実験値との一致は良い。

⁹³Nb(n, α)⁹⁰Yでは実験とやや異なるエネルギー依存性を示す。ただ核異性体生成断面積 では、15 MeV 付近での Ikedaらの データ¹⁰⁾に一致している。

3.1.4 Moの断面積

すべての同位体について放射化断面積が与えられているが、そのうち実験データが比較的新 しく求められているものについて Fig. 3.1.14 から 26まで数多く計算結果が示されている。Mo の場合も 1kedaら¹⁰⁾ によって求められた 13~15 MeV での値が多く引用されている。 Fig. 3.1.15 の ⁹² Mo (n, p) ⁹² Nb, Fig. 3.1.16 の ⁹² Mo (n, α) ⁸⁹ Zr,

- Fig. 3.1.17 \mathcal{O}^{95} Mo(n, p) ⁹⁵ Nb, Fig. 3.1.18 \mathcal{O}^{96} Mo(n, p) ⁹⁶ Nb,
- Fig. $3.1.190^{96}$ Mo $(n, np)^{95}$ Nb, Fig. $3.1.200^{97}$ Mo $(n, p)^{97}$ Nb,
- Fig. $3.1.21 \mathcal{O}^{97} Mo(n, np)^{96} Nb$, Fig. $3.1.22 \mathcal{O}^{98} Mo(n, p)^{98} Nb$,
- Fig. $3.1.23 \mathcal{O}^{98}$ Mo(n, np)⁹⁷ Nb, Fig. $3.1.24 \mathcal{O}^{98}$ Mo(n, α)⁹⁵ Zr.
- Fig. 3.1.25 \mathcal{O}^{100} Mo (n, 2n)⁹⁹ Mo, Fig. 3.1.26 \mathcal{O}^{100} Mo(n α)⁹⁷ Zr,

などほとんどすべての同位体に及んでおり、これらの反応にかかわる核種の準位密度パラメー タなどの決定に重要な寄与をしている。その結果として計算と実験の一致は (n, np)反応など を除けば、極めて良好である。これらの図中には核異性体生成と基底状態生成とが必要な場合 すべて区別して実験データと比較されていることに注意してほしい。

Fig. 3.1.14 に示した⁹²Mo(n,2n)⁹¹Moの断面積には興味ある結果の一つが与えられている。図で見る通り⁹²Mo(n,2n)反応の全断面積ではかなり似间の異なる実験データが与えら

れているが、計算ではそのうち低い値を与えている Abboud¹³⁾らの結果と一致することを示している。

3.1.5 Ag の断面積

Agの計算のうち実験データとの比較が, Γig. 3.1.27 から 30までに与えられている。 Table 3.1.1 に示されているようにこの質量領域では核異性体生成反応はますますその数を加えてお り, 半減期の短いものも加えれば¹⁰⁷Ag にも¹⁰⁹Ag にもそれぞれ 7 種の反応がある。実験デー タは 14 MeV 付近を除くと, 量・質とも劣っている。従って図て見るように計算との間にまず まずの一致は見られるものの, 判断の難かしいものもある。

3.1.6 Cd の断面積

Cd には質量数106,108,110,111,112,113,114,116の8同位体があり,核異性体生成 反応は合計28反応に及ぶ。その内容はTable_3.1.1 に詳しい。計算と実験との比較はFig_ 3.1.31から37に示してある。Fig_3.1.31では¹⁰⁶Cd(n,2n)¹⁰⁵Cd 反応断面積が⁹²Mo(n,2n) ⁹¹Mo 反応の場合と同じように低い値を与える実験値を支持していることがわかる。(n,2n) 断面積の実験が時々過大な値を与える原因が何にあるのか調べてみると面白い。Fig_3.1.32 の¹⁰⁶Cd(n,p)¹⁰⁶Agの場合,実験データとの一致は非常に悪い。再検討を要すると思うが, 直ちに実験が正しいとの判断もできない。その他の図示の反応では両者の一致はおおよそ良好 である。実験データが少ないか,無いために比較の結果が示されていない多くの反応があるの は言うまでもないが,計算は一貫した整合性を保っており,大きな誤りはないものと考えてい る。

3.1.7 In の断面積

¹¹³Inと¹¹⁵Inの反応でも12の核異性体生成反応が含まれる。与えられている実験データが 少ないが、14 MeV 付近における実験値は計算に際し参照されている。両同位信に対する(n, 2n)反応のみ、Fig. 3.1.38 及び 39 で実験データとの比較が示されている。¹¹⁵Inでは(n, 2n)反応による核異性体生成断面積つ実験の中には、計算値よりかなり低い値を示すものがあ る。これも実験の内容など検討すべきものの一つである。

3.1.8 Sn の断面積

Sn は質量数112,114,115,116,117,118,119,120,122,124 と10回位体があり,諸元 素中同位体数は最大である。そのため、これらの核種の中性子反応は多数あり、この中に核異 性体生成反応も Table 3.1.1 に挙げたもので48に達する。ただし、中には残留核が安定な核の 場合も含まれ、放射化断面積の計算の対象にならないものもあるが、計算では全反応を同時に 扱うことが必要であり、結果としてすべての反応断面積が与えられている。結果はFig.3.1.40 から51までの中で、実験データと比較されている。ここでも 1kedaら¹⁰⁾の実験結果かしばしば 引用されており、計算での準位密度パラメータなどの決定に利用されている。しかし、中には Fig. 3.1.42 に示すように¹¹⁴Sn(n,p)^{114m}In反応断面積では計算と実験とのエネルギー依 存性が反対になるものがある。また、¹²⁰Sn(n, α)¹¹⁷Cd反応の場合には基底状態生成(2.49h) と核異性体生成(3.36h)の断面積が実験では核異性体生成の方がやや大きいのに、計算では逆 になるなど検討を要する興味ある結果もある(Fig. 3.1.49,50)。さらに二つの核異性体生成 が同時に生ずる¹¹⁶Sn(n, p)¹¹⁶In反応などのような場合には計算は二つの核異性体生成を別 々に扱い、合計して実験値と比較されている(Fig. 3.1.43 及び46)。Fig. 3.1.51 では¹²⁴Sn (n, 2n)¹²³Snの計算が示されているが、半減期40分の核異性体生成断面積が Ikedaらの実験 データ¹⁰⁾と非常に良い一致を示すところから、長半減期(129.2d)の基底状態生成断面積の計 算結果の信頼性はかなり高いものと判断できる。

3.1.9 Sb の断面積

Fig. 3.1.52 及び53で二つの同位体¹²¹Sbと¹²³Sbの(n,2n)反応の結果を示す。¹²¹Sb (n,2n)での基底状態生成断面積では16 MeV 以上で計算値が高くなり,長半減期(5.76d)の 核異性体生成断面積が全般に低いなど検討すべき事項が残されている。(n,2n)反応以外では 参照すべき実験データが少ない。この元素でも核異性生成反応は13反応あり,すべて計算結果 が与えられている。

3.1.10 Ta の断面積

Fig. 3.1.54 及び 55 に (n, 2n) 及び (n, p) 反応の結果について実験データと比較されてい る。¹⁸¹Ta の基底状態と核異性体のスピンの値は文献によって異なる場合があるが、ここでは ENSDFの示すように基底状態のスピンを 1^{*} 、核異性体状態を 9⁻ とした。Prestwood¹⁴⁾, Borman¹⁵, Ikeda¹⁰⁾はいずれも 1⁺状態を核異性体として実験結果を発表しているが、ここで はこれを基底状態生成断面積として取扱い計算と比較している。一致の程度は Ikedaのデータ がやや高い値を示すのを除き、良好である。 (n, 2n) 全断面積では10MeV 付近で Frehant¹⁶⁾ との差違がある。 (n, 3n) 断面積も実験との一致は良い。 (n, p) 反応の場合,計算値はや や低いようである。 1

ì

			Isomer State			Ground State	
Nuclide	Reaction	Level No.	E _x (MeV)	^T 1/2	J	^T 1/2	J
27 _{Al}	(n,2n) ²⁶ Al	2	0.2284	6.34s	0+	7.2E05y	5+
⁴⁵ Sc	(n,2n) ⁴⁴ Sc	5	0.2712	58.6h	6+	3.93h	2+
⁵⁴ Fe	(n,2n) ⁵³ Fe (n,t) ⁵² Mn	(21) 2	3.0407 0.3777	2.58m 21.1m	19/2 ⁻ 2 ⁺	8.51m 5.59d	7/2 ⁻ 6 ⁺
59 _{Co}	(n, 1) ⁶⁰ Co (n,2n) ⁵⁸ Co	2 2	0.0586 0.0249	10.48m 9.1h	2+ 5+	5.272y 70.91d	5 ⁺ 2 ⁺
58 _{Ni}	(n,p) ⁵⁸ Co	2	(see abo	ove)			
60 _{Ni}	(n,p) ⁶⁰ Co	2	(see abo	ove)			
61 _{Ni}	(n,np) ⁶⁰ Co	2	(see abo	ove)			
62 _{Ni}	(n,p) ⁶² Co	2	0.022	13.9m	5 †	1.50m	2+
63 _{Cu}	(n, a) ⁶⁰ Co (n, 2na) ⁵⁸ Co	2 2	(see abc (see abc	vve) vve)			
65 _{Cu}	(n, a) ⁶² Co (n, 2na) ⁶⁰ Co	2 2	(see abo (see abo	ve) ve)			
⁶⁸ Zn	(n,7) ⁶⁹ Zn (n,p) ⁶⁸ Cu	2 4	0.4387 0.7216	13.8h 3.8m	9/2 ⁺ 6 ⁻	57m 31s	1/2 ⁻ 1 ⁺
⁷⁰ Zn	(n, 7) ⁷¹ Zn (n, 2n) ⁶⁹ Zn (n, p) ⁷⁰ Cu	2 2 3	0.157 (see abo 0.140	3.97h ve) 46s	9/2 ⁺ 4 ⁻	2.4m 5s	1/2 ⁻ 1 ⁺

Table 3.1.1 Table of Isomer States

to reasonal and a

Table 3. 1. 1 (Continued)

			Isomer	State		Ground S	State
Nuclide	Reaction	Leve No.	L E _x (MeV)	^T 1/2	J	^T 1/2	J
90 _{Zr}	$(n,n')^{90}$ Zr	4	2.319	0.809s	5	sta.	0+
	$(n, 2n)^{89}$ Zr	2	0.5878	4.18m	$1/2^{-}$	78.4h	9/2+
	$(n,p) \frac{90}{9}$	3	0.6820	3.19h	7+	64.0l.	2
	$(n, np)^{89}$ Y	2	0.9092	15.7s	9/2+	sta.	1/2-
	(n,α) ⁸⁷ Sr	2	0.3884	2.80h	1/2-	sta.	9/2+
91 _{Zr}	$(n, 2n)^{90}$ Zr	4	(see ab	ove)			
	$(n,p)^{91}Y$	2	0,5556	49.7m	9/2+	58.5d	1/2-
	(n,np) ⁹⁰ Y	3	(see abo	ove)			, _
92 _{Zr}	(n.np) ⁹¹ Y	2	(see abo	ove)			
93 _{Nb}	(n, 7) ⁹⁴ Nb	2	0.04095	6.26m	3+	2.0E04y	6+
	(n,n') ⁹³ Nb	2	0.03082	15.8y	1/2-	sta.	9/2+
	(n,2n) ⁹² Nb	2	0.1355	10.13d	2+	3.7E07y	7+
	$(n, 3n)^{91}$ Nb	2	0.1045	62d	1/2-	7.0E02y	9/2+
	$(n, \alpha)^{90} Y$	3	(see abo	ove)		-	·
	(n,na) ⁸⁹ Y	2	(see abc	ריא)			
94 _{Nb}	(n,7) ⁹⁵ Nb	2	0.2357	3.61d	1/2-	34.98d	9/2 ⁺
92 _{Mo}	(n, 1) ⁹³ Mo	(13)	2.4252	6.9h	21/2+	3.5E03y	5/2 ⁺
	(n,2n) ⁹¹ Mo	2	0.6530	65s	1/2-	15.5m	9/2 ⁺
	(n,p) ⁹² Nb	2	(see abo	ve)			
	(n,np) ⁹¹ Nb	2	(see abo	ve)			
	$(n, \alpha) = \frac{89}{2r}$	2	(see abo	ve)			
94 _{Mo}	(n,2n) ⁹³ Mo	(13)	(see abo	ve)			
	(n,p) ⁹⁴ Nb	2	(see abo	ve)			
95 _{Mo}	(n.p) 95 _{Nb}	2	(see abo	ve)			
	$(n,np)^{94}Nb$	2	(see abo	ve)			
96 _{Mo}	(n,np) ⁹⁵ Nb	2	(see abo	ve)			
97 _{Mo}	(n,p) ⁹⁷ Nb	2	0.7434	54s	1/2-	73.6m	9/2+

والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع وال

An inclusion of a state of the

.

			Isomer	State	Ground State		
Nuclide	Reaction	Level No.	E _x (MeV)	^T 1/2	J	^T 1/2	J
98 _{Mo}	(n,p) ⁹⁸ Nb	2	0.084	51m	5 †	2.8s	1+
	(n,np) ⁹⁷ Nb	2	0.7434	54s	1/2	73.6m	9/2+
100 _{Mo}	(n,np) ⁹⁹ Nb	2	0.3653	2.6m	1/2-	15s	9/2 ⁺
	(n,2np) ⁹⁸ Nb	2	(see abo	ove)			
107 _{Ag}	(n, r) ¹⁰⁸ Ag	3	0.10947	1.3E02y	6+	2.42s	1+
	$(n, n')^{107} Ag$	2	0.0931	44.2s	7/2+	sta.	1/2-
	(n,2n) ¹⁰⁶ Ag	2	0.08963	8.5d	6 †	24.Om	1+
	(n,p) ¹⁰⁷ Pd	3	0.2149	20.9s	11/2-	6.5E06y	5/2 ⁺
	$(n, \alpha)^{104}$ Rh	4	0.12896	4.36m	5 +	41.8s	1+
	(n,na) ¹⁰³ Rh	2	0.03975	56.12m	7/2+	sta.	1/2-
109 _{Ag}	(n, r) ¹¹⁰ Ag	3	0.1176	249.8d	6 †	24.6s	1+
	(n,n') ¹⁰⁹ Ag	2	0.08803	39.8s	7/2+	sta.	1/2
	(n,2n) ¹⁰⁸ Ag	3	(see abo	ve)			
	(n,p) ¹⁰⁹ Pd	3	0.1890	4.68m	11/2	13.43h	5/2 +
	$(n, \alpha) \frac{106}{Rh}$	2	0.14	2.18h	6+	29.8s	1+
	(n,na) ¹⁰⁵ Rh	2	0.12978	45s	1/2-	35.4h	7/2+

•=----

Table 3.1.1 (Continued)

:

Table	3. 1.	1 (Contin	ued)

	Isomer State			Ground State			
Nuclide	Reaction	Level No.	E _x (MeV)	^T 1/2	J	^T 1/2	J
106 _{Cd}	(n,p) ¹⁰⁶ Ag	2	0.08963	8.5d	6+	24.Om	1+
	$(n, np)^{105} Ag$	2	0.02547	7.23m	7/2+	41.3d	1/2
108 _{Cđ}	$(n,p) \frac{108}{Ag}$	3	0.10947	1.3E02y	6 ⁺	2.42m	1+
	(n,np) ¹⁰⁷ Ag	2	0.0931	44.2s	7/2+	sta.	1/2
110 _{Cd}	(n, r) ¹¹¹ Cd	4	0.3962	48.6m	11/2	sta.	1/2+
	(n,p) 110 _{Ag}	3	0.1176	249.8d	6 ⁺	24.6s	1+
	$(n, np)^{109} Ag$	2	0.08803	39.8s	7/2+	sta.	1/2
	(n,α) 107 _{Pd}	3	0.2149	20.9s	11/2	6.5E06y	5/2+
111 _{Cd}	$(n, n')^{111}$	4	(see abo	ove)			
	(n,p) ¹¹¹ Ag	2	0.05982	64.85	$7/2^{+}$	7.47d	1/2-
	$(n, np)^{110} Ag$	3	(see abc	ove)	.,=		-/-
	$(n,n\alpha)^{107}$ Pd	3	(see abo	ove)			
112 _{Cd}	(n, r) 113 _{Cd}	2	0.2636	14.1v	$11/2^{-}$	9.0E15v	1/2+
ů.	$(n, 2n)^{111}$ Cd	4	(see abo	ve)	,-	0.02103	-/-
	(n, np) ¹¹¹ Ag	2	(see abo	ve)			
	$(n, \alpha)^{109} Pd$	3	0.18899	4.69m	11/2	13.43y	5/2 ⁺
113 _{Cd}	$(n,n')^{113}$ Cd	2	(see abo	ve)			
	$(n,p)^{113}Ag$	2	0.0432	68.7s	7/2+	5.3h	$1/2^{-}$
	(n,na) ¹⁰⁹ Pd	3	(see abo	ve)	-		
114 _{Cd}	(n, r) ¹¹⁵ Cd	2	0.181	44.6d	11/2	53.5h	1/2 ⁺
	$(n, 2n)^{113}$ Cd	2	(see abo	vel	, -		-, -
	$(n, np)^{113}Ag$	2	(see abo	ve)			
	(n,α) ¹¹¹ Pd	3	0.1722	5.5h	11/2-	22m	5/2*
116 _{Cd}	(n, t) 117 _{Cd}	3	0.1364	3,36h	11/2-	2.49h	1/2+
~-	$(n, 2n)^{115}$ Cd	2	(see abo	ve)	, -		_, _
	(n,p) 116Ag	2	0.081	10.4s	()	2.68m	()
	$(n, np)^{115}Ag$	2	()	18.0s	$7/2^+$	20m	1/2
	(n, α) ¹¹³ Pd	2	()	89.0s	()	98s	()

1

			Isomer	State	Ground State		
Nuclide	Reaction	Level No.	E _x (MeV)	^T 1/2	J	^T 1/2	J
113 _{In}	(n, r) ¹¹⁴ In	2	0.1903	49.51d	5+	71.9s	1+
	(n,n') ¹¹³ In	2	0.3917	1.6851h	1/2-	sta.	9/2+
	(n,2n) ¹¹² In	2	0.1565	20.9m	4 +	14.4m	1+
	(n,p) ¹¹³ Cd	2	0.2636	14.1y	11/2	9.0E15y	1/2+
	$(n, \alpha) \frac{110}{Ag}$	3	0.1176	249.8d	6+	24.6s	1 ⁺
	(n,na) ¹⁰⁹ Ag	2	0.08803	39.8s	7/2+	sta.	1/2
115 _{In}	(n, i) 116 _{In}	5	0.2897	2.18s	8~	14.1s	1+
		2	0.1273	54.15m	5+		
	(n,n') ¹¹⁵ In	2	0.3362	4.486h	1/2-	sta.	9/2 ⁺
	(n,2n) ¹¹⁴ In	2	(see abo	ove)			
	(n,p) ¹¹⁵ Cd	2	0.181	44.6d	11/2	53.5h	1/2+
	(n,na) ¹¹¹ Ag	2	0.05982	64.8s	7/2+	7.47d	1/2-

Table 3.1.1 (Continued)

بالاستان المراجع المحرور ومعينهم ومعارضه والمراجع المراجع

.

A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF

i.

Table	3. 1. 1	(Continued))
+u or c	0. 1. 1	(Continued)	1

		Isomer State		Ground State			
Nuclide	Reaction	Leve] No.	L E _x (MeV)	^T 1/2	J	^T 1/2	J
¹¹² Sn	(n,7) ¹¹³ Sn	2	0.0774	21.4m	7/2+	115.1d	1/2+
	$(n,p) \frac{112}{1n}$	2	0.1565	20.9m	4+	14.4m	1+
	(n,np) ¹¹¹ In	2	0.5368	7.7m	1/2	2.806d	9/2+
114 _{Sn}	(n,2n) ¹¹³ Sn	2	(see abc	ove)			
	(n,p) ¹¹⁴ In	2	0.1903	49.51d	5+	71.9s	1+
	(n,np) ¹¹³ In	2	0.3917	1.658h	1/2	sta.	9/2+
	(n, a) ¹¹¹ Cd	4	0.3962	48.6m	11/2-	sta.	1/2+
¹¹⁵ Sn	(n,p) ¹¹⁵ In	2	0.3362	4.486h	1/2-	sta.	9/2+
	$(n, np)^{114}$ In	2	(see abo	ve)	·		•
	(n,na) ¹¹¹ Cd	4	(see abo	ve)			
116 _{Sn}	(n, I) ¹¹⁷ Sn	3	0.3146	13.6d	11/2-	sta.	1/2+
	(n,p) ¹¹⁶ In	5	0.2897	2.18s	8-	14.1s	1+
		2	0.1273	54.15m	5+		-
	$(n, np)^{115}$ In	2	(see abo	ve)			
	(n,α) ¹¹³ Cd	2	0.2636	14.1y	11/2-	sta.	1/2+
117 _{Sn}	$(n,n')^{117} sn$	3	(see abo	ve)			
•	(n,p) 117 ₁	2	0.3153	116.5m	$1/2^{-}$	43.1m	9/2+
	$(n,np)^{116}$	5	(see aboy	ve)	-/-	1011	0,2
	(,	2	(see aboy	ve)			
	(n,na) ¹¹³ Cd	2	(see abov	ve)			
¹¹⁸ Sn	(n, r) ¹¹⁹ Sn	3	0.0895	293d	11/2	sta.	1/2+
	$(n, 2n)^{117}$ Sn	3	(see aboy	/e)	-•		
	$(n,p)^{118}$ In	4	0.20	8.5s	8-	5.0s	1+
	(/1/)	2	0.060	4.45m	5+		
	$(n, np)^{117}$ In	2	(see abov	ve)			
	(n, α) ¹¹⁵ Cd	2	0.181	44.6d	11/2-	53.5h	1/2+
119 _{Sn}	$(n,n')^{119}$ Sn	3	(see abov	re)			•
	$(n,p)^{119}$ In	2	0.3114	-, 18,0m	$1/2^{-}$	2.4m	9/2+
	$(n,np)^{118}$ In	4	(see abov	re)	-, -		
	·················	2	(see abov	re)			
	(n,na) ¹¹⁵ Cd	2	(see abov	e)			

- 14 -

ę i

			Isomer State		Ground State		
Nuclide	Reaction	Level No.	E _x (MeV)	^T 1/2	J	^T 1/2	J
120 _{Sn}	$(n, r) \frac{121}{5n}$	2	0.0063	55y	11/2	27.0h	3/2+
	(n,2n) ¹¹⁹ Sn	3	0.0895	293d	11/2	sta.	1/2+
	(n,p) ¹²⁰ In	3	()	47.3s	8-	3.08s	1+
		2	()	46.2s	5+		
	(n,np) ¹¹⁹ In	2	0.3114	18.Om	1/2-	2.4m	9/2+
	(n,α) ¹¹⁷ Cd	3	0.1364	3.36h	11/2	2.49h	1/2+
122 _{Sn}	(n, r) ¹²³ Sn	2	0.0246	40.08m	3/2+	129.2d	11/2-
	(n,2n) ¹²¹ Sn	2	(see abo	ove)			
	(n,p) ¹²² In	5	0.220	10.8s	8-	1.5s	1+
		2	()	10.3s	4 ⁺		
	(n,np) ¹²¹ In	2	0.3136	3.88m	1/2-	23s	9/2+
	(n,α) ¹¹⁹ Cd	3	0.1465	2.20m	11/2	2.69m	1/2+
124 _{Sn}	(n; 7) ¹²⁵ Sn	2	0.0275	9.52m	3/2 ⁺	9.63d	11/2-
	(n,2n) ¹²³ Sn	2	(see abc	ve)			
	(n,p) ¹²⁴ In	5	0.190	2.4s	8	3.2s	3 ⁺ ,
	(n,np) ¹²³ In	2	0.320	47.8m	1/2-	6.0s	9/2 ⁺
	(n,α) ¹²¹ Cd	2	()	4.8s	()	13.5s	()

,

.

Table 3. 1. 1 (Continued)

			Isomer	State	Ground State		
Nuclide	Reaction	Level No.	E _x (MeV)	^T 1/2	J	^T 1/2	J
¹²¹ Sb	(n,r) ¹²² Sb	6	0.16356	4.21m	8-	2.71d	2
	$(n,2n)^{120}$ sb	2	()	5.76d	8-	15.9m	1+
	$(n,p)^{121}Sn$	2	0.0063	55y	11/2	27.0h	3/2+
	(n, α) ¹¹⁸ In	4	0.20	8.5s	8-	5.0s	1+
		2	0.060	4.45m	5+		
	(n,nα) ¹¹⁷ In	2	0.3153	116.5m	1/2-	43.1m	9/2+
123 _{Sb}	(n, 7) ¹²⁴ Sb	2	0.0109	93s	5+	60.2d	3-
		3	0.03685	20.2m	8-		
	$(n, 2n)^{122}$ Sb	6	(see above)				
	(n,p) ¹²³ Sn	2	0.0246	40.)8m	3/2+	129.2d	11/2
	(n, α) ¹²⁰ In	3	()	47.3s	8-	3.08s	1+
		2	()	46.2s	5+		
	(n,na) ¹¹⁹ In	2	0.3114	18.Om	1/2-	2.4m	9/2+
180 _{Ta}	(n,α) ¹⁷⁷ Lu	()	0.97015	160d	23/2	6.71d	7/2+
181 _{Ta}	(D) 182Ta	(25)	0.5197	15.9m	10	114.5d	3-
	$(r, 2n)^{180}$ Ta	3	0.0753	1.2E+15y	9	8.15h	1+
	$(n, \alpha)^{-1/8}Lu$	3	0.30	22.7m	9-	28.5m	1+
123 _{Sb} 180 _{Ta} 181 _{Ta}	$(n, \alpha)^{118}$ In $(n, \alpha)^{117}$ In $(n, \alpha)^{127}$ In $(n, \alpha)^{124}$ Sb $(n, 2n)^{122}$ Sb $(n, 2n)^{122}$ Sb $(n, 2n)^{122}$ Sb $(n, \alpha)^{123}$ Sn $(n, \alpha)^{120}$ In $(n, \alpha)^{120}$ In $(n, \alpha)^{119}$ In $(n, \alpha)^{117}$ Lu $(n, \alpha)^{177}$ Lu $(n, \alpha)^{177}$ Lu $(n, \alpha)^{177}$ Lu $(n, \alpha)^{177}$ Lu	4 2 2 3 6 2 3 2 2 () (25) 3 3 3	0.20 0.060 0.3153 0.0109 0.03685 (see abo 0.0246 () () 0.3114 0.97015 0.5197 0.0753 0.30	8.5s 4.45m 116.5m 93s 20.2m ve) 40.')8m 47.3s 46.2s 18.0m 160d 15.9m 1.2E+15y 22.7m	$ \begin{array}{r} 11/2 \\ 8^{-} \\ 5^{+} \\ 1/2^{-} \\ 5^{+} \\ 8^{-} \\ 3/2^{+} \\ 8^{-} \\ 5^{+} \\ 1/2^{-} \\ 23/2^{-} \\ 10^{-} \\ 9^{-} \\ 9^{-} \\ 9^{-} \\ \end{array} $	2.4m 5.0s 43.1m 60.2d 129.2d 3.08s 2.4m 6.71d 114.5d 8.15h 28.5m	3 ⁻ 1 ⁺ 9/2 ⁺ 3 ⁻ 11/2 1 ⁺ 9/2 ⁺ 7/2 ⁺ 3 ⁻ 1 ⁺ 1 ⁺

Table 3. 1. 1 (Continued)

Fig. 3.1.2 ⁶⁵Cu(n, a) 62Co Production Cross Sections.

- 17 -

Fig. 3.1.3 90Zr(n,2n)⁸⁹Zr Production Cross Sections.

Fig. 3.1.4 90Zr(n,p)90Y Production Cross Sections.

1.1.1.1

Fig. 3.1.6 91Zr(n,p)91Y Production Cross Sections

Cross Section (mb)

Cross Section (mb)

- 19 -

•••• ••

92Zr(n,p)92Y Production Cross Sections. Fig. 3.1.8

- 20 -

JAERI-M 89-129

Fig. 3.1.10 94Zr(n,p)94Y Production Cross Sections.

Cross Section (mb)

Cross Section (mb)

- 22 --

Fig. 3.1.14 92Mo(n,2n)91Mo Production Cross Sections.

-23-

Fig. 3.1.15 92Mo(n,p)92Nb Production Cross Sections.

Fig. 3.1.16 $92Mo(n,\alpha)89Zr$ Production Cross Sections.

- 24 -

JAERI-M 89-129

Fig. 3.1.18 96Mo(n,p)96Nb Production Cross Sections.

15

16

- 25 -

JAERI-M 89-129

Fig. 3.1.20 97Mo(n,p)97Nb Production Cross Sections.

Fig. 3.1.21 97Mo(n,n'p)96Nb Production Cross Sections.

Fig. 3.1.22 98Mo(n,p)98Nb Production Cross Sections.

Fig. 3.1.23 98Mo(n,n'p)97Nb Production Cross Sections.

Fig. 3.1.24 98Mo(n, a)95Zr Production Cross Sections.

ŗ

- 29 -

Fig. 3.1.27 107Ag(n,n')107mAg Production Cross Sections.

Fig. 3.1.28 107Ag(n,2n)¹⁰⁶Ag Production Cross Sections.

JAERI-M 89-129

Fig. 3.1.29 ¹⁰⁹Ag(n,2n)¹⁰⁸Ag Production Cross Sections.

Fig. 3.1.30 109Ag(n,p)109Pd Production Cross Sections.

Fig. 3.1.32 106Cd(n,p)106Ag Production Cross Sections.

Fig. 3.1.33 111Cd(n,p)111Ag Production Cross Sections.

Fig. 3.1.34 112Cd(n,2n)111Cd Production Cross Sections.

Fig. 3.1.36 112Cd(n, α)109Pd Production Cross Sections.

- 35 -

Fig. 3.1.40 ¹¹²Sn(n,2n)¹¹¹Sn Production Cross Sections.

Fig. 3.1.41 114Sn(n,2n)113Sn Production Cross Sections.

Fig. 3.1.42 114Sn(n,p)¹¹⁴In Production Cross Sections.

Fig. 3.1.44 117Sn(n,n')¹¹⁷Sn Production Cross Sections.

Fig. 3.1.45 ¹¹⁷Sn(n,p)¹¹⁷In Production Cross Sections.

Fig. 3.1.46 117Sn(n,n'p)116In Production Cross Sections.

Fig. 3.1.47 118Sn(n,2n)117Sn Production Cross Sections.

Fig. 3.1.48 118_{Sn(n,a)}115Cd Production Cross Sections.

t

Fig. 3.1.50 120Sn(n, a) 117mCd Production Cross Sections.

Fig. 3.1.53 123Sb(n,2n)122Sb Production Cross Sections.

Fig. 3.1.54 181Ta(n,2n)180Ta and 181Ta(n,3n)179Ta Production Cross Sections.

.

Fig. 3.1.55 181_{Ta}(n,p)181Hf Production Cross Sections.

3.2 Ni, Eu, Gd, Wの断面積

3.2.1 Ni 断面積の評価

Ni-58,-60,-61,-62,-64を対象とする。Niの中性子反応による生成放射性核種は大変多 い。 Isomer生成反応及び1d以上の放射性核種生成反応は下表のようである。

Ni-58 (n, r) Ni-59(7.63x10⁴y) Ni - 61(n, d) Co - 60(5.37 y)(n,p) Co-58(9.92h,70.8d) (n, np) Co-60(10.5m, 5.37y) (n,d) Co-57(272d) (n, 2p) Fe~60 $(1.53 \times 10^{6} v)$ Ni-62(n,r) Ni-63(102y) (n,T) Co-56(77.1d) (n, α) Fe-55(2.78y) (n, 2n) Ni-57(1.49d) (n,α) Fe-59(44.5 d) $(n, np) C_0 - 57(272 d)$ (n, nd) Co-56(77.1d) Ni-64(n, 2n) Ni-63(102y) Ni-60(n, p) = Co-60(10.5m, 5.37v) $(n, n\alpha)$ Fe-60 $(1.53 \times 10^{6} \text{y})$

- (n,T) Co-58(70.8d)
- (n, 2n) Ni-59 $(7.63 \times 10^4 y)$
- (n 2p) Fe-59(44.5d)

```
(n,T) Co-60(5.37y)
(n, np) Co-62m (13.9 m)
```

表において、たとえば Co-58 (9.92h, 70.8d) の第1の 9.92h が isomerを示す。 Ni-58(n, p)、 Ni-58(n,2n)、Ni-60(n,p) はドシメトリー用断面積でもある。

|断面積値は isomer 比以外はすべて IENDL-3 値を採用した。 Isomer 生成比 meta/ (ground+meta)はGNASHコードで計算し、ファイル8、ファイル9に格納した。 Ni-58(n, p)Co-58m, Ni-60(n, p)Co-60m, Ni-61(n, np)Co-60m, Ni-62(n, p) Co-62mについての Isomer 生成比 m/(m+g) 及び σ(g+m), σ(m) 断面積を Table 3.2.1(a), (b), (c), (d) に掲げる。

3.2.2 Eu 断面積の評価

Eu-151、Eu-153を対象とする。問題とする中性子反応は下記のものである。

```
E_{u}-151(n,r) E_{u}-152(96m,9.3h,13y) E_{u}-153(n,r) E_{u}-154(46.1m,8.2y)
```

(n, p) Sm - 151(93y)

- (n, α) Pm 148 (41.3d, 5.37d)
- (n, 2n) Eu 150 (36.4 y, 12.6 h)
- (n, 3n) Eu -149(93.1d)
- $(n, n\alpha)$ Pm 147 (2.623y)
- (n, 2p) Pm 150 (2.69h)

- (n,p) Sm 153 (46.7 h)
- (n, α) Pm 150 (2.69 h)
- (n, 2n) Eu -152 (96 m, 9.3h, 13y)
- $(n, n\alpha)$ Pm 149 (53.1 h)

上記の他の反応では安定核あるいは20m以下の短寿命核だけが生成される。 Isomer生成以 外は JENDL-3 の値を採用した。 Isomeric cross section については GNASHで計算 し、 isomer/ground 比を求め、ファイル8、9に格納した。計算は浅見氏が用いた入力デ ータ(GNASH 1978)を殆どそのまま用いたが、今回はSINCROSを使用したので入力を

変更した。また、中性子透過係数ファイルを読み込めない事態が起とったので、SINCROS に built-inされている光学ポテンシャルを用いた。

Isomerについて, Eu-151(n,r)Eu-152m₂(96m), Eu-153(n,r)Eu-154m(46m), Eu-153(n,2n) Eu-152m₂(96m)の生成断面積は計算していない。これらの isomer level は高い励起レベルであり計算可能ではあるが半減期が短いのでここでは扱わなかった。

Isomer 生成断面積 Eu-151(n,r) Eu-152m(9.3h), Eu-151(n,α) Pm-148(41.3d), Eu-151(n,2n) Eu-150m(36.4y), Eu-153(n,2n) Eu-152m(9.3h) をそれぞれ Table 3.2.2 (a)~(d)に掲げる。他の主な放射化反応断面積を Fig. 3.2.1(a)~(g)に掲げる。

3.2.3 Gd 断面積の評価

Gd-152, -154, -155, -156, -157, -158, -156 を対象とする。放射化反応は次のものである。

- Gd-152(n, r) Gd-153(241.6d)Gd-157(n,p) Eu -157(15.15h) (n,p) Eu -152(96m, 9.3h, 13y) (n,d) Eu - 156 (15.2d) (n, 2n) Gd -151(120d) (n, np) Eu -156 (15.2d) (n, 3n) Gd -150 $(1.8 \times 106 \text{ y})$ $(n, n\alpha)$ Sm-153 (46.7h) (n,2p) Sm-151(93y) (n, 2p) Sm-156 (9.4h) Gd-154(n,p) = Eu - 154(46m, 8.2y) Gd-158(n,r) = Gd - 159(18.6h) (n, α) Sm-151(93y) $(n, p) = E_{u} - 158 (45.9m)$ (n, 2n) Gd -153(241.6d) (n,d) Eu -157 (15.15h) (n, 2p) Sm-153(46.7h) (n, np) Eu -157 (15.15h) Gd-155 (n, p) Eu -155(4.76y) Gd-160(n, 2n) Gd -159(18.6h) (n,d) Eu -154(46m, 8.2y) $(n, n\alpha)$ Sm-156 (9.4h) (n, np) Eu -154(46m, 8.2v) (n, 3n) Gd -153(241.6d) $(n, n\alpha)$ Sm-151(93y) Gd-156 (n, p) Eu -156 (15.2d)
 - (n, α) Sm-153(46.7h)
 - (n,d) Eu -155(4.76y)
 - (n, np) Eu -155(4.76y)
 - (n, 2p) Sm-155(22.2m)

Gd 断面積はFP核データWGでの評価結果をそのまま採用する。Isomer 生成はEu-152, Eu-154 生成だけであるが、いずれも半減期が短かく、また、断面積が小さいのでここでは扱 わなかった。従って、放射化断面積はJENDLファイル2,3データで表される。主な放射化 反応断面積をFig.3.2.2.(a)~(f)に掲げる。

3.2.4 Wの断面積

activation cross sections の計算は、GNASH コードを用いて JENDL-3 のWデ

ータの評価と consistent な方法によって行った。OMP,レベルスキーム等のデータも全 く同じものを使用した。

対象とした核反応は下記の通りである。標的核¹⁸⁰W についての核反応は JENDL-3 での 評価と同様に,¹⁸⁰W の存在比が非常に小さい (0.13%) ことから無視した。

評価値はすべて, multiplicity としてFile 9 の形でファイル化し、対応する JENDL - 3のファイル 2, 3のデータとともにまとめてある。

```
{}^{182} W (n, r) {}^{183m} W (5.3 s)
{}^{182} W (n, 2n) {}^{181} W (121.2 d)
{}^{182} W (n, p) {}^{182g} Ta (115d) , {}^{182m1} Ta (0.28s) , {}^{182m2} Ta (15.8m)
{}^{182} W (n, \alpha) {}^{179m1} Hf (18.7s) , {}^{179m2} Hf (25.1d)
{}^{182} W (n, n'\alpha) {}^{178m} Hf (4.0s)
```

```
{}^{183} W (n, n') {}^{183} W (5.3 s)
{}^{183} W (n, 3n) {}^{181} W (121.2d)
{}^{183} W (n, p) {}^{183} Ta (5.1d)
{}^{183} W (n, \alpha) {}^{180 m} Hf (5.5 h)
{}^{183} W (n, n'p) {}^{182g} Ta (115d) , {}^{182m1} Ta (0.28 s) , {}^{182m2} Ta (15.8 m)
{}^{183} W (n, n'\alpha) {}^{179m1} Hf (18.7 s) , {}^{179m2} Hf (25.1 d)
```

÷.

```
^{184} W (n, r) ^{185 \text{ m}} W (1.66 m), ^{185 \text{ g}} W (75.1 d)
^{184} W (n, 2n) ^{183 \text{ m}} W (5.3 s)
^{184} W (n, p) ^{184} Ta (8.7 h)
^{18'} W (n, \alpha) ^{181} Hf (42.4 d)
^{184} W (n, n'p) ^{183} Ta (5.1 d)
^{184} W (n, n'\alpha) ^{180 \text{ m}} Hf (5.5 h)
```

```
{}^{186} W (n, r) {}^{187} W (23.9 h)
{}^{186} W (n, 2n) {}^{185m} W (1.66m), {}^{185g} W (75.1 d)
{}^{186} W (n, p) {}^{186} Ta (10.5m)
{}^{186} W (n, \alpha) {}^{183} Hf (64m)
{}^{186} W (n, n^{9}) {}^{185} Ta (49m)
{}^{186} W (n, n^{9} \alpha) {}^{182m} Hf (62m)
```

W核種の放射化断面積の実験データは非常に少なく、計算値と比較できるものは極く小数である。その中で、W核種としてとくに重要な(n 2n)反応について、¹⁸⁴ Wと¹⁸⁶ Wとの核異性体準位への反応断面積の計算値と実験値との比較図をFig. 3.2.3 (a), (b)に示した。

Table 3.2.1(a) NI-58(N.P)CO-58M Cross Section (b)

ଢ =	+0	• 4	102	MeV
-----	----	-----	-----	-----

A. Martin, C. Martin, American Science (Stability)

		~~~~~~~~			
EN (MEV	)	M/(G+M)	SIG(G	-M)	SIG(META)
.5		0.000	+0.00E+	00	+0.00E+00
1		0.146	+9.00E-	-04	+1.31E-04
1.5		0.207	+1.34E-	-02	+2.77E-03
2		0.177	+4.00E-	·02	+7.07E-03
3		0.174	+1.88E-	·01	+3.27E-02
4		0.211	+3.54E-	·01	+7.47E-02
5		0.225	+4.40E-	01	+9.88E-02
6		0.234	+5.60E-	01	+1.31E-01
7		0.248	+5.70E-	01	+1.41E-01
8		0.261	+5.80E-	01	+1.51E-01
9		0.274	+5.70E-	01	+1.56E-01
10		0.287	+5.60E-	01	+1.61E-01
11		0.303	+5.40E-	01	+1.63E-01
12		0.317	+5.20E-	01	+1.65E-01
13		0.330	+4.70E-	01	+1.55E-01
14		0.346	+4.00E-	01	+1.38E-01
15		0.354	+3.40E-	01	+1.21E-01
16		0.363	+2.90E-	01	+1.05E-01
17		0.367	+2.50E-	01	+9.16E-02
18		0.370	+2.25E-	01	+8.32E-02
19		0.369	+2.15E-	01	+7.94E-02
20		0.368	+2.10E-	01	+7.73E-02
NI-58G	:	2+(70.8D)	BETA+		
NI-58M	:	5+(9.21H,	24.89KEV)	IT	

Table 3.2.1(b) NI-60(N.P)CO-60M Cross Section (b)

EN(MEV)	M/(G+M)	SIG(G+M)	SIG(META)
3	0.000	+0.00E+00	+0.00E+00
4	0.755	+9.90E-04	+7.47E-04
5	0.712	+9.00E-03	+6.41E-03
6	0.719	+3.00E-02	+2.16E-02
7	0.719	+6.10E-02	+4.38E-02
8	0.701	+9.00E-02	+6.31E-02
9	0.686	+1.35E-01	+9.26E-02
10	0.651	+1.49E-01	+9.70E-02
11	0.623	+1.49E-01	+9.28E-02
12	0.594	+1.46E-01	+8.67E-02
13	0,566	+1.40E-01	+7.92E-02
14	0.538	+1.23E-01	+6.62E-02
15	0.510	+1.09E-01	+5.55E-02
16	0.489	+9.20E-02	+4.50E-02
17	0.475	+8.20E-02	+3.89E-02
18	0.460	+7.20E-02	+3.31E-02
19	0.452	+6.50E-02	+2.94E-02
20	0.443	+6.00E-02	+2.66E-02
 CO-60G :	5+(5.27Y)	ВЕТА-	
CO-60M :	2+(58.6KEV,1	0.5M) IT	

Q = -2.020 MEV

Table 3.2.1(c) NI-61(N.NP)CO-60M Cross Section (b)

Q(NP)=-9.852	MEV,	Q(ND	) = -7	.634	MEV
--------------	------	------	--------	------	-----

EN(MEV)	M/(G+M)	SIG(G+M)	SIG(META)
8	0.000	+0,00E+00	+0.00E+00
9	0.377	+0.00E+00	+0.00E+00
10	0.441	+0.00E+00	+0.00E+00
11	0.513	+7.10E-05	+3.64E-05
12	0.485	+6.21E-04	+3.01E-04
13	0.382	+4.04E-04	+1.54E-04
14	0.392	+1.68E-02	+6.59E-03
15	0.428	+4.15E-02	+1.77E-02
16	0.451	+7.49E-02	+3.38E-02
17	0.465	+1.10E-01	+5.10E-02
18	0.469	+1.43E-01	+6.72E-02
19	0.461	+1.74E-01	+8.03E-02
20	0.454	+2.01E-01	+9.12E-02
CO-60G	: 5+(5.27Y)	BETA-	
CO-60M	: 2+(58.6 KEV,	10.5M) IT	

Table 3.2.1(d) NI-62(N.P)CO-62M Cross Section (b)

<b>q</b> = 11.			
EN (MEV)	M/(G+M)	SIG(G+M)	SIG(META)
5	0.000	+0,00E+00	+0.00E+00
6	0.249	+1,28£-07	+3.19E-08
7	0.269	+1.54E-04	+4.14E-05
8	0.306	+1.39E-03	+4.25E-04
9	0.347	+4.32E-03	+1.50E-03
10	0.359	+8.02E-03	+2.88E-03
11	0.372	+1.20E-02	+4.46E-03
12	0.389	+1.64E-02	+6.39E-03
13	0.406	+2,17E-02	+8.82E-03
14	0.425	+2.80E-02	+1.19E-02
15	0.444	+3.25E-02	+1.44E-02
16	0.464	+3.29E-02	+1.53E-02
17	0.481	+3.03E-02	+1.46E-02
18	0.495	+2,73E-02	+1.35E-02
19	0.509	+2.48E-02	+1.26E-02
20	0.523	+2.30E-02	+1.20E-02
CO-62G :	2+(1.50M) I	 3eta-	
CO-62M :	5+(22 KEV,1	3.9M) BETA-	

 $\Theta = -4.459$  MEV

Table 3.2.2(a) EU-151(N.G)EU-152M Cross Section (b)

EN(MEV)	M/(G+M)	) SIG(G+M)	SIG(META)
2.53E-08	0.318	+0.00E+00	+0.00E+00
,05	0.325	+0.00E+00	+0.00E+00
.1	0.324	+1.70E+00	+5.51E-01
. 2	0.306	+1.37E+00	+4.19E-01
. 3	0.289	+1.03E+00	+2.97E-01
1 .	0.264	+4.05E-01	+1,07E-01
2	0.259	+1.95E-01	+5.05E-02
3	0.251	+1.03E-01	+2.59E-02
4	0.247	+4.42E-02	+1.09E-02
5	0.241	+1.61E-02	+3.88E-03
6	0.233	+5.10E-03	+1.19E-03
7	0.227	+1.78E-03	+4.04E-04
EU-152G :	3-(13Y)	BETA-(27%), EC	(73%)
EU-152M :	0-(48.5	KEV, 9.3H) BETA	-(76%), EC(24%)

Q = -4.459 MEV

Table 3.2.2(b) EU-151(N.A)PM-148M Cross Section (b)

Q = +7.873 MEV

EN(MEV)	M/(G+M),	SIG(G+M)	SIG(META)
2.53E-08	0.136	+3.13E-06	+4.25E-07
.05	0.015	+1.28E-10	+1.95E-12
.1	0.144	+4.00E-08	+5.75E-09
.2	0.134	+6.18E-08	+8.28E-09
. 3	0.099	+9.54E-08	+9.48E-09
1	0.237	+2.00E-06	+4.75E-07
2	0.312	+2.59E-05	+8.07E-06
3	0.332	+6.49E-05	+2,15E-05
4	0.348	+1.47E-04	+5.10E-05
5	0.353	+2.61E-04	+9.20E-05
6	0.370	+4.17E-04	+1.54E-04
7	0.358	+6.89E-04	+2.47E-04
8	0.363	+1.25E-03	+4,54E-04
9	0.371	+2.23E-03	+8,27E-04
10	0.379	+3.95E-03	+1.50E-03
11	0.388	+5.44E-03	+2.11E-03
12	0.398	+6.83E-03	+2.72E-03
13	0.409	+8.03E-03	+3.29E-03
14	0.419	+8.88E-03	+3.72E-03
15	0.427	+9.35E-03	+4.00E-03
16	0.434	<b>+9.41</b> E-03	+4.09E-03
18	0.447	+8.69E-03	+3.88E-03
20	0.456	+7.41E-03	+3.38E-03
PM-148G	: 1-(5.37D)	BETA-	
PM-148M	: 6-(137.2K	EV, 41.3D)	BETA-(95%), IT(5%)

fable 3.2.2(c)	EU-151(N.	2N)EU-150M	Cross	Section	(Ъ)
----------------	-----------	------------	-------	---------	-----

<b>u</b> = 111		1 1121			
EN (MEV)		M/(G+M)	~ ~	SIG(G+M)	SIG(META)
8		0.000		+0.00E+00	+0.00E+00
9		0.427		+2.40E-01	+1.03E-01
10		0.384		+7.47E-01	+2.87E-01
11		0.339		+1.26E+00	+4.26E-01
12		0.311		+1.57E+00	+4.88E-01
13		0.287		+1.66E+00	+4.77E-01
14		0.269		+1.71E+00	+4.60E-01
15		0.253		+1.73E+00	+4.38E-01
16		0.233		+1.71E+00	+3.99E-01
18		0.167		+1.52E+00	+2.54E-01
20		0.133		+6.83E-01	+9.10E-02
EU-150G	:	0-(12.6H)		BETA-(89%),	EC(11%)
EU-150M	:	4-(nearly	0	KEV, 36.4Y)	EC(100%)

Q = -7.961 MEV

Table 3.2.2(d) EU-153(N,2N)EU-152M Cross Section (b)

•				
EN(MEV)		M/(G+M)	SIG(G+M)	SIG(META)
8	. – .	0.000	+0.00E+00	+0.00E+00
9		0,255	+2.93E-02	+7.48E-03
10		0.249	+4.44E-01	+1.11E-01
11		0.242	+1.02E+00	+2.46E-01
12		0.237	+1.43E+00	+3.39E-01
13		0.233	+1.67E+00	+3.89E-01
14		0.231	+1.82E+00	+4.19E-01
15		0.229	+1.91E+00	+4.38E-01
16		0.226	+1.98E+00	+4.49E-01
18		0.217	+1.82E+00	+3.94E-01
20		0.212	+1.36E+00	+2.89E-01
EU-152G	:	3-(13.6Y)	, BETA-(27%), I	EC(73%)
EU-152M	:	0- (48.5KE	V, 9.3H), BETA	A-(76%), EC(24%)

Q = -8.544 MEV

· · · · ·



JAERI-M 89-129



- 54 -

Fig. 3.2.1(b) Eup151(n,2n) Cross Section.



Fig. 3.2.1(c) Eu-151(n,p) Cross Section.





- 29 -









Fig. 3.2.2(b) Gd-156(n,p) Cross Section.

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec



Fig. 3.2.2(c) Gd-156( $n, \alpha$ ) Cross Section.

------



Fig. 3.2.2(d) Gd-157(n,p) Cross Section.

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec



JAERI-M 89-129





- 66 -


### 4. 理論計算に使用した JCLと放射化断面積のファイル化

核異性体生成を含む放射化断面積は、既に述べたようにJENDL-3 を基本としてまとめたものと、ELIESE-GNASH 結合プログラム (EGANSH 又はEGNASH2)を用いて新たに計算したものとがある。従って、それらの数値をファイル化する場合にも、それぞれ異なる 過程が必要である。

本章では先ずEGANSH2を実行するときの、JCLと入力データならびに出力データを例示する。その他の核種に対する入力データの大部分は

'J2608. YAMAMURO. CNTL'

の中に収容されている。

次に ENDF/Bでの放射化断面積は4.3 で述べるように、ファイル8、9又は10の形式に従うことになっている。そこで、今回、EGANSH2 の計算結果を直ちにファイル10の形式に変換できるコードを開発し、EGNASH2 で計算された場合は(n,r)反応を除き、ファイル10 を作成した。4.2 では、その概要と結果の例を挙げる。

4.3 ではファイル8、9,10の格納形式を述べ,それぞれのファイルの内容や関連が述べられている。そして今回ファイル化されたどの核種が何れのファイルを使用してあるかまとめている。

#### 4.1 理論計算に使用した」CLと入力及び出力データ

EGNASHのためのJCLは標準化されたものが作られており、SINCROS-Iの公開とと もに広範に用いられている。しかし今回、SINCROS-Iの改良に伴い、計算結果を各種の応 用分野で使用しやすくするための自動処理コードの整備方針に従い、Fig.2.1 でも示したいく つかのファイルの追加が行われた。そのためにTable 4.1.1に示すようにJCLの変更を実施 した。FT10,FT12,FT14 などか新たに追加されたファイル処理を示す。FT08は従来か ら用いられている低エネルギー離散準位データを収納しているファイル8を示すが、この離散 準位データの整備も一段と進展し、約250核種に及ぶ準位データが一つのファイル(ファイル 名 GLVL)に入っており、50核種の計算のすべてにこの一つのファイルのみで対応できる。

FT33も従来通り、DWUCKYによる直接過程断面積の計算結果をEGANSHに入力するものであるが、DWUCKYによる計算も既に50核種以上行なわれ、そのデータは

'J2608. YAMAMURO. DIR'

に収納保存されている。そして、このJCLによってEGANSHの計算に使用される。

Table 4.1.2 には、EGANSH2 のための入力データの一例を示す。これは¹²⁴Snの計算に 対するもので核種数は10,エネルギー点は 10keVから 20MeV までの25点の計算がこの入力で 実行される。M780 での計算時間は 2 分47秒,核種によっては同じ条件で 5 分を要するものが ある。もちろん、質量数の増加とともに増し、Taでは10分に達する。 1

入力の5行目の0.007は100keVにおける(n,r)断面積を7mbに規格化するよう指示する もので、5%以内で実現される。最終行の入力は核異性体準位を指示するもので、例えば 50125 2は¹²⁴Sn(n,r)¹²⁵Sn 反応でできる第2準位(第1励起準位)が核異性体である ことを示し、その結果、この準位の生成断面積が出力され、ファイルに収容される。

Table 4.1.3 が¹²⁴Sn の中性子反応の反応断面積の計算結果を示すもので、ファイル12の内容を示す。先ず反応断面積一覧が与えられ、つづいて基底状態生成断面積と、入力最終行で指示された 4 個の核異性体生成断面積が示されている。

-INC JUSER7264, SEQ=100:400	00000100	00000100	87
T.S I.3 C.S W.3 SPR	00000500	00000200	82
-INC JUSER7264,SEQ=500:500	00000300	00000300	87
//*EXEC FORT77,SO=J2608.SINCROS,A='ELM(EGNASH2),NUM,NOPRINT',	00000700	00000400	
//* B='AUTODBL(DBLPAD)'	00000800	00000500	
//*EXEC LKED77	00000900	00000600	
//*EXEC GO	00001300	00000700	
// EXEC LMGO,LM=J7264.EGNASH2	00001300	00000800	87
//FTO2FOO1 DD DSN=&&FTO2,UNIT=VI0,SPACE=(TRK,(60,10)),DCB=(DSORG=PS)	00001400	00000900	
//FT09F001 DD DSN=&&FT09,UNIT=VI0,SPACE=(TRK,(60,10)),DCB=(DSORG=PS)	00001600	00001000	
//*FT10F001 DD DSN=&&FT10,UNIT=VI0,SPACE=(TRK,(60,10)),DCB=(DSORG=PS)	00001700	00001100	
//FT10F001 DD DSN=J7264.SN124NS1.DATA/UNIT=TSSWK/	00001900	00001200	88
// DISP=(NEW/CATLG/CATLG)/SPACE=(TRK/(10/5)/RLSE)/		00001300	
// DCB=(DSORG=PS/LRECL=132/BLKSIZE=11484/RECFM=FB)		00001400	
//FT11F001 DD DSN=&&FT11,UNIT=VI0,SPACE=(TRK,(60,10)),DCB=(DSORG=PS)	00001800	00001500	
//*FT12F001 DD DSN=&&FT12,UNIT=VI0,SPACE=(TRK,(60,10)),DCB=(DSORG=PS)	00001900	00001600	
//FT12F001 DD DSN=J7264.SN124NX1.DATA/UNIT=TSSWK/	00001900	00001700	88
// DISP=(NEW/CATLG/CATLG)/SPACE=(TRK/(10/5)/RLSE)/		00001800	
// DCB=(DSORG=PS,LRECL=132,BLKSIZE=11484,RECFM=FB)		00001900	
//FT13F001 DD DSN=J2608.GNASHLIB.DATA/DISP=SHR/LABEL=(///IN)	00002000	00002000	
//FT14F001 DD DSN=&&FT14,UNIT=VIO,SPACE=(TRK,(60,10)),DCB=(DSORG=PS)	00001900	00002010	65
// EXPAND DISK,DDN=FT27F001		00002100	
// EXPAND DISK/DDN=FT28F001		0002200	
//FT08F001 DD DSN=J2608.YAMAMURO.CNTL(GLVL)/DISP=SHR/LABEL=(///IN)	00002300	00002300	47
//FT33F001 DD DSN=J2608.YAMAMURO.DIR(SN124DIR),DISP=SHR,LABEL=(///IN)	0002300	00002400	88
//FT43F001 DD DSN=&&FT43,UNIT=VIO,SPACE=(TRK,(60,10)),DCB=(DSORG=PS)	00002900	00002500	
//FT44F001 DD DSN=&&FT44,UNIT=V10,SPACE=(TRK,(60,10)),DCB=(DSORG=PS)	00002900	0002600	67
//*FT44F001 DD DSN=J7264.SN124GM1.DATA/UNIT=TSSWK/	00003000	00002700	88
<pre>//* DISP=(NEW,CATLG,CATLG),SPACE=(TRK,(30,10),RLSE),</pre>	00003100	00820000	67
<pre>//* DCB=(DSORG=PS/LRECL=80/BLKSIZE=11440/RECFM=FB)</pre>	00003200	00002900	67
//SYSIN DD *	00002601	00003000	
-INC SN124N2	00002610	00003100	88
-INC JUSER7264,SEQ=600:700	00000600	00003200	87

HIGHEST SEVERITY CODE=00

- 70 -

STATISTICS: HIGHEST SEVERITY CODE=00

## Table 4.1.2 Input format of EGNASH2

SN-	124 + NEU1	TRON REACT	LON ELIESE	GNASH JO		CEGNASH2	)	00000100	2
10	0 11	0 0	1 2	0 4	A. TABARONO	,		00000200	د ع
1	5012/		1 2	· •				00000500	
1.	50124.	0.5	1.6					00000400	7
0.007								00000000	2
0.01	0.03	0 1	0.2	0 5	1 0	20	3.0	00000610	2
0.01	0.05	0.1	7.0	0.5	1.0	10 0	11 0	00000010	נ. ד
4.0	5.0	6.0	1.0	8.0	9.0	10.0	11.0	00000700	2
12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	00000800	
20.0								00000900	3
50125.	5.							00001000	
50124.	4.		0.011					00001100	3
50123.	4.							00001200	
50122.	1.							00001300	
49124.	2.							00001400	3
49123.	2.							00001500	-
49122	1							00001600	7
/0101	· · · · · · · · · · · · · · · · · · ·							000017000	
40121.	2.							00001700	2
48120.	2.							00001800	
48119.	1.							00001900	
Ο.								00002000	
0.								00002100	
ο.								00002200	
50125	2 50123	2 49124	5 49123	2				00002300	3

HIGHEST SEVERITY CODE≈00

STATISTICS: HIGHEST SEVERITY CODE=00

.....

- 1

### Table 4.1.3 Output of EGNASH2

#### SN-124 + NEUTRON REACTION ELIESE-GNASH JOINT PROGRAM (EGNASH2) 1989 O2 29 N. YAMAMURO

REAC	TION	CROSS	SECT	IONS						
ENERGY (MEV)	COMPOUND	PRODUCTSUM	DIRECT	FREEGRATE	NEUTRON	PROTON	DEUTERON	ALPHA	GAMMA	G-ABO
			•							
1.000-02	2.4290+03	2,4290+03	0.0	0.0	2.405D+03	0.0	0.0	0.0	3.2890+01	2.887
3.000-02	1.844D+03	1.8440+03	0.0	0.0	1.8330+03	0.0	0.0	0.0	1.3650+01	1.221
1.000-01	1.6060+03	1.606D+03	0.0	0.0	1.5990+03	0.0	0.0	0.0	8.548D+00	8.009
2.000-01	1.4720+03	1.4720+03	0.0	0.0	1.466D+03	0.0	0.0	0.0	7.571D+00	7.228
5.000-01	1.2610+03	1.2610+03	0.0	0.0	1.2560+03	0.0	0.0	0.0	6.0930+00	5.859
1.000+00	1.2380+03	1.238D+03	0.0	0.0	1.2300+03	0.0	0.0	0.0	8.354D+0D	8.106
2.000+00	1.3520+03	1.3510+03	8.0270+01	0.0	1.3460+03	0.0	0.0	0.0	8.2150+02	8.214
3.000+00	1.5010+03	1.5010+03	1.5890+02	6.8580-01	1.4970+03	0.0	0.0	0.0	2.5410+03	2.323
4.000+00	1.8130+03	1.8130+03	2.2850+02	1.5250+00	1.8100+03	0.0	0.0	0.0	4.2190+03	3.712
5.000+00	1.8940+03	1.8940+03	2.7160+02	2.8090+00	1.8920+03	0.0	0.0	0.0	5.3090+03	4.648
6.000+00	1.8090+03	1.8080+03	2.724D+02	4.5170+00	1.8060+03	0.0	0.0	8.0480-13	5.7120+03	4.899
7.000+00	1.7650+03	1.7640+03	2.4360+02	6.5570+00	1.7630+03	0.0	0.0	9.3840-11	6.1970+03	5.310
8.000+00	1.7960+03	1.7960+03	2.1220+02	8.799D+00	1.7940+03	9.4170-10	0.0	3.7620-09	6.9830+03	5.959
9.000+00	1.8810+03	1.8810+03	1.8610+02	1.1140+01	1.9610+03	3.3670-06	0.0	9.0720-08	7.6230+03	6.471
1.000+01	1.9640+03	1.9640+03	1.6520+02	1.3430+01	2.6950+03	3.0990-04	0.0	1.5930-06	5.4870+03	4.473
1.100+01	1.9950+03	1.9950+03	1.4990+02	1.5760+01	3.1830+03	6.2360-03	1.6620-15	4.7980-05	4.1390+03	3.182
1.200+01	1.9900+03	1.9900+03	1.3680+02	1.8060+01	3.3890+03	4.9750-02	1.1870-08	2.8480-04	3.8690+03	2.915
1.300+01	1.9710+03	1.9710+03	1.2540+02	2.034D+01	3.4800+03	2.196D-01	2.4320-05	1.0840-03	3.9510+03	2.982
1.400+01	1.9570+03	1.9570+03	1.1490+02	2,2590+01	3.5280+03	6.7070-01	1.668D-03	4.4260-03	4.2050+03	3.209
1.500+01	1.9450+03	1.9450+03	1.0620+02	2,4720+01	3.5520+03	1.5950+00	2.4680-02	1.6290-02	4.5460+03	3.510
1.600+01	1.946D+03	1.9460+03	9.9350+01	2.700D+01	3.6040+03	3.2150+00	1.4330-01	4.8550-02	4.9030+03	3.815
1.700+01	1.9600+03	1.9600+03	9.338D+01	2.9360+01	3.7180+03	5.7100+00	4.7290-01	1.1390-01	5.1700+03	4.033
1.800+01	1.9800+03	1.9790+03	8.8340+01	3.168D+01	3.8970+03	9.3340+00	1.0740+00	2.2450-01	5.3830+03	4.148
1.900+01	1.9935+03	1.9930+03	8.3870+01	3.3860+01	4.125D+03	1.4120+01	1.9250+00	3.8720-01	5.5170+03	4.205
2.000+01	1.9920+03	1.9920+03	7.984D+01	3.5880+01	4.338D+03	2.0000+01	2.9590+00	6.078D-01	5.7790+03	4.266

GROUND STATE PRODUCTION CROSS SECTIONS (MB)

- 72 -

ENERGY(MEV)	50125	50124	50123	50122	49124	49123	49122	48121	48120	481
1 000-02	4.4850-02	2.4050+03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.000-02	2.3080-01	1.8330+03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.000-01	5.3580-01	1.5990+03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.000-01	4.125D-01	1.4660+03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.000-01	5.6460-01	1.2560+03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.000+00	2.0000+00	1.2300+03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.000+00	1.7710+00	1.3460+03	0.0	0.0	0.0	ე <b>.0</b>	0.0	0.0	0.0	0.0
3.000+00	1.3200+00	1.4970+03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.000+00	1.3410+00	1.8100+03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.000+00	1,108D+00	1.8920+03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.000+00	8.1470-01	1.8060+03	0.0	0.0	0.0	0.0	0.0	8.0480-13	0.0	0.0
7.000+00	5.9740-01	1.7630+03	0.0	0.0	0.0	0.0	0.0	8.8680-11	0.0	0.0
8.000+00	4.5190-01	1.7940+03	0.0	0.0	9.406D-10	0.0	0.0	3.0380-09	0.0	0.0
9.000+00	3.5130-01	1.7990+03	4.8520+01	0.0	3.3590-06	0.0	0.0	6.1440-08	0.0	0.0
1.000+01	2.7210-01	1.2320+03	4.7030+02	0.0	3.0660-04	0.0	0.0	1.0290-06	0.0	0.0
1.10D+01	2.0650-01	8.0560+02	7.3460+02	0.0	6.106D-03	1.6620-15	0.0	2.7840-05	2.366D-13	0.0
1.200+01	1.5950-01	5.8960+02	8.5190+02	0.0	4.8100-02	1.1850-08	0.0	1.4360-04	1.556D-10	0.0
1.300+01	1.2720-01	4.6070+02	9.4770+02	0.0	2.0920-01	2.3370-05	0.0	5.2990-04	1,9630-08	0.0
1.400+01	1.0540-01	3.8310+02	1.0220+03	0.0	6.226D-01	1.4300-03	0.0	2.0850-03	7.0160-07	0.0
1.500+01	8.9800-02	3.3450+02	1.0800+03	6.3760-01	1.4360+00	1.7890-02	0.0	7.448D-03	1.1280-05	0.0
1.600+01	7.8300-02	3.0280+02	1,1290+03	2.1270+01	2.8000+00	9.6040-02	0.0	2.0650-02	2.2380-04	0.0
1.700+01	6.9680-02	2.8100+02	1.1580+03	9,2110+01	4.7440+00	3.2760-01	0.0	4.3890-02	1.5700-03	0.0
1.800+01	6.2850-02	2.6370+02	1.1390+03	2,2330+02	7.2630+00	8.7340-01	0.0	7.6370-02	5.5120-03	0.0
1.900+01	5.7170-02	2.4610+02	1.0420+03	4.1680+02	1.0110+01	1.957D+00	0.0	1.1420-01	1.7140-02	3.7651

2.000+01 5.218D-02 2.308D 2 9.004D+02 6.295D+02 1.290D+01 3.846D+0 3.254D-08 1.499D-01 4.978D-02 4

#### ISOMER STATE PRODUCTION CROSS SECTIONS (MB)

ENERGY (MEV)	50125	50123	49124	49123
1.000-02	2.4470+01	0.0	0.0	0.0
3.000-02	1.0350+01	0.0	0.0	0.0
1.000-01	4.5580+00	0.0	0.0	0.0
2.000-01	5,9620+00	0.0	0.0	0.0
5.000-01	4.6930+00	0.0	0.0	0.0
1.000+00	5.6070+00	0.0	0.0	0,0
2.00D+00	3.6600+00	0.0	0.0	0.0
3.000+00	2.0680+00	0.0	0.0	0.0
4.000+00	1.5920+00	0.0	0.0	0.0
5.000+00	1.1950+00	0.0	0.0	0.0
6.000+00	9.0820-01	0.0	0.0	0.0
7.00D+00	7.4870-01	0.0	0.0	0.0
5.00D+00	6.3110-01	0.0	1.1530-12	0.0
9.000+00	5.3450-01	3.2420+01	8.3680-09	0.0
1.000+01	4.5850-01	2.6090+02	3.2820-06	0.0
1.100+01	3.8970-01	4.540D+02	1.301D-04	0.0
1.200+01	3.2950-01	5.4760+02	1.6490-03	1,7310-11
1.300+01	2.7970-01	5.6210+02	1.0390-02	9.4910-07
1.400+01	2.4060-01	5.4990+02	4.8120-02	2.3870-04
1.500+01	2.0990-01	5.2740+02	1.5850-01	6.8830-03
1,600+01	1.8600-01	4.8920+02	4.1080-01	5,1800-02
1.700+01	1.6720-01	4.2210+02	9.1040-01	2.0050-01
1.800+01	1.5210-01	3,4280+02	1.7800+00	4.9110-01
1.900+01	1.3910-01	2.7210+02	3.0320+00	9.3890-01
2.000+01	1.2720-01	2.0800+02	4.6410+00	1.5730+00

### 4.2 放射化断面積のファイル

4.3 で解説されるように、ENDF/Bではファイル8,9ならびに10を用いて放射化断面積 をファイルに収容する。多数の計算結果を処理するためには、EGANSHの出力を直ちにファ イル10の形式に変換できるプログラムのあることが望ましい。そこで今回、PC9801 で処理 可能なMS-FORTRANによる,XTOB10'コードを開発した。本コードによればEGNASH2 のファイル12に収容されている、Table.4.3で示したようなデータからBフォーマットのファ イル10形式のものが作成できる。

Table 4.2.1 は 'XTOB10'コードの一部を示す。また, Table 4.2.2 はこのコードによっ て作られたファイル10での¹²⁴Snの部分を示す。核反応によって生成された核種が安定核の場 合はプログラムによってファイルが作られないようになっているため, ここに出力されるもの はすべて放射化される場合に限られている。 Cuから Ta までの10元素の処理に PC-9801で 約15分を要し, その結果, 314反応がファイルに収められた。

Table 4.2.1 Program for compilation of ENDF/B file 10 С PROGRAM XTOB10.FOR PROGRAMMED BY N.YAMAMURO 1989-3-3 С С RADIOACTIVE CROSS SECTION DATA FILE 10 IN B-FORMAT EDITED DIRECTLY С FROM EGNASH OUTPUT C DIMENSION MA(12), MB(12), MAT(3), IZA(10), IMZA(10), NBT(3), EO(3), * INTP(3), EN(51), EM(51), XSEC(51, 10), XMEC(51, 10) DIMENSION IOZA(78), ILNO(78), EXI(78), ISZA(76), ITZA(23) С С CHARACTER COM*A139 С DATA MF,N0,NC,NR,LIS,ZZ/10,0,51,1,0,0./ DATA MAT(1),NBT(2),NBT(3),INTP/4,0,0,2,0,0/ DATA MA /1,2,3,2005,2006,1002,1003,2003,0,1001,2004,2002/ DATA MB /4,16,17,22,24,28,32,45,102,103,107,111/ DATA UMAS /931.5016/ DATA SMAS, PMAS, DMAS, AMAS/1.008665, 1.007825, 2.014102, 4.002603/ DATA NIO, NIS, NIT /78, 76, 23/ C DATA ISZA/ 1 25055, 26054, 26056, 26057, 26058, 27059, 28058, 28060, 28061, 28062, 2 28064, 29063, 29065, 30064, 30066, 30067, 30068, 30070, 3 38084, 38086, 38088, 40091, 40092, 40094, 40096, 42092, 42094, 42095, 4 42096, 42097, 42098, 42100, 46102, 46104, 46105, 46106, 46108, 46110, 5 48106, 48108, 48110, 48112, 48114, 48116, 50112, 50114, 50115, 50116, 6 50118,50120,50122,50124,51121,51123, 7 54124,54126,54128,54130,54132,54134,54136,55133,56130,56132, 8 56134,56138, 9 70168, 70170, 70171, 70172, 70173, 70174, 71175, 72174, 72176, 73181/ DATA ITZA/ 1 38087,39089,40090,41093,45103,47107,47109,48111,48113,49113, 2 49115,50117,50119, 3 54129,54131,56135,56136,56137, 4 70176,72177,72178,72179,72180/ DATA IOZA / 1 13026,21044,25052,26053,27058,27060,27062,29068,29070,30069, 2 30071, 3 38087,39089,39090,39091,40089,41091,41092,41093,41094,41095. 4 41097,41098,41099,42091,42093, 5 45103, 45104, 45105, 45106, 46107, 46109, 46111, 47105, 47106, 47107, 6 47108,47109,47110,47111,47113,47115,47116,48111,48113,48115, 7 48117,49111,49112,49113,49114,49115,49116,49116,49117,49118, 8 49118,49119,49120,49120,49121,49122,49122,49123,49124,50113, 9 50117, 50119, 50121, 50123, 50125, 51120, 51122, 51124, 51124, A 71178,73180,73182/ DATA EXI / 1 .2284,.2712,.3777,3.041,.0249,.0586,.0220,.7216,.1400,.4387, 2.1570, 3 .3884,.9092,.6820,.5556,.5878,.1045,.1355,.0308,.0410,.2357, .7434,.0840,.3653,.6530,2.425, 4 5 .0398,.1290,.1298,.1400,.2149,.1890,.1722,.0255,.0896,.0931, 6 .1095,.0880,.1176,.0598,.0432,.1000,.0810,.3962,.2636,.1810, 7 .1364,.5368,.1565,.3917,.1903,.3362,.1273,.2897,.3153,.0600, 8 .2000,.3114,.1000,.2000,.3136,.0100,.2200,.3200,.1900,.0774, 9.3146,.0895,.0063,.0246,.0275,.0010,.1636,.0109,.0369,

E = J2608.YAMAMURO.DATA	DATE	89/03/15	WEDNESDAY)	T I	19:00:54	PAGE	0045 •1	IVAPO-
1.1000E+07 4.5400E-01	1.2000E+07	5.47602-01	1.3000E+07	5.62108-	-01450010	16	CUTAB	10
1.4000E+07 5.4990E-01	1.5000E+07	5.2740E-01	1.6000E+07	4.8920E	-01450010	16	CUTAB	10
1.7000E+07 4.2210E-01	1.8000E+07	3.4280E-01	1.9000E+07	2.7210E	-01450010	16	CUTAB	10
2.0000E+07 2.0800E-01					450010	16	CUTAB	10
.0000E+00 .0000E+00	0	0	0		0450010	0	CUTAB	10
5.0124E+04 1.2284E+02	0	0	1		0450010	22	CUTAB	10
.0000E+00-6.7657E+06	0	0	1		11450010	22	CUTAB	10
11 2							CUTAB	10
6.8207E+06 .0000E+00	1.1000E+07	2.3660E-16	1.2000E+07	1.55601	-13450010	22	CUIAB	10
1.500000407 1.96300-11	1.400000007	1.57005-04	1.900000000	5 512000	-08430010	22	CUTAB	10
1.00000007 1.21/05-05	2 00005+07	1.37002-08	1.80002+07	3.51202	-08430010	22	CUTAD	10
00005+00 00005+00	2.00002.007	4.97802-05	٥		0450010	<u>``</u>	CUTAB	10
5 012/E+0/ 1 228/E+02	0	0	1		0450010	26	CUTAB	10
00006+00-1 45196+07	ŏ	õ	;		3450010	24	CUTAE	10
3 2	Ŭ	Ŭ	•		3.20010	• •	CUTAR	10
1.4637E+07 .0000E+00	1.9000E+07	3.7650E-17	2.0000E+07	4.5370E	-13450010	24	CUTAB	10
.0000E+00 .0000E+00	0	0	0		0450010	0	CUTAB	10
5.0124E+04 1.2284E+02	ō	ō	2		0450010	28	CUTAB	10
.0000E+00-9.8713E+06	ō	0	1		11450010	28	CUTAB	10
11 2							CUTAB	10
9.9517E+06 .0000E+00	1.1000E+07	1.6620E-18	1.2000E+07	1.1850E	-11450010	28	CUTAB	10
1.3000E+07 2.3370E-08	1.4000E+07	1.43008-06	1.5000E+07	1.78908	-05450010	28	CUTAB	10
1.4000E+07 9.6040E-05	1.7000E+07	3.2760E-04	1.8000E+07	8.7340E	-04450010	28	CUTAB	10
1.9000E+07 1.9570E-03	2.0000E+07	3.8460E-03			450010	28	CUTAB	10
.0000E+00-1.0191E+07	0	1	1		10450010	28	CUTAB	10
10 2							CUTAB	10
1.0274E+07 .0000E+00	1.2000E+07	1.7310E-14	1.3000E+07	9.4910E	-10450010	28	CUTAB	10
1.4000E+07 2.3870E-07	1.5000E+07	8.8830E-06	1.6000E+07	5.1800E	-05450010	28	CUTAB	10
1./0000002-04	1.80000+07	4.91102-04	1.9000E+07	9.3890E	-04450010	28	CUIAB	10
2.0000000000000000000000000000000000000	•	0	0		430010	20	CUIAD	10
5 01245+04 1 22845+02	0	0	1		0450010	32	CUTAB	10
.0000E+00-1.8122E+07	ő	ő	1		2450010	32	CUTAB	10
2 2 2	v	•	•		2490010	21	CUTAB	10
1.8270E+07 .0000E+00	2.0000E+07	3.2540E-11			450010	32	CUTAB	10
.0000E+00 .0000E+00	Ō	0	0		0450010	0	CUTAB	10
5.0124E+04 1.2284E+02	ن	ί	2		04500103	03	CUTAB	10
.0000E+00-6.6164E+06	0	0	1		14450010	103	CUTAB	10
14 2							CUTAB	10
6.6703E+06 .0000E+00	8.0000E+06	9.4060E-13	9.0000E+06	3.3590E	-09450010	103	CUTAB	10
1.0000E+07 3.0660E-07	1.1000E+07	6.1060E-06	1.2000E+07	4.8100E	-054500101	103	CUTAB	10
1.3000E+07 2.0920E-04	1.4000E+07	6.2260E-04	1.5000E+07	1.4360E	-03450010	103	CUTAB	10
1.6000E+07 2.8000E-03	1.7000E+07	4.7440E-03	1_8000E+07	7.2630E	-03450010	103	CUTAB	10
1.9000E+07 1.0110E-02	2,0000E+07	1.2900E-02			450010	103	CUTAB	10
.0000E+00-6.8064E+06	0	4	1		14450010	103	CUTAB	10
14 2			a				CUIAB	10
	1 10000 +00	1.1550E-15	1 30005+08	4.368UE	-12450010	103	CUTAB	10
1 30006+07 1 03906-05	1.100000407	4 B1205-05	1 50006+07	1.84702	-06430010	103	CUTAB	10
1.80000007 4 10806-05	1 70000 +07	9 10405-04	1 80005+07	1 78005	-03450010	103		10
1.9000E+07 3.0320F-03	2.0000E+07	4.6410E-03			450010	103	CUTAR	10
.0000E+00 .0000E+00	0	0	٥		0450010	ó	CUTAR	10
5.0124E+04 1.2284E+02	ŏ	ő	1		0450010	107	CUTAB	10
.0000E+00-1.7554E+06	ō	Ō	i		16450010	07	CUTAB	10
E = J2608.YAMAMURO.DATA	DATE	89/03/15	(WEDNESDAY)	TIM	E 19:00:54	PAGE	0045	

-

~ - - - --

#### 4.3 ファイル8,9,10の格納形式

前章で述べた放射化断面積データは、ENDF/B-V フォーマットのファイル8, 9,10の 形式に準じて、原研の大型計算機FACOM-M780,又は4.2で述べた'XTOB10'コードを用 いてファイル化を行った。

ファイル8では、本来、放射性核の崩壊データ及び核分裂生成物の収率データが扱われるが、 放射化核反応での生成核(残留核)の半減期・アイソマー等のデータならひに放射化断面積デ ータの格納方式の指定(Nφ 因子)が与えられる。すなわち、放射化断面積データがファイル 9又は10に与えられている(Nφ=0)か、否(Nφ=1)かを各MTNa毎に指定する。Nφ=10 場合は、該当するMTNaのFile 3のデータがそのまま放射化断面積となることを示す。

ファイル9ではmultiplicity が与えられて、ファイル3のデータとの積が放射化断面積 となる。

ファイル10では、放射化断面積そのものが与えられるが、ファイル9とファイル10とで重複の無いことが必要である。

先に述べた放射化断面積データのファイル化に当たっては、核種によって次のような形式が 採られた。なお、2)と3)の場合には関連するMTMのファイル2及び3のデータとともにファ イル化を行ってある。

1) ファイル9, 10を使用した核種: Cu,Zr,Nb,Mo,Ag,Cd,In,Sn,Sb,Ta

- 2) ファイル8, 9を使用した核種: Ni, Eu, Gd
- 3) ファイル9のみを使用した核種:W

## 5. む す び

原子炉及び核融合炉における中性子照射に伴って生ずる放射性核種の生成を評価するために は、放射化断面積データファイルの整備が必要である。本報告に述べられた「放射化断面積デ ータファイル作成」は昨年度に引き続き、上記の趣旨に基いて進められた作業の一つである。 放射化断面積データは核異性体も含む、放射化核種の生成量を内容とするもので、核反応断 面積の計算・評価とはその目標に若干の違いがある。このため従来のGNASHコードのみを使 用していては出力結果の処理が大へん繁雑になることがさけられない。そこで本年度も昨年よ り継続してELIESE-GNASH 結合プログラムの改良を進めつつ、放射化断面積の計算を実 施し、効率の良いデータ処理を目指した。さらに本年度は放射化断面積を収容するENDF/B フォーマットのファイル形式が定まったことから、このファイル化のための作業も実施された。 これらファイル化のために新たに開発されたコードも含む、簡易入力核断面積計算システムを SINCROS-IIと呼んで本報告の中でもその名称が用いられている。

本年度の作業でも、計算結果をNESTOR-2 などからとられた実験データとの比較を行な いながら計算システムの中で用いられる諸パラメータの系統性を貫くことを基本としてきた。 これは計算のデータ予測性を高める上で有効と考えている。これとは別に JENDL-3 の汎用 ファイルとの統一性を尊重した評価を行ったものもある。

放射化断面積の数は極めて多く米, 欧ではその数 4000~8000という。従って, われわれの 作業も緒についたところと考えられる。しかし, 過去2か年の作業によって計算・評価の方法 にかなり見透しを持つことができ, その質的内容も他に比して優るといえども劣ることはない。 また, ファイル化の経験も持つことができた。こうしてその数よりも質において先進の米, 欧 にある同種データファイルに十分比肩しうる放射化断面積データファイルの誕生が期待できる ものと思われる。

## 謝 辞

本作業の実行にあたって、原研物理部核データセンターの中川庸雄,成田 孟,柴田恵一, 深堀智生の諸氏には、計算機の使用、測定データの検索・提供等の面で大変御助力を頂いた。 また、JENDL-3 編集グループの方々からは、JENDL-3 ファイルの提供を受けた。ま た、原子力データセンターの浅見哲夫氏には、タングステンの断面積の計算と評価についてご 協力をいただいた。ここに上記の方々に謝意を表明する。

## 参考文献

- 1) JAERI Nuclear Data Center: "JENDL-3", Private communication, (1989).
- N.Yamamuro, "A Nuclear Cross Section Calculation System with Simplified Input-Format Version I", (SINCROS-I), JAERI-M 88-140 (1988) (in Japanese).
- S.Igarashi, "Program ELIESE-3; Program for Calculation of the Nuclear Cross Section by Using Local and Non-Local Optical Models and Statistical Model", JAERI 1224 (1972).
- P.G.Young and E.D.Arthur, "GNASH: A Preequilibrium, Statistical Nuclear-Model Code for Calculation of Cross Sections and Emission Spectra". LA-6947 (1977).
- 5) S.Igarashi, J.Nucl. Sci. Technol., 12, 67 (1975).
- K.Hida, "GAMFIL: "A Computer Program for Generating Photon Production Nuclear Data File", JAERI-M 86-150 (1986) (in Japanese).
- T.Katoh, K.Kawade, and H.Yamamoto, "Measurement of Activation Cross Sections", JAERI-M 89-083 (1989) (in Japanese).
- 8) A.Paulsen, Nukleonik, 10, 91 (1967).
- 9) G.Winkle, D.L.Smith, and J.W.Meadows, Nucl. Sci. Eng., 76, 30 (1980).
- 10) Y.Ikeda, C.Konno, K.Oishi, T.Nakamura, H.Miyade, K.Kawade, H.Yamamoto, and T.Katoh, "Activation Cross Section Measurements for Fusion Reactor Structural Materials at Neutron Energy from 13.3 to 15.0 MeV Using FNS Facility", JAERI 1312 (1988).
- 11) J.Frehaut, Accession No. 20416 12, EXFOR (1980).
- 12) J.Frehaut and G.Mosinski, "Measurement of (n,2n) and (n,3n) cross sections for Incident Energy between 6 and 15 MeV", NBS Special Publication 425, p.855 (1975).
- 13) A.Abboud, Nucl. Phys., A132, 42 (1969).
- 14) R.J.Prestwood, Phys. Rev., <u>121</u>, 1438 (1961).
- 15) M.Bormann, Nucl. Phys., A115, 309 (1968).
- 16) J.Frehaut, Accesion No.20416 16, EXFOR (1980).

## 付 録 放射化反応リスト

放射化断面積データファイルは核融合炉で特に要望されているが、勿論,軽水炉,高速炉の 構造材料の放射化も現実的な問題である。放射化反応の数は非常に多く,元素及び生成核の半 減期による何等かの選択が必要である。ここでは、0-20 MeVの中性子による原子炉材料の放 射能評価を目的として反応を選択し、反応リストを作成した。このリストは選択基準について も再考を要する点があるが、今後の反応リストの完成のために以下に記す。

反応の選択の優先度に関して次の基準を設けた。

(1) 反応のしきい値は 18 MeV 以下とし、反応の種類は、
 (n,r), (n,n)m, (n,3n), (n,p), (n, α), (n, d), (n, t), (n, h), (n, np),
 (n,nα), (n,nd), (n,nt), (n,2p)

に限定する。

(2) 現在考えられている原子炉材料及びその中の不純物の安定元素核だけを対象とする。従って、FPは対象としない。ドシメトリー、検出器用の反応はそれが材料放射化反応である場合には含める。

原子炉材料中の主元素及び不純物の元素をTable A.1 に掲げる。これに基づく対象元素の優先度をTable A.2 に示す。

(3) 生成核の半減期は、1d以上のものに高い優先度を置く。

原子炉施設での作業時の被曝,廃棄物処分などの短期,中期,長期の時間スケールごと に異なる半減期の核が対象になる。現在の発電炉では対象となる事項は,

a 定常運転

冷却材からの放射能発生が主なので反応は限定され、半減期数時間以下の放射性核種が対 象となる。

b. 保守, 定期点検

**炉停止後、数日後の定期点検中の被曝を問題にするので1d程度以上の核種を問題とする。** LWRではCo-60 に対する相対値で考える。

c. 原子炉解体

運転終了から5年後に解体を開始したさいの作業時の被曝を問題とする。

半減期1 y 程度以上の核種を対象とする。

d. 廃棄物の長期処分

半減期10v以上の核種が対象である。Co-60 はもう問題にしなくて良い。

e. 通常或は緊急停止後時の崩壊熱は通常の原子炉ではFPによるものであるが、核融合

炉ではMn-56(2.85h)が強いベータ線を放出し崩壊熱としての発熱の主成分となる。

以上の理由で特別の反応以外では半減期1d以上の放射化生成反応の優先度が高い。

Table A.3 はTable A.2 の優先度1, 2の元素について、半減期1d以上の反応をリスト したものであり、約750反応を含んでいる。この表はBABYDAD コードにより原研、中川庸 雄氏が計算し、それをここで再編集したものである。コードのデータベースは、 isomerを含 む半減期はENSDFから採り、反応のQ値はWapstra-Bos及び宇野、山田、安藤の質量公式 を用いている。

Table A.3 はまだ完全ではなく今後修正,追加を要する。それらは

- 1. (n,n,)m反応が含まれていない。
- 2. 娘核は短寿命であるがその崩壊によって長い寿命の孫核が生成する場合がかなりある。
   例えば、Fe-54(n,2n)Fe-53(8.51m), Mn-53(3.7x10⁶y)などである。この種類の
   短寿命、長寿命核のリストをTable A.4 に掲げる。
- 3. 娘核が長寿命で且つ中性子断面積が大きい場合はさらに中性子反応によって放射性の孫 核を生成するので断面積ファイルに長寿命娘との反応も含める必要がある。

*.**

4. 積分的なベンチマーク計算によって、重要核種を更に限定する必要がある。

Material	Major	Impurity
	Elements	Elements
Zircaloy	Zr	Sn, Nb, Cr, Fe, Ni, C, Hf, Pb, O, Si, Ta, W
SUS	Cr,Fe,Ni,Mn	C, N, O, Al, Si, P, S, Ti, Co, Cu, Nb, Mo, Sn, W
Magnox	Mg	Al, Be, Zr, Mn
Al-alloy	Al	Mg, Si, Ti, Cr, Mn, Fe, Cu, Zn
Concrete	H,C,O,Si,Ca,Ba	Na, Mg, Al, P, S, K, Fe, Sr, Sm, Eu
Others :	B,C,Ag,Cd,In,Hf, Ar(FBR cover gas	Gd ), Ga, Ge, As(flux monitor), Sb(neutron source)
Fusion Rea	actor Materials (i	ncluding potential materials)
Major el	lements : H, He, L Fe, Ni,	i, Be, B, C, N, O, F, Al, Si, Ca, Ti, V, Cr, Mn, Cu, Sn, Ba, W, Pb
Minor el	ements : Zr, Nb, i Ta Re (	Mo, Pd, Ag, Cd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Hf,

Table A.1 Major and Minor Elements of Reactor Materials

Tab	le A.2	? F	lequi	re	men	t Prio	riti	es	of Ma	ateris	1	Act	ivation	Cr	oss	Sections
Z/	NUC P	RIOR	2. Z	/ N	UC	PRIOR.	Z/1	VUC	PRIC	DR. 2	./N	UC	PRIOR.	Z/3	NUC	PRIOR
1	н	1	1	8.	AR	1	35	BR	-	5	52	TE	_	69	ТМ	2
2	НE	2	1	9	K	2	36	KR	-	5	3	I	-	70	YΒ	-
3	LI	1	2	0	CA	1	37	RB	-	5	4	XE	-	71	LU	-
4	BE	1	2	1	sc	-	38	SR	2	5	5	CS	-	72	HF	1
5	в	1	2	2 '	TI	1	39	Y	2	5	6	BA	1	73	ТΑ	1
6	c	1	2	3	v	1	40	ZR	1	5	7	PR	-	74	W	1
7	Ň	1	2	4 (	CR	1	41	NB	1	5	8	CE	-	75	RE	1
8	0	1	2	5	MN	1	42	MO	1	5	9	PR	-	76	OS	2
9	F	2	2	6	FE	1	43	тс	-	6	0	ND	-	77	IR	2
10	NE	-	2	7	со	1	44	RU	-	6	1	ΡM	-	78	РТ	-
11	NA	1	2	8	NI	1	45	RH	-	6	2	SM	2	79	ΑU	-
12	MG	2	2	9 (	CU	1	46	PD	2	6	3	EU	1	80	НG	-
13	AL	1	3	0 3	zυ	2	47	AG	1	6	4	GD	1	81	ΤL	-
14	SI	1	3	1 (	GA	2	48	CD	1	6	5	ТΒ	2	82	PB	1
15	Р	2	3	2 (	GE	2	49	IN	1	6	6	DY	2	83	BI	1
16	S	2	3	з.	AS	2	50	SN	1	6	7	но	2			
17	CL	2	3	4	SE	-	51	SB	1	6	8	ER	2			
 *)	Based	on	the	di:	scu	ssions	at 1	vuc:	lear	Data	 Ce	nte	r, JAERI	, 4	Aug.	, 1988

- 82 -

1

-----

TARGET	F	REACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
1-H -	2	(N:G)	1-H - 3	+1.26E+01Y	+6.258E+00	+0.000E+00
2-HE-	3	(N:P)	1-H - 3	+1.26E+01Y	+7.640E-01	+0.000E+00
3-LJ- 3-LI-	6 7	(N:A) (N:N,A)	1 - H - 3 1 - H - 3	+1.26E+01Y +1.26E+01Y	+4.787E+00 -2.463E+00	+0.000E+00 +3.287E+00
4-BE-	9	(N:G)	4-BE- 10	+1.63E+06Y	+6.812E+00	+0.000E+00
5-B - 5-B - 5-B -	10 11 11	(N:P) (N:D) (N:N,P)	4-BE- 10 4-BE- 10 4-BE- 10	+1.63E+06Y +1.63E+06Y +1.63E+06Y	+2.265E-01 -9.003E+00 -1.123E+01	+0.000E+00 +9.909E+00 +1.236E+01
6-C - 6-C -	13 13	(N:G) (N:A)	6-C - 14 4-BE- 10	+5.83E+03Y +1.63E+06Y	+8.177E+00 -3.832E+00	+0.000E+00 +4.218E+00
7 - N - 7 - N - 7 - N -	14 15 15	(N:P) (N:D) (N:N,P)	6-C - 14 6-C - 14 6-C - 14	+5.83E+03Y +5.83E+03Y +5.83E+03Y	+6.263E-01 -7.974E+00 -1.021E+01	+0.000E+00 +8.548E+00 +1.094E+01
8-0 - 8-0 - 8-0 -	16 17 18	(N:H) (N:A) (N:N,A)	6-C - 14 6-C - 14 6-C - 14	+5.83E+03Y +5.83E+03Y +5.83E+03Y	-1.462E+01 +1.832E+00 -6.227E+00	+1.567E+01 +0.000E+00 +6.676E+00
11-NA-	23	(N:2N)	11-NA- 22	+2.65E+00Y	-1.241E+01	+1.298E+01
12-MG-	24	(N:T)	11-NA- 22	+2.65E+00Y	-1.562E+01	+1.634E+01
13-AL-	27	(N:2N)	13-AL- 26	+7.33E+05Y	-1.305E+01	+1.356E+01
14-SI-	28	(N:T)	13-AL- 26	+7.33E+05Y	-1.616E+01	+1.679E+01
15-P -	31	(N:G)	15-P - 32	+1.43E+01D	+7.929E+00	+0.000E+00
16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-S - 16-5-5 - 16-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5	32 33 33 33 34 34 34 34 34 34 36 36	(N:P) (N:P) (N:D) (N:N,P) (N:2P) (N:G) (N:D) (N:T) (N:H) (N:N,P) (N:2N) (N:N,A)	15-P - 32 $15-P - 33$ $15-P - 32$ $14-SI - 32$ $16-S - 35$ $15-P - 33$ $15-P - 32$ $14-SI - 32$ $15-P - 33$ $16-S - 35$ $16-S - 35$ $14-SI - 32$	+1.43E+01D +2.53E+01D +1.43E+01D +1.43E+01D +3.36E+02Y +8.75E+01D +2.53E+01D +1.43E+01D +3.36E+02Y +2.53E+01D +8.75E+01D +3.36E+02Y	$\begin{array}{c} -9.257E-01\\ +5.383E-01\\ -7.350E+00\\ -9.568E+00\\ -8.999E+00\\ +6.991E+00\\ -8.658E+00\\ -1.250E+01\\ -1.269E+01\\ -1.088E+01\\ -9.880E+00\\ -8.999E+00\\ \end{array}$	+9.549E-01 +0.000E+00 +7.582E+00 +9.869E+00 +9.283E+00 +0.000E+00 +8.923E+00 +1.289E+01 +1.309E+01 +1.121E+C1 +1.017E+01 +9.283E+00
17-CL- 17-CL-	35 35	(N:G) (N:P)	17-CL- 36 16-S - 35	+3.06E+05Y +8.75E+01D	+8.583E+00 +6.236E-01	+0.000E+00 +0.000E+00

Table A.3 Activation Reactions for Important Materials (T > 1 d)

-----

,

· · ·····

TARGET	RE.	ACTION	DAUGHT	ER	HAL	F-LIF	Έ	Q-VA	LUE		THR	ESH	OLD
17-CL-	35	(N:H)	15-P -	33	+2,	53E+0	1D	-9.5	39E+	00	+9.	831	E+00
17-CL-	35	(N:A)	15-P -	32	+1.	43E+0	1D	+9.3	63E-	01	+0.	000	E+00
17-CL-	37	(N:T)	16-S -	35	+8,	75E+0	1D	-9.7	81E+	00	+1.	006	E+01
17-CL-	37	(N:2N)	17-CL-	36	+3.	06E+0	5Y	-1.0	29E+	01	+1.	058	E+01
17-CL-	37	(N:N,D)	16-S -	35	+8.	75E+0	1D	-1.6	03E+	01	+1.	650	E+01
17-CL-	37	(N:N,A)	15-P -	33	+2.	53E+0	1D	-7.8	48E+	00	+8.	088	E+00
18-AR-	36	(N:G)	18-AR-	37	+3.	50E+0	1D	+8.7	96E+	00	+0.	000	E+00
18-AR-	36	(N:P)	17-CL-	36	+3.	06E+0	5Y	+9.7	72E-	02	+0.	000	E+00
18-AR-	36	(N:2P)	16-S -	35	+8.	75E+0	1 D	-7.8	76E+	00	+8.	103	E+00
18-AR-	38	(N:G)	18-AR-	39	+2.	74E+0	2 Y	+6.5	93E+	00	+0.	000	E+00
18-AR-	38	(N:T)	17-CL-	36	+3.0	06E+0	5 Y	-1.2	05E+	01	+1.	239	E+01
18-AR-	38	(N:A)	16-S -	35	+8.	75E+0	1 D	-2.1	50E-	01	+2.	212	E-01
18-AR-	38 (	(N:2N)	18-AR-	37	+3.	50E+0	1 D	-1.1	83E+	01	+1.	215	E+01
18-AR-	40	(N:2N)	18-AR-	39	+2.	74E+0	2 Y	-9.8	66E+	00	+1.	012	E+01
19-K -	39	(N:P)	18-AR-	39	+2.	74E+0	2 Y	+2.2	56E-	01	+0.	000	E+00
19-К -	39	(N:T)	18-AR-	37	+3.	50E+0	1D -	-9.7	24E+	00	+9.	989	E+00
19-K -	39	N:A)	17-CL-	36	+3.0	06E+0	5Y -	+1.3	77E+	00	+0.	000	E+00
19-К -	39 (	(N:N,D)	18-AR-	37	+3.	50E+0	1D -	-1.5	98E+	01	+1.	641	E+01
19-K -	40 (	(N:D)	18-AR-	39	+2.	74E+0	2Y -	-5.3	60E+	00	+5.	499	E+00
19-К –	40	(N:N,P)	18-AR-	39	+2.1	74E+0	2Y -	-7.5	78E+	00	+7.	774	E+00
19-к -	40	(N:N,A)	17-CL-	36	+3.0	06E+0	5Y -	-6.4	26E+	00	+6.	607	E+00
19-K -	41 (	N:T)	18-AR-	39	+2.1	74E+0	2Y -	-9.1	84E+	00	+9.	421	E+00
19-K -	41 (	N:N,D)	18-AR-	39	+2.	74E+0	2Y -	-1.5	44E+	01	+1.	584	E+01
20-CA-	40 (	(N:G)	20-CA-	41	+1.0	05E+0	5Y -	+8.3	70E+	00	+0.	000	E+00
20-CA-	40 (	N:A)	18-AR-	37	+3.	50E+0	1D ·	+1.7	61E+	00	+0.	000	E+00
20-CA-	40 (	N:2P)	18-AR-	39	+2.1	74E+0	2Y -	-8.1	04E+	00	+8.	313	E+00
20-CA-	42 (	N:A)	18-AR-	39	+2.3	74E+0	2Y ·	+3.5	36E-	01	+0.	000	E+00
20-CA-	42 (	N:2N)	20-CA-	41	+1.0	05E+0	5Y ·	-1.1	46E+	01	+1.	174	E+01
20-CA-	43 (	N:N,A)	18-AR-	39	+2.3	74E+0	2Y ·	-7.5	92E+	00	+7.	788	E+00
20-CA-	43 (	N:2P)	18-AR-	42	+3.3	35E+0	1Y ·	-1.0	49E+	01	+1.	074	E+01
20-CA-	44 (	N:G)	20-CA-	45	+1.6	64E+0	2D -	+7.4	18E+	00	+0.	000	E+00
20-CA-	44 (	N:H)	18-AR-	42	+3.3	35E+0	1Y -	-1.3	90E+	01	+1.	424	E+01
20-CA-	46 (	N:G)	20-CA-	47	+4.5	54E+0	• ao	+7.2	90E+	00	+0.0	000	E+00
20-CA-	46 (	N:2N)	20-CA-	45	+1.6	64E+0	2D -	-1.0	38E+	01	+1.0	0611	E+01
20-CA-	46 (	N:N,A)	18-AR-	42	+3.3	35E+0	1Y -	-1.1	13E+	01	+1.1	140]	E+01
20-CA-	48 (	N:2N)	20-CA-	47	+4.8	54E+0	0D -	-9.9	23E+	00	+1.(	0141	E+01
21-SC-	45 (	N:G)	21-SC-	46	+8.3	8E+0	1D +	8.7	54E+	00	+0.0	000	E+00
21-SC-	45 (	N;P)	20-CA-	45	+1.6	64E+0	2D +	5.3	83E-	01	+0.0	000	S+00
21-SC-	45 (	N:2N)	21-SC-	44M	+2.4	4E+0	0D -	-1.1	59E+	01	+1.	1851	3+01
22-TI-	46 (	N:P)	21-SC-	46	+8.3	88E+0	1D -	-1.5	79E+	00	+1.6	5141	E+00
22-TI-	46 (	N:T)	21-SC-	4 4 M	+2.4	4E+00	0D -	1.34	15E+	01	+1.3	376E	2+01
22-TI-	46 (	N:2P)	20-CA-	45	+1.6	4E+0	2D -	-9.80	)9E+	00	+1.0	0031	E+01
22-TI-	47 (	N:P)	21-SC-	47	+3.3	5E+00	0D +	1.83	80E-	01	+0.0	000	2+00
22-TI-	47 (	N:D)	21-SC-	46	+8.3	8E+0	1D -	8.24	16E+	00	+8.4	271	2+00
22-TI-	47 (	N:H)	20-CA-	45	+1.6	4E+02	2D -	1.09	97E+0	D1	+1.1	221	2+01
22-TI-	47 (	N:N,P)	21-SC-	46	+8.3	8E+01	1D -	1.04	6E+(	01	+1.0	)69E	2+01

ł

Table	A.3 (	Continued (
-------	-------	-------------

TARGET	R	EACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
22-TI- 22-TI-	48	(N:P) (N:D)	21-SC- 48 21-SC- 47	+1.82E+00D +3.35E+00D	-3.200E+00 -9.226E+00	+3.267E+00 +9.425E+00
22-TI-	48	(N:T)	21-SC- 46	+8.38E+01D	-1.360E+01	+1.390E+01
22-TI-	48	(N:A)	20-CA- 45	+1.64E+02D	-2.020E+00	+2.065E+00
22-TI-	48	(N:N,P)	21-SC- 47	+3.35E+00D	-1.144E+01	+1.169E+01
22-TI-	48	(N:2P)	20-CA- 47	+4.54E+00D	-1.264E+01	+1.291E+01
22-TI-	49	(N:D)	21-SC- 48	+1.82E+00D	-9.127E+00	+9,319E+00
22-TI-	49	(N:T)	21-SC- 47	+3.35E+00D	-1.110E+01	+1.134E+01
22-TI-	49	(N:H)	20-CA- 47	+4.54E+00D	-1.306E+01	+1.334E+01
22-TI-	49	(N:N,P)	21-SC- 48	+1.82E+00D	-1.134E+01	+1.158E+01
22-TI-	49	(N:N,D)	21-SC- 47	+3.35E+00D	-1.736E+01	+1.773E+01
22-TI-	49	(N:N,A)	20-CA- 45	+1.64E+02D	-1.016E+01	+1.039E+01
22-TI-	50	(N:T)	21-SC- 48	+1.82E+00D	-1.380E+01	+1.409E+01
22-TI-	50	(N:A)	20-CA- 47	+4.54E+00D	-3.427E+00	+3.501E+00
23-V -	50	(N:H)	21-SC- 48	+1.82E+00D	-1.157E+01	+1.182E+01
23-V -	50	(N:A)	21-SC- 47	+3.35E+00D	+7.658E-01	+0.000E+00
23-V -	50	(N:2N)	23-V - 49	+3.30E+02D	-9.312E+00	+9.504E+00
23-V -	50	(N:N,A)	21-SC- 46	+8.38E+01D	-9.880E+00	+1.010E+01
23-V -	51	(N:A)	21-SC- 48	+1.82E+00D	-2.049E+00	+2.092E+00
23-V -	51	(N:N,A)	21-SC- 47	+3.35E+000	-1.029E+01	+1.051E+01
24-CR-	50	(N:G)	24-CR- 51	+2.77E+01D	+9.265E+00	+0.000E+00
24-CR-	50	(N:D)	23-V - 49	+3.30E+02D	-7.350E+00	+7.502E+00
24-CR-	50	(N:T)	23-V - 48	+1.60E+01D	-1.265E+01	+1.292E+01
24-CR-	50	(N:N,P)	23-V - 49	+3.30E+02D	-9.568E+00	+9.765E+00
24-CR-	52	(N:2N)	24-CR- 51	+2.77E+01D	-1.203E+01	+1.226E+01
25-MN-	55	(N:2N)	25-MN- 54	+3.12E+02D	-1.022E+01	+1.041E+01
26-FE-	54	(N:G)	26-FE- 55	+2.78E+00Y	+9.294E+00	+0.000E+00
26-FE-	54	(N:P)	25-MN- 54	+3.12E+02D	+9.772E-02	+0.000E+00
26-FE-	54	(N:D)	25-MN- 53	+3.81E+06Y	-6.625E+00	+6.752E+00
26-FE-	54	(N:T)	25-MN- 52	+5.59E+00D	-1.241E+01	+1.265E+01
26-FE-	54	(N:A)	24-CR- 51	+2.77E+01D	+8.510E-01	+0.000E+00
26-FE-	54	(N:N,P)	25-MN- 53	+3.81E+06Y	-8.843E+00	+9.011E+00
26-FE-	56	(N:T)	25-MN- 54	+3.12E+02D	-1.191E+01	+1.214E+01
26-FE-	56	(N:2N)	26-FE- 55	+2.78E+00Y	-1.119E+01	+1.139E+01
26-FE-	58	(N:G)	26-FE- 59	+4.45E+01D	+6.579E+00	+0.000E+00
27-CO-	59	(N:G)	27-CO- 60	+5.37E+00Y	+7.503E+00	+0.000E+00
27-CO-	59	(N:P)	26-FE- 59	+4.45E+01D	-7.693E-01	+7.825E-01
27-CO-	59	(N:2N)	27-CO- 58	+7.08E+01D	-1.043E+01	+1.062E+01
28-NI-	58	(N:G)	28-NI- 59	+7.63E+04Y	+8.995E+00	+0.000E+00
28-NI-	58	(N:P)	27-CO- 58	+7.08E+01D	+4.104E-01	+0.000E+00
28-NI-	58	(N:D)	27-CO- 57	+2.72E+02D	-5.943E+00	+6.048E+00
28-NI-	58	(N:T)	27-CO- 56	+7.71E+01D	-1.106E+01	+1.126E+01
28-NI-	58	(N:A)	26-FE- 55	+2.78E+00Y	+2.898E+00	+0.000E+00
28-NI-	58	(N:2N)	28-NI- 57	+1.49E+00D	-1.220E+01	+1.241E+01
28-NI-	58	(N:N,P)	27-CO- 57	+2.72E+02D	-8.160E+00	+8.305E+00

TARGET	F	REACTION	DAUGHT	ER	HAL	F-LIFE	Q-VALU	E	THR	ESHOLD
28-NI-	58	(N:N,D)	27-CO-	56	+7.	71E+01D	-1.731	E+01	+1.	763E+01
28-NI-	- 60	(N:P)	27-CO-	60	+5.	37E+00Y	-2.020	E+00	+2.0	054E+00
28-NI-	- 60	(N:T)	27-CO-	58	+7.	08E+01D	-1.149	E+01	+1.	169E+01
28-NI-	60	(N:2N)	28-NI-	59	+7.	63E+04Y	-1.137	E+01	+1.	157E+01
28-NI-	60	(N:2P)	26-FE-	59	+4.	45E+01D	-1.031	E+01	+1.0	048E+01
28-NI-	61	(N:D)	27-CO-	60	+5.	37E+00Y	-7.634	E+00	+7.'	763E+00
28-NI-	61	(N:H)	26-FE-	59	+4.	45E+01D	-1.042	E+01	+1.0	060E+01
28-NI-	61	(N:N,P)	27-CO-	60	+5.	37E+00Y	-9.852	E+00	+1.0	)02E+01
28-NI-	61	(N:2P)	26-FE-	60	+1.	53E+06Y	-9.283	E+00	+9.4	439E+00
28-NI-	62	(N:G)	28-NI-	63	+1.	02E+02Y	+6.849	E+00	+0.0	000E+00
28-NI-	62	(N:T)	27-CO-	60	+5.	37E+00Y	-1.196	E+01	+1.2	216E+01
28-NI-	62	(N:H)	26-FE-	60	+1.	53E+06Y	-1.215	E+01	+1.2	236E+01
28-NI-	62	(N:A)	26-FE-	59	+4.	45E+01D	-4.282	E-01	+4.3	355E-01
28-NI-	64	(N:2N)	28-NI-	63	+1.	02E+02Y	-9.639	E+00	+9.1	793E+00
28-NI-	64	(N:N,A)	26-FE-	60	+1.	53E+06Y	-8.075	E+00	+8.2	211E+00
29-CU-	63	(N:P)	28-NI-	63	+1.	02E+02Y	+7.373	E-01	+0.0	000E+00
29-CU-	63	(N:A)	27-CO-	60	+5.	37E+00Y	+1.732	E+00	+0.0	)00E+00
29-CU-	65	(N:T)	28-NI-	63	+1.	02E+02Y	-8.615	E+00	+8.7	753E+00
29-CU-	65	(N:N,D)	28-NI-	63	+1.	02E+02Y	-1.487	E+01	+1.5	511E+01
30-ZN-	64	(N:G)	30-ZN-	65	+2.	44E+02D	+7.986	E+00	+0.0	)00E+00
30-ZN-	64	(N:2P)	28-NI-	63	+1.	02E+02Y	-6.981	E+00	+7.0	)93E+00
30-ZN-	66	(N:A)	28-NI-	63	+1.	02E+02Y	+2.272	E+00	+0.0	00E+00
30-ZN-	66	(N:2N)	30-ZN-	65	+2.	44E+02D	-1.105	E+01	+1.1	122E+01
30-ZN-	67	(N:P)	29-CU-	67	+2.	58E+00D	+2.2561	E-01	+0.0	00E+00
30-ZN-	67	(N:N,A)	28-NI-	63	+1.	02E+02Y	-4.7781	E+00	+4.8	354E+00
30-ZN-	67	(N:2P)	28-NI-	66	+2.	28E+00D	-8.3591	E+00	+8.4	87E+00
30-ZN-	68	(N:D)	29-CU-	67	+2.	58E+00D	-7.7621	E+00	+7.8	379E+00
30-ZN-	68	(N:H)	28-NI-	66	+2.1	28E+00D	-1.0851	E+01	+1.1	01E+01
30-ZN-	68	(N:N,P)	29-CU-	67	+2.	58E+00D	-9.9801	E+00	+1.0	)13E+01
30-ZN-	70	(N:N,T)	29-CU-	67	+2.	58E+00D	-1.7191	E+01	+1.7	45E+01
30-ZN-	70	(N:N,A)	28-NI-	66	+2.3	28E+00D	-5.9571	E+00	+6.0	48E+00
31-GA-	69	(N:H)	29-CU-	67	+2.	58E+00D	-8.8711	E+00	+9.0	05E+00
31-GA-	71	(N:N,A)	29-CU-	67	+2.	58E+00D	-5.2471	E+00	+5.3	26E+00
32-GE-	70	(N:G)	32-GE-	71	+1.3	4E+01D	+7,418E	2+00	+0.0	00E+00
32-GE-	70	(N:2N)	32-GE-	69	+1.6	33E+00D	~1.153E	2+01	+1.1	70E+01
32-GE-	72	(N:2N)	32-GE-	71	+1.	4E+01D	-1.073E	+01	+1.0	89E+01
32-GE-	73	(N:2P)	30-ZN-	72	+1.9	94E+00D	-9.653E	2+00	+9.7	88E+00
32-GE-	73	(N:3N)	32-GE-	71	+1.1	4E+01D	~1.751E	+01	+1.7	76E+01
32-GE-	74	(N:H)	30-ZN-	72	+1.9	4E+00D	-1.214E	+01	+1.2	31E+01
32-GE-	76	(N:N,A)	30-ZN-	72	+1.9	4E+00D	~7.492E	+00	+7.5	97E+00
33-49-	75	(N:G)	33-AS-	76	+1.1	0E+00D	+7.332E	+00	+0.0	00E+00
33-AS-	75	(N; 2N)	33-AS-	74	+1.7	8E+01D	-1.024E	+01	+1.0	38E+01
	• -	, ,		-						

TARGET	F	REACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
38-SR-	84	(N:G)	38-SR- 85	+6.48E+01D	+8.526E+00	+0.000E+00
38-SR-	84	(N:P)	37-RB- 84	+3.29E+01D	-1.013E-01	+1.025E-01
38-SR-	84	(N:D)	37-RB- 83	+8.62E+01D	-6.711E+00	+6.792E+00
38-SR-	84	(N:A)	36-KR- 81	+2.17E+05Y	+2.727E+00	+0.000E+00
38-SR-	84	(N:2N)	38-SR- 83	+1.35E+00D	-1.197E+01	+1.212E+01
38-SR-	84	(N:N,P)	37-RB- 83	+8.62E+01D	~8.928E+00	+9.037E+00
38-SR-	86	(N:P)	37-RB- 86	+1.87E+01D	-9.683E-01	+9.797E-01
38-SR-	86	(N:T)	37-RB- 84	+3.29E+01D	-1.163E+01	+1.177E+01
38-SR-	86	(N:2N)	38-SR- 85	+6.48E+01D	-1.147E+01	+1.161E+01
38-SR-	86	(N:2P)	36-KR- 85	+1.09E+01Y	-9.539E+00	+9.652E+00
38-SR-	87	(N:D)	37-RB- 86	+1.87E+01D	-7.180E+00	+7.264E+00
38-SR-	87	(N:H)	36-KR- 85	+1.09E+01Y	-1.025E+01	+1.037E+01
38-SR-	87	(N:N,P)	37-RB- 86	+1.87E+01D	-9.397E+00	+9.507E+00
38-SR-	88	(N:G)	38-SR- 89	+5.05E+01D	+6.366E+00	+0.000E+00
38-SR-	88	(N:T)	37-RB- 86	+1.87E+01D	-1.203E+01	+1.217E+01
38-SR-	88	(N:A)	36-KR- 85	+1.09E+01Y	-7.835E-01	+7.928E-01
39-Y -	89	(N:G)	39-Y - 90	+2.67E+00D	+6.863E+00	+0.000E+00
39-Y -	89	(N:P)	38-SR- 89	+5.05E+01D	-6.982E-01	+7.062E-01
39-Y -	89	(N:A)	37-RB- 86	+1.87E+01D	+7.089E-01	+0.000E+00
39-Y -	89	(N:2N)	39-Y - 88	+1.07E+02D	-1.146E+01	+1.159E+01
40-ZR-	90	(N;P)	39-Y - 90	+2.67E+00D	-1.494E+00	+1.511E+00
40-ZR-	90	(N:T)	39-Y - 88	+1.07E+02D	-1.134E+01	+1.147E+01
40-ZR-	90	(N:2N)	40-ZR- 89	+3.27E+00D	~1.197E+01	+1.211E+01
40-ZR-	90	(N:N.D)	39-Y - 88	+1.07E+02D	-1.760E+01	+1.780E+01
40-ZR-	90	(N:2P)	38-SR- 89	+5,05E+01D	-9.070E+00	+9.173E+00
40-ZR-	91	(N;P)	39-Y - 91	+5.85E+01D	-7.409E-01	+7.491E-01
40-ZR-	91	(N:D)	39-Y - 90	+2.67E+00D	-6.469E+00	+6.542E+00
40-ZR-	91	(N:H)	38-SR- 89	+5,05E+01D	-8.544E+00	+8.641E+00
40-ZR-	91	(N:N,P)	39 - Y - 90	+2,67E+00D	-8,686E+00	+8.784E+00
40-ZR-	91	(N:2P)	38-SR- 90	+2.96E+01Y	-8,459E+00	+8.554E+00
40-ZR-	92	(N:G)	40-ZR- 93	+1.56E+06Y	+6.735E+00	+0.000E+00
40~ZR-	92	(N;D)	39 - Y - 91	+5.85E+01D	-7.165E+00	+7.245E+00
40-ZR-	92	(N:T)	39 - Y - 90	+2.67E+00D	-8.843E+00	+8,942E+00
40 - 7R - 10	92	(N:H)	38-SR- 90	+2.96E+01Y	-9.383E+00	+9.488E+00
40-ZR-	92	(N:A)	38-SR- 89	+5.05E+01D	+3.395E+00	+0.000E+00
40-78-	92	(N:N,P)	39 - Y = 91	+5.85E+01D	-9.383E+00	+9.487E+00
40 - 2R -	92	(N:N,D)	39 - Y = 90	+2.67E+00D	-1.510E+01	+1.527E+01
40~7R-	94	(N:G)	40-ZR- 95	+6.40E+01D	+6.465E+00	+0.000E+00
40 - 7R - 100	94	(N:2N)	40 - ZR - 93	+1.56E+06Y	-8.203E+00	+8.292E+00
40~ZR-	94	$\{N:N,T\}$	39 - Y - 91	+5.85E+01D	-1.585E+01	+1.603E+01
40-78-	94	(N:N,A)	38-SR- 90	+2.96E+01Y	-3.754E+00	+3.796E+00
40-ZR-	96	(N:2N)	40-ZR- 95	+6.40E+01D	-7.848E+00	+7.931E+00
41-NB-	93	(N:G)	41-NB- 94	+2.07E+04Y	+7.233E+00	+0.000E+00
41NR	93	(N:P)	40 - 7R - 93	+1.56E+06V	+7.089E-01	+0.000F+C0
11_ND-	90	(N+H)	30 20 - 30 30 - 7 - 01	+5.85F+01D	-7.706F+00	+7.7915+00
41_ND-	33 93	(N•A)	$39_{1} - 91$	+2.67F+00D	+4.9305+00	+0.0005+00
11.ND-	30 02	111-111	33 = 1 = 30 41 = NR = 92	12.01E+00D 13 56F±07V	-8 81/F+00	+8 011E+00
4 I ~ N D -	30	(N. 2N)	-1-ND- 34	10.005-071	0.014CT00	10.911E+00

TARGET	REACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
41-NB-	93 (N:2N)	41-NB- 92M	+1.02E+01D	-8.956E+00	+9.055E+00
41-NB-	93 (N:3N)	41-NB- 91	+1.02E+04Y	-1.670E+01	+1.689E+01
41-NB-	93 (N:3N)	41-NB- 91M	+6.20E+01D	-1.680E+01	+1.699E+01
42-MO-	92 (N:G)	42-MO- 93	+3.56E+03Y	+8.072E+00	+0.000E+00
42-MO-	92 (N:P)	41-NB- 92	+3.56E+07Y	+4.388E-01	+0.000E+00
42-MO-	92 (N:P)	41-NB- 92M	+1.02E+01D	+2.967E-01	+0.000E+00
42-MO-	92 (N:D)	41-NB- 91	+1.02E+04Y	-5.232E+00	+5.290E+00
42-MO-	92 (N:D)	41-NB- 91M	+6.20E+01D	-5.332E+00	+5.391E+00
42-MO-	92 (N:A)	40-ZR- 89	+3.27E+00D	+3.708E+00	+0.000E+00
42-MO-	92 (N:N,P)	41-NB- 91	+1.02E+04Y	-7.450E+00	+7.532E+00
42-MO-	92 (N:N,P)	41-NB- 91M	+6.20E+01D	-7.549E+00	+7.633E+00
42-MO-	92 (N:N,A)	40-ZR- 88	+8.34E+01D	-5.6 [^] 2E+00	+5.666E+00
42-MO-	94 (N:P)	41-NB- 94	+2.07E+04Y	-1.253E+00	+1.266E+00
42-MO-	94 (N:T)	41-NB- 92	+3.56E+07Y	-8,828E+00	+8,925E+00
42-MO-	94 (N:T)	41-NB- 92M	+1.02E+01D	-8.971E+00	+9.069E+00
42-MO-	94 (N:2N)	42-MO- 93	+3.56E+03Y	-9.667E+00	+9.772E+00
42-MO-	94 (N:N.D)	41-NB- 92	+3.56E+07Y	-1.508E+01	+1.525E+01
42-MO-	94 (N:N.D)	41-NB- 92M	+1.02E+01D	-1.522E+01	+1.539E+01
42-MO-	94 (N:N.T)	41-NB- 91	+1.02E+04Y	-1.672E+01	+1.690E+01
42-MO-	94 (N:N.T)	41-NB- 91M	+6.20E+01D	-1.682E+01	+1.700E+01
42-MO-	94 (N:2P)	40-ZR- 93	+1.56E+06Y	-7.791E+00	+7.875E+00
42-MO-	95 (N:P)	41-NB- 95	+3.50E+01D	-1.439E-01	+1.454E-01
42-MO-	95 (N:P)	41-NB- 95M	+3.61E+00D	-3.713E-01	+3.753E-01
42-MO-	95 (N:D)	41-NB- 94	+2.07E+04Y	-6.412E+00	+6.481E+00
42-MO-	95 (N:H)	40-ZR- 93	+1.56E+06Y	-7.450E+00	+7.531E+00
42-MO-	95 (N:N,P)	41-NB- 94	+2.07E+04Y	-8.629E+00	+8.722E+00
42-MO-	95 (N:N,T)	41-NB- 92	+3.56E+07Y	-1.621E+01	+1.638E+01
42-MO-	95 (N:N,T)	41-NB- 92M	+1.02E+01D	-1.635E+01	+1.653E+01
42-MO-	95 (N:3N)	42-MO- 93	+3.56E+03Y	-1.704E+01	+1.723E+01
42-MO-	96 (N:D)	41-NB- 95	+3.50E+01D	-7.080E+00	+7.155E+00
42-MO-	96 (N:D)	41-NB- 95M	+3.61E+00D	-7.308E+00	+7.385E+00
42-MO-	96 (N:T)	41-NB- 94	+2.07E+04Y	-9.297E+00	+9.397E+00
42-MO-	96 (N:A)	40-ZR- 93	+1.56E+06Y	+3.978E+00	+0.000E+00
42-MO-	96 (N:N,P)	41-NB- 95	+3.50E+01D	-9.297E+00	+9.396E+00
42-MO-	96 (N:N,P)	41-NB- 95M	+3.61E+00D	-9.525E+00	+9.626E+00
42-MO-	96 (N:N,D)	41-NB- 94	+2.07E+04Y	-1.555E+01	+1.572E+01
42-MO-	96 (N:2P)	40-ZR- 95	+6.40E+01D	-9.639E+00	+9.741E+00
42-MO-	97 (N:T)	41-NB- 95	+3.50E+01D	-7.634E+00	+7.716E+00
42-MO-	97 (N:T)	41-NB- 95M	+3.61E+00D	-7.862E+00	+7.945E+00
42-MO-	97 (N:H)	40-ZR- 95	+6.40E+01D	-8.743E+00	+8.836E+00
42-MO-	97 (N:N,D)	41-NB- 95	+3.50E+01D	-1.389E+01	+1.404E+01
42-MO-	97 (N:N,D)	41-NB- 95M	+3.61E+00D	-1.412E+01	+1.427E+01
42-MO-	97 (N:N,T)	41-NB- 94	+2.07E+04Y	-1.612E+01	+1.629E+01
42-MO-	97 (N:N,A)	40-ZR- 93	+1.56E+06Y	-2.844E+00	+2.875E+00
42-MO-	98 (N:G)	42-MO- 99	+2.75E+00D	+5.925E+00	+0.000E+00
42-MO-	98 (N:A)	40-ZR- 95	+6.40E+01D	+3.196E+00	+0.000E+00
42-MO-	98 (N:N,T)	41-NB- 95	+3.50E+01D	-1.628E+01	+1.645E+01
42-MO-	98 (N:N,T)	41-NB- 95M	+3.61E+00D	-1.650E+01	+1.668E+01
42-MO-1	00 (N:2N)	42-MO- 99	+2.75E+00D	-8.274E+00	+8.358E+00
46-PD-1	02 (N:G)	46-PD-103	+1.70E+01D	+7.631E+00	+0.000E+00

----

		-
	-	
	٤.	
	- 27	
	π	1
	ų	•
	-	
	-	х.
	_	-
	~	۰.
	1	
	-	
		2.1
	_	•
	~	
	1	
	- 2	2
	~	۰.
	`	•
۲		٦.
s		
	-	
	~	
2	-	
Ì		
	~	Ś
•	, r	, 5
•	, r	5
•		5
•	, r	5
•		2
	~	2
	~ ~	,
	4	2
	7 4	
	7 4	
•	~ ~ 0	
		ר נייני
	v d	ָ   
	v d	

TARGET R	EACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
46-PD-102	(N:P)	45-RH-102	+2.95E+00Y	-3.429E-01	+3.463E-01
46-PD-102	(N:P)	45RH-102M	+2.07E+02D	-4.140E-01	+4.181E-01
46-PD-102	(N:D)	45-RH-101	+3.36E+00Y	-5.573E+00	+5.629E+00
46-PD-102	( N : D )	45-RH-101M	+4.34E+00D	-5.730E+00	+5./8/E+00
46-PD-102	(N:N,P)	45-KH-IUI	+3.36E+00Y	-7.91E+00	+8.027E+00
46-PD-102 46-PD-102		45-RH- 99	+1.61E+01D	~1.734E+01	+1.752E+01
46-PD-104	( L : N )	45-RH-102	+2.95E+00Y	-9.482E+00	+9.576E+00
46-PD-104	(N:T)	45-RH-102M	+2.07E+02D	-9.553E+00	+9.648E+00
46-PD-104	(N:2N)	46-PD-103	+1.70E+01D	-9.980E+00	+1.008E+01
46-PD-104	(N:N)	45-RH-102	+2.95E+00Y	-1.574E+01	+1.589E+01
46-PD-104	(N:N,D)	45-RH-102M	+2.07E+02D	-1.581E+UI	+1.0305+01
46-PD-104	(N:N,T)	45-RH-101	+3.36E+00Y	-1.593E+UI	+1./1UE+01 +1 7265+01
46-PD-104		4 3 - KH - 1 0 1 M	+4.345+00D +3 935+01D	-1.62914-00 -8 629F+00	+8.714E+00
46-PU-104 46-DD-105	(N: 2F)	44-RU-103 45-RH-105	+1.47E+00D	+2.399E-01	+0.000E+00
46-PD-105	(H:N)	44-RU-103	+3.93E+01D	-8.004E+00	+8.082E+00
46~PD-105	(N:N,T)	45-RH-102	+2.95E+00Y	-1.657E+01	+1.674E+01
46-PD-105	(L.N.N)	45-RH-102M	+2.07E+02D	~1.665E+01	+1.681E+01
46-PD-105	(N:3N)	46-PD-103	+1.70E+01D	-1.707E+01	+1.724E+01
46-PD-106	(D:N)	46-PD-107	+6.62E+06Y	+6.536E+00	+0.000E+00
46-PD-106	(N:D)	45-RH-105	+1.47E+00D	-7.109E+00	+7.177E+00
46-PD-106	(N:A)	44-RU-103	+3.93E+01D	+3.012E+00	+0.000E+00
46-PD-106	(N:N,P)	45-RH-105	+1.47E+00D	-9.326E+00	+9.416E+00
46-PD-108	(H:N)	44-RU-106	+1.04E+00Y	-1.005E+01	+1.015E+01
46-PD-108	(N:2N)	46-PD-107	+6.62E+06Y	-9.212E+00	+9.299E+00
46-PD-108	(N:N,T)	45-RH-105	+1.47E+00D	~1.660E+01	+1.676E+01
46-PD-110	(N:N,A)	44-RU-106	+1.04E+00Y	-4.422E+00	+4.464E+UO
47-AG-107	(N:P)	46-PD-107	+6.62¥+0€Y	+7.658E-01	+0.000E+00
47-AG-107	(H:N)	45-RH-105	+1.47E+00D	-7.393E+00	+7.464E+00
47-AG-107	(N: 2N)	47-AG-106M	+8.46E+00D	-9.624E+00	+9.716E+00
47-AG-107	(N:3N)	47-AG-105	+4.13E+01D	-1.746E+01	+1.762E+01
47-AG-109	(D:N)	47-AG-110N	+2.50E+02D	+6.679E+00	+0.000E+00
47-AG-109	(N:T)	46-PD-107	+6.62E+06Y	-7.222E+00	+7.290E+00
47-AG-109	(N:N,D)	46-PD-107	+6.62E+06Y	-1.348E+01	+1.360E+01
47-AG-109	(N:N,A)	45-RH-105	+1.47E+00D	-3.285E+00	+3.317E+00
48-CD-106	(N:P)	47-AG-106M	+8.46E+00D	+4.957E-01	+0.000E+00
48-CD-106	(N:D)	47-AG-105	+4.13E+01D	-5.119E+00	+5.168E+00
48-CD-106	(N:A)	46-PD-103	+1.70E+01D	+5.996E+00	+0.000E+00
48-CD-106	(N:N,P)	47-AG-105	+4.13E+01D	-7.336E+00	+7.407E+00
48-CD-108	(N:C)	48-CD-109	+1.29E+00Y	+7.361E+00	+0.000E+00
48-CD-108	(N:T)	47-AG-106M	+8.46E+00D	-9,283E+00	+9.372E+00
48-CD-108	(N:N,D)	47-AG-106M	+8.46E+00D	~1.554E+U1	+1.559E+UI
48-CD-108	(N:N, T)	47-AG-105	+4.13E+01D	-1.711E+01	+1.728E+U1
48-CD-108	(N:2P)	46-PD-107	+6.62E+U6Y	-7.3/95+00	+/.448E+00
48-CD-110	(N:P)	47-AG-110M	+2.50E+02D	-2.219E+00	+0.000F+00
48-CD-110	(N:A)	40-177-100 A0-277-109	+0.02E+00V	-9.866E+00	+9.957E+00
48-CD-110 48-CD-111		40-00-100 47-AG-111	+7.45E+00D	-2.292E-01	+2.313E-01
40-010-11	1.7 - 17				

- £

ł

	TARGET	REACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
	48-CD-111	l (N:D)	47-AG-110M	+2.50E+02D	-6.981E+00	+7.045E+00
	48-CD-111	(N:N,P)	47-AG-110M	+2.50E+02D	-9.198E+00	+9.282E+00
	48-CD-111	l (N:N,A)	46-PD-107	+6.62E+06Y	-3.299E+00	+3.330E+00
	48-CD-111	(N:3N)	48-CD-109	+1.29E+00Y	-1.684E+01	+1.700E+01
	48-CD-112	2 (N:D)	47-AG-111	+7.45E+00D	-7.407E+00	+7.474E+00
	48-CD-112	2 (N:T)	47-AG-110M	+2.50E+02D	-1.011E+01	+1.020E+01
	48-CD-112	2 (N:N,P)	47-AG-111	+7.45E+00D	-9.624E+00	+9.712E+00
	48-CD-112	2 (N:N,D)	47-AG-110M	+2.50E+02D	-1.636E+01	+1.651E+01
	48-CD-113	B (N:T)	47-AG-111	+7.45E+00D	-7.691E+00	+7.761E+00
	48-CD-113	(N:N,D)	47-AG-111	+7.45E+COD	-1.395E+01	+1.407E+01
	48-CD-113	(N:N,T)	47-AG-110M	+2.50E+02D	-1.666E+01	+1.681E+01
	48-CD-114	(N:G)	48-CD-115	+2.23E+00D	+6.138E+00	+0.000E+00
	48-CD-114	(N:G)	48-CD-115M	+4.46E+01D	+5.968E+00	+0.000E+00
	48-CD-114	(N:N,T)	47-AG-111	+7.45F+00D	-1.673E+01	+1.688E+01
	48-CD-116	(N:2N)	48-CD-115	+2.23E+00D	-8.686E+00	+8.763E+00
	48-CD-116	(N:2N)	48-CD-115M	+4.46E+01D	-8.857E+00	+8.935E+00
	49-IN-113	(N:G)	49-IN-114M	+4.95E+01D	+7.091E+00	+0.000E+00
	49-IN-113	(N:H)	47-AG-111	+7.45E+00D	-7.990E+00	+8.062E+00
	49-IN-113	(N:A)	47-AG-110M	+2.50E+02D	+3.623E+00	+0.000E+00
	49-IN-113	(N:3N)	49-IN-111	+2.83E+00D	-1.710E+01	+1.726E+01
	49-IN-115	(N:P)	48-CD-115	+2.23E+00D	-6.556E-01	+6.614E-01
	49-IN-115	(N:P)	48-CD-115M	+4.46E+01D	-8.262E-01	+8.334E-01
	49-IN-115	(N:2N)	49-IN-114M	+4.95E+01D	-9.212E+00	+9.294E+00
	49-IN-115	(N:N,A)	47-AG-111	+7.45E+00D	-3.726E+00	+3.760E+00
	50-SN-112	(N:G)	50-SN-113	+1.15E+02D	+7.745E+00	+0.000E+00
	50-SN-112	(N:D)	49-IN-111	+2.83E+00D	-5.318E+00	+5.366E+00
	50-SN-112	(N:A)	48-CD-109	+1.29E+00Y	+5,542E+00	+0.000E+00
į	50-SN-112	(N:N,P)	49-IN-111	+2.83E+00D	-7.535E+00	+7.603E+00
	50-SN-114	(N:P)	49-IN-114M	+4,95E+01D	-1.380E+00	+1.393E+00
1	50-SN-114	(N:2N)	50-SN-113	+1.15E+02D	-1.029E+01	+1.038E+01
	50-SN-114	(N:N.T)	49-IN-111	+2.83E+00D	-1.710E+01	+1.726E+01
ļ	50-SN-115	(N:D)	49-IN-114M	+4.95E+01D	-6.711E+00	+6.770E+00
ļ	50-SN-115	(N:N.P)	49-TN-114M	+4.95E+01D	-8,928E+00	+9,007E+00
į	50-SN-115	(N:3N)	50-SN-113	+1.15E+02D	-1.784E+01	+1.800E+01
ļ	50-SN-116	(N:T)	49-IN-114M	+4.95E+01D	-1.001E+01	+1.010E+01
ļ	50-SN-116	(N:N.D)	49-IN-114M	+4.95E+01D	-1.626E+01	+1.641E+01
	50-SN-116	(N:2P)	48-CD-115	+2.23E+00D	-9.937E+00	+1.002E+01
ł	50-SN-116	(N:2P)	48-CD-115M	+4,46E+01D	-1.011E+01	+1.020E+01
	50-SN-117	(N;H)	48-CD-115	+2.23E+00D	-9.170E+00	+9.250E+00
ł	50-SN-117	(N:H)	48-CD-115M	+4.46E+01D	-9.340E+00	+9.422E+00
ļ	50-SN-117	(N; N, T)	49-IN-114M	+4.95E+01D	-1.696E+01	+1.711E+01
ł	50-SN-118	(N;A)	48-CD-115	+2.23E+00D	+2.088E+00	+0.000E+00
ł	50-SN-118	(N:A)	48-CD-115M	+4.46E+01D	+1.917E+00	+0.000E+00
ì	50-SN-119	(N:N.A)	48-CD-115	+2.23E+00D	-4.394E+00	+4.432E+00
i	50-SN-119	(N:N.A)	48-CD-115M	+4.46E+01D	-4.564E+00	+4.604E+00
,	50-SN-120	(N:G)	50-SN-121	+1.13E+00D	+6.167E+00	+0.000E+00
ì	50-SN-120	(N:G)	50-SN-121M	+5.60E+01Y	+6.167E+00	+0.000E+00
	50-SN-122	(N;G)	50-SN-123	+1,29E+02D	+5,939E+00	+0.000E+00
1	50-SN-122	(N:2N)	50-SN-121	+1,13F+00D	-8,814E+00	+8.888E+00
	00-04-155	(111211)				

TARGET	REACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
50-SN-12	2 (N:2N)	50-SN-121M	+5.60E+01Y	-8.814E+00	+8.888E+00
50-SN-12	4 (N:G)	50-SN-125	+9.64E+UOD	+5.726E+00	+0.000E+00
50-SN-12	4 (N:2N)	50-SN-123	+1.29E+02D	-8.487E+00	+8.557E+00
51-SB-12	1 (N:G)	51-SB-122	+2.70E+00D	+6.807E+00	+0.000E+00
51-SB-12	1 (N:P)	50-SN-121	+1.13E+00D	+3,962E-01	+0.000E+00
51-SB-12	1 (N:P)	50-SN-121M	+5.60E+01Y	+3,962E-01	+0.000E+00
51-SB-12	1 (N:2N)	51-SB-120M	+5.76E+00D	-9.241E+00	+9.318E+00
51-SB-12	1 (N:3N)	51-SB-119	+1.59E+00D	-1.625E+01	+1.639E+01
51-SB-12	3 (N:G)	51-SB-124	+6.02E+01D	+6,480E+00	+0.000E+00
51-SB-12	3 (N:P)	50-SN-123	+1.29E+02D	-5.987E-01	+6.037E-01
51-SB-12	3 (N:T)	50-SN-121	+1.13E+00D	-6.881E+00	+6.939E+00
51-SB-12	3 (N:T)	50-SN-121M	+5.60E+01Y	-6.881E+00	+6.939E+00
51-SB-12	3 (N:2N)	51-SB-122	+2.70E+00D	-8.942E+00	+9.016E+00
51-SB-12	3 (N:N,D)	50-SN-121	+1.13E+00D	-1.314E+01	+1.324E+01
51-SB-12	3 (N:N,D)	50-SN-121M	+5.60E+01Y	-1.314E+01	+1.324E+01
56-BA-13	0 (N:G)	56-BA-131	+1.18E+01D	+7,489E+00	+0.000E+00
56-BA-13	0 (N:D)	55-CS-129	+1.34E+00D	-4.806E+00	+4.844E+00
56-BA-13	0 (N:A)	54-XE-127	+3.64E+01D	+6.664E+00	+0.000E+00
56-BA-13	0 (N:N.P)	55-CS-129	+1.34E+00D	-7.023E+00	+7.078E+00
56-BA-13	2 (N:G)	56-BA-133	+1.07E+01Y	+7.176E+00	+0.000E+00
56-BA-13	2 (N:G)	56-BA-133M	+1.62E+00D	+6.892E+00	+0.000E+00
56-BA-13	2 (N:P)	55-CS-132	+6.48E+00D	-4.850E-01	+4.887E-01
56-BA-13	2 (N:D)	55-CS-131	+9.69E+00D	-5.460E+00	+5.502E+00
56-BA-13	2 (N:2N)	56-PA-131	+1.18E+01D	~9.795E+00	+9.870E+00
56-BA-13	2 (N:N,P)	55-CS-131	+9.69E+00D	-7.677E+00	+7.736E+00
56-BA-13	2 (N:N,T)	55-CS-129	+1.34E+00D	-1.584E+01	+1.596E+01
56-BA-13	4 (N:P)	55-CS-134	+2.10E+00Y	-1.267E+00	+1.276E+00
56-BA-13	4 (N:T)	55-CS-132	+6.48E+00D	-8.658E+00	+8.724E+00
56-BA-13	4 (N:2N)	56-BA-133	+1.07E+01Y	-9.468E+00	+9.540E+00
56-BA-13	4 (N:2N)	56-BA-133M	+1.62E+00D	-9.752E+00	+9.826E+00
56-BA-13	4 (N:N,D)	55-CS-132	+6.48E+00D	-1.491E+01	+1.503E+01
56-BA-13-	4 (N:N,T)	55-CS-131	+9.69E+00D	-1.585E+01	+1.597E+01
56-BA-13	4 (N:2P)	54-XE-133	+5.24E+00D	-7.805E+00	+7.864E+00
56-BA-13	4 (N:2P)	54-XE-133M	+2.19E+00D	-8.032E+00	+8.093E+00
56-BA-13	5 (N:P)	55-CS-135	+2.34E+06Y	+5.810E-01	+0.000E+00
56-BA-13	5 (N:D)	55-CS-134	+2.10E+00Y	-6.028E+00	+6.074E+00
56-BA-13	5 (N:H)	54-XE-133	+5.24E+00D	-7.066E+00	+7.120E+00
56-BA-13	ד:א) 5 (א:א)	54-XE-133M	+2.19E+00D	-7.293E+00	+7.349E+00
56-BA-13	5 (N:N,P)	55-CS-131	+2.10E+00Y	-8.246E+00	+8.308E+00
56-BA-13	5 (N:N,T)	55-CS-132	+6.48E+00D	-1.564E+01	+1.576E+01
56-BA-13	5 (N:3N)	56-BA-133	+1.07E+01Y	-1.645E+01	+1.657E+01
56-BA-13	5 (N:3N)	56-BA-133M	+1.62E+00D	-1.673E+01	+1.686E+01
56-BA-130	6 (N:P)	55-CS-136	+1.32E+01D	-1.750E+00	+1.763E+00
56-BA-130	6 (N:D)	55-CS-135	+2.34E+06Y	-6.298E+00	+6.345E+00
56-BA-130	5 (N:T)	55-CS-134	+2.10E+00Y	-8.857E+00	+8.924E+00
56-BA-130	5 (N:A)	54-XE-133	+5.24E+00D	+4.419E+00	+0.000E+00
56-BA-130	5 (N:A)	54-XE-133M	+2.19E+00D	+4.1918+00	+0.000E+00
56-BA-136	5 (N:N,P)	<b>ッモーCS-135</b>	+2.34E+06Y	-8.516E+00	+8.579E+00
56-BA-130	5 (N:N,D)	55-CS-134	+2.10E+00Y	-1.511E+01	+1.522E+01

×

TARGET	REACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
56-BA-13	87 (N:P)	55-CS-137	+3.05E+01Y	-3.855E-01	+3.884E-01
56-BA-13	37 (N:D)	55-CS-136	+1.32E+01D	-6.441E+00	+6.488E+00
56-BA-13	37 (N:T)	55-CS-135	+2.34E+06Y	-6.938E+00	+6.990E+00
56-BA-13	17 (N:N,P)	55-CS-136	+1.32E+01D	-8.658E+00	+8.722E+00
56-BA-13	37 (N:N,D)	55-CS-135	+2.34E+06Y	-1.319E+01	+1.329E+01
56-BA-13	7 (N:N,T)	55-CS-134	+2.10E+00Y	-1.576E+01	+1.588E+01
56-BA-13	7 (N:N,A)	54-XE-133	+5.24E+00D	-2.489E+00	+2.508E+00
56-BA-13	7 (N:N,A)	54-XE-133M	+2.19E+00D	-2.717E+00	+2.737E+00
56-BA-13	8 (N:D)	55-CS-137	+3.05E+01Y	-6.782E+00	+6.832E+00
56-BA-13	8 (N:T)	55-CS-136	+1.32E+01D	-8.786E+00	+8.851E+00
56-BA-13	8 (N:N,P)	55-CS-137	+3.05E+01Y	-8.999E+00	+9.065E+00
56-BA-13	8 (N:N,D)	55-CS-136	+1.32E+01D	-1.504E+01	+1.515E+01
56-BA-13	8 (N:N,T)	55-CS-135	+2.34E+06Y	-1.555E+01	+1.567E+01
62-SM-14	4 (N:G)	62-SM-145	+3.40E+02D	+6.764E+00	+0.000E+00
62-SM-14	4 (N:P)	61-PM-144	+1.01E+00Y	+2.541E-01	+0.000E+00
62-SM-14	4 (N:D)	61-PM-143	+2.65E+02D	-4.067E+00	+4.096E+00
62-SM-14	4 (N:N,P)	61-PM-143	+2.65E+02D	-6.284E+00	+6.329E+00
62-SM-14	4 (N:N,A)	60-ND-140	+3.37E+00D	-1.581E-01	+1.593E-01
62-SM-14	6 (N:P)	61-PM-146	+5.63E+00Y	-7.409E-01	+7.460E-01
62-SM-14	6 (N:D)	61-PM-145	+1.80E+01Y	-4.778E+00	+4.811E+00
62-SM-14	6 (N:T)	61-PM-144	+1.01E+00Y	-6.426E+00	+6.471E+00
62-SM-14	6 (N:2N)	62-SM-145	+3.40E+02D	-8.388E+00	+8.446E+00
62-SM-14	6 (N:N,P)	61-PM-145	+1.80E+01Y	-6.995E+00	+7.044E+00
62-SM-14	6 (N:N,D)	61-PM-144	+1.01E+00Y	-1.268E+01	+1.277E+01
62 - SM - 14	6 (N:N,T)	61-PM-143	+2.65E+02D	-1.296E+01	+1.306E+01
62-SM-14	7 (N:P)	61-PM-147	+2.67E+00Y	+5.668E-01	+0.000E+00
62-SM-14	7 (N:D)	61-PM-146	+5.63E+00Y	-4.877E+00	+4.911E+00
62-SM-14	7 (N:T)	61-PM-145	+1.80E+01Y	-4.863E+00	+4.897E+00
62-SM-14	7 (N:2N)	62-SM-146	+1.05E+08Y	-6.341E+00	+6.385E+00
62-SM-14	7 (N:N,P)	61-PM-146	+5.63E+00Y	-7.094E+00	+7.143E+00
62-SM-14	7 (N:N,D)	61-PM-145	+1.80E+01Y	-1.112E+01	+1.119E+01
62-SM-14	7 (N:N,T)	61-PM-144	+1.01E+00Y	-1.278E+01	+1.287E+01
62-SM-14	7 (N:3N)	62-SM-145	+3.40E+02D	-1.474E+01	+1.484E+01
62-SM-14	8 (N:P)	61-PM-148	+5.37E+00D	-1.665E+00	+1.676E+00
62-SM-14	8 (N:P)	61-PM-148M	+4.13E+01D	-1.807E+00	+1.819E+00
62-SM-14	8 (N:D)	61-PM-147	+2.67E+00Y	-5.360E+00	+5.397E+00
62-SM-14	8 (N:T)	61-PM-146	+5.63E+00Y	-6.753E+00	+6.800E+00
62-SM-14	8 (N:N,P)	61-PM-147	+2.67E+00Y	-7.578E+00	+7.630E+00
62-SM-14	8 (N:N,D)	61-PM-146	+5.63E+00Y	-1.301E+01	+1.310E+01
62-SM-148	8 (N:N,T)	61-PM-145	+1.80E+01Y	-1.301E+01	+1.310E+01
62-SM-14	8 (N:2P)	60-ND-147	+1,10E+01D	-7.691E+00	+7.744E+00
62-SM-14	8 (N:3N)	62-SM-146	+1.05E+08Y	~1.449E+01	+1.459E+01
62-SM-149	9 (N:P)	61-PM-149	+2.21E+00D	-2.718E-01	+2.737E-01
62-SM-14	9 (N:D)	61-PM-148	+5.372+000	-5.318E+00	+5.354E+00
62-SM-149	9 (N:D)	01-PM-148M	+4.13E+01D	-5.460E+00	+5.497E+00
62-SM-149	9 (N:T)	01-PM-147	+2.6/E+00Y	-4.9025+00	+4.9966+00
62-SM-149	9 (N:H)	60-ND-147	+1.10E+01D	-5.844E+00	+5.884E+00
62-SM-149	9 (N:N,P)	61-PM-148	+5.37E+00D	-1.535E+00	+7.586E+00
62-SM-149	9 (N:N,P)	61-PM-148M	+4.13E+01D	-7.677E+00	+7.729E+00
62-SM-149	9 (N:N,D)	61-PM-147	+2.67E+00Y	-1.122E+01	+1.129E+01

.

. . . .

Table A.S. (Continued	Table	A. 3	(Continued)
-----------------------	-------	------	-------------

TARGET	REACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
62-SM-14	9 (N:N,T)	61-PM-146	+5.63E+00Y	-1.262E+01	+1.271E+01
62-SM-150	0 (N:G)	62-SM-151	+9.16E+01Y	+5.598E+00	+0.000E+00
62-SM-150	0 (N:D)	61-PM-149	+2.21E+00D	-6.043E+00	+6.083E+00
62-SM-150	0 (N:T)	61-PM-148	+5.37E+00D	-7.037E+00	+7.085E+00
62-SM-150	О (N:Т)	61-PM-148M	+4.13E+01D	-7.180E+00	+7.229E+00
62-SM-150	0 (N:A)	60-ND-147	+1.10E+01D	+6.750E+00	+0.000E+00
62-SM-150	) (N:N,P)	61-PM-149	+2.21E+00D	-8.260E+00	+8.316E+00
62-SM-150	) (N:N,D)	61-PM-148	+5.37E+00D	-1.329E+01	+1.338E+01
62-SM-150	D (N:N,D)	61-PM-148M	+4.13E+01D	-1.343E+01	+1.353E+01
62-SM-150	) (N:N,T)	61-PM-147	+2.67E+00Y	-1.295E+01	+1.304E+01
62-SM-152	2 (N:G)	62-SM-153	+1.95E+00D	+5.868E+00	+0.000E+00
62-SM-152	2 (N:D)	61-PM-151	+1.18E+00D	-6.426E+00	+6.469E+00
62-SM-152	2 (N:2N)	62-SM-151	+9.16E+01Y	-8.246E+00	+8.301E+00
62-SM-152	2 (N:N,P)	61-PM-151	+1.18E+00D	-8.644E+00	+8.701E+00
62-SM-152	2 (N:N,T)	61-PM-149	+2.21E+00D	-1.363E+01	+1.372E+01
62-SM-154	(N:2N)	62-SM-153	+1.95E+00D	-7.961E+00	+8.014E+00
62-SM-154	(N:N,T)	61-PM-151	+1.18E+00D	-1,400E+01	+1.410E+01
63-EU-151	(N:G)	63-EU-152	+1.36E+01Y	+6.295E+00	+0.000E+00
63-EU-151	(N:P)	62-SM-151	+9.16E+01Y	+7.089E-01	+0.000E+00
63-EU-151	(N:H)	61-PM-149	+2.21E+00D	-5.446E+CO	+5.482E+00
63-EU-151	(N:A)	61-PM-148	+5.37E+00D	+7.873E+00	+0.000E+00
63-EU-151	(N;A)	61-PM-148M	+4.13E+01D	+7.730E+00	+0.000E+00
63-EU-151	(N:2N)	63-EU-150	+3.64E+01Y	-7.961E+00	+8.015E+00
63-EU-151	(N:N,A)	61-PM-147	+2.67E+00Y	+1.960E+00	+0.000E+00
63-EU-151	(N:3N)	63-EU-149	+9.31E+01D	-1.436E+01	+1.445E+01
63-EU-153	(N:G)	63-EU-154	+8.75E+00Y	+6.437E+00	+0.000E+00
63-EU-153	(N:P)	62-SM-153	+1.95E+00D	-1.599E-02	+1.610E-02
63-EU-153	(N:T)	62-SM-151	+9.16E+01Y	-5.659E+00	+5.697E+00
63-EU-153	(N:H)	61-PM-151	+1.18E+00D	-6.824E+00	+6.870E+00
63-EU-153	(N:2N)	63-EU-152	+1.36E+01Y	-8.544E+00	+8.601E+00
63-EU-153	(N:N,D)	62-SM-151	+9.16E+01Y	-1.191E+01	+1.199E+01
63-EU-153	(N:N,A)	61-PM-149	+2.21E+00D	+2.825E-01	+0.000E+00
64-GD-152	(N:G)	64-GD-153	+2.42E+02D	+6.494E+00	+0.000E+00
64-GD-152	(N:P)	63-EU-152	+1.36E+01Y	-1.025E+00	+1.032E+00
64-GD-152	(N:T)	63-EU-150	+3.64E+01Y	-6.810E+00	+6.856E+00
64-GD-152	(N:2N)	64-GD-151	+1.20E+02D	-8.587E+00	+8.644E+00
64-GD-152	(N:N,D)	63-EU-150	+3.64E+01Y	-1.306E+01	+1.315E+01
64-GD-152	(N:N,T)	63-EU-149	+9.31E+01D	-1.321E+01	+1.330E+01
64-GD-152	(N:2P)	62-SM-151	+9.16E+01Y	-6.625E+00	+6.670E+00
64-GD-152	(N:3N)	64-GD-150	+1.82E+06Y	-1.507E+01	+1.517E+01
64-GD-154	(N:P)	63-EU-154	+8.75E+00Y	-1.182E+00	+1.189E+00
64-GD-154	(N:T)	63-EU-152	+1.36E+01Y	-7.691E+00	+7.742E+00
64-GD-154	(N:A)	62-SM-151	+9.16E+01Y	+6.522E+00	+0.000E+00
64-GD-154	(N:2N)	64-GD-153	+2.42E+02D	-8.644E+00	+8.701E+00
64-GD-154	(N:N,D)	63-EU-152	+1.36E+01Y	-1.395E+01	+1.404E+01
64-GD-154	(N:2P)	62-SM-153	+1.95E+00D	-7.649E+00	+7.699E+00
64-GD-155	(N:P)	63-EU-155	+4.76E+00Y	+5.526E-01	+0.000E+00
64-GD-155	(N:D)	63-EU-154	+8.75E+00Y	-5.403E+00	+5.438E+00
64-GD-155	(N:H)	02-SM-153	+1'A2E+00D	-0.309E+00	+6.411E+00

TARGET	REACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
64-GD-15	5 (N:N,P)	63-EU-154	+8.75E+00Y	-7.620E+00	+7.670E+00
64-GD-155	5 (N:N,T)	63-EU-152	+1.36E+01Y	-1.413E+01	+1.422E+01
64-GD-155	5 (N:N,A)	62-SM-151	+9.16E+01Y	+8.350E-02	+0.000E+00
64-GD-15	(N:3N)	64-GD-153	+2.42E+02D	-1.508E+01	+1.518E+01
64-GD-15t	5 (N:P)	63-EU-156	+1.52E+01D	-1.665E+00	+1.676E+00
64-GD-156	5 (N:D)	63-EU-155	+4.76E+00Y	-5.772E+00	+5.810E+00
64-GD-156	5 (N:T)	63-EU-154	+8.75E+00Y	-7.677E+00	+7.727E+00
64-GD-156	5 (N:A)	62-SM-153	+1.95E+00D	+5.669E+00	+0.000E+00
64-GD-156	5 (N:N,P)	63-EU-155	+4.76E+00Y	-7.990E+00	+8.042E+00
64-GD-156	(N:N,D)	63-EU-154	+8.75E+00Y	-1.393E+01	+1.402E+01
64-GD-157	(N:D)	63-EU-156	+1.52E+01D	-5.801E+00	+5.838E+00
64-GD-157	(N:T)	63-EU-155	+4.76E+00Y	-5.858E+00	+5.896E+00
64-GD-157	(N:N,P)	63-EU-156	+1.52E+01D	-8.018E+00	+8.070E+00
64-GD-157	(N:N,D)	63-EU-155	+4.76E+00Y	-1.211E+01	+1.219E+01
64-GD-157	(N:N,T)	63-EU-154	+8.75E+00Y	-1.403E+01	+1.412E+01
64-GD-157	(N:N,A)	62-SM-153	+1.95E+00D	-6.840E-01	+6.885E-01
64-GD-158	(N:T)	63-EU-156	+1.52E+01D	-7.478E+00	+7.526E+00
64-GD-158	(N:N,D)	63-EU-156	+1.52E+01D	-1.373E+01	+1.382E+01
64-GD-158	(N:N,T)	63-EU-155	+4.76E+00Y	-1.380E+01	+1.389E+01
65-TB-159	(N:G)	65-TB-160	+7.23E+01D	+6.366E+00	+0.000E+00
65-TB-159	(N:A)	63-EU-156	+1.52E+01D	+6.195E+00	+0.000E+00
65-TB-159	(N:2N)	65-TB-158	+1.53E+02Y	-8.132E+00	+8.184E+00
65-TB-159	(N:N,A)	63-EU-155	+4.76E+00Y	-1.297E-01	+1.305E-01
65-TB-159	(N:3N)	65-TB-157	+1.53E+02Y	-1.491E+01	+1.501E+01
66-DY-156	(N:P)	65-TB-156	+5.35E+00D	+3.678E-01	+0.000E+00
66-DY-156	(N:P)	65-TB-156M	+1.02E+00D	+3.251E-01	+0.000E+00
66-DY-156	(N:D)	65-TB-155	+5.32E+00D	-4.323E+00	+4.351E+00
66-DY-156	(N:A)	64-GD-153	+2.42E+02D	+8.256E+00	+0.000E+00
66-DY-156	(N:N,P)	65-TB-155	+5.32E+00D	-6.540E+00	+6.583E+00
66-DY-156	(N:N,T)	65-TB-153	+2.34E+00D	-1.413E+01	+1.422E+01
66-DY-156	(N:3N)	66-DY-154	+3.05E+06Y	-1.626E+01	+1.637E+01
66-DY-158	(N:G)	66-DY-159	+1.44E+02D	+6.835E+00	+0.000E+00
66-DY-158	(N:P)	65-TB-158	+1.53E+02Y	-1.439E-01	+1.448E-01
66-DY-158	(N:D)	65-TB-157	+1.53E+02Y	-4.706E+00	+4.737E+00
66-DY-158	(N:T)	65-TB-156	+5.35E+00D	-7.180E+00	+7.226E+00
66-DY-158	(N:T)	65-TB-156M	+1.02E+00D	-7.222E+00	+7.269E+00
66-DY-158	(N:N,P)	65-TB-157	+1.53E+02Y	-6.924E+00	+6.968E+00
66-DY-158	(N:N,D)	65-TB-156	+5.35E+00D	-1.343E+01	+1.352E+01
66-DY-158	(N:N,D)	65-TB-156M	+1.02E+00D	-1.348E+01	+1.356E+01
66-DY-158	(N:N,T)	65-TB-155	+5.32E+00D	-1.409E+01	+1.418E+01
66-DY-160	(N:P)	65-TB-160	+7.23E+01D	-1.039E+00	+1.046E+00
66-DY-160	(N:T)	65-TB-158	+1.53E+02Y	-7.066E+00	+7.111E+00
66-DY-160	(N:2N)	66-DY-159	+1.44E+U2D	-8.558E+00	+8.613E+00
66-DY-160	(N:N,D)	65-TB-158	+1.53E+02Y	-1.332E+01	+1.341E+01
66-DY-160	(N:N,T)	65-TH-157	+1.53E+02Y	-1.385E+01	+1.393E+01
66-DY-161	(N:P)	65-TB-161	+6.90E+00D	+1.972E-01	+0.000E+00
66-DY-161	(N:D)	65-TB-160	+7.23E+01D	-5.289E+00	+5.323E+00
66-DY-161	(N:N,P)	65-TB-160	+7.23E+01D	-/.507E+00	+7.554E+00
66-DY-161	(N:N,T)	65-TB-158	+1.53E+02Y	-1.353E+01	+1.362E+01

1

TARGET	REACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
66-DY-16	51 (N:3N)	66-DY-159	+1.44E+02D	-1.503E+01	+1.512E+01
66-DY-16	52 (N:D)	65-TB-161	+6.90E+00D	-5.772E+00	+5.809E+00
66-DY-16	52 (N:T)	65-TB-160	+7.23E+01D	-7.208E+00	+7.254E+00
66-DY-16	52 (N:N,P)	65-TB-161	+6.90E+00D	-7.990E+00	+8.040E+00
66-DY-16	52 (N:N,D)	65-TB-160	+7.23E+01D	-1.346E+01	+1.355E+01
66-DY-16	33 (N:T)	65-TB-161	+6.90E+00D	-5.787E+00	+5.823E+00
66-DY-16	3 (N:N,D)	65-TB-161	+6.90E+00D	-1.204E+01	+1.212E+01
66-DY-16	33 (N:N,T)	65-TB-160	+7.23E+01D	-1.349E+01	+1.358E+01
66-DY-16	4 (N:N,T)	65-TB-161	+6.90E+00D	-1.345E+01	+1.353E+01
67-HO-16	5 (N:G)	67-HO-166	+1.12E+00D	+6.252E+00	+0.000E+00
67-HO-16	5 (N:G)	67-HO-166M	+1.22E+03Y	+6.238E+00	+0.000E+00
67-HO-16	5 (N:N,A)	65-TB-161	+6.90E+00D	+1.546E-01	+0.000E+00
67-HO-16	5 (N:3N)	67-HO-163	+3.36E+01Y	-1.464E+01	+1.473E+01
68-ER-16	2 (N:A)	66-DY-159	+1.44E+02D	+8.484E+00	+0.000E+00
68-ER-16	2 (N:3N)	68-ER-160	+1.19E+00D	-1.642E+01	+1.652E+01
68-ER-16	4 (N:D)	67-HO-163	+3.36E+01Y	-4.621E+00	+4.650E+00
68-ER-16	4 (N:N,P)	67-HO-163	+3.36E+01Y	-6.839E+00	+6.881E+00
68-ER-16	6 (N:P)	67-HO-166	+1.12E+00D	-1.054E+00	+1.060E+00
68 - ER - 16	6 (N:P)	67-HO-166M	+1.22E+03Y	-1.068E+00	+1.074E+00
68-ER-16	6 (N:N,T)	67-HO-163	+3.36E+01Y	-1.348E+01	+1.356E+01
68-ER-16	7 (N:D)	67-HO-166	+1.12E+00D	-5.275E+00	+5.307E+00
68-ER-16	7 (N:D)	67-HO-166M	+1.22E+03Y	-5.289E+00	+5.321E+00
68-ER-16	7 (N:N,P)	67-HO-166	+1.12E+00D	-7.492E+00	+7.538E+00
68-ER-16	7 (N:N,P)	67-HO-166M	+1.22E+03Y	-7.507E+00	+7.552E+00
68-ER-16	7 (N:2P)	66-DY-166	+3.40E+00D	-7.194E+00	+7.238E+00
68 - ER - 16	8 (N:G)	68-ER-169	+9.40E+00D	+5,996E+00	+0.000E+00
68-ER-16	8 (N:T)	67-HO-166	+1.12E+00D	-6.782E+00	+6.823E+00
68-ER-16	8 (N:T)	67-H0-166M	+1.22E+03Y	-6.796E+00	+6.837E+00
68 - ER - 16	8 (N:H)	66-DY-166	+3.40E+00D	-7.251E+00	+7.295E+00
68-ER-16	8 (N:N,D)	67-HO-166	+1.12E+00D	-1.304E+01	+1.311E+01
68-ER-16	8 (N:N,D)	67-HO-166M	+1.22E+03Y	-1.305E+01	+1.313E+01
68-ER-17	0 (N:2N)	68-ER-169	+9.40E+00D	-7.251E+00	+7.294E+00
68-ER-17	0 (N:N,A)	66-DY-166	+3.40E+00D	+6.929E-02	+0.000E+00
69-TM-16	9 (N:G)	69-TM-170	+1.29E+02D	+6.593E+00	+0.000E+00
69-TM-16	9 (N:P)	68-ER-169	+9.40E+00D	+4.388E-01	+0.000E+00
69-TM-16	9 (N:A)	67-HO-166	+1.12E+00D	+7.460E+00	+0.000E+00
69-TM-16	9 (N:A)	67-HO-166M	+1.22E+03Y	+7.446E+00	+0.000E+00
69-TM-16	9 (N:2N)	69-TM-168	+9.31E+01D	-8.018E+00	+8.066E+00
69-TM-16	9 (N:3N)	69-TM-167	+9.24E+00D	-1.487E+01	+1.496E+01
72-HF-17	4 (N:G)	72-HF-175	+7.00E+01D	+6.792E+00	+0.000E+00
72-HF-17	4 (N:P)	71-LU-174	+3.37E+00Y	+5.383E-01	+0.000E+00
72-HF-17	4 (N:P)	71-LU-174M	+1.42E+02D	+3.678E-01	+0.000E+00
72-HF-17	4 (N:D)	71-LU-173	+1.39E+00Y	-4.010E+00	+4.033E+00
72-HF-17	4 (N:T)	71-LU-172	+6.70E+00D	-5.971E+00	+6.007E+00
72-HF-17	4 (N:2N)	72-HF-173	+1.00E+00D	-8.615E+00	+8.665E+00
72-HF-17	4 (N:N,P)	71-LU-173	+1.39E+00Y	-6.227E+00	+6.264E+00
72-HF-17-	4 (N:N,D)	71-LU-172	+6,70E+00D	-1.223E+01	+1.230E+01

.

TARGET	REACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
72-HF-17	4 (N:N,T)	71-LU-171	+8.24E+00D	-1.294E+01	+1.301E+01
72-HF-17	4 (N:3N)	72-HF-172	+1.90E+00Y	-1.562E+01	+1.571E+01
72-HF-17	6 (N:T)	71-LU-174	+3.37E+00Y	-5.872E+00	+5.906E+00
72-HF-17	6 (N:T)	71-LU-174M	+1.42E+02D	-6.043E+00	+6.078E+00
72-HF-17	6 (N:2N)	72-HF-175	+7.00E+01D	-8.089E+00	+8.136E+00
72-HF-17	6 (N:N,D)	71-LU-174	+3.37E+00Y	-1.213E+01	+1.220E+01
72-HF-17	6 (N:N,D)	71-LU-174M	+1.42E+02D	-1.230E+01	+1.237E+01
72-HF-17	6 (N:N,T)	71-LU-173	+1.39E+00Y	-1.264E+01	+1.271E+01
72-HF-17	6 (N:2P)	70-YB-175	+4.19E+00D	-6.384E+00	+6.420E+00
70 UE 17	7 (N:P)	71 - 10 - 177	+6.71E+00D	+2.967E-01	+0.000E+00
72 UF. 17	7 (N+U)	71-LU-177M	+1.01E+UZD	-0.098E-01	+6.736E-UI
72 45-17	$7 (N \cdot N \cdot T)$	70-10-175	+4.19E+00D	-5.048E+00	+5.0776+00
72 UF-17	$\frac{1}{7}  (N + N + T)$	71-10-174 71-10-174	+3.3/2+001	-1.223E+UI	+1.232E+01
72 UE. 17	$\frac{1}{7} \left( N + 2N \right)$	72 UE 175	+1.426+020	-1.242E+01	+1.2000+01
72-45-17		71-11-177	+6.71E+00D	-1.44/E+UI	+1.4000+01
72 UE 17		71 LU 177M	+0./1E+00D	-5.1192+00	+5,1482+00
72 HE 17	O(N,D)	70 VB 175	+1.016+020	-0.0052+00	+0.1202+00
72 HE 17	0 (N.A) 9 (N.A)	70-16-175	+4.19E+00D	+7.901E+00	+0.0002+00
72 UF-17		71 IU 177M	+0.712+000	-1.336E+00	+/.3/8E+00
72 UF 17	0 (N.N,P) 0 (N.T)	71 10 177	+1.01E+02D	-8.303E+00	+8,3502+00
72-45-17	5 (N.I) 9 (N.T)	71-10-177 71-10-177M	+1 616+000	-4.9405+00	+4.9/00+00
72-45-17	9 (N.I) 9 (N.N.D)	71-11-177	+6 715+020	-3.915E+00	+1 1275+01
72-HF-17	$G \{N,N,D\}$	71-LU-177M	+0.71E+00D	-1.20E+01	+1.12/E+01
72 - HF - 17	$9 (N \cdot N \Delta)$	70 - YB - 175	+4 19F+00D	+1.803F+00	+0 0005+00
72-HF-18	$0  (N \cdot G)$	72-HF-181	+4.24F+01D	+5.698F+00	+0.000E+00
72-HF-18	$0 (N \cdot N \cdot T)$	71-1.0-177	+6.71E+00D	-1.234F+01	+1.241F+01
72-HF-18	0 (N:N,T)	71-LU-177M	+1.61E+02D	-1.331E+01	+1.338E+01
73-TA-18	UM (N:A)	71-LU-177	+6.71E+00D	+9.194E+00	+0.000E+00
73-TA-18	UM (N:A)	71-LU-177M	+1.01E+02D	+8.2286+00	+0.000E+00
73-TA-18	UM(N:ZN)	(3-1A-1/9 73 TA 103	+1,85E+00Y	-6.554E+00	+6.591E+00
73-TA-18	I (N:G)	73-1A-182	+1,150+020	+6,007E+00	+0.000E+00
73-1A-18	I (N:P)	71 11 177	+4.24E+UID	-2,150E-01	+2.162E-01
73-1A-10 73 TA 10	1  (N;N;A) 1  (N;N;A)	71-10-177	+0.71E+00D	+1.548E+UU	+0.000E+00
73-1A-10	1 (N, N, A) 1 (N, 2N)	72 TA 170	+1.01E+02D	+ 5.010E-01	+0.0002+00
/3-1A-10	1 (N.SN)	13-1A-119	+1.85E+001	-1.4202+01	+1.4200+01
74-W -18	0 (N:G)	74-W -181	+1.21E+02D	+6.679E+00	+0.000E+00
74-8 -18	0 (N:D)	73-TA-179	+1.85E+00Y	-4.337E+00	+4.361E+00
74-W -180	0 (N:N,P)	73-TA-179	+1.85E+00Y	-6.554E+00	+6.591E+00
74-W -180	0 (N:N,T)	73-TA-177	+2.36E+00D	-1.285E+01	+1.292E+01
74-W -180	0 (N:3N)	74 - W - 178	+2.17E+01D	-1.532E+01	+1.541E+01
74-W -182	2 (N:P)	73-TA-182	+1.15E+02D	-1.025E+00	+1.031E+00
74-W -183	2 (N:2N)	74-W -181	+1.21E+02D	-8.061E+00	+8.106E+00
74-W -182	Z (N:N,T)	73-TA-179	+1.85E+00Y	-1.282E+01	+1.289E+01
74-W -18	2 (N:2P)	(Z-HF-181	+4.24E+01D	-7.322E+00	+7.363E+00
74-W -18	3 (N:P)	(3-TA-183	+5.IUE+00D	-2.718E-01	+2.733E-01
74-W -18	3 (N:D)	(J-TA-182 70 HE 101	+1,15E+U2D	-4.991E+00	+5.018E+00
(4-W -18)	3 (N:H) 2 (N:H)	12-HF-181 72 TA 199	+4.24E+UID	-0.(8(E+VU	+0.019E+00
14-W -18.	5 (N:N,P)	73-1A-10Z	+1,10 <u>5</u> +02D	-1.2086+00	Ŧ1.240Ľ+UU

.

TARGET	REACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
74-W -18	3 (N:3N)	74-W -181	+1.21E+02D	-1.424E+01	+1.432E+01
74-W -18	4 (N:G)	74-W -185	+7.51E+01D	+5.755E+00	+0.000E+00
74-W -18	4 (N:D)	73-TA-183	+5.10E+00D	-5.474E+00	+5.504E+00
74-W -18	4 (N:T)	73-TA-182	+1.15E+02D	-6.142E+00	+6.176E+00
74-₩ <b>-</b> 18	4 (N:A)	72-HF-181	+4.24E+01D	+7.375E+00	+0.000E+00
74-₩ -18	4 (N:N,P)	73-TA-183	+5,10E+00D	-7.691E+00	+7.734E+00
74-W -18	4 (N:N,D)	73-TA-182	+1.15E+02D	-1.240E+01	+1.246E+01
74-W -18	6 (N:2N)	74-W -185	+7.51E+01D	-7.180E+00	+7.219E+00
74-W -18	6 (N:N,T)	73-TA-183	+5.10E+00D	-1.215E+01	+1.222E+01
75-RE-18	5 (N:G)	75-RE-186	+3,78E+00D	+6.181E+00	+0.000E+00
75-RE-18	5 (N:G)	75-RE-186M	+2.04E+05Y	+6.039E+00	+0.000E+00
75-RE-18	5 (N:P)	74-W -185	+7.51E+01D	+3.678E-01	+0.000E+00
75-RE-18	5 (N:H)	73-TA-183	+5.10E+00D	-5.375E+00	+5.404E+00
75-RE-18	5 (N:A)	73-TA-182	+1.15E+02D	+8.271E+00	+0.000E+00
75-RE-18	5 (N:2N)	75-RE-184	+3.80E+01D	-7.663E+00	+7.705E+00
75-RE-18	5 (N:2N)	75-RE-184M	+1.65E+02D	-7.862E+00	+7.905E+00
75-RE-18	5 (N:3N)	75-RE-183	+2.92E+00D	-1.414E+01	+1.422E+01
75-RE-18'	7 (N:T)	74-W -185	+7.51E+01D	-4.692E+00	+4.718E+00
75-RE-18	7 (N:2N)	75-RE-186	+3.78E+00D	-7.350E+00	+7.390E+00
75-RE-18	7 (N:2N)	75-RE-186M	+2.04E+05Y	-7.492E+00	+7.533E+00
75-RE-187	7 (N:N,D)	74-W -185	+7.51E+01D	-1.095E+01	+1.101E+01
75-RE-187	7 (N:N,A)	73-TA-183	+5.10E+00D	+1.661E+00	+0.000E+00
76-0S-184	4 (N:G)	76-OS-185	+9.36E+01D	+6.622E+00	+0.000E+00
76-OS-184	4 (N:P)	75-RE-184	+3.80E+01D	+7.515E-01	+0.000E+00
76-05-184	1 (N:P)	75-RE-184M	+1.65E+02D	+5.526E-01	+0.000E+00
76-05-184	1 (N:D)	75-RE-183	+2.92E+00D	-3.513E+00	+3.532E+00
76-OS-184	1 (N:T)	75-RE-182	+2.67E+00D	-5.673E+00	+5.704E+00
76-0S-184	1 (N:A)	74-W -181	+1.21E+02D	+9.649E+00	+0.000E+00
76-0S-184	4 (N:N,P)	75-RE-183	+2.92E+00D	-5.730E+00	+5.761E+00
76-05-184	(N:N,D)	75-RE-182	+2.67E+00D	-1.193E+01	+1.199E+01
76-OS-186	5 (N:P)	75-RE-186	+3.78E+00D	-2.860E-01	+2.876E-01
76-OS-186	5 (N:P)	75-RE-186M	+2.04E+05Y	-4.282E-01	+4.305E-01
76-05-186	5 (N:T)	75-RE-184	+3.80E+01D	-5.659E+00	+5.690E+00
76-OS-186	5 (N:T)	75-RE-184M	+1.65E+02D	-5.858E+00	+5.890E+00
76-OS-186	5 (N:2N)	76-OS-185	+9.36E+01D	-8.260E+00	+8.305E+00
76-OS-186	S (N:N,D)	75-RE-184	+3.80E+01D	-1.191E+01	+1.198E+01
76-OS-186	5 (N:N,D)	75-RE-184M	+1.65E+02D	-1.211E+01	+1.218E+01
76-05-186	5 (N:N,T)	75-RE-183	+2.92E+00D	-1.214E+01	+1.221E+01
76-OS-186	5 (N:2P)	74-W -185	+7.51E+01D	-6.114E+00	+6.147E+00
76-OS-187	(N:D)	75-RE-186	+3.78E+00D	-4.365E+00	+4.389E+00
76-0S-187	' (N:D)	75-RE-186M	+2.04E+05Y	-4.507E+00	+4.532E+00
76-OS-187	(N:H)	74-W -185	+7.51E+01D	-4.692E+00	+4.718E+00
76-OS-187	(N:N,P)	75-RE-186	+3.78E+00D	-6.583E+00	+6.618E+00
76-05-187	(N:N,P)	75-RE-186M	+2.04E+05Y	-6.725E+00	+6.761E+00
76-OS-187	(N:N,T)	75-RE-184	+3.80E+01D	-1.196E+01	+1.202E+01
76-05-187	(N:N,T)	75-RE-184M	+1.65E+02D	-1.215E+01	+1.222E+01
76-05-187	′ (N:3N)	76-OS-185	+9.36E+01D	-1.456E+01	+1.464E+01
76-05-188	3 (N:T)	75-RE-186	+3.78E+00D	-6.085E+00	+6.118E+00
76-OS-188	3 (N:T)	75-RE-186M	+2.04E+05Y	-6.227E+00	+6.261E+00

TARGET	REACTION	DAUGHTER	HALF-LIFE	Q-VALUE	THRESHOLD
76-OS-18	8 (N:A)	74-W -185	+7.51E+01D	+7.901E+00	+0.000E+00
76-05-18	8 (N:N,D)	75-RE-186	+3.78E+00D	-1.234E+01	+1.241E+01
76-OS-18	8 (N:N,D)	75-RE-186M	+2.04E+05Y	-1.248E+01	+1.255E+01
76-OS-18	9 (N:P)	75-RE-189	+1.01E+00D	-2.150E-01	+2.161E-01
76-0S-18	9 $(N:N,T)$	75-RE-186	+3.78E+00D	-1.201E+01	+1.208E+01
76-0S-18	9 $(N:N,T)$	75-RE-186M	+2.04E+05Y	-1.215E+01	+1.222E+01
76-0S-18	9 (N:N,A)	74-W -185	+7.51E+01D	+1.974E+00	+0.000E+00
76-0S-18	9 (N:2P)	74-W -188	+6.94E+01D	-6.824E+00	+6.861E+00
76-05-19	0 (N:G)	76-0S-191	+1.54E+01D	+5.769E+00	+0.000E+00
76-05-19	0 (N:D)	75-RE-189	+1.01E+00D	-5.787E+00	+5.818E+00
76-05-19	O (N:H)	74-W -188	+6.94E+01D	-6.895E+00	+6.932E+00
76-05-19	0 (N:N,P)	75-RE-189	+1.01E+00D	-8.004E+00	+8.047E+00
76-05-19	Z (N:G)	76-05-193	+1.27E+00D	+5.584E+00	+0.000E+00
76-05-19	Z (N; ZN)	75 DE 191	+1.54E+01D	-7.535E+00	+/.5/5E+00
76-05-19	$2  (N \in N \setminus I \}$	70-RE-109	+1.01E+000	-1.284E+U1	+1.291E+01
10-05-19	2 (N:N,A)	(4-W -188	+6.94£+01D	+3.6/8E-01	+0.000E+00
77-IR-19	1 (N:G)	77-IR-192	+7.38E+01D	+6.210E+00	+0.000E+00
77-IR-19	1 (N:G)	77-IR-192N	+2.45E+02Y	+6.053E+00	+0.000E+00
77-IR-19	1 (N:P)	76-OS-191	+1.54E+01D	+4.957E-01	+0.000E+00
77-IR-19	1 (N:H)	75-RE-189	+1.01E+00D	-5.573E+00	+5.603E+00
77-IR-19	1 (N:2N)	77-IR-190	+1.18E+01D	-8.047E+00	+8.089E+00
77-IR-19	1 (N:3N)	77-IR-189	+1.32E+01D	-1.434E+01	+1.442E+01
77-IR-19	3 (N:P)	76-0S-193	+1.27E+00D	-3.429E-01	+3.447E-01
77-IR-193	3 (N:T)	76-05-191	+1.54E+01D	-4.991E+00	+5.017E+00
77-IR-19:	3 (N:2N)	77-1R-192	+7.38E+01D	-7.748E+00	+7.789E+00
77-IR-193	3 (N:2N)	77-1R-192N	+2.45E+02Y	-7.905E+00	+7.946E+00
77-1R-19.	3  (N:N,D)	75 DE 191	+1.54E+01D	-1.124E+UI	+1.130E+01
77-IR-193	3 (N:N,A)	(D-RE-189	+1.01E+00D	+1.0362+00	+0.0002+00
82-PB-20-	4 (N:G)	82-PB-205	+1.55E+07Y	+6.721E+00	+0.000E+00
82-PB-204	4 (N:P)	81-TL-204	+3.85E+00Y	+2.665E-02	+0.000E+00
82-PB-204	4 (N:T)	81-TL-202	+1.22E+01D	-6.000E+00	+6.030E+00
82-PB-204	4 (N:2N)	82-PB-203	+2.16E+00D	-8.388E+00	+8.429E+00
82-PB-204	4 (N:N,D)	81-TL-202	+1.22E+01D	-1.225E+01	+1.232E+01
82-PB-204	$\{(N;N,T)\}$	81-TL-201	+3.04E+00D	-1.288E+UI	+1.294E+01
82-PB-204	(N:2P)	80-HG-203	+4.0000+010	-0.341E+00	+0.3/3E+00
8Z-PB-ZU4	4 (N:3N) 2 (N:5D)	82-PB-202	+3.34 <u>E</u> +041	-1.031E+01	+1.539E+01
82-PB-200	(N, 1)	81-1L-204 80 UC 202	+3.00E+001	-0.313E+00	+0,344E+00
82-PB-200	$O (N \cdot A)$ $C (N \cdot 2N)$	82-DB-205	+4.00E+01D	-9 080E+00	+0.0002+00
02-20-200	(N, ZN)	82-FB-203 81-TI-204	+1.JJE+0/1	-3.003E+00 -1.257E+01	+1 2625+00
02-FB-200	(N,N,D)	81 - TL - 204	+3.85E+001	-1.2076+01	+1.203E+01
82-DB-200	Γ (Ν•Ν ₃ Ι) 7 (Ν•Ν Λ3	80_HG_203	+4 665+001	+3 9625-01	+0 0005+00
02-FD-201 92-DB-205	$(N \cdot N \cdot A)$	82_PB_205	+1 55F+07V	-1 483F+01	+1 490E+00
02-10-201	(14.014)	02-10-200	TIJOETUTI	114000-01	11,4001401
83-BI-209	) (N:G)	83-BI-210	+5.01E+00D	+4.603E+00	+0.000E+00
83-BI-209	9 (N:G)	83-BI-210M	+3.05E+06Y	+4.333E+00	+0.000E+00
83-81-209	1 (N:ZN)	03-81-208	+3,/3Ľ+U3Y	~/.4JUE+U0	TI.480E+00

1

•