# JAERI-M 89-214

NEANDC(J)-144/U INDC(JPN)-131/L

## MEASUREMENT OF DOUBLE DIFFERENTIAL

NEUTRON EMISSION CROSS SECTIONS AT

14.1 MEV FOR Ca, Mn, Co and W

December 1989

Akito TAKAHASHI<sup>\*</sup>, Yasuhiro SASAKI<sup>\*</sup> Fujio MAEKAWA<sup>\*</sup> and Hisashi SUGIMOTO<sup>\*</sup>

日本原子力研究所 Japan Atomic Energy Research Institute

(11日11)によったは、日本原子力研究所な不定期に公司している研究報告書です 入手小問合わせば、日本原子力研究所技化情報部情報資料課 〒319-11美城県期回都東 同村、利用しこし、ひさい。なお、このほかに財団法人原子力法済会資料カンタ 〒319-11美城県形町鶴東海村日本原子力研究所内。ご復写による実務知布をおこな。こ おります。

JAURI-M reports are issued irregularly.

.

Inquiries about availability of the reports should be addressed to Information Division Department of Technical Information, Japan Atomic Energy P someth Institute, Tokaimura, Naka-gun, Ibaraki-ken 319-11, Japan.

> Clapan Arome Energy Research Institute, 1989 編集兼発行 日本原子万研究所 に 刷 い言言 Y II 關政

#### JAERI-M 89-214

Measurement of Double Differential Neutron Emission Cross Sections at 14.1 MeV for Ca, Mn, Co and W

Akito TAKAHASHI\*, Yasuhiro SASAKI\*, Fujio MAEKAWA\* and Hisashi SUGIMOTO<sup>\*</sup>

> Department of Physics Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

> > (Received November 28, 1989)

Using the neutron TOF spectrometer at OKTAVIAN, double differential neutron emission cross sections at 14.1 MeV were measured for Ca, Mn, Co and W which are of interest for shielding and structural material elements of fusion reactors. Data were obtained for 16 angle points from 15 to 160 deg in the LAB system for each element, covering the secondary neutron energy region from 0.5 MeV to 15 MeV. Statistics and energy resolution of obtained data are satisfactory.

The double differential cross sections in the LAB system were once converted to those in the center-of-mass system and integrated over scattering angle to obtain neutron emission spectra. Angle-differential cross sections were obtained for the elastic and discrete-inelastic scatterings whose peaks in DDX spectra could be resolved. The measured DDX data are so numerous that only their graphs are shown in this report. However, the graphs and numerical tables are given for the neutron emission spectra and the angle-differential cross sections.

In the graphs, preliminary comparisons are made with evaluated data (ENDF/B-IV and JENDL-3T). The ENDF/B-IV data for Ca are satisfactory in the high energy region, but overestimate the experimental values in the

This report is written by summarizing the study implemented under the Research-in-Trust in 1988 fiscal year from the Japan Atomic Energy Research Institute

\* Osaka University

İ

low energy region. The JENDL-3T data for Mn reproduce well the angleintegrated neutron emission spectrum, though underestimation is seen in the 6-13 MeV region. It is noted that ENDF/B-IV underestimates the emission spectrum of Co in the 3-13 MeV region. The ENDF/B-IV data for W do not agree at all with the experimental spectral patterns.

Keywords: Double Differential Neutron Emission Cross Section, 14.1 MeV, TOF Experiment, Ca, Mn, Co, W, JENDL-3T, ENDF/B-IV JAERI - M 89 - 214

Ca, Mn, Co, Wの 14.1 MeVにおける中性子放出二重微分断面積の測定

日本原子力研究所東海研究所物理部 高橋 亮人\*佐々木泰裕\*・前田 藤夫\* 杉本 久司<sup>\*</sup>

(1989年11月28日受理)

中性子遮蔽材及び短構造村元素として重要なCa, Mn, Co, Wについて、14 MeV 中性子人 射に対する中性子放出二重微分断面積が阪大オクタビアンのTOF分析装置を用いて測定された。 散乱角度は15°から160°にわたり16点である。二次中性子エネルギー範囲は0.5 MeVから15 MeVである。統計精度・エネルギー分解能ともに良好なデータを得られた。

- 得られた二重微分断面積を重心系に直し、角度積分して中性子放出スペクトルデータが導出された。

二重微分断面積のエネルギースヘクトルで、ヒークとして分離することができた弾性散乱と離 散車弾性散乱については、角度微分断面積が導出された。二重微分断面積は大量のデータとなっ たので、本報ではグラフのみを与えている。放出スヘクトルと角度微分断面積については、グラ フと数値表を与えている。

評価核データ(ENDF B-W, JENDL-3T)との予備的比較が行なわれた。その結果, Ca については、低エネルギーではENDF B-Wの過大評価がみられるが、高エネルギー側では実 験を良く再現している。Mnについては、JENDL-3Tは放出スペクトルをかなり良く再現して いるが 6~13 MeV領域で少し過小評価となっている。Coについては、ENDF B-Wは3~13 MeVで放出スペクトルを大きく過小評価している。Wについては、ENDF B-Wのデータは実 験とスペクトルパターンが全く一致しない

本報告書は日本原子力研究所から昭和63年度委託研究で行われた成果をまとめたものである。 東海研究所:**〒**319-11 茨城県那珂郡東海村白方字白根2-4

• 大阪大学

### Contents

| l. Introduction                                     | 1 |
|-----------------------------------------------------|---|
| 2. Experiment                                       | 1 |
| 3. Results                                          | 2 |
| 3.1 DDX                                             | 2 |
| 3.2 Angle-integrated neutron emission spectra (EDX) | 3 |
| 3.3 Angle-differential cross section (SDX)          | 3 |
| 4. Discussion                                       | 4 |
| 4.1 Calcium                                         | 4 |
| 4.2 Manganese                                       | 4 |
| 4.3 Cobalt                                          | 5 |
| 4.4 Tungsten                                        | 6 |
| Acknowledgment                                      | 6 |
| References                                          | 7 |

## 目

次

| 1. (‡l | (¥)1:           | 1 |
|--------|-----------------|---|
| 2. 実   | 験               | 1 |
| 3. 粘   | 果               | 2 |
| 3.1    | DDX(二重微分断面積)    | 2 |
| 3.2    | EDX(エネルギースヘクトル) | 3 |
| 3. 3   | SDX(角度微分断面積)    | 3 |
| 4. 考   | 察               | 4 |
| 4.1    | カルシュウム          | 4 |
| 4.2    | マンガン            | 4 |
| 4.3    | コバルト            | 5 |
| 4.4    | タングステン          | 6 |
| 謝辞     |                 | 6 |
| 文 献    |                 | 7 |

#### 1. Introduction

Double differential neutron emission cross sections (DDX) are of importance in fusion applications, namely not only for the neutronics calculations of blankets and shields but also for the calculational estimations of primary knock-on atom spectra and kerma factors. Neutroninduced nuclear reactions with incident energy around 14 MeV generally show the competing process between the direct, the precompound and the compound processes which reflected in the energy spectral shapes of DDX or emission spectrum. The DDX data have been therefore utilized also to the assessment of nuclear model codes for evaluation works.

In this report, measurements and results are described for Ca, Mn, Co and W. The DDX data of Ca are required as fundamental nuclear data for shielding designs using ordinary or low-activation (lime-stone) concrete, due to scarce experimental data. Tungsten is a candidate of the ITER inboard shield, whose available neutron data have large uncertainties and therefore new experimental data are strongly required. The DDX data of medium-heavy nuclei (Mn and Co) are of particular interest to assessing "standard" nuclear model codes. The data of angle-integrated neutron emission spectra and angle differential cross sections which can be obtained from the DDX data are also useful for the evaluation or code-assessing tasks. Therefore, measurements were carried out for a wide range of scattering angles (15-160 deg). Preliminary comparisons are made with a few evaluated nuclear data, e. g., ENDF/B-IV<sup>1</sup>) and JENDL-3T<sup>2</sup>.

#### 2. Experiment

The details of our experimental method are described elsewhere<sup>3,4)</sup>. A brief explanation is as follows: The pulsed D-T neutron source of OKTAVIAN<sup>3)</sup> is used with 2 ns pulse width and 1 MHz repetition frequency. A neutron TOF spectrometer has an 8.3 m long collimated flight path fixed in the 85 deg direction against the OKTAVIAN beam line. A 10 inch diam.  $\times$  10 cm thick NE213 detector is used as a main neutron detector with two (low- and high-gain) parallel pulse shape discrimination circuits. A scattering sample is set at 17 cm from the center of a TiT target (2 cm diam.) and moved along the 17 cm R arc when we change the

-- 1 ---

scattering angle. Incident neutron energy is 14.1 + 0.2 MeV, which was determined by observing the peak-energies of the elastic scatterings of many elements.

Cylindrical metallic rods are used for the scattering samples. Seven pellets of calcium metal (3 cm diam. × 1 cm thick) are packed with aluminum cooking foil to form the cylindrical sample (7 cm long). The effect of the aluminum foil has been proved to be ignored by background runs with and without the empty aluminum foil at sample position. The sizes of the Mn and W samples are 3 cm diam. × 7 cm long. For Co, a 2.5 cm diam. × 7 cm long metallic cylinder is used.

The calibration of the DDX values is made in usual way; the scattered neutron peaks of H(n, n) reaction are measured with a 1.5 cm diam. × 5 cm long polyethylene sample at the 7 angles (20-50 deg in LAB angle) and peak-area at each angle is normalized to be equal to the corresponding differential cross section of hydrogen.

Data processing procedure is described elsewhere<sup>4</sup>) in detail. For multiple scattering correction<sup>5</sup>), the DDX data calculated from evaluated nuclear data were used; ENDF/B-IV for Ca, Co and W, and JENDL-3T for Mn. Since the correction is considerably dependent on the spectral shapes of the used nuclear data, we will have to reprocess the Co DDX data using improved data (JENDL-3 final version) when more accurate data are required. For W, the neutron emission spectra by ENDF/B-IV are so different from the measured ones that we can not make correction and have to show the uncorrected data in this report: we may estimate the correction for W to be within 10-15 %.

#### 3. Results

#### 3.1 DDX

Results for Ca are shown in Fig. 1 through Fig. 15. In a spectrum at each angle, we can resolve six discrete inelastic scattering peaks (3.736-3.904 MeV sum peak, 4.492 MeV peak, 6.285 MeV peak, 6.510-7.536 MeV sum peak, 7.760-8.540 MeV sum peak and 9.6 MeV peak) and an elastic scattering peak (the most right-hand peak). Significant angular dependence is seen down to low emission energy where ENDF/B-IV overestimates the measured DDX. In the energy region higher than about 5 MeV, the ENDF/B-IV data reproduce the measured spectral patterns though delicate differences are seen.

Results for Mn are shown in Fig. 16 through Fig. 31 compared with JENDL-3T. Three peaks of the discrete inelastic scatterings (0.984, 2.822, and 4.41 MeV levels) and the elastic scattering peak could be resolved.

Results for Co are shown in Fig. 32 through Fig. 47 compared with ENDF/B-IV. We can see the resolved peaks of the elastic scattering and of the two discrete inelastic scatterings (1.099 and 4.086 MeV levels).

Results for W are shown in Fig. 48 through Fig. 63 compared with ENDF/B-IV. Except for the elastic scattering peak, no distinct peaks of the inelastic scatterings are seen at any angle though delicate structures are observed in the 9-13 MeV region.

3.2 Angle-Integrated neutron emission spectra (EDX)

Results for Ca are shown in Fig. 64 and Fig. 65 for the LAB and the CM system, and numerical values for the CM system are given in Table 1(1).

Results for Mn are shown in Fig. 66 and Fig. 67. Numerical values are given in Table 1(2).

Results for Co are shown in Fig. 68 and Fig. 69. Numerical values are given in Table l(3).

Results for W are shown in Fig. 70 and Fig. 71. Numerical values are given in Table 1(4).

3.3 Angle-differential cross sections (SDX)

Results for Ca are shown in Figs. 72, 73, 74 and 75, together with fitted curves using Legendre polynomials and evaluated curves of ENDF/ B-IV. Numerical values are given in Table 2(1) and 2(2).

Results for Mn are shown in Figs. 76, 77 and 78. Fitting with the Legendre polynomials and the JENDL-3T curves are also shown. Numerical values are given in Table 2(3).

Results for Co are shown in Figs. 79 and 80. Numerical values are given in Table 2(4).

Results for W are shown in Figs. 81 and 82, for the elastic scattering, the inelastic continuum (integration of DDX within the 5.5-11

#### JAERI-M 89-214

MeV region) and the (n, 2n) neutron emissions. For the (n, 2n) reaction, the DDX values are integrated within the 0-5.5 MeV region. Numerical values are given in Table 2(5).

#### 4. Discussion

#### 4.1 Calcium

As shown in Fig. 1 through Fig. 15, the calculated curves of ENDF/ B-IV reproduce the measured DDX curves as a whole. Speaking the local agreements, ENDF/B-IV underestimates the measured values in the 4-11 MeV at forward angles (15-50 deg). Below 3 MeV the measured data show the forward enhancement of the neutron emission while the ENDF/B-IV data give isotropic angular distribution and therefore overestimate the experimental values at the angles greater than 60 deg.

Looking at the angle-integrated neutron emission spectrum in the CM system shown in Fig. 65, the ENDF/B-IV data reproduce very well the measured values in the energy region above 4 MeV while significant (by 30-50 %) overestimation is seen below 4 MeV.

As for the single differential cross sections of the elastic scattering shown in Fig. 72, ENDF/B-IV overestimates 2 times the experimental values at the backward angles (110-150 deg), though the angular distribution resembles one another. For the resolved discrete inelastic scatterings shown in Figs. 73 through 75, the underestimation of ENDF/B-IV is pointed out at the forward angles for the 3.736-3.904 and 4.492 MeV levels.

#### 4.2 Manganese

DDX: As shown in Fig. 16 through 31, the calculated DDXs by JENDL-3T reproduce the overall spectral shapes of the experimental ones but the significant underestimations at the forward angles (15-80 deg) should be pointed out. At the backward angles (90-160 deg), very good agreement is seen except for the elastic scattering peaks at the backward angles (100-160 deg). The angular distribution of the pre-equilibrium neutron emission shall be taken into account to fill the large differences at the forward angles. Seeing the angle-integrated neutron emission spectrum shown in Fig. 67, we can say that the underestimation of JENDL-3T is obvious in the 6-13 MeV region. We see a distinct peak around 9.5 MeV of the measured spectrum, which is attributed to the excitation of one phonon state of octapole vibration (excitation energy 4.41 MeV). A hump at 6-7 MeV may be due to the excitation of the low energy octapole vibration (two phonon state). A shoulder at 11.5 MeV can correspond to the 1.884 MeV level excitation.

For the differential elastic scattering cross sections shown in Fig. 76, the considerable underestimation of JENDL-3T is seen at the forward angles (15-30 deg) while overestimating about twice at the backward angles (100-160 deg). For the 0.984 MeV level excitation, fairly good agreement is seen as shown in Fig. 77 as far as the angle-dependence is concerned. As shown in Fig. 78, the JENDL-3T cross sections for the 2.822 MeV level should be doubled though their shapes of angular distribution curve agree with the measured one. Since the cross section of 4.41 MeV level seems to be large, it is recommended to include this level into the evaluations.

#### 4.3 Cobalt

As shown in Fig. 32 through Fig. 47, the measured spectral shapes and the angular distribution of DDX are very different from those of ENDF/B-IV; especially in the 3-13 MeV region and at the forward angles, the used nuclear models seem to have problems, i. e., the direct collective excitation of the inelastic scattering and the preequilibrium neutron emission are not taken into account or are treated uncorrectly.

The results of the angle-integrated emission spectrum shown in Fig. 69 lead us to a similar conclusion.

The differential cross sections of the elastic scattering are shown in Fig. 79. At the backward angles (70-160 deg), ENDF/B-IV is 2-3 times larger than the experimental values. Overestimation over the whole angle and the difference of the distribution shape may suggest us the necessity of the reestimation of optical parameters. No comparisons with the evaluated curves are made for the 1.099 and 4.086 MeV levels, and the analyses with DWUCK4 are desirable.

- 5 -

#### 4.4 Tungsten

Obviously the drastic underestimation of ENDF/B-IV in the 5-13 MeV region shows the ignorance of the direct and preequilibrium neutron emissions. Basically we can apply the EGNASH<sup>6</sup>) + DWUCK4<sup>7</sup>) analysis for the evaluation tasks. However, the measured DDX spectra in the 5-13 MeV region show us the existence of so many discrete levels of the direct excitations. Natural tungsten contains 5 isotopes, so that the energy spectrum may be monotonous in this region. In the case of  $Ta^8$  which is mono-isotopic, we have observed the quite similar monotonous spectra of DDX in the corresponding energy region. Therefore we can speculate that the many direct excitations with similar magnitudes are possible for these heavy mass elements (from Ta to W). This situation requires us laborious calculations of the direct process neutron emissions.

The differential cross sections of the elastic scattering are shown in Fig. 81 compared with ENDF/B-IV. The measured data are larger on an average than those of ENDF/B-IV at the backward angles (90-160 deg). As shown in Fig. 82, a slight forward-enhancement of (n, 2n) neutrons is seen and the integrated (n, 2n) cross section of the experiment is about 15 % smaller than that of ENDF/B-IV.

#### Acknowledgment

The authors appreciate the operation crew of OKTAVIAN. The appreciation is also due to the continuous support of this work by Dr. S. Igarasi, Dr. T. Asami and Dr. Y. Kikuchi of JAERI Nuclear Data Center.

#### References

- 1) ENDF/B Summary Documentation, BNL-NCS-17541 (1975)
- 2) JENDL compilation Group (Nuclear Data Center, JAERI): JENDL-3T, private communication (1987)
- 3) Takahashi, A., et al.: J. Nucl. Sci. Technol., 25, 215 (1988)
- 4) Takahashi, A., et al.: JAERI-M 88-102 (1988)
- 5) Ichimura, E., Takahashi, A.: OKTAVIAN Rep. A-87-02, Osaka Univ., (1987)
- 6) Yamamuro, N.,: Proc. Nucl. Data Sci. Tech., 1988, Mito, pp.489 SAIKON Publ., (1988)
- 7) Kunz, P.O.: "Distorted Wave Code DWUCK4", Univ. Colorado (1974)
- 8) Takahashi, A., et al.: INDC(JPN) 118L (1989)

| Table 1(1) | Angle-integrated | neutron emission | spectrum | in | the | ſМ  |
|------------|------------------|------------------|----------|----|-----|-----|
| V - V      | system with En = | 14 1 MoV for Ca  | Spectrum |    | the | Uni |
|            | System with the  | 14.1 Heve TUP Ud |          |    |     |     |

| SUBENTRY                           | 00021003                     | 880201                           |                                  |                                  | 00021003                                                          |
|------------------------------------|------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------------------|
| COMMENT                            | TWO DATA SET<br>DATA OBTAINE | S ARE GIVËN<br>D FROM RAW        | DDX DATA .                       | IN LEFT HAD                      | 00021003 2<br>00021003 3<br>ND SIDE: 00021003 4                   |
|                                    | DATA OBTAINE<br>IN RIGHT HAN | D FROM CORF<br>D SIDE            | ECTED DDX I                      | DATA WITH M                      | USCC3 CODE 00021003 5<br>00021003 6                               |
| REACTION                           | (20-CA-0(N,S<br>IN THE CENTE | (T)DE) S<br>R-OF-MASS S          | ECONDARY NE                      | UTRON SPEC                       | TRUM 00021003 7<br>00021003 8                                     |
| COMMON                             | 8<br>1                       | 5                                |                                  |                                  | 00021003 9                                                        |
| MEV<br>14 10000                    |                              |                                  |                                  |                                  | 00021003 12                                                       |
| ENDCOMMON<br>DATA                  | 5<br>6                       | 66                               |                                  |                                  | 00021003 14<br>00021003 15                                        |
| E-MAX<br>MEV                       | E-MIN D<br>MEV B             | ATA D<br>/MEV B                  | ATA-ERR D<br>/MEV B              | ATA L<br>VMEV 1                  | DATA-ERR 00021003 16<br>B/MEV 00021003 17                         |
| 14 20000<br>14 00000               | 14.00000<br>13.80000         | 9 95E-02<br>3 11E-01             | 2.98E-03<br>3.84E-03             | 9 27E-02<br>3 01E-01             | 2.95E-0300021003 18<br>3.82E-0300021003 19                        |
| 13 80000                           | 13.40000                     | 7 14E-01<br>1.27E+00             | 4 66E-03<br>5 27E-03             | 1 23E-01                         | 4.71E-0300021003 20<br>5.30E-0300021003 21                        |
| 13.20000                           | 13.00000                     | 6 07E-01                         | 4 66E-03<br>3 58E-03             | 6.16E-01                         | 3 56E-0300021003 23<br>2 65E-0300021003 23                        |
| 12 80000                           | 12.60000                     | 1 22E-01<br>6 19E-02             | 2 20E-03<br>2 05E-03             | 1 22E-01<br>6 22E-02             | 2 15E-0300021003 25<br>2.00E-0300021003 26                        |
| 12.40000                           | 12.20000<br>12.00000         | 3 62E-02<br>2 37E-02             | 1.93E-03<br>1.88E-03             | 3 66E-02<br>2 40E-02             | 1.88E-0300021003 27<br>1.83E-0300021003 28                        |
| 12.00000                           | 11 80000<br>11 60000         | 1 57E-02<br>1 24E-02             | 1 85E-03<br>1 78E-03             | 1 60E-02<br>1 27E-02             | 1 79E-0300021003 29<br>1 72E-0300021003 30                        |
| 11 60000                           | 11 40000                     | 5 30E-03<br>1 96E-03             | 1 71E-03<br>1 66E-03             | 5 46E-03<br>2 02E-03             | 1 67E-0300021003 31<br>1 62E-0300021003 32                        |
|                                    | 10.80000                     | 2 22E-03                         | 1 52E-03                         | 2 24E-03                         | 1 52E-0300021003 33<br>1 52E-0300021003 34<br>1 46E-0300021003 35 |
| 10 60000                           | 10 40000                     | 9 96E-03<br>1 80E-02             | 1 42E-03<br>1 42E-03             | 1 01E-02<br>1 82E-02             | 1 42E-0300021003 36<br>1 43E-0300021003 37                        |
| 10 20000                           | 10.00000<br>9.80000          | 4 09E-02<br>8 27E-02             | 1 49E-03<br>1 65E-03             | 4 12E-02<br>8 34E-02             | I 50E-0300021003 38<br>I 66E-0300021003 39                        |
| 9 60000<br>9 80000                 | 9.60000<br>9.40000           | 9 75E-02<br>5 65E-02             | I G8E-03<br>I 54E-03             | 9 80E - 02<br>5 G3E - 02         | 1 69E-0300021003 40<br>1 53E-0300021003 41                        |
| 9 40000<br>9 20000                 | 9.20000                      | 3 55E-02<br>4 42E-02             | 1 45E-03<br>1 51E-03             | 3 SOE-02<br>4.01E-02             | 1.43E=0300021003 42<br>1.42E=0300021003 43                        |
| 9 00000<br>8 80000<br>8 60000      | 8.60000                      | 2.41E-02                         | 1 57E-03<br>1 55E-03             | 1.63E-02                         | 1.19E-0300021003 44<br>1.19E-0300021003 45                        |
| 8.40000                            | 8.20000                      | 1 60E-02<br>2 36E-02             | 1 48E-03                         | 1 12E-02                         | 1 23E-0300021003 47<br>1 30E-0300021003 47                        |
| 8 00000                            | 7.80000                      | 2 38E-02<br>2 12E-02             | 1 52E-03<br>1 52E-03             | 1 84E-02<br>1 74E-02             | 1.32E-0300021003 49<br>1.37E-0300021003 50                        |
| 7.60000                            | 7 40000<br>7 20000           | 2 68E-02<br>3 30E-02             | 1 54E-03<br>1 57E-03             | 2.37E-02<br>3.01E-02             | 1 44E-0300021003 51<br>1 48E-0300021003 52                        |
| 7 20000<br>7 00000                 | 7.00000<br>6.80000           | 3 21E-02<br>4 01E-02             | 1 59E-03<br>1 64E-03             | 2 97E-02<br>3 62E-02             | 1 49E-0300021003 53<br>1 48E-0300021003 54                        |
| G 80000<br>G 60000                 | 6.60000<br>6.40000           | 5 38E-02<br>5 00E-02             | 69E-03                           | 4 74E-02<br>4 27E-02             | 1.50E-0300021003 55<br>1.45E-0300021003 56                        |
| 6.40000                            | 6 00000                      | 3.65E-02<br>3.83E-02             | 1.68E-03                         | 3 37E-02<br>3 54E-02             | 1.44E-0300021003 57<br>1.47E-0300021003 58                        |
| 5 80000                            | 5 60000                      | 3 85E~02<br>3 71E-02             | 1 70E-03                         | 3 29E-02<br>3 29E-02             | 1 49E-0300021003 60<br>1 50E-0300021003 61                        |
| 5 40000                            | 5.20000<br>5.00000           | 3 96E-02<br>3 82E-02             | 1 74E-03<br>1 74E-03             | 3 43E-02<br>3 03E-02             | I.47E-0300021003 62<br>I.42E-0300021003 63                        |
| 5.00000<br>4.80000                 | 4 80000<br>4 60000           | 3 51E-02<br>4 08E-02             | 1.75E-03<br>1.77E-03             | 2.59E-02<br>3.08E-02             | 1 38E-0300021003 64<br>1 39E-0300021003 65                        |
| 4.60000<br>4.40000                 | 4.40000<br>4.20000           | 4 47E-02<br>4 76E-02             | 1.76E-03<br>1.77E-03             | 3.40E-02<br>3.73E-02             | 1.40E-0300021003 66<br>1.43E-0300021003 67                        |
| 4.20000                            | 3 80000                      | 5 09E-02<br>5 24E-02<br>5 82E-02 | 1 77E-03                         | 3 97E-02<br>3.89E-02             | 1 42E-0300021003 68<br>1 42E-0300021003 69                        |
| 3 60000                            | 3.40000                      | 6.10E-02<br>6.87E-02             | 1 81E-03                         | 4.70E-02<br>5.37E-02             | 1 47E-0300021003 71<br>1 52E-0300021003 72                        |
| 3 20000                            | 3.00000                      | 7.80E-02<br>9.41E-02             | 1 94E-03<br>2 06E-03             | 6 29E-02<br>7 80E-02             | I 62E-0300021003 73<br>I 73E-0300021003 74                        |
| 2.80000<br>2.60000                 | 2.60000<br>2.40000           | 1.06E-01<br>1.20E-01             | 2 20E-03<br>2 37E-03             | 8 72E-02<br>9 43E-02             | 1.86E-0300021003 75<br>1.91E-0300021003 76                        |
| 2.40000<br>2.20000                 | 2.20000<br>2.00000           | 1.52E-01<br>1.58E-01             | 2 52E-03<br>2 71E-03             | 1.17E-01<br>1.26E-01             | 1.97E-0300021003 77<br>2.19E-0300021003 78                        |
| 2 00000<br>1.80000                 |                              | 1.71E-01<br>1.79E-01             | 2 92E-03<br>3 28E-03<br>3 92E-03 | 1 43E-01<br>1 47E-01<br>1 57E-01 | 2.43E+0300021003 79<br>2.70E+0300021003 80<br>3.25E+0300021003 81 |
| 1.40000                            | 1.20000                      | 1.94E-01<br>2 43E-01             | 5 20E-03                         | 1 G1E-01<br>1 97F-01             | 4 37E-0300021003 82<br>9 39E-0300021003 83                        |
| ENDDATA<br>ENDSUBENTRY<br>ENDENTRY | 70<br>85<br>3                |                                  |                                  |                                  | 00021003 84<br>0002100399999<br>0002199999999                     |

. i

| Table 1(2) | Angle-integrated<br>system with En = | neutron emission<br>14.1 MeV, for Mn | spectrum | in | the | СМ |
|------------|--------------------------------------|--------------------------------------|----------|----|-----|----|
|------------|--------------------------------------|--------------------------------------|----------|----|-----|----|

| SUBENTRY                      | 00020003                                     | 881201                            |                                  |                                  |                                     | 00020003                         | 1                 |
|-------------------------------|----------------------------------------------|-----------------------------------|----------------------------------|----------------------------------|-------------------------------------|----------------------------------|-------------------|
| COMMENT                       | TWO DATA SET<br>DATA OBTAINE                 | S ARE GIVE<br>D FROM RAW          | N.<br>DDX DATA ,                 | IN LEFT HAI                      | ND SIDE.                            | 00020003                         | 2<br>3<br>4       |
| REACTION                      | DATA OBTAINE<br>IN RIGHT HAN<br>(25-MN-55(N) | D FROM CORI<br>D SIDE<br>SCTI DEI | SECONDARY                        | DATA WITH MU                     | JSCC3 CODE                          | 00020003                         | 5                 |
| ENDBIB                        | IN THE CENTE                                 | R-OF-MASS                         | SYSTEM                           | NEUTRON SPEC                     | LIKUM                               | 00020003                         | 8<br>9            |
| COMMON<br>EN                  | 1                                            | 5                                 |                                  |                                  |                                     | 00020003                         | 10                |
| 14.1000<br>ENDCOMMON          | 0 5                                          |                                   |                                  |                                  |                                     | 00020003                         | 12                |
| DATA<br>E-MAX                 | E-MIN D                                      | 68<br>4 TA [                      | ATA-ERR I                        | ATA D                            | ATA-ERR                             | 00020003                         | i 5<br>1 6        |
| 14.60000<br>14.40000          | мех В,<br>0 14.40000<br>0 14.20000           | MEY 1<br>1.02E-02<br>4.75E-02     | 6.39E-04<br>1.19E-03             | 0/MEV E<br>1.23E∽02<br>0.00E+00  | 7.82E-04<br>1.36E-03                | 00020003                         | 17                |
| 14.20000                      | 0 14.00000<br>0 13.80000                     | 2.22E-01<br>8.08E-01              | 1.98E-03<br>2.63E-03             | 2.69E-01<br>9.91E-01             | 2.20E-03<br>3.08E-03                | 00020003                         | 2021              |
| 13 60000                      | ) 13.40000                                   | 1.59E+00<br>1.64E+00<br>9.59E-01  | 3.18E-03<br>2.47E-03             | 2 02E+00<br>1 17E+00             | 3.91E-03<br>3.84E-03<br>2.94E-03    | 00020003                         | 2 Z<br>2 3<br>2 4 |
| 13 20000                      | ) 13.00000<br>) 12.80000<br>) 13.60000       | 4 12E-01<br>2 01E-01              | 1.80E-03<br>1.44E-03             | 4 93E-01<br>2 36E-01             | 2.08E-03<br>1.63E-03                | 00020003                         | 25<br>26          |
| 12.60000                      | 12.40000                                     | 9 07E-02<br>6 14E-02              | 1 16E-03<br>1 07E-03             | 1.09E-01<br>7.44E-02             | 1.35E-03<br>1.25E-03                | 00020003                         | 28<br>29          |
| 12.20000                      | ) 12.00000<br>) 11.80000                     | 4.32E-02<br>3.81E-02              | 1.01E-03<br>9.85E-04             | 5.24E-02<br>4.62E-02             | 1.18E-03<br>1.16E-03                | 00020003                         | 30<br>31          |
| 11.60000                      | 11.40000                                     | 3 25E-02<br>2 81E-02              | 9.33E-04<br>9.08E-04             | 3.94E-02<br>3.41E-02             | 1.11E-03<br>1.08E-03                | 00020003                         | 33<br>33<br>34    |
| 11.20000                      |                                              | 2 34E-02<br>2 38E-02              | 8.87E-04<br>8.69F-04             | 2 81E-02<br>2 86E-02             | 1.06E-03<br>1.04E-03                | 00020003                         | 35<br>36          |
| 10.80000                      | 10.40000                                     | 2 53E-02<br>2 42E-02<br>2 27E-02  | 8 54E-04<br>8 42E-04             | 2 88E-02<br>2 71E-02             | 1.04E-03<br>1.02E-03                | 00020003                         | 37<br>38<br>39    |
| 10.20000                      | 10.00000<br>9.80000                          | 2 41E-02<br>2 73E-02              | 8.50E-04<br>8.67E-04             | 2 86E-02<br>3 24E-02             | 1.01E-03<br>1.03E-03                | 00020003                         | 40                |
| 9 60000<br>9 60000<br>9 40000 | 9.40000<br>9.20000                           | 4 36E-02<br>4 72E-02              | 9 27E-04<br>9 51E-04             | 5 16E-02<br>5 47E-02             | 1.11E-03<br>1.12E-03                | 00020003                         | 42<br>43<br>44    |
| 9 20000<br>9 00000            | 9.00000<br>8 80000                           | 4 21E-02<br>3 75E-02              | 9 28E-04<br>9 14E-04             | 4 28E-02<br>3 68E-02             | 9.56E-04<br>9.38E-04                | 00020003                         | 45<br>46          |
| 8 60000<br>8 60000<br>8 40000 | 8.40000<br>8.20000                           | 3 79E-02<br>3 82E-02<br>3 76E-02  | 9.21E-04<br>9.21E-04<br>9.25E-04 | 3 92E-02<br>3 94E-02             | 9.67E-04<br>9.82E-04                | 00020003                         | 47<br>48<br>49    |
| 8 20000<br>8 00000            | 8.00000<br>7.80000                           | 4.09E-02<br>4.37E-02              | 9.29E-04<br>9.41E-04             | 4 32E-02<br>4 66E-02             | 9 97E-04<br>1.01E-03                | 00020003                         | 50<br>51          |
| 7 60000<br>7 60000<br>7 40000 | 7 . 40000<br>7 . 20000                       | 4.03E-02<br>5.20E-02<br>5.72E-02  | 9 53E-04<br>9 53E-04<br>9 64E-04 | 5.60E-02<br>6.16E-02             | 1.04E-03<br>1.05E-03                | 00020003                         | 53<br>54          |
| 7 20000<br>7 00000            | 7 00000<br>6.80000                           | 6 03E-02<br>6 26E-02              | 9.66E-04<br>9.66E-04             | 6 62E-02<br>6 90E-02             | 1.06E-030                           | 00020003                         | 55<br>56          |
| 6 60000                       | 6 40000<br>6 20000                           | 6 72E-02<br>6 86E-02              | 9 69E-04<br>9 69E-04<br>9 62E-04 | 7.34E-02<br>7.52E-02             | 1 07E-030                           | 0020003                          | 58<br>59          |
| 6 20000<br>6 00000            | 6 00000<br>5 80000                           | 7 33E-02<br>7 59E-02              | 9 74E-04<br>9 77E-04             | 8 0GE-02<br>8 38E-02             | 1 08E-030<br>1 09E-030              | 0020003                          | 60<br>61          |
| 5.80000<br>5.60000<br>5.40000 | 5.40000<br>5.20000                           | 7.76E-02<br>8.20E-02<br>8.78E-02  | 9.84E-04<br>9.92E-04<br>1.01E-03 | 8.60E-02<br>9.12E-02<br>9.75E-02 | 1.11E-030<br>1.13E-030              | )0020003<br>)0020003<br>)0020003 | 62<br>63<br>64    |
| 5.20000<br>5.00000            | 5 00000<br>4 80000                           | 9.39E-02<br>1.02E-01              | 1 02E-03<br>1 04E-03             | J 04E-01<br>1.13E-01             | 1.14E-03(<br>1.16E-030              | 0020003                          | 65<br>66          |
| 4.80000<br>4.60000<br>4.40000 | 4.40000<br>4.20000                           | 1.17E-01<br>1.25E-01              | 1.07E-03<br>1.07E-03<br>1.09E-03 | 1.29E-01<br>1.39E-01             | 1 18E-030<br>1 21E-030              | 0020003                          | 68<br>69          |
| 4 20000                       | 4.00000<br>3.80000                           | 1 36E-01<br>1 45E-01              | 1   1 E - 03<br>1   1 5 E - 03   | 1 51E-01<br>1 60E-01             | 1.23E-030<br>1.26E-030              | 0020003                          | 70<br>71          |
| 3.80000<br>3.60000<br>3.40000 | 3.40000<br>3.20000                           | 1 67E-01<br>1 87E-01              | 1 20E-03                         | 1 82E-01<br>2 04E-01             | 1 31E-030                           | 0020003                          | 73<br>74          |
| 3 20000<br>3 00000            | 3.00000<br>2.80000                           | 2 . 11E-01<br>2 . 45E-01          | 1 32E-03<br>1 40E-03             | 2 28E-01<br>2 64E-01             | 1.42E-030<br>1.50E-030              | 0020003                          | 75<br>76<br>77    |
| 2.60000                       | 2.40000<br>2.20000                           | 3.32E-01<br>4.01E-01              | 1.59E-03<br>1.68E-03             | 3 39E-01<br>4 07E-01             | 1.61E-030                           | 0020003                          | 78<br>79          |
| 2 20000                       | 2.00000<br>1.80000                           | 4.56E-01<br>5.10E-01<br>5.92E-01  | 1.78E-03<br>1.88E-03<br>2.08E-03 | 4.73E-01<br>5.34E-01<br>6.14E-01 | 1.82E-030<br>1.97E-030<br>2.16E-030 | 0020003                          | 80<br>81<br>82    |
| 1.60000                       | 1.40000                                      | 6 76E-01<br>7 55E-01              | 2 38E-03<br>2 87E-03             | 6.90E-01<br>7.58E-01             | 2.43E-030<br>2.88E-030              | 0020003<br>0020003               | 83<br>84          |
| 1 20000<br>ENDDATA            | 1.00000                                      | 7.93E-01                          | 4.04E-03                         | 7.82E-01                         | 3.99E-030                           | 0020003                          | 85<br>86          |
| ENDENTRY                      | 3                                            |                                   |                                  |                                  | 0                                   | 0020999999                       | 999               |

| Table 1(3) | Angle-integrated<br>system with En = | neutron emission<br>14.1 MeV. for Co | spectrum | in | the | СМ |
|------------|--------------------------------------|--------------------------------------|----------|----|-----|----|
|            | System with En                       | 14.1 /// 101 00                      |          |    |     |    |

|   | SUBENTRY<br>BIB<br>COMMENT               | THO              | 00<br>.D                                 | 019003<br>ATA SET             | S A            | 881<br>RE_C             | 201<br>8<br>VE | N.                |                            |                   |             |                            |                     |                               | 000                     | 019003<br>019003           | 1223             |
|---|------------------------------------------|------------------|------------------------------------------|-------------------------------|----------------|-------------------------|----------------|-------------------|----------------------------|-------------------|-------------|----------------------------|---------------------|-------------------------------|-------------------------|----------------------------|------------------|
|   | REACTION                                 | DAT<br>DAT<br>IN | A<br>A<br>R1<br>-C                       | OBTAINE<br>OBTAINE<br>GHT HAN |                | ROM I<br>ROM (<br>IDE   | CAN<br>COR     | RECI              | ED DD                      |                   | ATA<br>NTA  | WITH I                     | AND<br>MUSC<br>FCTR | C3 COD                        | E 000                   | 019003                     | 4<br>5<br>6<br>7 |
|   |                                          | ÌÑ               | ТЙ                                       | E CENTE                       | R-O            | F-MAS                   | 55'<br>5       | รังรัว            | EM                         |                   |             |                            |                     |                               | 000                     | 019003                     | 8<br>9<br>10     |
|   | EN<br>MEV                                |                  |                                          | ·                             |                |                         |                |                   |                            |                   |             |                            |                     |                               | 000                     | 019003                     | 11               |
|   | ENDCOMMON<br>DATA                        | ,                |                                          | 5<br>6                        | _              |                         | 69             | _                 |                            |                   |             |                            |                     |                               | 000                     | 19003                      | 13<br>14<br>15   |
|   | E-MAX<br>MEV<br>14 60000                 | E-M<br>MEV       | IN<br>IA                                 | D/<br>B.                      | ATA<br>/Me     | ۷<br>۹05-               | 02             | DATA<br>B/ME<br>5 | -ERR<br>V<br>30F-(         | DA<br>B/<br>DA    | ATA<br>ME'  | V<br>855-02                | DAT<br>B/M          | A-ERR<br>EV<br>6.51E-4        | 000<br>000<br>000⊾0     | )19003<br>)19003<br>)19003 | 16<br>17<br>18   |
|   | 14 40000                                 | )                | 4                                        | 20000                         | 4 2            | 33E-<br>66E-            | 02             | Ĩ                 | 20E-0                      | 3                 | 53          | 29E-02<br>37E-01           | 2                   | 1.32E-<br>2.17E-              | 03000                   | 19003                      | 19<br>20         |
|   | 13.80000                                 | )                | 13                                       | . 60000                       | 1              | 41E+<br>22E+            | 00             | 2<br>3<br>2       | -46E-0<br>-07E-0<br>-80E-0 | )3<br>)3<br>)3    | 1           | 88E+00                     |                     | 3.98E-<br>3.57E-              | 03000                   | 19003                      | 21<br>22<br>23   |
|   | 13.40000                                 |                  | 3                                        | 20000                         | 52             | - 66E-<br>- 28E-        | 01             | 1                 | -98E-0<br>-41E-0           | )3<br>)3<br>)3    | 72          | 31E-01<br>92E-01           |                     | 2.45E-0<br>1.69E-0            | 03000<br>03000          | 19003                      | 24<br>25<br>26   |
|   | 12 80000                                 |                  | 2                                        | 60000                         | 8              | 63E-<br>15E-            | 02             | i<br>1            | 07E-0                      | 3                 | 1           | 08E-01                     |                     | 1.29E-<br>1.29E-              | 03000                   | 19003                      | 27               |
|   | 12.40000<br>12.20000<br>12.00000         | 1                | 2                                        | 00000<br>80000                | 6<br>4<br>3    | 67E-<br>64E-<br>09E-    | 02<br>02<br>02 | 1<br>9<br>8       | - 40E-0<br>77E-0           | ) 3<br>) 4<br>) 4 | 8<br>5<br>4 | 38E-02<br>92E-02<br>01E-02 |                     | 1 25E-(<br>1 17E-(<br>1 09E-( | )3000<br>)3000<br>)3000 | 19003                      | 29<br>30<br>31   |
|   | 00008      <br>00008      <br>11   40000 | 1                | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 60000<br>40000<br>20000       | 2              | -15E-<br>69E-<br>21E-   | 02<br>02<br>02 | 8                 | 38E-0<br>16E-0<br>86F-0    | 14<br>14          | 22.         | 82E-02<br>22E-02<br>57E-02 |                     | 1.04E-(<br>1.02E-(<br>9.85E-( | )3000<br>)3000<br>)4000 | 19003<br>19003             | 32<br>33<br>34   |
|   | 11.20000                                 | 1                | 0                                        | 00000                         | 8              | 89E-<br>15E-            | 03             | 1711              | 61E-C                      | 4                 | 1.          | 15E-02<br>04E-02           |                     | 9 55E-0<br>9 31E-0            | 4000                    | 19003                      | 35               |
|   | 10 60000                                 | 1                | 0.0                                      | 40000<br>20000                | 1              | 10E-<br>41E-            | 02             | 77                | 29E-0<br>09E-0             | 4                 | 1           | 35E-02<br>73E-02           |                     | 9.15E-0<br>8.87E-0            | 4000                    | 19003                      | 38<br>39         |
|   | 10 20000<br>10 00000<br>9 80000          | 1                | 0.<br>9.<br>9                            | 00000<br>80000<br>60000       | 2222           | 15E-<br>99E-<br>69E-    | 02<br>02<br>02 | 7<br>7<br>7       | 27E-0<br>48E-0<br>29E-0    | 4                 | 3           | 65E-02<br>69E-02<br>32E-02 |                     | 9.06E-0<br>9.32E-0<br>9.08E-0 | 4000                    | 19003<br>19003<br>19003    | 40<br>41<br>42   |
|   | 9 60000<br>9 40000                       |                  | 9.<br>9.                                 | 40000                         | 222            | 45E-<br>68E-            | 02             | 777               | 10E-0<br>04E-0             | 4                 | 3.          | 04E-02<br>19E-02           | 8                   | 8 83E-0<br>8 54E-0<br>7 84E-0 | 4000                    | 19003                      | 43<br>44<br>45   |
|   | 9.00000<br>9.00000<br>8.80000            |                  | 8.<br>8.                                 | 80000                         | 2.             | 80E-                    | 02             | 7                 | 04E-0<br>09E-0             | 4<br>4            | 2.2         | 88E-02<br>73E-02           |                     | 7.66E-0                       | 4000                    | 19003                      | 46<br>47         |
|   | 8-60000<br>8-40000<br>8-20000            |                  | 8 -<br>8 -<br>8 -                        | 40000<br>20000<br>00000       | 2.             | 87E-0<br>94E-0<br>06E-0 | 02<br>02<br>02 | 7<br>7<br>7       | 11E-0<br>24E-0<br>18E-0    | 4<br>4<br>4       | 3.3.        | 01E-02<br>15E-02<br>29E-02 | 8                   | /-88E-0<br>3-07E-0<br>3-09E-0 | 4000<br>4000<br>4000    | 19003<br>19003<br>19003    | 48<br>49<br>50   |
|   | 8.00000<br>7.80000                       |                  | 7.<br>7.                                 | 80000                         | 3.             | 02Ē~(<br>03E-)          |                | 777               | 31E-0<br>33E-0             | 4                 | 3.          | 26E-02<br>34E-02           | 800                 | 3.26E-0<br>3.33E-0            | 4000                    | 19003                      | 51               |
|   | 7 40000<br>7 40000<br>7 20000            |                  | 7 .<br>7 .<br>7 .                        | 20000                         | 3.00           | 43E-0                   | )2<br>)2<br>)2 | 7<br>7<br>7       | 47E-0<br>57E-0             | 4<br>4<br>4       | 3.4         | 76E-02<br>08E-02           | 500                 | 52E-0<br>63E-0                | 4000                    | 19003                      | 54<br>55         |
|   | 7.00000<br>6.80000<br>6.60000            |                  | 6.<br>6.                                 | 80000<br>60000<br>40000       | 3<br>4.        | 88E-(<br>25E-(<br>41F-( | )2<br>)2<br>)2 | 7                 | 58E-0<br>64E-0<br>71E-0    | 4<br>4<br>4       | 4.4.        | 34E-02<br>75E-02<br>86E-02 | ມ                   | 3.61E-0<br>3.66E-0<br>3.72E-0 | 4000<br>4000<br>4000    | 19003<br>19003<br>19003    | 56<br>57<br>58   |
|   | 6.40000<br>6.20000                       |                  | 6.<br>6.                                 | 20000                         | 4.5.           | 67E-(<br>15E-(          | $\frac{1}{2}$  | 7 -<br>7 -<br>8   | 77E-0<br>95E-0             | 4                 | 5.5         | 14E-02<br>66E-02<br>95E-02 | 899                 | 8.80E-0<br>.00E-0             | 4000                    | 9003                       | 59<br>60         |
|   | 5.80000                                  |                  | 5.                                       | 60000                         | 5.             | 80E-0<br>32E-0          | 2              | 8.                | 26E-0<br>49E-0             | 4                 | 6           | 41E-02<br>93E-02           | 9                   | 30E-0                         | 4000                    | 9003                       | 62<br>63         |
|   | 5 40000<br>5 20000<br>5 00000            | 1                | 5.<br>5.<br>4.                           | 20000<br>00000<br>80000       | Б<br>7.<br>8.  | 90E-0<br>52E-0<br>17E-0 | )2<br>)2<br>)2 | 8.<br>9.          | 92E-0                      | 4<br>4<br>4       | 8<br>8      | 22E-02<br>82E-02           | 9<br>1              | 86E-0                         | 40001                   | 9003                       | 65               |
|   | 4 80000                                  |                  | 4.                                       | 60000<br>40000<br>20000       | 9.<br>9.       | 10E-0<br>74E-0<br>05E-0 | )2<br>)2       | 9.<br>9.<br>9.    | 44E-0-<br>67E-0-<br>927-0- | 1<br>1<br>1       | 9.          | 68E-02<br>03E-01<br>13E-01 | 1                   | 02E-0<br>04E-0                | 30001<br>30001<br>30001 | 9003                       | 68<br>69         |
|   | 4 20000<br>4 00000                       |                  | 4.                                       | 00000                         | 1.             | 13E-0                   |                | 1.                | 01E-0:<br>03E-0:           | 3                 | 1.          | 23E-01<br>29E-01           | 1                   | 10E-0                         | 30001                   | 9003                       | 70<br>71<br>72   |
|   | 3 60000<br>3 40000                       |                  | 3.                                       | 40000                         | 1              | 37E-0<br>51E-0          |                | 1.                | 09E-0:<br>13E-0:           | 3                 | 1           | 52E-01<br>71E-01           | i                   | 21E-0                         | 30001                   | 9003<br>9003               | 73<br>74         |
|   | 3.20000<br>3.00000<br>2.80000            |                  | 3.0                                      | 00000<br>80000<br>60000       | 1.             | 68E~0<br>91E~0<br>17E~0 |                | 1.                | 17E-03<br>24E-03<br>27E-03 | 3                 | 1 2 2       | 95E-01<br>22E-01<br>52E-01 | 1                   | 44E-0                         | 30001                   | 9003<br>9003<br>9003       | 75<br>76<br>77   |
|   | 2 60000<br>2 40000                       |                  |                                          | 40000                         | 222            | 49E-0<br>96E-0          | 1              | 1.                | 36E-03<br>41E-03           | 3                 | 2.1         | 83E-01<br>34E-01           | 1                   | 55E-03<br>59E-03              | 30001                   | 9003<br>9003<br>9003       | 78<br>79<br>80   |
|   | 2.00000<br>2.00000<br>1.80000            |                  | 2 (<br>  . 8<br>  . 6                    | 80000<br>50000                | 3.<br>4.       | 34E-0<br>93E-0<br>64E-0 | 1              | 1.                | 64E-03<br>85E-03           | 5                 | 4.4         | 46E-01<br>20E-01           | 12                  | 87E-03                        | 0001                    | 9003<br>9003               | 81<br>82         |
|   | 1.60000<br>1.40000                       |                  |                                          | 40000<br>20000<br>00000       | 5.<br>6.<br>7. | 38E-0<br>19E-0<br>41E-0 | 1<br>1<br>1    | 2 .<br>2 .<br>4 . | 14E-03<br>73E-03<br>59E-03 | 5                 | 5.8         | 88E-01<br>34E-01<br>76E-01 | 2<br>2<br>4         | .35E-03<br>.92E-03<br>.77E-03 | 0001                    | 9003<br>9003               | 83<br>84<br>85   |
| E | I 00000                                  | (                | 5.8                                      | 80000                         | 8              | 85Ē-Ŏ                   | i              | i.                | 40Ē-02                     | 2                 | 9           | 22E-01                     | i                   | 45E-03                        | 0001                    | 9003<br>9003<br>900399     | 86<br>87<br>999  |
| Ē | NDENTRY                                  |                  |                                          | 3                             |                |                         |                |                   |                            |                   |             |                            |                     |                               | 0001                    | 9999999                    | 999              |

Table 1(4) Angle-integrated neutron emission spectrum in the CM system with En = 14.1 MeV, for W

| SUB<br>BIB<br>Com       | ENTRY<br>MENT                                                                     | (<br>T¥O<br>DAT/                        | 0023003<br>2<br>DATA SE<br>0BTAIN        | IS A<br>ED F         | 890601<br>8<br>RE GIVE<br>ROM RAV    | N.<br>DD         | X DATA                                   | . IN        | LEFT H                                       | AND S                                    | DE.                                  | 00023003<br>00023003<br>00023003<br>00023003     | 1<br>2<br>3<br>4     |
|-------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|----------------------|--------------------------------------|------------------|------------------------------------------|-------------|----------------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------------------|----------------------|
| REA                     | CTION                                                                             | DAT/<br>IN F<br>(74-                    | \ OBTAINI<br>RIGHT HAI<br>∙₩-0{N,S(      | ED F<br>ND S<br>CT), | ROM COP<br>SIDE.<br>DE) S            | REC<br>ECO       | TED DDX<br>NDARY NI                      | DAT<br>Eutr | A WITH I                                     | MUSCC<br>Trum                            | 3 CODE                               | 00023003<br>00023003<br>00023003                 | 5<br>6<br>7          |
| END<br>Comi<br>EN       | B I B<br>HON                                                                      | INI                                     | HE CENTI<br>8<br>1                       | ER-C                 | DF-MASS                              | SYS              | TEM                                      |             |                                              |                                          |                                      | 00023003<br>00023003<br>00023003<br>00023003     | 8<br>9<br>10<br>11   |
| END<br>END              | 14 10000<br>COMMON                                                                | E-141                                   | 56                                       |                      | 7 2                                  | DAT              |                                          | DAT         |                                              | D. T.                                    |                                      | 00023003<br>00023003<br>00023003<br>00023003     | 12<br>13<br>14<br>15 |
| ŇEŸ                     | 5.00000<br>4.80000                                                                | MEV                                     | 4 80000<br>4 60000                       | 1/ме<br>1<br>3       | V<br>83E-10<br>24F-02                | <b>В/М</b> І     | EV<br>45E-03                             | В/м         | EV<br>6.40E-10<br>4.36E-02                   | B/ME                                     | V<br>99E~0                           | 00023003                                         | 17                   |
| 1                       | 4 60000<br>4 40000<br>4 20000                                                     | 1                                       | 4 40000<br>4 20000<br>4 00000            | 2021                 | 19E-01<br>09E-01<br>02E+00           |                  | 55E-0<br>91E-0<br>42E-0                  |             | 2 95E-01<br>1 22E+0C<br>2 71E+0C             |                                          | 86E-0<br>38E-0<br>10E-0              | 300023003<br>300023003<br>300023003              | 20<br>21<br>22       |
| <br> <br> <br>          | 4 00000<br>3 80000<br>3 60000<br>3 40000                                          | <br> <br> <br>                          | 3 80000<br>3 60000<br>3 40000<br>3 20000 | 2<br> <br>6<br>2     | 38E+00<br>50E+00<br>20E-01<br>54E-01 | 1                | 2.57E-03<br>08E-03<br>.45E-03            |             | 3.12E+00<br>1.88E+00<br>7.44E-01<br>3.02E-01 | ) 3<br>) 2<br>]                          | 25E-0<br>50E-0<br>65E-0              | 300023003<br>300023003<br>300023003<br>300023003 | 23<br>24<br>25<br>26 |
| 1                       | 3 20000<br>3 00000<br>2 80000                                                     |                                         | 3 00000<br>2 80000<br>2 60000            | 1<br>9<br>7          | 45E-01<br>80E-02<br>50E-02           | 8                | 3.99E-04<br>3.17E-04<br>72E-04           |             | 1 78E-01<br>1 24E-01<br>9 53E-02             | 1<br>9<br>9                              | 04E-0<br>66E-0<br>20E-0              | 300023003<br>400023003<br>400023003              | 27<br>28<br>29       |
| 1<br>1<br>1             | 2 60000<br>2 40000<br>2 20000                                                     | 1                                       | 2 40000<br>2 20000<br>2 00000            | 6<br>5<br>4          | 01E-02<br>00E-02<br>32E-02           | 7<br>7<br>6      | 37E-04                                   | (           | 7 71E-02<br>5 46E-02<br>5 49E-02             | 8<br>8<br>8                              | 92E-0-<br>60E-0-<br>22E-0-           | 100023003<br>100023003<br>100023003              | 30<br>31<br>32       |
| 1<br>1<br>1             | $ \begin{array}{c} 2 & 00000 \\ 1 & 80000 \\ 1 & 60000 \\ 1 & 40000 \end{array} $ | 1                                       | 1 60000                                  | 3<br>3<br>3<br>3     | 62E-02<br>62E-02<br>70E-02           | 0<br>0<br>0<br>0 | 30E-04<br>30E-04<br>17E-04               |             | 4 93E-02<br>4 48E-02<br>1 45E-02<br>1 57E-02 | 777                                      | 87E~04<br>57E~04<br>41E~04<br>32E~04 | 100023003<br>100023003<br>100023003              | 33<br>34<br>35<br>36 |
| 1                       | 1 20000<br>1 00000<br>0 80000                                                     | i<br>1<br>1                             | 1 00000<br>0 80000<br>0 60000            | 3<br>3<br>3          | 65E-02<br>64E-02<br>66E-02           | 555              | 95E-04<br>94E-04<br>94E-04               | 4           | 53E-02<br>52E-02<br>56E-02                   | 7<br>7<br>7                              | 29E-04<br>28E-04<br>34E-04           | 00023003                                         | 37<br>38<br>39       |
| 1                       | 0 60000<br>0 40000<br>0 20000                                                     | 1<br>1<br>1                             | 0 40000<br>0 20000<br>0 00000<br>0 80000 | 3339                 | 7GE-02<br>88E-02<br>85E-02           | 5<br>6<br>5<br>5 | 99E-04<br>01E-04<br>98E-04               | 444         | 1.68E-02<br>86E-02<br>86E-02                 | 777                                      | 41E-04<br>53E-04<br>52E-04           | 00023003                                         | 40<br>41<br>42       |
| ſ                       | 9 80000<br>9 60000<br>9 40000                                                     |                                         | 9.60000<br>9.40000<br>9.20000            | 333                  | 70E-02<br>61E-02<br>63E-02           | 56               | 96E-04<br>00E-04<br>09E-04               | 74216       | 60E-02<br>56E-02<br>50E-03                   | 7<br>4<br>1                              | 37E-04<br>49E-04<br>32E-04           | 00023003                                         | 43<br>44<br>45<br>46 |
|                         | 9 20000<br>9 00000<br>8 80000                                                     |                                         | 00000<br>8 80000<br>8 60000              | 3 3                  | 55E-02<br>55E-02<br>47E-02           | 6<br>6           | 09E-04<br>14E-04<br>1GE-04               | 455         | 46E-03<br>98E-03                             | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 29E-04<br>59E-04<br>73E-04           | 00023003<br>00023003<br>00023003                 | 47<br>48<br>49       |
|                         | 8 40000<br>8 40000<br>8 20000                                                     | 1                                       | 8 40000<br>8 20000<br>8 00000            | 3.3                  | 44E-02<br>50E-02<br>42E-02           | 6<br>6<br>6      | 23E-04<br>30E-04<br>36E-04               | 8           | 10E-03<br>36E-03<br>15E-02                   | 22.3                                     | 18E-04<br>39E-04<br>29E-04           | 00023003                                         | 50<br>51<br>52       |
|                         | 7 80(00<br>7 60000<br>7 40000                                                     |                                         | 60000<br>40000<br>20000                  | 3.3                  | 31E-02<br>42E-02<br>44E-02           | 6<br>6           | 49E-04<br>54E-04<br>57E-04               | 1           | 57E-02<br>86E-02<br>18E-02                   | 4 ·<br>4 ·<br>5                          | 27E-04<br>85E-04<br>27E-04           | 00023003<br>00023003<br>00023003                 | 54<br>55<br>56       |
| ,                       | 7.20000<br>7.00000<br>6.80000                                                     | (                                       | 00000                                    | 3.3.                 | 43E-02<br>57E-02<br>68E-02           | 6<br>6           | 54E-04<br>55E-04<br>54E-04               | 5,5,0,0     | 27E-02<br>64E-02<br>07E-02                   | 5<br>5.<br>6.                            | 30E-04<br>95E-04<br>50E-04           | 00023003<br>00023003<br>00023003                 | 57<br>58<br>59       |
|                         | 5.60000<br>5.40000<br>5.20000                                                     | 6<br>6                                  | 20000<br>00000<br>00000                  | 3.3.                 | 68E-02<br>63E-02<br>82E-02<br>87E-02 | 6666             | .54E-04<br>.63E-04<br>.78E-04<br>.89E-04 | 333         | .20E-02<br>.32E-02<br>.65E-02<br>.90E-02     | 6.<br>7.<br>7.<br>7                      | 56E~04<br>02E~04<br>50E~04<br>88E~04 | 00023003<br>00023003<br>00023003                 | 60<br>61<br>62<br>63 |
|                         | 5 80000<br>5 60000<br>5 40000                                                     | 2 4 2 4 2 4 2                           | 40000                                    | 3 4 4                | 91E-02<br>17E-02<br>47E-02           | 6<br>7<br>7      | 99E-04<br>12E-04<br>25E-04               | 4<br>4<br>4 | 15E-02<br>56E-02<br>96E-02                   | 8<br>8<br>8                              | 11E-04<br>37E-04<br>63E-04           | 00023003<br>00023003<br>00023003                 | 64<br>65<br>66       |
|                         | 5 20000<br>5 00000<br>4 80000                                                     | 5<br>4<br>4                             | 00000<br>80000<br>60000                  | 4<br>5<br>5          | 70E-02<br>07E-02<br>62E-02           | 7<br>7<br>7      | 37E-04<br>55E-04<br>72E-04               | 5<br>5<br>6 | 28E-02<br>80E-02<br>57E-02                   | 8<br>9<br>9                              | 78E-04<br>08E-04<br>45E-04           | 00023003<br>00023003<br>00023003                 | 67<br>68<br>69       |
| •<br>•<br>•             | 4 60000<br>4 40000<br>4 20000                                                     | 444                                     | .40000<br>20000<br>.00000                | 6.<br>7.<br>8.       | 18E-02<br>13E-02<br>10E-02           | 7<br>8<br>8      | 87E-04<br>14E-04<br>32E-04               | 7<br>8<br>9 | 36E-02<br>61E-02<br>88E-02                   | 9.<br>1.<br>1.                           | 72E-04<br>01E-03<br>04E-03           | 00023003<br>00023003<br>00023003                 | 70<br>71<br>72<br>72 |
|                         | 3 80000<br>3 60000<br>3 40000                                                     | 32,33                                   | 60000<br>40000<br>20000                  | J.<br> .<br> .       | 08E-01<br>28E-01<br>51E-01           | 8<br>9<br>9      | 74E-04<br>14E-04<br>57E-04               | 1           | 36E-01<br>62E-01<br>93E-01                   | 1.                                       | 12E-03(<br>18E-03(<br>24E-03(        | 0023003<br>0023003<br>0023003                    | 74<br>75<br>76       |
|                         | 20000<br>00000<br>80000                                                           | 322                                     | 00000<br>80000<br>60000                  | 122                  | 85E-01<br>23E-01<br>79E-01           | 1.               | 02E-03<br>09E-03<br>20E-03               | 223         | 40E-01<br>91E-01<br>57E-01                   | 1.                                       | 34E-03(<br>45E-03(<br>55E-03(        | 0023003                                          | 77<br>78<br>79       |
|                         | 2.60000<br>2.40000<br>2.20000                                                     | 2221                                    | . 40000<br>. 20000<br>. 00000            | 3.<br>4.<br>5.       | 56E-01<br>52E-01<br>60E-01           | 1.               | 34E-03<br>43E-03<br>57E-03<br>75E-03     | 45.         | 52E-01<br>83E-01<br>36E-01                   | 1.1                                      | 74E-030<br>87E-030<br>08E-030        | 0023003                                          | 80<br>81<br>82<br>82 |
| 2<br>  <br>  <br>       | 80000<br>60000<br>40000                                                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 60000<br>40000<br>20000                  | 8                    | 82E-01<br>11E+00<br>42E+00           | 2223             | 00E-03<br>3GE-03<br>01E-03               | 1.          | 16E+00<br>44E+00<br>81E+00                   | 2 (                                      | 55E-030<br>55E-030<br>58E-030        | 0023003                                          | 84<br>85<br>86       |
| i<br>1<br>C             | 20000                                                                             | 1<br>0<br>0                             | 00000<br>80000<br>60000                  | 1222                 | 84E+00<br>54E+00<br>40E+00           | 4.               | 42E-03<br>05E-02<br>39E-02               | 1.001       | 29E+00<br>09E+00<br>79E+00                   | 5 5 1                                    | 4E-030<br>8E-020<br>2E-020           | 0023003                                          | 87<br>88<br>89       |
| ENDDA<br>ENDSL<br>ENDEN | TA<br>BENTRY<br>ITRY                                                              |                                         | 76<br>91<br>3                            |                      |                                      |                  |                                          |             |                                              |                                          | 0<br>0<br>0                          | 0023003<br>002300399<br>0023999999               | 90<br>999<br>999     |

- 11 -

| <b>Q</b> (dard)                | elas                    | tic     | Q= -3.736~3             | . 904 MeV | Q= -4.49                | 2 MeV   | Q= -6.285 MeV           |         |  |
|--------------------------------|-------------------------|---------|-------------------------|-----------|-------------------------|---------|-------------------------|---------|--|
| G LAB (deg)                    | $d\sigma/d\Omega(b/sr)$ | error   | $d\sigma/d\Omega(b/sr)$ | error     | $d\sigma/d\Omega(b/sr)$ | error   | $d\sigma/d\Omega(b/sr)$ | error   |  |
| 1 5                            | 1.06E+0                 | 3. 2E-2 | 7.73E~3                 | 1.2E-3    | 3.57E-3                 | 7.1E-4  | 1.81E-3                 | 5.4E-4  |  |
| 2 0                            | 6.63E-1                 | 2.0E-2  | 7.53E-3                 | 7.5E-4    | 3.85E-3                 | 5.8E-4  | 2. 99E-3                | 4.5E-4  |  |
| 30                             | 1.56E-1                 | 4.7E-3  | 7.37E-3                 | 5.2E-4    | 3.67E-3                 | 3. 7E-4 | 3. 39E-3                | 3.4E-4  |  |
| 42.5                           | 3.61E-2                 | 1.1E-3  | 6.90E-3                 | 3.4E-4    | 2.90E-3                 | 2.9E-4  | 3.47E-3                 | 3.5E-4  |  |
| 5 0                            | 5.94E-2                 | 1.8E-3  | 7.02E-3                 | 3.5E-4    | 2.39E-3                 | 2.4E-4  | 2.74E-3                 | 2.7E-4  |  |
| 60                             | 5.26E-2                 | 1.6E-3  | 6. 88E-3                | 3. 4E-4   | 2.48E-3                 | 2. 5E-4 | 1.75E-3                 | 2.6E-4  |  |
| 70                             | 2. 39E-2                | 7.2E-4  | 6.19E-3                 | 3.1E-4    | 1.74E-3                 | 2.6E-4  | 9. 37E-4                | 1.9E-4  |  |
| 80                             | 1.49E-2                 | 5. 6E-4 | 4.77E-3                 | 2.9E-4    | 1.69E-3                 | 2.5E-4  | 6.46E-4                 | 1.9E-4  |  |
| 90                             | 2. 07E-2                | 6. 2E-4 | 3. 79E-3                | 2.6E-4    | 1.85E-3                 | 2.8E-4  | 5.77E-4                 | 2. 0E-4 |  |
| 100                            | 2. 2 <b>7</b> E-2       | 6. 8E-4 | 3. 25E-3                | 2.6E-4    | 1.42E-3                 | 2. 1E-4 | 7.84E-4                 | 2. 0E-4 |  |
| 1 1 0                          | 1.49E-2                 | 4.5E-4  | 2. 53E-3                | 2. 3E-4   | 1.07E-3                 | 2.1E-4  | 6.73E-4                 | 2. 0E-4 |  |
| 120                            | 5. 37E-3                | 3.4E-4  | 2.60E-3                 | 2. 3E-4   | 7.49E-4                 | 1.9E-4  | 7.75E-4                 | 1.9E-4  |  |
| 1 3 0                          | 3. 89E-3                | 3. 3E-4 | 2. 92E-3                | 2.6E-4    | 9.46E-4                 | 1.9E-4  | 1.08E-3                 | 2.2E-4  |  |
| 140                            | 3. 85E-3                | 3. 2E-4 | 2.95E-3                 | 2. 7E-4   | 1.08E-3                 | 2. 2E-4 | 7.65E-4                 | 1.9E-4  |  |
| 150                            | 3. 44E-3                | 4.1E-4  | 2.92E-3                 | 3. 5E-4   | 8.02E-4                 | 2.8E-4  | 7.69E-4                 | 2. 7E-4 |  |
| $\sigma_{\text{Total}}$ (barn) | 8.96E-1                 | 3.6E-2  | 5.78E-2                 | 2.9E-3    | 2.21E-2                 | 3.3E-3  | 1.71E-2                 | 2. 6E-3 |  |

Table 2(1) Partial differential cross sections for Ca at En = 14.1 MeV

|                                | Q= -6.510~             | 7.536 MeV | Q= -7.760~             | 8.540 MeV | Q = -9.6                | MeV     |
|--------------------------------|------------------------|-----------|------------------------|-----------|-------------------------|---------|
| O LAB (deg)                    | $d\sigma/d\Omega(b/sr$ | ) error   | $d\sigma/d\Omega(b/sr$ | ) error   | $d\sigma/d\Omega(b/sr)$ | error   |
| 1 5                            | 1.76E-3                | 4.4E-4    | 1.43E-3                | 5. 7E-4   | 2. 27E-3                | 6.8E-4  |
| 2 0                            | 2. 28E-3               | 3.4E-4    | 3. 34E-3               | 6. 7E-4   | 2. 59E-3                | 5. 2E-4 |
| 30                             | 3. 67E-3               | 3. 7E-4   | 4.20E-3                | 8. 5E-4   | 2.97E-3                 | 5.9E-4  |
| 42.5                           | 3. 78E-3               | 3.8E-4    | 4. G8E-3               | 9.4E-4    | 3. 31E-3                | 6.6E-4  |
| 50                             | 3. 47E-3               | 3.5E-4    | 4.35E-3                | 8.7E-4    | 3.56E-3                 | 7.1E-4  |
| 60                             | 2.77E-3                | 2.8E-4    | 2.63E-3                | 5.3E-4    | 2. 30E-3                | 4.6E-4  |
| 70                             | 2.63E-3                | 2.6E-4    | 2. 53E-3               | 5.1E-4    | 2.56E-3                 | 5.1E-4  |
| 80                             | 1.85E-3                | 2.8E-4    | 2.89E-3                | 5.8E-4    | 2. 02E-3                | 4. 0E-4 |
| 90                             | 1.82E-3                | 2.7E-4    | 2. 69E-3               | 5.4E-4    | 1.95E-3                 | 3.9E-4  |
| 100                            | 1.75E-3                | 2.6E-4    | 2. G8E-3               | 5.4E-4    | 1.74E-3                 | 3. 5E-4 |
| 110                            | 1.35E-3                | 2.0E-4    | 1.97E-3                | 3.9E-4    | 1.70E-3                 | 3.4E4   |
| 120                            | 1.57E-3                | 2. 4E-4   | 2.46E-3                | 4.9E-4    | 1.73E-3                 | 3. 5E-4 |
| 1 3 0                          | 1.56E-3                | 2. 3E-4   | 2.18E-3                | 4.4E-4    | 1.67E-3                 | 3.3E-4  |
| 140                            | 1.71E-3                | 2.6E-4    | 2. 28E-3               | 4.6E-4    | 1. 47E-3                | 2.9E-4  |
| 150                            | 1.95E-3                | 3. 7E-4   | 2. 61E-3               | 5. 2E-4   | 1.55E-3                 | 4.6E-4  |
| $\sigma_{\text{Total}}$ (barn) | 2.73E-2                | 3. 3E−3   | 3.74E-2                | 7.5E-3    | 2. 69E-2                | 5. 4E-3 |

Table 2(2) Partial differential cross sections for Ca at En = 14.1 MeV (continued)

|                                | elas                   | tic     | Q= -0.9                | 84 MeV  | Q = -2.8               | 22 MeV  | Q = -4.1                | l MeV   |
|--------------------------------|------------------------|---------|------------------------|---------|------------------------|---------|-------------------------|---------|
| O LAB (deg)                    | $d\sigma/d\Omega(b/sr$ | > error | $d\sigma/d\Omega(b/sr$ | > error | $d\sigma/d\Omega(b/sr$ | ) error | $d\sigma/d\Omega$ (b/sr | ) crror |
| 15                             | 1.89E+0                | 5. 7E-2 |                        |         |                        |         |                         |         |
| 2 0                            | 1.17E+0                | 3. 5E-2 |                        |         |                        |         |                         |         |
| 30                             | 3.14E-1                | 9.4E-3  |                        |         |                        |         |                         |         |
| 4 0                            | 7.39E-2                | 2. 2E-3 | 5. 62E-3               | 1.7E-3  | 2. 08E-3               | 2. 1E-4 | 5. 07E-3                | 3. 0E-4 |
| 50                             | 5. 85E-2               | 1.8E-3  | 3. 94E-3               | 7.9E-4  | 1.95E-3                | 1.9E-4  | 4.15E-3                 | 2.5E-4  |
| 60                             | 2. 56E-2               | 7.7E-4  | 4.01E-3                | 8. 0E-4 | 1.50E-3                | 1.5E-4  | 5.13E-3                 | 3. 1E-4 |
| 70                             | 1.40E-2                | 4. 2E-4 | 2. 59E-3               | 3. 9E-4 | 1.79E-3                | 1.8E-4  | 3. 29E-3                | 2. 3E-4 |
| 80                             | 2. 63E-2               | 7.9E-4  | 3.86E-3                | 5.8E-4  | 1.12E-3                | 1.3E-4  | 2. 99E-3                | 2.1E-4  |
| 90                             | 3. 04E-2               | 9. 1E-4 | 3.74E-3                | 5.6E-4  | 6.77E-4                | 1.1E-4  | 2. 98E-3                | 2. 1E-4 |
| 100                            | 1.94E-2                | 5.8E-4  | 2. 48E-3               | 3. 7E-4 | 6.73E-4                | 9.4E-5  | 2.94E-3                 | 2.1E-4  |
| 1 1 0                          | 1.07E-2                | 3. 2E-4 | 1.27E-3                | 1.9E-4  | 6.95E-4                | 1.0E-4  | 2.90E-3                 | 2. 0E-4 |
| 120                            | 1.04E-2                | 3. 1E-4 | 1.34E-3                | 2. 7E-4 | 8.61E-4                | 1.1E-4  | 2. 21E-3                | 1.5E-4  |
| 130                            | 1.16E-2                | 3. 5E-4 | 9. 29E-4               | 1.9E-4  |                        |         | 1.67E-3                 | 1.3E-4  |
| 140                            | 1.37E-2                | 4.1E-4  | 7.10E-4                | 1.4E-4  |                        |         | 2. 68E-3                | 1.9E-4  |
| 150                            | 1.52E-2                | 4.6E-4  | 9. 51E-4               | 1.9E-4  |                        |         | 2. 21E-3                | 2. 2E-4 |
| 160                            | 1.38E-2                | 5. 4E-4 | 5. 49E-4               | 2.5E-4  |                        |         |                         |         |
| $\sigma_{\text{Total}}$ (barn) | 1.38E+0                | 2. 1E-1 | 3. <b>4</b> 2E-2       | 6.8E-3  | 1.60E-2                | 1.9E-3  | 4.12E-2                 | 2. 9E-3 |

Table 2(3) Partial differential cross sections for Mn at En = 14.1 MeV

| Ο LAB (deg)                    | elastic                 |         | Q= -1.099 MeV           |         | Q= -4.086 MeV           |         |
|--------------------------------|-------------------------|---------|-------------------------|---------|-------------------------|---------|
|                                | $d\sigma/d\Omega(b/sr)$ | error   | $d\sigma/d\Omega(b/sr)$ | error   | $d\sigma/d\Omega(b/sr)$ | error   |
| 15                             | 1.6iE+0                 | 4.8E-2  |                         |         |                         |         |
| 2 0                            | 1.01E+0                 | 3.0E-2  |                         |         |                         |         |
| 30                             | 2. 53E-1                | 7.6E-3  | 1.95E-2                 | 2. 3E-3 | 2.96E-3                 | 2.4E-4  |
| 4 0                            | 5. 52E-2                | 1.7E-3  | 1.20E-2                 | 8.4E-4  | 3. 02E-3                | 2.4E-4  |
| 50                             | 3. 30E-2                | 9.9E-4  | 7.33E-3                 | 2.9E-4  | 3. 50E-3                | 2. 8E-4 |
| 60                             | 1.32E-2                 | 3. 9E-4 | 4.05E-3                 | 1.6E-4  | 2.09E-3                 | 1.9E-4  |
| 7 0                            | 1.21E-2                 | 3.6E-4  | 4.12E-3                 | 2.1E-4  | 1.54E-3                 | 1.5E-4  |
| 80                             | 2. 36E-2                | 7.1E-4  | 4.22E-3                 | 2.1E-4  | 1.11E-3                 | 1.2E-4  |
| 90                             | 2. 49E-2                | 7.5E-4  | 3. 32E-3                | 2.0E-4  | 1.68E-3                 | 1.8E-4  |
| 100                            | 1.11E-2                 | 3. 3E-4 | 2. 03E-3                | 1.6E-4  | 1.32E-3                 | 1.5E-4  |
| 1 1 0                          | 6. 66E-3                | 2.0E-4  | 1.18E-3                 | 1.3E-4  | 1.25E-3                 | 1.4E-4  |
| 120                            | 8. 52E-3                | 2.6E-4  | 6.66E-4                 | 1.1E-4  | 1.41E-3                 | 1.6E-4  |
| 1 3 0                          | 9.19E-3                 | 2.8E-4  | 7.13E-4                 | 1.1E-4  | 1.14E-3                 | 1.4E-4  |
| 140                            | 8. 30E-3                | 2.5E-4  | 1. 01E-3                | 1. 3E-4 | 1.40E-3                 | 1.7E-4  |
| 150                            | 8.19E-3                 | 2.6E-4  | 1.05E-3                 | 1.9E-4  | 1.53E-3                 | 2. 3E-4 |
| 160                            | 6.80E-3                 | 3. 3E-4 | 1.43E-3                 | 2.4E-4  |                         |         |
| $\sigma_{\text{Total}}$ (barn) | 1.17E+0                 | 1.8E-1  | 6. G1E-2                | 5. 3E-3 | 2. 23E-2                | 2. 2E-3 |

Table 2(4) Partial differential cross sections for Co at En = 14.1 MeV

| Θ <sub>LAB</sub> (deg)  | elastic                |                         | continuum               |          | (n, 2n)                 |         |
|-------------------------|------------------------|-------------------------|-------------------------|----------|-------------------------|---------|
|                         | $d\sigma/d\Omega(b/sr$ | ) error                 | $d\sigma/d\Omega$ (b/sr | ·) error | $d\sigma/d\Omega$ (b/sr | ) error |
| 15                      | 2. 29E+0               | 2. 3E-1                 | 5.67E-2                 | 4.0E-3   | 3.68E-1                 | 2.6E-2  |
| 2 0                     | 9.81E-1                | 9.8E-2                  | 4.44E-2                 | 3. 1E-3  | 3. 31E-1                | 2. 3E-2 |
| 3 0                     | 1.54E-1                | 1.5E-2                  | 3.05E-2                 | 2. 1E-3  | 3.35E-1                 | 2. 3E-2 |
| 4 0                     | 2.05E-1                | 2.1E-2                  | 2. 67E-2                | 1.9E-3   | 3.13E-1                 | 2. 2E-2 |
| 5 0                     | 9.60E-2                | 9. GE-3                 | 2.45E-2                 | 1.7E-3   | 3.11E-1                 | 2. 2E-2 |
| 60                      | 3. 07E-2               | 3. 1E-3                 | 1.94E-2                 | 1.4E-3   | 2. 91E-1                | 2. 0E-2 |
| 70                      | 3. 26E-2               | 3. <b>3</b> E- <b>3</b> | 1.63E-2                 | 1.1E-3   | 2.94E-1                 | 2. 1E-2 |
| 8 0                     | 2. 29E-2               | 2. 3E-3                 | 1.43E-2                 | 1.0E-3   | 2. 58E-1                | 1.8E-2  |
| 90                      | 1.15E-2                | 1.2E-3                  | 1.25E-2                 | 8.8E-4   | 2.74E-1                 | 1.9E-2  |
| 100                     | 9. 93E-3               | 9.9E-4                  | 1.12E-2                 | 7.8E-4   | 2.54E 1                 | 1.8E-2  |
| 1 1 0                   | 9.06E-3                | 9.1E-4                  | 9.48E-3                 | 6.6E-4   | 2.65E-1                 | 1.9E-2  |
| 120                     | 7.36E-3                | 7.4E-4                  | 7.70E-3                 | 5.4E-4   | 2.42E-1                 | 1.7E-2  |
| 1 3 0                   | 4.87E-3                | 4.9E-4                  | 8.45E-3                 | 5.9E-4   | 2. 51E-1                | 1.8E-2  |
| 140                     | 5. 82E-3               | 5. 8E-4                 | 8.06E-3                 | 5.6E-4   | 2.63E-1                 | 1.8E-2  |
| 150                     | 8. 07E-3               | 8.1E-4                  | 8.48E-3                 | 5. 9E-4  | 2.95E-1                 | 2. 1E-2 |
| 160                     | 6.84E-3                | 6.8E-4                  | 5.38E-3                 | 6.5E-4   | 2.84E-1                 | 2.0E-2  |
| $\sigma_{70101}$ (barn) | 1.33E+0                | 1.3E+0                  | 2.01E-1                 | 1.4E-2   | 3. 50E+0                | 2.5E-1  |

Table 2(5) Partial differential cross sections for W at En = 14.1 MeV



Fig. 1 Double differential neutron emission cross section at 15 deg with En = 14.1 MeV, for Ca



Fig. 2 Double differential neutron emission cross section at 20 deg with En = 14.1 MeV, for Ca





Fig. 5 Double differential neutron emission cross section at 50 deg with En = 14.1 MeV, for Ca



Fig. 6 Double differential neutron emission cross section at 60 deg with En = 14.1 MeV, for Ca



Fig. 7 Double differential neutron emission cross section at 70 deg with En = 14.1 MeV, for Ca



Fig. 8 Double differential neutron emission cross section at 80 deg with En = 14.1 MeV, for Ca

. . . . . .



Fig. 9 Double differential neutron emission cross section at 90 deg with En = 14.1 MeV, for Ca



cross section at 100 deg with En = 14.1 MeV, for Ca



. .

22

Fig. 11 Double differential neutron emission cross section at 110 deg with En = 14.1 MeV, for Ca



Fig. 12 Double differential neutron emission cross section at 120 deg with En = 14.1 MeV, for Ca









đ,

24







cross section at 20 deg with En = 14.1 MeV, for Mn







Fig. 19 Double differential neutron emission cross section at 40 deg with En = 14.1 MeV, for Mn



Fig. 20 Double differential neutron emission cross section at 50 deg with En = 14.1 MeV, for Mn



ig. 21 Double differential neutron emission cross section at 60 deg with En = 14.1 MeV, for Mn



Fig. 22 Double differential neutron emission cross section at 70 deg with En = 14.1 MeV, for Mn













Fig. 26 Double differential neutron emission cross section at 110 deg with En = 14.1 MeV, for Mn



Fig. 27 Double differential neutron emission cross section at 120 deg with En = 14.1 MeV, for Mn



31 ---

Fig. 28 Double differential neutron emission cross section at 130 deg with En = 14.1 MeV, for Mn







Fig. 30 Double differential neutron emission cross section at 150 deg with En ≈ 14.1 MeV, for Mn



cross section at 160 deg with En = 14.1 MeV, for Mn







- 33 -



fig. 34 Double differential neutron emission cross section at 30 deg with En = 14.1 MeV, for Co





Fig. 36 Double differential neutron emission cross section at 50 deg with En = 14.1 MeV, for Co



Fig. 37 Double differential neutron emission cross section at 60 deg with En = 14.1 MeV, for Co

. ~



Fig. 38 Double differential neutron emission cross section at 70 deg with En = 14.1 MeV, for Co



cross section at 80 deg with En = 14.1 MeV, for Co









Fig. 42 Double differential neutron emission cross section at 110 deg with En = 14.1 MeV, for Co



Fig. 43 Double differential neutron emission cross section at 120 deg with En = 14.1 MeV, for Co











Fig. 46 Double differential neutron emission cross section at 150 deg with En = 14.1 MeV, for Co



Fig. 47 Double differential neutron emission cross section at 160 deg with En = 14.1 MeV, for Co







14.1 MeV, for W





Fig. 51 Double differential neutron emission cross section at 40 deg with En = 14.1 MeV, for W









Fig. 54 Double differential neutron emission cross section at 70 deg with En = 14.1 MeV, for W



Fig. 55 Double differential neutron emission cross section at 80 deg with En = 14.1 MeV, for W



Fig. 56 Double differential neutron emission cross section at 90 deg with En = 14.1 MeV, for W





Fig. 58 Double differential neutron emission cross section at 110 deg with En = 14.1 MeV, for W



Fig. 59 Double differential neutron emission cross section at 120 deg with En = 14.1 MeV, for W







Fig. 61 Double differential neutron emission \_ cross section at 140 deg with En = 14.1 MeV, for W



Fig. 62 Double differential neutron emission cross section at 150 deg with En = 14.1 MeV, for W



rig. 63 Double differential neutron emission cross section at 160 deg with En = 14.1 MeV, for W











50























En = 14.1 MeV, for Co







Fig. 82 Angular distributions of continuuminelastic and (n, 2n) channels with En = 14.1 MeV, for W