1319
 JAERI

Japanese Evaluated Nuclear Data Library，Version－3 －JENDL－3－

	委 建		
井川		T． 711	断造（化学部）
石琞		我閲	利明（原うが安金I「「部）
伊蓡		林	
涼囲	思大（物理部）	偏嘍	䉝（保健物理部）
花本	时（物理部）	荡城	佼大（坆料女全1等部）
金 f		船模	明呂（迭界フラスア研究部）
I＇	博何（Tイソトーブ部）	4	剈雄（動力就験力蔀）
近霆	方郎（JT 60式験部）	相队	忠 ：（ 1 果长部）
奇㤟	実（1才料試験力部）		次郎（研究部）
者㗊		㤩束	
14：们	正出（化学姵）	禹内	苋（㻞垷发全研究部）
门井		八灷	
竹！ 1		IHI	出》（全陑中）

Japan Atomic Energy Research Institute
 Board of Editors
 Masaji Yoshikawa（Chief Editor）

Kazuyoshi Bingo	Takeo Fujino	Akinasa Furahashi
Takashi Hayashi	Tatsuo Hoshi	Katsuichi Ikawa
Yukio Ishiguro	Yasuyoshi loo	Akira lwamoto
Tadao Iwata	Yoshihiko Kaneko	Ikuro Kondo
Hiroshi Kudo	Keizo Makuuchi	Yoshiaki Miyamoto
Teijro Miyata	Shigeru Moriuchi	Masakatsu Sacki
Minoru Saito	Shinzo Saito	Eiji Shirai
Enzo Tachikawa	Tatsuoki Takeda	Toshiaki Tobioka
Jikei Yamaki	Hiroyuki Yoshida	

刊している研究報告袆です。
海村）あて，お申しこしくだきい。なお，このほかに时田法人関が弘㹍全资料センター
 おります。

JAERl reports are reviewed by the Board of Editors and issued irregularly．
Inquiries about availability of the reports should be addressed to Information Division Department of Technical Information，Japan Atomic Energy Research Institute，Tokai－mura， Naka－gun，Ibaraki－ken 319－11，Japan．

Japanese Evaluated Nuclear Data Library. Version-3

JENDL-3

Keiichi SHibATA, Tsuneo NAKAGAWA. Tetsuo ASAM1**, Tokio FUKAHORI, Tsutomu NARITA, Satoshi CHIBA. Motoharu MIZUMOTO, Akira HASEGAWA. Yasuyuki KIKUCHI. Yutaka NAKAJIMA and Sin-iti IGARASI*

JENDL-3 Compilation Group
Japanese Nuclear Data ('ommittee
Japan Atornic Energy Research Institute
Tokai-mura, Naka-pun, lbaraki-ken

Abstract

The general purpose file of the third version of Japanese Fivaluated Nuclear Data Library, JENDL-3, has been compiled by the JALRI Nuclear Data Center in cooperation with the Japanese Nuclear Data Committee. It contains neutron nuclear data for 171 nuclides which are needed for design of fission and fusion reactors and for shielding calculation. In the JENDL-3 evaluation, much effort was devoted to improve reliability of high-energy data for fusion application and to include gamma-ray production data. Theoretical calculations played an important role in achieving these purposes. A special method called simultaneous evaluation was adopted to determine important cross sections of fissile and fertile nuclides. This report presents a general description for the evaluation of light, medium-heavy and heavy nuclide data. Also given are the descriptive data for each nuclide contained in the File 1 part of JENDL-3.

[^0]
日本の評侕济み核データライブラリー，第3版 －JENDL－3－

11本愿か的研究听シグマ研究委山今
JENDL－3編集グルーブ

 には，JENDL－3のFile1にあるコメント・データを核糐何に軳げた。

Contents

1．Introduction J
2．General Description for Evaluation 8
2．1 Light Nuclide Data 8
2．2 Medium－Heavy Nuclide Data 9
2．3 Heavy Nuclide Data 10
3．Conclusions 19
Acknowledgments 19
References 20
Appendix Descriptive Data for Each Nuclide 22
目 次
1．はしめに 1
 R
2． 1 柽核データ 8
2.2 け小雨核データ 9
2.3 核データ 10
3．結 論 19
謝 辞 19
参考文献 20
付録 核耛敏のコメント・データ 22

List of Table

Table 1 Nuclides contained in the general purpose file of JENDL-3.

List of Figures

Fig. 2.1.1 ${ }^{7} \mathrm{~L}\left(\mathrm{n}, \mathrm{n}^{\prime} \mathrm{t}\right) \mathrm{c}$ reaction cross sections.
Fig. 2.1.2 Double differential cross sections of natural lithium at 14 MeV .
Fig. 2.2.1 Double differential cross sections of natural jron at 14 MeV .
Fig. 2.2.2 Total cross sections of natural iron averaged over 0.5 MeV .
Fig. 2.2.3 (n,2n) reaction cross section of natural lead.
Fig. 2.2.4 Helium-production cross sections of natural chromium, iron and nickel.
Fig. 2.2.5 Gamma-ray spectra from natural silicon at 13 MeV .
Fig. 2.2.6 Gamma-ray spectra from natural iron at 0.0253 cV .
Fig. 2.3.1 Fission cross sections of ${ }^{235} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$.
(a) ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$, (b) ${ }^{239} \mathrm{Pu}(n, f) /{ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$ and (c) ${ }^{239} \mathrm{Pu}\left(n, \mathrm{f}^{\prime}\right)$.

Fig. 2.3.2 Capture cross sections of ${ }^{238} \mathrm{U}$.
Fig. 2.3.3 Fission neutron spectra for ${ }^{239} \mathrm{Pu}$ at 200 keV .

1. Introduction

Evaiuated nuclear data libraries are requisite for nuclear engincering such as design of nuclear reactors and shielding calculation. The first version of Japanese Evaluated Nuclear Data Library, JENDL-1 ${ }^{1,21}$. was compiled in 1977 in cooperation with the Japanese Nuclear Data Committee (JNDC). It contained 72 nuclides required for fast reactor calculation. The second version, JENDL- 2^{31}, made in 1982 was applicable not oniy to fast reactor but also to thermal reactor and shielding calculation. However, it was pointed out that applicability of JENDL-2 to fusion neutronics was unsatisfactory.

Under such a situation, the JAERI Nuclear Data Center and JNDC started evaluation and compilation work for the third version. JENDL-3, in April 1982. Main purpose for making JENDL-3 is to remedy the defects of JENDL-2 as pointed out in benchmark tests, to add gamma-ray production cross sections, to evaluate meclear data in higher energy region as precisely as possible, and to make it a large general purpose nuclear data library which is applicable to fusion neutronics calculation as well as the fast reactor, thermal reactor and shielding calculations. In 1987, a temporary version, JFNDL-3T, was offered for use in the various benchmark lests to check its applicability. The delects pointed out in the benchmark tests were carefully examined and a slight modification was made. The results of the benchmark tests are reviewed in Ref. 4. The general purpose file (GPF) of JENDL-3 was finally compiled in October 1989 within the framework of the ENDF- 5 format ${ }^{51}$. The GPF of JENDI.- 3 includes 171 nuclides. 59 out of which have gamma-ray production data, as given in Table 1.

Several computer codes were made ready for the JENDL-3 evaluation. To calculate cross sections for direci, preequilibrium and multi-step compound nuclear processes, some existing nuclear model codes such as ECIS ${ }^{()}$. DWUCK4 ${ }^{71}, \mathrm{GNASH}^{8)}$ and $\mathrm{TNG}^{9)}$ were made available in JAERI. A preequilibrium and multi-step evaporation model code, PEGASUS ${ }^{10}$, was developed for calculating multi-particle emission cross sections. For the evaluation of resonance cross sections for light nuclide, a code based on the R-matrix theory, RESCAL ${ }^{11)}$, was made. Double differential cross sections (DDXs) are important for fusion neutronics calculation. To generate and/or analyze DDX, two computer codes, FAIRDDX ${ }^{12)}$ and DDXPLOT ${ }^{131}$. were developed. With these tools, the evaluation for JENDL-3 was made efficiently and precisely.

This report presents a brief description of the evaluation methods for making the GPF of JENDL-3. In Chapter 2, a general description is given for light nuclide, medium-heavy nuclide and heavy nuclide data. Appendix deals with the descriptive data for each nuclide contained in the File 1 part of JENDL-3.

Table 1 Nuclides contained in the general purpose file of JENDL-3.

Tape No.	No.	Nuclide	MAT No.	Records
301	1	${ }^{1} \mathrm{H} *$	3011	277
	2	${ }^{2} \mathrm{H}$	3012	1103
	3	${ }^{3} \mathrm{He}$	3021	456
	4	${ }^{4} \mathrm{He}$	3022	1272
	5	${ }^{6} \mathrm{Li}{ }^{*}$	3031	2297
	6	${ }^{7} \mathrm{Li}{ }^{*}$	3032	3523
	7	${ }^{9} \mathrm{Be}{ }^{*}$	3041	2702
	8	${ }^{10} \mathrm{~B}^{*}$	3051	3705
	9	${ }^{1} \mathrm{~B}$ *	3052	5136
	10	${ }^{12} \mathrm{C}$ "	3061	2026
	11	${ }^{14} \mathrm{~N}$	3071	4302
	12	${ }^{15} \mathrm{~N}^{*}$	3072	2970
	13	${ }^{16} \mathrm{O}$ *	3081	5475
	14	${ }^{19} \mathrm{~F}$	3091	1455
	15	${ }^{23} \mathrm{Na}{ }^{*}$	3111	4709
	16	Mg**	3120	4252
	17	${ }^{24} \mathrm{Mg}$	3121	1584
	18	${ }^{25} \mathrm{Mg}$	3122	2046
	19	${ }^{26} \mathrm{Mg}$	3123	1677
	20	${ }^{27} \mathrm{Al}^{*}$	3131	4982
	21	Si ${ }^{*}$	3140	8719
	22	${ }^{28} \mathrm{Si}^{*}$	3141	4184
	23	${ }^{29} \mathrm{Si}^{*}$	3142	5018
	24	${ }^{30} \mathrm{Si}{ }^{*}$	3143	3824
	25	${ }^{31} \mathrm{P}$	3151	1326
	26	S	3160	3955
	27	${ }^{32} \mathrm{~S}$	3161	1470
	28	${ }^{33} \mathrm{~S}$	3162	1231
	29	${ }^{34} \mathrm{~S}$	3163	1239
	30	${ }^{36} \mathrm{~S}$	3164	1034
	31	K	3190	2887

Table 1 (continued)

Tape No.	No.	Nuclide	MAT No.	Records
301	32	${ }^{39} \mathrm{~K}$	3191	1233
	33	${ }^{40} \mathrm{~K}$	3192	1190
	34	${ }^{41} \mathrm{~K}$	3193	1088
	35	Ca^{*}	3200	5639
	36	${ }^{40} \mathrm{Ca}^{4}$	3201	3757
	37	${ }^{42} \mathrm{Ca}$	3202	1784
	38	${ }^{43} \mathrm{Ca}$	3203	1758
	39	${ }^{44} \mathrm{Ca}$	3204	1781
	40	${ }^{46} \mathrm{Ca}$	320.5	6.32
	41	${ }^{48} \mathrm{Ca}$	3200	1528
	42	${ }^{45} \mathrm{Sc}$	3211	2204
	43	Ti*	3220	5250
	44	${ }^{46} \mathrm{Ti}$	3221	2083
	45	${ }^{47} \mathrm{Ti}$	3222	1672
	46	${ }^{48} \mathrm{Ti}$	3223	2441
	47	${ }^{49} \mathrm{Ti}$	3224	1582
	48	${ }^{50} \mathrm{Ti}$	3225	1700
	49	${ }^{51} \mathrm{~V}$	3231	3007
			(Total	1311651
302	1	Cr^{*}	3240	9164
	2	${ }^{50} \mathrm{Cr}$	3241	2378
	3	${ }^{52} \mathrm{Cr}$	3242	3740
	4	${ }^{53} \mathrm{Cr}$	3243	3454
	5	${ }^{54} \mathrm{Cr}$	3244	2287
	6	${ }^{55} \mathrm{Mn}{ }^{*}$	3251	20461
	7	$\mathrm{Fe}{ }^{*}$	3260	8817
	8	${ }^{54} \mathrm{Fe}^{*}$	3261	4878
	9	${ }^{56} \mathrm{Fe}^{*}$	3262	6033
	10	${ }^{57} \mathrm{Fe}^{*}$	3263	5176
	11	${ }^{58} \mathrm{Fe}^{*}$	3264	4090

Table 1 (continued)

Tape No.	No.	Nuclide	MA1 No.	Records
302	12	${ }^{59} \mathrm{Co}$	3271	366:
	13	Ni	3280	8004
	14	${ }^{58} \mathrm{Ni}^{*}$	3281	3526
	15	${ }^{60} \mathrm{Ni}^{*}$	3282	3732
	16	${ }^{61} \mathrm{Ni}$	3283	2114
	17	${ }^{62} \mathrm{Ni}$	3284	2247
	18	${ }_{64} \mathrm{Ni}$	3285	21.37
			Amal	$45900)$
30.3	1	cu^{*}	3290	5 x 27
	2	${ }^{4.3} \mathrm{Cu}$	3291	9497
	3	${ }^{65} \mathrm{C}^{\text {cu }}$	3292	5760
	4	Zr*	3400	8530
	5	${ }^{90} 7 \mathrm{r}$	3401	1781
	6	${ }^{91} \mathrm{Zr}$	3402	1950
	7	${ }^{92} \mathrm{Zr}$	3403	2091
	8	${ }^{94} \mathrm{Zr}$	3405	1818
	9	${ }^{96} \mathrm{Zr}$	3407	1410
	10	${ }^{93} \mathrm{Nb}{ }^{*}$	3411	6482
	1 i	Mo ${ }^{*}$	3420	8745
	12	${ }^{92} \mathrm{Mo}$	3421	1516
	13	${ }^{94} \mathrm{MO}$	3422	18.38
	14	${ }^{95} \mathrm{Mo}$	3423	2426
	15	${ }^{96} \mathrm{Mo}$	3424	1960
	16	${ }^{97} \mathrm{Mo}$	3425	2499
	17	${ }^{98} \mathrm{Mo}$	3426	2225
	18	${ }^{100} \mathrm{Mo}$	3428	2073
	19	Ag^{*}	3470	9276
	20	${ }^{107} \mathrm{Ag}{ }^{*}$	3471	6927
	21	${ }^{109} \mathrm{Ag}^{*}$	3472	6646
	22	Cd^{*}	3480	9487

Table 1 (continued)

Tape No.	No.	Nuclide	MA] No.	Records
303	23	Sb	3510	3575
	24	${ }^{121} \mathrm{Sb}$	3511	$2: 16$
	25	${ }^{123} \mathrm{Sb}$	3512	2035
	26	$\mathrm{f}: \mathrm{u}^{*}$	36.30	7746
	27	${ }^{151} \mathrm{Eu}$	3631	45.58
	28	${ }^{153} 1 \cdot 4$	36.33	4647
			Actal	1220271
304	1	H18********	3720	0645
	2	${ }^{74} 11{ }^{\text {\% }}$	3721	420 k
	3	17m $11{ }^{*}$	372:	518.5
	4	${ }^{177114 *}$	3723	4990
	5	${ }^{178} \mathrm{Hf}{ }^{*}$. 3724	4855
	6	${ }^{179} \mathrm{Hf}{ }^{*}$	3725	4404
	7	${ }^{180} \mathrm{Hf}{ }^{*}$	3726	3935
	8	${ }^{181} \mathrm{Ta}{ }^{*}$	3731	4615
	9	W*	3740	8044
	10	${ }^{182} \mathrm{~W}$	3741	3024
	11	${ }^{183} \mathrm{~W}$	3742	3409
	12	${ }^{184} \mathrm{~W}$	3743	3239
	13	${ }^{186} \mathrm{~W}$	3744	3400
	14	$\mathrm{Pb}{ }^{*}$	3820	659.5
	15	${ }^{204} \mathrm{~Pb}{ }^{*}$	3821	2709
	16	${ }^{200} \mathrm{Pt}{ }^{*}$	3822	4030
	17	${ }^{207} \mathrm{~Pb}{ }^{*}$	3823	3891
	18	${ }^{208} \mathrm{~Pb}{ }^{*}$	3824	3959
	19	${ }^{209} \mathrm{Bi}^{*}$	3831	4225
			(Total	853621
305	1	${ }^{223} \mathrm{Ra}$	3881	1273
	2	${ }^{224} \mathrm{Ra}$	3882	1065

Table 1 (continued)

Tape No.	No.	Nuclide	MAT No	Records
305	3	${ }^{225} \mathrm{Ra}$	3883	84.3
	4	${ }^{226} \mathrm{Ra}$	3884	1383
	5	${ }^{225} \mathrm{AC}$	3891	608
	i	${ }^{226} \mathrm{Ac}$	3892	564
	7	${ }^{227} \mathrm{Ac}$	3893	986
	8	${ }^{227}$ Th	3901	627
	9	${ }^{228} \mathrm{Th}$	3902	1557
	10	${ }^{229} \mathrm{Th}$	3903	817
	11	${ }^{2.30} \mathrm{Th}$	3904	1511
	12	${ }^{23.3} \mathrm{~F} \mathrm{Fh}$	3905	0204
	1.3	${ }^{23.31 \%}$	3906	1806
	14	${ }^{2.4} 9 \mathrm{TH}$	3907	1877
	is	${ }^{23} \cdot{ }^{3} \mathrm{~Pa}$	3911	1752
	16	${ }^{23}{ }^{3} \mathrm{~Pa}$	3912	678
	17	${ }^{233} \mathrm{~Pa}$	3913	1666
	18	${ }^{232} \mathrm{U}$	3921	1329
	19	${ }^{233} \mathrm{U}$	3922	9216
	20	${ }^{234} \mathrm{U}$	3923	2829
	21	${ }^{235} \mathrm{U}^{*}$	3924	11021
	22	${ }^{236} \mathrm{U}$	3925	4432
	23	${ }^{238} \mathrm{U}^{*}$	3926	9794
	24	${ }^{237} \mathrm{~Np}$	3931	4748
	25	${ }^{239} \mathrm{~Np}$	3932	900
			(Total	69546)
306	1	${ }^{236} \mathrm{Pu}$	3941	1018
	2	${ }^{238} \mathrm{Pu}$	3942	2416
	3	${ }^{239} \mathrm{Pu}{ }^{*}$	3943	10073
	4	${ }^{240} \mathrm{Pu}$	3944	7452
	5	${ }^{24}{ }^{1} \mathrm{Pu}$	3945	5ó35
	6	${ }^{242} \mathrm{Pu}$	3946	4102

Table 1 (continued)

Tape No.	No.	Nuclide	MAT No.	Records
306	7	${ }^{241} \mathrm{Am}$	3951	1937
	8	${ }^{242} \mathrm{Am}$	3952	1594
	9	${ }^{242 m} \mathrm{Am}$	3953	2193
	10	${ }^{243} \mathrm{Am}$	3954	1590
	11	${ }^{244} \mathrm{Am}$	3955	2219
	12	${ }^{244 m}$ Am	3956	2233
	13	${ }^{241} \mathrm{Cm}$	3961	862
	14	${ }^{242} \mathrm{Cm}$	3962	950
	15	${ }^{243} \mathrm{Cm}$	3963	1811
	16	${ }^{244} \mathrm{Cm}$.	3964	1444
	17	${ }^{245} \mathrm{Cm}$	3965	2898
	18	${ }^{246} \mathrm{Cm}$	3960	2316
	19	${ }^{247} \mathrm{Cm}$	3967	1873
	20	${ }^{248} \mathrm{Cm}$	3968	1121
	21	${ }^{249} \mathrm{Cm}$	3969	1227
	22	${ }^{250} \mathrm{Cm}$	3970	808
	23	${ }^{249} \mathrm{Bk}$	3971	1868
	24	${ }^{250} \mathrm{Bk}$	3972	1932
	25	${ }^{249} \mathrm{Cf}$	3981	1671
	26	${ }^{250} \mathrm{Cf}$	3982	2225
	27	${ }^{251} \mathrm{Cf}$	3983	2144
	28	${ }^{252} \mathrm{Cf}$	3984	1294
	29	${ }^{254} \mathrm{Cf}$	3985	765
	30	${ }^{254}$ Es	3991	755
	31	${ }^{255}$ Es	3992	868
	32	${ }^{255} \mathrm{Fm}$	3995	751
			(Total	72045)

[^1]
2. General Description for Evaluation

2.1 Light nuclide data

The nuclides with mass number less than 20 are considered as light nuclides. In JENDL-3. included are 14 nuclides from ${ }^{1} \mathrm{H}$ to ${ }^{19} \mathrm{~F}$ in this region. The evaluation method is briefly described in this section.

Hydrogen

The elastic scattering cross section of ${ }^{1} \mathrm{H}$ was evaluated on the basis of the effective range the ry using the parameters of Poenitz and Whalen ${ }^{(4)}$ below 100 keV , and in the energy region above 100 keV the JENDL-2 data ${ }^{31}$ were adopted. As for ${ }^{2} \mathrm{H}$, the JENDL-2 data ${ }^{151}$ were recommended without any modifications.

Helium

The total, elastic scattering and (n, p) reaction cross sections of ${ }^{3} \mathrm{He}$ in the energy region below 1 MeV wiere calculated ${ }^{16)}$ by the RESCAL code based on the R-matrix theory. The evaluated (n, p) reaction cross section of ${ }^{3} \mathrm{He}$, which is considered as a standard below 50 keV . was found to be consistent with the latest measurements of Borzakev et al. ${ }^{171}$ The hatal and elastic scattering cross sections of ${ }^{4}$ He were also analyged ${ }^{(6)}$ with the R-matrix theory in the energy region from $10^{-5} \mathrm{eV}$ to 20 McV .

Lithium

Lithium is a candidate for the fusion-blanket material and thus its tritium-production cross section is important. The (n, t) reaction cross section of ${ }^{6} \mathrm{Li}$ was evaluated ${ }^{18)}$ with the R-matrix theory below 1 MeV , and the cross sections above 1 MeV were obtained by the spline-function fitting to experimental data with the least-squares method.

The tritium-production cross section of ${ }^{7} \mathrm{Li}$ was evaluated ${ }^{191}$ in 1984. After that. however. some modifications were made ${ }^{201}$ because the new measurements ${ }^{21-24)}$ were made available. The $14-\mathrm{MeV}$ cross section of JENDL-3 is by 10% smaller than that of ENDF/B-IV, as seen in Fig. 2.1.1.

Energy distributions of continuum neutrons for both isotopes were calculated ${ }^{20}$ with the phase-space model, and they were given by about 30 pseudo levels in actual data-file. It is found from Fig. 2.1.2 that the DDXs of natural lithium calculated from JENDL-3 are in good agreement with the measurements of Takahashi et al. ${ }^{251}$

Beryllium

The ($\mathrm{n}, 2 \mathrm{n}$) reaction cross section of ${ }^{9} \mathrm{Be}$, which is important for neutron multiplication in the fusion reactors, was evaluated on the basis of available experimental data. Its $14-\mathrm{MeV}$ cross section was based on the measurement of Takahashi et al. ${ }^{26)}$ and Baba et al. ${ }^{271}$, and found to be by 4% smaller than that of JENDL-2. This result is consistent with the data of ENDF/B-VI. According to the analyses ${ }^{28}$) of the integral measurements using 14 MeV neutrons, however, it was pointed out that existing nuclear data libraries overestimated the measured neutron multiplication. This inconsistency would still remain even though the JENDL-3 data were used for the analyses. At the present time it is unlikely that the $14-\mathrm{MeV}$ cross section for the ${ }^{9} \mathrm{Be}(\mathrm{n}, 2 \mathrm{n})$ reaction lowers.

Carbon

The total cross section of ${ }^{12} \mathrm{C}$ below $4.8 \mathrm{Mt} V$ calculated ${ }^{291}$ using the RESCAL code, and was evaluated on the basis of available experimental data above 4.8 MeV . Three discrete
levels up to an excitation energy of 9.6 MeV were taken into account for the inelastic scattering.

Fluorine

The JENDL-2 data ${ }^{3}$) were adopted for JENDL-3 except that the total cross section above 100 keV was modified on the basis of the measurements of Larsun et al. ${ }^{301}$

Boron, Nitrogen and Oxygen

The cross sections of these nuclides were evaluated ${ }^{31-33)}$ with the R-matrix theory. statistical model and direct reaction theory. The (n, α_{0}) and (n, α_{1}) channels were separately considered for the ${ }^{10} \mathrm{~B}(\mathrm{n}, \alpha)$ reaction cross section which is regarded as a standard below 100 keV .

2.2 Medium-heavy nuclide data

The nuclides between Na and Bi are regarded as medium-heavy nuclides. This region includes the nuclides which are constituents of structural materials for the fission and fusion reactors.

Theoretical Calculation

Theoretical calculations ${ }^{3436}$ play the important role in the evaluation of medium-heavy nuclides. In the JENDL-3 evaluation, the nuclear-model codes mentioned in Chapter 1 were employed, together with the statistical-model code CASTHY ${ }^{37}$. The preequilibrium and direct reaction processes were taken into accoum in order to raise the reliability of the evaluated data in the MeV region. As an example, the DDXs for natural iron calculated at 14 MeV are illustrated in Fig. 2.2.1, together with the measurements of Takahashi et al. ${ }^{26)}$ It is found from the figure that the DDXs calculated from JENDL-3 are in good agreement with the experimental data, whereas those of JENDL-2 underestimate the inelastic scattering above 6 MeV .

In the theoretical calculation, various parameters are required as input to the computer codes; optical-model potential parameters, level density parameters and information on nuclear level scheme. These parameters were determined on the basis of experimental data. In most cases, the formula of Gilbert and Cameron ${ }^{38)}$ was employed for the level density. In the evaluation of lead, however, the formula of Ignatyuk et al. ${ }^{39)}$ was used in order to consider the shell effects on the Fermi-gas parameter.

Total Cross Section

Resonance structures are found up to several MeV in the total cross sections of structural materials. It is required to reproduce these structures for the shielding calculation. Thus, the high resolution experimental data were traced by using the Neutron Data Evaluation System $(\mathrm{NDES})^{40}$. Normalization was made ${ }^{35}$) for Cr, Fe and Ni by using the energy-average experimental data. Figure $\mathbf{2 . 2 . 2}$ shows the total cross section of natural iron averaged over 0.5 MeV .

Threshold Reaction Cross Section

The threshold-reaction cross sections are important as the nuclear data for fusion and dosimetry applications. In most cases, they were calculated with the statistical model including preequilibrium effects, and normalized to reliable experimental data if it was necessary.

The ($n, 2 n$) reaction cross section of lead is important for neutron multiplication in the fusion blanket. A discrepancy in the measurements still exists by as much as 20% at 14 MeV . In the JENDL- 3 evaluation, the cross sections were calculated by the GNASH code and normalized to 2.184 barns at 14 MeV , which is the average value of several measurements ${ }^{4 / 44)}$. Figure 2.2 .3 shows the evaluated results.

Helium-production cross sections are needed for the neutron damage study. Figure 2.2.4
shows the helium-production cross sections of Cr, Fe and Ni . The JENDL-3 data agree well with the experimental data.

Gamma-Ray Production Cross Section

The gamma-ray production cross sections and spectra for medium-heavy nuclides were calculated by the statistical-model codes such as GNASH and TNG, whereas those for light nuclides were mainly obtained from the experimental data on discrete gamma-ray intensities. In the nuclear-model calculation, three types of transitions were considered, i.e., E1, E2 and M1. The calculated spectra were found to be very sensitive to the discrete leveis and level density parameters required as input to the codes. In the MeV region, the calculations are almost consistent with the measurements performed at the Oak Ridge Electron Linear Acceleraior Laboratory, as seen in Fig. 2.2.5. At the thermal neutron energy, however, the calculated results for several nuclides disagreed with the data measured by Maerker ${ }^{45}$) using the Oak Ridge Tower Shielding Facility. Thus, the thermal cross sections and spectra were evaluated by adopting available experimental data. Figure $\mathbf{2 . 2 . 6}$ shows the evaluated thermal gamma-ray spectrum for iron which was based on the gamma-ray intensity data contained in Evaluated Nuclear Structure Data File (ENSDF) ${ }^{46)}$, together with the measurements of Maerker.

2.3 Heavy nuclide data

Fifty-seven nuclides between ${ }^{223} \mathrm{Ra}$ and ${ }^{225} \mathrm{Fm}$ are contained in JENDL-3 as heavy nuclides.

Simultaneous Evaluation

Important cross sections of fissile and fertile nuclides were simultaneously evaluated ${ }^{47)}$ by taking account of the ratio measurements such as $\sigma_{\mathrm{f}}\left({ }^{239} \mathrm{Pu}\right) / \sigma_{\mathrm{f}}\left({ }^{235} \mathrm{U}\right)$ as well as the absolute measurements in the energy region above 50 keV . The cross sections obtained in the simultaneous evaluation are the fission cross sections of ${ }^{235} \mathrm{U},{ }^{238} \mathrm{U},{ }^{239} \mathrm{Pu},{ }^{240} \mathrm{Pu}$ and ${ }^{241} \mathrm{Pu}$ and the capture cross section of ${ }^{238} \mathrm{U}$, together with the capture cross section of ${ }^{197} \mathrm{Au}$ which was used as a standard. These cross sections were determined by the generalized least-squares method using the B-spline function. The measurements after 1970 were mainly considered for the spline-function fitting. Covariance data required for this method were estimated from the experimental conditions. The evaluated results of ${ }^{235} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$ are shown in Fig. 2.3.1. Capture Cross Section of ${ }^{238} \mathrm{U}$
The capture cross section of ${ }^{238} \mathrm{U}$ was obtained by the simultaneous evaluation mentioned above. It was found, however, that the latest measurements of Kazakov et al. ${ }^{48)}$ were smaller than the results of the simultaneous evaluation in the energy region from 50 keV to 300 keV . The results of the benchmark tests also favored the smaller cross section. Thus, the capture cross section was re-evaluated with much weight on the data of Kazakov et al. It should be noted that the present evaluated data are by 10% smaller than the JENDL-2 data around 100 keV , as seen in Fig. 2.3.2.

Resonance Parameters for ${ }^{238} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$
Large modification was made for the resonance parameters of ${ }^{238} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$.
Concerning ${ }^{238} \mathrm{U}$, the resolved resonance parameters were determined on the basis of the JENDL- 2 data $^{3)}$ up to 4 keV and of the analyses of Olsen ${ }^{49)}$ up to 10 keV . As a result, the upper limit of the resolved resonance region was extended to 9.5 keV . Above 1.5 keV , smooth background cross sections were added to the capture cross sections in order to take account of the contribution from the missing p -wave resonances.

As for ${ }^{239} \mathrm{Pu}$, the resolved resonance parameters were obtained from the analyses of

Derrien and de Saussure ${ }^{50)}$. The upper limit of the resolved resonance region is 1 keV , while that of JENDL-2 is 598 eV .

Fission Neutron and Gamma-Ray Spectra
The prompt fission neutron spectra obtained by Madland and $\mathrm{Nix}^{51)}$ were adopied for ${ }^{233} \mathrm{U},{ }^{254} \mathrm{U},{ }^{235} \mathrm{U},{ }^{238} \mathrm{U},{ }^{239} \mathrm{Pu}$ and ${ }^{240} \mathrm{Pu}$. This type of spectrum has larger average neutron energy than the Maxwellian and Watt spectra adopted in JENDL-2. The spectra for ${ }^{239} \mathrm{Pu}$ are shown in Fig. 2.3.3. The Maxwellian spectra were adopted for the other nuclides.

The prompt fission gamma-ray spectra and multiplicities were obtained from the measurements of Verbinski et al. ${ }^{52)}$ for ${ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$. The non-elastic gamma-ray spectra from the reactions other than fission were calculated by the GNASH code.

Transplutonium Data

In general, the experimental data on transplutonium nuclides are very scarce, and only available are the resonance parameters, the fission and capture cross sections. Therefore, the optical and statistical model code CASTHY was unexceptionally used ${ }^{53-58)}$ to evaluate the cross sections. The optical-model potential parameters for neutrons were determined ${ }^{59)}$ so as to reproduce the total cross section of ${ }^{24}{ }^{1} \mathrm{Am}$, and they were used for other transplutonium nuclides with slight modifications.

The fission cross sections were evaluated on the basis of available experimental data, because it was difficult to predict them theoretically. If no measurements are available for fission, the cross section is obtained by considering the systematics of the experimental data for the neighbonng nuclides.

Fig. 2.1.1 ${ }^{7} \mathrm{Li}(\mathrm{n}, \mathrm{n}$ 't o reaction cross sections.

Fig. 2.1.2 Double differential cross sections of natural lithium at 14 MeV .

Fig. 2.2.1 Double differential cross sections of nataral irnonal 14 MeN

Fig. 2.2.2 Total cross sections of natural iron averaged over 0.5 MeV .

Fig. 2.2.3 ($n, 2 n$) reaction cross section of natural lead

Fig. 2.2.4 Helium-production cross sections of natural chromium, iron and nickel.

Fig. 2.2.5 Gamma-ray spectra from natural silicon at 13 MeV .

Fig. 2.2.6 Gamma-ray spectra from natural iron at 0.0253 eV .

Fig. 2.3.1 Fission cross sections of ${ }^{235} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$.
(a) ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f}),(\mathrm{b}){ }^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f}) /^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$ and $(\mathrm{c})^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$.

Fig. 2.3.2 Capture cross sections of ${ }^{238} \mathrm{U}$.

Fig. 2.3.3 Fission neutron spectra for ${ }^{239} \mathrm{Pu}$ at 200 keV . The lower part shows the ratio of JENDL-3 to JENDL-2, which is illustrated by the solid line.

3. Conclusions

The third version of Japanese Evaluated Nuclear Data Library. JENDL-3, has been made available. Its evaluation methods were briefly described in this report.

Much effort was made to improve the reliability of highenergy data and to include the gamma-ray production data. The theoretical calculations were rigorously carried out to meet these purposes. Moreover, the simultaneous evaluation method has been established 10 determine important cross sections of fissile and fertile nuclides. The quality and quantity of the evaluated data have considerably increased as compared with JENDL-2. In fact, the results of the benchmark tests ${ }^{4.60}$) were found to be quite satisfactory.

The Compilation Group expects JENDL-3 to be used in the various fields of nuiclear engineering, and also welcomes any comments and suggestions on the basis of experience in the practical use of JENDL-3.

Acknowledgments

The present work was performed under constant encouragement and interest of the members of JNDC. The authors would like to thank them for their invaluable help. They are very much indebted to Drs. N. Shikazono and M. Ishii of JAERI for their support during the course of this work. They also acknowledge Miss M. Mori for her aid in preparing the printouts for the appendix. Careful typewriting by Miss S. Ishibashi is much appreciated.

References

1) Igarasi S.. Nakagawa I.. Kikuchi Y', Asam: I and Narta I. "Japanese I-valuated Vuckar Data lantars. Version-1 JI:ND1-1". JAFR1 1261 119741
2) Kikuchi Y.. Nakagawa T., Matsunohu H. Kawa M.. Igarasi S and lyima S "Neutron (ross Sectons of Ze Fission Product Nuclides Adopted in JENDI-1". JAtR1 120ヶ, 19K1)

41 Asami T., lijima S., Igarasi S.. Ihara H.. Kawai M. Kikuchi Y... Komuro Y., Shinata K. Iakano H., Iakeda T., Nakagawa T., Nakazawa M.. Hasegawa A., Markawa II. Mizumoto M. and Yoshida I. J. Alom. Iner Soc. of Japan, 31. 1190 (1989) |in Japanesel
 Inded. (1979).
3) Raynal J.: "Optical Model and Coupled-Channel (alculations in Nuclear Physics". IAI A SMR-4'X (1470)
4) Kunz. P.D.: (Inpublished (1974).
 of Cross Sections and Imission Specta". I A6947(1977).
 Angular Momentum". ORNI /TM-7042 (1480)

 (1987).

11/ Kodama S. Shibati K... (hiba S. and Jarasi S. Io be published m MA RI report
121 Minami K. and Yamano N : "FAlR-In)X A (ode for Production of beoble Differental (ross Sectoon Library ". JAIRI-M 84-022 (1984) (in Japanesel.
13) Iguchi T. and Yamano N.: "DOXPIOT: A Program to Plot the lenergy Angle Double-biffetential (ross Sections", JAI:RI-M 84-033 (1984) |in Japanese).
14) Poenitz W.P. and Whaten J.F. : Nucl. Phys.. A383. 224 (1982)
15) Shibata K., Narita T. and Igarasi S. : "I valuation of Neutron Nuclear Data for Deuterium". JAl R1-M 83. 006 (1983).
161 Shibata K. : J. Nucl. Sci. Technol., 27. 81 (1990).
17) Borzakov S.B., Malecki H., Pikel'ner I.B., Stempinski M. and Sharapov if.I. : Yad. Fiz.. 35, 532 119821: translation: Sov. J. Nucl. Phys., 35, 307 (1982).
181 Shibata K. : "Evaluation of Neutron Nuclear Data of ${ }^{6} \mathrm{Li}$ for JFNDL-3". JAFRI-M 84-198(1984).
19) Shibata K. : "Evaluation of Neutron Nuclear Data of "Li for JFNDL-3". JAFRI-M 84-204 (1984).
20) Chiba S. and Shibata K. : "Revision and Status of the Neutron Nuclear Data of ${ }^{6} \mathrm{Li}$ and ${ }^{\top} \mathrm{Li}{ }^{\prime}$. JAfri-M 88-164 (1988).
21) Smith D.L., Meadows J.W.. Bretscher M.M. and Cox S.A. : "Cross-section Measurement for the ${ }^{7}$ Litn.n` $)^{4}$ lie Reaction at $14.74 \mathrm{MeV}^{\prime \prime}$, ANL/NDM-87 (1984).
23) Takahashi A., Yugami K.. Kuhno K., Ishigaki N., Yamamoto J. and Sumita K. : Proc. 13th Symposium on Fusion Technology, Padua, 1984, p. 1325 119841, Pergamon Press.
23) Goldberg E... Barber R.L., Barry P.E., Bonner N.A., Fontanilla J.I... Griffith C.M.. Haight R.C.. Nethaway D.R. and Hudson G.B. : Nucl. Sci. Fing., 91, 173 (1985).
24) Maekawa Ii., Tsuda K., Ikeda Y., Oishi K. and Lguchi T. : "Measurement of ${ }^{7}$ Li(n.n $\left.{ }^{\circ}\right)^{3}$ T (ross Section Between 13.3 and $14.9 \mathrm{MeV}^{\prime \prime}$, JAFRI-M 86-125, p. 130 (1985).
25) Takahashi A. : "Double Differential Neutron Emıssion Cross Sections at 14 MeV Measuredat OKTAVIAN". JAERI-M 86-029. $\mathbf{n} .99$ (1986).
26) Takahashi A., Sasaki Y. and Sugimoto H. : "Angle-integrated Neutron Emission Spectra al 14 MeV for Be. C, F, Mg, Al, Si, V, Fe, Cr, Cu, Pb and Bi", J^FRI-M 88-065. n. 279 (1988).
27) Baba M., Ishikawa M., Kikuchi T., Wakabayashi H. and Hirakawa N. : "Measurements of Double-differential Neutron Emission Cross Sections", ibid., p. 365 (1988).
28) Perkins S.T.. Plechaty E.F. and Howerton R.J. : Nucl. Sci. Eng., 90, 83 (1985).
29) Shibata K. : "Evaluation of Neutron Nuclear Data for ${ }^{12}$ (". JAFRI-M 83-22) (1983).
30) Larson D.C.. Johnson C.H., Harvey J.A. and Hill N.W.: "Measurement of the Neutron Total Cross Section of Fluorine from 5 eV to 20 MeV . ORNL/TM- 5612 (1976).
31) Murata T. : "Analysis of Neutron Cross Section of N-14 and O-16 with an Approximate R-Matrix Theors". Proc. Int. Conf. Nuclear Data for Science and Technology, Mito. 1988. p. 557 (1988), Saikon Publishung (o.
32) Fukahori T.: "Evaluation of Neutron Nuclear Dasa of B-11", JALERI-M 89-046 (1984).
33) Fukahori T. : "Evaluntion of Neutron Nuclear Data of N-15", JAERI-M 89-047 (19891.
34) Kitazawa H. and Harima Y. : "Evaluation of Neutron Cross Sections of the sd-Shell Nuclei ${ }^{27}$ Al and $2 \mathrm{~K}, 29,30 \mathrm{Si}^{\prime \prime}$, Proc. Int. Conf. Nuclear Data for Science and Jechnology. Mito, 1988, p.473 (1988). Saikon Publishing Co
35) lijina S., Asami T.. Shibata K. and Yamakoshi H. : "Evaluation of Neutron-Induced (ross Sections of ('hromium. Iron and Nickel for JENDL-3", ibid., p. 627 (1988).
36) Shibata K. : J. Nucl. Sci. Technol., 26, 955 (1989).
37) Igarasi S. : J. Nucl. Sci. Technol. 12, 67 (1975).
38) (illbert A. and Cameron A.G.W. : Can. J. Phys., 43. 1446 (1965).
34) Ignatyuk A.V., Smirenkin G.N. and Tishin A.S. : Yad. Fiz., 21, 485 (1975); translation: Sov. I. Nucl. Phys.. 21, 255 (1975).
40) Nakagawa T. : J. Atom. Enel Soc. of Japan, 22, 559 (1980) [in Japanese].
41) Frehaut J., Bertin A., Bois R. and Jary J.: "Status of (n,2n) Cross Section Measurements at Bruyeres-leChatel", Proc. Symp. Neutron Cross-Sections from 10 to 50 MeV ", BNL, 1980. BNL-NCS-51245. Vol.1. p. 399 (1980).
42) Yanagi Y '. and Jakahashi A. : "Differential and Integral Experiments of Neutron Multiplier Candidate Flements", OKTAVIAN Report A-84-02 (1984).
43) Takahashi A. :"Integral Measurencents and Analysis of Nuclear Data Pertaining io Fusion Reaciors". Proc. Int. Conf. Puclear Data for Basic and Applied Science. Santa Fe, 1985. p.59 (1986). Gordon and Breach.
44) Iwasaki S., Jamura H., Inoue T., Tamura T., Koyama J. and Sugiyama K. :"Measurement and Analysis of Neutron Fmission Specta for Ph(n, xn) Reaction hetween 14 and 20 MeV ", ibid., 1.191 (1986)
45) Maerker R.E. : "SB2. Experiment on Secondary Gammu-Ray Production fross Section Atisiag faom Thermal-Neutron Capture in tach of 14 Different lilements Plus a Stainless Steel". ORNL./TM-520. (1976).
46) Evaluated Nuclear Structure Data File, a computer file of evaluated experimental nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory. (File as of Aug.. 1989).
47) Kanda Y., Uenohara Y.. Murata T.. Kawai M. Matsunohu H., Nakagawa T., Kikuchi Y. and Nakajima Y. "Simultaneous Evaluation of Fission and Capture Cross Sections and their Covariances for Heavy Nuclei", Proc. Int. Conf. Nuclear Data for Basic and Applied Science, Santa Fe, 1985, p. 1567 (1986), Gordon and Breach.
48) Kazakov L.E., Kononov V.N., Manturov G.N., Paletaev E.D.. Bokhovko M.V.. Timokhov V.M. and Voevodskiy A.A. : Yad. Konst., 3 (1986).
49) Olsen D.K. : Nucl. Sci. Eng., 94, 102 (1986).
50) Derrien H. and de Saussure G. : "R-matrix Analysis of ${ }^{239} \mathrm{Pu}$ Neutron Cross-Sections in the Energy Range up to $1000 \mathrm{eV}^{\prime \prime}$. ORNL/TM-10986 (1989).
51) Madiand D.G. and Nix J.R. : Nucl. Sci. Eng., 81, 213 (1982).

521 Verbinski V.V., Weber H. and Sund R.E.: Phys. Rev., C7, 1173 (1973).
53) Kikuchi Y. : "Evaluation of Neutron Nuclear Data for ${ }^{246} \mathrm{Cm}$ and ${ }^{247} \mathrm{Cm}$ ", JAERI-M 83-236 (1984).
$54)$ Kikuchi Y. and Nakagawa T. : "Evaluation of Neutron Data for ${ }^{248} \mathrm{Cm}$ and ${ }^{249} \mathrm{Cm}$ ", JAERI-M $84-116$ (1984).
55) Kikuchi Y. and Nakagawa T. : "Evaluation of Neutron Nuclear Data for ${ }^{249} \mathrm{Bk}$ and ${ }^{249} \mathrm{C}[$ ", JAERI-M 85-138(1985).
56) Nakagawa T. : "Evaluation of Neutron Nuclear Data for ${ }^{250}$ (ff and ${ }^{251}$ C ${ }^{\circ} "$, JAERI-M 86-086 (1986).
57) Nakagawa T. : "Evaluation of Neutron Nuclear Data for ${ }^{252}$ Cf and ${ }^{250}{ }^{16 k}$ ", JAERI-M 88-004 (1988).
58) Nakagawa T. : "Evaluation of Nuclear Data for Americium Isotopes". JAERI-M 89-008 (1989).
59) lgarasi S. and Nakagawa T. : "Evaluation of Neutron Nuclear Data for ${ }^{242} \mathrm{Cm} `, ~ J A F R 1-M 8342$ (1979) [in Japanese].
60) Takano H. and Kaneko K. : "Benchmark Test of JENDL-3T and -3T/Rev.1". JAERI-M 89-147 (1989) [in Japanesel.

Appendix Descriptive Data for Each Nuclide

The File 1 part of JENDL-3 contains the descriptive data which give information on how the evaluation was performed for each nuclide. The descriptive data are given in this appendix. where characters are converted from capital letters to a normal style of mixture of capital and small letters.

1-H - 1 JAERI Eval-Dec84 K.Shibata
JAERI-1261 Dist-Sep89
History
83-03 Compiled by K. Shibata for JENDL-2
Main part was carried over from JENDL-1 data evaluated by M.Y: namoto. Details are given in ref. /1/

83-11 MF=2 was added. The transformation matrix given for MT=2 of $\mathrm{MF}=4$.
84-12 Re-evaluated by K. Shibata (JAERI) for JENDL-3
Elastic scattering cross section was re-calculated below
100 keV .
Mu-bar was also re-calculated.
Photon-production cross section was added.

MF $=1$ General Information
MT=451 Descriptive data and dictionary
$\mathrm{MF}=2$ Resonance Parametors
$M T=151$ Scattering radius only
$\mathrm{MF}=3$ Neutron Cross Sections
Calculated $2200 \mathrm{~m} / \mathrm{s}$ cross sections and res. integrals $2200 \mathrm{~m} / \mathrm{s}$ (b) res.integ. (b)
total 20.806 elastic 20.474 capture 0.3320 .1491

MT=1 Total cross section Sum of elastic and capture cross sections
MT=2 Elastic scattering cross section Below 100 keV , calculated by using effective range and scattering length parameters of Poenitz and Whalen $12 /$. Above 100 keV , the data of Hopkins and Breit/3/ were recommended.
MT=102 Capture cross section
The data of Horsley/4/ were recommended.
MT=251 Mu-bar
Calculated from the data in $M F=4$.
MF=4 Angular Distributions of Secondary Neutrons
$M T=2$
Below 100 keV , isotropic in the center of mass system was assumed. Above 100 keV . the data of Hopkins and Breit/3/ were recommended.

MF=12 Photon Production Multiplicity
MT=102
$m=1.0$

MF=14 Photon Angular Distribution
MT=102
Assumed to be isotropic.
Referencr.:

1) Igarasi S. et al.: JAERI-1261 (1979).
2) Poenitz W.P. and Whalen J.F.: Nucl. Phys. A383 (1982) 224.
3) Hopkins J.C. and Breit G.: Nucl. Data Table A9(1971) 137.
4) Horsley A.: Nucl. Data A2(1966) 243.

MAT number $=3012$

```
    1-H-2 JAERi Eval-Jul82 K.Shibata.T.Narita.S.Igaras।
JAERI-M 83-006 Dist-Mar83
History
83-01 New evaluation for JENDL-2. Details are given in ref. /1/.
            Data were compiled by the authors
8?-11 MF=2 was added.
87-05 Carried over from JENDL-2.
MF=1 General Information
    Mt=451 Descriptive data and dictionary
MF=2 Resonance Parameters
    MT=151 Scattering radius only
MF=3 Neutron Cross Sections
        2200-m/s cross soctions and calculated res. integrals.
                        2200-m/s res. integ.
                elastic 3.389 b -
                capture 0.00055 b 0.000286 b
                total 3.390 b -
    MT=1 Total
        Based on a least-squares fit to the experimental data of
        /2/-/8/.
    MT=2 Elastic
        elastic = total - (n,2n) - capture.
    MT=16 (n,2n)
        Based on a least-squares fit.
        Data listed in /9/-/11/ were used.
    MT=102 Capture
        Below 1 keV. I/v form normalized to the data of
                Ishikawa /12/.
        Above 1 keV, evaluated 0.1 the basis of the inverse
                            reaction /13/.
    Mt=251 Mu-bar
        Calculated from the data in MF=4.
MF=4 Angular Distributions of Secondary Neutrons
    MT=2.16
        Calculated from the three-body model based on
        the Faddeev equation /14/.
MF=5 Energy Distributions of Secondary
        Neutrons
    MT=16 The three-body model calculation.
```

References

1) Shibata. K. et al.: JAERI-M 83-006 (1983).
2) Adair, R.K. et al. : Phys. Rev. 89 (1953) 1165
3) Seagrave. J.D. and Henkel. R.L. : Phys. Rev. 98 (1955) 666
4) Stoler. P. et al. : Phys. Rev. C8 (1973) 1539
5) Davis. J.C. and Barschall. H.H. : Phys. Rev. C3 (1971) 1798
6) Dilg. W et al. : Phys. Lett. 36B (1971) 208.
7) Clement. J.M. et al. : Nucl. Phys. A183 (1972) 51.
8) Foster. Jr.. D.G. and Glasgow. D.W. : Phys. Rev C3(1971)576.
9) Holmberg. M. : Nucl. Phys. Al 29 (1969) 327.
10) Pauletta, G. and Brooks, F.D. : Nucl. Phys. A255 (1975) 267.
11) Catron. H.C. et al. : Phys. Rev. 123 (1961) 218.
12) Ishikawa, H. : Nucl. Instr. Meth. 109 (1973) 493
13) Gunn. J.C. and Irving. J. : Phil. Mag. 42 (1951) 1353
14) Ebenhoh. W. : Nucl. Phys. A191 (1972) 97.

MAT number $=3021$
2-He- 3 JAERI Eval-Jun87 K.Shibata Dist-Sep89
History
87-06 Newly evaluated by K. Shibata
$M F=1 \quad$ General Information
MT=451 Descriptive data
MF=2 Resonance Parameters
$M T=151$ Scattering radius only
$M F=3 \quad$ Neutron Cross Sections
Calculated $2200 \mathrm{~m} / \mathrm{s}$ cross sections and res. integrals
$2200 \mathrm{~m} / \mathrm{s}$ (b) res.integ (b)
total 5331.1 -
elastic 3.135 (n.p) 5328.0 -
$M T=1 \quad$ Total
Below I MoV. the experimental data /i/ were analyzed using
the R-matrix theory.
Above 1 MeV , based on experimental dete /2-4/
$M T=2 \quad$ Elastic
Below I MeV. the experimental data / $1 /$ were analyzed using
the R-matrix theory.
Above 1 MeV . (elestic) $=$ (total) - (reaction)
$M T=103 \quad(n, p)$
Below 1 MeV, the experimental data /5/ were analyzed using
the R-matrix theory.
Above 1 MeV . based on experimental data /6,7/.
MT=104 (n.d)
Evaluation was performed on the basis of experimental
dala /6.7/.
MT=251 MU-BAR
Calculated from the data in file-4.

```
MF=4 Angular Distributions of Secondary Neutrons
    MT=2 Elastic
            Based on the following experimental data:
                1.0E-5 eV to 500 keV : isotropic in c.m.
                1.0.2.0,3.5 MeV : Seagrave et al. /8/
            5 to 20 MeV : Haesner /6/
```

References

1) Alfimenkov V.P. et al.: Yad. Fiz.. 33, 891 (1981), transiation Sov. J. Nucl. Phys., 33, 46/ (1981).
2) Los Alamos Physics and Cryogenics Groups: Nucl. Phys.. 12. 291 (1959).
3) Goulding C.A. et al.: Nucl. Phys. A215, 253 (1973).
4) Haesner B. et al.: Phys. Rev., C28, 995 (1983).
5) Borzakov S.B. et al.: Yad. Fiz.. 35, 532 (1982). translation Sov. J. Nucl. Phys.. 35. 307 (1982).
6) Haesner B.: KfK-3395 (1982).
7) Drosg M.: LA-7269-MS (1978).
8) Seagrave J.D.et al.: Phys. Rev., 119. 1981 (9961).

```
MAT number \(=3031\)
```

3-Li- 6 JAERI Eval-MarB5 S.Chiba and K. Shibata JAER1-M 88-164 Dist-Sep89
History
83-12 Newly evaluated by K. Shibata
84-07 Data of $M F=4$ ($M T=16.91$) and $M F=5$ ($M T=16.91$) were revised
Comment was also modified
85-03 Modified by S. Chiba
Data of $M F=3$ ($M T=59,63$) and $M F=4$ ($M T=59,63$) were added
Data of $M F=3(M T=16) . M F=4(M T=2.16 .53) . M F=5 \quad(M T=16)$ were revised
Pseudo-level representation was adopted for the (n, n) alpha-d continuum ($\mathrm{MT}=51.52 .54-56.58 .60-62.64-86$ \}

$M F=1$	General Information
$M T=451 \quad$ Descriptive data	

MF=2 Resonance Porameters
$M T=151 \quad$ Scattering radius only
$\mathrm{MF}=3 \quad$ Cross Sections
Calculated $2200 \mathrm{~m} / \mathrm{s}$ cross sections and res integrals $2200 \mathrm{~m} / \mathrm{s}$ (b) res.integ (b)
cotal 9411
elastic 0.735
capture $0.039 \quad 0.017$
(n.t) 94.03
$M T=1 \quad S i g-t$
Below 1 MeV based on the R-matrix calculation. Sig-cap was added to the calculated cross section.
Above 1 MeV . based on the experimental data /1/-/3/
$M T=2 \quad$ Sig-el
Below 1 MeV , based on the R-matrix calculation
Above 1 MeV . the cross section was obtained by subtracting
the reaction cross section from the total cross section.
MT $=3 \quad$ Non-elastic
Sum of MT=4. 16. 102. 103 ard 107.
$M T=4 \quad$ Total inelastic
Sum of $M T=51,52,53,54$ and 91
$M T=16 \quad(n, 2 n) L i 5$
Based on the experimental data /4/./5/.i12/.
$M T=53 \quad$ Sig-in $\quad 2.185 \mathrm{MeV}$
Based on the experimental data /3/./6/-/9/
MT=57 Sig-in $\quad 3.562 \mathrm{MeV}$
Based on the experimental data /10/./11/.
$M T=59 \quad$ Sig-in 4.31 MeV
Based on a coupled-channel calculation. The symmetric rotational model was assumed. The coupling scheme was $1+(\mathrm{g.s})-3+(2.185)-2+(4.31)-1+(5.7)$.
The potential parameters were:
$V=45.0766 \mathrm{MeV}, \quad r=1.1875 \mathrm{fm}, a=0.57335 \mathrm{fm}$ $W_{s}=0.4432 \cdot E l-1.1631 \mathrm{MeV}, \quad r i=1.6113 \mathrm{fm}, \quad$ 日l $=0.26735 \mathrm{fm}$
$V_{s o}=5.5 \mathrm{MeV}$. $\quad r s o=1.15 \mathrm{fm}$. aso $=0.5 \mathrm{fm}$
beta(2)=1.1395.
where El means the incident neutron energy in the lab.

```
    system (MeV).
    MT=63 Sig-in 5.7 MeV
    Based on the CC calculation normalized to the experimental
    data /12/
MT=51.52.54-56.58,60--62.64-86 (n,n')alpha-d cont inuum
    Represented by pseudo-levels. binned in 0.5 MeV intervals
    The (n.n')alpha-d cross section was based on the
    messurement of Rosen and Stewart /13/. The
    contribution from MT=53, 59 and 63 was subtracted so
    that Sig-t might be equal to the sum of partial cross
    sections. The cross section for each level was calculated
    by the 3-body phase-space distribution with a correction
    of the Coulomb interaction in the final state. assuming
    isotropic center-of-mass distributions
MT=102 Capture
    Below 100 keV. i/v curve normalized to the thermal data
    of Jurney /14/
    Above 100 keV. the inverse reaction data of Ferdinande
    et al./15/ wero added.
MT=103 (n,p)
    Based on the experimental data /10/./16/
MT=105 (n,t)alpha
    Below 1 MeV, R-matrix calculation
    Above 1 MeV, based on the experimental data/17/./18/
MT=251 Mu-bar
    Calculated from the data in file4.
MF=4 Angular Distributions of Secondary Neutrons
    MT=2
    Below 500 keV, R-matrix calculation.
    Between 500 keV and 14 MeV, based on the experimental
    data/1/./6/./19/.
    Above 15 MeV, based on the CC calculation.
    MT=16
    Based on the experimental data /12/ at 14.2 MeV
    Angular distributions are given in the laboratory system.
    MT=53
    Below 4.8 MeV. assumed to be isotropic in CM.
    Between 4.8 and 14 MeV. based on the experimental data /6/
            ./20/
    Above 15 MeV, the CC calculation.
    MT=57
                            Assumed to be isotropic in CM
    MT=59
            Based on the CC calculation.
    MT=63
            Assumed to be isotropic in CM
    MT=51,52.54-56,58,60-62,64-86
    Assumed to be isotropic in CM
MF=5 Energy Distribution of Secondary Neutrons
    MT=16
            The evaporation model was assumed. The evaporation
            temperature of Ref. 12 was adopted. It was extrapolated as
            T = 0.176497.sqrt(EI) MeV.
            where El means the incident neutron energy in the lab.
            system (MeV).
```

```
MF=12 Photon-Production Multiplicities
    MT=57
        m=1.0
    MT=102
            Based on the thermal measurement of Jurney :13;
MF=14 Photon Angular Distributions
    MT=57
        Isotropic
    MT=102
            Assumed to be isotropic
References
1) Knitter H.-H. et al.: EUR-5726e (1977)
2) Lamaze G.P. et al. Bull. Am. Phys. Scc 24 (1979) 862
3) Guenther P. et al.: ANL/NDM-52 (1980)
4) Mather D.S. and Pain L.F.: AWRE-0-47/69 (1969)
5) Ashby V.J. et al.: Phys. Rev 129 (1963) 1771
6) Hogue H.H. et al.: Nucl. Sci. Eng. 69 (1979) 22
7) Lisowski P.W. et al.: LA-8342 (1980)
8) Foertsch H. et al.: ZfK-443 (1981). p 13
9) Drake D.D.: DOE/NOC-24/U (1981). p. 72
10) Presser G. et al.: Nucl. Phys. A131 (1969) 679
11) Besotosnyj et al.: YK-19 (1975). p.77.
12) Chiba S.et al.: J. Nucl. Sci. Technol. 22 (1985) 771
13) Rosen L. and Stewart 1. Phys. Rev. 126 (1962) 1150
14) Jurney E.T.: USNDC-9 (1973). p. 109
15) Ferdinande H. et al.: Can. J. Phys. 55 (1977) 428.
16) Merchez F. et al.: Nucl. Phys. A182 (1972) 428
17) Bartle C.M.: Nucl. Phys. A330 (1979) 1.
18) Bartle C.M. et al.: Nucl. Phys. A397 (1983) 21
19) Knox H.D. et al.: Nucl. Sci. Eng. 69 (1979) 223
20) Hopkins J. .. et al.: Nucl. Phys. A107 (1968) 139
```

MAT number $=3032$
3-Li- 7 JAERI Eval-Dec84 S.Chiba and K.Shibata
JAERI-M 88-164 Dist-Sep89
History
83-12 Newly evaluated by K. Shibata
84-07 Data of $M F=4$ ($M T=16.91$) and $M F=5$ ($M T=16.91$) were revised Comment was also modified.
84-12 Modified by S. Chiba Data of $M T=62$ and $64(M F=3.4)$ were added. Data of $M F=4$ ($\mathrm{MT}=2.51 .57 .16$) and $\mathrm{MF}=5$ ($\mathrm{MT}=16.91$) were modified Pseudo-level representation was adopted for the ($\mathrm{n}, \mathrm{n}^{\prime}$) alpha-t continuum ($\mathrm{MT}=52-56.58-61.63 .65-84$)
Comment was also modified.
87-02 Li7(n.nt) cross section was modified
88-02 Li7(n.n2) cross seciion and ang dist weri modified Lif(n, nO) was also modified so as to give the coivl cross section which is equal 10 JENDL-3PR1. The Lif(n,n1) ang dist was also modified. Li>(n,nt) cross section was fixed to 87-02 version by modifying the pseudo level cross sections. Commont was also modified
$\mathrm{MF}=1 \quad$ General Information
MT=451 Descriptive data
MF=2 Resonance Parameters
$M_{1}^{-1}=151 \quad$ Scattering radius only

$M T=1 \quad$ Sig-t
Below 100 keV . Sig-t $=0.97+$ Sig-cap (barns)
Above 100 keV , based on the experimental date /1/-/4/.
$M T=2 \quad$ Sig-el
Below 100 keV . Sig-el $=0.97$ (barns).
Above 100 keV . Sig-el $=$ Sig-: - Sig-react.
MT=3 Non-elastic
Sum of MT=4. 16. 102 and 104
MT=4 Total inelastic
Sum of MT=51 to 84
$M T=16 \quad(n .2 n)$
Based on the experimental data /5/./6/.
MT=51 Sig-in $\quad 0.478 \mathrm{MeV}$
Based on the (n, n 'gamma) data of Morgan /7/
MT=57 Sig-in 4.63 MeV
Based on the experimental data $/ 8 /-/ 10 /$.
$M T=62 \quad$ Sig-in $\quad 6.68 \mathrm{MeV}$
Based on a coupled-channel crlculation normalized to the experimental data /13.14/. The symmetric rotational model
was assumed. The coupling scheme was
3/2-(9.s.) - 1/2-(0.478) -7/2-(4.63)-5/2-(6.68).
The potential parameters were as follows.

```
    V=49.6-0.362*El MeV, r=1.28 fm, a=0 620 fm
    Ws= -13.2 + 1.88.E| MeV, ri=1.34 fm. ai= 0.104 fm
    Vso= 5.500 MeV. rso=1.150 fm, aso=0.50 fm
    beta(2)=0.952.
    where El means laboratory incident energy in MeV.
    MT=64 Sig-in 7.467 MeV
    Assumed to have the same excitation function as MT=53.
    normalized to the experimental data /13.14/
    MT=52-56.58-61,63.65-84. (n, n')alpha-t continuum
    Represented by pseudo-levels. binned in 0 5 MeV intervals
    The cross section was obtained by subtracting the
    contribution of MT=57,62 and 64 from the (n, n')alpha-t
    cross section (MT=205). The cross section for each level
    was calculated by the 3-body phase-space distribution with
    a correction of the Coulomb interaction in the final
    state
    MT=102 Capture
    1/v normalized to the thermal measurement i15/
    MT=104 (n,d)
    The (n,d) cross section was calculated with DWBA
    Normalization was taken so that the calculated cross
    section might be consistent with the acilvation data /16/
    MT=205 (n, n')alpha-t
    Based on the experimental data 117/-122/
    MT=251 Mu-bar
    Calculated from the data in lile4.
MF=4 Angular Distributions of Secondary Neutrons
    MT=2
    Below 4 MeV, an R-matrix calculation with the parameters
    of Knox and Lane/23/.
    Between 4 MeV and 14 MeV. based on the experimental
    data /8/./24/.
    Above 15 MeV, the coupled-channel calculation.
    MT=16
            Based on the experimental data /13/ at 14.2 MeV.
            Angular distributions are given in the laboratory system.
    MT=51
            Below 4 MeV. the R-matrix calculetion
            4 to 10 MeV. evaluation of Liskien/25/ was adopted.
            Above 10 MeV. the coupled-channel calculation
    MT=57
            Below 8 MeV. the R-matrix calculation.
            Between 8 MeV and 14 NieV, based on the experimental
            data /10/-/12/.
            Above 15 MeV, the coupled-channel calculation.
    MT=62
            At the threshold, an isotropic distribution was assumed.
            Abuve 10 MeV, the coupled-channel calculation.
    MT=64
            Isotropic distributions were assumed in the center-of-mass
            system
    MT=52-56,58-61,63,65-84
            Experimental data/13/ were adopted.
MF=5 Energy Distribution of Secondary Neutrons
    MT=16
```

```
            The evaporation model was assumed, with the temperature
            deduced experimentally/13/ at 14.2 MeV The temperature
            was extrapolated as
            t = 0.229*sqrt(El) MeV.
            where El means laboratory incident energy in MeV.
NF=12 Photon-Production Multiplicities
    MT=51
            m=1.0
    MT=102
            Multiplicities were obtained from ref./26/.
MF=14 Photon Angular Distributions
    MT=51
            Isotropic
    MT=102
            Assumed to be isotropic.
References
1) Meadows J.W. and Whalen J.F.: Nucl. Sci. Eng. 11 (i970) 351.
2) Foster. Jr. D.G. and Glasgow D.W.: Phys. Rev. C3 (1971) 576.
3) Goulding C.A. et al.: USNDC-3 (19/2), p. 161
4) Lamaze G.P. et al.: Bull. Am. Phys. Soc. 24 (1979) 862.
5) Mather D.S. and Pain L.F.: AWRE-0-47/69 (1969)
6) Ashby V.J. et al.: Phys. Rev. 129 (1963) 1771
7) Morgan G.L.: ORNL/TM-6247 (1978).
8) Hogue H.H. et al.: Nucl. Sci. Eng. 69 (1979) 22
9) Baba M. et al.: Proc. Int. Conf. Nuclear Cross Sections for Technology. Knoxville, 1979, (1980) p. 143.
10) Lisowski P.W. et al.. LA-8342 (1980).
11) Schmidt D. et al.: Nucl. Sci. Eng. 96 (1987) 159
12) Chiba S. et al.: J. nucl. Sci. Technol. 25 (1988) 210
13) Chiba S. et al.: J. Nucl. Sci. Technol. 22 (1985) 771.
14) Takahashi A. et al.: Private communication.
15) Jurney E.T.: USNDC-9 (1973), p. 109.
16) Battat M.E. and Ribe F.L.: Phys. Rev. 89 (1953) 80.
17) Smith D.L. et ai.: Nucl. Sci. Eng. 78 (1981) 359
18) Liskien H. et al.: Proc. Int. Conf. Nuclear Data för Science and Technology. Antwerp 1982. (1983) p. 349.
19) Smith D.L. et al.: ANL/NOM-87 (1984).
20) Takahashi A. et al.: Proc. 13 th Symp. Fusion Tech.. Varese. Italy (1984).
21) Goldberg E. et al.: Nucl. Sci. Eng. 91. 173 (1985)
22) Maekawa H. et al.: JAERI-M 86-125. p.130 (1986).
23) Knox H.D. and Lane R.O.: Nucl. Phys. A359 (1981) 131.
24) Knox H.D. et al.: Nucl. Sci. Eng. 69 (1979) 223.
25) Liskien H.: Private communication.
26) Ajzenberg-Selove F. and Lauritsen T.: Nucl. Phys. A227(1974)1.
```

MAT number $=3041$

$M T=1 \quad S i g-t$
Below 1 eV , sum of sig-el and sig-cap. Between 1 eV and
830 keV . the cross section was calculated on the basis of
the R-matrix theory. The R-matrix parameters were
obtained so as to give the best fit to the experimental
data $/ 2 /-/ 6 /$. Above 830 keV . based on the measurements
/5/.17/.181.
$M T=2 \quad$ Sig-el
Below 1 eV . sig-el $=6.151$ barns.
Above 1 ev , the cross section was obtained by subtracting
the reaction cross section from the total cross section.
MT=3 Non-elastic
Sum of MT=4,16,24,102,103,103,105,107
MT=4 Total inelastic
Suin of MT=51 and 52.
$\mathrm{MT}=6,7.16$. 51. 52
The shape of the inelastic scattering cross section was
obtained from the statistical model calculation. The
absolute value was determined so that a sum of the
inelastic scattering and ($n, a 1$) reaction cross sections
might be equal to the ($n, 2 n$) reaction cross section in
JENDL-2. Optical potential parameters of Agee and Rosen
/9/ were used.

Level scheme
no
energy(MeV) spin-parity
g.s.
0.0
3/2-
$1.68 \quad 1 / 2+$
2.429 5/2-
$2.800 \quad 1 / 2+$
$3.06 \quad 5 / 2+$
$5 \quad 4.7 \quad 3 / 2+$
6 6.8 7/2-

```
7 7.9 5/2- .)
8 11.28 9/2- *)
9 11.81 7/2-*)
10 13.79 5/2--)
11 14.396 3/2- *)
-) Spin-parity value was tentatively assigned.
All the excited levels except 7.9 and 13.79 MeV ones
decay by emitting neutrons, contributing to the (n.2n)
cross section. Within the framework of the current
ENDF/B format. different MT numbers were assigned to
these levels.
\begin{tabular}{cl} 
MT no & level \\
6 & \(2 n d+3 r d+4 t h\) \\
7 & \(6 t h\) \\
16 & \(1 s t+5 t h+8 t h+9 t h+11 t h+c o n t\) \\
51 & \(7 t h\) \\
52 & \(10 t h\)
\end{tabular}
- The ( \(n, 2 n\) ) cross sections is givon as a sum of MT=6, 7. .
- 16 . and 24.
\(M T=24 \quad\) ( \(\mathrm{n}, 2 \mathrm{n}\) alpha)
This is the cross section for the ( \(n\).al) reaction. The 1 st excited level of \(\mathrm{He}-6\) decays by emitiing 2 neutrons the ( \(n, a 1\) ) cross section was calculated with the statistical model.
Alpha potential parameters are the following 110/:
\(V=125.0\), Ws \(=15.0\), \(V\) so \(=0.0\) ( MeV )
\(r=1.56 \quad r s=1.56, r c=1.22 \quad(\mathrm{fm})\)
\(a=0.50 \quad b=0.11 \quad(f m)\)
The cross section was normalized to the data of Perroud and Sellem /11/ at 14 MeV .
MT=46. 47 Sig-in
Same as MT=6. 7. respectively.
MT=102 Capture
Thermal cross section of \(7.6 \mathrm{E}-3\) barn was obtained from
the recommendation by Mughabghab et al./12/
\(1 / v\) curve was assumed over the whole energy range
\(M T=103 \quad(n, p)\)
Calculated with the statistical model.
Proton potential parameters are the following /13/: \(V=59.5-0.36 \mathrm{e} . \mathrm{W}_{\mathrm{s}}=12.0+0.07 \mathrm{E}, \mathrm{Vso}=4.9 \quad(\mathrm{MeV})\)
\(r=1.24 \quad, r s=1.36 \quad, r s o=1.2 \quad(f m)\)
\(r \mathrm{c}=1.3\) (fm) \(\mathbf{a}=0.63 \quad b=0.35 \quad\). aso \(=0.31 \quad(f m)\)
The cross section was normalized to the experimental data
of Augustson and Menlove /14/, who measured delayed
neutros, by taking account of the branching ratio
of \(49.5 \%\) for \(\mathrm{Li}-\mathrm{g} \Rightarrow \mathrm{Be}-9 . \Rightarrow 2 a+n\).
\(M T=104 \quad(n, d)\)
Based on the experimental data of Scobel /15/.
\(M T=105 \quad\) (n,t)
Sum of MT=740 and 741.
\(M T=107 \quad(n, a 0)\)
Based on the experimental data /10/./11/./16/-/19/.
MT=251 Mu-bar
Calculated from the data in file4.
```

```
    MT=740, 741 (n,t0).(n,t1)
        Calculated with the statistical model
        Triton potential parameters are the following /20/:
            V = 140.3 , Ws = 7.5 . Vso = 6.0 (MeV)
            r=1.20 , rs = 2.69, rso = 1.20, rc=1.30(fm)
            a=0.45 ,b = 0.36, aso = 0.7 (fm)
            Normalization was taken so that the total (n.t) cross
            section might be consistent with the experimental data
            of Boedy et al./21/
MF=4 Angular Distributions
    MT=2
            1.0E-5 eV to 50 keV Isotropic in CM.
            50 keV to 14 MeV Based on the experimental data
                                    /221-/27/.
                            14 MeV to 20 MeV Optical-model ca!culations using
                                the potential parameters of
                                    Agce and Rosen /9i.
    MT=6
            Logendre coefficients were derivod from tho experimontal
            data /27/.128/
    MT=7
            Statistical model calculation
    MT=16
            Ka/bach-Mann systematios/31/
    MT=24.46.47
            Calculated by assuming the two-step sequential reaction
            /29/.
MF=5 Energy Distribution
    MT=16
            Evaporation plus 3-body phase space
    MT=24. 46, 47
            Calculated by assuming the two-step sequential reaction
            /29/.
MF=12 Photon-Prcduction Multiplicities
    MT=102
            Based on the measurement of Jurney /30/.
    MT=741
                        m=1.0
MF=14 Photon Angular Distributions
    MT=102
        Assumed to be isotropic.
    MT=7!;
            I sotropic
References
    1) Shibata. K.: JAERI-M 84-226 (1984).
    2) Bockelman. C.K.: Phys. Rev. 80 (1950) 1011.
    3) Hibdon, C.T. and Langsdorf. Jr.. A.: Phys. Rev. 98 (1955) }223
    4) Bilpuch, E.G. et al.: Taken from EXFOR (i962).
    5) Schwartz, R.B. et al.: Bull. Am. Phys. Soc. 16 (1971) 495.
    6) Cabe. J and Cance, M.: CEA-R-4524 (1973).
    7) Foster, Jr. D.G. and Glasgow. D.W.: Phys. Rev. C3 (1971) }576
    8) Auchampaugh. G.F. et al.: Nucl. Sci. Eng. 69 (1979) }30
```

9) Agee. F.P. and Rosen, L.: LA-3538-MS (1966)
10) Shibata. K. and Shirato. S.: J. Phys. Soc. Jpn. 52 (1983) 3748
11) Perroud, J.P. and Sellem, Ch.: Nucl. Phys. A227 (1974) 330
12) Mughabghab. S.F. et al.: Neutron Cross Sections Vol.1. Academic Press. 1981.
13) Votava. H.J.et al.: Nucl. Phys. A204 (1973) 529
14) Augustson. R.H. and Menlove. H.O.: Nucl. Sci. Eng. 54(1974)190
15) Scobel. W.: 2. Naturforsch. A24 (1969) 289.
16) Battat. M.E. and Ribe, F.L.: Nucl. Phys. 89 (1953) 80.
17) Stelson. P.H. and Campbell. E.C.: Nucl. Phys. 106 (1957) 1252
18) Bass. R. et al.: Nucl. Phys. 23 (1961) 122
19) Paic. G. et al.: Nucl. Phys. A96 (1967) 476
20) Luedecke. H. et al.: Nucl. Phys. A109 (1968) 676
21) Boedy, 2.T. et al.: Proc. Int. Conf. Nuclear Data for Science and Technology. Antwerp 1982. (1983). p. 368
22) Marion, J.B.et al.: Phys. Rev. 114 (1959) 1584.
23) Levin. J.S. and Cranberg. L.: Takon irom EXFOR (1960).
24) Phillips. D.D. Tak on from EXFOR (1961)
25) Lane. R.O. et al.: Ann. Phys. 12 (1961) 135.
26) Lane. R.O. et al.: Phys. Rov. 133B (1964) 409
$27)$ Hoguo, H.H. et al.: Nucl. Sci. Eng. 68 (1978) 38
27) Jaba. M. et al.: Proc. Int. Conf. Neutron Physics and Nuclear Data for Reactors and Other Applied Purposes. Harwell 1978. (1979), p. 198.
28) Beynon. T.D. and Oastler. A.J.: Ann. Nucl. Energr 6(1979)537
29) Jurney, E.T.: Proc. Third Syrnp. Neutron Capture Gamma Rays. BNL 1978. (1979), p. 46.
30) Kalbarh. C. and Mann, F.M.: Phys. Rev. C23 (1981) 112.

MAT number $=3051$
5-B - 10 JAERI Eval-Mar87 S.Chiba

History
87-03 Newly evaluated by S.Chiba (4 AERI) for JENDL-3
88-11 Data for $M F=3(M T=1,2,3,4,51,103,107, i!3,780.781)$ were modifiec. Data for $M F=12(M T=102.781) . ~ M F=13(M T=4.103)$. $\mathrm{MF}=14(\mathrm{MT}=4.102 .103 .781)$ were added. Comment was also modified

$M F=1$	General Information
$M T=451$	Descriptive data and dictionary

MF=2 Resonance Parameters
$M T=151 \quad$ Scattering radius only
The $2200 \mathrm{~m} / \mathrm{s}$ and 14 MeV cross sections are in
Table 1.
$M F=3 \quad$ Neutron Cross Sections
MT=1 Total
Below 1.2 MeV. sum of the partial cross sections
1.2 to 17 MeV . based on the experimental date $/ 1 /-/ 9 /$
Above 17 MeV . optical model calculation was normalized at
17 MeV . The spherical optical potential parameters/10/
are listed in Table 2.
$M T=2 \quad$ Elastic scattering
Below 10 keV . based on the R-matrix calculation. The
R-matrix parameters are mainly based on ref./11/.
10 keV to 1.2 MeV , based on the experimental data/12/-
/14/.
Above 1.2 MeV, calculated by subtracting all the other
partial cross sections from the total cross section
MT=3 Non-elastic
Sum of $M T=4,16,102,103,104,107$ and 113.
MT=4 Total inelastic
Sum of MT=51 to 89.
$M T=16 \quad$ (n.2n)
Based on the experimental data $/ 15 /$. Cross section was
extrapolated as $0.0120 \cdot \operatorname{sqr}(E-E(h)$, where E is incident
neutron energy and Eth threshold energy in MeV. Note
that this reaction produces 1 proton and 2 alpha
particles. i.e. ($n, 2 n p$) 2alpha.
$\mathrm{MT}=51-59,61.62,64-66$. Inelastic scattering to real levels
Cross sections were calculated by the collective model
DWBA and normalized to the experimental data/16/ at 14
MeV. Calculated levels and assumed orbital angular
momentum transiers (1) ere summarized in Table 3
Data for MT=51 was normalized to the experimental
data/17/ below 6 MeV . Above 6 MeV . the deformation
parameter deduced from (p.p') reaction/18/ was used
$M T=60.63 .67-89$ ($n, n^{\prime} d$) 2 alpha continuum.
Represented by pseudo-levels, binned in 0.5 MeV intervals
The (n, n 'd) 2 alphe cross section was based on the
measurement of Frye+/19/. The cross section for each
level was calculated by the 3-body phase space
distribution. assuming isotropic center-of-mass

```
            angular distributions
MT=102 Capture
            1/v shape was normalized to the experimental data /20/.
MT=103 (n,p)
            Sum of MT = 700 to 705
MT=104 (n,d)
            Surm of MT = 720 and 721
MT=107 (n,alpha)
            Sum of Mi = 780 and 781. The thermal cross section of
            3837 barns was adopted/21/.
MT=113 (n,t)2alpha
            Based on the experimertal data /19/./22i-/29/
MT=251 Mu-bar
            Calculated from the data in file4
MT=700 (n,p) to the grourid state of Be-10
            Below 100 keV, assumed to be 1/v. The thermal cross
                section was assumed to be 3mb/30/.
            From 100 keV to 500 keV. assumed to be constant
            From 500 kev to 1 MeV. linearly interpolated
            Above 1 MeV, the statistical model calculalion was
                normalized by a factor of 0.704. The optical potontial.
                level schemes and level density parameters usod in the
                calculation are sirmarized in Tables 2. 3 and 4.
MT=701-705 (n.p) to the low lying excitod states of Be-10
            The statistica! model calculation was normalized to the
                experimental data/26/ at 14 MeV.
MT=720 (n,d0)
            Below 7.6 MeV, the inverse reaction cross sections/31/-
                /32/ were converted by the principle of detailed
            balance.
            From 7.6 to 14 MeV, interpolated linearly
            Above 14 MeV. DWBA calculation with the proton pickup
                mechanism was normalized to the experimental data.
                /33/-/34/ al 14 MeV. The d + Be-9 and bound protor:
                potentials of Valkovic+/34/ were used. Depth of the
                proton potential was searched by the separation energy
                method. The potential parameters are listed in Table 2.
MT=721 (n,d2)
            DWBA calculation with the proton pickup mechanism was
            normalized to the experimental data/26/,/33/-/34/ at 14
            MeV. This is really the (n.d) reaction to the second
                level of Be-g
MT=780. (n,alpha0)
Below 10 keV , R-matrix calculation.
From 10 keV to 800 keV . based on the experimental data /35/-/36:.
From 800 keV to 7.5 MeV . the experimental data/37/ were normalized by a factor of 1.38 and fitted by the spline function.
Above 7 MeV . the experimental datar \(26 /\) were adopted MT=781 (n.alpha1)
Below 10 keV . the R-matrix calculation.
From 10 keV to 100 keV . based on the experimental data/36/ 138/.
From 100 keV to 2 MeV . recommendation by Liskien and Wattecamps/39/ was adopted
From 2 to 7.5 MeV , the experimental data/37-40/ were
```

```
            normalized by a factor of 1.38 and litted by the spline
            function
                            Above }7\textrm{MeV}\mathrm{ . the experimental data/40/ was adopted
MF=4 Angular Distributions of Secondary Neutrons
    MT=2
            Below 100 keV, the R-matrix calculation
            From 100 keV to 6 MeV. ENDF/B-V was adopted
            Above 6 MeV. based on the optical model calculation.
    MT==16
            Calculated by the method of Nakagawa/41/
            Angular disiributions are given in the laboratory system
    MT=51-59, 61, 62, 64-66.
            DWBA calculation
    MT=60. 63. 67-89
            Assumed to be isotropic in CM
MF=5 Energy Distribution of Secondary Neutrons
    MT=16
            The ovaporation model was assumed. The ovaporation
                temperaturo was assumed to be i MoV at 14 MeV. It wos
                exirapolated as
                    t = 0.2673.sqrt(En) MeV.
            where En means the incident neutron energy in the
            laboratory system in MeV.
MF=12 Photon Multiplicities
    MT=102
            Multiplicities were given according to a compilation of
            Ajzenberg et al./43/. However, they were normalized
            for the total secondary gamma-ray energy to match the
            available energy in the final state.
    MT=781
            Multiplicity for the 0.478-MeV gamma-ray was given as
                1.0.
MF=13 Photon Production Cross Sections
    MT=4
            Experimental data/41,44/ were adopted for 0.4138-.
                        0.7183- end 1.0219-MeV gemma-rays. For 1.44- and
                            2.15-MeV gamma-rays. excitation function of the
                            0.4138-MeV gamma-ray production was normalized to the
            data/41/ et 14.8MeV. For 2.87-. 3.01-. 4.44- and
            6.03-MeV gamma-rays. shapes of the corresponding ( }n,\mp@subsup{n}{}{\prime}\mathrm{ )
            excitation functions in MF=3 were normalized to the
            data/41/ at 14.8MeV.
    MT=103
                    For 3.368- and 2.592-MeV gamma-rays, shapes of the
                    corresponding (n.p) excitation functions in MF=3
                were normalized to the experimental data/41/ at
                        14.8MeV.
MF=14 Angular Distribution of Secondary Photons
    MT=4,102,103.113
        Assumed to be isotropic.
```

References

1) Auchampaugh.G.F. et al.: Nucl. Sci. Eng. 69.30(1979)
2) Cook, C.5. et al.: Phys. Rev. 94, 651(1954).
3) Tsukada.K.: EXFOR 20324.003(1963)
4) Coon.J.H. et al.: Phys.Rev. 88. 562(1952).
5) Fossan.D.B. et al.: Phys.Rev. 123. 209(1961)
6) Cooksori.J.A. et al.: Nucl. Phys. A146. 417(1970).
7) Nereson,N.G. et al.: LA-1655(1954)
8) Becker.R.L. et al.: Phys.Rev. 102. 1384(1956)
9) Bockelman.C.K. et al.: Phys. Rev. 84. 69(1951)
10) Dave.J.H. et al.: Phys.Rev. C28.2112(1983)
11) Hausladen.S.L. et al.: Nucl. Phys. A217.563(1973).
12) Asami.A. et al.: J.Nucl.Energ. 24, 85(1970)
13) Lane.R.O. et al.: Phys. Rev. C4, 380(1971).
14) Willard.H.B. et al.: Phys. Rev. 98.669(1958)
15) Mather,D.S.: AWRE-0-47/69(1969)
16) Vaucher, B. et al.: Helv. Phys. Acta 43. 237(1970).
17) Porter D.: AWRE-0-45/70(1970)
18) Swiniarski, R.D. et al.: Helv. Phys. Acta 49, 277(1976).
19) Frye.G.M. et al.: Phys.Rov. 103, 328(1956).
20) Batholomew.g.a. et al.: Can.J.Phys. 35, 1347(1957).
21) Mughabghab, S.F. et al.: 'Neutron Cross Sections'. Vol. 1 Part A (Academic Press 1981. New York)
22) Wyman.M.E. et al.: Phys.Rev. 112. 1264(1958).
23) Klein.P.D. et al.: EXFOR 12654.002(1966).
24) Antolkovic.B. et al.: Nucl. Phys. A139. 10(1969)
25) Valkovic.V. et al: Nucl. Phys. A98, 305(1967).
26) Sellem,C. et al.: Nucl.Instrum.Meth. 128, 495(1975).
27) Cserpak,F. et al.: EXFOR 30474,003(1978).
28) Suhaimi.A. et al.: Radiochimica Acta 40. 113(1986).
29) Qaim.S.M. et al.: Proc. Int. Conf. Nucl. Data for Sci, and Technol., Mito. May 30 - June 3. 1988.
30) Eggler, et al. : In CINDA-A (1935-1976) Vol. 1 (1979)
31) Bardes.R. et al.: Phys.Rev. 120. 1369(1960).
32) Siemssen.R.H. et al.: Nucl. Phys. 69. 209(1965)
33) Ribe.F.L. et al.' Pisys.Rev. 94, 934(1954).
34) Valkovic.V. et al.: Phys.Rev. 139. b331(1965).
35) Olson.M.D. et al.: Phys.Rev. C30. 1375(1984).
36) Sealock.R.M. et al.: Phys.Rev. C13, 2149(1976)
37) Davis.E.A. et al.: Nucl. Phys. 27. 448(1961).
38) Schrack.R.A. et al.: Nucl.Sci.Eeng. 68, 189(1978)
39) Liskien.H. and Wattecamps. E.: Nucl.Sci.Eng. 68. 132(1978).
40) Viesti.G. et el.: Annals Nucl. Energ. 6. 13(1979).
41) Nellis R.O.: Phys.Rev. C1, 847(1970)
42) Nakagawa.T.: JAERI-M 84-103(1984)
43) Ajzenberg S.: Nucl.Phys. A248. 1(1975).
44) Dickens et al. : Proc. Int. Conf. Nucl. Data for Sci \& Technol., May 30- June 3. 1988. Mito. Jepan.
45) Watson.B.A. et al: Phys. Rev. 182. 977(1969)

Table 1 The $2200-\mathrm{m} / \mathrm{s}$ and 14 MeV cross sections

	$2200-m / s(b)$	$14 \mathrm{MeV}(b)$
elastic	2.144	0.943
(n, n')	0.003	0.269
(n.p)	0.0 .0.	0.038
(n.d)		0.047

(n, t)	0.012	0.095
$(n$, alpha)	3837.0	0.049
(n,2n)	$-\ldots-1$	0.027
capture	0.50	0.000
total	3839.7	1.467

Table 2 Optical potential parameters

```
B-10+n /10/
    V=47.91-0.346En, Ws=0.657 + 0.810En, Vso=5.5 (MeV)
    r=1.387 , rs=1.336 , rso=1.15 (fm)
    a=0.464 , as=0.278 . aso=0.5 (fm)
```

```
\(\mathrm{Be}-10+\mathrm{p} / 45 /\)
```

$\mathrm{Be}-10+\mathrm{p} / 45 /$
$V=60.0+27.0(N-Z) / A-0.3 E c m \quad(\mathrm{MeV})$
$V=60.0+27.0(N-Z) / A-0.3 E c m \quad(\mathrm{MeV})$
$W_{s}=0.64 E \mathrm{~cm}+10.0(N-Z) / A \quad .(E c m<13.8 \mathrm{MeV})(\mathrm{MeV})$
$W_{s}=0.64 E \mathrm{~cm}+10.0(N-Z) / A \quad .(E c m<13.8 \mathrm{MeV})(\mathrm{MeV})$
$=9.60-0.06 \mathrm{Ecm}+10.0(\mathrm{~N}-Z) / \mathrm{A} .(\mathrm{Ecm}>13.8 \mathrm{MeV})(\mathrm{MeV})$
$=9.60-0.06 \mathrm{Ecm}+10.0(\mathrm{~N}-Z) / \mathrm{A} .(\mathrm{Ecm}>13.8 \mathrm{MeV})(\mathrm{MeV})$
$V \mathrm{so}=5.5$ (MeV)
$V \mathrm{so}=5.5$ (MeV)
$r=r s=r s o=1.16 \quad(f m)$
$r=r s=r s o=1.16 \quad(f m)$
$a=a s o=0.57, a s=0.5(f m)$

```
    \(a=a s o=0.57, a s=0.5(f m)\)
```

$B e-9+d / 34 /$
$V=80.0, W_{V}=30.0, \quad V_{s o}=6.0 \quad(\mathrm{MeV})$
$r=1.0$, $r v=1.0, r \operatorname{sol}=1.0, r c=1.3(\mathrm{fm})$
$a=1.0$, $a v=0.8$, aso=1.0 (fm)

Table 3 Level schemes used in the DWBA or statistical model calculation

B-10				$\mathrm{Be}-10$		
MT	Energy	JP	1	MT	Energy	JP
	(MeV)				(MeV)	
2	0.0	$3+$		700	0.0	$0+$
51	0.7183	$1+$	2	701	3.368	$2+$
52	1.7402	$0+$	4	702	5.958	$2+$
53	2.154	$1+$	2	703	5.960	1-
54	3.587	2+	2	704	6.179	$0+$
55	4.774	$3+$	2	705	6.263	2-
56	5.110	2-	3			
57	5.163	2+	2			
58	5.18	$1+$	2			
59	5.920	$2+$	2			
61	6.025	4+	2			
62	6.127	3-	3			
64	6.561	$3+$	2			
65	6.881	1-	3			
66	7.00	$1+$	2			
	7.430	1-				
	7.470	$1+$				
	7.477	2-				
	7.560	$0+$				
	7.670	$1+$				
	7.840	1-				
	8.070	2-				

Table	Level density parameters used in the statistical model calculation				
	$\mathrm{a}(1 / \mathrm{MeV})$	t (MeV)	$\mathrm{c}(1 / \mathrm{MeV})$	pair. (MeV)	ex(MeV)
B-10	1.196 1.088	5.581 5.866	0.066 0.021	0.0	16.17 19.63
Be-10	1.088	5.866	0.021	5.13	19.63

MAT number $=3057$

5-B-11 JAERI	Eval-May88 T. Fukahori
JAERI-M 89-046	Dist-Sep89

History
87-03 Newly evaluated by T.Fukahori (JAERI)
88-05 Revised by T. Fukahori (JAERI) (n,d).(n.nd).(n,t).(n.nt) and (n,n2a) added

MT=1 Total cross section
Below 1 MeV. calculated with the multi-level Breit-Wigner formula and the resonance parameters taken from ref. /1/. In the range of 1 to 4 MeV , based on the R-matrix calculation which was performed by using Koehler et al.'s parameters $/ 2 /$. Above 4 MeV , smooth curve was obtained by fitting 10 the experimental data of Auchampaugh et al./3/.
MT=2 Elastic scattering cross section
Below 1 MeV based on the multi-level Breit-Wigner formula. In the range of 1 to 2.2 MeV . the R-matrix calculation was adopted. Above 2.2 MeV . the cross section was obtained by subtracting the reaction cross sections from the total cross section.
MT=4 Total inelastic scattering cross section Sum of $M T=51-57$ and 9:.
MT=16 (n,2n)B-10 cross section
Calculated with GNASH /4/. The opticel potential parameters, the level density parameters and the level scheme are shown in Tables 1-3, respectively.
MT=22 (r.n'alpha)Li-7 ross section Calculateci with GNASH. The optical potential parameters. the level density parameters and the level scheme are shown in Tables 1-3. respectively.
MT=28 (n.n'r)Be-10 cross section
Based on the GNASH calculation. The parameters used are listed in Tables 1-3.
$M T=29 \quad\left(n, n^{\prime} 2\right.$ alpha)t cross section
Based on ($n, n^{\prime} t$) cross section of the GNASH calculation and normalized to He production cross section of Kneff et al. /5/.
MT=32 (n.n'd)Be-9 cross section
Based on the GNASH calculation. The parameters used are listed in Tables 1-3
MT=33 (n.n't)Be-8 cross section
Based on the GNASH calculation. The parameters used are

```
    listed in Tables 1-3
    MT=51 Inelastic scattering
    The R-matrix calculation with Koehler et al s parameters
    was adopted below 7 MeV. Above }7\textrm{MeV}\mathrm{ . the GNASH and DWBA
    calculations were performed. The sum of both resulis
    was adopted, and normalized to the experimental data of
    Koehler et al. /2/ and Glendinning et al./6/
MI=52.53 Inelastic scattering
    Below }7\textrm{MeV}\mathrm{ , based on the R-matrix calculation with
    the searched parameters. Above }7\textrm{MeV}\mathrm{ . the sum of the GNASH
    and DWBA calculations was adopted, and fitted to the
    experimental data of Glendinning et al
MT=54-57 Inelastic scettering
    The sum of results of the GNASH and DWBA calculations was
    normalized to the resull of OKTAVIAN's DDX data /7;
MT=91 Continuum inelastic scattering
    Above 7.2 MeV, continuum lovels were adopted
    Based on the GNASH calculation.
MT=102 Capture cross section
    Calculated from the multi-lovol Breit-Wigner formula
    The direct cepture /1/ is also considered
MT=103 (n,p)Be-11 cross section
    Based on the GNASH calculation with being normalized to
    the experimental data of Stepancic et al. /8/. The
    parameters used are shown in Tables 1-3
MT=104 (n.d)Be-10 cross section
    Based on the GNASH calculation.
MT=105 (n,t)Be-9 cross section
    Based on the GNASH calculation.
MT=107 (n,alpha)Li-8 cross section
    The GNASH calculation was performed, and normalized to the
    experimental data of Antolkovic et al. /9/ and
    Scobel et al. /10/. The parameters used are shown in
    Tables 1-3.
MT=251 Mu-har
    Calculated from the data in MF=4.
MF=4 Angular Distributions of Secondary Neutrons
    MT=2
        The R-matrix and DWBA celculations were adopted below
        8 MeV and above 8 MeV. respectively.
    MT=16,22,28,29,32,33,91
            Assumed to be isotropic in the center of mass system.
    MT=-51.52.53
            Below 8 MeV based on R-matrix calculation. Above 8 MeV.
            besed on the DWBA and the GNASH calculations.
    MT=54.55.56.57
            Based on the DWBA and the GNASH calculations.
MF=5 Energy Distributions of Secondery Neutrons
    MT=16.22.28.29.32.33.91
    Based on the GNASH calculation.
MF=12-15 Gamma-ray Deta
    Based on the GNASH calculation.
```

 Table 1 The optical potential parameters

Table 3 The level scheme (energy(MeV). spin and parity) /17-18/

	B-10		B-11		$\mathrm{Be}-10$		$\mathrm{Be}-11$		Li-7		Li-8	
gs	0.0	$3+$	0.0	3/2-	0.0	0+	0.0	1/2+	0.0	3/2-	0.0	$2+$
1	0.718	$1+$	2.125	1/2-	3.368	$2+$	0.320	1/2-	0.478	1/2-	0.981	$1+$
2	1.740	0+	4.445	5/2-	5.958	2+			4.630	7/2-		
3	2.154	$1+$	5.020	3/2-	5.960	1-			6.680	5/2-		
4	3.587	$2+$	6.743	7/2-	6.179	0+			7.460	5/2-		
5	4.774	$3+$	6.792	1/2+	6.263	2-			9.670	7/2-		
6	5.110	2-	9.120	7/2+	7.371	3-			9.850	3/2-		
7	5.164	$2+$	10.60	7/2+	7.452	2+			11.240	3/2-		
8	5.180	$1+$			9.270							
9	5.926	2+			9.400	$2+$						
10	6.025	4+										
11	6.127	3-										
12	6.561	4-										
13	6.873	$1-$										
14	7.002	$2+$										
15	7.430	2-										

16	7.467	$1+$
17	7.479	$2+$
18	7.561	$0+$
19	7.670	$1+$
20	7.819	$1-$
21	8.070	$2+$
22	8.700	$2+$
23	8.889	$3-$
24	8.895	$2+$

Feferences

1) Mughabghab S.F. et al. : 'Neutron Cross Sections' Vol. 1 Part A (Academic Press 1981. New York)
2) Koehler P.E. et al.: Nucl. Phys. A394 (1983) 221
3) Auchampaugh G.F. et al.: Nucl. Sci. Eng. 69 (1979) 30
4) Young P.G. et al.: GNASH, A preequilibrium, statistical nuclear-model code for calculation of cross section and emission spectra. LA-6947 (1977)
5) Kneff D.W. At al.: Nucl. Sci. Eng 92 (1986) 491
6) Glendinning S.G. et al.: Bull. Am. Phys. Soc. 24 (1979) 656
7) Takahashi. A. et al.: $\operatorname{INDC}(J P N)-103 / L(1986)$
8) Stepancic B.Z. et al.: Bull. Inst. Boris Kidric 17 (1966) 237
9) Antolkovic B.et al.: Nucl. Phys. A325 (1979) 189
10) Scobel W. et al.: Zeitschrift f. Naturforschung. Section A 25 (1970) 1406
11) Cookson J.A. et al.: Nucl. Phys. A146 (1970) 417
12) Glendinning S.G. et al.: Nuci. Sci. Eng. 80 (1982) 256
13) Watson B.A. et al.: Phys. Rev. 182 (1969) 977
14) Miljanic D. et al.: Nucl. Phys. A176 (1971) 110
15) Herling G.H. et al.: Phys. Rev. 178 (1969) 178
16) Matsuki S. et al.: J. Phys. Soc. Japan 26 (1969) 1344
17) Ajzenberg-Selove F. : Nucl. Phys. A413 (1984: 1
18) Ajzenberg-Selove F. : ibid. A433 (1985) 1

MAT number $=3061$

$M T=1 \quad$ Sig-t

Below 10 eV , sum of Sig-el and Sig-cap
Between 10 eV and 4.8 MeV . the cross section was calculated on the basis of the R-matrix theory. The R-matrix parameters were obtained so as to give the best fit to the experimental data /2/-/7/.
Above 4.8 MeV , based on the measurements /8/-/10/.
$M T=2 \quad$ Sig-el
Below 10 eV . Sig-el $=4.746$ barns.
Above 10 eV . the cross section was obtained by subtracting the reaction cross section from the total cross section.
MT=3 Non-elastic
Sum of MT=4, 102. 103. 104 and 107.
MT=4 Total inelastic
Sum of $M T=51,52.53$ and 91.
MT=51 Sig-in 4.44 MeV level
Based on the experimental data of Morgan et al./11/.
MT=b2 Sig-in 7.65 MeV level
The cross section was estimated so that the elastic scattering cross section given as the difference between the total and reaction cross sections might be consistent with experimental data. Taking account of the measurement 133/, the cross section was modified by muliiplying a factor of 0.5
$M T=53 \quad$ Sig-in 9.63 Me \' level $^{\prime}$
Based on the experimental data of Antolkovic et al./12/. Taking account of the measurement of Ono et al./31/. the cross section was modified by a factor 0f 0.8.
MT=91 (n, n')3a
Based on the experimental data of Antolkovic et al./121.

```
            Total (n.n')3a cross section is the sum of MT=52, 53
            and 91
    MT=102 Capture
            Below 100 kev. 1/v curve.
            Above 100 keV, the inverse reaction data of Cook /13/ were
            added.
    MT=103 (n,p)
            Based on the measurement of Rimmer and Fisher /14/.
    MT=104 (n,d)
            Calculated with DWBA.
    MT=107 (n,a)
            Based on the experimental data /15/-/23/
MT=251 Mu-bar
            Calculated from the data in file4.
MF=4 Angular Distributions of Secondary Neutrons
    MT=2
            Below 10 eV. isotropic in the center-of-mass system (CM).
            Between 10 eV and 4.8 MeV. calculated with tho R-matrix
            theory
            Above 4.8 MeV. based on the experimental date /24/-/28/
    MT=51
            Based on the experimental data /24/-/28/
    MT=52, 53
            Based on the experimental data /31//32/.
    MT=91
            Isotropic distributions in CM were transformed into
            the ones in the laboratory system. The formula is given
            in ref /30/.
```

```
MF=5 Energy Distribution of Secondary Neutrons
```

MF=5 Energy Distribution of Secondary Neutrons
MT=91
MT=91
Evaporation spectrum.
MF=12 Photon-Production Multiplicities
MT=51 (n, n')gamma
m=1.0
MT=102 (n,gamma)
Based on the measurement of Spilling et al./29/
MF=14 Photon Angular Distributions
MT=51
Based on the experimental data of Morgan et al./11/.
MT=102
Assumed to be isotropic.
References
1) Shibeta, K.: JAERI-M 83-221 (1983).
2) Meadows, J.W. and Whalen. J.F.: Nuci. Sci. Eng. 41 (1770) 351.
3) Cabe. J. and Cance. M.: CEA-R-4524 (1973)
4) Stooksberry, R.W. and Anderson, J.H.: Nucl. Sci. Eng. 51
(1973) 235.
5) Heaton. II, H.T. et al.: Nucl. Sci. Eng. 56 (1975) 27
6) Nishimura, K. et al.: JAERI-M 6883 (1977)
7) Smith. A. et al.: Nucl. Sci. Eng. 70 (1979) 281.
B) Lamaze. G.P. et al.: Bull. Am. Phys. Soc. 24 (1979) }86
9) Auchampaugh. G.F. et al.: Nucl. Sci. Eng. 69 (1979) }30

```
10) Cierjacks. S.et al.: Nucl. Instrum. Meth. 169 (1980) 185
11) Morgan. G.L. et al.: ORNL-TM-3702 (1972).
12) Antolkovic. B. et al.: Nucl. Phys. A394 (1983) 87
13) Cook, B.C.: Phys. Rev. 106 (1957) 300
14) Rimmer, E.M. and Fisher, P.S.: Nucl. Phys. A108 (1968) 567.
15) Chatterjee. M.L. and Sen. B.: Nucl. Phys. 51 (1964) 583
16) Huck, A. et al.: J. de Physique C1 (1966) 88
17) Brendle, M. et al.: Z. Naturforsch. 23A (1968) 1229
18) Kitazawa. H. and Yamamuro. N.: J. Phys. Soc. Jpn 26(1969)600
19) Kardonsky. S.et al.: Phys. Rev. C4 (1971) 840.
20) Stevens, A.P.: INIS-MF-3596 (1976)
21) Retz-Schmidt. T. et al.: Bull. Am Phys. Soc. 5 (1960) 110
22) Verbinski. V.V.et al.: Phys. Rev. 170 (1968) 916
23) Obst. A.W. et al.: Phys. Rev. C5 (1972) 738
24) Deconninck. G. and Meulders, J. -P.: Phys. Rev. C1 (1970) 1326
25) Galati. W. et al.: Phys. Rev. C5 (1972) 1508
26) Velkley. D.E., et al.: Phys. Rev. C7 (1973) 1736
27) Haouat, G. et al.: CEA-R-4641 (1975).
28) Thumm, M. et al. : Nucl. Dhys. A344 (1980) 446
29) Spilling. P. et al.: Nucl. Phys. Al13 (1968) 395
20) Nakagawa T.: JAERI-M 84-103 (1984)
31) Ono M. et al.: Fall Mig of the Atomic Energy Society of Japan. 1984
32) Takahashi A. et al.: Proc. Int. Conl. Nuclear Data for Science and Technology. Antwerp, 1982, (1983) 360
33) Takahashi a.et al.: Proc. the 1987 Seminar on Nuclear Data. JAERI-M 88-065. p.279, (19883)
```

 7-N - 14 JNDC Eval-Jun89 Y.Kanda(KYU) T.Murata(NAIG)+
 Dist-Sep89
 History
89-06 New evaluation for JENDL-3
Sub-working group on evaluation of N-14.
working group on nuclear data for fusion.
Japanese Nuclear Data Committee
In charge
Sig-t K.Shibata (JAERI)
Sig-el T.Asami (JAERI). T.Murata (NAIG)
Sig-in T.Asami. T.Murata
(n,2n),(n,p),(n,t),(n,a)
Y.Kanda(KYU)
(n,na).(n,np).(n,nd).(n,d)
T. Asami
Capture T.Asami
Photon production
T. Asemi
Compilation
Evaluated data were compiled by T.Fukahori

```
\(M F=1 \quad\) General Infarmetion
    \(M T=451\) Descriptive data
\(M F=2 \quad\) Resonance Parameters
    \(M T=151\) Scattering radius only.
MF=3 Cross Sections
                Calculated \(2200 \mathrm{~m} / \mathrm{s}\) cross sections and res. integ.
                                \(2200 \mathrm{~m} / \mathrm{s}\) (b) res.integ. (b)
        total 11.851
        elastic 10.007 -
        \(\begin{array}{lll}\text { capture } 0.075 & 0.0034\end{array}\)
    MT=1 \(\quad\) Sig-t
            Below 1 eV, a sum of partial cross sections.
            Above 1 eV , based on the experimental data/1,2,3.4/.
    MT=2 Sig-el
            Below 1 eV, sig-el \(=10\) barns.
            Above 1 eV , the elastic scattering cross section was
            obtained by subtracting the reaction cross sections from
            the total cross section.
    MT=4 Total inelastic
        Sum of MT=51 to 91 .
    \(M T=16 \quad(n, 2 n)\)
            Based on experimental data/5/-/7/.
    MT=?2 (n, n alpha)
        Calculated with the GNASH code/8/.
    \(M T=28 \quad\) (n.np)
            Calculated with the GNASH code/8/, and normalized
            to the experimental data/9/.
\(\mathrm{MT}=32 \quad\) ( n , nd)
            Calculated with the GNASH code/8/.
MT=51-64.91 Sig-in
            The cross sections were calculated with the statistical
```

 model The low-energy portion was analyzed with the
 resonance theory/10/. For MT=51 to 59, the direct
 interaction was considered by using DWBA.
 The optica! potential parameters used are the following:
 /11/
 V = 50.08-0.01E. Ws = 9.0 + 0.62E. Vso = 5.5 (MeV)
 r=1.22 , rs=1.45 , rso = 1.15 (.m)
 a=0.66 , b = 0.13, aso = 0.50(fm).
 level scheme
 no
 1. 2.3129 0+
 2. 3.9478 1 +
 3. 4.9150 0-
 4. 5.1059 2-
 5. 5.6900 1-
 6. 5.8320 3-
 7. 6.2040 1+
 8. 6.4440 3+
 9. 7.0280 2+
 10. 7.9670 2 -
 11.8.0620 1 -
 12. 8.4880 4 -
 13. 8.6180 0+
 14. 8.7900 0 -
 Continuum levels were assumed above 8.91 MeV
 MT=102 Capture
 Calculated with the CASTHY code/12/.
 MT=103 (n,p)
 Below }7\textrm{MeV}\mathrm{ , based on experimental data/13/-/18/.
 Above }7\textrm{MeV}\mathrm{ , based on the calculations with GNASH.
 MT=104 (n,d)
Below 8.5 MeV, based on the experimental data/19/.
Above 8.5 MeV, calculated with GNASH.
MT=105 (n,t)
Below 9 MeV, based on the experimental data/20/.
Above 9 MeV. calculated with GNASH and normalized
at 9 MeV.
MT=107 (n.alpha)
Based on the experimental data/17//20/.
MT=108 (n,2alpha)
Calculated with GNASH and normalized at 14.1 MeV to an
average value among the experimental data/21//22/.
MT=251 Mu-bar
Calculated from angular distributions in MF=4.
MT=780 (n, alpha0)
Based on experimental data.
MT=781 (n, alpha1)
Based on experimental data.
MT=798 (n, alpha) continuum
Based on experimental data.
MF=4 Angular Distributions of Secondary Neutrons
MT=2
10E-5 eV to 8 MeV Calculated with the resonance theory.
8 MeV to 20 MeV Calculated with CASTHY.
MT=16,22,28,32

```
```

 Assumed to be isotropic in the laboratory system
 MT=51-64
 Calculated with CASTHY.
 For MT=51.52,59, the direct interaction was considered
 by using DWBA.
 MT=91
 Symmetric distributions in the Iab.system.
 MF=5 Energy Distribution for Secondary Neutrons
MT=16,22,28,32,91
Calculated with GNASH.
MF=12 Photon Production Multiplicities
NT=102.103
Calculated with GNASH.
For MT=102, modified by using the levol scheme data of
N-15/23/ at thermal onergy.
MF=13 Photon Production Cross Sections
MT=3
Calculated with GNASH
MF=14 Photon Angular Distributions
MT=3,102,103
Isotropic
MF=15 Photon Energy Distributions
MT}=3.102.10
Calculated with GNASH.
For MT=102, modified by using the experimental data/24/
.at thermal energy.
References

1) Melkonian E.: Phys. Rev., 76, 1750 (1949).
2) Bilpuch E.G. et al.: Bull. Am. Phys. Soc.. 4. 42 (1959).
3) Bilpuch E.G. et al.: Taken from EXFOR (1962).
4) Heaton, Il H.T. et al.: Bull. Am. Phys. Soc., 15, 568 (1970).
5) Ferguson J.W. et al.: Phys. Rev., 118, 228 (1960).
6) Bormann N. et al.: Nucl. Phys.. 63. 438 (1965).
7) Ryves T.B. et al.: J. Phys., G4. 1783 (1978).
8) Young P.G. and Arthur E.D.: LA-6947 (1977).
9) Csikai J. and Nacy S.: Nucl. Phys.. A91. 222 (1967).
10)Murata T.: Proc. Int. Conf. Nuclear Data for Science and
Technology. Mito, 1988, p.557, (1988).
11)Templon J.A. et al.: Nucl. Sci. Eng.. 91. 451 (1985).
12)Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1975).
13)Batchelor R.: AERE-N/R-370 (1949).
14)Coon J.H. et al.: Phys. Rev.. 75, 1358 (1949)
15)Cure P. et al.: J. Phys. Radium.. 12. 6 (1951).
16)Hanna G.C. et al.: Can. J. Phys.. 39. 9784 (1969).
17)Morgan G.L. et al.: Nucl. Sci. Eng.. 70, 163 (1979).
18)Felber H. et al.:Z. Phys., A276. 75 (1976).
19)Chase. Jr L.F. et al.: AFSWC-TR-61-15 (1961).
20)Gabbard F. et al.: Nucl. Phys., 14. 277 (1959).
21)Lillie A.B.: Phys. Rev.. 87, 726 (1952).
22)Schmidt G. et al.: Nucl. Phys.. A103. 238 (1967).
23)Bartholomew G.A. et al.: Nucl. Data Tables. A3. 367 (1967).
```
24) Maerker R.E.: ORNL/TM-5203 (1976).

MAT number \(=3072\)
```

 7-N-15 Eval-Dec88 T.Fukahori
 JAERI-M 89-047
Dist-Sep89
HISTORY
88-12 Newly Evaluated by T.Fukahori (JAERI)
MF=1 General Information
MT=451 Descriptive Data and Dictionary
MF=2 Resonance Parameters
MT=151 MLBW parameters are given.
Below 5.5 MeV. parameters of the multi-level Breit-Wigner
formula /1.2/ are adjusted to reproduce the experimental
data of B.Zeitnitz et al./3/.
2200 m/sec cross sections and resonance integrals
2200 m/sec Res. Integ
total 4.590 b
elastic 4.590 b -
capture 0.024 mb 0.016 mb
MF=3 Cross Sections
Below 5.5 MeV, background cross section for MLBW
calculation is given. Above 5.5 MeV. smooth curve was
obtained by fit*ing to the experimental data of
B.Zeitnitz et al./3/.
MT=2 Elastic Scattering Cross Section
Below 5.5 MeV, background cross section for MLBW
calculation is given. Above 5.5 MeV. the cross section
was obtained by subtracting the reaction cross sections
from the total cross section
MT=4 Total Inelastic scattering Cross Section
Sum of MT=51-66 and 91.
MT=16,22,28,32,33,103,104,105,107
Calculated with GNASH /4/. The optical potential
potential parameters. the level density parameters and
the level scheme are shown in Tables 1-3, respectively.
MT=51-91 Inelastic Scattering
Calculated with CASTHY /5/. The parameters are also
shown in Tables 1-3.
MT=102 Capture Cross Section
Above 5.5 MeV, the cross section was obtained by
CASTHY calculation.
MT=251 Mu-Bar
Calculated from the data in MF=4.
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-66
Based on the CASTHY calculation.
MT=16, 22, 28,32,33,91
Assumed to be isotropic in the center of mass system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28.32,33,91
Based on the GNASH calculation.

```


Table 2 The Level Density Parameters
\begin{tabular}{ccccc} 
& \(a(1 / \mathrm{MeV})\) & \(T(\mathrm{MeV})\) & Pair. \((\mathrm{MeV})\) & \(\mathrm{Ex}(\mathrm{MeV})\) \\
\hdashline \(\mathrm{B}-1 i\) & 1.431 & 6.149 & 2.67 & 25.58 \\
\(\mathrm{~B}-12\) & 1.491 & 6.201 & 0.0 & 26.78 \\
\(\mathrm{C}-12\) & 1.700 & 5.971 & 5.60 & 37.91 \\
\(\mathrm{C}-13\) & 1.846 & 5.382 & 2.80 & 30.57 \\
\(\mathrm{C}-14\) & 1.988 & 4.887 & 5.00 & 28.94 \\
\(\mathrm{C}-15\) & 1.988 & 4.600 & 0.0 & 19.28 \\
\(\mathrm{~N}-14\) & 1.600 & 5.000 & 0.0 & 10.00 \\
\(\mathrm{~N}-15\) & 2.130 & 3.758 & 2.20 & 10.07 \\
\(\mathrm{~N}-16\) & 2.130 & 4.547 & 0.0 & 22.11 \\
\hline
\end{tabular}

Table 3 The Level Scheme (Energy(MeV). Spin and Parity) /2.8.9/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{N-14} & \multicolumn{2}{|l|}{N-15} & \multicolumn{2}{|l|}{N-16} & \multicolumn{2}{|l|}{C-15} & & C-1 & 14 & \multicolumn{2}{|l|}{C-13} \\
\hline gs & 0.0 & \(1+0\) & 0.0 & 1/2- & 0.0 & 2- & 0.0 & 1/2+ & \(+0\) & 0.0 & 0+ & 0.0 & 1/2- \\
\hline 1 & 2.313 & \(0+5\) & 5.270 & 5/2+ & 0.120 & & 0.740 & 5/2+ & + 6 & 6.094 & 4 1- & 3.089 & 1/2+ \\
\hline 2 & 3.948 & \(1+5\) & 5.299 & 1/2+ & & & & & & 6.589 & 9 0+ & 3.685 & 3/2- \\
\hline 3 & 4.915 & 0-6 & 6.324 & 3/2- & & & & & & 6.728 & 8 3- & 3.854 & 5/2+ \\
\hline 4 & 5.106 & 2-7 & 7.155 & 5/2+ & & & & & & 6.903 & 3 0- & & \\
\hline 5 & 5.691 & 1-7 & 7.301 & 3/2+ & & & & & & . 012 & 2 2+ & & \\
\hline 6 & 5.834 & 3-7 & 7.567 & 7/2+ & & & & & & 7.341 & 1 2- & & \\
\hline 7 & 6.204 & \(1+8\) & 8.313 & 1/2+ & & & & & & & & & \\
\hline 8 & 6.446 & \(3+8\) & 8.571 & 3/2+ & & & C-1 & & & -11 & & B-12 & \\
\hline 9 & 7.029 & \(2+9\) & 9.050 & 1/2+ & & & & & & & & & - \\
\hline 10 & & & 9.152 & 3/2- & gs & & 0.0 & \(0+0\) & 0.0 & & 3/2- & 0.0 & \(1+\) \\
\hline 11 & & & 9.155 & 5/2+ & 1 & & & & 2.1 & 251 & 1/2-0 & 0.953 & 2+ \\
\hline 12 & & & 9.225 & 1/2- & 2 & & & & 4.4 & 4455 & 5/2-1 & 1.674 & \\
\hline 13 & & & 9.758 & 5/2- & 3 & & & & 5.02 & 120 & 3/2- & 2.620 & 1- \\
\hline 14 & & & 9.829 & 7/2- & 4 & & & & 6.74 & 437 & 7/2- & 2.720 & \(0+\) \\
\hline 15 & & & 9.928 & 3/2- & 5 & & & & 6.79 & 7931 & 1/2+ & & \\
\hline
\end{tabular}

\section*{REFERENCES}
1) Mughabghab S.F. et al. : 'Neutron Cross Sections' Vol. 1 Part A (Academic Press 1981. New York)
2) Ajzenberg-Selove F.: Nucl. Phys. A460 (1986) 1
3) Zeitnitz B.et al.: KFK-1443 (1971)
4) Young P.G. et al.: GNASH. A preequilibrium, Statistical Nuclear-Model Code for Calculation of Cross Section and Emission Spectra, LA-6947 (1977)
5) Igarasi S.: J. Nucl. Sci. Technol. 12 (1975) 67
6) Perey F.G.: Phys. Rev. 131 (1963) 745
7) Becchetti Jr. F.D. and Greenlees G.W.: 'Polarization Phenomena in Nuclear Reactions'. The University of Wisconsin Press (1971)
8) Ajzenberg-Selove F.: Nucl. Phys. A449 (1986) 1
9) Ajzenberg-Solove F.: Nucl. Phys. A433 (1985) 1

8-0 - 16 JNDC Eval-Dec83 Y.Kanda(KYU) T.Murata(NAIG)+
Dist-Sep89

\section*{History}

83-12 New evaluation for JENDL-3
Sub-working group on evaluation of 0-16.
working group on nuclear data for fusion.
Japanese Nuclear Data Committee
In charge
Sig-t Y.Nakajima K.Shibata(JAERI)
Sig-e \(1 \quad\) T.Murata(NAIG)
Sig-in S.Tanaka(JAERI)
Cafture T.Asami(JAERI)
(n.2n).(n.p).(n.d).(n.alpha) Y.Kanda(KYU)

Compilation
Evaluated data were compiled by K Shibata
84-07 Data of \(M F=4\) ( \(M T=16.91\) ) worc revised.
Comment was also modifiod.
87-01 Data of \(M F=3\) ( \(M T=51-64.67\) ), \(M F=1\) ( \(M T=51-55\) ) and \(M F=5\) ( \(M T=16\) ) were modified (S.Chiba, JAERI). Comment was also modified

MF=1 General Information
MT=451 Descriptive data
MF=2 Resonsence Parameters
MT=151 Scattering radius only
MF=3 Cross Sections
Calculated \(2200 \mathrm{~m} / \mathrm{s}\) cross sections and res. integrals \(2200 \mathrm{~m} / \mathrm{s}\) (b) res. integ. (b)
total 3.780
elastic 3.780
capture 1.9E-4
8. \(56 E-5\)
\(M T=9 \quad\) Sig-t
Below 3 MeV , the total cross section was calculated with the R-matrix theory.
Above 3 MeV , based on the experimental data of
Cierjacks et al./1/.
MT=2 Sig-el
Below 3 MeV , calculated with the R-matrix theory.
Above 3 MeV , the elastic scattering cross section was obtained by subtracting the reaction cross sections from the total cross section.
MT=3 Non-elastic
Sum of MT=4, 16, 102, 103, 104 and 107.
MT=4 Total inelastic
Sum of MT=51 to 91.
\(M T=16 \quad(n .2 n)\)
Based on experimental data/2/.
MT=5i-79.91 Sig-in
Shape of the excitation functions was calculated with the statistical model.
The optical potential parameters are the following:
\(V=48.25-0.053 E . \quad W_{s}=3.0+0.25 E . \quad V\) so \(=5.5 \quad(\mathrm{MeV})\)
\(r=1.255 \quad, r s=1.352 \quad, r s o=1.15(\mathrm{fm})\)
```

 a=0.536 , b = 0.205 aso = 0.50(fm)
 level scheme
 go en
 energy(MeV) spin-parity
 g.s.
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 1 1
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29 14.400 5+
 Continuum levels were assumed above 14.4 MeV.
 Constant temperature of 3.4 MeV was used.
 For the inelastic scattering to the second and third
 levels. the (n.n')gamma data of Nordborg et al./3/ and
 Lundberg et al./4/ below 10MeV.
 For MT=51 to 55, the 14 MeV cross sections were
 normalized to the experimental data/5/-/8/.
 Cross sections for MT=56-64 and 67 were normalized to
 reproduce the DDX data at 14 MeV/8/./9/.
 MT=102 Capture
 1/v curve normalized to the recommended value in the
 4th edition of BNL-325 /10/ at 0.0253 eV.
 MT=103 (n,p)
 Based on experimental data/11/-/14/.
 MT=104 (n.d)
 Based on the evaluation of Foster. Jr. and Young 115/.
 MT=107 {n,a|pha)
Based on experimental data/3/./16/-/21/.
MT=251 Mu-bar
Calculated from angular distributions in MF=4.
MF=4 Angular Distributions of Secondary Neutrons
MT=2
10e-5 eV to 3 MeV R-matrix calculation

```
```

 3 MeV to 5 MeV Based on the experimental data of
 Lister and Sayres /22/.
 5 MeV to 9 MeV Multi-level formula/23/.
 9 MeV to 15 MeV Based on the experimental data of
 Glendinning et al./24/
 15 MeV to 20 MeV Calculated with the spherical
 optical model. The potential
 parameters are the same as those
 given in Sig-in.
 MT=16
 Assumed to be isotropic in the laboratory system.
 MT=51-79
 Calculated with the statistical model.
 For MT=51, 52 and 55, experimental data/8/ at 14.2 MeV.
 For MT=53 and 54 ENDF/B-IV was adopted.
 MT=91
 Isotrrpic distributions in the center of mass system
 were transformed into the ones in the laboratory system.
 The formula is given in ref./25/.
 MF=5 Energy Distribution for Socondary Neutrons
MT=16
Evaporation spectrum was assumed. Constant temperature
was deduced from the experimental data of Chiba et al.
/26/ for Li-7 according to the sqrt(E/a) Jaw.
MT=91
Evaporation spectrum was assumed. Constant temperature
of 3.4 MeV was determined from the stair case plotting.
MF=12 Photon Production Multiplicities
MT=52-68,102,103,107
Calculated with GNASH/27/.
MF=13 Photon Production Cross Sections
Calculated with GNASH/27/.
MF=14 Photon Angular Distributions
MT=3,52-68.102,103,107
Isotropic
MF=15 Photon Energy Distributions
MT=3.102.103.107
Calculated with GNASH/27/.
References

1) Cierjacks.S. et al.: Nucl. Instr. Meth. 169 (1980) 185.
2) Brill,O.D. et al.: Soviet Phys. Dokiady 6 (1961) }24
3) Nordborg,C. et al.:Nucl. Sci. Eng. 66 (1978)}75
4) Lundberg.B. et al.: Phys. Scr. 2 (1970) }273
5) Bauer.R.W. et al.: Nucl. Phys. 47(1963) 241.
6) MrDonald.W.J. et al.: Nucl. Phys. 75(1966)353.
7) Meier.D. et al.: EXFOR 20907.007 (1969).
8) Baba,M. et al.: "Nucl. Data for Basic and Applied Science",
Santa Fe, 1985, p223.
9) Takahashi.A. et al.: OKTAVIAN report.
10)Mughabghab,S.F. et al.: Neutron Cross Sections Vol.1.
```

Academic Press. 1981
11)Bormann.N. et al.: First IAEA Conf. Nuclear Data for Reactors. 1 (1967) 225.
12)De Juren,J.A.et al.: Phys. Rev. 127 (1962) 1.29.
13)Seeman.K.W. et al.: Bull. Am. Phys. Soc. 6 (1961) 237.
14) Martine.H.C. et al.: Phys. Rev. 93 (1954) 498.
15)Foster.Jr. D.G. and Young P.G.: LA-4780 (1972).
16)Davis.E.A. et al.: Nucl. Phys. 48 (1963) 169.
17)Sick, I. et al.: Helv. Phys. Acta 41 (1968) 573
18)Divatita.A.S. et al.: First IAEA Conf. Nuclear Data for Reactors. 1 (1967) 233.
19)Dickens.J.K. et al: Nucl. Sci. Eng. 40 (1970) 283
20)Orphan, V.J. et al.: Nucl. Sci. Eng. 42 (1970) 352.
21)Bair.J.K. et al.: Phys. Rev. C7 (1972) 1356
22)Lister.D. and Sayres A.: Phys. Rev. 143 (1966) 745
23) Murata.T.: Proc. Int. Conf. Nuclear Data for Science and Technology. Mito, 1988, p.557, (1988).
24) Glendinning. S.G. et al.: Nucl. Sci. Eng. \(82(1982) 393\).
25) Nakagawa, T: JAERI-M 84-103 (1984).
26)Chiba. S. et al.: J. Nucl. Sci. Tech., 22(1985)771.
27) Young, P.G. and irthur, E.D.: LA-6947 (1977).
```

MAT number = 3091
9-F - 19 JAERI Eval-Jul89 T.Sugi
Dist-Sep89
History
83-11 Evaluation for JENDL-2 was performed by Sugi and Nishimura
(JAERI)/1/
89-07 Resonance parameters and total cross section were
re-evaluated for JENDL-3.
89-07 Compiled by T. Narita (JAERI).
MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters : 1.0E-5 eV - 100 keV
The multi-level Breit-Wigner formula was used
Res. energies and Gam-n: The first iwo levels were based
on Johnson et al. /2/. The 3rd and 4th levels were
adjusied so as to fit to tho oxperimental data of
Larson et a!./3/
Gam-g : The first three levels were based on Macklin and
Winters /4/. The 4th level was adjusted so as to fit
to the recommended thermal capture cross section of
Mughabghab et al./5/.
Scattering radius: 5.525 fm
Calculated 2200-m/s cross sections and res. integrals.
2200 m/s res. integ
elastic 3.643 b
capture 9.6 milli-b 19.5 mili:-b
total 3.652 b
MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 100 keV: No background.
Above 100 keV: Based on the experimental data of
Larson et al./3/
MT=2 Elastic scattering cross section
Derived by subtracting the nonelastic cross section from
the total cross section.
MT=4 Total inelastic scattering cross section
Sum of MT=51-56.91.
MT=16 (n.2n) cross section
Calculated by fitting the Pearlstein's function /6/
to the experimental data
MT=22 (n.n' alpha) and (n.alpha n') cross sections
Calculated with a statistical model by using Pearlstein's
empirical formula.
MT=28 (n.n' p) and (n.p n') cross sections
Calculated with a statistical model by using Pearlstein's
empirical formula.
MT=51-56 Inelastic scattering cross sections
Up to 1MeV : Based on the experimental data of Broder
et al /7/
1MeV - 5.5MeV : Calculated with the Hauser-Feshbach method
(ELIESE-3 /8/) taking into account (n,alpha) and (n,p)

```
```

 as competing processes. The level scheme of F-19. N-16
 0-19 was taken from Ajzenberg-Selove /9i./10/
 The optical potential parameters are
 V = 51.56-1.492.E (MeV).
 Ws = 11.82 (MeV).
 Vso=10.0 (MeV).
 r0 = rs = rso = 1.31 (fm).
 a= aso = 0.66 (fm).
 b = 0.47 (fm).
 The level density perameter of 3.609 (1/MeV)/11/ and
 pairing energy of 2.52 MeV /12/ were used
 MT=91 Inelastic to continuum
 Calculated with ELIESE-3.
 MT=102 Copture cross section
 Below 100 keV : No background.
 100keV - 1.87MeV : Based on the experimental data of
 Gabbard et al. /13/.
 1.87MeV - 20MeV : Assumad to docroese with I/v law.
 MT=103 (n,p) cross section
 Up to 9MeV : Based on the experimental data of Bass ot al
 /14/.
 9MeV - 20f ad : Calculatod with the statistical model by
 using Pearlstein empiricel formula
 MT=104 (n,d) cross section
 Calculated with the Pearlstein's empirical formula /15/
 The cross section was normalized to 39.5 milli-barns at
 14.4 MeV.
 MT=105 (n,t) cross section
 Calculated with the Pearlstein's empirical formula /15/.
 The cross section was normalized to 15.0 milli-barns at
 14.4 MeV.
 MT=107 (n.alpha) cross section
 Below 9 MeV. Based on the following experimental data
 Up to 4MeV Davis et al./16/.
 4MeV - 5.5MeV Smith et al./17/.
 5.5MeV - 9MeV Bass et al./14/
 Above 9 MeV. Calculated with the Pearlstein's formula.
 MT=251 Average cosine in the laboratory system
 Derived from the angular distributions.
 MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with optical model.
MT=16.22.28
Assumed to be isotropic in the laboratory system.
MT=51-56
Assumed to be isotropic in the center-of-mass system.
MT=91
Assumed to be isotropic in the center-of-mass system and
trensformed into the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16.22.28.91
Evaporation spectra were given.
References
1) Sugi T. and Nishimura K.: JAERI-M 7253 (1977). English trans-

```
lation: URNL-TR-4605.
2) Johnson C.H. et al : ORNL-5025 (1975)
3) Larson D.C. et al.: ORNL/TM-5612 (1976).
4) Mack 1 in R.L. and Winters R.R.: Phys. Rev. C7. 1766 (1973).
5) Mughabghab S.F. et al.: Neutron Cross Sections. Vol.1. Part A. \(Z=1-60\). Academic Press (1981).
6) Pearlstein S.: Nucl. Sci. Eng. 23. 238 (1965).
7) Broder et al: 70 Helsinki Conf. 2. 295 (1970).
8) Igarasi S.: JAERI 1224 (1972).
9) Ajzenberg-Selove F.: Nucl. Phys. A166, 1 (1971).
10) Ajzenberg-Selove F. Nucl. Phys. A190, 1 (1972).
11) Abdelmalek N.N. and Stavinsky V.S.: Nucl. Phys. 58. 601 (1964)
12) Newton T.D.: Can. J. Phys. 34. 804 (1956).
13) Gabbard F. et al.: Phys. Rev. 114. 201 (1959)
14) Bass R. et al.: EANDC(E) 66-64.
15) Pearlstein S.: J. Nucl. Energy 27. 81 (1973).
16) Davis E.A. et al.: NUCL. Phys. 27, 448 (1961)
17) Smi:h D.M. ot al.: Phys. Rev. 117, 514 (1960)
```

MAT number = 3111

```
    11-Na- 23 SRI Eval-Mar87 H. Yamakoshi(Ship Research Inst.)
                            Dist-Sep89
```

History
87-03 New evaluation was made for JENDL-3.
89-08 The data for MF=15.MT=102 modified.
MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 eV to 350 keV.
Parameters were mainly taken from the recommended data of BNL
/1/, and the data for some levels ware modifiod so that the
calculated total cross sections for Na-23 wore fitted to the
experimental data.
The scattering radius was assumed to be 5 2 Fermi
Calculated 2200 m/sec cross sections and resonance integrals
are as follows:
2200 m/s cross section(b) res integral(b)
elastic 3.024
capture 0.531 0.3122
total 3.555
MF=3 Neutron Cross Sections
Below 350 keV, background cross section was given for
the total and elastic scattering cross sections.
The cross-section data are reproduced from the evaluated
resolved resonance parameters with MLBW formula.
Above 350 keV. the total and partial cross sections were given
pointwise.
MT=1 Total
In the energies between 350 keV and 14 MeV, evaluated based on
the experimental data of Cierjacks/2/ in tracing their fine
structures. Above 14 MeV, based on the experimental data of
Langsford/3/. Stoler/4/ and Larson/5/.
MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.
MT=4, 51-77, 91 inelastic scattering
Below 5 MeV, the inelastic scattering cross section to the 1st
level(MT=51) was evaluated based on the experimental data of
Towle and Gilboy/6/. Chrien and Smith/7/, and Lind and Dat/8/.
Below 5 MeV. the inelastic scattering cross section to the 2nd
and 3rd level(MT=52, 53) was evaluated based on the experimental
data of Freeman and Montague/9/, Lind and Dat/8/. and Towle and
Owens/10/. For the inelastic scattering cross sections to the
1st to 3rd levels above 5 MeV and the other inelastic scattering
data, optical and statistical model calculations were made with
the CASTHY code/11/, taking account of the contribution from the
competing processes. The direct component was calculated with
with the DWUCK code/12/ for five lowest levels. The deformation
parameters were estimated based on a weak coupling model.

```
```

The optical potential parameters used are
V = 46.0-0.25.En. }\quad\mp@subsup{V}{\mathrm{ so }}{}=6.0\quad(MeV
Ws = 14.0-0.2-En, Wv = 0.125.En (MeV)
r=1.286. rs = 1.39. rso = 1.07 (fm)
a=0.62, aso = 0.62, b=0.7 (fm)

```

The level data used in the above two calculations were taken from ref./13/ as follows:
\begin{tabular}{lcc} 
MT & Level energr(MeV) & Spin-parity \\
& 0.0 & \(3 / 2+\) \\
51 & 0.4399 & \(5 / 2+\) \\
52 & 2.0764 & \(7 / 2+\) \\
53 & 2.3909 & \(1 / 2+\) \\
54 & 2.6398 & \(1 / 2-\) \\
55 & 2.7037 & \(9 / 2+\) \\
56 & 2.9824 & \(3 / 2+\) \\
57 & 3.6783 & \(3 / 2-\) \\
58 & 3.8480 & \(5 / 2-\) \\
59 & 3.9147 & \(5 / 2+\) \\
60 & 4.4320 & \(1 / 2+\) \\
61 & 4.7756 & \(7 / 2+\) \\
62 & 5.3800 & \(3 / 2+\) \\
63 & 5.5360 & \(11 / 2+\) \\
64 & 5.7410 & \(3 / 2+\) \\
65 & 5.7660 & \(1 / 2+\) \\
66 & 5.9310 & \(3 / 2-\) \\
67 & 5.9670 & \(1 / 2-\) \\
68 & 6.0430 & \(11 / 2+\) \\
69 & 6.1170 & \(11 / 2+\) \\
70 & 6.1910 & \(13 / 2+\) \\
71 & 6.2360 & \(1 / 2+\) \\
72 & 6.3080 & \(9 / 2-\) \\
73 & 6.3506 & \(5 / 2+\) \\
74 & 6.5770 & \(3 / 2+\) \\
75 & 6.6170 & \(5 / 2+\) \\
76 & 6.7340 & 6.8680
\end{tabular}

Levels above 6.9 MeV were assumed to be overlapping.
\(M T=16 \quad(n, 2 n)\)
Mainly based on the experimental data of Adamski/14/.
MT=22 (n,na)
Calculated with the GNASH code/15/ and normalized to
the experimental data of Woelfer/16/ at 16.4 MeV .
MT=28 (n,np)
Calculated with the GNASH code/15/.
MT=102 Capture
Calculated with the CASTHY code/11/ and normalized to 0.3 mb at 500 keV .
MT=103 (n,p)
Below 10 MeV . based on the experimental data/17,18/
Above 10 MeV , calculated with the GNASH code/15/ and normalized to connect smoothly with the data below 10 MeV .
\(M T=107 \quad(n, a)\)
Below 12 MeV , based on the experimental data/17.18/.
Above 12 MeV , calculated with the GNASH code/15/ and normalized to connect smoothly with the data below 10 MeV .
MT=251 Mu-bar
```

 Calculated with the optical model.
 MF=4 Angular Distributions of Secondery Neutrons
MT=2
Calculated with the CASTHY code/11/.
MT=51-77
Calculated with the CASTHY code/11/ and the DWUCK code/7/.
MT=91
Calculated with the CASTHY code/11/
MT=16. 22. 28
Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/15/
MF=12 Photon Production Multiplicitios
MT=102
Calculated with tho GNASH code/15/ and modi'iod at
thermal based on tho experimental data of Mererker/19/
MF=13 Photon Production Cross Sections
MT=3
Calculated with the GNASH code/15/.
MF=14 Photon Angular Distributions
MT=3. 102
Assumed to be isotropic in the laboratory system.
MF=15 Continuous Photon Energy Spectra
MT=3
Calculated with the GNASH code/15/.
MT=102
Calculated with the GNASH code/15/ and modified at
thermal based on the experimental data of Maerker/19/.
References
1) Mughabghab S.F. and Garber D.1. : "Neutron Cross Sections".
Vol. 1, Part B (1984)
2) Cierjacks S. et al. : KfK-1000 (1969).
3) Langsford A. et al. : 1965 Antwerp Conf. 529 (1965).
4) Stoler P. et al. : i971 Knoxville Conf. Vol.1. 311 (1971).
5) Larson D.C. et al. : ORNL-TM-5614 (1976).
6) Towle J.H. and Gilboy W.B. : Nucl. Phys. 32. 610 (1962).
7)Chrien J.P. and Smith A.B. : Nuci. Sci. Eng. 26. 500 (1966).
8) Lind D.A. and Day R.B. : Ann. Phys. 12. 485 (1961)
9) Freeman J.M. and Montague J.H. : Nucl. Phys. 9. 181 (1958).
10) Towle J.H. and Owens R,O. : Nucl. Phys. Al00, 257 (1967).
11) Igarasi S. : J. Nucl. Sci. Tech. 12, 67 (1975).
12) Kunz P.D. : Unpublished.
13) ENSDF(Evaluated Nuclear Structure Data File)
14) Adamski L. et al. : Anna. Nucl. Ener. 7. 397 (1980).
15) Young P.G. and Arthur E.D. : LA-6947 (1977).
16) Woelfer G. et al. : 2. Phys. 194. 75 (1966).
17) Williamson C.F. : Phys. Rev. 122, 1877 (1961).
18) Bass R. et al. : 1965 Antwerp Conf. 495 (1966).
19) Maerker R.E. : ORNL-TM-5203 (1976).

```
```

 12-Mg- 0 DEC.NEDAC Eval-Mar87 M.Hatchya{DEC).T.Asami(NEDAC)
 Dist-Sep89
 History
87-03 New evaluation was made for JENDL-3
87-03 Compiled by T.Asami.
MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 eV to 520 keV.
The data are constructed from the evaluated resonance
parameters for Mg-24, -25 and -26, considering their
abundances in the Mg element/1/.
2200 m/s cross section(b) res. integral(b)
elastic 3.53
capture 0.063 0.0366
total 3.59
MF=3 Neutron Cross Sections
Below 520 keV, zero background cross section was given.
Above 520 keV, the total and partial cross sections were given
pointwise
All the cross-section data were constructed from the evaluated
ones for three stable isotopes of Mg considering their
abundances in the Mg element.
MT=1 Total
Constructed from the evaluated data for stable isotopes of Mg
MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.
MT=4. 51-90. 91 Inelastic scattering
Constructed from the evaluated data for stable isotopes of Mg
as follows:
MT Level energy(MeV) Mg-24 Mg-25 Mg-26
0.0
51 0.5851 51
52 0.9748 52
53 1.3686 51
54 1.6118
55 1.8087
5 1
56 1.9647 54
57 2.5638 55
58 2.7377 56
59 2.8011 57
60 2.938452
61 3.4052 58
62 3.4137 59
6 3
3.5880
53
3.9078 60
65 3.9405
54
6
3.9707
6 1

```
```

 67 4.0596 62
 68 4.1200 52
 69 4.2384
 70 4.2770
 71 4.3180
 72 4.332056
    ```
73 4.3500 ..... 57
74
```4.3594
75 4.711464
 4.7220
 66-67
 76
 77 4.8340 58
 78 4.9000 59
 79 4.9700 60
 80 5.2361
 5 4
 5.2910 61
 5.4740 62
 5.6900 63
 83
 5
 6.01036.432256
 7.3479 57
 7.5530 58
 7.6162 59
 7.7472 60
 7.8120
 6 1
 Levels above 7.98 MeV were assumed to be overlapping.
 MT=16, 22, 28, 102, 103 and 107 (n.2n), (n.na). (n,np).
 (n,gamma). (n,p) and (n,a)
 Constructed from the evaluated data for three stable isotopes
 of Mg, taking account of their abundances in the Mg element.
 The calculated capture cross sections were normalized so as to
 reproduce the element Mg data of 72 mb at 500 keV/2/.
MT=251 Mu-bar
 Constructed from the evaluated data for stable isotopes
 of Mg. taking account of their abundances in the Mg element.
MF=4 Angular Distributions of Secondary Neutrons
 MT=2
 Constructed from the evaluated data for stable isotopes
 of Mg. taking account of their abundances in the Mg element.
 MT=51-90, 91
 Constructed with the evaluated data for stable isotopes
 of Mg. taking account of their abundances in the Mg element.
 MT=16. 22. 28
 Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16, 22, 28, 91
 Constructed from the evaluated data for stable isotopes
 of Mg. taking account of their abundances in the Mg element.
MF=12 Photon Production Multiplicities
 MT=102
 Calculated with the GNASH code/3/.
MF=13 Photon Production Cross Sections
 MT=3
```

Calculated with the GNASH code/3/.
MF=14 Photon Angular Distributions
MT=3, 102
Assumed to be isotropic in the laboratory system
MF=15 Cont inuous Photon Energy Spectra MT $=3$

Calculated with the GNASH code،s/.
MT $=102$
Calculated with the GNASH code/3/, and modified al thermal
energy by using the experimental ones of Spilling/4/

References

1) Holden N.E.. Martin R.L. and Barnes I.L.: Pure \& Appl. Chem. 56. 675 (1984).
2) Grenier et al. : CEA-N-2195 (1981).
3) Young P.G. and Arthur E.D. : LA-6947 (1977).
4) Spilling P. et al. : Nucl. Phys. A102. 209 (1967)

# 12-Mg- 24 DEC.NEDAC Eval-Mar87 M.Hatchya(DEC). T. Asami(NEDAC) Dist-Sep89 

```
History
 87-03 New evaluation was made for JENDL-3.
 87-03 Compiled by T.Asami
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
 MT=151 Resolved resonance parameters
 Resolved parameters for MLBW formula were given in
 the energy region from 1.0E-5 eV to 520 keV.
 Parameters were taken from the recommended daia of BNL/1/ and
 the data for a negative resonance were added so as to reproduce
 the recommended thermal cross sections for capture and scatter-
 ing/1/
 The data for some levels were modifiod so that the celculaled
 total cross sections of the element Mg were fitted to the
 experimental data of Hibdon/2/ and Singh/3/
 The scattering radius was assumed to be 5.4 Fermi
 Calculated 2200 m/sec cross sections and resonence integrals
 are as follows
 2200 m/s cross section(b) res.integral(b)
 elastic 3.75
 capture 0.050 0.0312
 total 3.80
MF=3 Neutron Cross Sections
 Below 520 keV, zero background cross section was given and all
 the cross-section data are reproduced from the evaluated resolv-
 ed resonance parameters with MLSW formula.
 Above 520 keV. the total and partial cross sections were given
 pointwise.
MT=1 Total
 Optical and statistical model calculation was made with
 CASTHY code/4/. The optical potential paramerers used are:
 V = 49.68. Vso = 7.12 (MeV)
 Ws = 7.76-0.5.En. (Wv = 0 (MeV)
 r=1.17. rs = 1.09. rso = 1.17 (fm)
 a=0.6, aso =0.6. b = 0.69 (fm)
MT=2 Elastic scattering
 Obtained by subtracting the sum of the partial cross sections
 from the total cross section.
MT=4. 51-61. 91 Inelastic scattering
 Calculated with CASTHY /4/, taking account of the contribution
 from the competing processes. The direct component was
 calculated with the DWUCK/5/. The calculated data for the first
 level were normalized at 12 MeV to the experimental data/6/
 The level da:a used in the above two calculations were taken
 from ref./7/ as follows:
\begin{tabular}{ccc}
MT & Level energy \((\mathrm{MeV})\) & Spin-parity \\
& 0.0 & \(0+\) \\
51 & 1.3686 & \(2+\)
\end{tabular}
```

```
\begin{tabular}{lll}
52 & 4.1200 & \(4+\) \\
53 & 4.2384 & \(2+\) \\
54 & 5.2361 & \(3+\) \\
55 & 6.0103 & \(4+\) \\
56 & 6.4322 & \(0+\) \\
57 & 7.3479 & \(2+\) \\
58 & 7.5530 & \(1-\) \\
59 & 7.6162 & \(3-\) \\
60 & 7.7472 & \(1+\) \\
61 & 7.8120 & \(3+\)
\end{tabular}
 Levels above 10.0 MeV were assumed to be overlapping
MT=16. 22. 28. 103. 107 (n,2n). (n,na). (n,np). (n,p). (n,a)
 Calculated with the GNASH code/B/ using the above optical
 model parameters
 The (n.2n) cross sections were modified so as to fit to
 the experimental data.
MT=102 Capture
 Calculated with the CASTHY code/4/ and normalized to 1.8 mb
 al 30 kev.
MT=251 Mu-bar
 Calculated with the optical model.
MF=4 Angular Distributions of Secondary Neutrons
 MT=2
 Calculated with the CASTHY code/4/.
 MT=51-61
 Calculated with the CASTHY code/4/ and the DWUCK code/5/
MT=91
 Calculated with the CASTHY code/4/.
MT=16. 22, 28
 Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16. 22, 28. 91
 Calculated with the GNASH code/8/.
 Feferences
1) Mughabghab S.F. and Garber O.I. : Neutron Cross Sections", Vol.
 1. Part B (1984).
2) Hibdon C.T. : Taken from EX.FOR (1969).
3) Singh U.N. et al. : Phys. Rev. C10, 2150 (1974).
4) Igarasi S. : J. Nucl. Sci. Tech. 12. 67 (1975)
5) Kunz P.D. : Unpublished.
6) Foertsch et al. : Nucl. Instr. Meth. 109. 533 (1980).
7) ENSDF(Evaluated Nuclear Structure Data File)
8) Young P.G. and Arthur E.D. : LA-6947 (1977).
```

12-Mg- 25 DEC.NEDAC Eval-Mar87 M.Hatchya(DEC).T.Asami(NEDAC) Dist-Sep89

```
History
 87-03 New evaluation was made for JENDL-3
 87-03 Compiled by T.Asami.
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
 MT=151 Resolved resonance parameters
 Resolved parameters for MLBW formula were given in
 the energy region from 1.OE-5 oV to 220 keV
 Parameters were taken from the recommended data of BNL/1/ and
 modified for some levels so as to reproduce the experi-
 mental total cross section of the element Mg
 The data for a negative resonance were added so as to reproduce
 the recommended thermal cross sections lor caplure and scatlor-
 ing/1/.
 The data for some levels were modified so that the calculated
 total cross sections of the element Mg were fitted to the
 experimental data of Hibdon/2/ and Singh/3/.
 The scattering radius was assumed to be 4.9 Fermi.
 Calculated 2200 m/sec cross sections and resonance integrals
 are as follows:
 2200 m/s cross section(b) res.integral(b)
 elastic 2.60
 capture 0.190 0.0989
 total 2.79
MF=3 Neutron Cross Sections
 Below 220 keV, zero background cross section was given and all
 the cross-section data are reproduced from the evaluated resolv-
 ed resonance parameters with MLBW formula.
 Above 220 keV. the total and partial cross sections were given
 pointwise.
MT=1 Total
 Optical and statistical model calculation was made with
 the CASTHY code/2/. The optical potential parameters used are:
 V = 49.68, Vso = 7.12 (MeV)
 Ws = 7.76-0.5.En. (Wv = 0 (MeV)
 r=1.17. rs = 1.09, rso = 1.17 (fm)
 a=0.6. aso =0.6. b=0.69 (fm)
MT=2 Elastic scattering
 Obtained by subtracting the sum of the partial cross sections
 from the total cross section.
MT=4, 51-67, 91 inelastic scattering
 Calculated with CASTHY/2/, taking account of the contribution
 from the competing processes. The direct component was
 calculated with the DWUCK/3/.
 The level data used in the above two calculations were taken
 from ref./4/ as follows:
 MT Level energy(MeV) Spin-parity
 0.0
 5/2+
```

```
 5 1
 0.5851
 1/2+
 5 2
 0.9748
 3/2+
 53
 1.6118
 7/2+
 5/2+
54
 1.9647
55
 2 5638
 1/2+
 56
 2.7377
 7/2+
 3/2+
 5 7
 2.8011
 5
 9/2+
 58
 3.4052
 5 9
 3.4137
 3/2-
 6 0
 3.9078
 5/2+
6 1
 3.9707
 7/2-
6 1
 3.9707
62
 4.0596
 9/2+
6 3
 4. 2770
 1/2-
 64
 4.3594
 3/2+
 6 5
 4.7114
 9/2+
 6
 4.7220
 1/2-
 6 7
 5.0122
 7/2+
 Levels above 8.0 MeV were assumed to be overlapping
MT=16, 22, 28, 103, 107 (n,2n), (n,na), (n,np), (n,p), (n,a)
 Calculated with the GNASH code/5/ usi,ig the above optical
 model parameters
 The (n,p) cross sections were normalized to the experimental
 data at 14 MeV of Bormann/6/.
MT=102 Capture
 Calculated with the CASTHY code/2/ and normalized to 4.7 mb
 at 30 keV.
MT=251 lvlu-bar
 Calculated with the optical model.
MF=4 Angular Distriburions of Secondary Neutrons
 MT=2
 Calculated with the CASTHY code/2/.
 MT=51-67
 Calculated with the CASTHY code/2/ and the DWUCK code/3/.
 MT=91
 Calculated with the CASTHY code/2/.
 MT=16, 22, 28
 Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16, 22. 28, 91
 Calculated with the GNASH code/5/.
 References
1) Mughabghab S.F. and Garber D.I. : "Neutron Cross Sections". Vol.
 1. Part B (1984).
2) Hibdon C.T. : Taken from EXFOR (1969).
3) Singh U.N. et al. : Phys. Rev. C10. 2150 (1974).
4) Igarasi S. : J. Nucl. Sci. Tech. 12. 67 (19?5).
5) Kunz P.D. : Unpublished.
6) ENSDF(Evaluated Nuclear Structure Data File)
7) Young P.G. and Arthur E.D. : LA-6947 (1977).
8) Bormann M. et al. : 1966 Paris Conf. Vol.1. 225 (1967).
```

```
MAT number = 3123
 12-Mg- 26 DEC,NEDAC Eval-Mar87 M.Hatchya(DEC),T.Asami(NEDAC)
 Dist-Sep89
History
 87-03 New evaluation was made for JENDL-3.
 87-03 Compiled by T.Asami.
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
 MT=151 Resolved resonance parameters
 Resolved parameters for MLBW formula were given in
 the energy region from 1.0E-5 eV to 450 keV.
 Parameters were taken from the recommended data of BNL/1/ and
 the data for a negative resonance were added so as to reproduce
 the recommended thermal cross sections for capture and scatter-
 ing/1/.
 The scattering radius was assumed to be 4.3 Fermi.
 Calculated 2200 m/sec cross sections and resonance integrals
 are as follows:
 2200 m/s cross section(b) res. inteyral(b)
 elastic 2.83
 capture 0.038
 0.0190
 total 2.87
MF=3 Neutron Cross Sections
 Below 450 keV. zero background cross section was given and all
 the cross-seci,on data are reproduced from the evaluatea resolv-
 ed resonance parameters with MLBW formula.
 Above 450 keV, the total and partial cross sections were given
 pointwise.
 MT=1 Total
 Optical and statistical model calculation was made with
 the CASTHY code/2/. The optical potential parameters used are:
 V = 49.68, Vso = 7.12 (MeV)
 Ws = 7.76-0.5.En, (Mv = 0 (MeV)
 r=1.17, rs=1.09, rso = 1.17 (fm)
 a=0.6, aso =0.6, b=0.69 (fm)
MT=2 Elastic scattering
 Obtained by subtracting the sum of the partial cross sections
 from the total cross section.
MT=4, 51-63, 91 Inelastic' scattering
 Calculated with CASTHY /2/. taking account of the contribution
 from the competing processes. The direct component was
 calculated with the DWUCK code/3/.
 The level data used in the above two calculations were timon
 from ref./4/ as follows:
 MT Levol energy(MeV) Spin-parity
 0.0 0+
 51 1.8087 2+
 52 2.9384 2+
 53 3.5880 0+
 54 3.9405 3+
 55 4.3180 4+
```

```
\begin{tabular}{lll}
56 & 4.3320 & \(2+\) \\
57 & 4.3500 & \(3+\) \\
58 & 4.8340 & \(2+\) \\
59 & 4.9000 & \(4+\) \\
60 & 4.9720 & \(0+\) \\
61 & 5.2910 & \(2+\) \\
62 & 5.4740 & \(4+\) \\
63 & 5.6900 & \(1+\)
\end{tabular}
 Levels above 8.0 MeV were assumed to be overlapping.
 MT=16, 22, 28. 103. 107 (n,2n). (n,na). (n,np), (n,p). (n,a)
 Calculated with the GNASH code/6/ using the above optical
 model parametors
 The (n,a) cross sections were normalized to ihe experimental
 data of Bormann/5/ at 14 MeV.
MT=102 Capture
 Calculated with the CASTHY code/2l and normalized to 1.7 mb
 bt 30 keV.
MT=251 Mu-bar
 Calculated with the opical model
MF=4 Argular Distributions of Secandary Neutrons
 MT=2
 Calculated with the CASTHY codo/2/.
 MT=51-63
 Calcilated with the CASTHY code/2/ and the DWUCK code/3/.
 MT=91
 Calculated with the CASTHY code/2/.
 MT=16. 22, 28
 Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondery Neutrons
 MT=16, 22, 28, 91
 Calculated with the GNASH code/6/
 References
1) Mughabghab S.F. and Garber D.I. :"Neutron Cross Sections". Vol.
 1. part B (1984)
2) Igarasi S.: J. Nucl. Sci. Tech. 12. 67 (1975).
3) Kunz P.L : Unpublished.
4) ENSDF(Evaluated Nuclear Structure Data File)
5) Bormann M. et al. . 1966 Paris Conf. Vol.1. 225 (1967).
6) Young P.G. and Arthur E.D. : LA-6947 (1977).
```

MAT number $=3131$

> 1: Al- 27 TIT.JAERI Eval-Mar88 Y.Harima.H.Kitazawa.T. Fukahori Dist-Sep89

HISTORY
88-03 New evaluation was performed for JENDL-3 by Harima. Kitazawa (Tokyo Institute of Tech.) and Fukahori (JAERI) Details are given in ref./1/.
88-03 Compiled by Fukahori.
MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance parameters:
MT=151
Resolved resonances : $1.0 \mathrm{E}-5 \mathrm{eV}-0.21 \mathrm{MoV}$
The resonance parameters were searched, using MLBW formula/2/
An initial guess of the parameters search was taken from ref.
/3/.
Calculated $2200 \mathrm{~m} / \mathrm{s}$ eross sections and resonance integrals $2200-\mathrm{m} / \mathrm{sec}$ Res. Integ

elastic	$1.414 b$	-
capture	0.231 b	0.123 b
total	9.645 b	-

MF=3 Neutron Cross Sections
MT=1 Total cross section
Between 0.21 and 20 MeV . the cross sections were obtained by an eye-guide so as to follow the experimental data.
MT=2 . Elastic scattering cross sections
Obtained by subtracting partial cross sections from the
total cross sections.
MT=4.51-66.91 Inelastic scattering cross sections
Calculated with the statistical-model code CASTHY /4/ and the coupled-channe! model code ECIS /5/ or JUPITOR-1/6/. laking account of competitive processes for neutron. proton.
alpha-particle and gamma-ray emission./1/
Level scheme was taken from ref./11/.

No.	Fnergy $(\mathrm{MeV})$	Spin-parity
g.s.	0.0	$5 / 2+$
1.	0.8438	$1 / 2+$
2.	1.0145	$3 / 2+$
3.	2.2100	$7 / 2+$
4.	2.7340	$5 / 2+$
5.	2.9814	$3 / 2+$
6.	3.0040	$9 / 2+$
7.	3.6780	$1 / 2+$
8.	3.9560	$5 / 2+$
9.	4.0540	$3 / 2+$
10.	4.4090	$5 / 2+$
11.	4.5103	$11 / 2+$
12.	4.5800	$7 / 2+$
13.	4.8120	$5 / 2+$
14.	5.1550	$3 / 2+$
15.	5.2460	$5 / 2+$

16. $5.4330 \quad 9 / 2+$

Continum levels were assurned above 56 MeV . Level density was calculated. using the Gilbert Cameron formula The level-density parameters were obtained from a cumulative plot of observed levels./1/.
MT=16 (n, 2n) cross sections
Calculated by the statistical model. using the GNASH code /1.7/ MT=2? (n, na) cross sections Calculated by the statistical model, using the GNASH code /1.7/ Optical potential for alpha-particles was determined using the dispersion theory./8/
$M T=28 \quad(n, n p)$ cross sections
Calculated by the statistical model. using the GNASH code /1.7/ MT=102 Capture

Calculated with the statistical model code CASTHY/4/ and the direct-semidirect-model code HIKARI /9/ Tho statistical
model calculations were normalized to 06 mb al 06 MeV
$M T=103$ ( $n, p$ ) cross sections
Calculatod by the statistical model. using the GNASH codo /1.7/ $M T=107$ ( $\mathrm{n} . \mathrm{a}$ ) cross sections

Obtained by an oye-guide to follow observed values $/ 10 /$
MT=111 (n.2p) cross sections
Calculated by the statistical model. Using the GNASH code /1.7/ MT=251 Mu-bar

Calculated with statistical-model code CASTHY/1.4/

```
MF=4 Angular Disiributions of Secondary Neutrons
MT \(=2\)
```

Calculated with the statistical-model code CASTHY / 1.4/ MT=16.22.28

Isotropic in the laboratory system.
MT=51-66
Incoherent sum of the statistical model and coupled-channel model calculations./1/ Calculated with CASTHY and ECIS or JUPITOR-1.
$M T=91$
Isotropic in the center-of-mass system converted to the
distribution in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
$M T=16.22,28.91$
Calculated by using the GNASH code. $/ 1.7 /$
MF=12 Gamma-ray Multiplicities
MT=51-66.102.103.107
Calculated by using the GNASH code./1.7/
MF=13 Gamma-ray Production Cross Sections
MT=3
Calculated by the statistical model and coupled-channel modef.
using the GNASH code $/ 7 /$ and the ECIS /5/ or JUPITOR-1 code 6/. Branching ratios for transitions between discrete levels were taken from ref./12/. Gamma-ray transition strength in the continum was calculated by the Brink-Axel giant resonance model for El transition and by the Weisskopf single-particle model for E2 and Mi transition./1/

```
MF=14 Gamma-ray Angular Distributions
 MT=3.51-66.102.103.107
 Isotropic distribution was assumed
MF=15 Gamma-ray Spectra
 MT=3.102,103.107
 Calculated with the GNASH code./1.7/
```

References
1) Kitarawa H. et al.: Proc. Int. Conf. Nuclear Data for
Science and Technology. Mito. 1988. p.473. (1988)
2) Nakagawa T.: JAERI-M 84-192 (1984)
3) Mughabgnab S.F. et al.: "Neutron Cross Sections. Vol. 1
Part $A^{*}$, Academic Press (1981).
4) Igarasi S.: J. Nucl. Sci. Technol. 12. 67 (1965)
5) Reynal J.: Computer Program ECIS79 for coupled-channel
calculations. 1979 (unpublished).
6) Tamura T.: Rev. Mod. Phys.. 37. 679 (1965)
7) Young P.G. and Arthur E.D.: La-6947 (1977).
8) Kitazawa $H$. et al.: unpublished
9) Kitazawa H.: Computer program HIKARI for direct-semidirect
caplure calculations. 1980 (unpublished).
10) Vonach H.: Nuclear data standards for nuclear measurements.
IAEA technical reports series No. 227 (1983).
11) Endt P.M. and Van Der Leun C.: Nucl. Phys.. A310. 1 (1978).

14-Si- 0 TIT.JAERI Eval-Mar88 H.Kitazawa. Y. Harima.T.Fukahori Dist-Sep89

## HISTORY

88-03 New evaluation was performed for JENDL-3 by Kitazawa. Harima (Tokyo Institute of Tech.) and Fukahori (JAERI). Details are given in ref./1/
88-03 Compiled by Fukahori.

MF=1 General Information
MT=451 Descriptive data and dictionary
MF $=2$ Resonance parameters:
MT=151
Resolved resonances : $1.0 E-5 \mathrm{eV}-1.81 \mathrm{MeV}$
The resonance parameters were searched, using MLBW formula/2/.
An initial guess of the parameters search was laken from ref /3/.

Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and resonance integrals $2200-\mathrm{m} / \mathrm{sec}$ Res. Integ

elastic	2.172 b	-
capture	0.171 b	0.104 b

2.343 b
-

MF=3 Neutron Cross Sections
MT=1 Total cross section
Between 1.81 and 12.5 MeV . the cross sections were obtained by an eye-guide so as to follow the experimental deta
Above 12.5 MeV . the cross sections were calculated with the statistical-model code CASTHY./1.4/
MT=2 Elastic scattering cross sections
Obtained by subtracting partial cross sections from the total cross sections.
MT=4.51-90.91 Inelastic scattering cross sections Calculated with the statistical-model code CASTHY /4/ and the coupled-channel model code ECIS /5/ or JUPITOR-1 /6/. taking account of competitive processes for neutron. proton. alpha-particle and gamma-ray emission./1/
Below 11 MeV , the imaginary potential strength of the neutron spherical optical potential was modified from that in ref./1/ to be $W=1.09+0.55 \cdot E(\mathrm{MeV})$.

Level scheme was taken from ref./10/.

Si-28
Energy (MeV) J-Pi
$0.0 \quad 0+$
1.7789 $2+$
$4.6178 \quad 4+\quad 2.4256 \quad 3 / 2+$
$4.97910+3.6235 \quad 7 / 2-$
$6.2765 \quad 3+4.7410 \quad 9 / 2+$
$6.6914 \quad 0+\quad 4.8950 \quad 5 / 2+$
$6.8786 \quad 3-\quad 5.2546 \quad 9 / 2-$
$6.8888 \quad 4+\quad 5.6520 \quad 9 / 2+$
7.3807 $2+$

Si-29
Energy (MeV) J-Pi
$0.0 \quad 1 / 2+$
$3 / 2+$

3/2+

Si-30
Energy (MeV) $\mathrm{J}-\mathrm{Pi}$
$0.0 \quad 0$ +
$2.2355 \quad 2+$
$3.7696 \quad 1+$
$4.8090 \quad 2+$
$5.2300 \quad 3+$
$5.3720 \quad 0+$
$5.6130 \quad 2+$
6.5030 -
6.63402 -

```
\(7.4173 \quad 2+6.1910 \quad 7 / 2-\quad 67447 \quad 1\) -
\(7.7988 \quad 3+\quad 6.4240 \quad 7 / 2+\quad 6.9140 \quad 2+\)
7.9334 2 + 6.5220 3/2+
8.2590 2 + 6.6970 3/2-
8.3280 1 + 6.7150 3/2+
8.4133 4- 6.9070 1/2-
8.5430 6 +
8.5890 3 +
Continum levels were assumed above 6.999 MeV Level density was calculated, using the Gilbert-Cameron formula
The level-density parameters were obtained from a cumulative plot of observed levels /1/
\(M T=16 \quad(n .2 n)\) cross sections
Calculated by the statistical model, using the GNASH code /1.7/
Below 11 MeV . the imaginary potential strength of the neutron spherical optical potential was modilied from that in ref /i/ to be \(W=109+0.55 \cdot E(\mathrm{McV})\).
\(M T=22\) (\(n, n o\)) cruss sections
Calculated by the statistical model, using the GNASH code /1.7/
Optical potential for alpha-particles was determined, using
the dispersion theory. /8/
\(M T=28 \quad(n, n p)\) cross sections
Calculated by the statistical model, using the GNASH code /1.7/
MT=102 Capture
Calculated with the staitistical-model code CASTHY /4/ and the direct-semidirect-model code HIKARI /9/
MT=103 (n,p) cross sections
Calculated by the statisticai model. using the GNASH code. \(11.7:\)
The imaginary potential strength of the proton spherical
optical model was modified from that in ref./1/ to be
\(W=11.0 \mathrm{MeV}\) between 11 and 20 MeV and \(W=8.8+0.2 \cdot E\) (MeV)
below 11 MeV .
MT=107 (n.a) cross sections
Cnstructed from the isotopic data.
MT=111 (n,2p) cross sections
Calculated by the statistical model, using the GNASH code. 11.7/
MT=251 Mu-bar
Calculated with statistical-model code CASTHY /1.4/
MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the statistical-model code CASTHY /1.4/.
MT=16,22,28
Isotropic in the laboratory system
MT=51-90
Incoherent sum of the statistical model and coupled-channel model calculations./1/ Calculated with CASTHY and ECIS or JUP I TOR-1 .
MT=91
Isotropic in the center-of-mass system converted to the distribution in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16.22.28.91
Calculated by using the GNASH code./1.7/
```

```
MF=12 Gamma-ray Multiplicities
 MT=51-90.102.103.107
 Calculated by using the GNASH code./1.7/
MF=13 Gamma-ray Production Cross Sections
 MT=3
 Calculated by the statistical model and coupled-channel model.
 using the GNASH code /7/ and the ECIS /5/ or JUP(TOR-1 code
 /6/. Branching ratios for transitions between discrete levels
 were taken from ref./11/. Gamma-ray transition strength in the
 continuum was calculated by the Brink-Axel giant resonance
 model for El transition and by the Weisskopf single-particle
 model for E2 and M1 transition./1/
MF=14 Gamma-ray Angular Distributions
 MT=3,51-90,102,103,107
 Isotropic distribution was assumed
MF=15 Gemma-ray Spectra
 MT=3.102,103.107
 Calculated with the GNASH code./1.7/
References
 1) Kitazawa H. et al.: Proc. Int. Conf. Nuclear Data for
 Science and Technology. Mito. 1988. p.473. (1988)
 2) Nakagawa T.: JAERI-M 84-192 (1984).
 3) Mughabghab S.F. et al.: "Neutron Cross Sections. Vol. 1
 Part A*. Academic Press (1981).
 4) Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1965).
 5) Raynal J.: Computer Program ECIS79 for coupled-channel
 calculations, 1979 (unpublished).
 6) Tamura T.: Rev. Mod. Phys.. 37. 679 (1965)
 7) Young P.G. and Arthur E.D.: La-6947 (1977)
 8) Kitazawa H. et al.: unpublished.
 9) Kitazawa H.: Computer program HIKARI for direct-semidirect
 capture calculations. 1980 (unpublished).
10) Endt P.M. and Van Der Leun C.: Nucl. Phys.. A310. 1 (1978)
```

14-Si- 28 TIT.JAERI Eval-Mar88 H.Kitazawa. Y. Harima.T. Fukahori
Dist-Sep89
HISTORY
88-03 New evaluation was performed for JENDL-3 by Kitazawa,
Harima (Tokyo Institute of Tech.) and Fukahori (JAERI)
Details are given in ref./1/.
88-03 Compiled by Fukahori.
MF=1 General Information
MT=451 Descriptive deta and dictionary
MF=2 Resonance parameters:
MT=\{51
Resolved resonances : 1.0E-5 eV - 1.81 MeV
The resonance parameters were searched, using MLBW formula/2/.
An initial guess of the parameters search was taken from ref
/3/.
Celculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and resonance integrals
$2200-\mathrm{m} / \mathrm{sec}$ Res. Integ.
elastic $\quad 2.149 \mathrm{~b}$
capture $\quad 0.177 \mathrm{~b} \quad 0.085 \mathrm{~b}$
total 2.325 b
MF-3 Neutron Cross Sections
MT=1 Total cross section
Between 1.81 and 12.5 MeV , the cross sections were obtained by
an eye-guide so as to follow the experimental data.
Above 12.5 MeV . the cross sections were calculated with the
statistical-model code CASTHY./1.4/
$M T=2 \quad$ Elastic scattering cross sections
Obtained by subtracting pertial cross sections irom the
total cross sections.
MT=4.51-66.91 Inelastic scattering cross sections
Calculated with the statistical-model code CASTHY /4/ and the
coupled-channel model code ECIS /5/ or JUPITOR-1 /6/. taking
account of competitive processes for neutron. proton.
alphamparticle and gamma-ray emission./1/
Below 11 MeV . the imaginary potential strength of the neutron
spherical optical poiential was modified from that in ref./1/
to be $W=1.09+0.55=E(\mathrm{MeV})$.
Level scheme was taken from ref./11/.
No. Energy(MeV) Spin-parity
g.s. $0.0 \quad 0$ +
1. $1.7789 \quad 2+$
2. $4.6178 \quad 4+$
3. $4.9791 \quad 0+$
4. $6.2765 \quad 3+$
5. $6.6914 \quad 0+$
6. $6.8786 \quad 3-$
7. $6.8888 \quad 4+$
8. 7.3807 $2+$
9. $7.4173 \quad 2+$
10. 7.7988 $3+$

```
\begin{tabular}{lll}
11. & 7.9334 & \(2+\) \\
12. & 8.2590 & \(2+\) \\
13. & 8.3280 & \(1+\) \\
14. & 8.4133 & \(4-\) \\
15. & 8.5430 & \(6+\) \\
16. & 8.5890 & \(3+\)
\end{tabular}
Continum levels were assumed above 8.9 MeV . Level density was calculated. using the Gilbert-Cameron formula. The level-density parameters were obtained from a cumulative plot of observed levels./1/.
MT=16 (n, 2n) cross sections
Calculated by the statistical model. using the GNASH code. /1.7/
Below 11 MeV . the imaginary potential strength of the neutron
spherical optica! potential was modified from that in ref. /1/
to be \(W=1.09+0.55 \cdot E(\mathrm{MeV})\).
MT=22 (n,na) cross sections
Calculated by the statistical model, using the GNASH code. /1,7/
Optical potential for alpha-particles was determinod. using the dispersion theory./8/
\(M T=28 \quad(n, n p)\) cross sections
Calculated by the statistical model, using the GNASH code. 11.7/
MT=102 Capture
Calculated with thit statistical-model code CASTHY/4/ and the direct-semidirect-model code HIKARI /9/. The statisticalmodel calculations were normalized to 0.6 mb at 2.0 MeV .
MT: 103 (n.p) cross sections
Calculated by the stetistical model, using the GNASH code./1.7/
The imaginary potential strength of the proton spherical
optical model was modified from that in ref./1/ to be
\(W=11.0 \mathrm{MeV}\) between 11 and 20 MeV and \(W=8.8+0.2 . E(\mathrm{MeV})\)
below 11 MeV . The strength was determined so as to reproduce
observed values /10/.
\(M T=107\) (\(\mathrm{n} . \mathrm{a}\)) cross sections
Calculated by the statistica model, using the GNASH code. 11.7/
Optical potential for alpha-particles was determined. using the dispersion theory./8/
\(M T=111\) (\(n, 2 p\)) cross sections
Calculated by the statistical model. using the GNASH code. 11.7/
MT=251 Mu-bar
Calculated with statistical-model code CASTHY /1.4/.
MF=4 Angular Distributions of Secondary Neutrons
MT \(=2\)
Calculated with the statistical-model code CASTHY /1.4/.
\(\mathrm{MT}=16.22 .28\)
Isotropic in the laboratory system.
\(M T=51-66\)
Incoherent sum of the statistical model and coupled-channel model calculations./1/ Calculeted with CASTHY and ECIS or JUPITOR-1.
MT=91
Isotropic in the center-of-mass system converted to the distribution in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
\(\mathrm{MT}=16,22,28,91\)
```

Calculated by using the GNASH code./1.7/

```
MF=12 Gamma-ray vilultiplicities
 MT=51-66,102,103,107
 Calculated by using the GNASH code./1.7/
MF=13 Gamma-ray Production Cross Sections
 MT=3
 using the GNASH code /7/ and the ECIS /5/ or JUPITOR-1 code
 continuum was calculated by the Brink-Axel giant resonance
 model for E2 and M1 transition./9/
MF=14 Gamma-ray Angular Distributions
 MT=3.51-66.102.103.107
 Isotropic distribution was assumed.
MF=15 Gamma-ray Spectra
 MT=3,102,103,107
 Calculated with the GNASH code./1.7/
```

        Calculated by the statistical model and coupled-channel model.
        /6/. Branching ratios for transitions between discrete levels
        were taken from ref./12/. Gamma-ray transition strength in the
        model for E1 transition and by the Weisskopf single-particle
    
## References

1) Kitazawa H. et al.: Proc. Int. Conf. Nuclear Data for Science and Terhnology, Mito, 1988, p.473. (1988)
2) Nakagawa T.: JAERI-M 84-192 (1984).
3) Mughabghab S.F. et al.: Neutron Cross Sections, Vol. 1 Part A*. Academic Press (1981).
4) Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1965).
5) Raynal J.: Computer Program ECIS79 for coupled-channel calculations. 1979 (unpublished).
6) Tamura T.: Rev. Mod. Phys.. 37, 679 (1965).
7) Young P.G. and Arthur E.D.: La-6947 (1977).
8) Kitazawa H. et al.: unpublished.
9) Kitazawa H.: Computer program HIKARI for direct-semidirect capture calculations. 1980 (unpublished).
10) Ikeda Y.: JAERI 1312 (1988)
11) Endt P.M. and Van Der Leun C.: Nucl. Phys.. A310. 1 (1978).

MAT number $=3142$

```
 14-Si- 29 TIT.JAERI Eval-Mar88 H.Kitazawa.Y Harıma.T Fukahori
 Dist-Sep89
HISTORY
88-03 New evaluation was performed for JENDL-3 by Kitazawa.
 Harima (Tokyo Institute of Tech.) and Fukahori (JAERI)
 Details are given in ref./1/
88-03 Compiled by Fukahori.
```

MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance parameters:
MT=151
Resolved resonances : $1.0 \mathrm{E}-5 \mathrm{eV}-0.1 \mathrm{MeV}$
The resonance parameters were searched. using .NLBW formula/2/
An initial guess of the parameters search was taken from ref
/3/.
Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and resonance integrals
$2200-\mathrm{m} / \mathrm{sec}$ Res. Integ
$\begin{array}{lcc}\text { elastic } & 2.843 \mathrm{~b} & - \\ \text { capture } & 0.101 \mathrm{~b} & 0.067 \mathrm{~b} \\ \text { total } & 2.944 \mathrm{~b} & -\end{array}$
$M F=3$ Neutron Cross Sections
MT=1 Total cross section
Above 0.1 MeV , the cross sections were calculated with the
statistical-model code CASTHY./1.4/
MT=2 Elastic scettering cross sections
Obtained by subtracting partial cross sections from the
total cross sections.
MT=4.51-79.91 Inelastic scattering cross sections
Calculated with the statistical-model code CASTHY /4/ and the
coupled-channel model code ECIS /5/, taking account of
competitive processes for neutron, proton, alpha-particle
and gamma-ray emission./1/
Below 11 MeV . the imaginary potential strength of the neutron
spherical optical potential was modified from that in ref. /1/
to be $W=1.09+0.55 \cdot E(\mathrm{MeV})$.
Level scheme was taken from ref./11i.
No. Energy(MeV) Spin-parity
g.s. $0.0 \quad 1 / 2+$
1. $1.2730 \quad 3 / 2+$
2. $2.0280 \quad 5 / 2+$
3. $2.4250 \quad 3 / 2+$
4. $3.0670 \quad 5 / 2+$
5. $3.6240 \quad 7 / 2-$
6. $4.0800 \quad 7 / 2+$
7. $4.7410 \quad 9 / 2+$
8. $4.8400 \quad 1 / 2+$
9. $4.8950 \quad 5 / 2+$
10. $4.9340 \quad 3 / 2-$
11. 5.2550 9/2 -
12. 5.2860 ..2 +

13.	5.6520	$9 / 2+$
14.	5.8130	$7 / 2+$
15.	5.9490	$3 / 2+$
16.	6.1070	$5 / 2+$
17.	6.1920	$7 / 2-$
18.	6.3780	$1 / 2-$
19.	6.4230	$7 / 2+$
20.	6.4960	$1 / 2+$
21.	6.5220	$3 / 2+$
22.	6.6150	$9 / 2+$
23.	6.6970	$3 / 2-$
24.	6.7100	$5 / 2+$
25.	6.7150	$3 / 2+$
26.	6.7820	$11 / 2-$
27.	6.9070	$1 / 2-$
28.	6.9210	$7 / 2+$
29.	7.0140	$5 / 2-$

Continum levels were assumed above 7.057 MeV Lovel density was calculated, using the Gilbert-Cameron formula The level-density parameters were obtained from a cumulative plot of observed levels./1/.
MT=16 (n.2n) cross sections
Calculated by the statistical model. using the GNASH code. $/ 1.6 /$
Below 11 MeV . the imaginary potential strength of the neutron
spherical optical potential was modified from that in ref./1/
to be $W=1.09+0.55 \cdot E(\mathrm{MeV})$.
$M T=22 \quad$ ( $n, n a$ ) cross sections
Calculated by the statistical model. using the GNASH code./1,6/
Optical potential for alpha-particles was determined, using the dispersion theory./7/
$\mathrm{MT}=28 \quad$ ( $\mathrm{n} . \mathrm{np}$ ) cross sections
Calculated by the statistical model, using the GNASH code./1.6/
MT=102 Capture
Calculated with the statistical-model code CASTHY /4/ and the direct-semidirect-model code HIKARI /8/. The statisticalmodel calculations were normalized to 0.6 mb at 0.1 MeV .
MT=103 (n,p) cross sections
Calculated by the statistical model, using the GNASH code./1.6/
The imaginary potential strength of the proton spherical
optical model was modified from that in ref./1/ to be
$W=11.0 \mathrm{MeV}$ between 11 and 20 MeV and $W=8.8+0.2 \cdot E$ ( MeV )
below 11 MeV . The strength was determined so as to reproduce observed values /9/.
MT=107 (n.a) cross sections
Calculated by the statistical model, using the GNASH code./1.6/ Optical potential for alpha-particles was determined, using the dispersion theory./7/
MT=111 (n.2p) cross sections
Calculated by the statistical model. using the GNASH code./1.6/
MT=251 Mu-bar
Calculated with statistical-model code CASTHY /1.4/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the statistical-model code CASTHY /1.4/.
MT=16.22.28

Isotropic in the laboratory system.
$M T=51-79$
Incoherent sum of the statistical model and coupled-channel model calculations. 11/ Calculated with CASTHY and ECIS. MT $=91$

Isotropic in the center-of-mass system converted to the distribution in the laboratory system.

```
MF=5 Energy Distributions of Secondary Neutrons
 MT=16,22,28,91
 Calculated by using the GNASH code./1.6/
```

MF=12 Gamma-ray Multiplicities
MT=51-79.102.103.107
Calculated by using the GNASH code. $/ 1,6 /$
MF=13 Gamma-ray Production Cross Sections
MT=3
Calculated by the statistical model and coupled-channel model.
using the GNASH code $/ 6 /$ and the ECIS $/ 5 /$ code.
Branching ratios for transitions between discrete levels
were taken from ref./10/. Gamma-ray transition strength in the
continuum was calculated by the Brink-Axel giant resonance
model for E1 transition and by the Weisskopf single-particle
model for E2 and M1 transition./1/
MF=14 Gamma-ray Angular Distributions
$M T=3.51-79.102,103,107$
I sotropic distribution was assumed.
MF=15 Gamma-ray Spectra
MT=3.102, 103,107
Calculated with the GNASH code./1.6/

## References

1) Kitazawa H. et al : Proc. Int. Conf. Nuclear Data for Science and Technology, Mito. 1988, p.473. (1988).
2) Nakagawa T.: JAERI-M 84-192 (1984).
3) Mughabghab S.F. et al.: "Neutron Cress Sections, Vol. 1 Part $A^{*}$. Academic Press (1981).
4) Igarasi S.: J. Nuci. Sci. Technol.. 12. 67 (1965).
5) Raynal J.: Computer Program ECIS79 for coupled-channel calculations, 1979 (unpublished).
6) Young P.G. and Ar:hur E.D.: La-6947 (1977).
7) Kitazawa $H$. et al.: unpublished.
8) Kitazawa H.: Computer program HIKARI for direct-semidirect capture calculations, 1980 (unpublished).
9) Ikeda Y. et al.: JAERI 1312 (1988).
10) Endt P.M. and Van Der Leun C.: Nucl. Phys., A310. i (1978).
11) Betz P. et al.: Z. Phys. A-Atoms and Nuciei, 309. 163 (1982).

MAT number $=3143$
14-Si-30 TIT.JAERI Eval-Mar88 H.Kitazawa, Y. Harima, T. Fukahori Dist-Sep89

## HISTORY

88-03 New evaluation was performed for JENDL-3 by Kitazawa Harima (Tokyo Institute of Tech.) and Fukahori (JAERI). Details are given in ref./1/.
88-03 Compiled by Fukahori.
MF=1 General Information
$\mathrm{MT}=451$ Descriptive data and dictionary
MF=2 Resonance parameters:
MT=151
Resolved resonances : $1.0 \mathrm{E}-5 \mathrm{eV}-0.5 \mathrm{MeV}$
The resonance parameters were searched, using MLBW formula/2/.
An initial guess of the parameters search was taken from ref.
/3/.
Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and resonance integrals $2200-\mathrm{m} / \mathrm{sec}$ Res. Integ.
elastic 2.491 b
capture $\quad 0.108 \mathrm{~b} \quad 0.709 \mathrm{~b}$ total 2.598 b

MF $=3$ Neutron Cross Sections
Mi=1 Total cross section Above 0.5 MeV , the cross sections were calculated with the statistical-model code CASTHY./1.4/
$\mathrm{MT}=$ ? Elastic scattering cross sections
Obtained by subtracting partial cross sections from the total cross sertions.
MT=4, 5, 1-69.91 Inelastic scattering cross sections
Calculated with the statistical-model code CASTHY/4/ and the coupled-channel model code ECIS /5/, taking account of competitive processes for neutron, proton, alpha-particle and gamma-ray emission./1/
Below 11 MeV . the imaginary potential strength of the neutron spherical uptical potential was modified from that in ref./1/ to be $W=1.09+0.55 \times E(\mathrm{MeV})$.

Level scheme was taken from ref./9/.
No. Energy(MeV) Spin-parity

g.s.	0.0	$0+$
1.	2.2355	$2+$
1	3.4982	$2+$
3.	3.7696	$1+$
4.	3.7877	$0+$
5.	4.8090	$2+$
6.	4.8305	$3+$
7.	5.2300	$3+$
8.	5.2790	$4+$
9.	5.3720	$0+$
10.	5.4876	$3+$
11.	5.6130	$2+$
12.	5.9500	$4+$

```
13.6.5030 4 -
14.6.5370 2 +
15.6.6340 2-
16. 6.6400 0 +
17.6.7447 1 -
18.6.8650 2 -
19.6.9140 2 +
Continum levels were assumed above 6.999 MeV . Level density was calculated. using the Gilbert-Cameron formula
The level-density parameters were obtained from a cumulative plot of observed levels./1/
\(M T=16 \quad(n, 2 n)\) cross sections
Calculated by the statistical model, using the GNASH code. /1.6/
Below 11 MeV , the imaginary potential strength of the neutron spherical optical potential was modified from that in ref. /1/
to be \(W=1.09+0.55 \cdot E(\mathrm{MeV})\).
\(M T=22 \quad(n, n a)\) cross sections
Calculated by the statistical model, using the GNASH code. 1.6/
Optical potential for alpha-particies was determined. using
the dispersion theory./7/
MT=28 (n,np) cross sections
Calculated by the statistical model. using the GNASH code./1.6/
MT=102 Capture
Calculated with the statistical-model code CASTHY /4/ and the direct-semidirect-model code HIKARI /8/. The statistical-
model calculations were normalized to 0.6 mb at 0.5 MeV
MT=103 (n,p) cross sections
Calculated by the statistical model, using the GINASH code./1.6/
The imaginary potential strength of the proton spherical optical model was modified from that in ref./1/ to be \(W=11.0 \mathrm{MeV}\) betweerl 11 and 20 MeV and \(W=8.8+0.2 \cdot E\) (MeV) below 11 MeV .
MT=107 (n,a) cross sections
Calculated by the statistical model, using the GNASH code. \(11.6 /\)
Optical potential for alpha-particles was determined. using
the dispersion theory. /7/
\(M T=111 \quad(n, 2 p)\) cross sections
Calculated by the statistical model. using the GNASH code. \(/ 1.6 /\)
MT:=251 Mu-bar
Calculated with statistical-model code CASTHY /1.4/.
\(\mathrm{MF}=4 \quad\) Angular Distributions of Secondary Neutrons
MT=2
Calculated with the statistical-model code CASTHY /1.4/
\(\mathrm{MT}=16.22 .28\)
Isotropic in the laboratory system.
MT=51-69
Incoherent sum of the statistical model and coupled-channel model calculations./1/ Calculated with CASTHY and ECIS.
MT \(=91\)
Isotropic in the center-of-mass system converted to the
distribution in the laboratory system.
MF=5 Energy Dis:ributions of Secondary Neutrons
MT=16.22.28.91
Calculated by using the GNASH code. \(/ 1.6 /\)
```

```
MF=12 Gamma-ray Multiplicities
 MT=51-69.102,107
 Calculated by using the GNASH code./1.6/
MF=13 Gamma-ray Production Cross Sections
 MT=3
 Calculated by the statistical model and coupled-channel model.
 using the GNASH code /6/ and the ECIS /5/ code.
 Branching ratios for transitions between discrete levels
 were taken from ref./9/. Gamma-ray transition strength in the
 continuum was calculated by the Brink--Axel giant rescnance
 model for Ei transition and by the Weisskopf single-particle
 model for E2 and M1 transition./1/
```

MF=14 Gamma-ray Angular Distributions
MT=3.51-69.102,107
Isotropic disiribution was assumed.
MF=15 Gamnia-ray Spectra
MT=3.102.107
Calculated with the GNASH code./1.6/

## References

1) Kitazawa H. et al.: Proc. Int. Conf. Nuclear Data for Science and Technology. Mito. 1988. p.473. (1988).
2) Nakagawa T.: JAERI-M 84-192 (1984).
3) Mughabghab S.F. et al.: "Neutron Cross Sections. Vol. 1 Part $A^{*}$, Academic Press (1981).
4) Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1965)
5) Raynal J.: Computer Program ECIS79 for coupled-channel calculations, 1979 (unpublished).
6) Young P.G. and Arthur E.D.: La-6947 (1977).
7) Kitazawa H. et al.: unpublished.
8) Kitazawa H.: Computer program HIKARI for direct-semidirect capture calculations. 1980 (unpublished).
9) Endt P.M. and Van Der Leun C.: Nucl. Phys.. A310, 1 (1978).
```
 15-P - 31 Fuji E.C. Eval-May87 H.Nakamura
 Dist-Sep89
HISTORY
87-05 Nowly Evaluated by H.Nakamura (Fuji Electric Co.. LId.)
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=2 MT=151 Resonance parameters:
 Resolved resonances for MLBW Formula : 1.0E-5 eV - 500 keV
 Parameters are taken from BNL 325 4th edition/1/. and
 R.L.Macklin et al./2/.
 Cross sections calculated with these parameters are to
 be corrected by adding MF=3, MT=1,2and 102 data.
 Calculated 2200-m/s cross sections and resonance integrals
 2200-m/sec Res. Integ. Ref.
 elastic 3.134 b /1/
 capture 0.166 b 0.081 b /1/
 cotal
 3.300 b
MF=3 Neutron Cross Sections
 Below 500 keV
 Background cross section.
 MT=1.2 0.07029 b
 MT=251 Mu-bar=0.0217
 Above 500 keV
 MT=1,2,4,51-56,91,102 Total, Elastic, Inelastic and Capture
 Calculated with CASTHY code/3/, considering the
 competition with the threshold reaction channels.
 Optical potential parameters of C.Y.Fu/4/ are adjusted
 to reproduce the following experimental data:
 MT=1 total NESTOR data (many authors)
 NT=2 elastic
 MT=4 inelastic -
 The spherical optical potential parameters:
 V=43.0 Vso=5.37 (MeV)
 Ws=9.13 Wu =0.0 (MeV)
 r=rso=1.26 rs=1.39 (fm)
 a=aso=0.76 b=0.70 (fm)
 MT=102 capture data are normalized to 1.8 mb at 500 keV
 based on (7 mb at 30 keV) by R.L.Macklin et al./5/.
The discrete level scheme taken from Ref./6/:
\begin{tabular}{ccc}
No. & Energy (MeV) & Spin-Paritr \\
\((\mathrm{g.s)}\). & 0.0 & \(1 / 2-\) \\
1 & 1.266 & \(3 / 2+\) \\
2 & 2.234 & \(5 / 2+\) \\
3 & 3.134 & \(1 / 2+\) \\
4 & 3.295 & \(5 / 2+\) \\
5 & 3.415 & \(7 / 2+\) \\
6 & 3.506 & \(3 / 2+\)
\end{tabular}
Cont inum levels assumed above 4.0 MeV . The level
```

```
 density parameters of Asano et al. /7/ are used
 MT=16(n,2n), 22(n, n'a), 28(n,n'p). 103(n,p), 107(n,a)
 Based on the statistical model calculations with GNASH
 code /8/. without the precompound reaction correction
 Transmission coefficients for proton and alpha particle
 are calculated by using the OMP of Becchetti-Greenlees
 /9/ and Huizenga-lgo/10/. respectively. In the cases of
 MT=103 and 107. the experimental data were also
 considered together with the calculations
 Level density parameters are based on built-in values
 MT=251 Mu-bar
 Calculated with opiical model (CASTHY)
MF=4 Angular Distributions of Secondary Neutrons
 MT=2 Calculated with optical model(CASTHY)
 MT=51-91 Calculated with Hauser-Feshbach formula(CASTHY)
 MT=16.22.28 Isotropic in the laboratory system
MF=5 Energy Distributions of Secondary Noutrons
 MT=16.22.28.91.103.107 Evaporation spectra.
References
 1) Mughabghab. S.F. et al.: Neutron Cross Section. Vol.1 (1981).
 2) Macklin. R.L. et al.: Phys. Rev. C32. 379 (1985)
 3) Igarasi. S.: J. Nucl. Sci. Tech. 12, 67 (1975)
 4) Fu, C.Y.: Atom. Data and Nucl. Data Tables. 17. 127 (1976)
 5) Macklin. R.L. et al.: Phys. Rev. 129. 2695 (1963)
 6) Lederer. C.M. et al.: Table of Isotopes. 7th Edit
 7) Asano et al.: private communication.
 8) Young. P.G. and Arthur. E.D.: LA-6947 (1977).
 9) Becchetti, Jr. and Greenless. G.W.: Polarization Phenomena
 in Nuclear Reactions, p.682 (1971).
10) Huizenga, Jr. and Igo. G.J.: Nucl. Phys. 29. 462 (1962)
```

16-S - 0 Fuji E.C. | Eval-May87 H. Nakarıura |
| :--- |
| Dist-Sep89 |

## HISTORY

87-05 Newly Evaiuated by H.Nakamura (Fuji Electric Co. Ltd.)
87-07 Compiled by T. Fukahori (JAERI)
88-02 Modifications on (n,p) and inelastic scattering cross sections of S-32. Direct inelastic components from DWBA calculations were added to the compound components so as to reproduce DDX data of OKTAVIAN (OSA. 1986).
88-08 Modified due to correcting S-32 data by T. Fukahori (JAERI)
Natural sulphur data constructed from $S$-isotopes
MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Paramoters
MT=151 Resolved Resonances
Resonanco region: $1.0 E-5$ oV -1.57 MeV
The multilevel Breit-Wigner formula was used Parameters were adoptod from the following sources. $\mathrm{S}-32:-10 \mathrm{keV}-1.57 \mathrm{MeV}, R=3.92 \mathrm{fm}$ S-33: -7.1-260 keV. $R=3.85 \mathrm{fm}$ $\mathrm{S}-34 \mathrm{f}-10-480 \mathrm{keV}, R=3.60 \mathrm{fm}$

Calculated $2200-\mathrm{m} / \mathrm{s}$ Cross Sections and Res. Integrals. $2200-\mathrm{m} / \mathrm{s}$ Res. Integ.
Elastic 1.024 b Capture 0.514 b 0.2432 b Total $\quad 1.546 \mathrm{~b}$

MF=3 Neutron Cross Sections
Below 1.57 MeV. background cross sections consisting of ( $n, p$ ) and (n,alpha) cross sections were given.

MT=1 TOTAL
For energies $10-20 \mathrm{MeV}$, fine resolution data of Cierjacks+/1/ were adopted. In the range of 1.57-10 MeV the weighted sum of isotopic data were taken. The isotopic calculations were performed by using CASTHY code/2/.
MT=2 ELASTIC SCATTERING
Given as total minus other cross sections.
$M T=4$ TOTAL INELASTIC SCATTERING
Sum of MT=51-73, 91
$M T=16.22,28.103,107$
The weighted sum of isotopes was adopted. The cross sections of isotopes were calculated using GNASH code/3/.
MT=51-73.91 INELASTIC SCATTERING
I sotopic data were obtained from the CASTHY/2/ calculation. Isotopic levels were sorted with energies

Optical potential parameters used in the calculation are as follows:
$V=38.0 . \quad R 0=1.26 . \quad A 0=0.76$
$W_{s}=9.13, \quad R s=1.39, ~ A s=0.40$

```
 Vso}=5.37, Rso= 1.26. Aso=0.7
 energies in MeV unit. lengths in fm unit
 MT=102 CAPTURE
 Above 1.57 MeV, the CASTHY/2/ calculation was adopted.
MT=103(N.P). 107(N,ALPHA)
 For S-32 the evaluation was made or, the basis of
 experimental data. For S-33.34.36, the GNASH/3/
 calculation was adopted
MT=251 MU-BAR
 Calculated with CASTHY/2/.
MF=4 ANGULAR DISTRIBUTIONS OF SECONDARY NEUTRONS
 MT=2.51-73
 Optical and statistical-model calculations
 MT}=16,22,28.9
 Assumed to be isotropic in the laboratory system.
MF=5 ENERGY DISTRIBUTIONS OF SECONDARY NEUTRONS
 MT=16,22,28.91
 Calculated with GNASH/3/.
```


## REFERENCES

```
1) Cierjacks. S. et al.: KFK-1000 (1968)
2) Igarasi. S. : J. NUCL. SCI. TECHNOL. 12, 67 (1975).
3) Young. P.G. and Arthur. E.D.: LA-6947 (1977).
```

```
16-S - 32 Fuji E.C. Eval-May87 H.Nakamura
 Dist-Sep89
HISTORY
87-03 Newly Evaluated by H.Nakamura (Fuji Electric Co.Ltd.)
88-08 The following quantities were modified by H.Nakamura:
 (n.p) cross section. inelastic scattering cross
 sections and angular distributions of the first, third
 and continuum levels.
 MF=1 General Information
 MT=451 Descriptive data and dictionary
 MF=2 MT=151 Resonance Parameters:
 Resolved resonances for MLBW formule: 1.0E-5 eV - 1500 keV
 Parameters are taken from BNL 325 4th odition/1/, and
 some parameters are assumed co fit the measured data
 Cross sections calculated with these parameters are to
 be corrected by adding MF=3, MT=1, 2 and 102 data.
 Calculated 2200-m/s cross sections and resonance integrals
 2200-m/sec Res. Integ. Ref
\begin{tabular}{llcc}
elastic & 0.963 b & - & - \\
capture & 0.528 b & 0.250 b & \(/ 1 /\) \\
total & 1.499 b & - & -
\end{tabular}
MF=3 Neutron Cross Sections
Below 1500keV
 Background data for
 MT=107 0.007 b, based on 2200-m/s data of Ref./1/.
 MT=25! Mu-bar=0.0210.
Above 1500keV
 MT=1, 2. 4, 51-56, 91. 102 Total, Elastic, Inelastic and
 Capture calculated with CASTHY code /2/, considering the
 competition with the threshold reacrion channels.
 Optical potential parameters of C.Y.Fu/3/ are adjusted
 to reproduce the following experimental data:
 MT=1 total -
 MT=2 elastic G.A.Petitt et al./4/. A.Virdis/5/.
 MT=4 inelastic -
 The spherical optical potential parameters:
 V=38.0 Vso=5.37 (MeV)
 Ws=9.13 Wv =0.0 (MeV)
 r =rso=1.26 rs=1.39 (fm)
 a=aso =0.76 b =0.40(fm)
 MT=102 Capture data are normalized to the experimental
 data of A.Lindhoim et al. at 3-6 MeV/6/.
 MT=51, 53 Direct Interaction
 Calculated by using DWBA calculation, are added to the
 compound components. respectively.
 MT=2, 4
 Modified after the above direct component addition.
 The discrete level scheme taken from Ref./7/:
```

```
\begin{tabular}{ccc}
No. & Energy (MeV) & Spin-Parity \\
\((\) g.s. \()\) & 0.0 & \(0+\) \\
1 & 2.230 & \(2+\) \\
2 & 3.779 & \(0+\) \\
3 & 4.282 & \(2+\) \\
4 & 4.459 & \(4+\) \\
5 & 4.695 & \(1+\) \\
6 & 5.006 & \(3+\)
\end{tabular}
Continuum levels assumed above 5.4 MeV . The level density parameters of Asano et al./8/are used
MT=16(n, 2n). 22(n,n'a). 28(n,n'p), 103(n,p), 107(n,a)
 Based on the statistical model calculations with GNASH
 code/9/. without the precompound reaction correction.
 Transmission coefficients for proton and alpha particles
 are calculated by using the OMP of Becchetti-Geenlees
 /10/ and Huizenga-Igo/11/, respectively
 Level density parameters are based on built-in values.
MT=103 (n.p) cross section
 Adjusted to reproduce R. Ricamo data above 14 MeV /12/
MT=4. 91
 Modified so as to compensete for the (n,p) adjustment.
MT=251 Mu-bar
Calculated with optical model (CASTHY).
```

```
MF=4 Angular Distributions of Secondary Neutrons
```

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with optical model (CASTHY)
MT=2 Calculated with optical model (CASTHY)
MT=51-91 Calculated with Hauser-Feshbach formula (CASTHY).
MT=51-91 Calculated with Hauser-Feshbach formula (CASTHY).
MT=16.22.28 Isotropic in the laboratory system.
MT=16.22.28 Isotropic in the laboratory system.
MT=51, 53 Direct Components
Calculated using DWBA calcularion, are added to
reproduce DDX data of OKTAVIAN /13/.
MF=5 Energy Distributions of Secondary Neutrons
MT=16,22.28,91,103,107 Evaporation spectra.
References
1) Mughabghab.S.F. et al.: Neutron Cross Section. Vol.1 (1981).
2) Igarasi.S: J. Nucl. Sci. Tech. 12. 67 (1975).
3) Fu.C.Y.: Atom. Data and Nucl. Data Tables. 17. 127 (1976).
4) Patitt.G.A. et al.: Nucl. Phys. 79. 231 (1960).
5) Virdis,A.: CEA-R-5144 (1981).
6)Lindholm,A. et al.: Nucl. Phys. A279. 445 (1977).
7) Leder.C.M. et al.: Table of Isotopes. 7th Edit.
8) Asano et al.: private communication
9) Young.P.G. and Arthur.E.D.: LA-6947 (1977).
10) Becchetti.Jr. and Greenlees.G.W.: Polarization Phenomena
in Nuclear Reactions. p. }682\mathrm{ (1971).
11) Huizenga.Jr. and Igo.G.J.: Nucl. Phys. 29. 462 (1962).
12) Ricamo. R. : NC. 8, 383 (1951)
\3) INDC(JPN)-10, OSA (1986)

```
```

    16-S - 33 Fuji E.C. Eval-May87 H.Nakamura
                                    Dist-Sep89
    ```
HISTORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co.. Ltd.)
```

MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 MT=151 Resonance parameters
Resolved resonances for MLBW formula: 1.0E-5 eV - 260 keV
Parameters are taken from BNL325 4th edition/1/, and
C.Wagemans and H.Weigmann/2/.
Cross sections calculated with these parameters are to
be corrected adding MF=3, MT=1, 2 and 102 data
Calculated 2200-m/s cross sections and resonance integrals

```
 2200-m/sec Res. Intog Rei.
 elastic \(2.84 \mathrm{~b} \quad\) / \(/\)
 ceptuic \(\quad 0.35 \mathrm{~b} \quad 0.164 \mathrm{~b} \quad / 1 /\)
 total 3.36 b
MF=3 Neutron Cross Sections
 Below 260 keV
 Background cross sections are given for \(M T=1\)
 \(M T=10.171 b: 0.002(n, p)+0.169(n, a) b\)
 MT=103 (n,p) 0.0016 b , based on \(2200-\mathrm{m} / \mathrm{s}\) data /1/.
 MT=107 (n, a) 0.169 b , same as the above
 \(\mathrm{MT}=251 \mathrm{Mu}-\mathrm{bar}=0.0210\)
 Above 260 keV .
 MT=1, 2, 4, 51-57, 91, 102
 Total. Elastic, Inelastic and Capture cross sections
 calculated with CASTHY code /3/. considering the
 competition with the threshold reaction channels.
 Optical potential parameters of C.Y.Fu/4/ are adjusted
 to reproduce the following experimental data:
 MT=1 total
 MT=2 elastic cross sections of \(S-32\).
 MT=4 inelastic -
 The spherical optical potential parameters
 \(V=38.0 \quad V\) so \(=5.37 \quad(\mathrm{MeV})\)
 \(W_{s}=9.13 \quad W_{v}=0.0 \quad(\mathrm{MeV})\)
 \(r=r s o=1.26 \quad r s=1.39 \quad(f m)\)
 \(a=a \operatorname{co}=0.76 \quad b=0.40 \quad(\mathrm{fm})\)
 MT=102 Capture data are normalized to 0.5 mb at 260 keV
 based on \(\mathrm{S}-32\) capture cross sections.
 The discrete level scheme taken from Ref./5/:
\begin{tabular}{cccc}
No. & Energy (MeV) & Spin-Parity \\
\((\mathrm{g.s})\). & 0.0 & \(3 / 2\) & + \\
1 & 0.8404 & \(1 / 2\) & + \\
2 & 1.966 & \(5 / 2\) & + \\
3 & 2.313 & \(3 / 2\) & + \\
4 & 2.866 & \(5 / 2\) & + \\
5 & 2.934 & \(7 / 2\) & - \\
6 & 2.969 & \(7 / 2\) & +
\end{tabular}
```

7 3.220 3/2
Continuum levels are assumed above 3 6MeV. The level
density parameters of Asano et al.'6/ are used
MT=16(n,2n), 22(n,n'g).28(n, n'p).103(n,p).107(n,a)
Based on the statistical model calculations with GNASH
code /7/. without the precompound reaction correction
Transmission coefficients for proton and alpha particles
are calculated by using the OMP of Becchetti-Greenlees/8/
and Huizenga-lgo/g/. respectively
Level density parameters are based on built-in valuzs
MT=251 Mu-bar
Calculated with optical model (CASTHY)
MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with optical model (CASTHY)
MT=51-91 Calculated with Hauser-Feshbach formula (CASTHY)
MT=16,22,28 Isotropic in the laboratory system
MF=5 Energy Distributions of Secondary Neutrons
MT=16,22.28,91,103,107 Evaporetion spectra
Roferences
1) Mughabghab, S.F. et al.: Neutron Cross Section. Vol 1 (1981)
2) Wagemans, C. and Weigman, H. Grenoble-Conf . 462 (1981)
3) Igarasi. S : J. Nucl. Sci. Tech.. 12. 67 (1975)
4) Fu, C.Y.: Atom.Data and Nucl. Data Tables. 17. 127 (1976)
5) Ledrer. C.M et al.: Table of Isotopes. 7th Edit
6) Asano et al.: private communication
7) Young. P.G. and Arthur. E.D.: LA-6947 (1977)
8) Becchetti. Jr. and Greenlees. G.W.: Polarizalion Phenomena
in Nuclear Reactions. p.682 (1971).
9) Huizenga. Jr. and Igo. G.J.: Nucl. Phys.. 29. 462 (1962)

```

MAT number \(=3163\)
```

16-S - 34 Fuji E.C. Eval-May87 H.Nakamura
Dist-Sep89
HISIORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co.. Ltd)
MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 MT=151 Resonance parameters
Resolved resonances for MLBW formula: 1.0E-5 eV - 480 keV
Parameters are taken from BNL 325 4th edition/1/, and
some pararneters are assumed to fit the measured data
Cross sections calculated with these parameters are to
be corrected by adding MF=3. MT=1, 2 and 102 data
Calculated 2200-m/s cross sections and resononce integrals
2200-m/sec
elasicc
total 2.30 b
MF=3 Neutron Cross Sections
Below 480keV
No Background cross section.
MT=251 Mu-bar=0.0198
Above 480 keV.
MT=1,2,4,51-55,91,102
Total. Elastic, Inelastic and Capture calculated with
CASTHY code/2%. considering the competition with the
threshold reaction channels.
Optical potential parameters of C.Y.Fu/3/ are adjusted
to reproduce the following experimental data:
MT=1 total
MT=2 elastic cross sections of S-32
MT=4 inelastic
The spherical optical potential parameters
V = 38.0 Vso=5.37 (MeV)
Ws}=9.13\quad\mp@subsup{W}{v}{}=0.0\quad(MeV
r =rso= 1.26 rs = 1.39 (fm)
a =aso=0.76 b = 0.40 (fm)
MT=i02 capture data are normalized to 0.3mb at 480 keV
based on S-32 capture cross section.
The discrete level scheme taken from Ref./4/:
No. Energy(MeV) Spin-Parity

| $(\mathrm{g.s})$ | 0.0 | 0 | + |
| :---: | :--- | :--- | :--- |
| 1 | 2.127 | 2 | + |
| 2 | 3.304 | 2 | + |
| 3 | 3.914 | 0 | + |
| 4 | 4.072 | 1 | + |
| 5 | 4.115 | 2 | + |

Continum levels assumed above 4.5 MeV . The level density parameters of Asano et al./5/ are used $M T=16(n, 2 n), 22\left(n, n^{\prime} a\right), 28\left(n, n^{\prime} p\right), 103(n, p), 107(n, a)$
Based on the statistical model calculations with GNASH code /6/. without the precompcund reaction correction.

```
```

    Transmission coefficients for proton and alpha parilcle
    are calculated by using the OMP of Becchelli. Greenlees/7/
and rtuizenga-lgo/8/. respectively
Level density parameters are based on buili in salues
MT:=251 Mu-bar
Calculated with optical model (CASTHY:
MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with nntical model (CASTHY)
MT=51-9; Calculated with Hauser.*Feshbach formuia (CASTHY)
MT=16.22,28 Isotropic in the laboratory system
MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28,91,:03,107 Evaporation spectra
References
1) Mughabghab. S F. et al.: Neutron Cross Saction, Vol 1 (1981)
2) Igarasi. S : Jr. Nucl. Sei Tech 12, 67 (1975)
3) Fu. C.Y.: Atom. Data and Nucl. Data Tables . 17. 177 (1976)
4) Lederer, C M et al.: Tablo of Isotopes. 7th Edit
5) Asano et al private communicalion
6) Young. P.S. and Arthu:. E.D : Le-6947 (1977)
7) Becchetti. Jr. and Greenlecs, G.W.: Polarizelion Phenomena
in Nuclear Reactions. p.682 (1971)
8) Huizenga, Jr. and Igo. G.J.: Nuc!. Phys.. 29. 462 (1962)

```

MAT number \(=3164\)
```

    16-S - 36 Fuji E.C. Eval-May87 H.Nakamura
                            Dist-Sep89
    HISTORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co.. Lid.)
MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 MT=151 Resonance parameters: (Not given)
MF=3 Neutron Cross Sections
Beiow 1000 keV
Assumed cross sections, guided by those of S-32
(10\cdots-5) eV (0.025) eV (1.0..4) eV (1.0..6) eV INT

```

```

        MT=102 3.5 b 0.15 b 0.0.11 b 0.00015 b 5
        MT=1 4.5 b 1.15 b 1.00; b 6.00015 b -
        MT=251 Mu-bar=0.0210
    Above 1000 keV
        MT=1.2,4.51-55.91.102
            Total, Elastic. Inelastic and Capture
        calculated with CASTHY code /2/. considering the
        competition with the threshold reaction channels
            Optical potential parameters of C Y.Fu!3/ are adjusted
        to reproduce the following experimental data:
                MT=1 total -
                MT=2 elastic cross secticns of S-32
                MT=4 inelastic -
        The spherical optical potential parameters:
            V=38.0 Vso= 5.37 (MeV)
            Ws=9.13 (Wv = 0.0 (MeV)
            r =rso= 1.26 rs = 1.39 (fm)
            a =aso=0.76 b = 0.40 (fm)
            MT=102 Capture data are normalized to 0.15 mb at 1 MeV
        baseci on S-32 capture cross section.
            The discrete level scheme taken from Ref./4/:
                No. Energy (MeV) Spin-Farcty
            (g.s.) 0.0 0 +
                1 3.291 2.3+
                2 3.346 0 +
                34.192 3-
                4 4.523 4.575 1 +
    Continuum levels assumed above 5.0 MeV. The level
        density parameters of Asano et al./5/ are used.
        MT=16(n.2n). 22(n, n'a). 28(n,n'p). 103(n.p). 107(n,a)
            Based on the statistical model calculations with GNASH
        code /6/, without the precompound reaction correction.
        Transmission coefficients for proton and alpha particle
        are calculated by using the OMP of Becchetti-Greenlees
        /7/ and Huizenga-lgo/8/, respectively.
            Level density parameters are based on built-in values.
        MT=251 Mu-bar
            Calculated with optical model (CASTHY).
    ```
```

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with optical model (CASTHY)
MT=51-91 Calculated with Hauser-Feshbach formula(CASTHY)
MT=16.22.2\delta Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16,22.28,91,103.107 Evaporation spectra.
References
1) Mughabghab, S.F. et al.: Neutron Cross Section, Vol.1 (1981).
2) Igarasi, S.: J. Nucl. Sci. Tech.. 12, 67 (1975)
3) Fu, C.Y.: Atom. Data and Nucl. Data Tables.. 17. 127 (1976).
4) Lederer, C.M. et al.: Table of Isotopes. 7th Edit.
5) Asano et al.: private communication.
6) Young. P.G. and Arthur. E.D.: LA-6947 (1977).
7) Becchetti. Jr. and Greenlees, G.W.: Polarization Phenomena
in Nuclaar Reactions. p. }682\mathrm{ (1971).
8) Huizenga, Jr. and Igo. G.J.: Nucl. Phys., 29, 462 (1962)

```

MAT number \(=3190\)
```

    19-K - 0 Fuji E.C. Eval-May87 H.Nakamura
    Dist-Sep89
    HISTORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co., Ltd.)
87-07 Compiled by T.Fukahori (JAERI).
Natural potassium constructed from its isotopes.
MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved Resonances
Resonance region : 1.0E-5 eV - 200 keV
The multilevel Breit-Wigner formula was used. Parameters
were adopted from the following sources
K-39 : -4.0 - 200 keV, R = 1.80 fm
K-41,-6.6-125 koV,R=2.00 fm
Calculated 2200-m/s Cross Sactions and Res. Integrals.
2200-m/s Res. Integ
Elastic 2.096 b -
Capture 2.058 b 1.118 b
Total
4.159 b
MF=3 Neutron Cross Sections
Below 200 keV, background cross sections consisting of
elastic. capture. (n,p) and (n,alpha) cross sections
were given.
MT=1 TOTAL
For energies 0.2 - 20 MeV. the weighted sum of isotopes
data was taken. The isotopic calculations were performed
by using CASTHY code/1/
MT=2 ELASTIC SCATTERING
Given as total minus other cross sectioris.
MT=4 TOTAL INELASTIC SCATTERING
Sum of MT=51-61. 91
MT=16,22,28,103.107
The weighted sum of isotopes was adopted. The cross
sections of isotopes were calculated using GNASH code/2%.
MT=51-61.91 INELASTIC SCATTERING
Isotopic deta were obtained from the CASTHY/1/
calculation. I sotopic levels were sorted with energies.
Optical potential parameters used in the calculation are
as follows:
V = 46.72. RO = 1.26, A0 = 0.76
Ws}=9.13. Rs=1.39, As = 0.4
Vso= 5.37, Rso= 1.26, Aso= 0.76
energies in MeV unit. lengths in fm unit.
MT=102 CAPTURE
Above 200 keV, the CASTHY/1/ calculation was adopted.
MT=103(N.P). 107(N, ALPHA)

```
```

            Above 200 keV. based on calculations using the GNASti/2/
            code.
        MT=251 MU-BAR
            Calculated with CASTHY/1/.
    MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-61
Optical and statisticalmodel calculations.
MT=16,22.28.91
Assumed to be isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16,22.28.91
Calculated with GNASH/2/.
REFERENCES
1) Igarasi. S. : J. Nucl. Sci. Technol., 12. 67 (1975)
2) Young. P.G. and Arthur. E.D.: LA-6947 (1977).

```
```

    19-K - 39 Fuji E.C. Eval-May87 H.Nakamura
                            Dist-Sep89
    HISTORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co., Ltd.)
MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 MT=151 Resonance parameters:
Resolved resonances for MLBW formula: 1.0E-5 eV - 200 keV
Parameters are taken from BNL 325 4th edition/1/. and
some parameters are assumed to fit the measured data.
Cross sections calculated with these parameters are to
be corrected by adding MF=3, MT=1, 2 and 102 data.
Calculated 2200-m/s cross sections and resonance integrals
2200-m/sec Res.Integ. Ref

elastic	2.06 b	-	-
capture	2.10 b	1.1 b	$1 /$

MF=3 Neutron Cross Sections
Below 200 keV
Background data for MT=1 : (MT=107)-cross sections
MT=107 (n,a)=0.04 b (10-.-5 eV).0.0043 b (2200m/s)/1/.
INT=5.
MT=251 Mu-bar=0.0173
Above 200 keV
MT=1,2,4.51-54.91,102 total, elastic, inelastic and capture
Calculated with CASTHY code /2/. considering the
competition with the threshold reaction channels.
Opical potential parameters of C.Y.Fu/3/ are used.
The spherical optical potential parameters:

$V=46.72$	$V s o=5.37$	$(\mathrm{MeV})$
$W s=9.13$	$W v=0.0$	$(\mathrm{MeV})$
$r=r s o=1.26$	$r s=1.39$	$(\mathrm{fm})$
$a=a s o=0.76$	$b=0.40$	$(\mathrm{fm})$

    MT=102 Capture data are normalized to 4.2 mb at 200 keV.
            The discrete level scheme taken from Ref./4/:
            No. Energy(MeV) Spin-Parity
            (g.s) 0.0 3/2 +
                1 2.523 1/2 +
                2 2.814 7/2 -
                3 3.019 3/2 -
                4 3.598 9/2 -
        Continuum levels assumed above 3.8 MeV. The level
        density parameters of Asano et al./5/ are used.
        200 keV - 1.0 MeV
    MT=107 (n,a)-cross section = 2.6.10.=-5 b (constant):
            Assumed from the calculated value at 1.0 MeV.
        Above 1.0 MeV
        MT=16, 22,28,103,107 (n,2n), (n,na). (n,np), (n,p), (n,a)
            Based on the statistical model calculations with GNASH
        code/6/, without the precompound reaction correction.
        Transmission coefficients for proton and alpha particle
    ```
```

            are calcu!ated by using the OMP of Becchetti-Greenlees
            /7/ and Huizenga-Igo/8/. respectively.
            Level density parameters are based on built-in values
            At the energy range of 4-20 MeV, ( n,p) cross section
            was based on the experimental data/9-11/.
            MT=251 Mu-bar
            Calculated with optical model (CASTHY).
    MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with optical model (CASTHY)
MT=51-91 Calculated with Hauser-Feshbach formula (CASTHY)
MT=16.22,28 Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28.91,103.107 Evaporation spectra
References
1) Mughabghab. S.F. et al.: Neutron Cross Section, Vol.1 (981).
2) Igarasì, S.: J. Nucl. Sci. Tech.. 12. 67 (1975).
3) Fu. C.Y.: Atom. Data and Nucl. Data Tables.. i7. 127 (1976).
4) L.edorer, C.M et al.: Table of Isotopes 7th Edi!
5) Asano et al.: private communication
6) Young, P.G. and Arthur. E.D.: LA-6947 (1977)
7) Becchetti. Jr. and Greenlees, G.W.: Polarizetion Phenomena
in Nuclear Reactions. p.682 (1971).
8) Huizenga. Jr. and Igo. G.J.: Nucl. Phys.. 29, 462 (1962).
9) Bass, R. et al.: Nucl. Phys.. 56, 569 (1964)
10) Bormann. M. et al.: Zeitschrift f. Naturforschung. section A.
15. 200 (1960).
11) Aleksandrov.D.V. et al.: At mmnaya Energiya. 39(2). 137 (1975).

```
```

MAT number = 3192

```
```

19-K - 40 Fuji E.C. Eval-May87 H.Nakamura
Dist-Sep89

```

\section*{HISTORY}

87-05 Newly Evaluated by H. Nakamura (Fuji Electric Co.. Ltd.)
MF=1 General Information
MT=451 Descriptive data and dictionary
\(M F=2 M T=151\) Resonance parameters: (Not given)
MF=3 Neutron Cross Sections
Below 30 keV
Assumed or interpolated cross sections.guided by those of \(K-39\) :
\begin{tabular}{lrrrllllll}
& \((10 .-5)\) & \((2200 \mathrm{~m} / \mathrm{s})\) & \((5.10 \cdots 2)\) & \((3.10 \cdots 4)\) & INT \\
\(M T=2\) & 1.0 & \(b\) & 1.0 & \(b\) & 1.0 & \(b\) & 185 & \(b\) & 5 \\
\(M T=102\) & 1509.0 & \(b\) & 30.0 & \(b\) & \(/ 1 /\) & 0.2 & \(b\) & 0.023 & \(b\) \\
\(M T=103\) & 370.0 & \(b\) & 4.4 & \(b / 1 /\) & 0.012 & \(b\) & 0.012 & \(b\) & 5 \\
\(M T=107\) & 2.2 & \(b\) & 0.39 & \(b\) & \(/ 1 /\) & 0.04 & \(b\) & 0.015 & \(b\) \\
\(M T=1\) & 1882.2 & \(b\) & 35.79 & \(b\) & 1.252 & \(b\) & 19 & \(b\) & -
\end{tabular}
\(M T=251 \mathrm{Mu-bar}=0.0168\)
\(30 \mathrm{keV}-1.0 \mathrm{MeV}\)
\(M T=1,2,4,102\) : Calculated with CASTHY code /2/
\(M T=103\) : 0.012 b . guided by measurements of H.Weigmann/3/
Above 30 keV .
MT=1.2.4,51-9i.102
Total. Elastic. Inelastic and Capture calculation with CASTHY code \(/ 2 /\). considering the competition with the the threshold reaction channels.

Optical potential parameters of C.Y.Fu/3/ are used.
The spherical optical potential parameters:
\(V=46.72 \quad V \mathrm{so}=5.37 \quad\) (MeV)
\(W_{s}=9.13 \quad W_{v}=0.0 \quad(\mathrm{MeV})\)
\(r=r s o=1.26 \quad r s=1.39 \quad(f m)\)
\(a=\mathrm{aso}=0.76 \quad b=0.40 \quad(\mathrm{fm})\)
MT=102 capture data are normalized to 4.2 mb at 200 keV
The discrete level scheme taken from Ref. /4/:
No. Energy(MeV) Spin-Parity
(g.s.) 0.0

4 -
10.02963
\(20.800 \quad 2\) -
\(30.892 \quad 5\) -
\(4 \quad 1.644 \quad 0+\)
\(5 \quad 1.959 \quad 2+\)

Continumm levels assumed above 2.1 MeV . The level
density parameters of Asano et al. \(/ 5 /\) are used.
\(M T=16(n, 2 n), 22\left(n, n^{\prime} a\right), 28\left(n, n^{\prime} p\right), 103(n, p), 107(n, a)\)
Based on the statistical model calculations with GNASH code /6/. without the precompound reaction correction. Transmission coefficients for proton and alpha particle are calculated by using the OMP of Becchetti-Greenlees /7/ and Huizenge-lgo/8/. respectively.

Level density parameters are based on built -in values.
MT=251 Mu-bar
Calculated with optical model (CASTHY).
```

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with optical model (CASTHY)
MT=51-91 Calculated with Hauser-Feshbach formula(CASTHY)
MT=16.22.28 Isotropic in the laboratory system
MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28,91,103,107 Evaporation spectra.
References
1) Mughabghab. S.F. et al.: Neutron Cross Section, Vol 1 (1981).
2) Igarasi. S.: J. Nucl. Sci. Tech., 12. 67 (1975)
3) Weigmann. H.: NESTOR data.
4) Fu. C.Y.: Atom. Data and Nucl. Data Tables., 17. 127 (1976)
5) Lederer, C.M. et a:.: Table of Isotopes. 7th Edit.
6) Asano et al.: private communication.
7) Young. P.G and Arthur. E.D.: LA-6947 (1977).
8) Becchetti. Jr. and Greenlees. G.W.: Polarization Phenomena
in Nuclear Reactions. p.682 (1971)
9) Huizenga. Jr. and Igo. G.J.: Nucl. Phys.. 29. 462 (1962).

```
```

MAT number = 3193
19-K - 41 Fuji E.C. Eval-May87 H.Nakamura
Dist-Sep89
HISTORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co.. Lid.)
MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 MT=151 Resonance parameters:
Resolved resonances for MLBW formula: 1 0E-5 eV - 125 keV
Parameters are taken from BNL 325 4th edition /1/. and
some parameters are assumed to fit the measured data
Cross sections salculated with these parameters are to
be corrected by adding MF=3, MT=1, 2 and 102 data
Calculated 2200-m/s cross sections and resonance integrals

|  | $2200-\mathrm{m} / \mathrm{sec}$ | Res. Integ | Ref |
| :--- | :---: | :---: | :---: |
| elastic | 2.57 b | - | - |
| capture | 1.46 b | 1.58 b | $11 /$ |
| total | 4.03 b | - | - |

MF=3 Neutron Cross Sections
Below 125 keV
MT=251 Mu-bar= 0.0164
Above 125 keV
MT=1.2.4.51-.91.102
Total, Elastic. Inelastic and Capture calculated with
CASTHY code /2/, considering the competition with the
threshold reaction channels.
Optical dotential parameters of C.Y.Fu/3/ are used
The spherical optical potential parameters:
V=46.72 Vso= 5.37 (MeV)
Ws=9.13 (Wv = 0.0 (MeV)
r =rso=1.26 rs = 1.39 (fm)
a =aso=0.76 b =0.40 (fm)
MT=102 Capture data are normalized to the experimental
deta of 15 mb at 150 keV/4/
The discrete level scheme taken from Ref./5/:
No. Energy(MeV) Spin-Parity
(g.s.) 0.0 3/2+
1 0.9804 1/2 +
2 1.294 7/2 -
Continum levels assumed above 1.5 MeV . The level
density parameters of Asano et al./6/ are used
MT=16(n,2n), 22(n,n'a), 28(n,n'p), 103(n,p), 107(n,a)
Based on the statistical model calculations with GNASH
code /7/. without the precompound reaction correction
Transmission coefficients for proton and alpha particle
are calculated by using the OMP of Becchetti-Greenlees
/8/ and Huizenga-lgo/9/. respectively.
Level density parameters are based on built-in values.
(n,2n). (n,p) and (n,a) cross sections were normalized
to the experimental deta of Adam+/10/ for (n, 2n), and of
Bass+/11/ for (n,p) and (n,a).
MT=251 Mu-bar

```
```

Calculated with optical model (CASTHY)
MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with optical model (CASTHY)
MT=51-91 Calculated with Hauser -Feshbach formula (CASTHY)
MT=16.22.28 Isotropis in the Iaboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28.91,103,107 Evaporation spectra
References
1) Mughabghab, S.F. et al.: Neutron Cross Section, Vol.1 (1981).
2) Igarasi. S.: J. Nucl. Sci. Tech.. 12. 67 (1975).
3) Fu. C.Y.: Atom. Data and Nucl. Deta Tables.. 17. 127 (1976).
4) Stupegia et al.: J.Nucl. Energ., 22, 267 (1968)
5) Lederer, C.M et al.: Tatlo of Isotopes. 7th Edit
6) Asano et al.: private communication.
7) Young. P.G. and Arthur. E.D.: LA-6947 (1977).
8) Becchetti, Jr. and Greenleos. G.W.: Polarization Phenomena
in Nuclear Reactions. p.682 (1971).
9) Huizenga. Jr. and Igo. G.J.: Nucl. Phys.. 29, 162 (1962).
10) Adam, A. et al.: Nucl. Phys.. Al80. 587 (1972).
11) Bess, R.et al.: EANDC(E)-57U, 1 (1965).

```

```

    56 1.525 51
    57 1.837 52
    58 1.860 52
    59 1.931 55
    60 2.2831 53
    61 2.424 53
    62 2.600 54
    63 2.752 54
    64 3.0443 55
    65 1.189 55 56
    67 3.3013 57
    68 3.3079 58
    69 3.352 51
    70 3.3572 59
    71 3.445 56
    72 3.737 52
    73 3.832
    74 3.904 53
    75 4.492 54
    76 4.503 57
    77 4.507 53
    78 4.612 54
    79 5.249 55
    80 5.370
    81 5.627 56
    82 6.285 57
    83 6.585 58
    84 6.614 56
    85 6.685 57
    86 6.910 59
    87 6.932 60
    88 7.40
    91 4.000
                            91 91 91 91 
    MT=16, 22. 28, 102, 103, 107, 111 (n,2n). (n,na). (n.np).
capture. (n,p). ( }n,a)\mathrm{ and (n,2p)
Constructed from the evaluated data for five Ca isotopes
except for Ca-46. in considering their abundances in the
element Ca.
MT=251 Mu-bar
Calculated with the optical model.
MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code/4/.
MT=51-88. 91
Calculated with the CASTHY code/4/.
MT=16, 22, 28
Assumed to be isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22. 28. 91
Calculated with the GNASH code/5/.
MF=12 Photon Production Multiplicities
MT=102, 107

```
```

    Calculated with the GNASH code/5/.
    MF=13 Photon Production Cross Sections
MT=3
Calculated with the GNASH code/5/
MF=14 Photon Angular Distributions
MT=3. 102. 107
Assumed to be isotropic in the laboratory system
MF=15 Cont inuous Photon Energy Spectra
MT=3. 102. 107
Calculated with the GNASH code/5/
References
1) Holden N.E.. Martin R.L and Barmes I L : Pure \& Appl
Chem. 56. 675 (1984).
2) Cierjacks S. et al. : K(K-1000 (1968)
3) Foster Jr. D.G. et al. : Phys. Rev. C3. 576 (1971)
4) Igarasi S. : J. Nucl. Sci. Tech. 12. 67 (1975)
5) Young P.G. and Arthur E.D. : LA-6347 (1977)

```
```

20-Ca-40 DEC Eval-Mar87 M.Hatchya(Data Eng. Co.)
Dist-Sep89

```
```

History

```
History
 87-03 New evaluation was made to give a full revision for
 87-03 New evaluation was made to give a full revision for
 JENDL-2 data.
 JENDL-2 data.
 87-03 Compiled by T.Asami(NEDAC)
 87-03 Compiled by T.Asami(NEDAC)
MF=1 General Information
MF=1 General Information
 MT=451 Descriptive data and dictionary
 MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MF=2 Resonance Parameters
 MT=151 Resolved resonance parameters
 MT=151 Resolved resonance parameters
 Resolved parameters for MLBW formule were given in
 Resolved parameters for MLBW formule were given in
 the energy region from 1.0E-5 eV to 500 keV
 the energy region from 1.0E-5 eV to 500 keV
 Paramaters were taken from tho recommendad data of 8NL/1/ and
 Paramaters were taken from tho recommendad data of 8NL/1/ and
 the deta for a negative resonance were added so as lo raproduce
 the deta for a negative resonance were added so as lo raproduce
 the recommended thormal cross sections for capturo and scatter-
 the recommended thormal cross sections for capturo and scatter-
 ing/1/.
 ing/1/.
 The scattering radius was assumed to be 3.6 Fermi
 The scattering radius was assumed to be 3.6 Fermi
 Calculated 2200 m/sec cross sections and resonance integrels
 Calculated 2200 m/sec cross sections and resonance integrels
 are as follows:
 are as follows:
 2200 m.s cruss section(b) res.integral(b)
 2200 m.s cruss section(b) res.integral(b)
 elastic 3.022
 elastic 3.022
 capture 0.408 0.2125
 capture 0.408 0.2125
 total 3.430
 total 3.430
MF=3 Neutron Cross Sections
 Below 500 keV, zero background cross section was given and all
 the cross-section data are reproduced from the evaluated resolv-
 ed resonance parameters with MLBW formula.
 Above 500 keV, the total and partial cross sections were given
 pointwise.
MT=1 Total
 Opticai and statistical model calculation was made with
 CASTHY /2/. The optical potential parameters used are:
 V = 49.68. Vso = 7.12 (MeV)
 Ws = 7.76-0.5.En, Wv = 0 (MeV)
 r=1.17, rs=1.09, rso = 1.17 (fm)
 a=0.6, aso =0.6, b=0.69 (fm)
MT=2 Elastic scattering
 Obtained by subtracting the sum of the partial cross sections
 from the total cross section.
MT=4. 51-60. 91 inelastic scattering
 Calculated with the CASTHY code/2l. taking account of the
 contribution from the competing processes. The direct component
 was calculated with the DWUCK/3/.
 The level data used in the above iwc calculations were taken
 from ref./4/ as follows:
\begin{tabular}{cccc}
MT & Level energy \((\mathrm{MeV})\) & Spin-parity & Beta-I \\
51 & 0.0 & \(0+\) & \\
52 & 3.352 & \(0+\) & \\
53 & 3.737 & \(3-\) & 0.29 \\
54 & 3.904 & \(2+\) & 0.12 \\
& 4.492 & \(5-\) & 0.19
\end{tabular}
```

```
\begin{tabular}{llll}
55 & 5.249 & \(2+\) & 0.039 \\
56 & 5.627 & \(2+\) & 0.044 \\
57 & 6.285 & \(3-\) & 0.14 \\
58 & 6.585 & \(3-\) & 0.096 \\
59 & 6.910 & \(2+\) & 0.099 \\
60 & 6.932 & \(3-\) & 0.18
\end{tabular}
Levels above 8.0 MeV were assumed to be overlapping.
\(M T=16 \quad(n, 2 n)\)
Taken from the JENDL-2 data, which were evaluated based on
the experimental data of Arnold/5/.
\(M T=22\). 28, 103, 107, 111 (n, na). (n, np), (n,p). (n,a). (n, 2p)
Calculated with the GNASH rode/6/ using the above optical
model parameters
The (\(n, p\)) cross sections were normalized so as to fit
to the experimental data of Urech at \(5.95 \mathrm{MeV} / 7 /\).
The (\(n, a\)) cross sections were normalized to the experimental data of Barnes/8/ at 14.1 MeV .
\(M T=102 \quad\) Capture
Calculated with the CASTHY code/4/ and normalized to 1.8 mb at 30 keV .
MT=251 Mu-bar
Calculated with the optical model.
\(M F=4\) Angular Distritutions of Secondary Neutrons
MT=2
Calculated with the CASTHY code/2/.
\(M T=5 i-60\)
Calculated with the CASTHY code/2/ and the DWUCK code/3/.
\(M T=91\)
Calculated with the CASTHY code/2/.
\(\mathrm{MT}=16\), 22, 28
Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28., 91
Calculated with the GNASH code/6/.
MF=12 Photon Production Multiplicities
MT=102. 107
Calculated with the GNASH code/6/.
```

```
MF=13 Photon Production Cross Sections
MT \(=3\)
Calculated with the GNASH code/6/.
```

```
MF=14 Photon Angular Distributions
\(M T=3\), 102. 107
Assumed to be isotropic in the laboratory system.
MF=15 Continuous Photon Energy Spectra
MT=3, 102, 107
Calculated with the GNASH code/6/.
```

References

1) Mughaghab S.F. and Garber D.I. : "Neutron Cross Sections". Vol.
1. Part B (1984)
2) Igarasi S. : J. Nucl. Sci. Tech. 12. 67 (1975)
3) Kunz P.D. : Unpubl ished.
4) ENSDF (Evaluated Nuclear Structure Data File)
5) Arnold D.W. : Taken from EXFOR (1965)
6) Young P.G. and Arthur E.D. : LA-6947 (1977).
7) Urech S. : Nucl. Phys. A111. 184 (1968)
```
History
 87-03 Nev evaluation was made to give a full revision for
 JENOL-2 data.
 87-03 Compiled by T.Asami(NEDAC)
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
 MT=151 Resolved Rescnance Parameters
 Resolved paramic:ers for MLBW formula were given in
 the energy region from 1.0E-5 eV to 300 keV.
 Parameters were taken from the recommended data of BNL/1/ and
 the data for a negative rekonance were added so as 10 reproduce
 the recommended thermal cross sections for capture and scatter-
 ing/1/.
 The scattering radius was assumed to be 3.6 Formi.
 Calculated 2200 m/sec cross sections and resonance integrals
 are as follows:
 2200 m/s cross seccion(b) res.integral(b)
 elastic 1.222
 capture 0.683 0.3762
 total 1.905
MF=3 Neutron Cross Sections
 Below 300 keV, zero background cross section was given and all
 the cross-section data are reproduced from the evaluated resolv-
 ed resonance parameters with MLBW formula.
 Above 300 keV. the total and partial cross sections were given
 pointwise.
MT=1 Total
 Optical and statistical model calculation was made with
 the CASTHY code/2/. The optical potential parameters used are:
 V = 49.68. Vso = 7.12 (MeV)
 Ws = 7.76-0.5.En. (Mv=0 (MeV)
 r=1.17. rs = 1.09. rso = 1.17 (fm)
 a=0.6. aso =0.6, b=0.69 (fm)
 MT=2 Elastic scattering
 Obtained by subtracting the sum of the partial cross sections
 from the total cross section.
 MT=4, 51-56, 91 Inelastic scattering
 Calculated with CASTHY /2/. taking account of the contribution
 from the competing processes.
 The level data used in the above calculations were taken from
 ref./3/ as follows:
 MT Level energy(MeV) Spin-parity
 0.0
 O+
 51 1.525 2+
 52 1.837 0+
 53 2.424 2+
 54 2.752 4+
 55 3.19 6+
```

```
 56 3.445 3-
 Levels ahove 7.0 MeV were assumed to be overlapping
 MT=16, 22, 28, 103, 107 (n,2n), (n,ne). (n,np), (n,p). (n,a)
 Calculated with the GNASH code/4/ using the above optical
 model perameters.
 The (}\textrm{n},\textrm{np}\mathrm{) cross sections were normalized to 180 mb at
 14.5 MeV.
MT=102 Capture
 Calculated with the CASTHY code/2/ and normalized to 12.6 mb
 at 45 keV.
MT=251 Mu-bar
 Calculated with the optical model.
MF=4 Angular Distributions of Secondary Neutrons
MT=2
 Calculated with the CASTHY code/2/.
MT=51-56
 Calculated with the CASTHY code/2/.
MT=91
 Calculated with the CASTHY code/2/.
mt=16, 22, 28
 Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16, 22, 28, 91
 Calculated with the GNASH code/4/.
 References
1) Mughabghab S.F. and Garber D.1. : "Neutron Cross Sections". Vol.
 1. Part B (1984).
2) Igarasi S. : J. Nucl. Sci. Tech. 12. 67 (1975).
3) ENSDF(Evaluated Nuclear Structure Data File)
4) Young P.G. and Arthur E.D. : LA-6947 (1977).
```

```
20-Ca- 43 DEC Eval-Mar87 M.Hatchya(Data Eng. Co.)
Dist-Sep89
```

History

```
History
 87-03 New evaluation was made to give a full revision for
 87-03 New evaluation was made to give a full revision for
 JENDL-2 data.
 JENDL-2 data.
 87-03 Compiled by T.Asami(NEDAC)
 87-03 Compiled by T.Asami(NEDAC)
MF=1 General Information
MF=1 General Information
 MT=451 Descriptive data and dictionary
 MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
 MT=151 Resolved resonance parameters
 Resolved parameters for MLBW formula were given in
 the energy region from 1.0E-5 eV to 40 keV.
 Parameters were taken from the recommended deta of BNL/1/ and
 the date for a negative resonance were added so as to reproduce
 the recommended thermal cross sections for capture and scatter-
 ing/1/
 The scattering radius was assumed to be 3.6 Fermi
 Calculated 2200 m/sec cross sections and resonance integrals
 are as follows
 2200 m/s cross section(b) res. integral(b)
 lastic
 15.82
MF=3 Neutron Cross Sections
 Below 40 keV, zero background cross section was given and all
 the cross-section data are reproduced from the evaluated resolv-
 ed resonance parameters with MLBW formula.
 Above 40 keV, the total and partial cross sections were given
 pointwise.
MT=1 Total
 Optical and statistical model calculation was made with
 the CASTHY code/2/. The optical potential parameters used are:
 V = 49.68, Vso = 7.12 (MeV)
 Ws = 7.76-0.5*En. (Mv = 0 (MeV)
 r=1.17. rs = 1.09. rso = 1.17 (fm)
 a=0.6, aso =0.6. b = 0.69 (fm)
```

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.
MT=4, 51-55, 91 Inejastic scattering
Calculated with CASTHY /2/, taking account of the contribution
from the competing processes.
The level data used in the above calculations were taken from
ref./3/ as follows:
MT Level energy(MeV) Spin-parity
0.0 7/2-
51
$0.373 \quad 5 / 2-$
$520.593 \quad 3 / 2-$
53 0.990 3/2+
$541.395 \quad 5 / 2+$
55 1.931 5/2-

```
 Levels above 5.0 MeV were assumed to be overlapping
 MT=16, 22. 28, 103. 107 (n, 2n). (n,na). (n,np). (n,p). (n,a)
 Calculated with the GNASH code/4/ using the above optical
 model parameiers
 MT=102 Capture
 Calculated with the CASTHY code/2/ and normalized to 22 mb
 at 45 keV.
 MT=251 Mu-bar
 Calculated with the optical model.
MF=4 Angular Distributions of Secondary Neutrons
 MT=7
 Calculated with the CASTHY code/2/.
 MT=51-55
 Calculated with the CASTHY code/2/.
 MT=91
 Celculated with the CASTHY code/2/.
 MT=16, 22, 28
 Isotropic in the laboratory system
MF=5 Energy Distributions of Secondery Neutrons
 MT=16, 22, 28, 91
 Calculated with the GNASH code/4/.
 References
1). Mughabghab S.F. and Garber D.1. : "Neutron Cross Sections". Vol.
 1. Part B (1984).
2) Igarasi S.: J. Nucl. Sci. Tech. 12. 67 (1975).
3) ENSDF(Evaluated Nuclear Structure Data File)
4) Young P.G. and Arthur E.D. : LA-6947 (1977).
```

MAT number $=3204$

```
20-Ca-44 DEC
Eval-Mar87 M. Hatchya(Data Eng. Co.)
Dist-Sep89
```

```
History
```

History
87-03 New evaluation was made to give a full revision for
87-03 New evaluation was made to give a full revision for
JENDL-2 data.
JENDL-2 data.
87-03 Compiled by T. Asami(NEDAC)

```
 87-03 Compiled by T. Asami(NEDAC)
```

MF=1 General Information
$M T=451$ Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from $1.0 E-5 \mathrm{eV}$ to 500 keV
Parameters were taken from the recommended data of BNL/1/ and
the data for a nogative resonance were added so as to reproduce
the recommended thermal cross soctions for cepture end scatter-
ing/1/.
The scattering radius was assumed to be 3.6 Fermi
Celculated $2200 \mathrm{~m} / \mathrm{sec}$ cross sections and resonance integrals
are as follows:
$2200 \mathrm{~m} / \mathrm{s}$ cross section(b) res. integral(b)
elastic $\quad 3.320$
capture 0.888
0.4254
toial
4.208
MF=3 Neutron Cross Sections
Below 500 keV . zero background cross section was given and all
the cross-section data ere reproduced from the evaluated resolv-
ed resonance parameters with MLBW formula.
Above 500 keV . the total and partial cross sections were given
pointwise
MT=1 total
Optical and statistical model calculation was made with
the CASTHY code/2/. The optical potential parameters used are:
$V=49.68, \quad V s o=7.12 \quad(\mathrm{MeV})$
$W_{s}=7.76-0.5 \cdot E n . \quad W_{v}=0 \quad$ (MeV)
$r=1.17 . \quad r s=1.09, \quad r s o=1.17 \quad(f m)$
$a=0.6, \quad$ aso $=0.6, \quad b=0.69 \quad(f m)$
MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.
MT=4, 51-59. 91 Inelastic scattering
Calculated with CASTHY /2/, Laking account of the contribution
from the competing processes. The direct component was
calculated with the DWUCK code/3/.
The level data used in the above two calculations were taken
from ref./4/ as follows:

| MT | Level energy (MeV) | Spin-parity |
| :---: | :---: | :---: |
|  | 0.0 | $0+$ |
| 51 | 1.20 | $2+$ |
| 52 | 1.86 | $0+$ |
| 53 | 2.2831 | $4+$ |
| 54 | 2.60 | $2+$ |

```
 55 3.0443 4+
 56 3.20 6+
 57 3.3013 2+
 58 3.3079 3-
 59 3.3572 4+
 Levels above 4.0 MeV were assumed to be overlapping.
 MT=16, 22, 28, 103, 107 (n,2n). (n,na). (n,np). (n,p). (n,a)
 Calculated with the GNASH code/5/ using the above optical
 model parameters
 The (n,p) and (n,a) cross sections were normalized to 42 mb
 and 28.6 mb at 14.5 MeV. respectively.
MT=102 Capture
 Calculated with the CASTHY code/2/ and normalized to 7.1 mb
 at 45 keV.
MT=251 Mu-bar
 Calculated with the optical model.
MF=4 Angular Distributions of Secondery Neutrons
 MT=2
 Calculated with the CASTHY code/2/.
 MT=51-59
 Calculated with the CASTHY code/2/ and the DWUCK code/3/.
 MT=91
 Calculated with the CASTHY code/2/.
 MT=16. 22. 28
 Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16, 22, 28, 91
 Calculated with the GNASH code/5/.
 References
1) Mughabghab S.F. and Garber D.I. : "Neutron Cross Sections*. Vol.
 1. Part B (1984).
2) Igarasi S. : J. Nucl. Sci. Tech. 12. 67 (1975).
3) Kunz P.D. : Unpublished.
4) ENSDF{Evaluated Nuclear Structure Data File)
5) Young P.G. and Arthur E.D. : LA-6947 (1977).
```

```
MAT number = 3205
 20-Ca-46 Mitsui E.S.Eval-Apr80 M.Hatchya
 Dist-Feb84
History
80-04 New evaluation was made by M.Hatchya (Mitsui).
83-11 Ang. dist. was modified.
84-02 Comment was added.
88-10 Unchanged from JENDL-2.
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
 MT=151 No resonance paramelers
2200~m/sec cross sections and calculated resonence integrals
 2200-m/sec Res.Integ.
 elastic
 total 3.640 b
MF=3 Neutron Cross Sections
 Thermai region was assumed below 1.0 koV. The capture and
 elastic scattering cross sections were assumed to be 0.74 barns
 /1/ and 2.9 barns at 0.0253 eV. respectively. The total cross
 section was calculated as a sum of these two. Above 1.0 keV.
 data were evaluated as follows.
 MT=1 Total cross section
 The optical model calculation with CASTHY /2/ was adopted.
 Optical potential parameters were taken from Ref. /3/.
 V = 46.72 (MeV).
 Ws = 9.13 (MeV).
 Vso}=5.37 (MeV)
 ro = rso = 1.26 (fm).
 rs=1.39 (fm).
 a =aso=0.76 (fm).
 b = 0.40 (fm).
 MT=2 Elastic scattering cross section
 Derived by subtracting partial cross sections from the total
 cross section.
 MT=4.51-53.91 Inelastic scattering cross sections
 Calculated with optical and statistical model code CASTHY
 /2/.
```

Level scheme
Level scheme was taken from Table of Isotopes /4/.

| No. | Energy(MeV) | Spin-Parity |
| :---: | :---: | :---: |
| g.s. | 0.0 | $0+$ |
| 1 | 1.347 | $2+$ |
| 2 | 3.024 | $2+$ |
| 3 | 3.613 | $3-$ |

Levels above 4.463 MeV were assumed to be overlapping
Level density parameters (Gilbert and Cameron /5/)

| isotope | 46 | 47 |
| :--- | :--- | :--- |
| a $(1 / \mathrm{MeV})$ | 7.135 | 7.075 |
| $\mathrm{~S}-\mathrm{C}(1 / \mathrm{SORT}(\mathrm{MeV}))$ | 3.03 | 3.08 |
| $\mathrm{Del} \mathrm{ta}(\mathrm{MeV})$ | 3.37 | 1.83 |
| Ex $(\mathrm{MeV})$ | 9.131 | 7.522 |

MT=16 (n,2n) cross section
Based on available data.
MT=102 Capture cross section
Calculated with CASTHY /21.
MT=103.107 ( $n, p$ ) and ( $n, a \mid p h a$ ) cross sections
Statistical and pre-equilibrium model calculations using
the optical potential parameters and the lovel donsity
parameters givan above. Fittod to available data
MT=251 Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT $=2$,51-53.91
Optical model calculation
$M T=16$
Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT $=16.91$
Evaporation spectra.

References

1) Mughabghab S.F. et al.: Neutron Cross Sections. Vol. i. Part A (1981).
2) Igarasi S.: J. Nucl. Sci. Thecnol.. 12, 67 (1975).
3) Fu C.Y.: Atomic Data and Nuclear Data Table 17. 127 (1976)
4) Lederer C.M. and Shirley V.S.: Table of Isotopes. 7th Ed.. Wiley-Interscience (1978).
5) Gilbert A. and Camer on A.G.W.: Can. J. Phys. 43. 1446 (1965).
```
20-Ca-48 DEC
Eyal-Mar87 M.Hatchya(Data Eng. Co.)
Disi-Sep89
```

```
History
 87-03 New evaluation was made to giye a full revision for
 JENDL-2 data.
 87-03 Compiled by T.Asami(NEDAC)
MF=1 General Information
 MT=451 Descriptiye data and dictionary
MF=2 Resonance Parameters
 MT=151 Resolved resonance parameters
 Resolved parameters for MLBW formula were given in
 the energy region from 1.0E-5 eV to 500 keV
 Parameters were taken from the recommended data of BNL/1/ and
 the data for a negative resonance were added so as to reproduce
 the recommended thermal cross sections for capture and scetter-
 ing/1/
 The scattering radius was assumed to be 3.6 Fermi
 Calculated 2200 m/sec cross sections and resonance integrals
 are as follows:
 2200 m/s cross section(b) res integral(b)
 elastic 3.717
 capture 1.092 0.4859
 total 4.809
MF=3 Neutron Cross Sections
 Below 500 keV, zero background cross section was given and all
 the cross-section data are reproduced from the evaluated resolv-
 ed resonance parameters with MLBW formula.
 Above 500 keV, the total and partial cross sections were given
 pointwise.
MT=1 Total
 Optical ar statistical model calculation was made with
 the CASTHY code/2/. The optical potential parameters used are:
 V = 49.68. Vso = 7.12 (MeV)
 Ws = 7.76-0.5.En. (Wv = 0 (MeV)
 r=1.17, rs = 1.09, rso = 1.17 (fm)
 a=0.6. aso =0.6, b=0.69 (fm)
MT=2 Elastic scattering
 Obtained by subtracting the sum of ti:e partial cross sections
 from the total cross section.
MT=4. 51-58. 91 lnelastic scettering
 Calculated with CASTHY /2/, taking account of the contribution
 from the competing processes.
 The level deta used in the above calculations were taken from
 ref./3/ as follows:
\begin{tabular}{ccc}
MT & Level Energy (MeV) & Spin-parity \\
& 0.0 & \(0+\) \\
51 & 3.832 & \(2+\) \\
52 & 4.503 & \(4+\) \\
53 & 4.507 & \(3-\) \\
54 & 4.612 & \(3+\) \\
55 & 5.37 & \(3-\)
\end{tabular}
```

```
 56 6.614 1-
 57 6.685 3-
 58 7.401 3-
 Levels above 8.0 MeV were assumed to be overlapping
 MT=16, 22. 28, 103. 107 (n,2n). (n,na). (n,np). (n,p). (n,a)
 Calculated with the GNASH code/4/ using the above optical
 model parameters.
 The (n,p) cross sections were normalized to the experi-
 mental data of Tiwari et al./5/ at 14.5 MeV
MT=102 Capture
 Calculated with the CASTHY code/2/ and normalized to 1.05 mb
 at 30 keV.
MT=251 Mu-bar
 Calculated with the optical model
MF=4 Angular Distributions of Secondary Neutrons
 MT=2
 Calculated with the CASTHY code/Z/.
 MT=51-58
 Calculated with the CASTHY code/2/.
 MT=91
 Calculated with the CASTHY code/2/.
 MT=16. 22, 28
 Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16 22, 28. 91
 Calculated with the GNASH code/4/.
References
1) Mughabghab S.F. and Garber D.1. "Neutron Cross Sections". Vol. 1. Part B (1984).
2) Igarasi S. : J. Nucl. Sci. Tech. 12. 67 (1975).
3) ENSDF (Evaluated Nuclear Structure Data File)
4) Young P.G. and Arthur E.D. : LA-6947 (1977).
5) Tiwari P.N. et al. : Phys. Rev. 167. 1091 (1968)
```

MAT number = 3211


The level scheme taken from ref./11/:

| no. | energy $(\mathrm{MeV})$ | spin-parity | beta |
| :---: | :--- | :---: | :---: |
| g.s | 0.0 | $7 / 2-$ |  |
| 1 | 0.012396 | $3 / 2+$ |  |
| 2 | 0.37659 | $3 / 2-$ | 0.108 |
| 3 | 0.543 | $5 / 2+$ |  |
| 4 | 0.72017 | $5 / 2-$ | 0.0867 |
| 5 | 0.9392 | $1 / 2+$ | 6.0211 |
| 6 | 0.97461 | $7 / 2+$ |  |
| 7 | 1.0672 | $3 / 2-$ | 0.0586 |
| 8 | 1.23723 | $11 / 2-$ | 0.143 |
| 9 | 1.30342 | $3 / 2+$ |  |
| 10 | 1.40887 | $7 / 2-$ |  |

```
 11 1.43367 9/2+
 12 1.5564 3/2-
 13 1.66231 9/2- 0.0843
 14 1.8004 5/2+
Continuum ievels assumed above 1.9 MeV
Level density parameters were evaluated using DO. and level dala /4/. /11/.
\begin{tabular}{ccccl}
& a & T. & Ex & sig..2(0) \\
\(21-\mathrm{Sc}-45\) & 7.855 & 1.282 & 10.08 & 7.602 \\
\(21-\mathrm{Sc}-46\) & 7.231 & 1.268 & 7.328 & 7.867
\end{tabular}
\(M T=16 \quad(n, 2 n)\)
The JENDL-2 data were modified by using experimental data/12/.
\(M T=103\) (n.p)
Taken from compilation by Alley and Lesster /13/
MT=107 (n.alpha)
Same as MT=103, but slightly modified to reproduce \(/ 12 /\)
experimental data.
MT=251 Mu-bar
Calculated from the data in \(M F=4\).
MF=4 Anguiar Distributions of Secondary Neutrons
MT=2 Calculated with optical model.
MT=51-91 Calculated with Hauser-Feshbach formula added with direct reaction.
\(M T=16 \quad\) Isotropic in the leboratory system
MF=5 Energy Distributions of Secondary Neutrons Calculated with SINCROS /14/.
References
1) Liou. H.l. et al.: Nucl. Sci. Eng. 67. 326 (1978)
2) Kenny. M.J. et al.: Australian J. Phys. 30. 605 (1977).
3) Allen. B.J.et al.: Nucl. Sci. Eng. 82. 230 (1982).
4) Mughabghab, S.F., et al: Neutron Cross Sections Vol. I Part \(A\). Academic Press (1981)
5) Fujita, Y: J. Nucl. Sci. Technol. 20, 191 (1983).
6) Kunz, P.D.: Unpublished (1974).
7) Poenitz, W.P. and Whalen, J.F.: ANL/NDM-80 (1983)
8) Barnard. E. et al.: Z. Phys. 245. 36 (1971).
9) Foster, Jr. D.G. and Glasgow D.W.: Phys. Rev. C3. 576 (1971).
10) Igarasi. S.: J. Nuci. Sci. Technol. 12.67 (1975).
11) Burrows, T.W.: Nuclear Data Sheets 40. 216 (1983).
12) Ikeda, Y.. et al.: JAERI 1312 (1988)
13) Alley. W.E. and Lessler. R.M: Nuclear Data Tables A11.648 (1973) .
14) Yamamuro. N.: JAERI-M 88-140 (1988).
```

MAT number $=3220$
22-Ti- O KUR Eval-Sep88 K.Kobayashi(KUR). H. Hashikura(TOK)

History
88-09 Compiled by T.Asami (NEDAC)
MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in the energy region from $1.0 E-5 \mathrm{eV}$ to 100 keV
Parameters were constructed with the evaluated data for Ti-46, -47, $-48,-49$ and -50 of Ti stable isotopes. considering their abundances in the Ti element. The abundance data were taken from ref./1/.
$2200 \mathrm{~m} / \mathrm{s}$ cross section(b) ros inlegral(b)

| elastic | 4.087 |  |
| :--- | :--- | :--- |
| capture | 6.092 | 2.92 |
| total | 10.18 |  |

MF $=3$ Neutron Cross Sections
Below 100 keV , no background cross section was given
Above 100 keV . the total and partial cross sections were given pointwise
All the cross-section data were deduced from the evaluated ones for five stable isotopes of Ti considering their abundances in the Ti element, except for the total cross sections in the energies above 100 keV .
MT=1 Total
The data in the energies above 100 keV were evaluat ed based on several experimental ones/2/-/4/, following fine structures in the cross sections. The data in the other energy range were constructed with the evaluated ones for fire isotopes of Ti .
MT=2 Elustic scattering
Obtained by subtiacting the sum of the partial cross sections from the total cross section.
MT=4, 51-90. 91 Inelastic scattering
The data were constructed from the evaluated ones for each Ti isotope. The isotopic data were calculated with the CASTHY code /5/, including both the effects of the direct process and the competing reactions. The direct process was calculated based on the DWBA method.
The discrete levels were lumped as given below:

| MT | Level energy ( MeV ) | Ti-46 | Ti-47 | Ti-48 | Ti-49 | Ti-50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| g.s. | 0.0 |  |  |  |  |  |
| 51 | 0.1607 |  | 51 |  |  |  |
| 52 | 0.889 | 51 |  |  |  |  |
| 53 | 0.984 |  |  | 51 |  |  |
| 54 | 1.382 |  |  |  | 51 |  |
| 55 | 1. 550 |  | 52 |  |  |  |
| 56 | 1.555 |  |  |  |  | 51 |
| 57 | 1.585 |  |  |  | 52 |  |
| 58 | 1.723 |  |  |  | 53 |  |

            \(\square\)
    ```
 1.762
```

    1.762
    60 1.794
    60 1.794
    61 2.010
61 2.010
62 2.165
62 2.165
63 2.295
63 2.295
2.421
2.421
4 2.421
4 2.421
6 2.526
6 2.526
6 2.526
6 2.526
2.675
2.675
68 2.675
68 2.675
2.962
2.962
71 2.999
71 2.999
3.059
3.059
3.168
3.168
3.175
3.175
3 3.21
3 3.21
3.224
3.224
3.236
3.236
3.260
3.260
3.299
3.299
3.332
3.332
3.428
3.428
3.438
3.438
3.508
3.508
3.618
3.618
85 3.703
85 3.703
3.741
3.741
3.853
3.853
3.87
3.87
4.036
4.036
53
53
67
67
6 8
6 8
70
70
7 1
7 1
7 2
7 2
7
7
74
74
75
75
76
76
55-56
55-56
7 7
7 7
78
78
7 9
7 9
80
80
8 1
8 1
82
82
83
83
84 3.618
84 3.618
54
54
55
55
5 6
5 6
5 2
5 2
5 3
5 3
2
2
5 9
5 9
54
54
54
54
52
52
6
6
53
53
64
64
5 5
5 5
65
65
5
5
6 0
6 0
61
61
\square
\square
4
4
3
3
55
55
5
5
52
52
5 6
5 6
54
54
56
56
57
57
57
57
5
5
57-59
57-59
58
58
5 9
5 9
53
53
5 4
5 4
5
5
55
55
66
66
*
*
5

```
 5
```

Assumed to be isotropic in the laboratory system
MF=5 Energy Distributions of Secondary Neutrons $\mathrm{MT}=16,22,28,91$

Constructed from the isotopic data.

MF=12 Photon Production Multiplicities
MT=102
Composed from the isotopic data calculated with the GNASH code/6/

MF=13 Photon Production Cross Sections $M T=3$

Calculated with the GNASH code/61, and above 2.745 MeV
replaced with the measurements of Morgan et al./7/
$\mathrm{MF}=14$ Photon Angular Distributions
MT=3. 102
Assumed to be isotropic in the laboratory system
MF=15 Continuous Photon Energy Spectra
$M T=3$
Calculated with the GNASH code/6/.
MT $=102$
Calculated with the GNASH code/6/ except for thermal.
At thermal, based on the measurements of Maerker/8/.
References

1) Halden, N.E.. Martin. R.L. and Barnes. I.L.: Pure \& Appl

Chem. 56. 675 (1984).
2) Foster. Jr.. D.G. and Glasgow D.W.: Phys. Rev. C3.576 (1971).
3) Barnard. E. et al. : CEA-R-4524 (1973).
4) Schwarz : NBS-MONO-138 (1974).
5) Igarasi, S.: J. Nucl. Sci. Tech. 12. 67 (1975).
6) Young. P.G. and Arthur. E.D. : LA-6947 (1977).
7) Morgan, G.L. : ORNL/TM-6323 (1978).
8) Maerker. R.E. : ORNL/TM-5203 (1976).

```
22-Ti- 46 KUR Eval-Sep88 K.Kobayashi(KUR).H.Hashikura(TOK)
```

Dist-Sep89
History
88-09 Compiled by T.Asami (NEDAC)
MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from $1.0 E-5 \mathrm{eV}$ to 180 keV .
Parameters were taken from ref./1/. for posilive resonances.
Parameters for negative resonance were obtained so that the
reproduced cross sections for both scattoring and capture gave
the $2200 \mathrm{~m} / \mathrm{s}$ values of $2.78+-0.24$ and $0.59+-0.18$ barns. res-
pectively/1/
The scattering radius was assumed to be 4.5 Formi instoad of
3.5 Fermi in ref./i/.
Calculated $2200 \mathrm{~m} / \mathrm{sec}$ cross sections and resonance integrals
are as follows:
$2200 \mathrm{~m} / \mathrm{s}$ cross section(b) res. integral(b)
elastic 2.75
capture $0.596 \quad 035$
total 3.34

## MF=3 Neutron Cross Sections

Below 180 keV , no background cross section was given.
Above 180 keV , the total and partial cross sections were given pointwise.
MT=1 Total
Optical and statistical model calculation was made with the CASTHY code/2/. The optical potential marameters used are:
$V=50.75-0.120 \cdot E n . \quad V s o=4.72 \quad$ (MeV)
$W_{s}=10.9-0.234 \cdot \mathrm{en} . \quad W_{v}=0.0 \quad(\mathrm{MeV})$
$r=1.26, r s=1.02, r s o=1.16 \quad(\mathrm{fm})$
$a=0.52$. aso $=0.52, \quad b=0.40 \quad(f m)$
MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.
$M T=4,51-59,91$ Inelastic scattering
Calculated with the CASTHY code/2/. taking account of the contribution from the competing processes.
The coniributions from the direct process for inelastic
scattering were calculated with the DWUCK code/3/.
The deformation parameters used in the calculation were assumed in referring the data from the Ti-46(p.p') reaction /4/. as shown in table below.
The level data in the above two calculaions were taken from ref./5/ as follows:

MT	Level energy (MeV)	Spin-parity	Beta-1
g.s.	0.0	$0+$	-
51	0.889	$2+$	0.29
52	2.010	$4+$	0.16

```
53 2.611
54 2.962
55 3.059
3-}0.1
56 3.168
57 3.236
58 3.299
3.438 3-
-
2+ -
6+ -
3- -
Levels above 3.5 MeV were assumed to be overlapping
MT=16 (n.2n)
 Evaluated based on the experimental data
MT=22
 (n,na)
 Calculated with GNASH code/6/.
MT=28 (n,np)
 Calculated with GNASH code/6/.
MT=102 Capture
 Calculated with the CASTHY code/2/ and normalized to 26.9 mb
 at 30 keV.
MT=:103 (n,p)
 Evaluated based on the experimental data
MT=107 (n,a)
 Calculated with GNASH code/6/.
MT=251 Mu-bar
 Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons
MT=2
 Calculated with the CASTHY code/2/.
MT=51-59. 91
 Calculated with the CASTHY code/2/.
 The direct interaction was considered for MT=51-55
MT=16, 22, 28
 Assumed to be isotropic in the laboratory system.
NF=5 Energy Distributions of Secondary Neutrons
 MT=16, 22. 28, 91
 Calculated with the GNASH code/6/.
References
1) Mughabghab S.F et al.: *Neutron Cross Sections * vol.1.
 Part A (1981).
 2) Igarasi S. : J. Nucl. Sci. Tech. 12, 67 (1975).
 3) Kunz. P.D. : Unpublished.
 4) Peterson. R.J. and Perlman. D.E.: Nucl. Phys. Al17.185(1968).
 5) Evaluated Nuclear Structure Data File (ENSDF)
 6) Young. P.G. and Arthur. E.D. : LA-6947 (1977)
```

```
22-Ti- 47 KUR Eval-Sep88 K.Kobayashi(KUR).H.Hashikura(TOK)
Dist-Sep89
```


## History

88-09 Compiled by T. Asami (NEDAC)
MF=1 General Information
$M T=451$ Descrintive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from $1.0 \mathrm{E}-5 \mathrm{eV}$ to 100 keV
Parameters were taken from ref /1/. for positive resonances
Parameters for negative resonance were obtained so that the reproduced cross sections for both scattering and capture gave the $2200 \mathrm{~m} / \mathrm{s}$ values of $3.1+-0.2$ and $1.7+-0.2$ barns. respeclively/1/.
The scattering radius was assumed 10 be 4.5 Fermi instead of 3. 6 Fermi in rel./1/.

Calculated $2200 \mathrm{~m} / \mathrm{sec}$ cross sections and resonance integrals are as follows:
$2200 \mathrm{~m} / \mathrm{s}$ cross section(b) res. integral(b)
elastic $\quad 3.10$
capture $1.70 \quad 1.44$
total 4.80
MF=3 Neutron Cross Sections
Below 100 keV . no background cross section was given.
Above 100 keV , the total and partial cross sections were given pointwise.
MT=1 Total
Optical and statistical model calculation was made with
CASTHY code/2/. The optical potential parameters used are:
$V=50.75-0.120 \cdot E n, \quad V$ so $=4.72 \quad(\mathrm{MeV})$
$W_{s}=10.9-0.234-E n . \quad W_{v}=0.0 \quad(\mathrm{MeV})$
$r=1.26 . \quad r s=1.02 . \quad r s o=1.16 \quad(f m)$
$a=0.52$. aso $=0.52, \quad b=0.40 \quad(\mathrm{fm})$
MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.
$\mathrm{M} T=4$. 51-56. 91 Inelastic scattering
Calculated with the CASTHY code/2/. taking account of the
contribution from the competing processes.
The contribution from the direct process for inelastic scatter-
ing was ignored
The level data in the above calculations were taken from
ref./3/ as follows:

MT	Level energy (MeV)	Spin-parity
g.s.	0.0	$5-$
51	0.160	$7-$
52	1.550	$3-$
53	1.794	$1-$
54	2.165	$3-$
55	2.526	$3-$
56	2.793	$1-$

```
 Levels above 2.85 MeV were assumed to be overiapping
 MT=16
 (n,2n)
 Calculated with the GNASH code/4/.
 MT=22 (n,na)
 Calculated with the GNASH code/4/.
 MT=28 (n,np)
 Evaluated based on the experimental data.
 MT=102 Capture
 Calculated with the CASTHY code/2! and normalized to 65.5 mb
 at 30 keV.
 MT=103 (n,p)
 Evaluated based on the experimental data.
 MT=107 (n,a)
 Calculated with the GNASH code/4/.
 MT=25i Mu-bar
 Calculated with ontical model.
MF=4 Angular Distributions of Secondary Noutrons
 MT=2
 Calculated with the CASTHY code/2/
 MT=51-56, 91
 Calculated with the CASTHY code/2/
 MT=16, 22, 28
 Assumed to be isotropic in the laboratory system
MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
 Calculated with the GNASH code/4/.
References
 1) Mughabghab S.F et al. : "Neutron Cross Sections ". Vol.1.
 Part A (1981)
 2) Igarasi S. J. Nucl. Sci. Tech. 12, 67 (1975)
 3) Evaluated Nuclear Structure Data File (ENSDF).
 4) Young P.G. and Arthur E.D. : LA-6947 (1977).
```

22-Ti-48 KUR Eval-Sep88 K.Kobayashi(KUR).H.Hashikura(TOK) Dist-Sep89

History
88-09 Compiled by T.Asami (NEDAC)
MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in the energy region from $1.0 \mathrm{E}-5 \mathrm{eV}$ to 100 keV Parameters were taken from ref./1/. for positive resonances Parameters for negative resonance were obtained so that the reproduced cross sections for both scattering and capture gave the $2200 \mathrm{~m} / \mathrm{s}$ values of $4.61+-0.2$ and $7.84+\cdots 0.25$ barns, respectively/1/.
The scattering radius was assumed to be 4.2 Fermi instead of 3.9 Fermi in ref./1/. Calculated $2200 \mathrm{~m} / \mathrm{sec}$ cross sections and resonance integrals are as follows:

2200 rims cross section(b) res. integral(b)

elastic	4.61
capture	7.84
cotal	12.45

MF=3 Neutron Cross Sections
Below 100 keV , no background cross section was given.
Above 100 keV . the total and partial cross sections were given pointwise.
MT=1 Total
Optical and statistical model calculation was made with CASTHY code/2' The optical potential parameters used are: $V=50.75-0.120 \cdot E n, \quad V s o=4.72 \quad(\mathrm{MeV})$ $W_{s}=10.9-0.234 . E n . \quad W_{v}=0.0 \quad(\mathrm{MeV})$ $r=1.26, \quad r s=1.02, \quad r s o=1.16 \quad(f m)$ $a=0.52$. aso $=0.52 . \quad b=0.40 \quad(\mathrm{fm})$
MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections from the total cross section.
MT=4. 51-67. 91 Inelastic scattering
Calculated with the CASTHY code/2/. taking account of the contribution from the competing processes.
The contributions from the direct process for inelastic scattering were calculated with OWUCK code/3/.
The deformation parameters used in the calculation were assumed in referring the data from the Ti-48(a,a') reaction 14/, as shown in table below.
The level data in the above two calculations were taken from ref./5/ as follows:

MT	Level energy(MeV)	Spin-parity	Beta-I
g.s.	0.0	$0+$	-
51	0.984	$2+$	0.21
52	2.295	$4+$	0.05
53	2.421	2.	0.058

```
\begin{tabular}{llll}
54 & 2.999 & \(0+\) & - \\
55 & 3.224 & \(3+\) & - \\
56 & 3.239 & \(4+\) & 0.082 \\
57 & 3.332 & \(6+\) & - \\
58 & 3.359 & \(3-\) & 0.079 \\
59 & 3.373 & \(2+\) & - \\
60 & 3.508 & \(6+\) & - \\
61 & 3.618 & \(2+\) & - \\
62 & 3.703 & \(1+\) & - \\
63 & 3.711 & \(1+\) & - \\
64 & 3.741 & \(1+\) & - \\
65 & 3.783 & \(3-\) & - \\
66 & 3.853 & \(3-\) & - \\
67 & 4.036 & \(2+\) & -
\end{tabular}
 Levels above 4.1 MeV were assumed to be overlapping
MT=16 (n,2n)
 Calculated with the GNASH code/6/
MT=22 (n,na)
 Calculated with the GNASH code/6/
MT=28 (n,np)
 Calculated with the GNASH code/6/.
MT=102 capture
 Calculated with the CASTHY code/2/ and normalized to 4.3 mb
 at 20 keV.
MT=103 (n,p)
 Evaluated based on the experimental data.
MT=107 (n,a)
 Evaluated based on the experimental data.
MT=251 Mu-bar
 Calculated with opilical model.
MF=4 Angular Distributions of Secondary Neutrons
 MT=2
 Calculated with the CASTHY code/2/.
 MT=51-67. 91
 Calculated with the CASTHY code/2/
 MT=16. 22. 28
 Assumed to be isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16, 22, 28. 91
 Calculated with the GNASH code/6/.
 References
 1) Mughabghab S.F. et al. : *Neutron Cross Sections *. Vol.1.
 Part A (1981).
 2) Igarasi S. : J. Nucl. Sci. Tech. 12. 67 (1975).
 3) Kunz P.D. : Unpublished.
 4) Bernstein A.M. et al. : Nucl. Phys. A115. 79 (1968).
 5) Evaluated Nuclear Struciure Data File (ENSDF).
 6) Young P.G. and Arthur E.D. : LA-6947 (1977)
```

```
 22-Ti- 49 KUR Eval-Sep88 K.Kobavashi(KUR).H.Hashikura(TOK)
 Dist-Sep89
History
88-09 Compiled by T.Asami(NEDAC)
MF=1 General Information
 MT=451 Descriptive deta and dictionary
MF=2 Resonance Parameters
 MT=151 Resolved resonance parameters
 Resolved parameters for MLBW formula were given in
 the energy region from 1.0E-5 eV to 100 keV.
 Parameters were taken from ref./1/. for positive resonances
 Parameters for negative resonance were obtained so that the
 reproduced cross sections for both scattering and capture gave
 the 2200 m/s values of 0.7+-0.3 and 2. 2+-0.3 barns. respec-
 tively/1/
 The scattering radius was assumed to bo 4.5 Fermi instead ol
 4.0 Fermi in ref./1/.
 Calculated 2200 m/sec cross sections end resonance intcgrals
 are as follows
 2200 m/s cross section(b) res.integral(b)
\begin{tabular}{lll}
elastic & 0.69 & \\
capture & 2.21 & 1.06
\end{tabular}
 total 2.90
MF=3 Neutron Cross Sections
 Below 100 keV. no background cross section was given.
 Above 100 keV. the total and partial cross sections were given
 pointwise.
MT=1 Total
 Optical and statistical model calculation was made with
 CASTHY code/2/. The optical potential parameters used are
 V = 50.75 - 0.120.En. Vso = 4.72 (MeV)
 Ws = 10.9-0.234.En. }\quad\mp@subsup{W}{v}{}=0.0\quad(MeV
 r=1.26. rs = 1.02, rso = 1.16 (fm)
 a=0.52. aso = 0.52. b = 0.40 (fm)
 MT=2 Elastic scettering
 Obtained by subtracting the sum of the pertial cross sections
 from the lotal cross section.
MT=4, 51-56, 91 Inelastic scattering
 Calculated with the CASTHY code/2/, taking account of the
 contribution from the competing processes.
 The contribution from the direct process for inelastic scatter-
 ing was ignored.
 The level data in the above calculations were taken from
 ref./3/ as follows:
 MT Level energy(MeV) Spin-parity
 g.s. 0.0 5-
 51 0.160 7-
 52 1.550 3-
 53 1.794 1-
 54 2.165 3-
 55 2.526 3-
 56 2.793 1-
```

```
 Lesels above 2.85 MeV were assumed to be overlapping
 MT=16 (n,2n)
 Calculated with the GNASH code/4/.
 MT=22 (n,na)
 Calculated with the GNASH code/4/.
 MT=28 (n,np)
 Evaluated based on the experimental data
 MT=102 Capture
 Calculated with the CASTHY code/2/ and normalized to 22.5 mb
 at 30 keV
MT=103 (n.p)
 Evaluated based on the experimental data
MT=107 (n,a)
 Calculated with the GNASH code/4/
MT=251 Mu-bar
 Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons
 MT=2
 Calculatad with the CASTHY code/2/.
 MT=51-56, 91
 Calculated with the CASTHY code/2/
MT=16. 22, 28
 Assumed to be isotropic in the laboratory system
MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
 Calculated with the GNASH code/4/
References
 1) Mughabghab S F. et al. : "Neutron Cross Sections *. Vol.1.
 Part A (1981).
 2) Igarasi S. : J. Nucl. Sci. Tech. 12. 67 (1975)
 3) Evaluated Nuclear Structure Data File (ENSDF).
 4) Young P.G. and Arthur E.D. : LA-6947 (1977).
```

MAT number $=3225$
22-Ti-50 KUR Eval-Sep88 K.Kobayashi(KUR). Hashikura(TOK)
Dist-Sep89

```
History
88-09 Compiled by T.Asami(NEDAC)
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=Z Resonance Parameters
 MT=151 Resolved resonance parameters
 Resclved parameters for MLBW formula were given in
 the energy region Irom 1.0E-5 eV to 200 keV.
 Parameters were taken from ref./1/. for positive resonances
 Farameters for negative resonance were obtained so that the
 reproduced cross sections for both scettering and caplure gave
 the 2200 m/s value of 3.7+-0.3 and 0.179+-0.003 barns. respec-
 lively/1/.
 The scattering redius was assumed to be 4 5 Fermi
 Calculeted 2200 m/sec cross sections and resonancg integrals
 are as follows:
 2200 m/s cross section(b) res integral(b)
 elastic 3.7!
 capture 0.18
 0.086
 total 3.88
MF=3 Neutron Cross Sections
 Below 180 keV, no background cross seclion was given.
 Above 180 keV, the total and partial cross sections were given
 pointwise.
MT=1 Total
 Optinal and statistical model calculation was made with
 CASTHY code/2/. The optical potentiai parameters used are:
 V = 50.75-0.120.En, Vso = 4.72 (MeV)
 Ws}=10.9-0.234-En.\quad Wv = 0.0 (MeV
 r=1.26, rs=1.02, rso = 1.16 (fm)
 a=0.52, aso = 0.52, b = 0.40 (fm)
 MT=2 Elastic scattering
 Obtained by subtracting the sum of the partial cross sections
 from the total cross section.
MT=4, 51-59, 91 Inelestic scattering
 Calculated with the CASTHY code/2/. taking account of the
 contribution from the competing processes.
 The contributions from the direct process for inelastic
 scattering were calculated with DWUCK code/3/.
 The deformation parameters used in the calculation were
 were assumed in referring the data on the Ti-50(p.p') reaction
 /4/, as shown in table below.
 The level data in the above two calculstions were taken from
 ref./5/ as follows:
 MT Level energy(MeV)
 g.s. 0.0
 51 0.889
 52 2.010
 53 2.611
 54 2.962
 Spin-parity
 Beta-1
 0+
 2+ 0.29
 4+ 0.16
 0+ 0.04
 2+
 0.053
```

```
\begin{tabular}{lllc}
55 & 3.059 & \(3-\) & 0.16 \\
56 & 3.168 & \(1-\) & - \\
57 & 3.236 & \(2+\) & - \\
58 & 3.299 & \(6+\) & - \\
59 & 3.438 & \(3-\) & -
\end{tabular}
 Levels above 3.5 MeV were assumed to be cverlapping
MT=16 (n.2n)
 Evaluated based on the experimental data
NT=22 (n,na)
 Calculated with the GNASH code/6/
MT=28 (n,np)
 Calculated with the GNASH code/6/
MT=102 Capture
 Calculated with the CASTHY code/2/ and normalized to 2.3 mb
 at 25 keV.
MT=103 (n,p)
 Evaluated based on the experimental data.
MT=107 (n,a)
 Calculated with the GNASH code/6/
MT=251 Mu-bar
 Calculated based on optical model
MF=4 Angular Distributions of Secondary Neutrons
 MT=2
 Calculated with the CASTHY code/2/.
 MT=51-59. 91
 Calculated with the CASTHY code/2/
MT=16, 22. 28
 Assumed to be isotropic in the laboratory system
MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
 Calculated with the GNASH code/6/.
References
1) Mughabghab S.F. et al. : Neutron Cross Sections ", Vol.1.
 Part A (1981).
2) Igarasi S. : J. Nucl. Sci. Tech. 12. 67 (1975).
3) Kunz P.D. : Unpublished.
4) Alburger D.E. et al: Phys. Rev. C2. 166 (1970)
5) Evaluated Nuclear Structure Data File (ENSDF).
6) Young P.G. and Arthur E.D. : LA-6947 (1977)
```

```
 23-V - 51 KHI Eval-Aug88 T.Watanabe
 Dist-Sep89
History
88-08 JENDL-2 modified by T.Watanabe
 (Kawasaki Heavy Industries, Ltd.)
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=2
 MT=151 Resonance Parameters : 1.0E-5 eV - 100 keV
 Resolved resonances for MLBW formula
 Parameters were evaluated based on experimental data
 /1/./2/./3/./4/ and modified to reproduce experimental
 total cross sections. Negative energy levels were added
 to reproduce 2200 m/s total and capture cross sections.
 Calculated 2200 .n/s cross sections and resonance integrals
 2200 m/sec res. integ
 elastic 4.8 b _
 capture 4.9 b 2.6 b
 total
 9.7 b
MF=3 Neutron Cross Sections : above 100 keV
 MT=1,2,4,51-74,91,102
 Total, elastic, inelastic and capture cross sections
 were calculated with optical and statistical model
 Direct inelastic reaction cross sections were evaluated
 with DWBA method /5/ and added to compound processes.
 The spherical optical potential parameters were evaluated
 to reproduce experimental total cross sections
 16/./71.18/.
 V = 50.71-0.4793.En MeV ro= 1.227 fm a0=0.663 fm
 Ws=5.307-0.1911.En MeV rs=1.370 fm b = 0.394 fm
 Vso=6.560 MeV rso=0.046 fm asn=0.535 fm
 Statistical model calclilation with CASTHY code /9/ was
 performed. MT=:02 capture cross section was normalized
 to the experimental data of Dudey+ /10/ at 0.5 MeV
 2.63 mb
 The level scheme taken from ref./11/:
\begin{tabular}{clcc}
no. & energy \((\mathrm{MeV})\) & spin-parity & beta \\
g.s & 0.0 & \(7 / 2-\) & \\
1 & 0.320853 & \(5 / 2-\) & 0.0809 \\
2 & 0.92866 & \(3 / 2-\) & 0.0494 \\
3 & 1.60894 & \(11 / 2-\) & 0.0875 \\
4 & 1.81308 & \(9 / 2-\) & 0.0674 \\
5 & 2.41078 & \(3 / 2-\) & 0.0427 \\
6 & 2.5474 & \(1 / 2+\) & \\
7 & 2.67743 & \(3 / 2+\) & \\
8 & 2.69963 & \(15 / 2-\) & 0.0472 \\
0 & 2.79 & \(9 / 2-\) & \\
10 & 3.08362 & \(5 / 2-\) &
\end{tabular}
```

```
11 3.15 3/2-
12 3.1951 3/2-
13 3.2148 3/2-
14 3.26404 5/2-
0.0494
Continuum levels assumed above 3.28 MeV
Level density parameters were evaluated using D0. and level data /3/. /11/.
\begin{tabular}{lllll}
& a & T & Ex & sig. \(2(0)\) \\
\(23-V-51\) & 6.333 & 1.267 & 7.04 & 8.549 \\
\(23-V-52\) & 7.693 & 1.053 & 4.861 & 7.065
\end{tabular}
```

```
 MT=1 Toial
```

    MT=1 Toial
        100 keV -2 MeV based on the experimantal data /7/./8/
        100 keV -2 MeV based on the experimantal data /7/./8/
        above 2 MeV calculated
        above 2 MeV calculated
    MT=1 Elastic scattering
    MT=1 Elastic scattering
        Obtained by subtracting the sum of absorption and
        Obtained by subtracting the sum of absorption and
        inelastic scattering from tota! cross section
        inelastic scattering from tota! cross section
    MT=16 (n, 2n)
    MT=16 (n, 2n)
            Guided by experimental date /12/./13/.
            Guided by experimental date /12/./13/.
    MT=22,28,104,105
    MT=22,28,104,105
                            Adopted JENOL-2 evaluated data /14/
                            Adopted JENOL-2 evaluated data /14/
    MT=103 (n,p)
    MT=103 (n,p)
                            Guided by experimental data /15/./16/.
                            Guided by experimental data /15/./16/.
    MT=107 (n,alpha)
    MT=107 (n,alpha)
                            Guided by experimental data /i4/./17/./18/./19/.
                            Guided by experimental data /i4/./17/./18/./19/.
    MT=251 Mu-bar
MT=251 Mu-bar
Calculated from the data in MF=4.
Calculated from the data in MF=4.
MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with optical model.
MT=51-91 Calculated with Hauser-Feshbach formula and DWBA
MT=16,22,28
Isotropic in the laboratory system
MF=5 Energy Distributions of Secondary Neutrons
MT=16.22,28.91
Calculated with SINCROS /20/.

```

\section*{References}
```

1) Winters. R.R. et al.: Phys. Rev. C18. 2092 (1978).
2) Garg. J.B. et al.: Nucl. Sci. Eng. 65, 76 (1978).
3) Mughabghab S.F et al.: "Neutron Cross Sections Vol. 1 Part $A^{*}$ Acelemic Press (1981).
4) Macklin. R.L. et al.: Nucl. Sci. Eng. 78. 110 (1981).
5) Kunz P.D.: Unpublished (1974).
6) Rohr. G. and Friedland. E.: Nucl. Phys. A104. 1 (1967)
7) Smith. A.B. et al.: Phys. Rev. Ci. 581 (1970).
8) Cierjacks. S.: KfK-1000 (1968)
9) Igarasi. S.: J. Nucl. Sci. Technol. 12. 67 (1975).
10) Dudey. N.D. et al.: J. Nucl. Energy 23.443 (1969).
11) Zhou Chunmei et al.: Nuclear Data Sheets 48. 111 (1986).
12) Frehaut. J. et al.: Proc. Symp. Neutron Cross-Sections from 10 to 50 MeV . BNL. 1980, p. 399 (1980).
13) Auchampaugh, G.F. et al.: BNL-NCS-50681, p. 231 (1977).
14) Tanaka S.: JAERI-M 82-151 (1982).
15) Ikeda Y. e: al.: JAERI 1312 (1988).
```
16) Smith. D.L.et al.: ANL/NDM-85 (1984)
17) Kanno. I. et al.: Annals Nucl. Energy 11. 623 (1984)
18) Lu Han-lin, et al.: Physica Energiae Fortis et Physica Nuclearis 3. B8 (1979).
19) Zupranska. E et al.: Acta Physica Polonica Section B 11. 853 (1980)
20) Yamamuro. N.: JAERI-M 88-140 (1988).
```

MAT number = 3240

```
```

24-Cr- 0 NEDAC Eval-Mar87 T.Asami(NEDAC)

```
Dist-Sep89

History
87-03 New evaluation was made to give a full revision for JENDL-2 data.
88-12 MF/MT=3/107 modified.
89-08 MF/MT=15/102 modified.

MF=1 General Informetion
MT=451 Descriptive data and dictionary
MF=2 Resonance Faramoters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from \(1.0 E-5 \mathrm{eV}\) to 300 keV
The data were constructed from the ovaluated resonanco parameters for each Cr isotope, considering their abundances in the Cr element/1/.
\begin{tabular}{lcc}
& \(2200 \mathrm{~m} / \mathrm{s}\) cross section(b) & res. infegral(b) \\
elastic & 3.38 & \\
capture & 3.07 & 1.53 \\
total & 6.45 &
\end{tabular}

MF \(=3\) Neutron Cross Sections
Below 300 keV , background cross section was given.
As the evaluated data on the resonance parameters of Cr-53 were given below 120 keV , the cross sections of \(\mathrm{Cr}-53\) for total. elastic scattering and capture in this energy range. multiplied by its abundance, are provided as the background cross sections for \(M T=1,2\) and 102 , respectively
Above 300 keV . the total and partial cross sections were given pointwise.
All the cross-section data were deduced from the evaluated ones for four stable isotopes of Cr considering their
aburidances in the Cr element/1/. except for the total cross sections in the energies above 300 keV .
MT=1 Total
The data in the energies above 300 keV were evaluated based on the experimental ones of/2/-/4/. The data in ref./2/ were used to follow the fine structures and those in refs./3/ and /4/ were used for the normalization of the above data and for the evaluation in high energy region.
The data in the other energy range were constructed from the evaluated ones for four isotopes of Cr .

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections from the total cross section.
\(M T=4\). 51-90. 91 Inelastic scattering
The data for each level were constructed from the evaluations for each Cr isotope as follows:

MT Level energy(MeV) \(\mathrm{Cr}-50 \quad \mathrm{Cr}-52 \quad \mathrm{Cr}-53 \quad \mathrm{Cr}-54\)
```

g.s.
g.s. 53
g.s.

```
```

    so as to reproduce the experimental data of Paulsen/7/
    MT=251 Mu-bar
Calculated with optical model.
MF=4 Anguiar Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code/6/.
MT=51-90, 91
Calculated with the CASTHY code.
MT=16. 22, 28
Assumed to be isotropic in the laboratory system
MF-5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/6/.
MF=12 Photon Production Multiplicities
MT=102
Calculated with the GNASH code/8/
MF=13 Photon Production Cross Sections
MT=3
Evaluated based on the experimental data of Morgan/9/
Below 4.75 MeV. the fine structures in inelastic scattering
were considered.
MF=14 Photon Angular Distributions
MT=3 . 102
Assumed to be isotropic in the laboratory system.
MF=15 Continuous Photon Energy Spectra
MT=3
Calculated with the GNASH code/B/.
MT=102
Calculated with the GNASH code/8/ and modified by using
the gamma-ray intensity data in ENSDF/10/ below thermal
energy.
References
1) Holden N.E., Martin R.L. and Barnes I.L. : Pure \& Appl.
Chem. 56. 675 (1984).
2) Cierjacks S. et al. : KfK-1000 (1968)
3) Foster Jr. D.G. et al. : Phys. Rev. C 3. 576 (1971).
4) Perey F.G. : EXFOR data no.10342 (1973).
5) Fiehaut J. et al. : 1980 BNL Conf. 399 (1980)
6) Igarasi S. : J. Nucl. Sci. Technol. 12. 67 (1975).
7) Paulsen A. : Nucl. Sci. Eng. 78, 377 (1981).
8) Young P.G. and Arthur E.D. : LA-6947 (1977).
9) Morgan G.L. et al. : ORNL/TM-5098 (1976).
10) Evaluated Nuclear Structural Data File.

```

MAT number \(=3241\)
```

    24-Cr-50 NEDAC Eval-Mar87 T.Asami (NEDAC)
                Dist-Sep89
    ```
History
 87-03 New evaluation was made to give a full revision for
 JENDL-2 data.
 88-12 MF/MT=3/107 modified.
MF=1 General Information
 MT=451 Descriptive data and dictionary
\(\mathrm{MF}=2\) Resonance Parameters
 MT=151 Resolved resonance parameters
 Resolved parameters for MLBW formula were given in
 the ene:gy region from \(1.0 E-5 \mathrm{eV}\) to 300 keV .
 Evaluated based on the experimental data of Stieglitz+71/1/.
 Beer+74/2/. Allen+77/3/. Kenny+77/4/ and Brusegent86/5/.
 Effective scattering radius \(=5.0 \mathrm{im} / 6 /\).
 Calculated \(2200 \mathrm{~m} / \mathrm{s}\) cross sections and rosonance intogral.
 \(2200 \mathrm{~m} / \mathrm{s}\) cross section(b) res.integral(b)
 elastic 2.31
 capture \(15.9 \quad 7.41\)
 total 18.2
MF=3 Neutron Cross Sections
 Below 300 keV . zero beckground cross section was given.
 Above 300 keV , the total and partial cross sections were
 givai pointwise.
 MT=1 Total
 Optical and statistical model calcislation was made with
 the CASTHY code/7/. The optical potential parameters used are:
 \(V=46.78-0.262 * E n . \quad V\) so \(=7.0 \quad(\mathrm{MeV})\)
 \(W_{s}=4.87+0.352 \cdot E n, \quad W_{v}=0 \quad(\mathrm{MeV})\)
 \(r=1.30, \quad r s=1.40, \quad r s o=1.30 \quad(f m)\)
 \(a=0.55\), aso \(=0.48, b=0.40 \quad(f m)\)
 MT=2 Elastic scattering
 Obtained by subtracting the sum of the partial cross sections
 from the total cross section.
 \(\mathrm{MT}=4,51-55,91\) Inelastic scattering
 Calculated with the CASTHY code/7/, taking account of the
 contribution from the competing processes and using the
 discrete level data/8/ shown below.
 The contributions from the direc: process for inelastic scatt-
 ering were calculated with the DWUCK code/9/. The deformation
 parameters used in the calculation were assumed based on
 Peterson's data/10/.
 Level energy(MeV) Spin-parity
 g.s.
 10.7833
 \(0+\)
 \(2+\)
 2
 3
 4
 1.8814 4+
 \(2.9245 \quad 2+\)
 3.1611 2+
 \(3.1641 \quad 6+\)
```

6 3.3247 4-
7 3.5946 4+
8 3.6101 4+
9 3.6295 1+
10 3.6940 0+
11 3.6978 2+
12 3.7924 5+
13 3.8261 6+
14 3.8443 3+
15 3.8500 0+
16 3.8752 6+
17 3.8953 2+
18 3.8983 4+
19 3.9377 3+
20 4.0517 0+
Levels above 4.066 MeV were assumed to be overlapping
The calculated data for the inelastic scattering wore finelly
lumped for the convenience on the construction of tho elemental
data, as follows:
MT no. Level energy(MeV) Lumping of lovel
61 0.7833 1
52 1.8814 2
53 2.9245 3
54 3.1611 4-5
55 3.3247
3.5946 over 7
MT=16 (n,2n)
Evaluated mainly based on the experimental data of Bormann
/11/.
MT=22 (n,na)
Calculated with the GNASH code/12/.
MT=28 (n,np)
Calculated with the GNASH code/12/.
MT=102 Capture
Calculated with the CASTHY code/7/ and normalized at 50 keV to
so as to reproduce the element data of 10 mb.
MT=103 (n,p)
Calculated with the GNASH code/12/.
MT=107 (n,a)
Calculated with the GNASH code/12/ and normalized at 14.8 MeV
in referring to Grimes's data/13/. The data near the threshold
were modified in referring to the experimental data for the
element Cr(n.alpha)/14/.
MT=251 Mu-bar
Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons
MT=2 Elastic scattering
Calculated with the CASTHY code/7/.
MT=51-55 Inelastic scattering
Calculated with the CASTHY code/7/ and the DWUCK code/9/.
MT=91 Inelastic scattering
Calculated with the CASTHY code/7/.
MT=16. 22. 28 (n,2n). (n,na). (n,np)
Assumed to be isotropic in the laboratory system.

```
```

MF=5 Energy Distributions of Secondary Neutrons
MT=16. 22, 28, 91
Calculated with the GNASH code/12/.

```

References
1) Stiegliz R.G. et al. : Nucl. Phys. A163. 592 (1971).
2) Beer H. and Spencer R.P. : KfK-206j (1974), al so Nucl. Phys. A240, 29 (1975).
3) Allen B.J. and Musgrove A.R.de L. : Neutron Data of Structural Materials for FBR, 1977 Geel Meeting. p. 447. Pergamon Press (1979).
4) Kenny M.J.et al. : AAEC/E-400 (1977).
5) Brusegan A. et al. : 85Santa Fe Vol. 1 p. 633 (1986).
6) Mughabghab S.F.et al. : "Neutron Cross Sections". Vol. 1. Part A (1981).
7) Igarasi S. : J. Nucl. Sci. Technol. 12, 67 (1975)
8) Data taken from ENSDF(Evaluatod Nucloar Structuro Data Filo).
9) Kunz P.D. : Unpublished.
10) Peterson R.J. and Perlman, D.E.: Nucl. Phys. A117.185(1968).
11) Bormann M. : The data (1965) in EXFOR file
12) Young P.G. and Arthur E.D.: LA-6947 (1977).
13) Grimes S.M. et el. : Phys. Rev. C19. 2127 (1979).
14) Paulsen A.: Nucl. Sci. Eng. 78. 377 (1981).

MAT number \(=3242\)
```

24-Cr-52 NEDAC Eval-Mar87 T.Asami(NEDAC)
Dist-Sep89
History
87-03 New evaluation was made to give a full revision for
JENDL-2 data.
88-12 MF/MT=3/107 modified.

```
MF=1 General Information
 \(M T=451\) Descriptive data and dictionary
MF=2 Resonance Parameters
 MT=151 Resolved resonance parameters
 Resolved parameters for MLBW formula were givan in
 the energy region from \(1.0 \mathrm{E}-5 \mathrm{eV}\) to 300 keV
 Eveluated mainly based on the experimental data of Stieglitz+
 71/1/. Beer+74/2/. Allen+77/3/. Kenny+77/4/. Agrawal+84/5/ and
 Brusegan+86/6/
 Effective scaltering radius \(=5.2 \mathrm{fm} / 7 /\)
 calculated \(2200 \mathrm{~m} / \mathrm{s}\) cross sections and resonance integral
 \(2200 \mathrm{~m} / \mathrm{s}\) cross section(b) res. integralíb)
 elastic \(\quad 2.96\)
 capture 0.76
 0.46
 total 3.72
MF \(=3\) Neutron Cross Sections
 Below 300 keV , zero background cross section was given
 Above 300 keV . the total and partial cross sections were given
 pointwise
MT=1 Total
 Optical and statistical model calculation was made with
 the CASTHY code/8/. The optical potential parameters used are:
 \(V=46.78-0.262-E n . \quad V\) so \(=7.0 \quad(\mathrm{MeV})\)
 \(W_{s}=4.87+0.352 \cdot E n, \quad W_{v}=0 \quad(\mathrm{MeV})\)
 \(r=1.30 . \quad r s=1.40 . \quad r s o=1.30 \quad\) (fm)
 \(a=0.55\). aso \(=0.48 . b=0.40 \quad\) (fm)
\(M T=2\) Elastic scattering
 Obtained by subtracting the sum of the partial cross sections
 from the total cross section.
\(m t=4\). 51-66, 91 inelastic scattering
 Calculated with the CASTHY code/8/. taking account of the
 contribution from the competing processes and using the
 discrete level data/9/ shown below.
 The contributions from the direct process for inelastic scatt-
 ering were calculated with the DWUCK code/10/. The deformation
 parameters used in the calculation were assumed based on a
 weak coupling model.
\begin{tabular}{ccc}
& Level energy(MeV) & Spin-parity \\
g.s. & 0.0 & \(0+\) \\
1 & 1.4341 & \(2+\) \\
2 & 2.3696 & \(4+\) \\
3 & 2.6470 & \(0+\)
\end{tabular}
```

| 4 | 2.7677 | $4+$ |
| :--- | :--- | :--- |
| 5 | 2.9648 | $2+$ |
| 6 | 3.1138 | $6+$ |
| 7 | 3.1617 | $2+$ |
| 8 | 3.4152 | $4+$ |
| 9 | 3.4722 | $3+$ |
| 0 | 3.6158 | $5+$ |
| 1 | 3.7000 | $2+$ |
| 2 | 3.7717 | $2+$ |
| 3 | 3.9460 | $4+$ |
| 4 | 3.9512 | $1+$ |
| 5 | 4.0154 | $5+$ |
| 6 | 4.0380 | $4+$ |
| 7 | 4.5630 | $3+$ |
| 8 | 4.6270 | $5+$ |
| 9 | 4.7060 | $2+$ |
| 0 | 4.7410 | $2+$ |
| 1 | 4.7507 | $8+$ |
| 2 | 4.7940 | $0+$ |
| 3 | 4.8045 | $6+$ |

Levels above 4.816 MeV were assumed to be overlapping
The calculated data for the inelastic scattering were finally
lumped for the convieneince on the construction of the element
data, as follows:

| MT no. | Level energy(MeV) | Lumping |
| :---: | :---: | :---: |
| 51 | 1.4341 | 1 |
| 52 | 2.3696 | 2 |
| 53 | 2.6470 | 3 |
| 54 | 2.7677 | 4 |
| 55 | 2.9648 | 5 |
| 56 | 3.1138 | 6 |
| 57 | 3.1617 | 7 |
| 58 | 3.4152 | 8 |
| 59 | 3.4722 | 9 |
| 60 | 3.6158 | 10 |
| 61 | 3.7000 | 11 |
| 62 | 3.7717 | 12 |
| 63 | 3.9460 | $15-14$ |
| 64 | 4.0154 | 17 |
| 65 | 4.5630 | 18 |
| 66 | 4.6270 | over 19 |

MT=16 (n.2n)
Adopted were the evaluated data in JENDL-2 which have been
evaluated based on the experimental data of Wenusch+62/11/.
Bormann+68/12/, Maslov+72/13/. Qaim72/14/. Sailer+77/15/ and
Ghorai+87/16/.
MT=22 (n,na)
Calculated with the GNASH code/17/ and normalized.
$M T=28 \quad(n, n p)$
Calculated with the GNASH code/17/ and normalized.
MT=102 Capture
Calculated with the CASTHY code/8/ and normalized to 28.5 mb
at 50 keV so as to reproduce the element data of 10 mb

```
```

    MT=103 (n,p)
    Calculated with the GNASH code/17/ and normalized at 14.8 MeV
    to the recommended value of Forrest/i8/.
    MT=107 (n,a)
Calculated with the GNASH code/17/ and normalized at 14.8 MeV
to the average values of the experimental data/19/./20/.
The data were modified near the threshold in referring to the
the experimental data of Paulsen /21/ for the element
Cr(n,alpha)
MT=251 Mu-bar
Calculated with optical model
MF=4 Angular Distributions of Secondary Neutrons
MT=2 Elastic scattering
Calculated with the CASTHY code/8/
MT=51-66 Inelastic scattering
Calculated with the CASTHY code/8/ and the DWUCK code/10/
MT=31 Inelastic scattering
Calculated with the CASTHY codo/8/
MT=16, 22. 28 (n,2n), (n,ne), (n,np)
Assumed to be isotropic in the laboratory systom
MF=5 Energy Distributions of Secondary Noutrons
MT=16, 22, 28, 91
Caiculated with the GNASH code/17/.

```
 References
 1) Stiegliz R.G. et al. : Nucl. Phys. A163. 592 (1971).
 2) Beer \(H\). and Spencer R.P. : KfK-2063 (1974). also Nucl.
 Phys. A240. 29 (1975)
 3) Allen B.J. and Musgrove A.R.de L. : Neutron Data of
 Structural Materials for FBR. 1977 Geel Meeting, p. 447.
 Pergamon Press (1979).
 4) Kenny M.J. et al. : AAEC/E-400 (1977).
 5) Agrawal H.M. et al. : Phys. Rev. C30. 1880 (1984).
 6) Brusegan A. et al. : 85Santa Fe Vol. 1 p. 633 (1986).
 7) Mughabghab S.F. et al. : "Neutron Cross Sections", Vol.1.
 Part A (1981).
 8) Igarasi S.: J. Nucl. Sci. Technol. 12. 67 (1975)
 9) Data taken from ENSDF(Evaluated Nuclear Structure Data File).
10) Kunz P.D. : Unpublished.
11) Wenusch R. et al. : OSA 99, 1 (1962).
12) Bormann M. et al. : Nucl. Phys. A115. 309 (1968)
13) Mastov G.N. et al. : Nucl. Const. Vol.9. 50 (1972).
14) Qaim S.M. : Nucl. Phys. A185, 614 (1972).
15) Sailer K. et al. : 1977 Kiev Conf. Vol. 1.246 (1977).
16) Ghorai S.K. et al. : J. Phys. G13. 405 (1987).
17) Young P.G. and Arthur E.D. : LA-6947 (1977).
18) Forrest R.A. : AERE-R-12419 (1986)
19) Grimes S.M. et al. : Phys. Rev. Ci9. 2127 (1979).
20) Dolja G.D. et al. : 1973 Kiev Conf. Vol.3. 131 (1973).
21) Paulsen A. : Nucl. Sci. Eng. 78. 377 (1981)
```

24-Cr-53 NEDAC Eval-Mar87 T.Asami(NEDAC)
Dist-Sep89
History
87-03 New evaluation was made to give a full revision for
JENDL-2 data.
88-12 MF/MT=3/107 modified.

```
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
 MT=151 Resolved resonance paramoters
 Resolved parameters for MLBW formula were given in
 the energy region from \(1.0 E-5 \mathrm{eV}\) to 120 keV .
 Evaluated besed on tho experimental data of Stieglitz+71/1/.
 Beert74/2/. Allent77/3/. Kenny+77/4/. Brusegen+8G/5/ and
 Muellert71/6/
 Effective scattering radius \(=5.4 \mathrm{fm} / 7 /\).
 Calculated \(2200 \mathrm{~m} / \mathrm{s}\) cross sections and resonence integral
 \(2200 \mathrm{~m} / \mathrm{s}\) cross section(b) res. integral(b)
 elastic \(\quad 7.78\)
 capture 18.2 B. 61
 total 25.9
\(M F=3\) Neutron Cross Sections
 Below 120 keV . no background cross section was given.
 Above 120 keV , the total and partial cross sections were given
 pointwise.
MT=1 Total
 Optical and statistical model calculation was made with
 the CASTHY code/8/. The optical potential parameters useu are:
 \(V=46.78-0.262 \cdot E n, \quad V s o=7.0 \quad(\mathrm{MeV})\)
 \(W_{s}=4.87+0.352-E n, \quad W_{v}=0 \quad(\mathrm{MeV})\)
 \(r=1.30, \quad r s=1.40, \quad r s o=1.30 \quad(\mathrm{fm})\)
 \(a=0.55\), aso \(=0.48, b=0.40 \quad(f m)\)
 MT=2 Elastic scattering
 Obtained by subtracting the sum of the partial cross sections
 from the total cross section.
MT=4. 51-63. 91 Inelastic scattering
 Calculated with the CASTHY code/8/, taking account of the con-
 tribution from the competing processes and using the discrete
 level data/g/ shown below.
 The contributions from the direct process for inelastic scatt-
 ering were calculated with the DWUCK code/10/. The deformation
 parameters used in the calculation were assumed based on
 a weak coupling model.
 g.s.
 Level energy(MeV)
 Spin-parity
 C. 0
 3/2-
 \(1 \quad\) C. 5640
 1/2-
 2
 3
 1.0063 5/2-
 1.2895 7/2-
 4
 1.5366 7/2-
```

| 5 | 1.9736 | $5 / 2-$ |
| ---: | ---: | ---: |
| 6 | 2.1724 | $11 / 2-$ |
| 7 | 2.2330 | $9 / 2-$ |
| 8 | 2.3208 | $3 / 2-$ |
| 9 | 2.4531 | $3 / 2-$ |
| 10 | 2.6570 | $5 / 2-$ |
| 11 | 2.6695 | $1 / 2-$ |
| 12 | 2.7065 | $13 / 2-$ |
| 13 | 2.7080 | $3 / 2-$ |
| 14 | 2.7720 | $5 / 2-$ |
| 15 | 2.8266 | $11 / 2-$ |
| 16 | 2.9930 | $7 / 2-$ |
| 17 | 3.0841 | $15 / 2-$ |
| 18 | 3.0930 | $5 / 2-$ |
| 19 | 3.1386 | $5 / 2-$ |
| 20 | 3.1793 | $3 / 2-$ |
| 21 | 3.2439 | $11 / 2-$ |
| 22 | 3.2610 | $5 i 2-$ |

Levels above 3.435 MeV were assumed to be overlapping.
The calculated data for the inelastic scattering were finally lumped for the convenieince on the construction of the element data, as follows:

| MT no. | Level energy $(\mathrm{MeV})$ | Lumping |
| :---: | :---: | :---: |
| 51 | 0.5640 | 1 |
| 52 | 1.0063 | 2 |
| 53 | 1.2895 | 3 |
| 54 | 1.5366 | 4 |
| 55 | 1.9736 | 5 |
| 56 | 2.1724 | 6 |
| 57 | 2.2330 | 7 |
| 58 | 2.3208 | 8 |
| 59 | 2.4531 | 9 |
| 60 | 2.6570 | $10-13$ |
| 61 | 2.7720 | 14 |
| 62 | 2.8266 | 15 |
| 63 | 2.9930 | 16 |
| 91 | 2.9930 | over 17 |

$M T=16 \quad(n, 2 n)$
Calculated with the GNASH code/11/.
$M T=22 \quad(n, n a)$
Calculated with the GNASH code/11/ and normalized.
$\mathrm{MT}=28 \quad(\mathrm{n}, \mathrm{np})$
Calculated with the GNASH code/11/ and normalized.
MT=102 Capture
Calculated with the CASTHY code/7/ and normalized at 50 keV to reproduce the element data of 10 mb .
$M T=103 \quad$ (n.p)
Below 9 MeV , evaluated based on the experimental data of
Smith/12/.
Above 9 MeV , calculated with the GNASH code/12/ and normalized so as to be connected with the Smith's experimental data/12/.
MT=107 (n, a)
Calculated with the GNASH code/12/ and normalized at 14.7 MeV
to Dolja's experimental data/13/. The data near threshold were modified in referring to the experimental data for the element

```
```

    Cr(n,alpha)/14/.
    MT=251 Mu-bar
Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons
MT=2 Elastic scattering
Calculated with the CASTHY code/8/
MT=51-63 Inelastic scattering
Calculated with the CASTHY code/8/ and the DWUCK code/10/.
MT=91 inelastic scattering
Calculated with the CASTHY rode/8/.
MT=16, 22, 28 (n,2n), (n,na), (n,np)
Assumed to be isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 9:
Calculated with the GNASH code/11/.

```

\section*{References}
1) Stiegliz R.G. et al. : Nucl. Phys. A163. 592 (1971).
2) Beer H. and Spencer R P. : KfK~2063 (1974), also Nucl. Phys. A240, 29 (1975).
3) Allen B.J. and Musgrove A.R.de L. : Neutron Data of Structural Materials for FBR, 1977 Geel Meeting, p. 447. Pergamon Press (1979).
4) Kenny M.J. et al. : AAEC/E-400 (1977).
5). Brusegan A. at al. : 85Santa Fe Vol. 1 p. 633 (1986).
6) Mueller K.N. et al. : Nucl. Phys. A164, 97 (1971).
7) Mughabghab S.F. et al. : "Neutren Cross Sections*. Vol. 1. Part A (1981).
8) Igarasi S. : J. Nucl. Sci. Tech. 12. 67 (1975).
9) Data taken from ENSDF(Evaluated Nuclear Structure Data File).
10) Kunz P.D. : Unpublished.
11) Young P.G. and Arthur E.D. : LA-6947 (1977).
12) Smith D.L. et al. : Nucl. Sci. Eng. 78. 420 (1981).
13) Dolja G.D.et al. : 1973 Kiev Conf. Vol.3, 131 (1973).
14) Paulsen A. : Nucl. Sci. Eng. 78, 377 (1981).

```

| 8 | 3.3920 | $1+$ |
| ---: | ---: | ---: |
| 9 | 3.4366 | $2+$ |
| 10 | 3.4680 | $1+$ |
| 11 | 3.5140 | $2+$ |
| 12 | 3.6552 | $4+$ |
| 13 | 3.7198 | $2+$ |
| 14 | 3.7858 | $4+$ |
| 15 | 3.7989 | $4+$ |
| 16 | 3.8640 | $2+$ |
| 17 | 3.9340 | $1+$ |
| 18 | 3.9900 | $3+$ |
| 19 | 4.0160 | $0+$ |
| 20 | 4.0450 | $6+$ |
| 21 | 4.0832 | $4+$ |

Levels above 4.088 MeV were assumed to be overlapping.
The calculated data for the inelastic scattering were finally lumped for the convenience on the construction of the element data, as follows:

| MT no. | Level energy(Mov) | Lumping |
| :---: | :---: | :---: |
| 51 | $0.8^{-199}$ | 1 |
| 52 | 1.6 .27 | 2 |
| 53 | 2.6195 | 3 |
| 54 | 2.8294 | 4 |
| 55 | 3.0739 | 5 |
| 56 | 3.1600 | 6 |
| 57 | 3.2225 | 7 |
| 58 | 3.3920 | 8 |
| 59 | 3.4366 | 9 |
| 60 | 3.4680 | 10 |
| 91 | 3.5140 | over 11 |

MT=16 (n,2n)
Calculated with the GNASH code/10/.
MT=22 (n, na)
Calculated with the GNASH code/10/ and normalized.
MT=28 (n, np)
Calculated with the GNASH code/10/ and normalized.
MT=102 Capture
Calculated with the CASTHY code/7/ and normalized a: 50 keV
so as to reproduce the element data of 10 mb $M T=103 \quad(n, p)$
Calculated with the GNASH code/10/ and normalized at 14.7 MeV
to an average value of the experimental data/11/-/13/. $M T=107 \quad(n, a)$
Calculated with the GNASH code/10/ and normalized at 14.8 MeV
to an average value of the experimental data/12/-/14/.
MT=251 Mu-bar
Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons
MT=2 Elastic scattering
Calculated with the CASTHY code/7/.
MT=51-60 Inelastic scattering
Calculated with the CASTHY code/7/ and the DWUCK code/9i.
MT=91 Inelastic scattering
Calculated with the CASTHY code/7/.

```
```

MT=16. 22, 28 (n, 2n). (n,na). (n,np)
Assumed to be isotropic in the labora:ory system
MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22. 28. 91
Calculated with the GNASH code/10/.
References

1) Stiegliz R.G. et al. : Nucl. Fhys. A163, 592 (1971)
2) Beer H. and Spencer R.F. : KfK-2063 (1974), also Nucl.
Phys. A240. 29 (1975).
3) Allen B.J. and Musgrove A.R.de L. : Neutron Data of
Strcctural Materials for FBR. 1977 Geel Meeting. p.447.
Pergamon Press (1979).
4) Kenny M.J. et al. : AAEC/E-400 (1977).
5) Brusegan A. et al. : 85Santa Fe Vol.1 p.633 (1986)
6) Mughabghab S.F. et al. : "Neutron Cross Sections •. Vol.1.
Pari A (1981)
7) Iqarasi S. : J. Nucl. Sci. Tech. 12, 67 (1975)
8) Data taken from ENSDF(Evaluated Nuclear Structure Data File).
9) Kunz P.D. . Unpublished.
10) Young P.G. and Arthur E.D. : LA-6947 (1977).
11) Valkonen M. : Taken from EXFOR (1976).
12) Husain L. e! al. : J. Inorg. Nucl. Chem. 29. 2665 (1967).
13) Qaim S.M. et al. : Nucl. Phys. A283. 269 (1977)
14) Sailer K. et al. : 1977 Kiev Conf. Vol.1. 246 (1977).
```

MF=3 Neutron Cross Sections
 MT=1 Total
 Below 100 keV : No background
 Above 100 keV : Based on the experimental data/3.4.5/.
 MT=2 Elastic scattering
 (Total) (Nonelastic cross section)
 MT=3 Non elastic
 Sum of MT=4, 16. 22. 28. 102. 103. 104. 105. 106 and 107
 \(\mathrm{MT}=4.51-79.91\) Inelastic scattering
 Statistical-model calculations were performed using the
 TNG code /6/. The precompound process was considered
 above 5 MeV . The calculated cross section of \(\mathrm{MT}=51\)
 was multiplied by a factor of 1.2.
 For the levels of \(\mathrm{MT}=51.52 .57 .61,64.65,67.70\).
 the direct process components were taken into account
 by the DWBA calculations
 The optical poten:ial parameters used are as follows/7/
 (in the units of MeV and fm):
 \(V=49.747-0.4295 \cdot E-0.0003=E \cdot-2 \quad r 0=1.287 \quad a 0=0.56\)
 \(W_{s}=11.2-0.09 \cdot E \quad r s=1.345\) as \(=0.47\)
 \(\mathrm{Vso}=6.2 \quad \mathrm{rso}=1.120\) aso \(=0.47\)
 The level scheme was taken from Ref./8/.
 No. Energy(MeV) Spin-Parity
\begin{tabular}{clr}
g.s. & 0.0 & \(5 / 2-\) \\
1. & 0.126 & \(7 / 2-\) \\
2. & 0.984 & \(9 / 2-\) \\
3. & 1.290 & \(1 / 2-\) \\
4. & 1.292 & \(11 / 2-\)
\end{tabular}
```

| 5. | 1.293 | $1 / 2-$ |
| ---: | ---: | ---: |
| 6. | 1.528 | $3 / 2-$ |
| 7. | 1.884 | $7 / 2-$ |
| 8. | 2.015 | $7 / 2-$ |
| 9. | 2.198 | $7 / 2-$ |
| 10. | 2.215 | $5 / 2-$ |
| 11. | 2.252 | $3 / 2-$ |
| 12. | 2.267 | $5 / 2-$ |
| 13. | 2.312 | $13 / 2-$ |
| 14. | 2.366 | $5 / 2-$ |
| 15. | 2.398 | $9 / 2-$ |
| 16. | 2.427 | $1 / 2-$ |
| 17. | 2.563 | $3 / 2-$ |
| 18. | 2.727 | $7 / 2-$ |
| 19. | 2.753 | $5 / 2-$ |
| 20. | 2.822 | $9 / 2-$ |
| 21. | 2.824 | $5 / 2-$ |
| 22. | 2.873 | $1 / 2-$ |
| 23. | 2.954 | $3 / 2-$ |
| 24. | 2.976 | $3 / 2-$ |
| 25. | 2.892 | $7 / 2-$ |
| 26. | 3.006 | $3 / 2-$ |
| 27. | 3.036 | $11 / 2-$ |
| 28. | 3.038 | $1 / 2-$ |
| 29. | 3.040 | $3 / 2+$ |

Levels above 3.046 MeV were assumed to be overtapping.

```
```

    \(M T=16.22 .28 .103 .107(n, 2 n) .\left(n, n^{\prime} a\right) \cdot\left(n, n^{\prime} p\right) \cdot(n, p)\) and (n,a)
    ```
 \(M T=16.22 .28 .103 .107(n, 2 n) .\left(n, n^{\prime} a\right) \cdot\left(n, n^{\prime} p\right) \cdot(n, p)\) and (n,a)
 cross sections
 Calculated with TNG.
 Global optical-potential parameters were employed
 for protons and alpha-particles /9.10/.
 MT=102 Radiative capture cross section
 Below 100 keV : Resonance parameters given (no background)
 Above 100 keV : Based on the experimental data /11/-/15/.
 MT=104 (n.d) cross section
 The excitation function of the (}n,p\mathrm{) cross section
 calculated with TNG was used for the (n.d) reaction by
 shifting the threshold energy. The cross sections were
 normalized to the experimental datum at 14.1 MeV /16/.
 MT=105 (n,t) cross section
 The excitation function of the (}n,p)\mathrm{ cross section
 calculated with TNG was used for the (n,t) reaction by
 shifting the threshold enurgy. The cross sections were
 normalized to the experimental datum at 14.7 MeV/17/.
MT=106 (n.He-3) cross section
 Based on the experimental data /18.19/.
MT=251 Mu-bar
 Calculated from File-4.
MF=4 Angular Distributions of Secondary Neutrons
```

```
 MT=2.51-79
 Optical and statistical-model calculations
 The components of the direct process were added to
 the levels of MT=51,52,57,61,64,65,67,70 by the DWBA
 calculations
 MT=16, 22, 28, 91
 Assumed to be isotropic in the laboratory system
MF=5 Energy Distributions of Secondary Neutrons
 MT=16, 22, 28, 91
 Calculated with TNG.
MF=12 Photon Production Multiplicities
 MT=4,16,22,28,102,103,107
 Calculated with TNG.
 For MT=102. modified by using gamme-ray intensity date
 in ENSDF below thermal energy
MF=14 Photon Angular Disiributions
 MT=4,16,22,28,102,103,107
 Assumed to be isotropic.
MF=15 Photon Energy Distributions
 MT=4,16.22,28.102.103.107
 Calculeted with TNG.
 For MT=102, modified by using gamma-ray intensity data
 in ENSDF below thermal energy.
MF=33 Covariance Data
 MT=1,2,3,4,16,22,28,51-79,91,102,103,104,105,106,107
 Estimated from experimenial data.
References
 1) Macklin, R.L.: Nucl. Sci. Eng., 89. 362 (1985).
 2) Mugabghab, S.F., Divadeenam, M. and Holden. N.E.: *Neutron
 Cross Sections*. Val. 1. Part A. Academic Press (1981).
 3) Cierjacks. S.. Forti, P.. Kopsch, D.. Kropp. L.. Nebe. J.
 and Unseld. H.: "High Resolution Total Cross Sections
 for Na, Cl, K. V. Mn and Co between 0.5 and 30 MeV'.
 KfK-1000 (1968).
 4) Pineo, W.F.E., Divadeenam, M., Bilpuch. E.G.. Seth. K.K.
 and Newson, H.W.: Ann. Phys.. 84, 165 (1974).
 5) Garg. J.B.. Rainwater. J. and Havens. Jr.. W.W.:
 Nucl. Sci. Eng.. 65, 76 (1978).
 6) Fu, C.Y.: "A Consistent Nuclear Model for Compound and
 Precompound Reactions with Conservation of Angular
 Momentum*, ORNL/TM-7042 (1980).
 7) Fu. C.Y.: Private communication (1985).
 8) Zhou Enchen. Huo Junde, Zhou Chunmei, Lu Xiane and
 Wang Lizheng: Nucl. Data Sheets, 44, 463 (1985)
 9) Perey. F.G.: Phys. Rev.. 131. 745 (1963).
10) Huizenga. J.R. and Igo. G.J.: Nuci. Phys., 29. 462 (1962).
11) Garg. J.B., Macklin. R.L. and Halperin. J.: Phys. Rev..
 C18. 2079 (1978).
12) Dovbenko. A.G.. Kolesov. V.E.. Koroleva, V.P.. Tolstikov.
 V.A.: Atom. Energ.. 26. 67 (1969).
13) Menlove. H.O.. Coop. K.L.. Grench. H.A. and Sher. R.:
```

Phys. Rev. 163. 1299 (1967).
14) Schwerer. O.. Winkler-Rohatsch. M., Warhanek. H. and Winkler, G.: Nucl. Phys.. A264. 105 (1976)
15) Budnar. M.. Cvelbar. F.. Hodgson. E.. Hudokiin. A. I vkovic. V., Likar, A., Mihailovic. M.V., Martincic. R., Najzer. M., Perdan, A., Polokar, M. and Ramsak. V.: -Prompt Gamma-ray Spectra and Integarted Cross Sections for the Radiative Capture of 14 MeV Neutrons for 28 Natura! Targets in the Mass Region from 12 to 208*. INDC(YUG)-6 (1979)
16) Colli, L., Iori. 1.. Micheletti, S. and Pignanelli. M.: Nuovo Cim., 21. 966 (1962)
17) Sudar. S. and Csikai. J.: Nucl. Phys.. A319. 157 (1979).
18) Diksic. M., Strohal. P. and Slaus, I.: J. Inorg. Nucl

Chem., 36. 477 (1974)
19) Wu. C.H. Woelfle. R. and Qaim. S.M.: Nucl. Phys., A329. 63 (1979).

```
26-Fe- 0 JNDC Eval-Mar87 S.lijima.H.Yamakoshi
 Dist-Sep89
History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K.Shibata (JAERI).
Natural iron data constructed from Fe-isotopes.
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
 MT=151 Resolved resonances
 Resonance region = 1.0E-5 eV to 250.0 keV
 The multilevel Breit-Wigner formula was used Parameters
 were adopted from the following sources
 Fe-54 : Pandoy+/1/ for 0 - 680 keV. R=5.6 im
 Fe-56 : Perey+/2/ for -2.0-400 keV. R=5.4 fm from fit-
 ting to total cross section below 60 koV
 Parameters of the 1.15 keV rosonance were
 taken from the result of the NEANDC task
 force /3/.
 Fe-57 : Alfen+/4/ for s-wave resonances. End Beer+/5/
 for p-wave resonances in 0 - 185 keV.
 Fe-58 : Mughabghab+/6/.
 For Fe-56, a negative level was added at -3.75 keV with
 neutron width of 100 eV and gamma width of 1.0 eV. Neutron
 width of 27.67-keV resonance was taken as 1420 eV.
 Calculated 2200-m/s cross sections and res. integrals.
 2200-m/s res. integ.
 elastic 11.36 b -
 capture 2.56 b 1.340 b
 total 13.92 b -
MF=3 Neutron Cross Sections
 Below 250 keV, background cross sections were given.
 MT=1 Total
 For energies 250 keV - 20 MeV. fine resolution data were
 taken by eye-guide using interactive display of NDES
 Neutron Data Evaluation System) developed by T.Nakagawa at
 the Nuclear Data Center. JAERI. Below 4 MeV. data of
 Carlson+/7/ were adopted. Above 4 MeV. data of Cierjackst
 /8/ were adopted.
 MT=2 Elastic scattering
 Given as total minus nonelastic cross sections
 MT=3 Nonelastic
 Sum of MT=4.16.22.28.102.103.107
 MT=16,22,28,103
 Calculated using GNASH /9/.
 MT=4.51-75.91 Inelastic scattering
 Isotopic data were obtained from the CASTHY/10/ and GNASH
 ca!culations. Isotopic levels were grouped into 25
 levels of natural element. The contributions from the
```

```
direct process were included in the levels of MT=55.58.
61,63,64,65,70,73.74.
Optical potential parameters used in the calculation are
as follows:
```

```
\[
\begin{aligned}
& V=46.0-0.25 \cdot \mathrm{E} \quad, \mathrm{r} 0=1.286, \mathrm{a} 0=0.620 \\
& W_{s}=14.0-0.2 \cdot E \quad, r s=1.390 . a s=0.700 \\
& \text { 14.8-0.2-E for Fe-57 } \\
& V s o=6.0 \quad \text {. } \mathrm{rso}=1.07 \text {, aso }=0.620 \\
& \text { Energies in MeV unit. lengths in fm unit }
\end{aligned}
\]
```

MT=102 Capture

```
 Background cross section was given below 250 keV.
 Above 250 keV. the CASTHY calculation was adopted.
 MT=107 (n,alpha)
 For Fe-5G, the evaluation was made on the besis of
 experimental data. For Fe-54.57.58, the GNASH calculation
 was adopted.
 MT=251 Mu-bar
 Calculated with CASTHY /10/.
MF=4 Angular Distributions of Secondery Neulrons
 MT=2.51-75
 Optical and statistical-model calculapions.
 The C.C. calculations were added to the levels of MT=55.
 58,61,63,64,65,70,73,74.
 MT=16,22,28.91
 Assumed to be isotropic in the laboratory sysiem.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16.22.28.91
 Calculated with GNASH.
MF=12 Photon Multiplicities
 MT=3,51,52,102
 Multiplicities were calculated using GNASH.
 For MT=102. modified by using gamma-ray intensity data
 in ENSDF below thermal energy.
MF=14 Photon Angular Distributions
 MT=3,51,52,102
 Assumed to be isotropic.
MF=15 Photon Energy Distributions
 MT=3,102
 Below 600 keV, based on the data of Igashira et al./11/.
 Above 600 keV, calculated with GNASH.
 For MT=102, modified by using gamma-ray intensity data
 in ENSDF below thermal energy.
```


## References

```
1) Fandey M.S. et al.: Proc. Conf. Nuclear Cross Sections and Technology. Washington D.C., (1975), p. 748.
2) Perey F.G. et al.: Proc. Specialist Meeting on Neutron Data of Structural Materials for Fast Reactors, Geel. (1977). p. 530 .
3) Nakajima Y.: JAERI-M 85-035. p. 196 (1985).
4) Allen B.J. et al, Proc. Specialist Meeting on Neutron Data
```

of Structural Materials for Fast Reactors. Geel. (1977). p. 476
5) Beer H. and Spencer R.R.: KfK-2063 (1974).
6) Mughabghab S.F. et al.: "Neutron Cross Sections, Vol. 1. Part $A^{*}$. Academic Press (1981).
7) Carlson A.D. and Cerbone R.J.: Nucl. Sci. Eng. . 42, 28 (1970).
8) Cierjacks S.et al.: KfK-1000 (1968)
9) Young P.G. and Arthur E.D.: LA-6947 (1977).
10) Igarasi S. : J. Nucl. Sci. Technol.. 12. 67 (1975)
11) Igashira M. et al.: Proc. Int. Conf. Nuclear Data for Science and Technology, Mito. 1988, p.87. (1988).

```
 26-Fe- 54 JNDC Eval-Mar87 S.lijima,H.Yamakoshi
 Dist-Sep89
History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K.Shibata (JAER1).
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
 MT=151 Resolved resonances
 Resonance region = 1.0E-5 eV to 250.0 keV
 The multilevel Breit-Wigner formula was used. Parameters
 were adopted mainly from Pandey+/1/ by assuming the average
 radiative width to be 2.5 eV /2/. R=5.6 fm was taken from
 Ref./3/.
 Calculated 2200\cdotsm/s cross sections and ros. integrals.
 2200-m/s Res. Integ.
 elastic
 total 2.649 b
MF=3 Neutron Cross Sections
 Below 250 keV, background cross sections were given for the
 total and elastic scattering cross sections on the upper
 side of the first resonance. Above 250 keV, the cross
 sections were evaluated as follows.
 MT=1 Total
 Spherical optical model calculation was made by using code
 CASTHY /4/. Optical potential parameters are as follows:
 V = 46.0-0.250.E , r0=1.286. a0=0.620
 Ws = 14.00-0.200-E , rs=1.390. as=0.700
 Vso=6.00 , rso=1.070.aso=0.620
 (energies in MeV. lengths in fm)
 MT=2 Elastic scattering
 Given as total minus other cross sections
 MT=3 Nonelastic
 Sum of MT=4,16,22,28,102,103,107.
 MT=16.22.28 (n,2n).(n, n'a).(n, n'p)
 Calculated using the GNASH code /5/.
 MT=4,51-69.91 Inelastic scattering
 Below }7\textrm{MeV}\mathrm{ . the cross sections were calculated using
 CASTHY with width fluctuation corrections.
 Above }7\mathrm{ Mev. the GNASH calculation was performed.
 For MT=51,52,53.54,59.68, the direct process
 component wois considered b; the C.C. theory.
 Level scheme is given as follows:
\begin{tabular}{ccc}
No. & Energy(MeV) & Spin-Parity \\
g.s. & 0.0 & \(0+\) \\
1. & 1.4082 & \(2+\) \\
2. & 2.5382 & \(4+\) \\
3. & 2.5613 & \(0+\)
\end{tabular}
```

```
\begin{tabular}{rrr}
4. & 2.9499 & \(6+\) \\
5. & 2.9590 & \(2+\) \\
6. & 3.1661 & \(2+\) \\
7. & 3.2952 & \(4+\) \\
8. & 3.3450 & \(3-\) \\
9. & 3.8338 & \(4+\) \\
10. & 4.0330 & \(4+\) \\
11. & 4.0472 & \(4+\) \\
12. & 4.0720 & \(3+\) \\
13. & 4.2632 & \(4+\) \\
14. & 4.2961 & \(0+\) \\
15. & 4.5980 & \(2+\) \\
16. & 4.6550 & \(2+\) \\
17. & 4.7000 & \(3+\) \\
18. & 4.7800 & \(3-\) \\
19. & 4.9490 & \(4+\)
\end{tabular}
Continumm levels were assumed above 5.145 MeV
MT=102 Capture
CASTHY calculation was adoplod
\(M T=103 \quad(n, p)\)
Below 2.5 MeV , besed on the date of Paulsen and Widere/6/. Between 2.5 and 10 MeV , based on the data of Smith and Meadows /7/.
Above 10 MeV , calculated with GNASH.
\(M T=107\) (n,alpha)
GNASH calculation multiplied by 0.94.
MT=251 Mt-bar
Calculaied with CASTHY /4/.
\(M F=4\) Angular Distributions of Secondary Neutrons
MT=2:51-69
Optical and statistical-model calculation.
For \(M T=51,52,53.54,59.68\), the direct-process component
was taken into account by the C.C. theory.
\(\mathrm{MT}=16.22 .28 .91\)
Assumed to be isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16.22.28.9i
Calculated with GNASH.
MF=12 Photon Multiplicities and Transition Probatility Arrays
MT=16.22.28.91,102.103.107
Multiplicities were calculated with GNASH
MT \(=51-69\)
Transition probability arrays
MF=14 Photon Angular Distributions
MT=16,22,28,51-69,91,102,103,107
Assumed to be isotropic.
MF=15 Photon Energy Distributions
MT=16,22,28,91,102,103.107
Calculated with GNASH.
```

1) Pandey M.S. et al.: Proc. Conf. Nuclear Cross Sections and Technology, Washington D.C , (1975), p. 748.
2) Spencer R.R. and Beer H. : KfK 2046. 79 (1975)
3) Mughabghat S.F. and Garber D.I.: BNL 325, 3rd Ed. Vol. 1 (1973)
4) Igarasi S. : J. Nucl. Sci. Technol., 12, 67 (1975).
5) Young P.G. and Arthur E.D.: LA-6974 (1977).
6) Paulsen A. and Widera R.: Proc. Conf. Chemical Nuclear Cata. Measurements and Application, Canterbury, 1971.
7) Smith D.L. and Meadows J.W.: Nucl. Sci. Eng., 58, 314 (1975).

26-Fe-56 JNDC | Eval-Mar87 S.lijima.H. Yamakoshi |
| :--- |
| Dist-Sep89 |

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K. Shibata (JAERI).
$\mathrm{MF}=1$ General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
$M T=151$ Resolved resonances
Resonance region $=1.0 \mathrm{E}-5 \mathrm{eV}$ to 250.0 keV
The multilevel Breit-Wigner formula was used. Parameters were adopted from the experimental data by Perey+ /1/.
$R=6.5 \mathrm{fm}$ was selected to reproduce the $24-k e V$ window cross section. Neutron width of $27.67-\mathrm{keV}$ resonance was taken as 1420 eV . The parameters of the $1.15-\mathrm{keV}$ resonance were taken from the result of the NEANDC task force $/ 2 /$.

Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and res. integrals.
$2200-\mathrm{m} / \mathrm{s}$ Res. Integ.

elastic	12.46 b	-
capture	2.813 b	1.448 b

MF=3 Neutron Cross Sections
Below 250 keV , background cross sections were given
for the total and elastic scattering cross sections.
Above 250 keV . cross sections were evaluated as follows.
MT=1 Total
Spherical optical model calculation was made by using CASTHY code /3/. Parameters are as follows.
$V=46.0-0.25-\mathrm{E} \quad, \mathrm{r} 0=1.286, \mathrm{a} 0=0.620$
$W s=14.0-0.20-E \quad, r s=1.390$, $a s=0.700$
$V \mathrm{so}=6.0 \quad$, $\mathrm{rso}=1.07$, aso $=0.620$
(onergies in MeV . lengths in fm ).
MT=2 Elastic scattering
Given as total minus nonelastic cross sections.
MT=3 Nonelastic
Sum of MT=4,16,22,28,102,103,107.
MT=16.22.28 (n,2n),(n, n'a),(n, n'p)
Calculated with GNASH/4/.
MT=4,51-77,91 Inelastic scattering
The CASTHY and GNASH calculations were adopted for neutron energies below and above 7 MeV . respectively.
The direct-process component was considered for $M T=$ $51,52,53,54,77$ by the C.C. theory.

The level scheme is given as follows:
No. Energy(MeV) Spin-Parity
g.s. $0.0 \quad 0$ +

1. $0.8468 \quad 2+$
2. $2.0851 \quad 4+$
3. $2.6576 \quad 2+$
4. $2.9417 \quad 0+$
```
\begin{tabular}{rrr}
5. & 2.9600 & \(2+\) \\
6. & 3.1200 & \(1+\) \\
7. & 3.1229 & \(4+\) \\
8. & 3.3702 & \(2+\) \\
9. & 3.3884 & \(6+\) \\
10. & 3.4454 & \(3+\) \\
11. & 3.4493 & \(1+\) \\
12. & 3.6009 & \(2+\) \\
13. & 3.6019 & \(2+\) \\
14. & 3.6070 & \(0+\) \\
15. & 3.7480 & \(2+\) \\
16. & 3.7558 & \(6+\) \\
17. & 3.8320 & \(2+\) \\
18. & 3.8565 & \(3+\) \\
19. & 4.0940 & \(3+\) \\
20. & 4.1003 & \(3+\) \\
21. & 4.1200 & \(4+\) \\
22. & 4.2982 & \(4+\) \\
23. & 4.3020 & \(0+\) \\
24. & 4.3950 & \(3+\) \\
25. & 4.4010 & \(2+\) \\
20. & 4.4584 & \(3+\) \\
27. & 4.5100 & \(3+\)
\end{tabular}
Cont inum levels were assumed above 4.701 MeV
\(M T=102\) Capture
Below 250 keV , no background.
The CASTHY calculation was afopted
\(M T=103 \quad(n, p)\)
Below 7 MeV , based on the data of Smith and Meadows/5/.
7-13 MeV. taken from JENDL-2.
\(13-16 \mathrm{MeV}\), based on the data of 1 keda et al./6/
16 - 20 MeV , taken from JENOL-2.
\(M T=107\) (n, alpha)
Based on experimental data
MT=251 Mu-bar
Calculated with CASTHY /3/.
\(M F=4\) Angular Distributions of Secondary Neutrons
MT=2.51-i7
Optical and statistical-model calculations were adopted.
The C.C. calculations were added to the levels of MT=51.52.
53.54.77.
\(M T=16.22 .28 .91\)
Assumed to be isotropic the laboratory system.
MF=5 Energy Jistributions of Secondary Neutrons
\(M T=16,22,28,91\)
Calculated with GNASH.
MF=12 Photon Multiplicities and Transition Probability Arrays
\(\mathrm{MT}=16.22 .28 .91 .102 .103 .107\)
Multiplicities we e calculated with GNASH.
\(M F=14\) Photon Angular Distributions
MT=16.22.28.51-77.91.102.103.107
Assumed to be isotropic.
```

MF=15 Photon Energy Distributions
$\mathrm{MiI}=16,22,28,91,102,103.107$
Calculated with GNASH.
References

1) Perey F.G. et al.: Proc. Specialist Meeting on Neutron Data of Structural Materials for Fast Reactors, Geel. (1977). p. 530 .
2) Nakajima Y.: JAERI-M 85-035, p. 196 (1985).
3) Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1975).
4) Young P.G. and Arthur E.D.: LA-6974 (1977).
5) Smith D.L. and Meadows J.W.: Nucl. Sci. Eng., 58. 314 (1975).
6) Ikeda Y. et al.: JAERI 1312 (1988).

26-Fe-57 JNDC Eval-Mar87 S.lijima.H.Yamakoshi
History
87-03 Evaluation was performed for JENDL-3
87-05 Compiled by K. Shibata (JAERI)>

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonances
Resonance region $=1.0 \mathrm{E}-5 \mathrm{eV}$ to 200.0 keV
The multilevel Breit-Wigner formula was used. Parameters were adopted from Allent/1/ for swave resonences, and Beer+/2/ for p-wave resonances in $0-185 \mathrm{keV}$.

Calculated $2200-m / s$ cross sections and res. integrals $2200-\mathrm{m} / \mathrm{s}$ Res Integ.

elastic	0.2021 b	-
capture	2.462 b	1.43 b

tolal 2.664 b

MF=3 Neutron Cross Sections
Below 200 keV . background cross section was given for
the total and capture cross sections.
Above 200 keV . the data were evaluated as follows.

MT=1 Total
Spherical optical model calculation was made with CASTHY code /3/. Parameters are as follows.

$V=46.0-0.25 \cdot E$	$, r 0=1.286, a 0=0.620$
$W_{s}=14.08-0.20 \cdot E$	,$r s=1.390 . a s=0.700$
$V s o=6.00$	,$r s o=1.07 . a s o=0.620$

(energies in MeV unit, lengths in fm unit)
MT=2 Elastic scattering
Given as total minus nonelastic cross sections
MT=3 Nonelastic
Sum of $M T=4,16,22,28,102,103,107$.
$M T=16,22,28,103,107 \quad(n, 2 n),\left(n, n^{\prime} a\right),\left(n, n^{\prime} p\right),(n, p),(n, a)$
Calculated with GNASH / 4/
$\mathrm{MT}=4.51-71.91$ Inelastic scattering
The CASTHY and GNASH calculations were adopted for neutron energies below and above 7 MeV . respectively. The level scheme used is given as follows:
No. Energy (MeV) Spin-Parity

g.s	0.0	$1 / 2-$
1.	0.0144	$3 / 2-$
2.	0.1365	$5 / 2-$
3.	0.3668	$3 / 2-$
4.	0.7064	$5 / 2-$
5.	1.0072	$7 / 2-$
6.	1.1978	$9 / 2-$
7.	1.2654	$1 / 2-$
8.	1.3562	$7 / 2-$
9.	1.6273	$3 / 2-$

```
\begin{tabular}{llr}
10. & 1.7254 & \(3 / 2-\) \\
11. & 1.9893 & \(9 / 2-\) \\
12. & 1.9910 & \(1 / 2-\) \\
13. & 2.1180 & \(5 / 2-\) \\
14. & 2.2189 & \(5 / 2+\) \\
15. & 2.3300 & \(1 / 2-\) \\
16. & 2.3560 & \(11 / 2-\) \\
17. & 2.4560 & \(9 / 2+\) \\
18. & 2.5053 & \(5 / 2+\) \\
19. & 2.5643 & \(3 / 2-\) \\
20. & 2.6000 & \(5 / 2+\) \\
21. & 2.6974 & \(1 / 2-\)
\end{tabular}
Continum levels were assumed above 2.76 MeV .
MT=102 Capture
Calculated with CASTHY.
MT=251 Mu-bar
Calculated with CASTHY.
MF=4 Angular Distributions of Secondary Neutrons MT=2.51-71
CASTHY calculation
\(M T=16.22 .28 .91\)
Assumed to be isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
\(\mathrm{MT}=16.22 .28 .91\)
Caiculated with GNASH.
MF=12 Photon Muitiplicities and Transition Probability Arrays \(M T=16,22,28,91,102,103,107\)
Multiplicities were calculated with GNASH.
MF=14 Photon Angular Distributions
MT=16,22.28,51-71,91,102,103.107
Assumed to be isotopic.
MF=15 Photon Energy Distributions
\(M T=16,22,28,91,102,103.107\)
Calculated with GNASH.
References
1) Allen B.J. et al.: Proc. Specialist Meeting on Neutron Data of Structural Materials for Fast Reactors. Geel. p. 476 (1977).
2) Beer H. and Spencer R.R.: KfK-2063 (1974).
3) Igarasi S. : J. Nucl. Sci. Technol.. 12. 67 (1975).
4) Young P.G. and Arthur E.D.: LA-6974 (1977).
```

MAT number $=3264$

```
26-Fe-58 JNDC Eval-Mar87 S.lijima.H.Yamakoshi
Dist-Sep89
```

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K.Shibata (JAERI)
$M F=1$ General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
$M T=15 ; ~ R e s o l v e d ~ r e s o n a n c e s$
Resonance region $=1.0 \mathrm{E}-5 \mathrm{eV}$ to 350.0 keV
The multi!evel Breit-Wigner formula was used. Parameters were adopted from the recommended values by Mughabghab et al. /1/.

Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and res. integrals $2200-\mathrm{m} / \mathrm{s}$ res. integ

elastic	4.433 b	-
capture	1.272 b	1.57 b

total 5.272 b
$\qquad$

MF=3 Neutron Cross Sections
Below 350 keV , no background cross sections were given.
Above 350 keV , the data were evaluated as follows.
MT=1,4,51-62,91,102 Total, Inelastic and Capture
Calculated with optical and statistical model code CASTHY
/2/. Optical potential parameters are as follows:
$V=46.0-0.25 \cdot \mathrm{En}$ ( MeV ) .
$W_{s}=14.0-0.2 \cdot E n \quad(\mathrm{MeV}), V \mathrm{so}=6.0 \quad(\mathrm{MeV})$
$R=1.286(\mathrm{fm}), \mathrm{aO}=0.62(\mathrm{fm})$
$R s=1.390(\mathrm{fm})$, as $=0.7 \quad(\mathrm{fm})$
Rso $=1.07(\mathrm{fm})$, aso $=0.62(\mathrm{fm})$

The level scheme used is given as follows:

No.	Energy (MeV)	Spin-Parity
g.s.	0.0	$0+$
1.	0.8108	$2+$
2.	1.6747	$2+$
3.	2.0765	$4+$
4.	2.1339	$3+$
5.	2.2581	$0+$
6.	2.6004	$4+$
7.	2.7819	$1+$
8.	2.8764	$2+$
9.	3.0840	$2+$
10.	3.1330	$4+$
11.	3.2330	$2+$
12.	3.2440	$0+$

Levels above 3.389 MeV were assumed to be overlapping. The capture cross section was normalized to 3 mb at 700 keV .
MT=2 Elastic
Total cross rection - reaction cross section

```
 MT=3 Nonelastic
 Sum of MT=4,16,22,28,102,103.107.
 MT=16.22.28.103.107 (n.2n).(n.n'a).(n.n`p).(n.p).(n.a)
 Calculated with GNASH /3/
 MT=251 Mu-bar
 Calculated with CASTHY /2/.
MF=4 Angular Distributions of Secondary Neutrons
 MT=2.51-62
 CASTHY calculation
 MT=16,22,28.91
 Assumed to be isotropic in the laboratory system
MF=5 Energy Distributions of Secondary Neutrons
 MT=16,22,28,91
 Calculated with GNASH.
MF=1? Photon Multip!icities and Transition Probubility Arrays
 MT=16,22,28,91,102,103,107
 Multiplicities wore calculatod with GNASH
MF=14 Photon Angular Distributions
 Assumed to be isotropic.
MF=15 Photon Energy Distributions
 MT=16,22,28.91,102,103.107
 Calculated with GNASH.
```


## References

```
1) Mughabghab S.F. et al.: "Neutron Cross Sections. Vol. 1. Part \(A^{*}\). Academic Press (1981).
2) Igarasi S. : J. Nucl. Sci. Technol.. 12. 67 (1975).
3) Young P.G. and Arthur E.D.: LA-6974 (1977).
```



```
11 2.183 7/2-
12 2.205 5/2-
13 2.3971 9/2-
14 2.479 5/2-
Continum levels assumed above 2.54 MeV
Level density parameters were evaluated using \(D 0\), and level data /3/. /8/.
\begin{tabular}{lllll}
& a & T & Ex & sig=-2(0) \\
\(27-C o-59\) & 8.89 & 1.005 & 6.84 & 6.205 \\
\(27-\mathrm{Co}-60\) & 8.673 & 1.037 & 5.804 & 7.899
\end{tabular}
MT =1 Total \(100 \mathrm{keV}-4 \mathrm{MeV}\) Based on experimental data /5/./19/ above \(\quad 4 \mathrm{MeV}\) Calculated
\(M T=2\) Elastic scattering Obtained by subiracting the sum of absorption and inelastic scattering from total cross soction.
\(M T=16\) (n.2n)
Guided by experimental data /9/,/10/./11/./12/ and Yamamuro's theoretical calculations \(/ 4 /\).
\(M T=103\) (n.p)
Guided by experimental data /13/./14/./9/,/20/.
MT=107 (n.alpha) JENDL-2 data were sdopted with slight modification based on Evain's evaluation \(/ 15 /\) and experimental data /9/.121/.
\(M T=22,28.51-64.91 .104\) (\(n, n\) alpha), (n, np), (n, d)
Yamamuro's evaluation was adopted /4/.
MT=251 Mu-bar
Calculated from the data in \(M F=4\).
MF=4 Angular Distributions of Secondary Neutrons
MT=2 Optical model calculation.
MT=51-64 Yamamuro's evaluation was adopted.
MT=16,22.28.91 Isotropic in lab. system.
MF=5 Energy Distributions of Secondary Neutrons
\(M T=16,22,28.91\) Yamamuro's evaluation was adopted.
References
1) Garg J.B. et al.: Nucl. Sci. Eng. 65.76 (1978).
2) Spencer R.R. and Macklin, R.L.: Nucl.Sci.Eng. 61.346 (1976).
3) Mughabghab S.F. et al.: "Neutron Cross Sections Vol. 1 Part \(A^{*}\). Academic Press (1981).
4) Yamamuro N.: Private communication.
5) Foster.Jr. D.G. and Glasgow D.W.: Phys. Rev. C3. 576 (1973).
6) Cierjacks S.: KfK-1000 (1969).
7) Igarasi S.: J. Nucl. Sci. Technol. 12, 67 (1975).
8) Andersson P. et al.: Nuclear Data Sheets 39, 641 (1983).
9) Ikeda Y.et al.: JAERI 1312 (1988).
10) Hasan S.J. et af.: Proc. Int. Conf. Nuclear Data for Basic and Applied Science. Santa Fe. 1985, p. 155 (1986).
11) Huang Jian-Zhou et al.: Chinese Nucl. Phys. 3.59 (1981).
12) Veeser L.R. et al.: Phys. Rev. C16. 1792 (1977).
13) Smith D.L. et al.: Nucl. Sci. Eng. 58. 314 (1975).
14) Williams J.R. and Alford. W.L.: Proc. Int. Conf. Nuclear
```

Data for Basic and Applied Science. Santa Fe. 1985.
p. 215 (1986).
15) Evain B.P. et al.: ANL/NDM-89 (1985).
16) Paulsen A.: Z. Phys. 205. 226 (1967).
17) Corcalciuc V. et al.: Nucl. Phys. A307, 445 (1978)
18) Zhou Hongyu et al.: Proc. Int. Conf. Nuclear Data for Science and Technology. Mito. 1988. p.311. (1988).
19) Harvey J.A.: Taken from EXFOR (1986).
20) Hasan S.J. et al.: J. Phys. G12. 397 (1986)
21) Meadows J.W. et al.: Ann. Nucl. Energy 14. 603 (1987).

```
 28-Ni- 0 NAIG Eval-Mar87 S.lijima
 Dist-Sep89
History
87-03 Evaluation was performed for JENDL-3
87-05 Compiled by K.Shibata (JAERI).
NF=1,MT=451 Comments and dictionary
MF=2,MT=151 Resolved resonance parameters : 1.0E-5 eV - 557 keV
Calculated 2200 m/s values and resonance integrals (barn)
 2200 m/s value
 elastic 17.859
 capture 4.383 2.143
MF=3 Neutron Cross Sections
 Background cross sections (BGCS) applied to resonance region.
 MT=1,2,102
 Cross sections abova resonance region evaluated as follows :
 MT=1 : Total cross section
 Based on the high-resolution data of Larson+/1/.
 MT=2 : Elastic scattering
 (Total) - (Nonelastic cross sections).
 MT=3 : Nonelastic cross section
 Sum of MT=4,16,17,22,28,102.103,104,105,106,107.111.
 MT=16.17.22.28.103.104.105.106.107.111:(n.2n).(n.3n).
 (n,n'a),(n,n'p),(n,p),(n,d),(n,t),(n,He-3),(n,a),(n,2p)
 Constructed from isotopic data.
 MT=4.51-70.91 : Inelastic scattering
 Isotopic levels were grouped into 20 levels of
 natural element.
 The contributions from the direct process were
 taken into account for the levels of MT=56.59.60.
 61.62.63.69.70.
 MT=102 : Capture
 Calculated with the statistical model code CASTHY /2/.
 MT=251 : Mu-bar
 Calculated with CASTHY /2/.
MF=4 Angular Distributions of Secondary Neutrons
 MT=2 : Calculated with optical model.
 MT=16,17,22,28,91: Isotropic in laboratory system.
 MT=51-70 : Calculated with CASTHY. The direct process
 was considered for MT=56,59,60.61,62.63.69.
 70.
```

```
MF=5 Energy Distributions of Secondary Neutrons
 MT=16,17.22.28.91 : Constructed from isotopic data
MF=12 Photori Multiplicities and Transition Probability Arrays
 MT=102 : Multiplicities calcu!ated with GNASH/3/ for NI-58.60.
 Modified by using the measurements/5/ below thermal
 energy.
MF=13 Photon Production Cross Sections
 MT=3 : Calculated with GNASH for NI-58,60.
MF=14 Photon Angular Distributions
 MT=3.102 : Isotropic
MF=15 Photon Energy Distributions
 MT=3.102 : Calculated with GNASH
 Experimental deta of Igeshira et al. /4/ included
 For MT=102. modified by using tho measurements/5/
 below thermal energy.
References
 i) Larson D.C. et al.: ORNL-TM-8203 (1983).
 2) Igarasi S.: J.Nucl.Sci.Technol..12.67 (1975).
 3) Young P.G. and Arthur E.D.: LA-6947 (1977).
 4) Igashira M. et al.: Int. Conf. Nuclear Data for Science
 and Technology, Mito. May 30 - June 3. 1988.
 5) Maerker R.E.: ORNL/TM-5203 (1976).
```

```
28-Ni-58 NAIG Eval-Mar87 S.lijima
Dist-Sep89
History
87-03 Evaluation was performed for JENDL-3
87-05 Compiled by K.Shibata (JAERI).
MF=1.MT=451 Comments and dictionary
MF=2.MT=151 Resolved resonance parameters : 1 0E-5 eV - 420 keV
 Evaluation based on the following data
 s-wave resonance parameters from Syme+/1/
 p-wave resonance parameters from JENDL-2 and Syme+/1/
 Two negat ive resonances due to Perey+/2/ with
 modification:
 E = -50 keV gamma-n = 28.0 keV gemma-g = 0.0
 E = -6.5 keV gamma-n = 1400 eV gamma-g=2.31 eV
 Scattering radius : 6,0 fm
 Calculated 2200 m/s values and resonance integrals (bern):
 2200 m/s value res.int.
 total 30.754 -
 elastic 26.251
 capture 4.503
 2.161
MF=3 Neutron Cross Sections
 Background cross sections (BGCS) applied to resonance region.
 MT=1.102
 Cross sections above 420 keV evaluated as follows
 MT=1 : Total cross section
 Between 420 keV to 677 keV, high-resolution
 experimental ciata were adopted
 Calculated with optical model from 677 keV to 20 MeV.
 Potential parameters obtained by fitting nat-Ni data /3/:
 V =51.33-0.331•En .Ws=8.068 + 0.112*En.Vso=7.0 (MeV)
 r0=rso=1.24 ,rs=1.40 (fm)
 a0=aso=0.541 ,as=0.4 (fm)
 MT=2 : Elastic scattering
 (Total) - (Nonelastic cross sections).
 MT=2 : Nonelastic cross section
 Sum of MT=4,16.22,28,102,103,104,105,106.107.111.
 MT=16.28,103 (n,2n).(n,n'p),(n,p)
 Based on experimental data.
 MT=22,104,105,106,107.111 (n,n'a),(n,d),(n,t),(n,He-3).
 (n.a).(n.2p)
 The cross sections were calculated using the PEGASUS
 code /4/ and normalized to experimental data.
MT=4,51-65.91 Inelastic scattering
 The CASTHY /5/ and GNASH /6/ calculations were ajopted
```

```
 for neutron energies below and above }7\textrm{MeV}\mathrm{ , respectively.
 The direct process was taken into account for MT=51,52.
 53.55,65. For the level of MT=65. only the direct
 process was considered.
 The level scheme used is given as follows:
 No Energy(MeV) Spin-Parity
 g.s 0.0 0+
 1. 1.4545 2+
 2. 2.4591 4+
 3. 2.7755 2 +
 4. 2.9018 1+
 5. 2.9424 0 +
 6. 3.0376 2 +
 7. 3.2634 2 +
 8. 3.4203 3+
 9. 3.5240 4+
 10. 3.5309 0+
 11. 3.5934 1+
 12. 3.6200 4+
 13. 3.7744 3+
 14. 3.8983 2 +
 15. 4.4753 3-
 Continuum levels assumed above 3.932 MeV.
 MT=102 Capture
 Calculated with CASTHY.
 MT=251 : Mu-bar
 Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons
 MT=2 : Calculated with optical model.
 MT=16.22.28: Isotropic in the laboratory system.
 MT=51-64 : Calculated with CASTHY. Direct process
 included in MT=51.52.53.55
 MT=65 : C.C. calculation
 MT=91 : Isotropic in the laboratory system
MF=5 Energy Distributions of Secondary Ne.trons
 MT=16.22.28: Calculated with PEGASUS
 MT=01 : Calculated with GNASH.
MF=12 Photon Multiplicities and Transition Probability Arraye
 MT=16.22.28.91.: Multiplicities calculated with GNASH.
 102.103.107
 MT=51-65 : Transition probability arrays
MF=14 Photon Argular Distributions
 MT=16,22,28,5i-65,91,102,103,107: Isotropic
MF=15 Photon Energy Distributions
 MT=16,22,28,91,102,103,107 : Calculated with GNASH
```


## References

```
1) Syme D.B. et al.: Neutron Data of Structural Materials for FBR, 1977 Gee: Meet., p.703.Pergamon Press(1979)
2) Perey C.M. et al.: Proc. Int. Conf. Nuclear Data for Basic
```

and Applied Science, Santa Fe, 1985, p. 1639 (1986).
3) Kawai M. : unpublished.
4) I ijima S. et al.: JAERI-M 87-025, p. 337 (1987).
5) Igarasi S.: J.Nuci.Sci.Technol., 12,67 (1975).
6) Young P.G. and Arthur E.D.: LA-6947 (1977).

```
 28-Ni-60 NAIG Eval-Mar87 S.lijima
 Dist-Sep89
History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K.Shibata (JAERI).
MF=1.MT=451 Comments and dictionary
MF=2.MT=151 Resolved resonance parameters : 1.0E-5 eV - 456 keV
 Evaluation based on the following data.
 Resonance parameters from Perey+/1/
 Two negative resonances due to Perey+/2/ with
 modification:
 E=-50 keV gamma-n = 12.8 keV gamma-g = 0.0 eV
 E =-656 eV gamma-n = 0.60 eV gamma-g = 6.0 eV
 Calculated 2200 m/s values and resonance integrals (barn):
 2200 m/s value res.int.
 total
 olastic
 captur
 2.900
 1.467
MF=3 Neutron Cross Sections
 No background cross sections for MT=1,2,102.
 Cross sections above 456 keV ovaluated as follows :
 MT=1 : Total cross section
 Calculated with optical model.
 Potential parameters obtained by fitting nat-Ni data /3/:
 V =51.33-0.331.En.Ws=8.068 + 0.112.En .Vso=7.0 (MoV)
 r0=rso=1.24 ,rs=1.40 (fm)
 a0=aso=0.541 .as=0.4
 (fm)
 MT=2 : Elastic scattoring
 (Total) - (Nonelastic cross sections).
 MT=3 : Nonelastic cross section
 Sum of MT=4,16,22.28,102,103,104,105,106.107,111.
 MT=16 : (n.2n)
 Calculated with GNASH /4/.
 MT=103 : (n,p)
 Most of data were taken from JENDL-2.
 MT=22.28.104,105.106.107.111: (n, n'a).(n, n'p).(n,d).
 (n,t).(n,He-3).(n,a).(n,2p)
 The cross sections were calculated with PEGASUS /5/
 and normalized to experimental data.
 MT=4.52-61.91 : Inelastic scattering
 The CASTHY /6/ and GNASH /4/ calculations were adopted
 for neutron energies below and above 7 MeV, respectively.
 The contribution from the direct process was included for
```

$M T=51.52,53,54,61$. For the level of $M T=61$, only the direct process was considered. The level scheme used is as follows: No Energy(MoV) Spin-Parity

g.s	0.0	$0+$
1.	1.3325	$2+$
2.	2.1588	$2+$
3.	2.2849	$0+$
4.	2.6068	$4+$
6.	2.6260	$3+$
6.	3.1198	$4+$
7.	3.1240	$2+$
8.	3.1861	$3+$
9.	3.1941	$1+$
10.	3.2696	$2+$
11.	4.0397	$3-$

MT=102 : Capture
Calculated with CASTHY.
MT=251 : Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons	
MT=2	Calculated with optical modal.
$\mathrm{MT}=16,22,28,91$ :	Isotropic in the laboratory system.
MT=51-60	Calculated with CASTHY. Direct process included in MT=51,52.63.54
$\mathrm{MT}=61$	C.C. calculation.

NF=5 Energy Distributions of Secondary Neutrons
MT=16.22.28 : Calculated with PEGASUS.
MT=91 : Calculated with GNASH.

MF=12 Photon Multiplicities and Transition Probability Arrays $\mathrm{MT}=16.22 .28,91$.
102.103.107 : Multiplicities calculated with GNASH.

MT=51-65 : Transition probability arrays
MF=14 Photon Angular Distributions
MT=16,22.28.51-65.91.102,103.107 : Isotropic
MF=15 Photon Energy Distributions
MT=16,22,28.91,102,103,107: Calculated with GNASH

## References

1) Perey F.G. et al.: OPNL-5893 (1982).
2) Perey C.M. et al.: Proc. Int. Conf. Nuclear Data for

Basic and Applied Science. Santa Fe. 1985, p. 1639 (1986).
3) Kawai M. : unpublished.
4) Young P.G. and Arthur E.D.: LA-6947 (1977).
5) Iijima S. ot al.: JAERI-M 87-025, p. 337 (1987).
6) Igarasi S.: J.Nuc!.Sci.Technol., 12.67 (1975).

```
28-Ni-61 NAlG Eval-Mar87 S.lijima
Dist-Sop89
History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K.Shibata (JAERI).
MF=1,MT=451 Comments and dictionary
MF=2.MT=151 Resolved resonance parameters : 1.OE-5 oV - 57.0keV
 Parameters were taken from JENDL-2 except that the
 neutron width of 64.07 keV s-wave resonance was changed
 from 54.0 eV to 535 eV /1/.
 Scattering radius: 6.4 fm
 Calculated }2200\textrm{m}/\textrm{s}\mathrm{ values and resonance integrals (barn):
 2200 m/s value
 res.int
 total 11.239 -
 elastic 8.731 -
 capture 2.509 2.439
```

MF=3 Neutron Cross Sections
Background cross sections (BCCS) applied to resonance region.
MT=1.2.102
Cross sections above 57.0 keV evaluated es follows:
MT=1 : Total cross section
High-resolution experimental data were adopted between
57 keV and 74.6 keV . Above 74.6 keV up to 20 MeV , the
optical-model calculation was performed.
Potential parameters obtained by fitting nat-Ni data /2/:
$V=51.33-0.331$-En . Ws $=8.068+0.112$-En . $V$ so $=7.0$ (MoV)
$r 0=r s o=1.24 \quad, r s=1.40 \quad$ ( fm )
$a 0=a \operatorname{co}=0.541 \quad$ as=0.4
(fm)
MT=2 : Elastic scattoring
(Total) - (Nonelastic cross sections).
MT=3 : Nonelastic cross section
Sum of $M T=4,16,22,28,102,103,104,105,106,107,111$.
$M T=16,22,28,103,104,105,106,107,111 \quad(n, 2 n),\left(n, n^{\prime} a\right),\left(n, n^{\prime} p\right)$,
( $n, p$ ) $,(n, d),(n, t),\left(n, H_{0}-3\right),(n, a),(n, 2 p)$
Calculated with PEGASUS $/ 3 /$.
$M T=4,51-70.91,102$ : Inelastic scattering and capture
Calculated with the statistical model code CASTHY /4/.
The level scheme used is given as follows:
No Energy(MeV) Spin-Parity

| g.s | 0.0 | $3 / 2-$ |
| :---: | :--- | :--- | :--- |
| 1. | 0.0674 | $5 / 2-$ |
| 2. | 0.2830 | $1 / 2-$ |
| 3. | 0.6560 | $3 / 2-$ |
| 4. | 0.9088 | $5 / 2-$ |
| 5. | 1.0150 | $7 / 2-$ |

```
 6. 1.1000 3/2 -
 7. 1.1323 5/2 -
 8. 1.1857 3/2 -
 9. 1.4580 7/2 -
 10. 1.6100 5/2 -
 11. 1.7298 3/2 -
 12. 1.8080 7/2 -
 13. 1.9780 0/2 +
 14. 1.9070 3/2 -
 15. 2.0030 7/2 -
 16. 2.0190 7/2 -
 17. 2.1840 0/2 +
 18. 2.1230 1/2 -
 19. 2.4100 5/2-
 20. 2.4660 7/2 -
 Continuum levels assumed above 2..528 MeV.
 MT=251 : Mu-bar
 Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons
 MT=2 : Calculated with optical model.
 MT=16,22,28,91: I sotropic in the laboratory system.
 MT=51-70 : 90 degree symmetric in the center-of-mass system,
 calculated with CASTHY.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16.22.28.91 : Calculated with PEGASUS.
References
 1) Moxon M.C.: KfK-2046, p.156 (1975).
 2) Kawai M. : unpublished.
 3) Iijima S. et al.: JAERI-M 87-025, p.337 (1987).
 4) Igarasi S.: J.Nucl.Sci.Technol..12.67 (1975).
```

```
28-Ni-62 NAIG Eval-Mar87 S.lijima
Dist-Sap89
History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K.Shibata (JAERI).
MF=1.MT=451 Comments and dictionary
NF=2,MT=151 Resolved resonance parameters : 1.0E-5 eV - 557 keV
 Parameters were taken from JENDL-2.
 Scattering radius: 6.2 fm
 Calculated 2200 m/s values and resonance integrals (barn):
 2200 m/s value res.int
 total 23.704 -
 elastic 9.505 -
 capture 14.199 6.908
```

MF=3 Neutron Cross Sections
Background cross sections (BGCS) applied to resonance region.
MT=1, 2, 102
Cross sections above 557 keV evaluated as follows:
MT=1 : Total cross section
High-resolution experimental data were adopted between
557 keV and 670 keV . Above 670 keV up to 20 MeV . the
optical-model calculation was performed.
Potential parameters obtained by fitting nat-Ni data /1/:
$V=51.33-0.331=E n, W s=8.068+0.112 * E n, V s o=7.0(\mathrm{MeV})$
$r 0=r s_{0}=1.24 \quad$ rs=1.40 (fm)
$a 0=a$ aso $^{2}=0.541 \quad$ as $=0.4 \quad(\mathrm{fm})$
MT=2 : Elastic scattoring
(Total) - (Nonelastic cross section).
MT=3 : Nonelastic cross section
Surn of MT=4,16,22.28,102,103,104,105,106,107,111.
$M T=16,22,28,103,104,105,106,111(n, 2 n),\left(n, n^{\prime} a\right),\left(n, n^{\prime} p\right)$.
(n,p), (n,d), (n,t), (n,He-3), (n, 2p)
Calculated with PEGASUS /2/.
MT=4.51-71,91.102 : Inelastic scattering and capture
Calculated with the statistical-model code CASTHY /3/.
The level scheme used is given as follows:
No Energy(MeV) Spin-Parity
g.s $0.0 \quad 0$ +
1. $1.1729 \quad 2+$
2. $2.0486 \quad 0+$
3. $2.3018 \quad 2+$
4. $2.3364 \quad 4+$
5. $2.8912 \quad 0+$
6. $3.0582 \quad 2+$
7. $3.1580 \quad 2+$

```
 8. 3.1765 4+
 9. 3.2677 2 +
 10. 3.2620 4+
 11. 3.2699 2 +
 12 3.2774 4+
 13. 3.3703 1 +
 14. 3.4620 4+
 15. 3.4860 0+
 16. 3.6186 2+
 17. 3.6228 3+
 i8. 3.7570 3-
 19. 3.8493 1 +
 20. 3.8530 2 +
 21. 3.8600 2+
 Continuum levels assumed above 3.957 MeV.
 MT=107 : (n,a)
 Based on experimental data.
 MT=251 : Mu-bar
 Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons
 MT=2 : Calculated with optical model.
 MT=16.22.28.01: Isotropic in the laboratory system.
 MT=51-71 : 00 degree symmetric in the center-of-mass system,
 calculated with CASTHY.
```


## MF=5 Energy Distributions of Secondary Nout rons

```
MT=16.22.28.91 : Calculated with PEGASUS.
```


## References

```
1) Kawai M. : unpublished.
2) Iijima S. et al.: JAERI-M 87-025, p. 337 (1987).
3) Igarasi S.: J.Nucl.Sci.Technol..12,67 (1975).
```

MAT number $=3285$

$$
\begin{array}{ll}
\text { 28-Ni- } 64 \text { NAIG } \quad \begin{array}{l}
\text { Eval-Mar87 S.lijima } \\
\\
\\
\text { Dist-Sep89 }
\end{array}
\end{array}
$$

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K. Shibata (JAERI).
MF=1. $\mathrm{MT}=451$ Comments and dictionary
$M F=2, M T=451$ Resolved resonance parameters : $1.0 E-5$ eV - 553 keV Parameters were taken from JENDL-2. Scat tering radius: 6.4 fm

Calculated $2200 \mathrm{~m} / \mathrm{s}$ values and resonance integrals (barn):		
	$2200 \mathrm{~m} / \mathrm{s}$ value	res.int
total	1.515	-
elastic	0.035	-
capture	1.480	0.820

## MF=3 Neutron Cross Sactions

- Backgrounc cross sections (BGCS) applied to resonance region. MT=1, 2,102

Cross sections above 553 keV evaluated as follows:
MT=1 : Total cross section
High-resolution experimental data were adopted between 553 keV and 698 keV . Above 698 keV up to 20 MeV . the optical-model calculation was performed.
Potential parameters obtained by fitting nat Ni data /1/:
$V=51.33-0.331$ En . Ws=8.068 + 0.112-En .Vso=7.0 (MeV) $r 0=r s o=1.24 \quad, r s=1.40$ (fm) $a 0=a s o=0.541 \quad$. $\mathrm{as}=0.4$ (fm) MT=2 : Elastic scattering
(Total) - (Nonelastic cross section).
MT=3 : Nonelastic cross section
Sum of $\mathrm{MT}=4,16,17,22,28,102.103 .104,105,106,107,111$.
$M T=16,17,22,28,103,104,105,106,111:(n, 2 n),(n, 3 n),\left(n, n^{\prime} a\right)$. $\left(n, n^{\prime} p\right) \cdot(n, p) \cdot(n, d),(n, t),(n, H o-3) \cdot(n, 2 p)$

Calculated with PEGASUs /2/.
$\mathrm{MT}=4,51-70,91,102$ : Inelastic scattering and capture
Calculsted with the statistical model code CASTHY /3/.
The level scheme used is given as follows:
No Energy(MoV) Spin-Parity

$g . s$	0.0	$0+$
1.	1.3459	$2+$
2.	2.2750	$0+$
3.	2.6080	$4+$
4.	2.7500	$2+$
5.	2.8650	$0+$
6.	2.8850	$2+$
7.	2.9710	$2+$

```
 8. 3.0280 0+
 9. 3.1650 4+
 10. 3.2730 2 +
 11. 3.3930 3 +
 12. 3.4690 1 +
 13. 3.4830 4+
 14. 3.5600 3-
 15. 3.6470 2 +
 16. 3.7480 4 +
 17. 3.7960 1 +
 18. 3.8080 3+
 18. 3.8480 5-
 20. 3.9650 4+
 Continuum levels assumed above 4.084 MeV.
 MT=107 : (n,a)
 Based on experimental data.
MT=251 : Mu-bar
 Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons
 MT=2 : Calculated with optical model.
 MT=16.17.22.28.91: Isotropic in the Iaboratory system.
 MT=51-70 : 90 degree symmetric in the center-of-mass system,
 calculated with CASTHY.
MF=6 Energy Distributions of Secondary Neutrons
 -MT=16,17.22.28.01 : Calculated with PEGASUS.
Reforences
1) Kawai M. : unpublished.
2) lijima S. ot al.: JAERI-M 87-025, p.337 (1987).
3) Igarasi S.: J.Nucl.Sci.Technol..12.67 (1975).
```


## MAT number $=3290$

29-Cu- 0 NAIG.MAPI Eval-Mar 87 N.Yamamuro.T.Kawakita
Dist-Sep89 Dist-Sep89
History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K.Shibate (JAERI)
$M F=1 \quad$ General Information
$M T=451 \quad$ Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance perameters for MLBW formula Parameters of each isotope were mainly taken from the work of Mughabghab et al. /1/
Resonance region : $1.0 \mathrm{E}-5 \mathrm{eV}$ to 153 keV . Scattering radius: 0.70 fm for $\mathrm{Cu}-63$ and $\mathrm{Cu}-65$ Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and res. integrals $2200-\mathrm{m} / \mathrm{s}$ res. integ.
elastic 7.868 b $3.785 \mathrm{~b} \quad 4.121 \mathrm{~b}$ capture total 19.653 b

Noutron Cross Sections
$M F=3$
MT=1

Total
Below 153 keV : No background
153 keV to 3 MeV : Based on the experimental data of natural element /2.3/
3 MoV to 20 MoV : Optical-model calculation using CASTHY /4/
The optical potential parameters used ate as follows /5/ (in the units of MeV and fm ):
$V=61.725-0.447 \cdot E \quad r 0=1.221 \quad a 0=0.683$
$W_{s}=8.44+0.055-E \quad r s=1.223 \quad$ as $=0.507$
$\mathrm{Vso}=8.0 \quad \mathrm{rso}=1.221 \quad$ aso $=0.683$

MT=2 Elastic scattering
(Total) - (Reaction cross section)
MT=3 Non elastic
Sum of MT=4, 16, 22, 28, 32. 102. 103. 104 and 107
MT=4.51-87.91 Inelastic scattering
Statistical model calculations were made with CASTHY /4/ below 3 MeV by taking account of competing processes. and with GNASH/6/ above 3 MeV including preequifibrium effcets. The direct process components were considered for 10 discrete levels.
$M T=16,22,28,32,103.104(n, 2 n) .\left(n, n^{\prime} a\right),\left(n, n^{\prime} p\right) .\left(n, n^{\prime} d\right),(n, p)$ ( $n, d$ ) cross sections Calculated with GNASH /6/. Optical potential parameters for proton, alpha-particle and deuteron were as follows /7.8.9/.
Proton
$V=59.11-0.55 \cdot E \quad r 0=1.25$
$a 0=0.65$
$W_{s}=10.4$
$r s=1.25$
as $=0.47$
Vso $=7.5$
rsol 1.25
aso= 0.47

Alpha-particle
$V=164.7 \quad r 0=1.442 \quad a 0=0.52$

$$
W v=22.4 \quad r v=1.442 \quad a v=0.52
$$

$$
\begin{aligned}
r v & =1.442 \quad a v=0.52 \\
r c & =1.30
\end{aligned}
$$

Deuteron
$V=106.69 \quad r 0=1.05 \quad a 0=0.86$
$W_{s}=13.92 \quad r s=1.43 \quad a s=0.704$
$\mathrm{Vso}_{\mathrm{sO}}=7.0 \quad \mathrm{rso}=0.75 \quad$ aso $=0.5$ $r c=1.3$
$\mathrm{NT}=107 \quad(\mathrm{n}, \mathrm{a})$ cross seotion
Calculated cross sections of Cu-83 were normalized to the oxperimontal data $/ 10 /$ at 10 MoV . Above 12 MeV . the excitation function follows the data of
Paulsen /11/. For Cu-65, the GNASH calculation was employed.

MT=102 Radiativo capturo cross section Calculated with CASTHY.

NT=251 Mu-bar
Calculated with CASTHY.


MF=12 Photon Production Multiplicitios
MT=102
Calculatod with GNASH.
At thermal energy, modified by using the measurements/13/ and gamma-ray intensity data in ENSDF.

MF=13 Photon Production Cross Sections
MT=3
Calculated with GNASH.
MF=14 Photon Angular Distributions
MT=3. 102
Assumed to be isotropic.
MF=15 Photon Energy Distributions
MT=3. 102
Calculated with GNASH.
At thermal energy. modified by using the measurements/13/ and gamma-ray intonsity data in ENSDF.

References

1) Mughabghab S.F.. Divadeenam M. and Holden N.E.: "Neutron Cross Sections. Vol. 1. Part $A^{*}$. Acadomic Press (1981).
2) Foster, Jr.. D.G. and Giasgow. D.W.: Phys. Rev., C3, 576
(1971).
3) Whaten, J.F. et al.: AN-7710, 12 (1971).
4) Igarasi. S.: J. Nucl. Sci. Technol., 12. 67 (1975).
5) Hetrick. D.M. Fu, C.Y. and Larson. D.C.: "Calculated Neutron-Induced Cross Sections for Cu-63.65 from 1 to 20 MoV and Comparisons with Experiments ${ }^{\circ}$, ORNL/TM-9083 (1984).
6) Young, P.G. and Arthur, E.D.: 'GNASH. A Preequilibrium, Statistical Nuclear-Model Code for Calculation of Cross
Sections and Emission Spactra'. LA-6974 (1977).
7) Porey. F.G.: Phys. Rev. 131. 745 (1963).
8) McFaddon, L. and Satchlor, G.R.: Nucl. Phys. 84, 177 (1966).
9) Lohr. J.M. and Haeberli. W.: Nucl. Phys. A232, 381 (1974).
10) Winkler, G.. Smith, D.L. and Meadows, J.W.: Nucl. Sci. Eng. 76, 30 (1980).
11) Paulsen, A.: Nucleonik, 10, 91 (1967)
12) Kunz, P.D.: Univ. Colorado (1974).
13) Maerker. R.E.: OPNL/TM-5203 (1976).


9.	2.0810	$5 / 2-$
10.	2.0930	$7 / 2-$
11.	2.2080	$9 / 2-$
12.	2.3370	$5 / 2-$
13.	2.4050	$7 / 2-$
14.	2.4970	$3 / 2-$
15.	2.5050	$9 / 2+$
16.	2.5120	$1 / 2-$
17.	2.5360	$5 / 2-$

Levels above 2.54 MeV were assumed to be overlapping.

$$
\begin{aligned}
& M T=16,22,28,32,103,104(n, 2 n),\left(n, n^{\prime} a\right),\left(n, n^{\prime} p\right),\left(n, n^{\prime} d\right),(n, p) \\
& \text { ( } n, d \text { ) cross sections } \\
& \text { Calculated with GNASH/6/. } \\
& \text { Optical potential parameters for proton, alpha-particle } \\
& \text { and dewteron were as follows /8.9.10/. } \\
& V=59.11-0.55 * E \quad r 0=1.25 \quad a 0=0.65 \\
& W s=10.4 \quad r s=1.25 \quad \text { as }=0.47 \\
& V s o=7.5 \quad r s o=1.25 \quad \text { aso }=0.47 \\
& \text { Alpha-particle } \\
& V=164.7 \\
& r 0=1.442 \quad a 0=0.52 \\
& W v=22.4 \\
& r v=1.442 \text { av }=0.52 \\
& r c=1.30
\end{aligned}
$$

Deuteron
$V=106.69 \quad r 0=1.05 \quad a 0=0.86$
$W s=13.92 \quad r s=1.43 \quad$ as $=0.704$
$\mathrm{Vso}=7.0 \quad \mathrm{rso}=0.75 \quad$ aso $=0.5$ $r c=1.3$
MT=107 (n,a) cross section
Calculated cross sections were normalized to the
experimental data /11/ at 10 MeV . Above 12 MeV ,
the oxcitation function follows the data of
Paulsen /12/.
MT=102 Radiative capture cross section
Calculated with CASTHY. A value of 0.002 was employed
for the gamma-ray strength function for s-wave neutrons.
MT=251 Mu-ber
Calculated with CASTHY

```
MF=4 Angular Distributions of Secondary Neutrons
 \(\mathrm{MT}=2\), 51-67
 Calculated with CASTHY for equilibrium process
 The components of the direct process were added to
 the levels of \(M T=51-54.65\) by using the DWUCK code /13/.
 MT=16, 22, 28, 32, 91
 Assumed to be isotropic in the laboratory system
MF=5 Energy Distributions of Secondary Neutrons
 \(\mathrm{MT}=16\). 22. 28. 32. 91
 Calculated with GNASH.
```

```
MF=12 Photon Production Multiplicities
 MT=16,22,28,32,51-67,91,102,103,104,107
 Calculated with GNASH.
MF=14 Photon Angular Distributions
 MT=16,22,28,32,51-67,91,102.103,104,107
 Assumed to be isotropic.
MF=15 Photon Energy Distributions
 MT=16,22,28,32,91,102,103,104,107
 Calculated with GNASH.
```

References

1) Mughabghab S.F., Divadeenam M. and Holden N.E.: "Neutron Cross Sections, Vol. 1. Part $A^{*}$. Academic Press (1981).
2) Foster. Jr., D.G. and Glasgow, D.W.: Phys. Rev., C3, 576 (1971).
3) Whalen. J.F. et al.: ANL-7710. 12 (1971).
4) Igarasi. S.: J. Nucl. Sci. Technol.. 12. 67 (1975).
5) Hetrick. D.M., Fu. C.Y. and Larson, D.C.: Calculated Neutron-Induced Cross Sections for Cu-63, 65 from 1 to 20 MeV and Comparisons with Experiments*. ORNL/TM-9083 (1984).
6) Young. P.G. and Arthur. E.D.: "GNASH. A Preequilibrium, Statistical Nuclear-Model Code for Calculation of Cross Sections and Emission Spectra*, LA-6974 (1977).
7) Auble, R.L.: Nucl. Data Sheets 28, 659 (1979).
8) Perey, F.G.: Phys. Rev. 131. 746 (1963).

日) McFadden. L. and Satchler. G.R.: Nucl. Phys. 84. 177 (966).
10) Lohr, J.M. and Heeberli. W.: Nucl. Phys. A232. 381 (1974).
11) Winkler, G., Smith, D.L. and Meadows. J.W.: Nucl. Sci. Eng. 76. 30 (1980).
12) Paulsen, A.: Nucleonik. 10. 91 (1967)
13) Kunz. P.D.: Univ. Colorado (1974).

MAT number $=3292$
29-Cu- 65 NAIG.MAPI Eval-Mar87 N.Yamamuro,T.Kawakita Dist-Sop89
History
87-03 Evaluation was performed for JENCL-3.
87-05 Compiled by K.Shibata (JAERI).


MT=2 Elastic scattering
(Total) - (Reaction cross section)
MT=3 Non elastic
Sum of MT=4, 16, 22, 28, 32, 102, 103, 104 and 107
MT=4.51-70.91 Inelastic scattoring
Statistical model calculations were made with CASTHY /4/ below 3 MeV by taking account of competing processes, and with GNASH /6/ above 3 MeV including preequilibrium offects. The direct-process component was considered for the levels of MT=51-54,64,91 by the DWBA calculations. The level scheme was taken from Ref. 17/.

No. Energy(MoV) Spin-Parity
g.s. 0.0 3/2 -

1. 0.7706 1/2 -
2. $1.1160 \quad 5 / 2$ -
3. $1.4820 \quad 7 / 2$ -
4. $1.6230 \quad 5 / 2-$
5. 1.7250 3/2 -
6. $2.0940 \quad 7 / 2$ -
7. $2.1070 \quad 5 / 2$ -
8. $2.2130 \quad 1 / 2$ -
9. $2.2780 \quad 7 / 2$ -

| 10. | 2.3290 | $3 / 2-$ |
| :--- | :--- | :--- | :--- |
| 11. | 2.4070 | $9 / 2-$ |
| 12. | 2.6260 | $9 / 2+$ |
| 13. | 2.6330 | $5 / 2-$ |
| 14. | 2.6340 | $7 / 2+$ |
| 15. | 2.5930 | $1 / 2-$ |
| 16. | 2.6440 | $9 / 2-$ |
| 17. | 2.6600 | $6 / 2-$ |
| 18. | 2.6550 | $6 / 2-$ |
| 19. | 2.6690 | $5 / 2-$ |
| 20. | 2.7530 | $9 / 2+$ |

Levels above 2.80 MeV were assumed to be overlapping
$M T=16,22,28,32,103,104,107(n, 2 n),\left(n, n^{\prime} a\right),\left(n, n^{\prime} p\right) .\left(n, n^{\prime} d\right),(n, p)$
( $\mathrm{n}, \mathrm{d}$ ) and ( $\mathrm{n}, \mathrm{a}$ ) cross sections
Calculated with GNASH/5/.
Optical potential parameters for proton, alpha-particles and deuteron were as follows /8.9,10/.
Proton
$V=59.11-0.55=E \quad r 0=1.25 \quad a 0=0.65$
Ws $=10.4 \quad r s=1.25 \quad$ as $=0.47$
$\mathrm{Vso}=7.5 \quad \mathrm{rso}=1.25 \quad$ aso $=0.47$
Alpharparticle
$V=164.7 \quad r 0=1.442 \quad a 0=0.52$
$W_{v}=22.4 \quad r v=1.442 \quad a v=0.52$
$r c=1.30$

Deuteron
$V=106.69 \quad r 0=1.05 \quad a 0=0.86$
Ws = $13.92 \quad r s=1.43 \quad$ as $=0.704$
$V s o=7.0$
$r s o=0.75 \quad$ aso $=0.5$
$r c=1.3$
MT=102 Radiative capture cross section
Calculated with CASTHY. A value of 0.001 was amployed
for the gamma-ray strength function for s-wave neutrons.

MT=251 Mu-bar
Calculated with CASTHY.

NF=4 Angular Distributions of Secondary Neutrons
$M T=2.51-70$
Calculated with CASTHY for equilibrium process.
The components of the direct process were added to
the levels of MT=51-54.64 by using the DWUCK code /11/.
MT=16, 22, 28, 32, 91
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondery Noutrons
$\mathrm{NT}=16$, 22, 28, 32. 91
Calculated with GNASH.
MF=12 Photon Production Multiplicitios
$M T=16,22.28 .32,51-70,91,102,103.104 .107$
Calculated with GNASH.

```
MF=14 Photon Angular Distributions
 MT=16,22,28,32,51-70,91,102,103,104,107
 Assumed to be isotropic.
MF=15 Photon Energr Distributions
 MT=16,22,28,32,91,102,103,104,107
 Calculated with GNASH.
```


## References

1) Mughabghab S.F., Divadeenam M. and Holden N.E.: 'Neutron Cross Sections, Vol. 1. Part $A^{*}$, Academic Press (1981).
2) Foster. Jr., D.G. and Glasgow, D.W.: Phys. Rev.. C3. 576 (1971).
3) Whalen, J.F. et al.: ANL-7710, 12 (1971).
4) Igarasi, S.: J. Nucl. Sci. Technol., 12, 67 (1975).
5) Hetrick. D.M., Fu. C.Y. and Larson, D.C.: "Ca'culated Neutron-Induced Cross Sections for Cu-63.65 from 1 to 20 MeV and Comparisons with Experiments". ORNL/TM-9083 (1984).
6) Young, P.G. and Arthur. E.D.: 'GNASH. A Preequilibrium, Statistical Nuclear-Model Code for Calculation of Cross Sections and Emission Spectra'. LA-6974 (1977).
7) Ward, N.J. and Tuli, J.K.: Nucl. Data Sheets, 47, 135 (1986).
8) Perey. F.G.: Phys. Rev. 131.745 (1963).
9) MoFadden, L. and Satchler, G.R.; Nuc1. Phys, 84, 177 (1966).
10) Lohr. J.M. and Haeberli, W.: Nucl. Phys. A232, 381 (1974).
11) Kunz, P.D.: Univ. Colorado (1974).
```
 40-Zr- 0 MAPI Eval-Nov88 M.Sasaki (MAPI)
 Dist-Sep89
History
88-11 Compiled by T.Asami (JAERI)
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=2 Resonance Parsmeters
 MT=151 Resolved resonance parameters
 Rosolved parametors for MLBW formula wero given in
 the onergy region from 1.0E-5 oV to 100 koV.
 The abundance data were taken from ref./1/ to be
 0.5145,0.1122,0.1715, 0.1738 and 0.0280 for Zr-90, -91.
 -92. -94 and -96, respectively.
 2200 m/s cross section(b) res. integral(b)
 elastic 6.43
 capture 0.186
 total 6.616
```

MF=3 Neutron Cross Sections
Below 100 koV , no background cross section was given.
Above 100 keV , the total and partial cross sections were given
pointwise.
MT=1 Total
Based on experimental data.
MT=2 Elastic scattering
Ontained by subtracting the sum of the partial cross sections
from the total cross section.
MT=4, 51-89, 91 Inelastic scattering
The data were constructed from the statistical-model/2/
calculations for each isotope.
The data for some levels were lumped as follows:

MT	Level energy(MeV)	2r-90	Zr-91	Zr-92	Zr-94	Zr-96
g. 3.	0.0					
51	0.918				51	
52	0.935			51		
53	1.205		51			
54	1.300				52	
55	1.382			52		
56	1.467		52			
57	1.469				53	
58	1.496			53		
59	1.590					51
60	1.671				54	
61	1.760					52
62	1.761	51				
63	1.847			54		
64	1.882		53			
65	1.900					53
66	2.042		54			
67	2.057				55	

```
 68 2.066 55
 69 2.131
 70 2.150
 2.186
 2.189
 2.210
 2.259
 2.319
 2.339
 2.485
 2.739
 5 4
 2.740
 2.748
 2.820
 2.900
 6 3
 2.958
 6 4
 8
```

3.077

56
3.309 57 3.448 58 3.589 5 3. 889 3.843
3.970 56

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
88

55
55-56

57-58

59-60
63
52
2.066
2.131
2.150

86
2.210
2.259
2.319
2.339
2.485
2.739
2.740
2.748
2.820

5

$$
60-62
$$

63
64

```
The threshold for the inelastic scatering to the continumm was
set to be 2.329 MeV for convenience of the file making.
\(M T=16,22,28,102,103\) and \(107(n, 2 n),(n, n a),(n, n p)\).
(\(\mathrm{n}, \mathrm{gamma}\)), (\(\mathrm{n}, \mathrm{p}\)) and (\(\mathrm{n}, \mathrm{a}\))
Constructed from the statistical-model calculations for each isotope.
MT=251 Mu-bar
Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons
MT=2 Elastic scattering
Constructed from the statistical-model/2/ calculations
for each isotope.
MT=51-89. 91 Inelastic scattering
Constructed from the statistical-model/2/ calculations
for each isotope.
MT=16, 22. 28 (n,2n). (n,na). (n,np)
Assumed to be isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons MT=16, 22, 28, 91
Constructed from the statistical-model/2/ calculations for each isotope.
MF=12 Photon Production Multiplicities MT=102
Constructed from the statistical-model/2/ calculations for each isotope.
MF=13 Photon Production Cross Sections
MT=3
Constructed from the statistical-model/2/ calculations for each isotope.
```

MF=14 Photon Angular Distributions
MT=3. 102
Assumed to be isotropic in the laboratory system.
MF=15 Continuous Photon Energy Spectra
$\mathrm{MF}=3$
Constructed from the statistical-model/2/ calculations
for each isotope.
MT $=102$
Constructed from the statistical-model/2/ calculations for each isotope.
Below thermal energy, modified by using the measurements of Sushkov/3/.

References

1) Holden, N.E., Martin. R.L. and Barnes, I.L. : Pure \& Appl. Chem. 56. 675 (1984).
2) Fu. C.Y. : ORNL/TM 7042 (1980).
3) Sushkov, P.A. ot al : LIJAF-644 (1981); Taken from EXFOR.

## MAT number $=3401$

40-Zr- 90 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G.
Dist-Oct 89
History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/ 89-08 Modification for JENDL-3 was made/2/.

```
MF = 1 General informetion
 MT=451 Comments and dictionary
MF = 2 Resonance parameters
 MT=151 Resolved resonance parameters
 Resolved resonance region (MLBW formula) : below 171 keV
 Resonance energies and neutron widths were taken from Musgrove
 et al./3/. Radiative capture widths wero dorived from capture
 areas measured by Boldeman et al./4/. The parameters of the
 first resonance were slightiv adjusied so as to reproduce the
 capture cross section of 0.011 + 0.005 barns and elastic
 scattering of 5.3 + 0.3 barns at 0.0253 oV /5/.
 Average capture width = 0.190 +- 0.110 oV for s-wave res,
 0.270 +- 0.120 oV for p-wave ros.
 0.280 +- 0.120 oV for d-wave res.
```

        The offective scattering radius was adopted from Ref./5/.
    No unresolved resonance region
    Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns)
                \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
    | total | 5.511 | - |
| :--- | :--- | :--- |
| elastic | 5.485 | - |
| capture | 0.04584 | 0.198 |

MF = 3 Neutron cross sections
Below 171 keV . resonance parameters were given.
Above 171 keV , the spherical optical and statistical model
calculation was performed with CASTHY/6/. by taking account of
competing reactions, of which cross sections were calculated
with PEGASUS/7/ standing on a preequilibrium and multi-step
evaporation model. The OMP's for neutron given in Table 1 were
determined by lijima and Kawai/8/ to reproduce a systematic
trend of the total cross section. The OMP's for charged
particles are as follows:
Proton = Purey/9/
Alpha $=$ Huizenga and Igo/10/
Deuteron = Lohr and Haeberli/11/
Helium-3 and triton = Becchetti and Greenlees/12/
Parameters for the composite level density formula of Girbert
and Cameron/13/ were evaluated by lijima et al./14/. More
extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used
in the present calculation. Energy dependence of spin cut-off
parameter in the onergy range below E-joint is due to Gruppelaar
115/.
MT $=1$ Total
Spherical optical model calculation was adopted.

```
MT = 2 Elastic scattering
 Calculated as (total - sum of partial cross sections).
MT = 4. 51-91 Inelastic scattering
 Spherical optical and statistical model calculation was
 adopted. The level scheme was taken from Ref./16/.
```

No.	Energy(MoV)	Spin-parity
GR.	0.0	$0+$
1	1.7607	$0+$
2	2.1865	$2+$
3	2.3181	$5-$
4	2.7388	$4-$
5	2.7479	$3-$
6	3.0772	$4+$
7	3.3087	$2+$
8	3.4483	$6+$
9	3.5894	$8+$
10	3.8430	$2+$
11	3.9760	$5-$
12	4.1250	0
13	4.2324	5
14	4.2380	2

Levels above 4.28 MeV were assumed to be overlapping.

```
MT = 102 Capture
```

    Spherical optical and statistical model calculation with
    CASTHY/6/ was adopted. Direct and semi-diroct capture cross
    sections were estimated according to the procedure of Benzi
    and Reffol17/ and normalized to 1 milli-barn at 14 MoV .
    The garma-ray strength function (1.407E-05) was adjusted to reproduce the capture cross section of $\mathbf{7 . 5}$ milli-barns at 100 keV measured by Musgrove et al./18/

MT $=16$ ( $\mathrm{n}, 2 \mathrm{n}$ ) Cross Section
MT $=22$ ( $n . n^{\prime} a$ ) Cross Section
MT $=28$ ( $n, n^{\prime} p$ ) Cross Section
MT $=103$ ( $n, p$ ) Cross Section
MT $=104$ ( $n, d$ ) Cross Section
MT $=105$ ( $\mathrm{n}, \mathrm{t}$ ) Cross Section
MT $=106$ ( $\mathrm{n} . \mathrm{He}$ ) Cross Section
MT $=107$ (n,alpha) Cross Section
MT $=111$ ( $n, 2 p$ ) Cross Section
These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code PEGASUS/7/.

The Kalbach's constant K (=301.6 ) was estimated by the formula derived from Kikuchi-Kawai's formalism/19/ and level density parameters.

Finally. (n.p) and (n.alpha) cross sections wore normalized to the following values at 14.5 MoV :

| ( $\mathrm{n}, \mathrm{p})$ | 40.00 mb (recommended by Forrest/20/) |
| :--- | :--- | :--- |
| ( $\mathrm{n}, \mathrm{alpha}$ ) | 10.00 mb (recommended by Forrest/20/) |

The ( $n, 2 n$ ) cross section was determined by eye-guiding of the
data measured by Pavilk ot al./21/. Zhao et al./22/, and others.

MT $=251$ Mu-bar
Calculated with CASTHY/6/.
MF $=4$ Angular Distributions of Secondary Neutrons
Legendre polynomial coofficionts for angular distributions are given in the contor-of-mass sy: $\begin{aligned} & \text { g for } M T=2 \text { and discrete inelas- }\end{aligned}$ tic levels, and in the laboratory systom for MT=91. They were calculated with CASTHY/日/. For other reactions, isotropic distributions in the laboratory syitem were assumed.

MF $=5$ Energy Distributions of Secondary Noutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/7/ for inelastic scattering from overiapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

Depth (MoV)	Radius ( fm)	Diffuseness ( fm )
$V=46.0-0.25 E$	$R 0=5.893$	$a 0=0.62$
$W_{s}=7.0$	Rs $=6.393$	$a s=0.36$
Wsol 7.0	Rso $=5.883$	a80 $=0.62$

Table 2 Levol Density Parameter:

Nuslide	SYST a (/MeV)	T(MoV)	C(/MoV)	EX(MoV)	Pairing
38-Sr-86	1.120E+01	8.800E-01	6.328E-01	8.599E+00	2.700E+00
38-Sr-87	1.030E+01	8.610E-01	$1.186 \mathrm{E}+00$	5.938E+00	1.240E+00
38-Sr-88	9.160E+00	7.510E-01	8. 288E-02	4.550E+00	2.170E+00
38-Sr-89	9.380E+00	8.200E-01	5.043E-01	4.642E+00	1.240E+00
39-Y - 87	$1.388 E+01$	7.471E-01	2.541E+00	6. $730 \mathrm{E}+00$	1.460E+00
39-Y - 88	$1.109 E+01$	7.450E-01	$3.738 \mathrm{E}+00$	$3.570 E+00$	0.0
39-Y - 89	7.900E+00	8.500E-01	3.983E-01	3.440E+00	9.300E-01
39-Y - 90	1.027E+01	6.770E-01	$1.716 \mathrm{E}+00$	$2.209 E+00$	0.0
40-2r-88	1.404E+01	$7.386 \mathrm{E}-01$	4.932E-01	7.870E+00	$2.660 \mathrm{E}+00$
40-Zr-89	$1.095 \mathrm{E}+01$	8.260E-01	$1.379 \mathrm{E}+00$	$5.864 E+00$	1.200E+00
40-Zr-90	9.152E+00	8. 222E-01	1.526E-01	$5.383 E+00$	$2.130 E+00$
40-2r-91	1.036E+01	8.000E-01	7.822E-01	$5.057 E+00$	1.200E+00

SYST: * LDP's were determined form systematics.
Spin cutoff params were calculated as 0.146*SORT(a)*A* (2/3).
In the CASTHY calculation, spin cutoff factors at 0 MeV were assumed to be 10.12 for $\mathrm{Zr}-90$ and 12.04 for $\mathrm{Zr}-91$.

## References

1) Aoki. T. et al.: Proc. Int. Conf. on Nuclear Data for Basic and Applied Science. Santa Fe.. Vol. 2. p. 1627 (1985).
2) Kawai. M. et al.: Proc. Int. Conf. on Nuclear Data for Science and Technology. Mito. p. 569 (1988).
3) Musgrove, A.R. de L. et al.: Aust. J. Phys., 30, 379 (1977).
4) Boldeman, J.W., et al.: Nucl. Phys.. A246. 1 (1975).
5) Mughabghab. S.F., et al.: "Neutron Cross Sections". Vol. 1. Part A. Academic Press (1981).
6) Igerasi, S.: J. Nucl. Sci. Technol., 12, 67 (1975).
7) Itjima, S. et al.: JAERI-M 87-025, p. 337 (1987).
8) I i jima, S. and Kawai. M.: J. Nucl. Sci. Technol., 20. 77 (1983).
9) Porey, F.G: Phys. Rev. 131, 745 (1963).
10) Huizenga, J.R. and Igo, G.: Nucl. Phys. 29, 462 (1962).
11) Lohr, J.M. and Haeberli, W.: Nuol. Phys. A232, 381 (1974).
12) Becchetti. F.D.. Jr. and Greenlees. G.W.: Polarization Phenomens in Nuclear Reactions ((eds) H.H. Barshall and W. Haeberli). p. 682. The university of Wisconsin Press. (1971).
13) Gilbert. A. and Cameron, A.G.W.: Can. J. Phys., 43, 1446 (1965).
14) Iijima, S.. et al.: J. Nucl. Sci. Technol. 21, 10 (1984).
15) Gruppelaar, H.: ECN-13 (1977).
16) Mat sumoto. J.: Private communication (1981).
17) Benzi. V. and Reffo. G.: CCDN-NW/10 (1969).
18) Musgrove. A.R. de L., et al.: 1978 Harwell, 449 (1978).
19) Kikuchi. K. and Kawai. M.: "Nuclear Matter and Nuclear Reactions*. North Holland (1968).
20) Forrest, R.A.: AERE-R 12419 (1986).
21) Pavlik, A. ot ol.: J. Phys.. G8. 1283 (1982).
22) Zhao Wen-Rong et al.: Chinese J. Nucl. Phys.. 6. 80 (1984).
```
 40-Zr-91 JNDC Eval-Aug89 NNDC FP Nuclear Data W.G.
 Dist-Oct89
History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-08 Modification for JENDL-3 was made/2/.
MF = 1 General information
 MT=451 Comments and dictionary
MF = 2 Resonance parameters
 MT=151 Resolved and unresolved resonance parameters
 Resolved resonance region (NLBW formula) : below 30.16 keV
 For JENDL-2, resonance energies recommended by Mughabghab et
 al. /3/ were adopted. Neutron end radiative capture widths
 were obtained by averaging the data of Musgrove et al. /4/ and
 of Brusegan et al. /5/. For the levels above 20 kev, capture
 areas by Boldeman et al. /6/ were also taken into account.
 Parameters of a negative resonance were adopted from Ref./3/.
 The effective scattering radius was also taken from Ref./3/.
 Assumed capture width = 0.120 oV for s-wave res.
 0.240 eV for p-wave res.
 For JENDL-3, thus evaluated parameters were modified by taking
 account of the evaluation by Coceva/7/. After modification.
 radiative widths were determinod so as to reproduce capture
 areas of JENDL-2.
 Unresolved resonance region : 30.16 keV - 100 keV
 The neutron strength functions. SO, S1 and S2 were calculated
 with optical model oode CASTHY/8/. The observed level spacing
 was determined to reproduce the capture cross section
 calculated with CASTHY. The effective scottering radius was
 obtained from fitting to the calculated total cross section at
 100 keV.
 Typical values of the parameters at 70 keV:
 S0 = 0.420E-4, S1 =5.700E-4, S2 = 0.360E-4, GG = 0.205 oV
 DO = 660.4 oV, R = 6.621 fm.
 Calculated 2200-m/s cross sections and res. integrals (berns)
\begin{tabular}{llc}
& \(2200 \mathrm{~m} / \mathrm{s}\) & res. integ. \\
total & 11.83 & - \\
elastic & 10.59 & - \\
capture & 1.247 & 6.95
\end{tabular}
MF \(=3\) Neutron cross sections
Below 100 keV , resonance parameters were given.
Above 100 keV , the spherical optical and statistical model calculation was performed with CASTHY/8/, by taking account of competing reactions, of which cross sections were calculated with PEGASUS/9/ standing on a preequilibrium and multi-step evaporation model. The OMP's for neutron given in Table 1 were determined by lijima and Kawai/10/ to reproduce a systematic trend of the total cross section. The OMP's for charged particles are as follows:
Proton = Perey/11/
Alpha \(=\) Huizenge and lgo/12/
```

Deuteron $=$ Lohr and Haeberli/13/
Helium-3 and triton = Becchetti and Greenlees/14/
Parameters for the composite level density formula of Girbert and Cameron/15/ wero evaluated by lijima ot al./16/. More extensive determination and modification were made in the present work. Table 2 shows the level density parameters used in the present calculation. Energy dependence of spin cut-off parameter in the onergy range below E-joint is due to Gruppelaar /17/.

```
MT = 1 Total
 Spherical optical model calculation wes adopted.
MT = 2 Elastic scattering
 Calculated as (total - sum of partial cross sections).
MT = 4. 51-91 Inelastio scattering
 Spherioal optical and statistical model calculation was
 adopted. The level scheme was taken from Ref./18/.
```

No.	Energy (MeV)	Spin-parity
GR.	0.0	$5 / 2+$
1	1.2049	$1 / 2+$
2	1.4663	$6 / 2+$
3	1.8818	$7 / 2+$
4	2.0414	$3 / 2+$
6	2.1315	$9 / 2+$
6	2.1701	$11 / 2-$
7	2.1890	$6 / 2+$
8	2.2005	$7 / 2+$
9	2.2610	$13 / 2-$
10	2.2890	$15 / 2-$
11	2.3220	$11 / 2-$

Levels above 2.368 MeV were assumed to be overlapping.

## MT = 102 Capture

Spherical optical and statistical model calculation with
CASTHY/8/ was adopted. Direct and semi-direct capture cross
sections were estimated according to the procedure of Benzi
and Reffol19/ and normalized to 1 milli-barn at 14 MeV .

The gamma-ray strength function (3.199E-04) was adjustod to reproduce the capture cross section of 25 milli-barns at 100 keV measured by Musgrove et al./20/

```
MT = 16 (n,2n) Cross Section
MT = 17 (n,3n) Cross Section
MT = 22 (n,n'a) Cross Section
MT = 28 (n,n'p) Cross Section
MT = 32 (n.n'd) Cross Section
MT =103 (n.p) Cross Section
MT =104 (n,d) Cross Section
MT =105 (n,t) Cross Section
MT =106 (n.He3) Cross Section
MT =107 (n,alpha) Cross Section
```

These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code

PEGASUS/9/.
The Kalbach's constant $K(=269.1)$ was estimated by the formula derived from Kikuchi-Kawai's formalism/21/ and level density parameters.

Finally, ( $n . p$ ) and ( $n . a \mid p h a$ ) cross sections were normalized to the following values at 14.5 MeV :

$$
\begin{array}{lrl}
\text { (n.p) } & 29.00 & \mathrm{mb} \text { (recommendation by Forrest/22/) } \\
\text { (n.alpha) } & 8.51 & \mathrm{mb} \text { (systematics of by Forrest/22/) }
\end{array}
$$

MT $=251$ Mu-bar
Calculated with CASTHY/8/.
MF $=4$ Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/8/. For other reactions, isotropic distributions in the laboratory system were assumed.

MF $=5$ Energy Distributions of Secondsry Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/9/ for inelastic scattoring from overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

Depth (MeV)	Radius( fm )	Diffuseness (fm)
$V=46.0-0.25 \mathrm{E}$	$\mathrm{RO}=5.893$	$30=0.62$
$W_{\text {s }}=7.0$	$\mathrm{Rs}=6.393$	as $=0.35$
Wso $=7.0$	Rso $=5.893$	aso $=0.62$

Table 2 Level Density Parameters

Nuclide	$a(/ \mathrm{MeV})$	$\mathrm{T}(\mathrm{MeV})$	$\mathrm{C}(/ \mathrm{MeV})$	$\mathrm{EX}(\mathrm{MeV})$	Pairing
$38-\mathrm{Sr}-87$	$1.030 \mathrm{E}+01$	$8.610 \mathrm{E}-01$	$1.186 \mathrm{E}+00$	$5.938 \mathrm{E}+00$	$1.240 \mathrm{E}+00$
$38-\mathrm{Sr}-88$	$9.160 \mathrm{E}+00$	$7.510 \mathrm{E}-01$	$8.288 \mathrm{E}-02$	$4.550 \mathrm{E}+00$	$2.170 \mathrm{E}+00$
$38-\mathrm{Sr}-89$	$9.380 \mathrm{E}+00$	$8.200 \mathrm{E}-01$	$5.043 \mathrm{E}-01$	$4.642 \mathrm{E}+00$	$1.240 \mathrm{E}+00$
$38-\mathrm{Sr}-90$	$9.940 \mathrm{E}+00$	$8.530 \mathrm{E}-01$	$3.795 \mathrm{E}-01$	$6.252 \mathrm{E}+00$	$1.930 \mathrm{E}+00$
$39-\mathrm{Y}-88$	$1.109 \mathrm{E}+01$	$7.450 \mathrm{E}-01$	$3.738 \mathrm{E}+00$	$3.570 \mathrm{E}+00$	0.0
$39-\mathrm{Y}-89$	$7.900 \mathrm{E}+00$	$8.500 \mathrm{E}-01$	$3.983 \mathrm{E}-01$	$3.440 \mathrm{E}+00$	$9.300 \mathrm{E}-01$
$39-\mathrm{Y}-90$	$1.027 \mathrm{E}+01$	$6.770 \mathrm{E}-01$	$1.716 \mathrm{E}+00$	$2.209 \mathrm{E}+00$	0.0
$39-\mathrm{Y}-91$	$1.050 \mathrm{E}+01$	$7.140 \mathrm{E}-01$	$8.362 \mathrm{E}-01$	$3.521 \mathrm{E}+00$	$7.200 \mathrm{E}-01$
$40-\mathrm{Zr}-89$	$1.055 \mathrm{E}+018.260 \mathrm{E}-01$	$1.379 \mathrm{E}+00$	$5.864 \mathrm{E}+00$	$1.200 \mathrm{E}+00$	
$40-\mathrm{Zr}-90$	$9.152 \mathrm{E}+00$	$8.222 \mathrm{E}-01$	$1.526 \mathrm{E}-01$	$5.383 \mathrm{E}+00$	$2.130 \mathrm{E}+00$
$40-\mathrm{Zr}-91$	$1.036 \mathrm{E}+01$	$8.000 \mathrm{E}-01$	$7.822 \mathrm{E}-01$	$5.057 \mathrm{E}+00$	$1.200 \mathrm{E}+00$
$40-\mathrm{Zr}-92$	$1.088 \mathrm{E}+01$	$8.192 \mathrm{E}-01$	$5.122 \mathrm{E}-01$	$6.429 \mathrm{E}+00$	$1.920 \mathrm{E}+00$

Spin cutoff params were calculated as 0.146 -SORT(a)-A-*(2/3). In the CASTHY calculation, spin cutoff factors at 0 MoV were assumed to be $\mathbf{1 2 . 0 4}$ for $\mathbf{Z r}-91$ and 6.937 for $\mathbf{Z r}-92$.

## Roferences

1) Aoki. T. et al.: Proc. Int. Conf. on Nucloar Data for Basic and Appliod Science, Santa Fe., Vol. 2, p. 1627 (1986).
2) Kawai. M. ot al.: Proc. Int. Conf. on Nuclear Data for Science and Tochnology, Mito, p. 568 (1988).
3) Mughabghab. S.F. et al.: 'Noutron Cross Sections. Vol. 1. Part A*. Acadomic Pross (1981)
4) Musgrove, A.R. de L., et al.: Aust, J. Phys.. 30, 381 (1977).
5) Brusegan, A., ot al.: 'Proc. Int. Conf. on Neutron Physics and Nucl. data for Reactors. Harwall 1978 706.
6) Boldoman, J.W.. ot al.: AAEC/E367 (1976).
7) Coceva, C.: Nucl. Sci. Eng., 91. 209 (1985).
8) Igarasi, S.: J. Nucl. Sci. Tochnol., 12. 67 (1975).
9) lijima, s. ot al.: JAERI-M 87-025, p. 337 (1987).
10) lijima, S. and Kawai, M.: J. Nucl. Sci. Technol., 20, 77 (1983).
11) Poroy, F.G: Phys. Rev. 131. 745 (1963).
12) Huizenga. J.R. and Igo. G.: Nucl. Phys. 29. 482 (1962).
13) Lohr, J.M. and Haeberli, W.: Nucl. Phys. A232, 381 (1974).
14) Becchetti, F.D.. Jr. and Groenloos. G.W.: Polarization Phenomena in Nuclear Reactions ((eds) H.H. Barshall and W. Haoborli). p. 682. The university of Wisconsin Pross. (1971).
15) Gilbert. A. and Cameron, A.G.W.: Can. J. Phys.. 43, 1446 (1986).
16) Iijima. S., et al.: J. Nucl. Sci. Technol. 21. 10 (1984).
17) Gruppelaar. H.: ECN-13 (1977).
18) Mat sumoto, J.: Privato communication (1981).
19) Benzi. V. and Reffo, G.: CCON-NW/10 (1969).
20) Musgrove, A.R. de L.. ot al.: "Proc. Int. Conf. on Noutron Physics and Nucl. data for Reactors, Herwell 1978*, 449.
21) Kikuchi, K. and Kawai, M.: "Nuclear Matter and Nuclear Reactions*. North Holland (1968).
22) Forrest. R.A.: AERE-R 12419 (1986).

40-2r-92 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G.
Dist-Oct89

```
History
84-10 Evaluaticn for JENDL-2 was made by JNDC FPNO W.G./1/
89-08 Modification for JENDL-3 was made/2/.
NF = 1 General information
 MT=451 Comments and dictionary
NF = 2 Resonance parameters
 MT=161 Resolved and unresolved resonance parameters
 Resolved resonance region (MLBW formula) : below 71 keV
 Evaluation was based on the measured data by Boldeman et al.
 /3/. Parameters of a negative resonance and the effective
 scattering radius were adopted from Ref./4/.
 Assumed capture width = 0.180 oV for s-wave res.
 0.270 eV for p-wave res.
 Unresolved resonance region : 71 keV - 100 keV
 The neutron strength functions S0 and S1 were based on the
 compilation of Mughabghab et al./4/, and S2 was calculated
 with optical model code CASTHY/5/. The observed level spacing
 was determined to reproduce the capture cross section
 calculated with CASTHY. The effective scattering radius was
 obtained from fitting to the calculated total cross section at
 100 keV.
```

    Typical values of the parameters at 80 keV :
        \(S 0=0.500 E-4, S 1=7.000 E-4, S 2=0.380 E-4, G G(S)=0.140 \mathrm{eV}\)
        \(\mathbf{G G}(P)=0.36 \mathrm{eV}, \mathrm{Do}=3228 . \mathrm{oV}, R=5.864 \mathrm{fm}\).
    Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns)
                                    \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
        total \(\quad 5.087\)
        elastic \(\quad 4.869\)
        capture
        0.2175
                                0.702
    MF $=3$ Neutron cross sections
Below 100 keV , resonance parameters were given.
Above 100 keV . the spherical optical and statistical model
calculation was performed with CASTHY/5/, by taking account of
competing reactions. of which cross sections were calculated
with PEGASUS/6/ standing on a preequilibrium and multi-step
evaporation model. The OMP's for neutron given in Table 1 were
determined by lijima and Kawai/7/ to reproduce a systematic
trend of the total cross section. The OMP's for charged
particles are as follows:
Proton = Perey/8/
Alpha = Huizenga and Igo/9/
Deuteron = Lohr and Haeberli/10/
Helium-3 and triton = Becchetti and Greenlees/11/
Parameters for the composite level density formula of Girbert
and Cameron/12/ were evaluated by lijima et al./13/. More
extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used
in the present calculation. Energy dependence of spin cut-off
parameter in the energy range below E-joint is due to Gruppelaar 114/.
$M T=1$ Total
Spherical optical model calculation was adopted.
MT $=2$ Elastic scattoring
Calculated as (total - sum of partial cross sections).
MT = 4. 51 - 91 Inelastic ecattering
Spherical optical and statistical mudel calculation was adopted. The level scheme was taken from Ref./15/.

No.	Energy (MoV)	Spin-parity
GR.	0.0	$0+$
1	0.9345	$2+$
2	1.3830	$0+$
3	1.4956	$4+$
4	1.8473	$2+$
5	2.0669	$2+$
6	2.3399	$3+$
7	2.3950	$4+$
8	2.4780	$5+$
9	2.7400	$4-$
10	2.8120	$2+$
11	2.8570	$4+$
12	2.8900	$3+$
13	2.9000	$0+$
14	2.9540	$6+$
15	3.0340	$3+$
16	3.0490	$2+$

Levels above 3.11 MeV were assumed to be overlapping.

## MT $=102$ Capture

Spherical optical and statistical model calculation with CASTHY/5/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffol16/ and normalized to 1 milli-barn at 14 MeV .

The gamma-ray strength function (8.983E-05) was adjusted to reproduce the capture cross section of 30 milli -barns at 100 keV measured by Musgrove et al./17/

MT $=16 \quad(n, 2 n)$ Cross Section
MT $=17$ (n.3n) Cross Section
MT $=22$ (n.n'a) Cross Section
MT $=28$ (n, $\left.n^{\prime} p\right)$ Cross Section
MT $=32$ ( $n, r^{\prime} d$ ) Cross Section
MT $=33$ (n.n't) Cross Section
MT $=103$ (n,p) Cross Section
MT $=104$ (n,d) Cross Section
MT $=105$ (n.t) Cross Section
MT $=107$ (n,alpha) Cross Section
These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code PEGASUS/6/.

The Kalbach's constant $K(=163.7)$ was ostimated by the formula derived from Kikuchi-Kawai's formalism/18/ and level density paramoters.

Finaliy, ( $n, p$ ) and ( $n, a l p h a$ ) cross sections wera normalized to the following values at 14.5 MeV :

$$
\begin{aligned}
& \text { (n,p) } 22.00 \mathrm{mb} \text { (measured by lkeda ot al./19/) } \\
& \text { ( } \mathrm{n} \text {, alpha) } \quad 9.50 \mathrm{mb} \text { (mean value of data measured by } 0 \text { aim } \\
& \text { ot al./20/ and Bayhurst ot al./21/) } \\
& \text { The ( } n, n p \text { ) and ( } n, d \text { ) cross sections were Increesed by factor } \\
& \text { of } 2 \text { to fit the data of lkeda ot al./19/. }
\end{aligned}
$$

```
MT = 251 Mu-bar
 Calculated with CASTHY/6/.
```

NF $=4$ Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/5/. For other reactions, isotropic distributions in the laboratory system were assumed.
$N F=5$ Energy Distributions of Secondery Noutrons
Energy distribilions of secondery neutrons were calculated with PEGASUS/6/ for inelastic scattering from overlapping levels and for other neutron emitting reactions.

Table $:$ Noutron Optical Potential Parametor:

Depth (	Radius ( fm )	Diffusaness (fm)
$V=46.0-0.25 \mathrm{E}$	$R 0=5.893$	$80=0.62$
$W_{s}=7.0$	Rs $=6.393$	$a s=0.35$
Wso $=7.0$	Rso $=5.893$	aso $=0.62$

Table 2 Level Density Parameters

Nuclide	$\mathrm{a}(\mathrm{MoV})$	T(MoV)	C(/MeV)	EX(MoV)	Pairing
38-Sr-88	$9.160 \mathrm{E}+00$	$7.510 \mathrm{E}-01$	8. 288E-02	$4.550 \mathrm{E}+00$	$2.170 \mathrm{E}+00$
38-Sr-89	$9.380 \mathrm{E}+00$	8. 200E-01	5.043E-01	4.642E+00	1.240E+00
38-Sr-90	9.940E+00	8.530E-01	3.795E-01	6.252E+00	$1.960 \mathrm{E}+00$
38-Sr-91	1.090E+01	8.100E-01	1.103E+00	$5.625 E+00$	1.240E+00
39-Y-89	$7.900 \mathrm{E}+00$	8.500E-01	3.983E-01	3.440E+00	9.300E-01
39-Y - 90	1.027E+01	6.770E-01	1.716E+00	2. 209E+00	0.0
39-Y-91	$1.050 \mathrm{E}+01$	7.140E-01	8.362E-01	3.521E+00	7.200E-01
$39-Y-92$	$1.012 E+01$	7.629E-01	2.480E+00	3.191E+00	0.0
40-2r-90	$9.152 \mathrm{E}+00$	8. 222E-01	1.526E-01	$5.383 \mathrm{E}+00$	$2.130 \mathrm{E}+00$
40-2r-91	$1.036 \mathrm{E}+01$	8.000E-01	7.822E-01	$5.057 E+00$	1.200E+00
40-2r-92	1.088E+01	8.192E-01	$5.122 E-01$	6.429E+00	1.920E+00
40-2r-93	1. 298E+01	7.000E-01	1.273E+00	5.183E+00	1.200E+00

```
assumed to be 6.937 for Zr-92 and 6.100 for Zr- 93.
```


## References

1) Aoki. T. et al.: Proc. Int. Conf. on Nuclear Data for Basic and Applied Science. Santa Fe., Vol. 2. p. 1627 (1985).
2) Kawai. M. et al.: Proc. Int. Conf. on Nuclear Data for Science and Technology, Mito, p. 569 (1988).
3) Boldeman. J.W., et al.: Nucl. Phys., A269, 31 (1976).
4) Mughabghab. S.F. ot al.: "Neutron Cross Sections. Vol. I. Part $A^{\prime}$. Acadomic Pross (1981).
5) Igarasi, S.: J. Nucl. Sci. Technol., 12. 67 (1975).
6) I ijima. S. et al.: JAERI-M 87-026. p. 337 (1987).
7) Iijima. S. and Kawai. M.: J. Nucl. Sci. Tachnol., 20. 77 (1983).
B) Perey, F.G: Phys. Rev. 131, 745 (1963).
8) Huizenga, J.R. and Igo. G.: Nucl. Phys. 29, 462 (1962).
9) Lohr, J.M. and Haeberli. W.: Nucl. Phys. A232. 381 (1974).
10) Becchetti, F.D. Jr. and Greenlees. G.W.: Polarization Phenomena in Nuciear Reactions ((eds) H.H. Barshall and W. Haeberli), p. 682. The university of Wisconsin Press. (1971).
11) Gilbert, A. and Cameron, A.G.W.: Can. J. Phys., 43. 1446 (1965).
12) I ijima, S., et al.: J. Nucl. Sci. Technol. 21,10 (1984).
13) Gruppelaar. H.: ECN-13 (1977).
14) Mat sumoto. J.: Private communication (1981).
15) Benzi. V. and Reffo. G.: CCDN-NW/10 (1969).
16) Musgrove. A.R. de L., et al.: "Proc. Int. Conf. on Neutron Physics and Nucl. data for Reactors. Harwell 1978". 449.
17) Kikuchi, K. and Kawai. M.: "Nuclear Matter and Nuclear Reactions*. North Holland (1988).
18) Ikeda, Y. et al.: JAERI 1312 (1988).
19) Qaim. S.M. et al: EUR-5182E. 939 (1974).
20) Bayhurst. B.P. et al.: J. Inorg. Nucl. Chom., 23, 173 (1961).

40-Zr-94 JNDC | Eval-Aug89 JNDC FP Nuclear Data W.G. |
| :---: |
| Dist-Oct 89 |

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/ 89-08 Modification for JENDL-3 was mado/2/.

```
MF = 1 General information
```

    MT=451 Comments and dictionary
    ```
NF = 2 Resonance parameters
 MT=151 Resolved and unresolved resonance parameters
 Resolved resonance region (MLEW formula) : below 53.5 keV
 Parameters were determined on the basis of measured data by
 Boldeman et al./3/. A negative resonance was added to
 reproduce the capture cross section of 0.0499 barn and the
 elastic scattering of 6.1 barn at 0.0253 eV /4/.
 Assumed capture width = 0.090 oV for s-wave res.
 0.175 ov for p-wave res.
 Unresolved resonance region : 53.5 keV - 100 keV
```

        The neutron strength functions. SO. S1 and S2 were calculated
        with optical model code CASTHY/5/. The observed level spacing
        was determined to reproduce the capture cross section
        calculated with CASTHY. The offective scattering radius was
        obtained from fitting to the calculated total cross section at
        100 keV .
    Typical values of the parameters at 70 koV :
        \(S 0=0.370 E-4, S 1=5.500 E-4, S 2=0.360 E-4, G G=0.190 \mathrm{oV}\)
        \(D_{0}=3556 . \quad\) oV, \(R=6.704 \mathrm{fm}\).
    Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns)
                \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
                total 6.202 -
                elastic 6.152 -
                capture 0.04981
                        0.321
    $M F=3$ Neutron cross sections
Below 100 keV , resonance parameters were given.
Above 100 keV , the spherical optical and statistical model
calculation was performed with CASTHY/5/, by taking account of
competing reactions, of which cross sections were calculated
with PEGASUS/6/ standing on a preequilibrium and multi-step
evaporation model. The ONP's for neutron given in Table 1 were
determined by iijima and Kawai/7/ to reproduce a systematic
trend of the total cross section. The ONP's for charged
particles are as follows:
Proton = Perey/8/
Alpha $=$ Hujzenga and Igo/9/
Deuteron = Lohr and Haeberli/10/
Helium-3 and triton = Becchetti and Greenlees/11/
Parameters for the composite level density formula of Girbert
and Cameron/12/ were evaluated by lijima ot al./13/. More
extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used
in the present calculation. Energy dependence of spin cut-off
parameter in the energy range below E-joint is due to Gruppelaar /14/.
$M T=1$ Total
Spherical optical model calculation was adopted.
MT $=2$ Elastic scatterify
Calculated as (total - sum of partial cross sections).
MT $=4$, 51-91 Inelastic scattering
Spherical optical and statistical model calculation was adopted. The level scheme was taken from Ref./15/.

| Ho. | Energy(MeV) | Spin-parity |
| :---: | :---: | :---: |
| GR. | 0.0 | $0+$ |
| 1 | 0.9182 | $2+$ |
| 2 | 1.3000 | $0+$ |
| 3 | 1.4683 | $4+$ |
| 4 | 1.6687 | $2+$ |
| 5 | 2.0574 | $3-$ |
| 6 | 2.1510 | $2+$ |
| 7 | 2.3360 | $4+$ |
| 8 | 2.3655 | $2+$ |
| 9 | 2.6050 | $5-$ |
| 10 | 2.8400 | $1-$ |

Levels above 2.882 MeV were assumed to be overlapping.
MT $=102$ Capture
Spherical optical and statistical model calculation with CASTHY/5/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffol16/ and normalized to 1 milli -barn at 14 MeV .

The gamma-ray strength function (4.886E-05) was adjusted to reproduce the capture cross section of 19 milli-barns at 100 koV measured by Musgrove et al./17/

MT $=16$ (n,2n) Cross Section
MT $=17$ (n.3n) Cross Section
$M T=22$ ( $n, n^{\prime} a$ ) Cross Section
$M T=28$ ( $n, n^{\prime} p$ ) Cross Section
MT $=32$ ( $n, n^{\prime} d$ ) Cross Section
MT =103 (n,p) Cross Section
NT $=104$ (n.d) Cross Section
MT $=105$ ( $n, t$ ) Cross Section
MT $=107$ (n,alpha) Cross Section
These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code PEGASUS/6/.

The Kalbach's constant $K(=161.8)$ was estimated by the formula derived from Kikuchi-Kawai's formalism/18/ and level density parometers.

Finally, ( $n, p$ ) and ( $n, a l p h a$ ) cross sections were normalized to the following values at 14.5 MeV :

$$
(n, p) \quad 10.00 \mathrm{mb} \text { (recommended by Forrest/19/) }
$$

```
(n,alpha) 4.80 mb (measured by lkeda et al./20/)
```

MT $=251$ Mu-bar
Calculated with CASTHY/5/.
$M F=4$ Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/5/. For other reactions. isotropic distributions in the laboratory system were assumed.

MF $=5$ Energy Distributions of Secondary Neutrons Energy distributions of secondary neutrons were calculated with PEGASUS/6/ for inolestic scattering from overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

| Depth (MeV) | Radius(fm) | Diffuseness(fm) |
| :--- | :--- | :--- |
| V $=46.0-0.25 E$ | R0 $=5.893$ | $a 0=0.62$ |
| $W_{s}=7.0$ | Rs $=6.393$ | as $=0.35$ |
| $W_{s o}=7.0$ | Rso $=5.893$ | aso $=0.62$ |

Table 2 Level Density Parameters

| Nuclide | SYST e(/MoV) | $\mathrm{T}(\mathrm{MeV})$ | $\mathrm{C}(\mathrm{MoV})$ | EX(MeV) | Pairing |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 38-Sr-90 | 0.840E+00 | $8.530 E-01$ | 3.795E-01 | 6.252E+00 | $1.960 E+00$ |
| 38-Sr-91 | $1.090 \mathrm{E}+01$ | 8.100E-01 | 1.103E+00 | 5.625E+00 | 1. $240 \mathrm{E}+00$ |
| 38-Sr-92 | $1.288 \mathrm{E}+01$ | 7.065E-01 | $2.515 E-01$ | 6.391E+00 | $2.360 \mathrm{E}+00$ |
| 38-Sr-93 | $1.386 \mathrm{E}+01$ | 6.989E-01 | $1.878 \mathrm{E}+00$ | $5.664 \mathrm{E}+00$ | 1.240E+00 |
| 39-Y-91 | 1.050E+01 | 7.140E-01 | 8.362E-01 | $3.521 E+00$ | 7. 200E-01 |
| 39-Y - 92 | $1.012 \mathrm{E}+01$ | 7.829E-01 | 2.480E+00 | 3.191E+00 | 0.0 |
| 39-Y - 93 | $1.150 \mathrm{E}+01$ | 8.053E-01 | 1.740E+00 | $5.854 E+00$ | 1.120E+00 |
| 39-Y - 94 | 9.149E+00 | 7.385E-01 | $1.378 \mathrm{E}+00$ | 2.222E+00 | 0.0 |
| 40-Zr-92 | 1.088E+01 | 8.192E-01 | $5.122 E-01$ | 6.429E+00 | 1.920E+00 |
| 40-Zr-93 | 1.298E+01 | 7.000E-01 | 1.273E+00 | $5.183 E+00$ | 1. 200E+00 |
| 40-Zr-94 | 1.275E+01 | $7.530 \mathrm{E}-01$ | 4.411E-01 | 7.019E+00 | $2.320 E+00$ |
| 40-Zr-95 | $1.331 \mathrm{E}+01$ | 6.070E-01 | 5.453E-01 | 3.985E+00 | 1. 200E+00 |

SYST: * LDP's were determined from systematics.
Spin cutoff params were calculated as 0.146eSORT(a)*A* (2/3). In the CASTHY calculetion, spin cutoff factors at 0 MoV were assumed to be 5.525 for $\mathrm{Zr}-94$ and 5.652 for $\mathrm{Zr}-95$.

## References

1) Aoki. T. et al.: Proc. Int. Conf. on Nuclear Data for Basic and Applied Science, Santa Fe.. Vol. 2, p. 1627 (1985).
2) Kawai. M. ot al.: Proc. Int. Conf. on Nuclear Data for Scienco and Technology, Mito, p. 569 (1988).
3) Boldeman. J.W., et al.: Nucl. Phys.. A269. 31 (1976).
4) Mughabghab, S.F. et al.: "Noutron Cross Sections, Vol. I,

Part $A^{*}$. Academic Press (1981).
5) Igarasi. S.: J. Nucl. Sci. Tochnol.. 12, 67 (1975).
6) lijima, S. ot al.: JAERI-M 87-025, p. 337 (1987)
7) IIjima, S. and Kawai, M.: J. Nucl. Sci. Tochnol., 20, 77 (1883).
8) Porey, F.G: Phys. Rev. 131, 745 (1963).
9) Huizenga. J.R. and Igo, G.: Nucl. Phys. 29. 462 (1962).
10) Lohr. J.M. and Haeberli, W.: Nucl. Phys. A232, 381 (1974).
11) Becchetti, F.D., Jr. and Greenlees, G.W.: Polarization Phenomena in Nuclear Reactions ((eds) H.H. Barshall and W. Haeberli), p. 682. The university of Wisconsin Press. (1971).
12) Gilbert. A. and Cameron. A.G.W.: Can. J. Phys.. 43. 1446 (1865).
13) lijima, S., ot al.: J. Nucl. Sci. Technol. 21. 10 (1984),
14) Gruppelaar. H.: ECN-13 (1977).
15) Matsumoto. J.: Private communication (1981).
16) Benzi, V. and Reffo, G.: CCDN-NW/10 (1989).
17) Musgrove, A.R. de L., et al.: "Proc. Int. Conf. on Neutron Physics and Nucl. data for Reactors. Harwell 1978*, 449.
18) Kikuchi, K. and Kawai, M.: "Nuclear Matter and Nuclear Reactions". North Holland (1968).
19) Forrest, R.A.: AERE-R 12418 (1986).
20) Ikeda, Y. ot al.: JAERI 1312 (1988).

```
MAT number = 3407
```

40-2r-96 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G.
History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
88-08 Modification for JENDL-3 was made/2/.
$M F=1$ General information
MT=451 Comments and dictionary
$M F=2$ Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 100 keV
Resonance energies and neutron widths were based on the
measured values by Coceva et al. /7/ below 41.5 keV and
those by Musgrove et al. /4/ above 41.5 keV . The neutron
widths of Musgrove et al. Were multiplied by a factor of 1.79 .
The radiative capture widths were adopted from Brusegan et al.
15/. The parameters of the 301 -eV level were taken from
Salah et al. /6/. A negative resonance was adopted on the
basis of recommended parameters in Ref. /7/ by slightly
modifying its radiative capture width so as to reproduce the
capture cross section of $0.0229+0.0010$ barns at 0.0253 oV
/7/.
Assumed capture width $=0.068+-0.010 \mathrm{oV}$ for -wave res.
$0.170+0.130$ ov for $p$-wave res.

No unresolved resonance region
Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and res. integrals (barns) $2200 \mathrm{~m} / \mathrm{s}$ res. integ: :

| total | 6.154 |
| :--- | :--- |
| clastic | 6.131 |
| caprure | 0.02280 |

    -
                                    5.87
    $M F=3$ Neutron, oss sections
Below 100 keV , resonance parameters were given.
Above 100 koV . the spherical optical and statistical model calculation was performed with CASTHY/8/, by taking account of competing reactions, of which cross sections were calculated with PEGASUS/9/ standing on a preequilibrium and multi-step evaporation model. The ONP's for neutron given in Table 1 were determined by lijima and X̌awai/10/ to reproduce a systematic trend of the total cross section. The OMP's for charged particles are as follows:

Proton = Peroy/11/
Alpha = Huizenga and lgo/12/
Deuteron = Lohr and Haeberli/13/
Helium-3 and triton = Becchetti and Greenlees/14/
Paremeters for the composite level density formula of Girbert and Cameron/15/ were evaluated by lijima et al.f16/. More extensive determination and modification were made in the present work. Table 2 shows the level density parameters used in the present calculation. Energy dependence of spin cut-off parameter in the energy range below E-joint is due to Gruppelaar /17/.

MT $=1$ Total
Spherical optical model calculation was adopted.
$M T=2$ Elastic scattoring
Calculated as (total - sum of partial cross sections).
MT = 4. 51-91 Inelastic scattering
Spherical optical and statistical model calculation was adopted. The level schemo was taken from Ref./18/.

| No. | Energy (MeV) | Spin-parity |
| :---: | :---: | :---: |
| GR. | 0.0 | $0+$ |
| 1 | 1.5940 | $0+$ |
| 2 | 1.7580 | $2+$ |
| 3 | 1.9050 | $3-$ |
| 4 | 2.2100 | 3 |
| 5 | 2.4400 | 1 |
| 6 | 2.8400 | 3 |

Levels above 2.936 MeV were assumed to be overlapping.

```
MT = 102 Capture
```

Spherical optical and statistical model calculation with CASTHY/8/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/i9/ and normalized to $1 \mathrm{milli-barn}$ at 14 MeV .

The gamme-ray strength function (0.8245E-4) was adjusted to reproduce the capture cross saction of 7 milli-barns at 200 keV measured by Lyon et al./20/
$M T=16$ ( $n, 2 n$ ) Cross Section
$M T=17$ ( $n, 3 n$ ) Cross Section
$M T=22\left(n, n^{\prime} a\right)$ Cross Section
MT $=28$ ( $n, n^{\prime} p$ ) Cross Section
MT $=103$ (n.p) Cross Section
MT $=104$ ( $n, d$ ) Cross Section
MT $=105$ ( $n, t$ ) Cross Section
MT $=107$ (n,alpha) Cross Section
These reaction cross sections were calculated with the preequilibrium and multi-step eveporation model code PEGASUS/9/.

The Kalbach's constant $K(=203.6)$ was estimated by the formula derived from Kikuchi-Kawai's formalism/21/ and level density parameters.

Finally. (n,2n), (n,p) and (n,alpha) cross sections were normalized to the following values at 14.5 MeV :

| ( $n, 2 n$ ) | 1500 | mb (measured by Ikeda ot al./22/) |
| :--- | :--- | :--- |
| ( $n, p$ ) | 3.79 | mb (systematics of Forrest/23/) |
| (n.aipha) | 3.00 | mb (recommended by Forrest/23/) |

MT $=251$ Mu-bar
Calculated with CASTHY/8/.

NF $=4$ Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are
given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/8/. For other reactions, isotropic distributions in the laboratory system were assumed.

MF $=5$ Energy Distributions of Socondary Noutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/9/ for inelastic scattering from overlapping levels and for other neutron omitting reactions.

Table 1 Neutron Optical Potential Parameters

| Depth ( MoV ) | Radius ( fm) | Diffuseness (fm) |
| :---: | :---: | :---: |
| $V=46.0-0.25 E$ | $\mathrm{RO}=5.893$ | $a 0=0.62$ |
| $W_{s}=7.0$ | Rs $=6.393$ | as $=0.35$ |
| Wso $=7.0$ | Rso= 5.893 | aso $=0.62$ |

Table 2 Level Density Parameters

| Nuc | SYST | $\mathrm{a}(/ \mathrm{MeV})$ | T(MoV) | $\mathrm{C}(/ \mathrm{MeV})$ | EX(MeV) | Pairing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38-Sr-92 |  | $1.288 \mathrm{E}+01$ | 7.065E-01 | 2.515E-01 | 6.391E+00 | 2.360 E |
| 38-Sr-93 | - | 1.386E+01 | 6.989E-01 | $1.878 \mathrm{E}+00$ | $5.664 \mathrm{E}+00$ | 1.240E+0 |
| 38-Sr-94 |  | 1.485E+01 | 6.915E-01 | 4.495E-01 | $7.333 \mathrm{E}+00$ | 2.530E+00 |
| 38-Sr-95 |  | $1.586 \mathrm{E}+01$ | 6.842E-01 | 4.531E+00 | 6.411E+00 | $1.240 E+0$ |
| 39-Y - 93 |  | $1.150 \mathrm{E}+01$ | 8.053E-01 | $1.740 E+00$ | $5.854 \mathrm{E}+00$ | 1.12 |
| 39-Y-94 |  | 9.149E+00 | 7.385E-01 | $1.378 \mathrm{E}+00$ | 2.222E+00 | 0.0 |
| 39-Y - 95 |  | $1.070 E+01$ | 8.306E-01 | $1.082 \mathrm{E}+00$ | $5.839 \mathrm{E}+00$ | 1.290E+ |
| 39-Y - 96 |  | $1.603 \mathrm{E}+01$ | 6.771E-01 | $2.794 \mathrm{E}+01$ | $5.117 \mathrm{E}+00$ | 0.0 |
| 40-2r-94 |  | $1.275 \mathrm{E}+01$ | $7.530 \mathrm{E}-01$ | 4.411E-01 | $7.019 \mathrm{E}+00$ | $2.320 E+00$ |
| 40-2r-95 |  | 1.331E+01 | 6.070E-01 | 5.453E-01 | 3.985E+00 | 1.200E+00 |
| 40-2r-96 |  | 1.320E+01 | 7.000E-01 | 2.235E-01 | 6.589E+00 | $2.490 E+00$ |
| 40-Zr-97 |  | $1.259 \mathrm{E}+01$ | $5.590 \mathrm{E}-01$ | 2.497E-01 | $3.084 \mathrm{E}+00$ | 1.200E+00 |

SYST: . = LDP's were determinad from systematics.
Spin cutoff params were calculated as 0.146-SQRT(a)•A.-(2/3). In the CASTHY calculation, spin cutoff factors at 0 MoV were assumed to be 3.791 for 2r-96 and 5 for $2 r-97$.

## References

1) Aoki, T. ot al.: Proc. Int. Conf. on Nuclear Data for Basic and Applieci Science. Santa Fe.. Vol. 2, p. 1627 (1985).
2) Kawai, M. et al.: Proc. Int. Conf. on Nuclear Data for Science and Technology. Mito, p. 569 (1988).
3) Coceva, C. et al.: "Proc. Int. Conf. on Neutron Cross Sections for Technology. Knoxville 1979". 319 (1980).
4) Musgrove, A.R. de L. . ot al.: AAEC/E-415 (1977).
5) Brusegan. A., ot al.: 'Proc. 4th Int. Symp. on Neutron-Capture Garma-ray Spectroscopy and Related Topics, Grenoble 1981". 406. The Institute of Physics, London (1982).
6) Salah. M.M. et al.: Proc. Int. Conf. on Nuclear Data for Basic and Applied Science, Santa Fe 1985*. Vol. 1, 593 (1986).
7) Mughabghab. S.F. ot al.: "Neutron Cross Sections, Vol. I.

Part A*, Academic Press (1981).
B) Igarasi, S.: J. Nucl. Sci. Technol., 12, 67 (1975).
9) lijima, S. et al.: JAERI-M 87-025, p. 337 (1987).
10) Iijima, S. and Kawai, M.: J. Nucl. Sci. Technol., 20. 77 (1983).
11) Perey, f.G: Phys. Rev. 131, 745 (1963).
12) Huizenga, J.R. and Igo, G.: Nucl. Phys. 29, 462 (1962).
13) Lohr. J.M, and Haeberli. W.: Nucl. Phys. A232, 381 (1974).
14) Becchetti. F.D., Jr. and Greenlees, G.W.: Polarization Phenomena in Nuclear Reactions ((eds) H.H. Barshall and W. Heeberli). p. 682. The university of Wisconsin Press. (1971).
16) Gilbert. A. and Cameron. A.G.W.: Can. J. Phys., 43. 1446 (1986).
16) Iijima, S., ot al.: J. Nucl. Sci. Technol. 21, 10 (1984).
17) Gruppelaar. H.: ECN-13 (1977).
18) Matsumoto. J.: Private communication (1981).
19) Benzi. V. and Reffo, G.: CCDN-NW/10 (1969).
20) Lyon, W.S. et al.: Phys. Rev., 114, 1615 (1959).
21) Kikuchi, K. and Kawai, M.: "Nuclear Matter and Nuclear Reactions", North Holland (1988).
22) Ikeda. Y. et al.: JAERI 1312 (1988).
23) Forrest. R.A.: AERE-R 12419 (1986).

```
 MAT number = 3411
 41-Nb-93 NalG Evel-Nov88 M.Kawai, N.Yamamuro
 Dist-Sep88
History
82-10 Evaluation of resonarice parameters for JENDL-2 was made
 by Kawai.
88-10 Evaluation was performed for JENDL-3.
88-10 Compilod by K.Shibata (JAERI).
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
 MT=151
 Resolved resonances: 1.0E-5 oV - 7 keV
 Parameters were taken from JENDL-2.
 Scattering radius: 7.10 fm
 Calculated 2200-m/s cross sections and res. integrals
 2200-m/s res. integ
 olastic 6.322 b
 capture 1.162 b 9.488 b
 total 7.474 b -
 Unresolvod resonances: 7 koV - 100 keV
 Determined with the ASREP code/12/ so as to reproduce
 the evaluated sig-c and sig-t up to 100 keV.
MF=3 Noutron Cross Soctions
 Slight background correction for sig-t and sig-c
 between 30 keV and 100 keV.
 MT=1 Total.
 Below 100 koV : Background cross sections given.
 100 keV to 20 MoV: Spline-function fitting to the
 experimental data/1/.
 MT=2 Elastic scattoring
 (Total) - (Reaction cross section)
 MT=3 Non olastic
 Sum of MT=4, 16, 17, 22, 28, 102, 103, 104, 107
 MT=4.51-62.91 Inelastic scattering
 The inelastic scattering cross sections to discrete
 levels wore calculated with the statistical-model code
 CASTHY/2/. considering level fluctuation, using modified
 Walter-Guss potential parameters for neutrons.
 The components of the diroct process were added to
 the levels of MT=53.54.56.57.58.60 by using the
 DWUCK code /3/.
 The cross section to continuum was calculated with the
 the GNASH code /6/ considaring pre-equilibrium.
 The leval scheme is given as follows:
 No. Energy(MoV) Spin-Parity
 g.s 0.0 0/2 +
 1. 0.0304 1/2 -
 2. 0.6880 3/2-
 3. 0.7440 7/2 +
 4. 0.8087 5/2 +
 5. 0.8101 3/2 -
```

| 6. | 0.9499 | $13 / 2+$ |
| ---: | ---: | ---: |
| 7. | 0.9791 | $11 / 2+$ |
| 8. | 1.0826 | $9 / 2+$ |
| 9. | 1.2900 | $3 / 2-$ |
| 10. | 1.2974 | $0 / 2+$ |
| 11. | 1.3166 | $6 / 2+$ |
| 12. | 1.3351 | $17 / 2+$ |

Levels above 1.34 MoV were assumed to be overlapping.
Optical-model parameters are as follows:
$V=52.66-0.30 \cdot E n, \quad W_{s}=3.233+0.271 \cdot E n, \quad V_{80}=6.004-0.015 \cdot E n$
$V_{s y m}=-16.5 \quad . \quad W_{i}=-0.963+0.163-E n$. $W_{s o}=0.291-0.018$ En
$r 0=1.228$, $r s=1.282$, $r i=1.42$, $r s o=1.103$
$a 0=0.688 \quad, b=0.512$, $a i=0.609$, aso $=0.56$
The level density parameters for GNASH and CASTHY calculations are as follows:

| $a$ | Ex | T | Ds | Gamme-g |
| :---: | :---: | :---: | :---: | :---: |
| $(1 / \mathrm{MoV})$ | $(\mathrm{MoV})$ | $(\mathrm{MeV})$ | $(\mathrm{oV})$ | $(\mathrm{oV})$ |


| No-94 | $14.4 \quad 4.059$ | 0.719 | 30.0 | 0.052 |
| :--- | :--- | :--- | :--- | :--- | :--- |


| NB-83 | 13.0 | 6.884 | 0.834 | - |
| :--- | :--- | :--- | :--- | :--- |


| $\mathrm{No}-92$ | 11.5 | 3.254 | 0.780 | - |
| :--- | :--- | :--- | :--- | :--- |
| 0.170 |  |  |  |  |


| $\mathrm{Nb}-91$ | 11.0 | 5.461 | 0.895 | - |
| :--- | :--- | :--- | :--- | :--- |
| 0.170 |  |  |  |  |


| $\mathrm{Zr}-93$ | 13.7 | 6.923 | 0.781 | - |
| :--- | :--- | :--- | :--- | :--- |


| $\mathrm{Zr}-92$ | 11.8 | 6.284 | 0.858 | - | 0.140 |
| :--- | :--- | :--- | :--- | :--- | :--- |


| $Y-80$ | 11.1 | 1.441 | 0.721 | 1210 | 0.130 |
| :--- | :--- | :--- | :--- | :--- | :--- |


| $Y-89$ | 10.7 | 2.846 | 0.762 | - | 0.130 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$M T=16 \quad(n, 2 n)$
Based on the experimental data/4.6/.
$M T=17,22,28,103,104,107(n, 3 n),\left(n, n^{\prime} a\right) \cdot\left(n, n^{\prime} p\right),(n, p)$
( $n, d$ ) and ( $n, a$ ) cross sections
Calculated with GNASH/6/.
Optical potential parameters for proton, alpha-particle
and deuteron were taken from the works of Perey/7/.
Lemos/8/ and Lohr and Haeverli/9/. respectively.

MT=102 Radiative capture cross section
1.0E-5 oV to 100 keV : Resonance parameters given.

100 keV to 20 MeV : Calculated with the CASTHY code/2/.
T-gamma=0.0109: determined so as to reproduce sig-c=107mb at 100 keV . measured by Reffo ot al./11/

MT=251 Mu-bar
Calculated from File-4.
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-62
Calculated with CASTHY for equilibrium process
The components of the direct process were added to the levels of MT=53.54.56.57.58.60 by using the DWUCK code /3/.
MT=16. 17. 22. 28
Assumed to be isotropic in the laboratory system
$\mathbf{M T}=91$

The Kalbach-Mann systematics/10/adopted at 14 MeV .
MF=5 Energy Distributions of Socondery Neutrons
$M T=16,17,22,28, ~ 01$
Calculated with GNASH,
MF=12 Photon Production Multiplicitios
$M T=16,17,22.28,52-62,81,102,103,104,107$
Calculatod with GNASH.
MF=14 Photon Angular Distributions
MT=16.17.22.28, 62-62.91,102,103,104,107
Assumed to be isotropic.
MF=15 Photon Energy Distributions
MT=16.17,22.28,91,102,103.104.107
Calculated with GNASH.
Roferences

1) Posnitz. W.P. and Whalen, J.F.: ANL/NDM-80 (1883).
2) Igarasi. S.: J. Nucl. Sci. Technol., 12. 67 (1976).
3) Kunz. P.D.: Univ. Colorado (1974).
4) Frehaut. J. ot al.: Proc. Symp. Neutron Cross-Soctions from 10 to 50 MoV , BNL, 1980, p. 398 (1980).
5) Voeser. L.R. ot al.: Phys. Rov. C16. 1792 (1977).
6) Young. P.G. and Arthur, E.D.: LA-6847 (1977).
7) Porey, F.G.: Phys. Rev. 131. 746 (1963).
8) Lemos. O.F.: "Diffusion Elastique do Particulos Alpha de 21 a 29.6 MeV sur dos Noyaux do la Region Ti-Zn*. Orsay Report, Series A.. No. 136. (1972).
9) Lohr, J.M. and Haeberif. W.: Nucl. Phys. A232, 381 (1974).
10) Kalbach. C. and Mann. F.M.: Phys. Rov.. C23. 112 (1981).
11) Reffo. G. ot al.: Nucl. Sci. Eng.. 80, 630 (1882).
12) Kikuchi. Y.: Unpublished.

## MAT number $=3420$

42-Mo- 0 JNDC, JAERI Eval-Mar89 JDC FPND W.G.. M.Mizumoto Dist-Oct88
History
84-10 Photon production data were evaluated by M.Mirumoto(JAERI). 89-03 Final data for JENDL-3 were compiled from isotope data.

MF = 1 General information
MT=451 Comments and dictionary
MF $=2$ Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) Evaluated by Kikuchi et al./1/ on the basis of the following experiments.
Mo-92: below 50 keV
Transmission : Wasson et al./2/
Capture : Wasson ot al.12/, Weigmann ot al./3/, Musgrove et al./4/
Mo-94: below 20 keV
Capture : Weigmann et al./3/. Musgrove ot al./4/ Mo-95: below 2 keV

Transmission : Shwe et al./5/
Capture : Woigmann et al.13/
Mo-96: below 19 keV
Capture : Weigmann et al./3/. Musgrove ot al./4/
Mo-97: below 1.8 keV
Transmission : Shwe et al./6/
Capture : Waigmann et al./3/
Mo-98: below 32 keV
Transmission : Chrien ot al./6/
Capture : Weigmann et al./3/. Musgrove ot al./4/
Mo-100: below 26 keV
Transmission : Weigmann ot al./7/
Capture : Weigmann ot al./3/. Musgrove ot al./4/
Assumed radiative widths(oV)

|  | $s$-wave | p-wave |  | s-wave | p-wave |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Mo-92 | 0.02 | 0.425 | Mo-94 | 0.135 | 0.175 |
| Mo-95 | 0.150 | 0.180 | Mo-96 | 0.114 | 0.136 |
| Mo-97 | 0.130 | 0.150 | Mo-98 | 0.085 | 0.12 |
| Mo-100 | 0.065 | 0.08 |  |  |  |

Unresolved resonance region : up to 100 keV
The neutron strength functions were calculated with optical model code CASTHY/8/. The level spacing was determined to reproduce the capture cross section calculated with CASTHY. The scattering radius was obtained from fitting to the calculated total cross section at 100 keV .

Typical values of the parameters at 70 keV :

|  | $S 0$ | $S 1$ | $S 2$ | $G(o V)$ | $D(o V)$ | $R(f m)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mo-92 | $0.369 E-4$ | $5.479 E-4$ | $0.364 E-4$ | 0.226 | 2252 | 6.746 |
| Mo-94 | $0.369 \mathrm{E}-4$ | $5.479 \mathrm{E}-4$ | $0.365 \mathrm{E}-4$ | 0.230 | 1101 | 6.699 |
| Mo-95 | $0.369 \mathrm{E}-4$ | $5.479 \mathrm{E}-4$ | $0.365 \mathrm{E}-4$ | 0.232 | 76.12 | 6.680 |
| Mo-96 | $0.370 \mathrm{E}-4$ | $5.480 \mathrm{E}-4$ | $0.365 \mathrm{E}-4$ | 0.162 | 93.33 | 6.698 |
| Mo-97 | $0.370 \mathrm{E}-4$ | $5.479 \mathrm{E}-4$ | $0.365 \mathrm{E}-4$ | 0.180 | 58.76 | 6.687 |
| Mo-98 | $0.370 \mathrm{E}-4$ | $5.479 \mathrm{E}-4$ | $0.364 \mathrm{E}-4$ | 0.133 | 765.9 | 6.675 |

```
 M0-100 0.370E-4 5.479E-4 0.365E-4 0.085 576.1
Calculated 2200-m/s cross sections and res. integrals (barns)
 2200 m/s res. integ.
 total 8.066
 -
 olastic 5.483
 capture 2.68275
 25.7
NF = 3 Neutron cross sections
 Below }100\textrm{keV}. resonance parameters were given. Above 100 keV.
 the epherical optical and statistical model calculation was
 performed with CASTMY/8/, by taking account of competing
 reactions, of which cross sections were calculated with
 PEGASUS/g/ standing on a preequilibrium and multi-step
 evaporation model. The ONP's for neutron given in Table 1 were
 determined by lijima et al./10/ to reproduce a systematic trend
 of the total cross section. The OMP's for charged particles are
 as follows:
 Proton = Porey/11/
 Alpha = Huizenga and Igo/12/
 Dauteron = Lohr and Haeberli/13/
 Halium-3 and triton = Becchetti and Greenlees/14/
 Paremeters for the composite level density formula of Girbert
 and Cameron/16/ were uvaluated by lijime et al./16/. Nore
 extensive determination and modification were made in the
 present work. Table 2 shows the level density parameters used
 in the present calculation. The energy dependence of spin
 cut-off parameter in the energy range below E-joint (EX) is due
 to Gruppelaar/17/.
 MT = 1 Total
 Below 500 keV, spherical optical model calculation was
 adopted. Above 500 keV, spline-fitting to the data measured
 by Foster and Glasgow /18/. Lambropoulos et al./18/ and
 Poonitz and Whalen/20/ was made.
 MT = 2 Elastic scattering
 Caiculated as (total - sum of partial cross sections).
 MT = 4, 51 - 01 Inelastic scattering
 Spherical optical and statistical model calculation was
 adopted. The level schemes were taken from Ref./21/ for
 Mo-92 and -94 , and from evaluated by Matsumoto et al./22/
 for the other isotopes.
 The inelastic scattering cross sections for each isotopo were
 grouped in natural Mo data as follows:
\begin{tabular}{ccccccccc}
\(M T\) & \(-Q(M E V)\) & \(M O-92\) & \(M O-94\) & \(M O-95\) & \(M O-96\) & \(M O-97\) & \(M O-98\) & MO-100 \\
51 & 0.2039 & - & - & 51 & - & - & - & - \\
52 & 0.4808 & - & - & - & - & 51 & - & - \\
53 & 0.5354 & - & - & - & - & - & - & 51 \\
54 & 0.6578 & - & - & - & - & 52.53 & - & - \\
55 & 0.6941 & - & - & - & - & - & - & 52 \\
56 & 0.7194 & - & - & - & - & 54.55 & - & - \\
57 & 0.7347 & - & - & - & - & - & 51 & - \\
58 & 0.7659 & - & - & 52 & 51 & - & - & - \\
59 & 0.7883 & - & - & 53 & - & - & 52 & - \\
60 & 0.8207 & - & - & 54 & - & - & - & -
\end{tabular}
```

| 61 | 0.8712 | - | 51 | - | - | 56 | - | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 62 | 0.9479 | - | - | 55 | - | - | - | - |
| 63 | 1.0244 | - | - | 56 | - | 57 | - | - |
| 64 | 1.0591 | - | - | 57.58 | - | - | - | 53 |
| 65 | 1.0926 | - | - | - | - | 58.59 | - | - |
| 66 | 1.1366 | - | - | - | 52 | 60 | - | 54 |
| 67 | 1.2226 | - | - | 59 | - | - | - | - |
| 68 | 1.2685 | - | - | - | - | 61.62 | - | - |
| 69 | 1.3101 | - | - | 60 | - | 63.64 |  |  |
| 70 | 1.3761 | - | - | 61 | - | 65 | - | - |
| 71 | 1.4320 | - | - | 62 | - | 66 | 53 | - |
| 72 | 1.4468 | - | - | - | - | 67 | - | 55 |
| 73 | 1.4978 | 51 | - | - | 53 | 68 | 54 | - |
| 74 | 1.5412 | - | 52 | 63.64 | - | 69.70 | - | - |
| 75 | 1.6204 | - | - | 65 | 54.55 | - | - | - |
| 76 | 1.6702 | - | - | 66.67 .68 | - | - | - | - |
| 77 | 1.7424 | - | 53 | - | - | - | 55 | 56.57 |
| 78 | 1.8646 | - | 54 | - | 56 | - | 56 | - |
| 79 | 1.9073 | - | - | 69 | - | - | - | 58 |
| 80 | 1.9646 | - | - | - | 57 | - | 57.58 | - |
| 81 | 2.0172 | - | 55 | - | - | - | 58 | 69.60 |
| 82 | 2.0956 | - | - | - | 58 | - | 60 | 61 |
| 83 | 2.2064 | - | - | - | 59.60 | - | 61.62 | - |
| 84 | 2.2836 | 52 | 56 | - | - | - | - | - |
| 85 | 2.3329 | - | - | - | - | - | 63.64 | 62 |
| 86 | 2.3935 | - | 57.58 | - | 61 | - | 65 | 63 |
| 87 | 2.4384 | - | - | - | 62.63 | - | 66 | 64 |
| 88 | 2.4807 | - | - | - | 64 | - | 67.68 | - |
| 89 | 2.6208 | 53.54 | 69 | - | - | - | - | 65 |
| 90 | 2.5676 | 55 | 60.61 | - | - | - | - | 66 |
| 91 | 1.579856 .57 .91 | 91 | 91 | 91 | 91 | 91 | 91 |  |

MT $=102$ Capture
Spherical optical and statistical model calculation with CASTHY/8/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Roffol23/ and normalized to 1 milli -barn at 14 MeV . The gamma-ray strength functions were adjusted to reproduce the capture cross saction masured by Musgrove ot al./3/.

Mo-92: 0.941E-4. Mo-94: 1.966E-4, Mo-95: 29.76E-4.
Mo-96: 1.623E-4. Mo-97: 29.76E-4, Mo-98: 1.623E-4,
Mo-100: 1.432E-4.
$M T=16,17,22,28,32,103,104,105,106,107,111$
$(n, 2 n),(n, 3 n),\left(n, n^{\prime} a\right),\left(n, n^{\prime} p\right),\left(n, n^{\prime} d\right),(n, p),(n, d)$,
(n,t). (n,He3), (n,alpha) and (n,2p) Cross sections
These reaction sross sections were calculated with PEGASUS 19/. The Kalbach's constants were ostimated by the formula derived from Kikuchi-Kawai's formalism/24/ and level density parameters. The ( $n, p$ ) and ( $n, a l p h a$ ) cross sections and ( $n, 2 n$ ) cross section of Mo-100 were normalized to the experimental data or systematics at 14.5 MeV . For more details, see cormment of each isotope.

NT $=251$ Mu-bar
Calculated with CASTHY/8/.

```
MF = 4 Angular Distributions of Socondary Neutrons
 Distributions of elastic and inelastic scattering neutrons were
 calculated with CASTHY/8/. In the case where more than 2
 lovels wero grouped into 1 level, isotropic distribution in the
 center-of-mass systom was assumed. For other roactions.
 isotropic disiributions in the laboratory system were assumed.
MF = 5 Energy Distributions of Secondary Neutrons
 Energy distributions of secondary neutrons were calculated with
 PEGASUS/9/ for inelastic scattering to overlapping lovels and
 for other neutron emitting reactions.
```

```
NF =12 Photon Production Multiplicities
```

NF =12 Photon Production Multiplicities
MT = 102 (bolow 420 koV)
MT = 102 (bolow 420 koV)
Calculated with CASTHY/8/ for each isotope and constructed
Calculated with CASTHY/8/ for each isotope and constructed
according to their abundances.
according to their abundances.
MF =13 Photon Production Cross Sections
MT = 3 (above 420 koV)
Fitted with the ampirical formula by Howerton and Plechaty
/25/ based on the experimental data/26/.
MF =14 Photon Angular Distributions
MT = 3,102
Assumed to be isotropic.
MF =15 Continuous Photon Energy Spectra
MT = 3
Fitted with the empirical formula by Howerton and Plechaty
/25/ based on the experimental data/26/, and compared
with experimental data measured by Yamamuro et al./27/.
MT = 102
Calculated with CASTHY/8/ for each isotope and constructed
according to their abundances.

```

Table 1 Neutron Optical Potential Parameters
\begin{tabular}{|c|c|c|}
\hline Depth (MeV) & Radius(fm) & Diffuseness(fm) \\
\hline \(V=46.0-0.25 E\) & \(\mathrm{RO}=5.893\) & \(a 0=0.62\) \\
\hline Ws \(=7.0\) & Rs \(=6.393\) & as \(=0.35\) \\
\hline Wso= 7.0 & Rso \(=5.893\) & aso \(=0.62\) \\
\hline
\end{tabular}

Table 2 Level Density Parameters
\begin{tabular}{lllllll}
NUCL. & SYST \(a(/ \mathrm{MoV})\) & \(\mathrm{T}(\mathrm{MeV})\) & \(\mathrm{C}(/ \mathrm{MeV})\) & \(\mathrm{EX}(\mathrm{MeV})\) & Pairing \\
\hline \(40-\mathrm{Zr}-88\) & \(1.404 \mathrm{E}+01\) & \(7.386 \mathrm{E}-01\) & \(4.932 \mathrm{E}-01\) & \(7.870 \mathrm{E}+00\) & \(2.660 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-89\) & \(1.095 \mathrm{E}+01\) & \(8.260 \mathrm{E}-01\) & \(1.379 \mathrm{E}+00\) & \(5.864 \mathrm{E}+00\) & \(1.200 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-90\) & \(9.152 \mathrm{E}+00\) & \(8.222 \mathrm{E}-01\) & \(1.526 \mathrm{E}-01\) & \(5.383 \mathrm{E}+00\) & \(2.130 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-91\) & \(1.036 \mathrm{E}+01\) & \(8.000 \mathrm{E}-01\) & \(7.822 \mathrm{E}-01\) & \(5.057 \mathrm{E}+00\) & \(1.200 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-92\) & \(1.088 \mathrm{E}+01\) & \(8.192 \mathrm{E}-01\) & \(5.122 \mathrm{E}-01\) & \(6.429 \mathrm{E}+00\) & \(1.920 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-93\) & \(1.298 \mathrm{E}+01\) & \(7.000 \mathrm{E}-01\) & \(1.273 \mathrm{E}+00\) & \(5.183 \mathrm{E}+00\) & \(1.200 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-94\) & \(1.275 \mathrm{E}+01\) & \(7.530 \mathrm{E}-01\) & \(4.411 \mathrm{E}-01\) & \(7.019 \mathrm{E}+00\) & \(2.320 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-95\) & \(1.331 \mathrm{E}+01\) & \(6.070 \mathrm{E}-01\) & \(5.453 \mathrm{E}-01\) & \(3.985 \mathrm{E}+00\) & \(1.200 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-96\) & \(1.320 \mathrm{E}+01\) & \(7.000 \mathrm{E}-01\) & \(2.235 \mathrm{E}-01\) & \(6.589 \mathrm{E}+00\) & \(2.490 \mathrm{E}+00\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 40-Zr-97 & \(1.259 \mathrm{E}+01\) & 5.590E-01 & 2.497E-01 & \(3.084 \mathrm{E}+00\) & 1.200E+00 \\
\hline 40-2r-98 & \(1.725 \mathrm{E}+01\) & 6.633E-01 & 1.790E+00 & \(7.555 \mathrm{E}+00\) & \(2.140 \mathrm{E}+00\) \\
\hline 40-Zr-99 & \(1.831 \mathrm{E}+01\) & 6.586E-01 & \(1.170 \mathrm{E}+01\) & 6.957E+00 & 1.200E+00 \\
\hline \(41-\mathrm{Nb}-89\) & 1.420E+01 & . 303E-01 & 2.467E+00 & 6.611 E & 1.460E+00 \\
\hline 41 -Nb- 90 & \(1.395 \mathrm{E}+01\) & 7.222E-01 & 1.458E+01 & \(4.869 \mathrm{E}+00\) & 0.0 \\
\hline \(41-\mathrm{Nb}-91\) & 9.484E+00 & 7.143E-01 & 3.924E-01 & 3.082E+00 & 9.300E-01 \\
\hline 41-Nb- 92 & \(1.040 \mathrm{E}+01\) & 8.410E-01 & 4.807E+00 & 4.477E+00 & 0.0 \\
\hline \(41-\mathrm{Nb}-93\) & 1. \(250 \mathrm{E}+01\) & 7.120E-01 & 2.205E+00 & 4.629E+00 & 7.200E-01 \\
\hline 41-Nb-94 & \(1.281 \mathrm{E}+01\) & 7.230E-01 & 7.763E+00 & 4.250E+00 & 0. \\
\hline \(41-\mathrm{Nb}-95\) & \(1.277 \mathrm{E}+01\) & 7.500E-01 & \(2.121 \mathrm{E}+00\) & \(5.782 \mathrm{E}+00\) & \(1.120 \mathrm{E}+00\) \\
\hline \(41-\mathrm{Nb}-96\) & \(1.331 \mathrm{E}+01\) & \(5.880 \mathrm{E}-01\) & \(3.400 \mathrm{E}+00\) & \(2.630 \mathrm{E}+00\) & 0.0 \\
\hline 41-Nb-97 & \(1.337 \mathrm{E}+01\) & 6.710E-01 & 9.771E-01 & \(5.028 \mathrm{E}+00\) & 1.290E+00 \\
\hline 41-Nb-98 & \(1.380 \mathrm{E}+01\) & 5.110E-01 & 2.350E+00 & \(1.731 \mathrm{E}+00\) & 0. \\
\hline 41-N6-99 & \(1.742 \mathrm{E}+01\) & 6.666E-01 & \(1.085 \mathrm{E}+01\) & 6.300E+00 & 9.400E-01 \\
\hline \(41-\mathrm{Nb}-100\) & \(1.850 \mathrm{E}+01\) & 6.500E-01 & \(7.329 \mathrm{E}+01\) & \(5.699 \mathrm{E}+00\) & 0.0 \\
\hline 42-Mo-90 & \(1.438 \mathrm{E}+01\) & 7.222E-01 & 4.129E-01 & \(7.834 \mathrm{E}+00\) & 2.740E+00 \\
\hline 42-M0-91 & \(1.188 \mathrm{E}+01\) & 7.820E-01 & \(1.284 E+00\) & \(5.770 \mathrm{E}+00\) & 1. \(280 \mathrm{E}+00\) \\
\hline 42-Mo-92 & \(1.064 \mathrm{E}+01\) & 7.770E-01 & 2.062E-01 & \(5.938 \mathrm{E}+00\) & 2.210E+00 \\
\hline 42-Mo-93 & \(1.125 \mathrm{E}+01\) & 7.800E-01 & 9.792E-01 & \(5.457 \mathrm{E}+00\) & 1.280E+00 \\
\hline 42-Mo- 94 & \(1.301 \mathrm{E}+01\) & 6.850E-01 & \(3.417 \mathrm{E}-01\) & 5.770E+00 & \(2.000 \mathrm{E}+00\) \\
\hline 42-Mo-95 & \(1.360 \mathrm{E}+01\) & 7.150E-01 & \(1.847 \mathrm{E}+00\) & \(5.835 \mathrm{E}+00\) & \(1.280 E+00\) \\
\hline 42-Mo- 96 & \(1.403 \mathrm{E}+01\) & 7.410E-01 & 6.991E-01 & \(7.645 \mathrm{E}+00\) & 2.400E+00 \\
\hline 42-Mo-97 & \(1.617 \mathrm{E}+01\) & 6.800E-01 & 2.768E+00 & \(6.036 \mathrm{E}+00\) & 1.280E+00 \\
\hline 42-Mo-98 & \(1.694 \mathrm{E}+01\) & 6,900E-01 & 7.358E-01 & 7.888E+00 & 2.670E+00 \\
\hline 42-Mo-99 & \(1.774 \mathrm{E}+01\) & 6. 200E-01 & 4.294E+00 & 6.058E+00 & 1.280E+00 \\
\hline 42-Mo-100 & 1.780E+01 & 6.000E-01 & 6.702E-01 & 6.645E+00 & 2.220E+00 \\
\hline 42-Mo-101 & \(2.085 \mathrm{E}+01\) & 6.650E-01 & 7.163E+00 & 6.092E+00 & 1.280E+00 \\
\hline
\end{tabular}

SYST: * = LDP's were detormined from systomatics.
Spin cut-off params were calculated as 0.146 -SQRT(a)-A.-(2/3).

\section*{References}
1) Kikuchi. Y. ot al.: JAERI-M 86-030 (1886).
2) Wasson, O.A. et al.: Phys. Rev., C7. 1532 (1973).
3) Weigmann, H. ot al.: 1971 Konoxville, 749 (1971).
4) Musgrove. A.R.de L. et al.: Nucl. Phys., A270, 108 (1976).
5) Shwe H. and Cote R.E.: Phys. Rev. 178. 1148 (1869).
6) Chrion, R.E. ot al.: Phys. Rev.. C13. 578 (1976).
7) Weigmann, H. et al.: Phys. Rev.. C20. 115 (1969).
8) Igarasi, S.: J. Nucl. Sci. Technol., 12. 87 (1975).
8) lijima, S. et al.: JAERi-M 87-025, p. 337 (1987).
10) lijima. S. and Kawai. M.: J. Nucl. Sci. Technol. 20. 77(1983).
11) Perey. F.G: Phys. Rev. 131, 745 (1963).
12) Huizanga, J.R. and Igo, G.: Nucl. Phys. 29. 462 (1962).
13) Lohr, J.M. and Haeberli. W.: Nucl. Phys. A232. 381 (1974).
14) Becchetti. F.D., Jr. and Greenlees, G.W.: Polarization Phenomena in Nuclear Reactions, p. 682, The university of Wisconsin.Press. (1971).
15) Gilbart. A. and Cameron. A.G.W.: Can. J. Phys.. \(43.1446(1965)\).
16) lijima. S., ot al.: J. Nucl. Sci. Technol. 21. 10 (1984).
17) Gruppelaar. H.: ECN-13 (1977).
18) Foster Jr.D.G. and Glasgow D.W.: Phys. Rev., C3. 576 (1971).
19) Lambropoulos. P. et al.: Nucl. Phys., A201. 1 (1973).
20) Poenitz. W.P. and Whalen. J.F.: ANL/NDM-80 (1983)
21) Ledere. C.M., et al.: "Table of Isotopes, 7th Ed.", Wiley-

Interscience Publication (1978).
22) Mat sumoto. J., ot al.: JAERI-M 7734 (1978).
23) Benzi. V. and Reffo. G.: CCDN-NW/10 (1969).
24) Kikuchi, K. and Kawai, M.: "Nuclear Matter and Nuclear Reactions*, North Holland (1968).
26) Howerton, S.T. and Plechaty, E.F.: Nuci. Sci. Eng., 32, 178 (1868).
26) Morgan, G. and Newman, N.: ORNL-TM-5097 (1975).
27) Yamamuro. N. et al.: 1982 Antwerp. 152 (1982).
\[
\text { 42-Mo- } 92 \text { JNDC Eval-Aug89 JNDC FP Nuclear Data W.G. }
\]

Dist-Oct89

\section*{History}

84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/ 89-08 Modification for JENDL-3 was made/2/.
```

MF = 1 General information
MT=451 Comments and dictionary

```
```

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 50 keV
Resonance parameters were evaluated by Kikuchi et al./3/ on
the basis of the following experiments.
Transmission : Wasson et al./4/
Capture : Wasson et al./4/. Weigmann ot al./5/,
Musgrove et al./6/
Average radiative widths of 0.02 oV for s-wave res. and 0.425
eV for p-wave res were adopted. Scattering radius was taken
from Mughabghab et al./7/
Unresolved resonance region : 50 keV - 100 keV
The neutron strength functions. S0, S1 and S2 were calculated
with optical model code CASTHY/8/. The observed level
spacing was determined to reproduce the capture cross section
calculated with CASTHY/8/. The effective scattering radius
was obtained from fitting to the calculated total cross
saction at }100\textrm{keV}

```
 Typical values of the parameters at 70 keV :
 SO \(=0.369 \mathrm{E}-4, \mathrm{~S} 1=5.479 \mathrm{E}-4, \mathrm{~S} 2=0.364 \mathrm{E}-4, G G=0.226 \mathrm{oV}\)
 \(D_{0}=2252 \mathrm{oV}, R=6.746 \mathrm{fm}\).
 Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns)
 \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
 total 5.566
 elastic 5.545 -
 \(\begin{array}{lll}\text { capture } 0.02075 & 0.968\end{array}\)
NF \(=3\) Neutron cross sections
 Below 100 keV , resonance parameters were given. Above 100 keV .
 the spherical optical and statistical model calculation was
 performed with CASTHY/8/, by taking account of competing
 reactions, of which cross sections were calculated with
 PEGASUS/9/ standing on a preequilibrium and multi-step
 evaporation model. The OMP's for neutron given in Table 1 were
 determined by lijima et al./10/ to reproduce a systematic trend
 of the total cross section. The ONP's for charged particles are
 as follows:
 Proton = Perey/11/
 Alpha = Huizenga and Igo/12/
 Deuteron = Lohr and Haeberli/13/
 Helium-3 and triton = Becchetti and Greenlees/14/
 Parameters for the composite level density formula of Girbert
 and Cameron/15/ were evaluated by lijima et al./16/. More
 extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used ifi the present calculation. The energy dependence of spin cut-off parameter in the energy range below E-joint (EX) is due to Gruppelaar/17/.
\(M T=1\) Total
Spherical optical model calculation was adopted.
\(M T=2\) Elastic scattoring
Calculated as (total - sum of partial oross sections).
\(M T=4.51-81\) Inolastic scattering
Sphorical optical and statistical model calculation was adopted. The level scheme was taken from Ref./18/.
\begin{tabular}{ccc}
No. & Energy(MoV) & Spin-parity \\
GR. & 0.0 & \(0+\) \\
1 & 1.5095 & \(2+\) \\
2 & 2.2826 & \(4+\) \\
3 & 2.5197 & \(0+\) \\
4 & 2.5270 & \(5-\) \\
5 & 2.6130 & \(6+\) \\
6 & 2.7600 & \(8+\) \\
7 & 2.8497 & \(3-\)
\end{tabular}

Levels above 3.0 MeV were assumed to be overlapping.
MT = 102 Capture
Spherical optical and statistical model calculation with CASTHY/8/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/19/ and normalized to 1 milli-bern at 14 MoV .

The gamma-ray strength function (9.406E-05) was adjusted to reproduce the experimental capture cross section measured by Musgrove ot al,/5/.
\(M T=16\) (n,2n) Cross Section
MT \(=22\) (\(n, n^{\prime}\) a) Cross Section
MT \(=28 \quad\left(n, n^{\prime} p\right)\) Cross Section
MT \(=103\) (n,p) Cross Section
MT \(=104 \quad(n, d)\) Cross Saction
MT \(=105\) (n,t) Cross Section
MT \(=106\) (\(n, H 03\)) Cross Section
MT \(=107\) (n,alpha) Cross Section
\(M T=111\) (\(n, 2 p\)) Cross Section
These reaction cross sections were calculated with the preequilibrium and multi-step ovaporation model code PEGASUS/9/.

The Kalbach's constant \(K(=251.4)\) was estimated by the formula derived from Kikuchi-Kawai's formalism/20/ and level density parameters.

Finally. (n.p) and (n.alpha) cross sections were normalized to the following values at 14.5 MoV :
```

    (n,p) 116 mb (systematics of Forrest/21/)
    (n,alpha) 24 mb (measured by lкeda et al./22/)
    ```

The (\(n, 2 n\)) cross section was determined by eye-guiding of the data measured by Bormann ot al./23/ and Brolley et al./24/.
```

MT = 251 Mu-bar
Calculated with CASTHY/8/.

```

MF \(=4\) Angular Distributions of Secondary Neutrons Legandre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/8/.

NF \(=5\) Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/g/ for inelastic scattering to overlapping levels and for other noutron emitting reactions.

Table 1 Neutron Optical Potential Parameters
\begin{tabular}{|c|c|c|}
\hline Depth (MeV) & Radius(fm) & Diffuseness (fm) \\
\hline \(V=46.0-0.25 \mathrm{E}\) & \(R 0=5.893\) & a \(0=0.62\) \\
\hline \(W_{s}=7.0\) & \(\mathrm{Rs}_{3}=6.393\) & \(\Delta s=0.35\) \\
\hline Wso= 7.0 & Rso \(=5.893\) & aso \(=0.62\) \\
\hline
\end{tabular}

Table 2 Level Density Parameters
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & SYST & \(a(/ \mathrm{MeV})\) & T(& C(\(/ \mathrm{MeV}\)) & EX(Nra \({ }^{\text {a }}\) & Pairing \\
\hline 40-Zr-88 & - & \(1.404 E+01\) & \(7.388 \mathrm{E}-01\) & 4.832E-01 & 7.870E+00 & \(2.680 E+00\) \\
\hline 40-2r-89 & & 1.095E+01 & 8.280E-01 & 1.379E+00 & \(6.864 E+00\) & \(1.200 E+00\) \\
\hline 40-2r-90 & & 9.162E+00 & 8.222E-01 & 1.526E-01 & 6.383E+00 & \(2.130 E+00\) \\
\hline 40-Zr-91 & & 1.036E+01 & 8.000E-01 & 7.822E-01 & 5.057E+00 & 1.200E+00 \\
\hline 41-Nb-89 & - & 1.420E+01 & 7.303E-01 & 2.467E+00 & 6.611E+00 & \(1.460 E+00\) \\
\hline \(41-\mathrm{Nb}-90\) & - & \(1.385 \mathrm{E}+01\) & 7.222E-01 & 1.458E+01 & 4.869E+00 & 0.0 \\
\hline \(41-\mathrm{Nb}-91\) & - & 9.464E+00 & 7.143E-01 & 3.924E-01 & 3.082E+00 & 9.300E-01 \\
\hline \(41-\mathrm{Nb}-92\) & & 1.040E+01 & 8.410E-01 & 4.607E+00 & 4.477E+00 & 0.0 \\
\hline 42-MO-90 & - & 1.436E+01 & 7.222E-01 & \(4.129 t-01\) & \(7.834 E+00\) & 2.740E+00 \\
\hline 42-M0-91 & & 1.188E+01 & 7.820E-01 & 1.284E+00 & 5.770E+00 & 1.280E+00 \\
\hline 42-MO- 92 & & 1.084E+01 & 7.770E-01 & 2.082E-01 & 5.938E+00 & 2.210E+00 \\
\hline 42-Mo-93 & & 1.125E+01 & 7.800E-01 & 9.792E-01 & 5.457E+00 & \(1.280 E+00\) \\
\hline
\end{tabular}

SYST: * LDP's were determined from systematics.

Spin cut-off params were calculated as \(0.146=\operatorname{SORT}(a) \cdot A \cdot(2 / 3)\).
In the CASTHY caluculation, spin cut-off factors at 0 MeV were assurned to be 13.13 for Mo-92 and 5.000 for Mo-93.

\section*{References}
1) Aoki. T. et al.: Proc. Int. Conf. on Nuclear Data for Basic and Appliad Scionce. Santa Fe.. Vol. 2. p. 1627 (1985).
2) Kawai. M. of al.: Proc. Int. Conf. on Nuclear Data for Science and Technology. Mito. p. 569 (1888).
3) Kikuchi. Y. et al.: JAERI-M 86-030 (1986).
4) Wasson. O.A. ot al.: Phys. Rev.. C7. 1532 (1973).
5) Weigmann, H. et al.: 1971 Konoxvilfe. 749 (1971).
6) Musgrove. A.R.de L. et al.: Nucl. Phys.. A270. 108 (1976).
7) Mughabghab. S.F. et al.: *Neutron Cross Sections, Vol. 1. Part \(A^{-}\). Academic Press (1981).
8) Igarasi. S.: J. Nucl. Sci. Technol., 12. 67 (1975).
9) lijima. S. et al.: JAERI-M 87-025, p. 337 (1987).
10) Iijima, S. and Kawai. M.: J. Nucl. Sci. Technol., 20. 77 (1983)
11) Perey, F.G: Phys. Rev. 131. 746 (1983).
12) Huizenga. J.R. and lgo. G.: Nucl. Phys. 28. 462 (1962).
13) Lohr. J.M. and Haeberli. W.: Nucl. Phys. A232, 381 (1974).
14) Becchetti, F.D., Jr, and Greenlees. G.W.: Polarization Phenomena in Nuclear Reactions ((eds) H.H. Barshali and W. Haeberli). p. 682. The university of Wisconsin Press. (1971).
15) Gilbert. A. and Cameron. A.G.W.: Can. J. Phys., 43, 1446 (1965).
16) li íma. S., ot al.: J. Nucl. Sci. Technol. 21, 10 (1984).
17) Gruppolaar. H.: ECN-13 (1977).
18) Lederer. C.M. ot al.: "Table of Isotopes. 7th Ed." WileyInterscience Publication (1978).
19) Benzi, V. and Reffo, G.: CCDN-NW/10 (1969).
20) Kikuchi, K. and Kawai, M.: "Nuclear Matter and Nuclear Reactions*. North Holland (1968).
21) Forrost, R.A.: AERE-R 12419 (1986).
22) Ikeda, Y. ot al.: JAERI 1312 (1987).
23) Bormann et al.: Zeitsch. f. Physik., A277. 203 (1976).
24) Bralley Jr. ot al.: Phys. Rev., 88. 618 (1952).

MAT number \(=3422\)
42-Mo- 94 JNDC Eval-Aug89 JNDC FP Nuclear Date W.G.
Dist-Oct 89
History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-08 Modification for JENDL-3 was made/2/.
```

MF = 1 General information
MT=461 Comments and dictionary

```
MF \(=2\) Resonance parameters
 MT=151 Resolved and unresolved resonance parameters
 Resolved resonance region (MLBW formula) : below 20 keV
 Evaluation was made by Kikuchi et al./3/ on the basis of the
 following experimental deta:
 Capture : Weigmann et al./4/. Musgrove et al./5/
 Average radiative widths were assumed to be 0.135 eV and 0.175
 eV for s-wave and p-wave resonances. respectively.
 Unresolved resonance region : \(20 \mathrm{keV}-100 \mathrm{keV}\)
 The neutron strength functions. S0, S1 and S2 were calculated
 with optical model code CASTHY/6/.
 The observed level spacing was determined to reproduce the
 capture cross section calculated with CASTHY. The
 effective scattering radiu was obtained frum fitting to the
 calculated total cross section at 100 keV .
 Typical values of the parameters at 70 keV :
 \(S 0=0.369 E-4, S 1=5.479 E-4, S 2=0.365 E-4, G G=0.230 \mathrm{oV}\)
 \(D_{0}=1101 \mathrm{eV}, R=6.699 \mathrm{fm}\).
 Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns)
 \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
 total
 6.011
 -
 elastic \(\quad 5.998\)
 capture 0.01311
 1.40

MF \(=3\) Neutron cross sections
Below 100 keV , resonance parameters were given. Above 100 keV , the spherical optical and statistical model calculation was performed with CASTHY/6/. by taking account of competing reactions, of which cross sections were calculated with PEGASUS/7/ standing on a preequilibrium and multi-step evaporation model. The ONP's for neutron given in Table 1 were determined by lijima et al./8/ to reproduce a systematic trend of the total cros section. The OMP's for charged particles are as follows:

Proton = Perey/9/
Alpha \(=\) Huizenge and Igo/10/
Deuteron \(=\) Lohr and Haeberli/11/
Helium-3 and triton = Becchetti and Greenlees/12/
Parameters for the composite level density formula of GirbertCameron/13/ were evaluated by lijima et al./14/. More extensive determination and modification were made in the present work. Table 2 shows the level density parameters used in the present calculation. The energy dependence of spin cut-off parameter in the onergy range below E-joint (EX) is due
to Gruppelaar/15/.
MT \(=1 \cdot\) Total
Spherical optical model calculation was adopted.
MT \(=2\) Elastic scattering
Calculated as (total - sum of partial cross sections).
MT = 4, 51-91 Inelastic scattoring
Spherical optical and statistical model calculation was
adopted. The level scheme was taken from Ref./16/.
\begin{tabular}{ccc}
No. & Energy(MeV) & Spin-parity \\
GR. & 0.0 & \(0+\) \\
1 & 0.8710 & \(2+\) \\
2 & 1.5737 & \(4+\) \\
3 & 1.7420 & \(0+\) \\
4 & 1.8642 & \(2+\) \\
5 & 2.0674 & \(2+\) \\
6 & 2.2940 & \(4+\) \\
7 & 2.3930 & \(2+\) \\
8 & 2.4230 & \(6+\) \\
9 & 2.5337 & \(3-\) \\
10 & 2.5670 & \(4+\) \\
11 & 2.6100 & \(5-\) \\
Is above & 2.74 MoV were assumed to be overlapping.
\end{tabular}

MT \(=102\) Capture
Spherical optical and statistical model calculation with CASTHY/6/ was adopted. Direct and semi-diract capture cross sections were estimated according to the procedure of Benzi and Reffoli7l and normalized to 1 milli -barn at 14 MeV .

The gamma-ray strength function (\(=1.966 E-4\)) was adjusted to reproduce the experimental capture cross section of 54.5 milli-barns at 100 keV measured by Musgrove ot al./5/.

MT \(=16\) (\(\mathrm{n}, 2 \mathrm{n}\)) Cross Section
MT \(=17\) (\(n, 3 n\)) Cross Section
MT \(=22\) (\(n . n^{\prime} a\)) Cross Section
MT \(=28\) (\(n, n^{\prime} p\)) Cross Section
MT \(=32\) (\(n, n\) 'd) Cross Section
MT \(=103\) (\(n, p\)) Cross Section
MT \(=104\) (n.d) Cross Section
MT =105 (n.t) Cross Section
MT \(=106\) (n.He3) Cross Section
MT \(=107\) (n.alpha) Cross Section
MT =111 (n.2p) Cross Section
Thece reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code PEGASUS 171.

The Kalbach's constant K (= 151.7) was ostimated by the formula derived from Kikuchi-Kawai's formalism/18/ and level density parameters.

Finally. (n.p) and (n.alpha) cross sections were normalized to .
```

the following values at 14.5 MoV:
(n,p) 55.10 mb (systematics of Forrest/19/)
(n,alpha) 17.50 mb (recommended by Forrest/19/)

```
 MT \(=251\) Mu-bar
 Calculated with CASTHY/6/.
\(M F=4\) Angular Distributions of Secondary Noutrons
 Legendre polynomial coeffioionts for angular distributions are
 given in the center-of mass aystom for MT=2 and discrete inelas-
 tic levels, and in the laboratory system for MT=91. They were
 calculated with CASTHY/6/.
MF \(=5\) Energy Distributions of Secondary Neutrons
 Energy distributions of secondary neutrons were calculated with
 PEGASUS/7/ for inelastic scattering from overlapping levels
 and for other neutron emitting reactions.

Table 1 Noutron Optical Potential Parameters
\begin{tabular}{|c|c|c|}
\hline Depth (MoV) & Radius (fm) & Diffuseness(fm) \\
\hline \(V=46.0-0.25 \mathrm{E}\) & \(\mathrm{RO}=5.893\) & \(a 0=0.62\) \\
\hline \(W_{s}=7.0\) & \(\mathrm{Re}_{8}=6.393\) & \(a 8=0.35\) \\
\hline Wso \(=7.0\) & Rao \(=5.893\) & aso \(=0.62\) \\
\hline
\end{tabular}

Table 2 Leval Density Parameters
\begin{tabular}{|c|c|c|c|c|c|}
\hline Nuc & a & T(MoV) & & EX(MeV) & \\
\hline 90 & 9.152E+00 & 8.222E-01 & 1. & \(5.383 E+00\) & 2. \\
\hline 40-2r-91 & \(1.036 \mathrm{E}+01\) & 8.000E-01 & 7.822E-01 & \(5.057 \mathrm{E}+00\) & 1.200E+00 \\
\hline 40-2r-92 & \(1.088 \mathrm{E}+01\) & 8.192E-01 & 5.122E-01 & 6.429E+00 & 1.920E+00 \\
\hline 40-Zr-93 & \(1.298 E+01\) & 7.000E-01 & \(1.273 E+00\) & \(5.183 \mathrm{E}+00\) & 1 \\
\hline - \(\mathrm{Nb}-91\) & \(9.464 E+00\) & 7.143E-01 & 3.924E-01 & 3.082E+00 & 9.30 \\
\hline Nb- 92 & \(1.040 E+01\) & 8.410E-01 & 4.607E+00 & 4.477E+00 & 0.0 \\
\hline 41 - 4 b- 93 & \(1.250 E+01\) & 7.120E-01 & 2.205E+00 & 4.629E+00 & 7.200E-0 \\
\hline 41-No-94 & 1.281E+01 & 7.230E-01 & 7.763E+00 & 250E+00 & 0.0 \\
\hline 42-Mo- 92 & 1.064E+0 & 7.770E-01 & 2.062E-01 & \(5.938 \mathrm{E}+00\) & \(2.210 \mathrm{E}+00\) \\
\hline 42-Mo-93 & \(1.125 \mathrm{E}+01\) & 7.800E-01 & 9.792E-01 & 5.457E+00 & 1.280E+00 \\
\hline 42-Mo-94 & 1.301E+01 & 6.850E-01 & 3.417E-01 & 5.770E+00 & \(2.000 \mathrm{E}+00\) \\
\hline 42-Mo- 95 & 1.360E+0 & .150E-0 & 1.847E+00 & 835E+ & 28 \\
\hline
\end{tabular}

SYST: * \(=\) LDP's were determined from systematics.

Spin cut-off params were calculated as \(0.146=\operatorname{SQRT}(a)=A=*(2 / 3)\). In the CASTHY caluculation, spin cut-off factors at 0 MeV were assumed to be 7.761 for Mo-94 and 6.184 for Mo-95.

\section*{References}
1) Aoki. T. et al.: Proc. Int. Conf. on Nuclear Data for Basic and Applied Science. Santa Fe.. Vol. 2, p. 1627 (1985).
2) Kawai. M. ot al.: Proc. Int. Conf. on Nuclear Data for Science and Technology. Mito. p. 569 (1988).
3) Kikuchi. Y. ot al.: JAERI-M 86-030 (1986).
4) Woigmann H. ot al.: i971 Knoxvillo. 749 (1971).
5) Musgrove A.R.de L.: Nucl. Phys., A270, 108 (1976).
6) Igarasi, S.: J. Nucl. Sci. Technol.. 12. 67 (1975).
7) Iijima. S. ot al.: JAERI-M 87-025, p. 337 (1987)
8) Iijima. S. and Kawai. M.: J. Nucl. Sci. Technol, , 20, 77 (1983).
9) Perey, F.G: Phys. Rev. 131. 745 (1963),
10) Huizonga, J.R. and lgo. G.: Nucl. Phys. 29. 462 (1962).
11) Lohr. J.M. and Haoborli. W.: Nucl. Phys. A232. 381 (1974).
12) Becchetti. F.D., Jr. and Greonloes, G.W.: Polarization Phenomena in Nuclear Reactions ((ads) H.H. Barshall and W. Haoberli). p. 682. The university of Wisconsin Press. (1871).
13) Gilbert, A. and Cameron. A.G.W.: Can. J. Phys.. 43. 1446 (1965).
14) Iijima, S.. ot al.: J. Nucl. Sci. Technol. 24. 10 (1984).
15) Gruppelaar. H.: ECN-13 (1977).
16) Lederer, C.M., ot al.: "Table of lsotopes. 7th Ed.". WileyInterscience Publication (1978).
17) Benzi, V. and Reffo. G.: CCDN-NW/10 (1969).
18) Kikuchi, K. and Kawai. M.: "Nuclear Matter and Nuclear Reactions". North Holland (1968).
19) Forrost. R.A.: AERE-R 12419 (1986).
42-Mo-95 JNDC \begin{tabular}{c}
Eval-Aug89 JNDC FP Nuclear Data W.G. \\
Dist-Oct89
\end{tabular}

History
84-10 Evaluation for JENDL-2 was made by JNOC FPNO W.G.11/ 89-08 Modification for JENDL-3 was made/2/.
```

MF = 1 General information
MT=451 Comments and dictionary
MF = 2 Resonance paremeters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 2 keV
Evaluation was made by Kikuchi et al./3/ on the basis of
the following experimental data.
Transmission : Shwe et al./4/
Capture: Woigmann et al./5/
Assumed Gam-g : 0.150 oV for s-wave and 0.180 eV for
p-wave resonance.

```
 A negative resonance was added at \(\mathbf{- 2 0} \mathrm{oV}\). Values of total
 spin \(J\) were assumed arbitrarily for levals whose \(J\) has not
 been determined.
 Unresolved resonance region : \(2 \mathrm{koV}-100 \mathrm{keV}\)
 The neutron strength functions, S0, S1 and S2 were calculated
 with opticai model code CASTHY/6/. The observed level
 spacing' was determined to reproduce the capture cross section
 calculated with CASTHY. The offective scattering radius was
 obtained from fitting to the calculated total cross section at
 100 keV .
 Typical values of the parameters at 70 keV :
 SO \(=0.369 \mathrm{E}-4, \mathrm{~S} 1=5.479 \mathrm{E}-4, \mathrm{~S} 2=0.365 \mathrm{E}-4, \mathrm{GG}=0.232 \mathrm{oV}\)
 \(D_{0}=76.12 \mathrm{oV}, R=6.680 \mathrm{fm}\).
 Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns)
 \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
 total 19.560 -
 olastic 5.566 -
 \(\begin{array}{lll}\text { capture } & 13.99 & 119\end{array}\)
MF \(=3\) Neutron cross sections
 Below 100 keV , resonance parameters were given. Above 100 keV ,
 the spherical optical and statistical model calculation was
 performed with CASTHY/6/, by taking account of competing
 reactions, of which cross sections were calculated with
 PEGASUS/7/ standing on a preequilibrium and multi-step
 evaporation model. The OMP's for neutron given in Table 1 were
 determined by lijima et al./8/ to reproduce a systematic trend
 of the total cross section. The OMP's for charged particles are
 as foliows:
 Proton = Perey/9/
 Alpha = Huizenga and Igo/io/
 Deuteron = Lohr and Haeberli/11/
 Helium-3 and triton = Becchetti and Greenlees/12/
 Parameters for the composite level density formula of Girbert
 and Cameron/13/ were evaluated by lijima et al./14/. More
extensive determination and modification were made in the present work. Table 2 shows the level density parameters used in the present calculation. Energy dependence of spin cut-off parameter in the energy range below E-joint is due to Gruppelaar /15/.

\section*{MT = 1 Total}

Spherical optical model calculation was adopted.
\(M T=2\) Elastic scattoring
Calculated as (total - sum of partial cross sections).
MT \(=4.51\) - 91 Inelastic scattoring
Spherical optical and statistical model calculation was
adopted. The level scheme was taken from Ref./16/.
\begin{tabular}{rcr}
No. & Energr (MeV) & Spin-par \\
GR. & 0.0 & \(5 / 2+\) \\
1 & 0.2039 & \(3 / 2+\) \\
2 & 0.7658 & \(7 / 2+\) \\
3 & 0.7862 & \(1 / 2+\) \\
4 & 0.8206 & \(3 / 2+\) \\
5 & 0.9478 & \(9 / 2+\) \\
6 & 1.0381 & \(1 / 2+\) \\
7 & 1.0580 & \(6 / 2+\) \\
8 & 1.0741 & \(7 / 2+\) \\
9 & 1.2226 & \(6 / 2+\) \\
10 & 1.3100 & \(1 / 2+\) \\
11 & 1.3760 & \(3 / 2+\) \\
12 & 1.4330 & \(5 / 2+\) \\
13 & 1.5410 & \(11 / 2+\) \\
14 & 1.5528 & \(9 / 2+\) \\
15 & 1.6202 & \(3 / 2+\) \\
16 & 1.6700 & \(5 / 2+\) \\
17 & 1.6830 & \(9 / 2+\) \\
18 & 1.7070 & \(1 / 2+\) \\
19 & 1.9380 & \(11 / 2-\)
\end{tabular}

Levels above 2.0 MeV were assumed to be overlapping.
MT \(=102\) Capture
Spherical optical and statistical model calculation with CASTHY/6/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/17/ and normalized to 1 milli-barn at 14 MoV .

The gamma-ray strongth function (2.976E-03) was adjusted to -oproduce the experimental capture cross section of 0.4 barn מt 30 keV measured by Musgrove et al./18/
\(M T=16\) (n, 2n) Cross Section
\(M T=17\) (n.3n) Cross Section
MT \(=22\) (\(n, n^{\circ}\) a) Cross Section
\(M T=28\) (\(n, n^{\circ} p\)) Cross Section
MT \(=32\) (\(n, n \cdot d\)) Cross Section
MT \(=103\) (\(n, p\)) Cross Section
MT \(=104\) (n.d) Cross Section
MT \(=105\) (n.t) Cross Section
```

MT =106 (n,He3) Cross Section
MT =107 (n.alpha) Cross Section
These reaction cross sections were calculated with the
preequilibrium and multi-step evaporation model code
PEGASUS/7/.

```

The Kalbach's constant \(K(=142.6)\) was estimated by the formula derived from Kikuchl-Kawai's formalism/19/ and level density parameters.

Finally, (\(n, p\)) and (\(n\), alpha) cross sections were normalized to the following values at 14.5 MeV :
\begin{tabular}{llll}
(\(n, p\)) & 38.00 & mb (recommended by Forrest/20/) \\
(\(\mathrm{n}, \mathrm{alpha}\)) & 13.50 mb (recommended by Forrest/20/)
\end{tabular}

MT = 251 Mu-bar
Calculated with CASTHY/6/.
MF \(=4\) Angular Listributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic lovels, and in the laboratory system for MT=91. Thoy wore calculated with CASTHY/6/.

\section*{NF \(=5\) Energy Distributions of Secondary Neutrons}

Energy distributions of secondary noutrons wore calculated with PEGASUS/7/ for inolastic scettering from overlapping lovels and for other nautron emitting reactions.

Table 1 Neutron Optical Potential Paramoters
\begin{tabular}{|c|c|c|}
\hline Depth (MeV) & Radius (fm) & Diffuseness (fm) \\
\hline \(V=46.0-0.25 E\) & \(R 0=5.893\) & \(a 0=0.62\) \\
\hline \(W_{s}=7.0\) & Rs \(=6.393\) & as \(=0.35\) \\
\hline \(W_{\text {so }}=7.0\) & Rso \(=5.893\) & \(\mathrm{aso}=0.62\) \\
\hline
\end{tabular}

Table 2 Levol Donsity Parameters
\begin{tabular}{llllll}
Nuclide & \(a(/ \mathrm{MeV})\) & \(\mathrm{T}(\mathrm{MeV})\) & \(\mathrm{C}(/ \mathrm{MeV})\) & \(\mathrm{EX}(\mathrm{MeV})\) & Pairing \\
\hline \(40-\mathrm{Zr}-91\) & \(1.036 \mathrm{E}+01\) & \(8.000 \mathrm{E}-01\) & \(7.822 \mathrm{E}-01\) & \(5.057 \mathrm{E}+00\) & \(1.200 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-92\) & \(1.088 \mathrm{E}+01\) & \(8.192 \mathrm{E}-01\) & \(5.122 \mathrm{E}-01\) & \(6.429 \mathrm{E}+00\) & \(1.920 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-93\) & \(1.298 \mathrm{E}+01\) & \(7.000 \mathrm{E}-01\) & \(1.273 \mathrm{E}+00\) & \(5.183 \mathrm{E}+00\) & \(1.200 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-94\) & \(1.275 \mathrm{E}+01\) & \(7.530 \mathrm{E}-01\) & \(4.411 \mathrm{E}-01\) & \(7.019 \mathrm{E}+00\) & \(2.320 \mathrm{E}+00\) \\
& & & & & \\
\(41-\mathrm{Nb}-92\) & \(1.040 \mathrm{E}+01\) & \(8.410 \mathrm{E}-01\) & \(4.607 \mathrm{E}+00\) & \(4.477 \mathrm{E}+00\) & 0.0 \\
\(41-\mathrm{Nb}-93\) & \(1.250 \mathrm{E}+01\) & \(7.120 \mathrm{E}-01\) & \(2.205 \mathrm{E}+00\) & \(4.629 \mathrm{E}+00\) & \(7.200 \mathrm{E}-01\) \\
\(41-\mathrm{Nb}-94\) & \(1.281 \mathrm{E}+01\) & \(7.230 \mathrm{E}-01\) & \(7.763 \mathrm{E}+00\) & \(4.250 \mathrm{E}+00\) & 0.0 \\
\(41-\mathrm{Nb}-95\) & \(1.277 \mathrm{E}+01\) & \(7.500 \mathrm{E}-01\) & \(2.121 \mathrm{E}+00\) & \(5.782 \mathrm{E}+00\) & \(1.120 \mathrm{E}+00\) \\
\(42-\mathrm{Mo}-93\) & \(1.125 \mathrm{E}+01\) & \(7.800 \mathrm{E}-01\) & \(9.792 \mathrm{E}-01\) & \(5.457 \mathrm{E}+00\) & \(1.280 \mathrm{E}+00\) \\
\(42-\mathrm{Mo}-94\) & \(1.301 \mathrm{E}+01\) & \(6.850 \mathrm{E}-01\) & \(3.417 \mathrm{E}-01\) & \(5.770 \mathrm{E}+00\) & \(2.000 \mathrm{E}+00\) \\
\(42-\mathrm{Mo}-95\) & \(1.360 \mathrm{E}+01\) & \(7.150 \mathrm{E}-01\) & \(1.847 \mathrm{E}+00\) & \(5.835 \mathrm{E}+00\) & \(1.280 \mathrm{E}+00\) \\
\(42-\mathrm{Mo}-96\) & \(1.403 \mathrm{E}+01\) & \(7.410 \mathrm{E}-01\) & \(6.991 \mathrm{E}-01\) & \(7.645 \mathrm{E}+00\) & \(2.400 \mathrm{E}+00\)
\end{tabular}

Spin cut-off params were calculated as 0.146*SQRT(a)-A..(2/3). In the CASTHY caluculation, spin cut-off factors at 0 MeV were assumed to be 6.184 for Mo-95 and 7.696 for Mo-96.

\section*{References}
1) Aoki, T. ot al.: Proc. Int. Conf. on Nuclear Data for Basic and Applied Science. Santa Fo.. Vol. 2. p. 1627 (1985).
2) Kawal. M. ot al.: Proc. Int. Conf. on Nuclear Data for Sclence and Technology. Mito, p. 569 (1988).
3) Kikuchi Y. et al.: JAERI-M 86-030 (1986).
4) Shwe H. and Cote R.E.: Phys. Rev. 179, 1148 (1969).
5) Weigmann H. ot al.: 1971 Knoxville. 749 (1971).
6) Igarasi, S.: J. Nucl. Sci. Technol., 12, 67 (1975).
7) lijima, S. et al.: JAERI-M 87-025, p. 337 (1987).
8) Iijima, S. and Kawai. M.: J. Nucl. Sci. Technol., 20, 77 (1983).
9) Peroy. F.G: Phys. Rev. 131, 745 (1963).
10) Huizenga, J.R. and Igo. G.: Nucl. Phys. 29, 462 (1962).
11) Lohr, J.M. and Haeberli. W.: Nucl. Phys. A232, 381 (1974).
12) Becchetti. F.D.. Jr. and Greenlees. G.W.: Polarization Phenomena in Nuclear Reactions ((eds) H.H. Barshall and W. Haeberli), p. 682. The university of Wisconsin Press. (1971).
13) Gilbert. A. and Cameron, A.G.W.: Can. J. Phys., 13, 1446 (1965).
14) Itijima, S.. ot al.: J. Nuol. Soi. Tuchnol. 21, 10 (1984).
15) Gruppolaar. H.: ECN-13 (1977).
i6) Lederer. C.M., ot al.: "Table of lsotopes. 7th Ed." WileyInterscience Publication (1978).
17) Benzi. V. and Reffo. G.: CCDN-NW/10 (1969).
18) Musgrove A.R.de L. et al.: Nucl. Phys., A270, 108 (1976).
19) Kikuchi, K. and Kawai. M.: -Nuclear Matter and Nuclear Reactions*, North Holland (1968).
20) Forrest. R.A.: AERE-R 12418 (1986).

42-Mo-96 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G. Dist-Oct89
History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/ 89-08 Modification for JENDL-3 was made/2/.

MF \(=1\) General information
MT=451 Comments and dictionary
MF \(=2\) Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 19 keV Evaluation was made by Kikuchi ot al. 13 /

Capture : Weigmann ot al./4/. Musgrove ot al./5/ Average radiative widths were assumed to be 0.114 eV and 0.136 oV for s-wave and p-wave resonances. respectively.
Unresolved resonance region : \(19 \mathrm{keV}-100 \mathrm{keV}\) The noutron strength functions. SO. S1 and S2 were calculated with optical model code CASTHY/6/. The observed level spacing was determined to reproduce the capture cross section calculated with CASTHY. The offective scattering radius was obtained from fitting to the calculated total cross section at 100 keV .

Typical values of the parameters at 70 keV : \(\mathrm{SO}=0.370 \mathrm{E}-4, \mathrm{~S} 1=5.480 \mathrm{E}-4, \mathrm{~S} 2=0.36 \mathrm{EE}-4, \mathrm{GG}=0.162 \mathrm{dV}\) \(D_{0}=93.33\) oV, \(R=6.698 \mathrm{fm}\).

Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns) \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
\begin{tabular}{ll}
total & 5.322 \\
olastic & 4.727
\end{tabular}
capture 0.5954
-
17.5

MF \(=3\) Noutron cross sections
Below 100 keV , resonance parameters were given. Above 100 keV , the spherical optical and statistical model calculation was performed with CASTHY/6/, by taking account of competing reactions. of which cross sections were calculated with PEGASUS/7/ standing on a preequilibrium and multi-step evaporation model. The OMP's for neutron given in Table 1 were determined by lijima ot al./8/ to reproduce a systematic trend of the total cross section. The OMP's for charged particles are as follows:

Proton = Perey/9/
Alpha \(=\) Huizenga and lgo/10/
Douteron \(=\) Lohr and Haeberli/11/
Helium-3 and triton = Becchetti and Greenlees/12/
Parameters for the composite level density formula of Girbert and Cemeron/13/ were evaluated by lijima et al./14/. More extensive determination and modification were made in the present work. Table 2 shows the level density paremeters used in the present calculation. Energy dependence of spin cut-off parametor in the energy range below E-joint is due to Gruppelaar /15/.
\[
M T=1 \quad \text { Total }
\]

Spherical optical model calculation was adopted.
```

MT = 2 Elastic scattering

```
 Calculated as (total - sum of partial cross sections).
MT = 4, 51-91 Inelastic scattering
 Spherical optical and statistical model celculation was
 adopted. The level scheme was taken from Ref./16/.
\begin{tabular}{ccc}
No. & Energy (MeV) & Spin-parity \\
GR. & 0.0 & \(0+\) \\
1 & 0.7783 & \(2+\) \\
2 & 1.1479 & \(0+\) \\
3 & 1.4978 & \(2+\) \\
4 & 1.6280 & \(2+\) \\
5 & 1.6280 & \(4+\) \\
6 & 1.8695 & \(4+\) \\
7 & 1.9783 & \(3+\) \\
8 & 2.0956 & \(2+\) \\
9 & 2.2193 & \(4+\) \\
10 & 2.2345 & \(3+\) \\
11 & 2.4262 & \(3+\) \\
12 & 2.4384 & \(6+\) \\
13 & 2.4406 & \(6+\) \\
14 & 2.4807 & \(4+\) \\
1s above 2.5 MoV wore assumed to be overlapping.
\end{tabular}
```

MT = 102 Capture

```
 Spherical optical and statistical model calculation with
 CASTHY/6/ was adopted. Direct and semi-direct capture cross
 sections were estimated according to the procedure of Benzi
 and Reffo/17/ and normalized to \(1 \mathrm{milli-barn}\) at 14 MoV .
 The gamma-ray strength function (1.623E-04) was adjusted to
 reproduce the experimental capture cross section
 measured by Musgrove et al./5/
MT \(=16\) (\(n, 2 n\)) Cross Section
MT \(=17\) (n,3n) Cross Section
MT \(=22\) (n.n'a) Cross Section
MT \(=28\) (\(n . n^{\prime} p\)) Cross Section
MT \(=32\) (\(n, n^{\prime}\) d) Cross Section
MT \(=103\) (n,p) Cross Section
MT =104 (n.d) Cross Section
MT \(=105\) (n.t) Cross Section
MT \(=107\) (n.alpha) Cross Section

These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code PEGASUS/7/.

The Kalbach's constant K (=116.4) was ostimated by the formula derived from Kikuchi-Kawai's formalism/18/ and level density parameters.

Finally, (n,p) and (n,alpha) cross sections were normalized to
```

the following values at 14.5 MeV:
(n,p) 23.00 mb (measured by lkeda et al./19/)
(n.alpha) 10.00 mb (recommended by Forrest/20/)

```
MT \(=251 \quad\) Mu-bar
 Calculated with CASTHY/6/.

MF \(=4\) Angular Distributions of Secondary Neutrons
Legendro polynomial coofficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic lovels. and in the laboratory systom for MT=91. They were calculated with CASTHY/6/.
```

MF = 5 Energy Distributions of Secondery Neutrons
Energy distributions of secondary noutrons were calculated with
PEGASUS/7/ for inolastic scattering from overlapping levels
and for other noutron emitting reactions.

```

Table 1 Neutron Optical Potential Parameters

Table 2 Level Density Parametors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Nuclide & o(/MoV) & T(MoV) & C(/ MoV) & EX(MoV) & Pairing \\
\hline 40-2r-92 & \(1.088 \mathrm{E}+01\) & 8.192E-01 & 5.122E-01 & \(6.429 E+00\) & 1.920E+00 \\
\hline 40-2r-93 & 1.298E+01 & 7.000E-01 & 1.273E+00 & \(5.183 \mathrm{E}+00\) & 1.200E+00 \\
\hline 40-2r--94 & 1.275E+01 & 7.530E-01 & 4.411E-01 & \(7.019 \mathrm{E}+00\) & \(2.320 \mathrm{E}+00\) \\
\hline 40-2r-95 & 1.331E+01 & 6. \(070 \mathrm{E}-01\) & 5.453E-01 & 3.985E+00 & 1.200E+00 \\
\hline \(41-\mathrm{Nb}-93\) & 1.250E+01 & 7.120E-01 & 2.205E+00 & 4.629E+00 & 7.200E-01 \\
\hline \(41-\mathrm{Nb}-94\) & 1.281E+01 & 7.230E-01 & 7.763E+00 & \(4.250 E+00\) & 0.0 \\
\hline 41-Nb-95 & 1.277E+01 & 7.500E-01 & 2,121E+00 & 5.782E+00 & 1.120E+00 \\
\hline 41-Nb-96 & 1.331E+01 & 5.880E-01 & 3.406E+00 & 2.530E+00 & 0.0 \\
\hline 42-No- 94 & 1.301E+01 & 6.850E-01 & 3.417E-01 & \(5.770 \mathrm{E}+00\) & 2.000E+00 \\
\hline 42-Mo- 95 & 1.360E+01 & 7.150E-01 & 1.847E+00 & \(5.835 \mathrm{E}+00\) & 1.280E+00 \\
\hline 42-MO- 96 & \(1.403 E+01\) & 7.410E-01 & 6.991E-01 & 7.645E+00 & 2.400E+00 \\
\hline 42-Mo- 97 & 1.517E+01 & 6.800E-01 & 2.769E+00 & 6.036E+00 & 1.280E+00 \\
\hline
\end{tabular}

Spin cut-off params were calculated as 0.146-SQRT(a)-A=-(2/3). In the CASTHY caluculation, apin cut-off factors at 0 MoV were assumed to be 7.696 for Mo- 96 and 7.075 for Mo- 97.

\section*{References}
1) Aoki, T. ot aj.: Proc. Int. Conf. on Muclear Data for Basic and Applied Science. Santa Fe.. Vol. 2. p. 1627 (1985).
2) Kawai. M. ot al.: Proc. Int. Conf. on Nuclear Data for Science and Technology, Mito, p. 569 (1988).
3) Kikuchi. Y. et al.: JAERI-M 86-030 (1986).
4) Woigmann H. et al.: 1971 Knoxville. 749 (1971).
5) Musgrove A.R.de L.: Nucl. Phys.. A270, 108 (1976).
6) Igarasi, S.: J. Nucl. Sci. Tochnol., 12. 67 (1975).
7) lijima, S. ot al.: JAERI-M 87-025, p. 337 (1987).
8) Lijima, S. and Kawai. M.: J. Nucl. Sci. Technol., 20, 77 (1983).
9) Peroy, F.G: Phys. Rev. 131. 745 (1963).
10) Huizenga, J.R. and Igo, G.: Nucl. Phys. 29, 462 (1962).
11) Lohr, J.M. and Haoberli, W.: Nucl. Phys. A232, 381 (1974).
12) Becchetti, F.D.. Jr. and Greenleos. G.W.: Polarization Phenomena in Nuclear Reactions ((eds) H.H. Barshall and W. Haeberli), p. 682. The university of Wisconsin Press. (1971).
13) Gilbert, A. and Cameron. A.G.W.: Can. J. Phys., 43, 1446 (1965).
14) Iijima, S.. ot ol.: J. Nucl. Sci. Technol. 21. 10 (1984).
15) Gruppolaar. H.: ECN-13 (1977).
16) Matsumoto, J., ot al.: JAERI-M 7734 (1978).
17) Benzi, V. and Reffo, G.: CCDN-NW/10 (1969).
18) Kikuchi. K. and Kawai. M.: "Nuclear Matter and Nuclear Reactions". North Holland (1968).
19) Ikeda. Y. ot al.: JAERI 1312 (1988).
20) Forrest, R.A.: AERE-R 12419 (1986).

42-Mo- 97 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G.
Dist-Oct89
```

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-08 Modification for JENDL-3 was made/2/.
MF=1 General information
MT=461 Comments and dictionary
NF=2 Resonance parameters
MT=151 Resolved and unresolved resmnance parameters
Resolved resonance region (NLBW formula) : below 1.8 keV
Evaluation was made by Kikuchi et al./3/ on the basis of the
following experimental deta.
Transmission : Shwe et al./4/
Capture: Weigmann et al./5/
Assumed Gamme-g : 0.130 eV for s-wave and 0.150 eV for
p-wave resonances.
A negative resonance added at -20 oV. Values of total spin J
wore assumed arbitrarily for lovels whose j has not been
determined.
Unresolved resonance region : 1.8 keV - 100 keV
The neutron etrength functions, S0, S1 and S2 were calculated
with optical model code CASTHY/6/. The observed lovel
spacing was determined to reproduce the capture crose section
calculated with CASTHY. The offective scattering radius was
obtained from fitting to the calculated total cross section at
100 keV.

```
 Typical values of the parameters at 70 keV :
 \(S 0=0.370 E-4, S 1=5.479 E-4, S 2=0.365 E-4, G G=0.180 \mathrm{eV}\)
 \(D_{0}=58.76\) oV. \(R=6.687 \mathrm{fm}\).
 Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns)
 \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
 total \(\quad 7.957\)
 -
 elastic 5.857
 capture 2.100
 17.1
\(N F=3\) Neutron cross sections
 Below 100 keV. resonance parameters were given. Above 100 keV .
 the spherical optical and etatistical model calculation was
 performed with CASTHY/6/, by taking account of competing
 reactions, of which cross sections were calculated with
 PEGASUS/7/ standing on a preequilibrium and multi-step
 evaporation model. The OMP's for neutron given in Table 1 were
 determined by lijime et al./8/ to reproduce a systematic trend
 of the total cross section. The OMP's for charged particles are
 as follows:
 Proton = Perey/9/
 Alpha \(=\) Huizenga and Igo/10/
 Douteron \(=\) Lohr and Haeberli/11/
 Helium-3 and triton = Becchetti and Greenlees/12/
 Paremeters for the composite level density formula of Girbert
 and Cameron/13/ were ovaluated by lijima et al./14/. More
extensive determination and modification were made in the present work. Table 2 shows the level density jarameters used in the present calculation. Energy dependence of spin cut-off parameter in the energy range below E-joint is due to Gruppelaar /15/.

MT \(=1\) Total
Spherical optical model calculation was adopted.
\(M T=2\) Elastic scattering
Calculated as (total - sum of partial cross sections).
MT = 4, 61-91 Inelastic scattering
Spherical optical and statistical model calculation was adopted. The level scheme was taken from Rof./16/.
\begin{tabular}{ccc}
No. & Energy (MoV) & Spin-parity \\
GR. & 0.0 & \(5 / 2+\) \\
1 & 0.4809 & \(3 / 2+\) \\
2 & 0.6579 & \(7 / 2+\) \\
3 & 0.6796 & \(1 / 2+\) \\
4 & 0.7195 & \(5 / 2+\) \\
5 & 0.7211 & \(3 / 2+\) \\
6 & 0.8882 & \(1 / 2+\) \\
7 & 1.0246 & \(7 / 2+\) \\
8 & 1.0926 & \(3 / 2+\) \\
9 & 1.1167 & \(8 / 2+\) \\
10 & 1.1486 & \(7 / 2+\) \\
11 & 1.2686 & \(7 / 2+\) \\
12 & 1.2730 & \(3 / 2+\) \\
13 & 1.2840 & \(13 / 2+\) \\
14 & 1.2846 & \(3 / 2+\) \\
15 & 1.4095 & \(11 / 2+\) \\
16 & 1.4373 & \(11 / 2+\) \\
17 & 1.4470 & \(3 / 2+\) \\
18 & 1.5156 & \(8 / 2+\) \\
19 & 1.5452 & \(5 / 2+\) \\
20 & 1.5651 & \(3 / 2+\)
\end{tabular}

Levels above 1.58 MoV were assumed to be overlapping.
\(M T=102\) Capture
Spherical optical and statistical model calculation with CASTHY/6/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/17/ and normalized to 1 milli ibarn at 14 MoV .

The germma-ray strength function (2.876E-03) was adjusted to reproduce the experimental capture cross section moasured by Musgrove ot al. \(118 /\)
```

MT = 16 (n,2n) Cross Section
MT = 17 (n,3n) Cross Section
MT = 22 (n,n'a) Cross Section
MT = 28 (n,n'p) Cross Section
MT = 32 (n,n'd) Cross Section
MT =103 (n.p) Cross Section
MT =104 (n,d) Cross Section

```
```

MT =105 (n,t) Cross Section
MT =106 (n,He3) Cross Section
MT =107 (n,alpha) Cross Section

```
 These reaction cross sections were calculated with the
 preequilibrium and multi-step evaporation model code
 PEGASUS/7/.
 The Kalbach's constant \(K(=103.4)\) was estimated by the
 formula derived from Kikuchi-Kawai's formalism/ig/ and level
 density parameters.
 Finally, (\(n, p\)) and (\(n, a \mid p h a\)) cross sections were normalized to
 the following values at 14.5 MeV :
 \(\begin{array}{lrl}(n, p) & 17.00 & \mathrm{mb} \text { (measured by Ikeda et al./20/) } \\ \text { (} \mathrm{n}, \mathrm{alpha} \text {) } & 7.50 \mathrm{mb} \text { (recommended by Forrest/21/) }\end{array}\)
MT \(=251\) Mu-bar
 Calculated with CASTHY/6/.
MF \(=4\) Angular Distributions of Secondary Noutrons
 Legendre polynomial coefficients for angular distributions are
 given in the center-of-mass system for \(M T=2\) and discrete inelas-
 tic levels, and in the laboratory system for MT=91. They were
 calculated with CASTHY/6/.
MF = 5 Energy Distributions of Secondary Neutrons
 Energy distributions of secondary neutrons were calculated with
 PEGASUS/7/ for inelastic scettering from overlapping levols
 and for othar noution emitting reactions.

Table 1 Neutron Optical Potential Parameters
\begin{tabular}{|c|c|c|}
\hline Depth (MoV) & Radius (fm) & Diffuseness(fm) \\
\hline \(V=40.0-0.25 E\) & \(\mathrm{RO}=5.893\) & .00 \(=0.62\) \\
\hline \(\mathrm{W}_{\mathrm{s}}=7.0\) & \(R \mathrm{~s}=6.393\) & as \(=0.35\) \\
\hline \(\mathrm{Wso}=7.0\) & Rso= 5.893 & aso \(=0.62\) \\
\hline
\end{tabular}

Tablo 2 Levol Density Parameters
\begin{tabular}{llllll}
Nuclide & \(a(/ \mathrm{MoV})\) & \(T(\mathrm{MeV})\) & \(\mathrm{C}(/ \mathrm{MoV})\) & \(\mathrm{EX}(\mathrm{MeV})\) & Pairing \\
\hline \(40-\mathrm{Zr}-93\) & \(1.298 \mathrm{E}+01\) & \(7.009 \mathrm{E}-01\) & \(1.273 \mathrm{E}+00\) & \(5.183 \mathrm{E}+00\) & \(1.200 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-94\) & \(1.275 \mathrm{E}+01\) & \(7.530 \mathrm{E}-01\) & \(4.411 \mathrm{E}-01\) & \(7.019 \mathrm{E}+00\) & \(2.320 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-95\) & \(1.331 \mathrm{E}+01\) & \(6.070 \mathrm{E}-01\) & \(5.453 \mathrm{E}-01\) & \(3.985 \mathrm{E}+00\) & \(1.200 \mathrm{E}+00\) \\
\(40-\mathrm{Zr}-96\) & \(1.320 \mathrm{E}+01\) & \(7.000 \mathrm{E}-01\) & \(2.235 \mathrm{E}-01\) & \(6.589 \mathrm{E}+00\) & \(2.490 \mathrm{E}+00\) \\
& & & & & \\
\(41-\mathrm{Nb}-94\) & \(1.281 \mathrm{E}+01\) & \(7.230 \mathrm{E}-01\) & \(7.763 \mathrm{E}+00\) & \(4.250 \mathrm{E}+00\) & 0.0 \\
\(41-\mathrm{Nb}-95\) & \(1.277 \mathrm{E}+01\) & \(7.500 \mathrm{E}-01\) & \(2.121 \mathrm{E}+00\) & \(5.782 \mathrm{E}+00\) & \(1.120 \mathrm{E}+00\) \\
\(41-\mathrm{Nb}-96\) & \(1.331 \mathrm{E}+01\) & \(5.880 \mathrm{E}-01\) & \(3.406 \mathrm{E}+00\) & \(2.530 \mathrm{E}+00\) & 0.0 \\
\(41-\mathrm{Mb}-97\) & \(1.337 \mathrm{E}+01\) & \(6.710 \mathrm{E}-01\) & \(9.771 \mathrm{E}-01\) & \(5.026 \mathrm{E}+00\) & \(1.290 \mathrm{E}+00\) \\
\(42-\mathrm{Mo}-95\) & \(1.360 \mathrm{E}+01\) & \(7.150 \mathrm{E}-01\) & \(1.847 \mathrm{E}+00\) & \(5.835 \mathrm{E}+00\) & \(1.280 \mathrm{E}+00\) \\
\(42-\mathrm{Mo}-96\) & \(1.403 \mathrm{E}+01\) & \(7.410 \mathrm{E}-01\) & \(6.991 \mathrm{E}-01\) & \(7.645 \mathrm{E}+00\) & \(2.400 \mathrm{E}+00\) \\
\(42-\mathrm{Mo}-97\) & \(1.517 \mathrm{E}+01\) & \(6.800 \mathrm{E}-01\) & \(2.769 \mathrm{E}+00\) & \(6.036 \mathrm{E}+00\) & \(1.280 \mathrm{E}+00\) \\
\(42-\mathrm{Mo}-98\) & \(1.594 \mathrm{E}+01\) & \(6.900 \mathrm{E}-01\) & \(7.358 \mathrm{E}-01\) & \(7.888 \mathrm{E}+00\) & \(2.570 \mathrm{E}+00\)
\end{tabular}

Spin cutoff params were calculated as 0.146-SQRT(a):A*(2/3). In the CASTHY calculation, spin cutoff factors at 0 MoV were assumed to be 7.075 for Mo- 97 and 5.291 for Mo- 98.

\section*{Ruferences}
1) Aoki. T. et al.: Proc. Int. Conf. on Nuclear Data for Basic and Applied Science, Sante Fe.. Vol. 2, p. 1627 (1985).
2) Kawai. M. ot al.: Proo. Int. Conf. on Nuclear Data for Science and Technology. Mito, o. 569 (1988).
3) Kikuchi. Y. ot al.: JAERI-M 86-030 (1986).
4) Shwe H. and Cote R.E.: Phys. Rev. 179. 1148 (1969).
6) Woigmann H. ot al.: 1971 Knoxvillo. 749 (1971).
6) Igarasi. S.: J. Nucl. Sci. Tochnol., 12. 67 (1975).
7) lijima, S. or al.: JAERI-M 87-025, p. 337 (1987).
8) Iijima, S. and Kawai. M.: J. Nucl. Sci. Technol., 20, 77 (1983).
9) Perey, F.G: Phys. Rev. 131, 745 (1963).
10) Huizenga, J.R. and Igo, G.: Nucl. Phys. 29, 462 (1962).
11) Lohr, J.M. and Haeberli, W.: Nucl. Phys. A232, 381 (1974).
12) Bocchotti. F.D.. Jr. and Groenloos. G.W.: Polarizat:on Phenomena in Nuclear Reactions ((eds) H.H. Barshal: and W. Haeberli). p. 682. The university of Wisconsia Press. (1971).
13) Gilbert, A. and Cameron, A.G.W.: Can. J. Phys., 43, 1446 (1985).
14) Iijima, S., ot al.: J. Nucl. Sci. Teohnol. 21, 10 (1984).
15) Gruppelaar, H.: ECN-13 (1977).
16) Matsumoto, J., ot al.: JAERI-M 7734 (1978).
17) Benzi. V. and Reffo. G.: CCDN-NW/10 (1969).
18) Musgrove. A.R.de L. ot al.: Nucl. Phys.. A270. 108 (1976).
19) Kikuchi. K. and Kawai, M.: 'Nuctear Mattor and Nuclear Reactions". North Holland (1968).
20) Ikeda, Y. ot al.: JAERI 1312 (1988).
21) Forrest, R.A.: AERER 12419 (1986).
```

42-Mo- 98 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G.

```
Dist-Oct89

History
84-10 Evaluation for JENOL-2 was made by JNDC FPND W.G./1/ 88-08 Modification for JENDL-3 was made/2/.
```

MF=1 General information
MT=451 Comments and dictionary
NF = 2 Resonance parameters
MT=151 Resolved and unresolyed resonance parameters
Resolyed resonance region (NLBW formula) : below 32 koV
Evaluation was made by Kikuchi et al./3/ on the basis of the
following experimental data.
Transmission : Chrion ot al./4/
Capturo : Weigmann ot al./5/. Musgrove et al./6/
Assumed gamma-g : 0.085 oV for s-wave and 0.12 oV for
p-wave resonances.
A negative resonance was added at -980 oV.
Unresolved resonance region : 32 keV - 100 koV
The neutron strength functions. SO, S1 and S2 were calculated
with optical model code CASTHY/7/. The observed level spacing
was determined to reproduce the cepture cross section
calculated with CASTHY. The effective scattering radius was
obtained from fitting to the calculated total crose section at
100 keV.

```
 Typical values of the parameters at 70 keV :
 \(S 0=0.370 E-4 . S 1=5.479 E-4 . S 2=0.364 E-4 . \quad G G=0.133 \mathrm{eV}\)
 \(D_{0}=765.9 \mathrm{oV}, R=6.676 \mathrm{fm}\).
 Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns)
 \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
 total 5.772
 elastic \(\quad 5.642\)
 capture 0.1300
 6.56
MF \(=3\) Neutron cross sections
 Below 100 keV . resonance parameters were given. Above 100 keV .
 the spherical optical and statistical model calculation was
 performed with CASTHY/7/, by taking account of competing
 reactions, of which cross sections were calculated with
 PEGASUS/8/ standing on a preequilibrium and multi-step
 evaporation model. The OMP's for noutron given in Table 1 were
 determined by \(1 \mathrm{i} j\) ima et al. \(19 /\) to reproduce a systematic irend
 of the total cross section. The OMP's for charged particles are
 as follows:
 Proton = Porey/10/
 Alpha = Huizenga and Igo/11/
 Deuteron \(=\) Lohr and Haeber!i/12/
 Helium-3 and triton = Becchetti and Greenlees/13/
 Parameters for the composite level density formula of Girbert
 and Cemeron/14/ were evaluated by lijima et al./15/. More
 extensive deiermination and modification were made in the
 present work. Table 2 shows the level density parameters used
in the present calculation. Energy dependence of spin cut-off parameter in the energy range below E-joint is due to Gruppelaar /16/.

MT \(=1\) Total
Spherical optical model calculation was adopted.
MT \(=2\) Elastic scattoring
Calculated as (total - sum of partisl oross sections).
MT \(=4\), 61-91 Inelastic scattering
Spherical optical and statistical model calculation was
adopted. The level scheme was taken from Ref./171.
\begin{tabular}{ccc}
No. & Energy (MoV) & Spin-parity \\
GR. & 0.0 & \(0+\) \\
1 & 0.7349 & \(0+\) \\
2 & 0.7874 & \(2+\) \\
3 & 1.4323 & \(2+\) \\
4 & 1.5101 & \(4+\) \\
5 & 1.7585 & \(2+\) \\
6 & 1.8809 & \(3+\) \\
7 & 1.9650 & \(0+\) \\
8 & 1.9855 & \(1+\) \\
9 & 2.0176 & \(3+\) \\
10 & 2.1049 & \(2+\) \\
11 & 2.2069 & \(2+\) \\
12 & 2.2240 & \(2+\) \\
13 & 2.3334 & \(2+\) \\
14 & 2.3437 & \(6+\) \\
15 & 2.4198 & \(3-\) \\
16 & 2.4500 & \(4+\) \\
17 & 2.4854 & \(3+\) \\
18 & 2.5063 & \(3-\)
\end{tabular}

Levels above 2.53 MoV were assumed to be overlapping.

\section*{MT = 102 Capture}

Spherical optical and statistical model calculation with CASTHY/7/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi
and Reffo/18/ and normalized to 1 milli -barn at 14 MoV .
The gamma-ray strength function (1.623E-04) was adjusted to reproduce the capture cross section measured by Musgrove et al./6/.
```

MT = 16 (n.2n) Crose Section
MT = 17 (n,3n) Cross Section
MT = 22 (n, n'a) Cross Section
MT = 28 (n.n'p) Cross Section
MT = 32 (n.n'd) Cross Section
MT =103 (n.p) Cross Section
MT =104 (n.d) Cross Section
MT =105 (n.t) Cross Section
MT =107 (n,alpha) Cross Section

```

These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code

PEGASUS/8/.
The Kalbach's constant \(K(=77.4)\) was estimated by the formula derived from Kikuchi-Kawai's formalism/19/ and level density parameters.

Finally, (\(n, p\)) and (\(n, a l p h a\)) cross sections were normalized to the following values at 14.5 MeV :
```

        (n,p) 5.80 mb (measured by lkeda et al./20/>
        (n,alpha) 5.70 mb (measured by lkeda ot al./20/)
    ```

MT \(=251\) Mu-bar
Calculated with CASTHY/7/.
MF \(=4\) Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levols, and in the laboratory system for MT=91. They were calculated with CASTHY/7/.

NF \(=5\) Energr Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/8/ for inolastic scattoring from overlapping levels and for other neutron omitting reactions.

Table 1 Noutron Optical Potential Parameters
\begin{tabular}{|c|c|c|}
\hline Depth (MoV) & Radius(fm) & Diffuseness (fm) \\
\hline \(V=46.0-0.25 \mathrm{E}\) & \(R 0=5.893\) & \(a 0=0.62\) \\
\hline \(W_{s}=7.0\) & Rs \(=6.393\) & \(\theta 8=0.35\) \\
\hline \(W_{s 0}=7.0\) & \(\mathrm{Rso}=5.893\) & aso \(=0.62\) \\
\hline
\end{tabular}

Table 2 Level Density Parametors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Nuclide & a (/MoV) & T(MeV) & C(/MeV) & EX(MaV) & Pairing \\
\hline 40-Zr-94 & 1.275E+01 & 7.530E-01 & 4.411E-01 & \(7.019 \mathrm{E}+00\) & \(2.320 E+00\) \\
\hline 40-Zr-95 & 1.331E+01 & 6.070E-01 & 5.453E-01 & \(3.985 \mathrm{E}+00\) & 1.200E+00 \\
\hline \(40-2 r-96\) & \(1.320 \mathrm{E}+01\) & 7.000E-01 & 2.235E-01 & 6.589E+00 & 2.490E+00 \\
\hline 40-2r-97 & 1. \(258 \mathrm{E}+01\) & 5.590E-0t & 2.497E-01 & 3. \(084 \mathrm{E}+00\) & 1. 200E+00 \\
\hline 41-Nb-95 & 1.277E+01 & 7.500E-01 & \(2.121 E+00\) & \(5.782 \mathrm{E}+00\) & 1.120E+00 \\
\hline 41-Nb-96 & \(1.331 E+01\) & \(5.880 \mathrm{E}-01\) & 3.406E+00 & \(2.530 \mathrm{E}+00\) & 0.0 \\
\hline \(41-\mathrm{Nb}-97\) & \(1.337 E+01\) & 6.710E-01 & 9.771E-01 & 5.026E+00 & 1.290E+00 \\
\hline \(41-\mathrm{Nb}-98\) & \(1.380 E+01\) & \(5.110 \mathrm{E}-01\) & 2.350E+00 & 1.731E+00 & 0.0 \\
\hline 42-Mo- 96 & 1.403E+01 & 7.410E-01 & 6.991E-01 & \(7.645 \mathrm{E}+00\) & 2.400E+00 \\
\hline 42-NO- 97 & 1.517E+01 & 6.800E-01 & 2.769E+00 & 6.036E+00 & \(1.280 \mathrm{E}+00\) \\
\hline 42-NO-98 & 1.594E+01 & 6.900E-01 & 7.358E-01 & \(7.888 \mathrm{E}+00\) & 2. \(670 \mathrm{E}+00\) \\
\hline 42-No- 99 & 1.774E+01 & 6.200E-01 & 4.294E+00 & 6.058E+00 & 1.280E+00 \\
\hline
\end{tabular}

Spin cutoff params were calculated as 0.146*SORT(a) * A* (2/3). In the CASTHY calculation, spin cutoff factors at 0 MeV were assumed to be 5.291 for Mo- 98 and 2.875 for Mo- 99.

References
1) Aoki. T. ot al.: Proc. Int. Conf, on Nucloar Data for Basic and Appliod Scionce. Santo Fe.. Vol. 2. p. 1627 (1985).
2) Kawai, M. et al.: Proc. Int. Conf. on Nuclear Data for Science and Technology, Mito, p. 569 (1988).
3) Kikuchi. Y, ot al.: JAERI-N 86-030 (1986).
4) Chrien. R.E. ot al.: Phys. Rev., C13. 578 (1976).
5) Welgmann, H. et al.: 1971 Knoxvilla, 749 (1971).
6) Musgrove A.R.de L. et al.: Nucl. Phys., A270, 108 (1976).
7) Igarasi. S.: J. Nucl. Sci. Technol., 12, 67 (1975).
8) Iijima, S. ot al.: JAERI-M 87-025, p. 337 (1987).
8) Iijima, S. and Kawai. M.: J. Nucl. Sci. Tachnol., 20, 77 (1983).
10) Perey, F.G: Phys. Rev. 131. 745 (1963).
11) Huizenga. J.R. and Igo. G.: Nucl. Phys. 29. 462 (1962).
12) Lohr. J.M. and Hasber Ii, W.: Nucl. Phys. A232, 381 (1974).
13) Becchetti. F.D., Jr. and Greenlees. G.W.: Polarization Phenomena in Nuclear Reactions ((eds) H.H. Barshall and W. Haoberli). p. 682. The university of Wisconsin Press. (1971).
14) Gilbert. A. and Cameron, A.G.W.: Can. J. Phys.. 43. 1446 (1965).
15) Iijima. S.. ot al.: J. Nuci. Sci. Technol. 21. 10 (1984).
16) Gruppolaar. H.: ECN-13 (1977).
17) Mat sumoto, J., ot al.: JAERI-M 7734 (1878).
18) Benzi, V. and Reffo, G.: CCDN-NW/10 (1969).
19) Kikuchi, K. and Kawai, M.: "Nuclear Matter and Nuclear Reactions*. North Holland (1968).
20) Ikeda, Y. ot al.: JAERI 1312 (1988).
```

42-Mo-100 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G.
Dist-Oct89

```

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/ 89-08 Modification for JENDL-3 was made/2/.
```

NF=1 General information

```
 MT=451 Comments and dictionary
```

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : bolow 26 koV
Evaluation was made by Kikuchi ot al./3/ on the basis of the
following experimental data.
Transmission : Weigmann et al./4/
Capture : Weigmann et al,/5/. Musgrove et al./6/
Assumed gamma-g : 0.065 oV for s-wave and 0.08 oV for
p-wave resonances.

```
 A negative resonance was added at -172 oV.
 Unresolved resonance region : \(26 \mathrm{keV}-100 \mathrm{keV}\)
 The neutron strength functions. SO. S1 and S2 were calculated
 with optical model code CASTHY/7I. The observed level
 spacing was determined to reproduce the capture cross section
 calculated with CASTHY. The effective scattering radius was
 obtained from fitting to the calculated total oross section at
 100 keV.
 Typical values of the parameters at 50 keV :
 \(S 0=0.370 E-4 . S 1=5.479 E-4, S 2=0.365 E-4, G G=0.085 \mathrm{oV}\)
 \(D_{0}=576.1 \mathrm{eV}, \mathrm{R}=\mathbf{6 . 6 5 1} \mathrm{fm}\).
 Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns)
 \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
\begin{tabular}{ll}
total & 5.499 \\
elastic & 5.300 \\
capture & 0.1990
\end{tabular}
 -
 -
 3.91
MF \(=3\) Noutron cross sections
 Below 100 keV , resonance parameters were given. Above 100 keV .
 the spherical optical and statistical model calculation was
 performed with CASTHY/7/, by taking account of competing
 reactions, of which cross sections were calculated with
 PEGASUS/8/ standing on a preequilibrium and multi-step
 evaporation model. The ONP's for neutron given in Table 1 were
 determined by lijima et al./9/ to reproduce a systematic trend
 of the total cross section. The ONP's for charged particles are
 as follows:
 Proton = Perey/10/
 Alpha = Huizenga and Igo/11/
 Deuteron = Lohr and Haeberli/12/
 Helium-3 and triton \(=\) Becchetti and Greenlees/13/
 Parameters for the composite level density formula of Girbert
 and Cerneron/14/ wore evaluated by lijime et al./15/. More
 extensive determination and modification were made in the
 present work. Table 2 shows the level density parameters used
in the present calculation. Energy dependence of spin cut-off parameter in the energy range below E-joint is due to Gruppelaar /16/.

MT \(=1\) Total
Spherical optical model calculation was adopted.
NT \(=2\) Elastic scattoring
Calculated as (total - sum of partial cross sections).
\(M T=4.51\) - 91 Inelastic scattering
Spherical optical and statistical model calculation was
adopted. The level scheme was taken from Ref./17/.
\begin{tabular}{ccc}
No. & Energy (MoV) & Spin-parity \\
GR. & 0.0 & \(0+\) \\
1 & 0.5356 & \(2+\) \\
2 & 0.6944 & \(0+\) \\
3 & 1.0637 & \(2+\) \\
4 & 1.1361 & \(4+\) \\
5 & 1.4633 & \(2+\) \\
6 & 1.7657 & \(1+\) \\
7 & 1.7704 & \(3+\) \\
8 & 1.8081 & \(3+\) \\
9 & 2.0330 & \(0+\) \\
10 & 2.0400 & \(2+\) \\
11 & 2.1014 & \(4+\) \\
12 & 2.3400 & \(2+\) \\
13 & 2.4156 & \(3+\) \\
14 & 2.4700 & \(4+\) \\
15 & 2.5632 & \(3+\) \\
16 & 2.5900 & \(4+\)
\end{tabular}

Levels above 2.62 MeV were assumed to be overlapping.

\section*{MT = 102 Capture}

Spherical optical and statistical model calculation with CASTHY/7/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffol18/ and normalized to 1 milii-barn at 14 MoV .

The gamma-ray strength function (1.432E-04) ws adjusted to reproduce the capture cross section
measured by Musgrove ot al./6/.
```

MT = 16 (n,2n) Cross Section
MT = 17 (n,3n) Cross Section
MT = 22 (n,n'a) Cross Section
MT = 28 (n, n'p) Cross Section
MT = 32 (n, n'd) Cross Section
MT =103 (n,p) Cross Section
MT =104 (n,d) Cross Section
MT =105 (n,t) Cross Section
MT =107 (n,alpha) Cross Section

```

These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code PEGASUS/8/.

The Kalbach's constant \(K(=50.6)\) was estimated by the formula derived from Kikuchi-Kawai's formalism/ig/ and level density perametors.

Finaliy, (r, \(2 n\)). (\(n, p\)) and (\(n, a l p h a\)) cross sections were normalized to the following values at 14.5 MeV :
\begin{tabular}{|c|c|c|}
\hline (\(n, 2 n\)) & 1640 & measured by lkeda ot al./20/) \\
\hline \((n, p)\) & 2.50 & (reocmmended by Forrest/21/) \\
\hline (n,alpha) & 2.80 & (measured by 1 koda ot al./20/) \\
\hline
\end{tabular}

MT = 251 Mu-bar
Caloulated with CASTHY/7/.
MF \(=4\) Angular Distributions of Secondary Neutrons
Legendre polynomial coofficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for \(M T=91\). They were calculated with CASTHY/7/.

NF \(=5\) Energy Distributions of Secondary Neutrons Energy distributions of secondary neutrons wero calculated with PEGASUS/8/ for inelastic scattering from overlapping levels and for other noutron emitting reactions.

Table 1 Neutron Optical Potential Parameters
\begin{tabular}{|c|c|c|}
\hline Dopth (MoV) & Radius(fm) & Diffuseness (fm) \\
\hline \(v=46.0-0.25 E\) & \(R 0=5.893\) & \(a 0=0.62\) \\
\hline \(W_{s}=7.0\) & Rs \(=0.393\) & \(a \mathrm{E}=0.36\) \\
\hline \(W \mathrm{so}=7.0\) & Rso= 6.893 & \(\mathrm{aso}=0.62\) \\
\hline
\end{tabular}

\section*{Table 2 Level Density Paramoters}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & S & a (/ MeV) & T(MoV) & C(/MeV) & EX(MoV) & Pairing \\
\hline 40-Zr-98 & & 1.320E+01 & 7.000E-01 & 2. 235E-01 & 6.589E+00 & 2.490E+00 \\
\hline 40-Zr-97 & & 1.259E+01 & 5.590E-01 & 2.497E-01 & 3.084E+00 & 1.200E+00 \\
\hline 40-Zr-98 & - & 1.725E+01 & 6.633E-01 & 1.790E+00 & \(7.655 \mathrm{E}+00\) & \(2.140 E+00\) \\
\hline 40-Zr-98 & * & \(1.831 \mathrm{E}+01\) & 6.566E-01 & 1.170E+01 & 6.957E+00 & 1.200E+00 \\
\hline 41-Nb-97 & & 1.337E+01 & \(6.710 \mathrm{E}-01\) & 8.771E-01 & \(5.026 \mathrm{E}+00\) & 1.290E+00 \\
\hline 41-Nb-98 & & \(1.380 \mathrm{E}+01\) & 6.110E-01 & \(2.360 E+00\) & 1.731E+00 & 0.0 \\
\hline 41-Nb-99 & - & 1.742E+01 & 6.566E-01 & \(1.085 \mathrm{E}+01\) & \(6.300 \mathrm{E}+00\) & 9.400E-01 \\
\hline \(41-\mathrm{Nb}-100\) & - & \[
1.850 E+01
\] & \(6.500 E-01\) & 7.329E+01 & 5.698E+00 & 0.0 \\
\hline 42-10-98 & & 1.594E+01 & 6. \(900 \mathrm{E}-01\) & 7.358E-01 & \(7.888 \mathrm{E}+00\) & \(2.570 E+00\) \\
\hline 42-M0-89 & & 1.774E+01 & 6. 200E-01 & \(4.294 \mathrm{E}+00\) & \(6.058 \mathrm{E}+00\) & 1.280E+00 \\
\hline 42-Mo-100 & & 1.780E+01 & 6.000E-01 & 6.702E-01 & 6.645E+00 & 2.220E+00 \\
\hline 42-Mo-101 & & \(2.085 \mathrm{E}+01\) & 6.650E-01 & 7.153E+00 & 6.092E+00 & 1.280E+00 \\
\hline
\end{tabular}

SYST: * LDP's were determined from systematics.

Spin cutoff params were celculated as 0.146=SORT(a)-A=(2/3). In the CASTHY calculation, spin cutoff factors at 0 MeV were assumed to be 5.125 for Mo-100 and 5.000 for Mo-101.

\section*{References}
1) Aoki, T. ot al.: Proc. Int. Conf. on Nuciear Data for Basic and Applied Science. Santa Fe.. Vol. 2, p. 1627 (1985).
2) Kawai, M. ot al.: Proc. Int. Conf. on Nuclear Data for Science and Technology, Mito, p. 569 (1988).
3) Kikuchi, Y. ot al.: JAERI-M 86-030 (1986).
4) Woigmann, H. ot al.: Phys. Rev., 20. 115 (1969).
5) Weigmann. H. ot al: 1971 Knoxville, 749 (1971).
6) Musgrove, A.R.de L. et al.: Nucl. Phys.. A270. 108 (1976).
7) Igarasi, S.: J. Nucl. Sei. Technol., 12, 67 (1975).
8) lijima, S. ot al.: JAERI-M 87-025, p. 337 (1987)
9) Lijlma. S. and Kawai, M.: J. Nuol. Sci. Technol.. 20, 77 (1983).
10) Perey, F.G: Phys. Rev. 131, 746 (1963).
11) Huizenga, J.R. and Igo, G.: Nucl. Phys. 29, 462 (1962).
12) Lohr. J.M. and Haeberli. W.: Nucl. Phys. A232. 381 (1974).
13) Becchotit, F.D.. Jr. and Greenlees, G.W.: Polarization Phenomena in Nuclear Reactions ((eds) H.H. Barshall and W. Haeberii), p. 682. The university of Wisconsin Press. (1971).
14) Gilbert. A. and Cameron, A.G.W.: Can. J. Phys., 43. 1446 (1965).
15) lijima, S., et al.: J. Nucl. Sci. Technol. 21, 10 (1984).
16) Gruppelaar, H.: ECN-13 (1977).
17) Matsumoto, J., et al.: JAERI-M 7734 (1978).
18) Benzi, V. and Reffo, G.: CCDN-NW/10 (1969).
19) Kikuchi. K. and Kawai, M.: "Nuclear Matter and Nuclear Reactions \({ }^{\circ}\), North Holland (1988).
20) Ikeda, Y. et al.: JAERI 1312 (1988).
21) Forrest. R.A.: AERE-R 12419 (1986).

47-Ag- 0 JAERI Eval-Mar87 Liu T.J..T.Nakagawa,K.Shibata Dist-Sep89
History
87-03 New evaluation for JENDL-3
87-07 Compiled by K. Shibata
NF=1 Goneral Information
MT=451 Comments and dictionary.
MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters This fite was made of Ag-107 and Ag-109 data.
Resolved resonance parameters (below 7.0095keV)
Resolved resonance parameters (below 7.0095koV) are the same as those of JENDL-2, which were made by Nakajima /1/ on the basis of experimental data by Moxon and Rae /2/. Garg et al. \(13 /\). Asghar et al./4/, Pattenden \(/ 5 /\), Muradjan and Adamchuk /6/. de Barros et al./7/. Pattenden and Jolly /8/. Macklin /9/ and Mizumoto et al./10/. There are no new experimental data available since then.
Unresolved resonance parameters (7.0095 - 100 keV)
The parameters were determined with the code ASREP /11/ to reproduce the capture and total cross sections, which were based on experimental data /12.13/ and adjusted for consistence between the data of the natural element and its isotopes.

Calculated 2200-m/s cross sections and ros. integrals (barns): \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
total elastic 68.81 -
clastic 6.19
capture 63.62
762.30

\section*{MF=3 Neutron Cross Sections}

MT=1. 102 Total, capture
Below 100 keV , resonance parameters were given. No background cross sections are adopted. Above 100 keV , cross sections were evaluated on the basis of experimental data and theoretical calculations. The main data were taken from the works of Poonitz and Whalon /12/. Fostor and Glasgow /14/for total cross sectoin and Mizumoto et al. /13/. Poenitz/15/ for capture cross section. The data were fitted with spline function /16/, and were adjusted for consistence between the natural - lement and its isotopes.

MT=2 Elastic
Elastic = Total - Nonelastic
MT=3 Nonelastic
Sum of MT=4,16,17,22,28,102.103.107
MT=4 Total inelastic
Sum of MT=51-80.91
\(M T=16.17 .22,28.51-80,91,103.107\) (n,2n),(n.3n).(n,na).(n,np).
inolastic.(\(n, p\)). (\(n, a\))
They were made of Ag-107 and Ag-109 data. For these two isotopes, the cross sections were calculated with the multistep

Hauser-Feshbach code TNG /17. 18/. At first, the optical model and level density parameters were taken from the works of Smith ot al. /19/ and lijima et al. /20/. respectively and then they were adjusted to reproduce available experimental data.

The optical model parameters are:
\begin{tabular}{|c|c|c|c|}
\hline & Depth (MeV) & Radius(fm) & Diffuseness(fm) \\
\hline \multirow[t]{3}{*}{Neutron} & \(V=48.25-0.3 \mathrm{E}\) & \(r 0=1.249\) & \(00=0.603\) \\
\hline & \(W_{s}=8.501-0.16 \mathrm{E}\) & \(r s=1.270\) & as \(=0.675\) \\
\hline & \(V \mathrm{so}=6.0\) & \(\mathrm{rso}=1.2 \div 8\) & -80 \(=0.603\) \\
\hline \multirow[t]{3}{*}{Proton} & \(V=66.061-0.650 \mathrm{E}\) & \(r 0=1.150\) & \(\Delta 0=0.650\) \\
\hline & \(W_{s}=12.50-0.10 \mathrm{E}\) & \(r \leqslant=1.250\) & \(\Delta s=0.470\) \\
\hline & & \(r \mathrm{c}=1.150\) & \\
\hline \multirow[t]{3}{*}{Alpha} & \(V=193.0-0.15 E\) & \(r 0=1.370\) & \(a 0=0.660\) \\
\hline & \(W s=21.00+0.25 E\) & \(r s=1.370\) & \(\mathrm{as}=0.560\) \\
\hline & & \(r c=1.370\) & \\
\hline
\end{tabular}

The level density parameters are:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Ecut (MeV) & Ejo(MeV) & \(T\) (MoV) & \(0(1 / \mathrm{M}\) & C(& in & Epa \\
\hline Rh-103 & 0.990 & 5.409 & 0.655 & 15.60 & 3.884 & 49.725 & 0.84 \\
\hline Rh-104 & 0.230 & 4.351 & 0.850 & 15.43 & 17.72 & 49.820 & 0.00 \\
\hline Rh-105 & 0.770 & 5.700 & 0.830 & 16.80 & 4.000 & 54.591 & 1.24 \\
\hline Rh-106 & 0.150 & 3.869 & 0.675 & 17.50 & 17.18 & 57.230 & 0.00 \\
\hline Pd-106 & 2.380 & 8.004 & 0.866 & 17.17 & 0.920 & 56.147 & 2.69 \\
\hline Pd-107 & 0.700 & 7.693 & 0.769 & 14.98 & 6.956 & 49.293 & 1.35 \\
\hline Pd-108 & 1.900 & 7.957 & 0.046 & 17.90 & 0.884 & 59.268 & 2.60 \\
\hline Pd-109 & 0.360 & 7.380 & 0.687 & 17.50 & 9.479 & 58.301 & 1.35 \\
\hline Ag-105 & 1.230 & 6. 930 & 0.609 & 18.67 & 2.750 & 00.343 & 0.94 \\
\hline Ag-106 & 0.400 & 3.549 & 0.563 & 17.16 & 12.92 & 56.110 & 0.00 \\
\hline Ag-107 & 1.420 & 5.918 & 0.693 & 14.65 & 2.412 & 47.878 & 1.24 \\
\hline Ag-108 & 0.270 & 3.014 & 0.676 & 15.04 & 0.004 & 49.799 & 0.00 \\
\hline Ag-109 & 1.180 & 6. 112 & 0.705 & 14.50 & 2.668 & 48.306 & 1.25 \\
\hline Ag-110 & 0.320 & 3.150 & 0.454 & 17.01 & 2.613 & 57.015 & 0.00 \\
\hline
\end{tabular}

The level scheme is given as follows:
Ag-107:
\begin{tabular}{ccc}
No. & Enorgy (MoV) & Spin-parity \\
GR. & 0.0 & \(1 / 2-\) \\
1 & 0.0930 & \(7 / 2+\) \\
2 & 0.1260 & \((9 / 2)+\) \\
3 & 0.3250 & \(3 / 2-\) \\
4 & 0.4230 & \(5 / 2-\) \\
5 & 0.7730 & \((11 / 2)+\) \\
6 & 0.7870 & \(3 / 2-\) \\
7 & 0.9220 & \(5 / 2+\) \\
8 & 0.9500 & \(5 / 2-\) \\
9 & 0.9730 & \((7 / 2)-\) \\
10 & 0.9910 & \((13 / 2)+\) \\
11 & 1.0810 & \((1 / 2-)\) \\
12 & 1.1420 & \(1 / 2+\) \\
13 & 1.1470 & \(7 / 2-\) \\
14 & 1.2230 & \(5 / 2+\) \\
15 & 1.2590 & \((3 / 2)+\)
\end{tabular}
```

            16 1.3260 (3/2)+
    Ag-109:
    | No. | Energy(MeV) | Spin-parily |
| :---: | :---: | :---: |
| GR. | 0.0 | $1 / 2-$ |
| 1 | 0.0880 | $7 / 2+$ |
| 2 | 0.1330 | $9 / 2+$ |
| 3 | 0.3110 | $3 / 2-$ |
| 4 | 0.4150 | $5 / 2-$ |
| 5 | 0.7020 | $3 / 2-$ |
| 6 | 0.7070 | $3 / 2+$ |
| 7 | 0.7240 | $(3 / 2)+$ |
| 8 | 0.7360 | $6 / 2+$ |
| 9 | 0.8630 | $6 / 2-$ |
| 10 | 0.8700 | $(5 / 2)+$ |
| 11 | 0.9110 | $7 / 2+$ |
| 12 | 0.9120 | $7 / 2-$ |
| 13 | 1.0910 | $9 / 2-$ |
| 14 | 1.0890 | $(5 / 2+)$ |

    MT=251
    Calculated from MF=4,MT=2.
    MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code /21/.
MT=51-80
Calculated with TNG.
MT=16,17,22,28.01
Assumed to be isotropio in the laboratory system.
MF=6 Energy Distributions of Secondary Noutrons
MT=16,17.22,28.91
Calculated with TNG.

```
```

MF=12,14,15 Garma-Production Data
MT=4,16.17.22.28,102,103,107
Calculated with TNG.

```

\section*{REFERENCES}
1) Nakajima, Y., To be published.
2) Moxon. M.C.. Rac. E.R., "Proc. EANDC Conf. on Time-of-Flight Methods, Saclay, 1961", 439.
3) Garg. J.B., ot al.. Phys. Rev., B137. 547(1965).
4) Asghar. M. . ot al.. 'Proc. Int. Conf. on the Study of Nuclear Structure with Neutrons. Antwerp 1965*, 65.
5) Pattenden N. J. ,ibid. , 632.
6) Muradjan. G.V., Adamchuk, Ju. V.. Jaderno-Fizicheskie Issledovanija. 6. 64 (1968).
7) de Barros. S., et al.. Nucl. Phys.. A131. 305(1969).
8) Pattenden. N.J., Jolly, J.E., AERE-PR/NP-16(1969).
9) Macklin. R.L., Nucl. Sci. Eng., 82, 400(1982).
10) Mizumoto. M. . et al., J. Nucl. Sci. Technol., 20. 883(1983).
11) Kikuchi Y.. Private Communication.
12) Poenitz. W.P., Whalen, J.F., ANL-NDM-80(1983).
13) Mizumoto. M.. et al.. "Proc. Inter. Conf. on Nucl.Data for Science and Technology*. Antwerp. p. 226 (1982).
14) Fostor. Jr.. D.G., and Glasgow, D.W.. Phys. Rev..C3.

576 (1971).
15) Poenitz. W.P.. ANL-83-4,239(1982).
16) Nakagawa, T.. J. At. Ene. Soc. Japan, 22. 559 (1980).
17) Fu, C.Y., ORNL/TMM-7042(1980).
18) Shibata. K., Fu. C.Y., ORNL/TM-10093 (1986).
19) Smith. A., ot al. Nucl. Phys.. A415. 1 (1984)
20) Iijima, S.. ot al. J. Nucl. Sci. Technol., 21, 10 (1984).
21) Igarasi. S.. J. Nucl. Sci. Technol.,12, 67(1975).

MAT number \(=3471\)
47-Ag-107 JAERI Eval-Mar87 Liu T.J..T.Nakagawa.,K.Shibata
Dist-Sep89

\section*{History}

87-03 New evaluation for JENDL-3
87-07 Compiled by K, Shibata
MF=1 General Information
\(\mathrm{MT}=451\) Comments and dictionary

\section*{MF=2 Resonance Parameters}

MT=161
Resolved resonance parameters (below 7.0095 keV) Resolved resonance parameters (below 7.0005 keV) are the same as those of JENDL-2, which were made by Nakajima /1/ on the basis of experimental data by Moxon and Rae /2/. Garg et al./3/. Asghar et al. /4/. Mur jan and Adamchuk /5/. de Barros et al./6/. Pattenden and Jolly /7/. Macklin /8/ and Mizumoto et al. /9/. There are no new experimental data available since then.
Unresolved resorance parameters (7.0095-100 keV) The parameters were determined with the ASREP code /10/ to reproduce the capture and total cross sections, which were based on experimental data /11, \(12 /\) and adjusted for consistence between the data of the natural element and its isotopes. The typical parameters are:
\[
\begin{array}{ll}
S 0=(0.344-0.516) E-4, & S 1=(3.5-4.6) E-4, \quad S 2=0.53 E-4 . \\
D-o b s=(18.5-22.8) \mathrm{eV}, & R=6.54 \mathrm{fm}
\end{array}
\]

Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns):
\begin{tabular}{lcc}
& \(2200 \mathrm{~m} / \mathrm{s}\) & res. integ. \\
total & 46.29 & - \\
clastic & 7.66 & - \\
capture & 38.62 & 103.24
\end{tabular}
\(M F=3\) Neutron Cross Sections

MT=1.102 Total, capture
Below 100 keV , resonance parameters were given. No background cross sections are adopted. Above 100 keV , cross sections were evaluated on the basis of experimental data and theoretical calculations. The main data were taken from the works of Dukerovich ot al. /13/. Smith et al. /14/ for total cross sectoin and Mizumoto ot al. /12/. Macklin ot al. /15/ for capture cross section. The data were fitted with spline function /16/, and were adjusted for consistence between the natural element and its isotopes.
MT=2 Elastic
Elastic \(=\) Total - None!astic
MT=3 Nonelastic
Sum of MT=4,16,17,22,28,102,103.107
MT=4 Total inelastic
Sum of MT=51-66.91
\(M T=16,17,22,28,51-66,91,103,107\) (n,2n).(n,3n),(n,na),(n,np),
inelastic. (n, p). (n,a)

For these reactions the cross sections were calculated with the multi-step Hauser-Feshbach code TNG /17. 18/. At first, the optical model and level density parameters were taken from the works of Smith ot al./19/ and lijima ot al. /20/. respectively and then they were adjustcl to reproduce the avallable experimental data.

The optical model parametors are:
\begin{tabular}{|c|c|c|c|}
\hline & Dopth (MoV) & Radius (fm) & Diffuseness (fm) \\
\hline \multirow[t]{3}{*}{Noutron} & \(V=48.26-0.3 E\) & \(r 0=1.249\) & \(\mathrm{a} 0=0.603\) \\
\hline & \(W_{s}=8.501-0.16 \mathrm{E}\) & \(r *=1.270\) & \(a s=0.675\) \\
\hline & \(V_{s o}=6.000\) & \(r s 0=1.249\) & \(\mathrm{aso}=0.603\) \\
\hline \multirow[t]{3}{*}{Proton} & \(V=66.061-0.560 \mathrm{E}\) & \(r 0=1.150\) & \(a 0=0.650\) \\
\hline & \(W_{s}=12.50-0.10 \mathrm{E}\) & \(r s=1.250\) & as \(=0.470\) \\
\hline & & \(\mathrm{rc}=1.150\) & \\
\hline \multirow[t]{2}{*}{Alpha} & \(V=193.0-0.15 \mathrm{E}\) & \(r 0=1.370\) & \(a 0=0.660\) \\
\hline & \(W_{s}=21.00+0.25 E\) & \(r s=1.370\) & \(a s=0.560\) \\
\hline
\end{tabular}

The level density parameters are:
\begin{tabular}{lccccccc}
& Ecut(MoV) & Ejo(MoV) & T(MoV) & a(1/MoV) & C(MoV) Cspin & Epair \\
\(\mathrm{Rh}-103\) & 0.990 & 5.409 & 0.655 & 15.50 & 3.884 & 49.725 & 0.94 \\
\(\mathrm{Rh}-104\) & 0.230 & 4.351 & 0.650 & 16.43 & 17.72 & 49.820 & 0.00 \\
\(\mathrm{Pd}-106\) & 2.380 & 8.004 & 0.686 & 17.17 & 0.920 & 56.147 & 2.69 \\
\(\mathrm{Pd}-107\) & 0.700 & 7.693 & 0.789 & 14.98 & 6.956 & 49.293 & 1.35 \\
\(\mathrm{Ag}-105\) & 1.230 & 5.830 & 0.609 & 18.57 & 2.750 & 60.343 & 0.94 \\
\(\mathrm{Ag}-106\) & 0.400 & 3.549 & 0.563 & 17.16 & 12.92 & 66.110 & 0.00 \\
\(\mathrm{Ag}-107\) & 1.420 & 5.918 & 0.693 & 14.56 & 2.412 & 47.878 & 1.24 \\
\(\mathrm{Ag}-108\) & 0.270 & 3.014 & 0.576 & 16.04 & 6.004 & 49.799 & 0.00
\end{tabular}

The level scheme is given as follows:
\begin{tabular}{ccc}
No. & Energy (MoV) & Spin-parity \\
GR. & 0.0 & \(1 / 2-\) \\
1 & 0.0930 & \(7 / 2+\) \\
2 & 0.1260 & \((9 / 2)+\) \\
3 & 0.3250 & \(3 / 2-\) \\
4 & 0.4230 & \(5 / 2-\) \\
5 & 0.7730 & \((11 / 2)+\) \\
6 & 0.7870 & \(3 / 2-\) \\
7 & 0.9220 & \(5 / 2+\) \\
8 & 0.9500 & \(5 / 2-\) \\
8 & 0.9730 & \((7 / 2)-\) \\
10 & 0.9910 & \((13 / 2)+\) \\
11 & 1.0610 & \((1 / 2-)\) \\
12 & 1.1420 & \(1 / 2+\) \\
13 & 1.1470 & \(7 / 2-\) \\
14 & 1.2230 & \(5 / 2+\) \\
15 & 1.2590 & \((3 / 2)+\) \\
16 & 1.3260 & \((3 / 2)+\)
\end{tabular}

Continuum levels were assumed above 1.42 MeV .

MT=251
Calculated from \(\mathrm{MF}=4, \mathrm{MT}=2\).
```

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code /21/.
MT=51-66
Calculated with the TNG code.
MT=16,17.22,28,01
Assumed to be isotropic in the laboratory eystem.
MF=5 Energy Distributions of Secondary Neutrons
MT=16,17.22,28,91
Calculated with TNG.

```
MF=12.14.15 Gamma-Production Data
 MT=4,16.17.22,28,102,103,107
 Calculated with TNG.

\section*{REFERENCES}
1) Nakajima, Y., To be published.
2) Moxon, M.C., Rae, E.R., 'Proc. EANDC Conf. on Time-of-FIight Mothods, Saclay. 1961".439.
3) Garg, J.B., ot al., Phys. Rev., B137, 547(1965).
4) Asghar, M., ot al., "Proc. Int. Conf. on the Study of Nuclear Structure with Neutrons. Antwerp 1965'.(86).
6) Muradjan. G.V., Adamehuk, Ju. V.. Jaderno-Fizicheskio Issledovanija. 6, 64 (1968).
6) de Barros, S., ot al., Nusi. Phys., A131, 305(1969).
7) Pattenden, N.J., Jolly, J.E., AERE-PR/NP-16(1969).
8) Macklin. R.L., Nucl. Sci. Eng.. 82, 400(1982).
9) Mizumoto. M., ot al.. J. Nucl. Sci. Technol., 20. 883(1983).
10) Kikuchi. Y.. Privato Communication.
11) Poenitz, W.P.. Whalen, J.F., ANL-NDM-80(1983).
12) Mizumoto. M., ot al.. 'Proc. Int. Conf. on Nucl. Data for Science. and Technology*. Antwerp. p. 226 (1982).
13) Dukarevich. Ju.V.. et al.. Nuc1. Phys.. A92. 433(1967).
14) Smith, A., ot al.. Nucl. Phys.. A332, 297 (1979).
16) Macklin. R.L., et al., Nuci. Sci. Eng. . 82, 400 (1982).
16) Nakagawa, T., J. At. Ene. Soc. Japan. 22. 659 (1980).
17) Fu. C.Y., ORNL/TM-7042(1980).
18) Shibata. K., Fu, C.Y., ORAL/TM-10093(1986).
19) Smith. A.. et al.. Nucl. Phys.. A415. 1 (1984).
20) lijima. S.. et al.. J. Nucl. Sci. Technol.. 21. 10 (1984).
21) Igarasi. S.. J. Nucl. Sci. Technol.. 12. 67 (1975).

47-Ag-109 JAERI Eval-Mar87 Liu T.J.,T.Nakagawa.K.Shibata Dist-Sep89
History
87-03 Now ovaluation for JENDL-3
87-07 Compilod by K.Shibata
```

MF=1 General Information
MT=451 Comments and diotionary.

```

\section*{MF=2 Rosonance Paramoters}

MT=151 Resolved and unresolved resonance parameters
Resolved resonance parameters (below 7.0095keV) Resolved resonance parameters (below ?. ©j95keV) are the same as those of JENOL-2, which were made by Nakajima /// on the basis of experimental data by Moxon and Rae /2/. Garg ot al./3/. Asghar ot al. /4/.Pattondon /5/. Muradjan and Adamchuk /6/. de Barros ot al./7/. Pattendon and Jolly /8/. Macklin /9/ and Mizumoto et al. /10/. There aro no new experimental data available since then.
Unresolved resonance parameters (\(7.0095-100 \mathrm{keV}\))
The parameters were determined with code ASREP /11/ to reproduce the capture and total cross sections, which were based on experimental deca /12-13/ and adjusted for consistence between the data of the natural olement and its i sotopes. The typical parameters aro :
\[
S 0=(0.315-0.540) E-4, \quad S 1=(3.61-4.34) \mathrm{E}-4, \quad S 2=0.53 \mathrm{E}-4 .
\] D -obs \(=(17.5-20.2) \mathrm{eV}, \quad R=6.18 \mathrm{fm}\)

Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns):
\(2200 \mathrm{~m} / \mathrm{s}\)
total 93.04
elastic 2.51
capture 90.53
res. integ.
1471.7

MF \(=3\) Neutron Cross Sections
MT=1,102 Total capture
Below 100 koV , resonance parameters were given. No background cross sections are adopted. Above 100 keV , cross sections wore evaluated on the basis of experimental data and theoretical calculations. The main data were taken from the works of Mizumoto et al. /13/. Macklin et al. /14/ for capturo cross section. The data were fitted with spline function /15/,and were adjusted for consistence between the natural olement and its isotopes.
MT=2 Elastic
Elastic = Total - Nonelastic
MT=3 Nonelastic
Sum of MT=4,16,17,22,28,102,103,107
MT=4 Total inolastic
Sum of MT=51-64.91
MT=16.17.22.28.51-64.91.103.107 (n. Zn).(n.3n).(n,na).(n,np).
inelastic.(n.p).(n.a)

For these reactions the cross sections were calculated with the multistep Hauser-Feshbach code TNG /16.17/. At first, the optical model and level density parameters were taken from the works of Smith et al. /18/ and lijima ot al. /19/, respectively and then they were adjusted to reproduce the available experimontal data.

The optical model parameters are:
\begin{tabular}{|c|c|c|c|}
\hline & Depth (MoV) & Radius (fm) & Diffuseness(fm) \\
\hline \multirow[t]{3}{*}{NEUTRON} & \(V=48.26-0.3 \mathrm{E}\) & \(r 0=1.249\) & \(00=0.603\) \\
\hline & \(W_{s}=8.501-0.16 E\) & Vrs \(=1.270\) & \(\Delta s=0.575\) \\
\hline & \(V \mathrm{So}=6.0\) & \(\mathrm{r} 80=1.249\) & \(\mathrm{s} 0=0.603\) \\
\hline \multirow[t]{3}{*}{PROTON} & \(V=66.061-0.550 E\) & \(r 0=1.150\) & \(a 0=0.650\) \\
\hline & \(W \mathrm{~s}=12.50-0.10 \mathrm{E}\) & \(r s=1.250\) & \(s s=0.470\) \\
\hline & & \(r \mathrm{c}=1.160\) & \\
\hline \multirow[t]{3}{*}{ALPHA} & \(V=193.0-0.16 \mathrm{E}\) & \(r 0=1.370\) & \(a 0=0.560\) \\
\hline & \(W s=21.00+0.25 E\) & \(r s=1.370\) & \(\mathrm{as}=0.560\) \\
\hline & & \(r c=1.370\) & \\
\hline
\end{tabular}

The level density parameters are:
\[
\text { Ecut (MoV) Ejo(MoV) } T(M o V) \text { a(1/MoV) C(MoV) Cspin Epair }
\]
\begin{tabular}{llllllll}
\(\mathrm{Rh}-106\) & 0.770 & 5.700 & 0.830 & 16.80 & 4.000 & 64.581 & 1.24 \\
\(\mathrm{Rh}-106\) & 0.160 & 3.869 & 0.676 & 17.60 & 17.18 & 67.230 & 0.00 \\
\(\mathrm{Pd}-108\) & 1.900 & 7.967 & 0.848 & 17.90 & 0.884 & 69 & 268 \\
\(\mathrm{Pd}-109\) & 0.380 & 7.380 & 0.687 & 17.60 & 9.479 & 68.301 & 1.35 \\
\(\mathrm{Ag}-107\) & 1.420 & 5.918 & 0.683 & 14.65 & 2.412 & 47.878 & 1.24 \\
\(\mathrm{Ag}-108\) & 0.270 & 3.014 & 0.676 & 15.04 & 6.004 & 49.799 & 0.00 \\
\(\mathrm{Ag}-109\) & 1.180 & 6.112 & 0.705 & 14.50 & 2.666 & 48.306 & 1.25 \\
\(\mathrm{Ag}-110\) & 0.320 & 3.150 & 0.454 & 17.01 & 2.513 & 57.015 & 0.00
\end{tabular}

The lovel scheme used is given as follows:
\begin{tabular}{rcc}
No. & Energy(MeV) & Spin-parity \\
GR. & 0.0 & \(1 / 2-\) \\
1 & 0.0880 & \(7 / 2+\) \\
2 & 0.1330 & \(9 / 2+\) \\
3 & 0.3110 & \(2 / 2-\) \\
4 & 0.4160 & \(5 / 2-\) \\
6 & 0.7020 & \(3 / 2-\) \\
6 & 0.7070 & \(3 / 2+\) \\
7 & 0.7240 & \((3 / 2)+\) \\
8 & 0.7360 & \(5 / 2+\) \\
9 & 0.8630 & \(6 / 2-\) \\
10 & 0.8700 & \((5 / 2)+\) \\
11 & 0.8110 & \(7 / 2+\) \\
12 & 0.9120 & \(7 / 2-\) \\
13 & 1.0910 & \(9 / 2-\) \\
14 & 1.0990 & \((5 / 2+)\)
\end{tabular}

Continuum levels were assumed above 1.18 MoV .
```

MT=251
Calculated from MF=4, MT=2.

```
```

MT=2
Calculated with the CASTHY code /20/.
MT=51-64
Calculated with TNG.
MT=16,17,22,28,91
Assumed to be isotropic in the laboratory system.
NF=5 Energy Distributions of Secondary Neutrons
MT=16.17.22.28.91
Calculated with TNG.

```
MF=12.14.15 Gamma-Production Data
 MT=4,16,17,22,28,102,103,107
 Calculated with TNG.

\section*{REFERENCES}
1) Nakajima. Y.. To be published.
2) Moxon. M.C. . Rao. E.R. . Proc. EANDS Conf. on Timo-of-Flight Methods, Saclay, \(1961^{\circ}, 439\).
3) Garg, J.B., ot al.. Phys. Rev., B137. 547(1965).
4) Asghar, M., ot al., 'Proc. Int. Conf. on the Study of Nuclear Sizucture with Noutrons. Antwerp 1865', 65.
5) Pattenden N.J.,ibid. .532.
6) Muradjan, G.V., Adamchuk, Ju. V., Jaderno-Fizicheskie Isslodovanija, 6. 64(1968).
7) de Barros, S., et al.. Nucl. Phys.. A131. \(305(1969)\).
8) Pattonden. N.J. Jolly, J.E.. AERE-PR/NP-16(1969).
9) Macklin. R.I.., Nucl. Sci. Eng., 82, 400(1982).
10) Mizumoto, M., ot al., J. Nucl. Sci. Technoi., 20, 883(1983).
11) Kikuchi, Y.. Private Communication.
12) Poenitz, W.P.. Whalen, J.F., ANL-NDM-80(1983).
13) Mizumoto.M., st al.. "Proc. Inter.Conf. on Nucl.Data for Science and Technology*. Antwerp, p. 226 (1982).
14) Macklin, R.L., ot al.. Nucl. Sci. Eng. .82,400(1982).
15) Nakagawa, T., J. At.Ene. Soc. Japan, 22,559(1980).
16) Fu C.Y. , ORNL/TM-7042(1980).
17) Shibata.K.. Fu. C.Y., ORAL/TM-10093(1986).
18) Smith.A., ot al. Nucl. Phys., A415, 1 (1984).
19) Iijima. S., et al.. J. Nucl. Sci. Technol., 21, 10(1984).
20) Igarasi. S., J. Nucl. Sci. Technol.. 12, 87(1976).

48-Cd- 0 JNDC Eval-Mar89 JNDC FP ND W.G. N. Yamamuro

\section*{History}

89-03 Evaluation of Cd isotopes for JENDL-3 was made by JNDC FP Nuclear Data W.G./1/, and data for natural Cd were constructed from them by T. Nakagawa (JAERI).
89-03 Photon production data were calculated by N. Yamamuro (Data Engineering)
\(M F=1\) Goneral information
MT=451 Comments and dictionary
\(M F=2\) Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula)
Evaluation was made on the basis of the following data for each isotope.
Cd-106 : below 0.7 keV
Mughabghab of al./2/
Assumed capture width \(=0.153 \mathrm{eV}\)
Cd-108 : below 0.38 keV
Anufriev et al./3/
Assumed capture width \(=0.110 \mathrm{eV}\)
Cd-110 : below 7.0 keV
Liou et al./4/. Musgrove et al./5/. Alfimenkov
ot al.16/.
Assumed capture width \(=0.102\) oV
Cd-112 : below 7.0 koV
Liou et al. \(14 /\). Musgrove et al./5/.
Assumed capture width \(=0.1 \mathrm{oV} / 4 /\) below 2.0 keV . and 0.077 oV above 2.0 keV for -wave res. \(0.096 \mathrm{eV} / 5 /\) for p -wave res.
Cd-113 : below 2.0 keV
Liou et al./4/.
Assumed capture width \(=0.101 \mathrm{eV} / 41\)
Cd-114 : below 8.0 keV
Liou et al./1/. Musgrove et al./6/.
Assumed capture width \(=0.11\) oV \(/ 4 /\) below 2.0 keV . and
\[
0.063 \mathrm{eV} \text { above } 2.0 \mathrm{keV} \text { for s-wave res. }
\]
\[
0.082 \mathrm{oV} / 5 / \text { for p-wave res. }
\]

Cd-116 : below 9.0 keV
Liou et al.14/. Musgrove et al./5/.
Assumed capture width \(=0.047\) oV for s-wave res. and 0.085 oV for p-wave res/5/.

In order to reproduce well measured total cross aections, effective scattering radius of 5.42 fm was assumed for the all isotopes.
Unresolved resonance region : up to 100 keV
The neutron strength functions for \(L=0\) and 1 were taken from Mughabghab et al./2/, and those for \(L=2\) were calculated with optical model code CASTHY/7/. Average radiative capture widths were also taken from Ref./2/. The observed level spacings were determined to reproduce the capture cross sections calculated with CASTHY for Cd-110. Cd-112. Cd-113. Cd-114 and Cd-116, and the capture cross sections determined
from experimental data for the other isotopes. The effective scattering radius was obtained from fitting to the calculated total cross section at 100 keV . Finally, background cross section was given to the capture to reproduce the experimental dota/8.9/
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Nuclide & So & S1 & S2 & \[
\begin{gathered}
G(8 . d) \\
(o V)
\end{gathered}
\] & \[
\begin{gathered}
\text { GG(p) } \\
(\mathrm{oV})
\end{gathered}
\] & & R \\
\hline Cd-106 & 1. \(00 \mathrm{E}-4\) & 5. 00E-4 & 0.07E-4 & 0.155 & 0.175 & 131 & 4.70 \\
\hline Cd-108 & 1. 20E-4 & 4.80E-4 & 0.95E-4 & 0.105 & 0.125 & 147 & 4.59 \\
\hline Cd-110 & 0.44E-4 & 3. \(00 \mathrm{E}-4\) & 0.03E-4 & 0.071 & 0.080 & 155 & 0. 25 \\
\hline Cd-111 & 0.80E-4 & 3. 00E-4 & 0.02E-4 & 0.096 & 0.096 & 22 & 5.76 \\
\hline Cd-112 & 0.50E-4 & 4.40E-4 & 0.01E-4 & 0.077 & 0.090 & 212 & 5.44 \\
\hline Cd-113 & 0.31E-4 & 2. 20E-4 & 0.00E-4 & 0.160 & 0.160 & 27 & 6.74 \\
\hline Cd-114 & 0.64E-4 & 3.60E-4 & 0.89E-4 & 0.053 & 0.070 & 250 & 6.80 \\
\hline Cd-116 & \(0.16 \mathrm{E}-4\) & \(2.80 \mathrm{E}-4\) & 0.87E-4 & 0.047 & 0.070 & 432 & 0.48 \\
\hline
\end{tabular}

Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns)
\(2200 \mathrm{~m} / \mathrm{s}\)
total 2536
olastic 8.274
capture 2528
res. integ.
-
-
67.9

MF = 3 Neutron cross sections
Below 100 keV , resonance parameters were given.
Above 100 keV , the spherical optical and statistical model calculation was performed with CASTHY/7l, by taking account of competing reactions, of which oross sections were caloulated with PEGASUS/10/ standing on a preequilibrium and multi-stop ovaporation model. The ONP's for neutron given in Table 1 were determined to reproduce the Cd-111 total cross section. The OMP's for charged particles are as follows:

Proton = Porey/11/
Alpha = Huizenga and Igo/12/
Deuteron = Lohr and Haeberli//13/
Helium-3 and triton = Becchetti and Greenlees/14/
Parameters for the composite leval density formula of Girbert and Cameron/15/ were evaluated by lijime ot al./16/. More extensive determination and modification were made in the present work. Table 2 shows the level density parameters used in the present calculation. Energy dependence of spin cut-off parameter in the energy range below E-joint is due to Gruppelaar /17/.

MT \(=1\) Total
Spherical optical model calculation was adopted. In the energy region from 100 keV to 2.5 MeV , cross section was determined from the data measured by Whalen et al./18/. Green ot al./19/ and Poonitz and Whalon/20/.

MT \(=2\) Elastic scattoring
Calculatod as (total - sum of partial cross sections).
MT \(=3\) Non-olastic scattoring
Sum of partial cross sections except MT=2.
```

MT = 4, 51-91 Inelastic scattering
Spherical optical and statistical model calculation was
adopted. The level schemes were taken from Ref./21/ for
Cd-106 and 108. Ref./22/ for Cd-110. 111. 112 1nd 113.
and Ref./23/ for Cd-114 and 116. The inelastic
scattering cross sections were grouped as follows:

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline MT -Q(MEV) & 106 & 108 & 110 & 111 & 112 & 113 & 114 & \\
\hline \(51-0.2454\) & - & - & - & 51 & - & 51 & - & - \\
\hline \(52-0.2886\) & - & - & - & - & - & 62,53 & - & - \\
\hline \(53-0.3419\) & - & - & - & 52.53 & - & - & - & - \\
\hline 54-0.4168 & - & - & - & 54 & - & 54.55 & - & - \\
\hline \(55-0.5131\) & - & - & - & - & - & 56 & - & 51 \\
\hline \(56-0.6583\) & - & - & - & - & - & 57 & 61 & - \\
\hline \(57-0.6174\) & 51 & 61 & - & 55 & 51 & - & - & - \\
\hline 58-0.6577 & - & - & 51 & 58 & - & 58.59 & - & - \\
\hline 58-0.764 & - & - & - & 57 & - & - & - & - \\
\hline \(60-0.8553\) & - & - & - & 58 & - & 60 & - & - \\
\hline \(61-0.8836\) & - & - & - & - & - & 61 & - & - \\
\hline 62-0.9884 & - & - & - & - & - & 62.63 & - & - \\
\hline 63-1.02 & - & - & - & 59 & - & - & - & - \\
\hline 64-1.1261 & - & - & - & 60 & - & 64 & - & - \\
\hline 65-1.1342 & - & - & - & - & - & - & 52 & - \\
\hline 68-1.19 & - & - & - & 61 & - & 65 & - & - \\
\hline 67-1.2093 & - & - & - & - & - & - & 53 & 52,53 \\
\hline 68-1. 223 & - & - & - & - & 52 & - & - & - \\
\hline 69-1. 283 & - & - & - & - & - & - & 54 & 54 \\
\hline 70-1.3052 & - & - & - & - & 63 & - & 55 & - \\
\hline 71-1.361 & - & - & - & - & - & - & - & 55 \\
\hline 72-1.3639 & - & - & - & - & 54 & - & 56 & - \\
\hline 73-1.4317 & - & - & - & - & 55.50 & - & - & - \\
\hline 74-1.4732 & 52 & 52 & 52,53 & - & - & - & - & - \\
\hline 75-1.5424 & 53 & 53.54 & 54 & - & - & - & - & - \\
\hline 78-1.7318 & - & - & 55 & - & - & - & 57.58 & - \\
\hline 77-1.7833 & - & - & 56.57 & - & - & - & - & - \\
\hline 78-1.971 & - & 55.56 & - & - & 57 & - & - & - \\
\hline 79-1.971 & - & - & 58 & 58,59 & - & - & - & - \\
\hline 80-2.0788 & 54 & - & 59.60 & - & - & - & - & - \\
\hline \(81-2.1627\) & - & 57.58 & 61 & - & - & - & - & - \\
\hline \(82-2.22\) & 65-57 & 59 & 62 & - & - & - & - & - \\
\hline \(83-2.355\) & 58 & 80 & 63 & - & - & - & - & - \\
\hline \(84-2.4641\) & 59-61 & 81 & 64,65 & - & - & - & - & - \\
\hline 85-2.538 & - & 62 & 68 & - & - & - & - & - \\
\hline \(86-2.5612\) & - & 63-69 & 67 & - & - & - & - & - \\
\hline 87-2.7864 & - & 70 & 68 & - & - & - & - & - \\
\hline 88-2.868 & - & & 69.70 & - & - & - & - & - \\
\hline 89 -2.9266 & - & 71-77 & 71 & - & - & - & - & - \\
\hline 91-1.1948 & 91 & 91 & 91 & 91 & 91 & 91 & 91 & 91 \\
\hline
\end{tabular}

MT \(=102\) Capture
Spherical optical and statistical model calculation with CASTHY/7/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi
and Reffo/24/ and normalized to 1 milli -barn at 14 MoV .
The gemma-ray strength functions were adjusted to reproduce the following capture cross sections.
```

Cd-106 0.34 at 70 keV
14.2E-4
Cd-108 0.23 at 70 koV
Cd-110 0.245 at 30 keV
Cd-111 0.9 at 30 koV
Cd-112 0.22 at 30 kov
Cd-113 0.72 at 30 koV
Cd-114 0.15 at 30 keV
Cd-116 0.09 at 30 koV
8.63E-4
4.65E-4
68.8E-4
4.04E-4
46.5E-4
2.50E-4
1.35E-4
At the energies from $\theta \mathrm{keV}$ to 10 MeV , the cross section was modified to well reproduce the data measured by Kompe/8/ and Poenitz/8/.
$M T=16,17,22,28,32,103,104,105,106,107,111$
$(n, 2 n),(n, 3 n),\left(n, n^{\prime} a\right),\left(n, n^{\prime} p\right),\left(n, n^{\prime} d\right),(n, p),(n, d)$.
( $n, t$ ), ( $n, H e 3$ ), ( $n, a l p h a$ ) and ( $n, 2 p$ ) Cross Sections
These reaction cross sections were calculated with the preequilibrium and multi-stop evaporation model code PEGASUS 110/. The Kalbach's constants were estimated by the formula derived from Kikuchi-Kawai's formalism/25/ and level density parameters. The ( $n, 2 n$ ). ( $n, p$ ) and ( $n, a l p h a)$ cross sections were normalized to the following values(mb) at 14.5 MoV : Nuclide (n,2n)/26/ (n,p)/27/ (n,alpha)/26/

| Cd-106 | 900 | 130 | 100 |
| :--- | :--- | :--- | :--- |


| $\mathrm{Cd}-108$ | 1000 | 57.6 | 12.1 |
| :--- | :--- | :--- | :--- |


| Cd-110 | 1170 | 29.7 | 6.34 |
| :--- | :--- | :--- | :--- |

Cd-111 (1582) 50 4.52
Cd-112 (1583) 16 3.1
Cd-113 (1632) 10.9 2.23
Cd-114 (1031) 10 0.7
Cd-116 (1032) 2.6 (0.108)
Values in () were calculated ones (not normalized).
MT $=251$ Mu-bar
Calculated with CASTHY/7/.
MF $=4$ Angular Distributions of Secondary Noutrons
Distributions of elastic and inelastic scattering neutrons were calculated with CASTHY/7/. In the case whero more than 2 levels were grouped into 1 level. isotropic distribution in the center-of-mass system was assumed. For other reactions, isotropic distributions in the laboratory system were assumed.
MF $=5$ Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculeted with PEGASUS/10/ for inelastic scattering from overlapping levels and for other neutron emitting reactions.
MF $=12$ Photon Production Multiplicities
$M T=3$ (above 100 keV ), and 102 (below 100 keV )
Calculated with GNASH/28/ modified by Yamemuro/29/
NF $=14$ Photon Angular Distributions
$\mathbf{M T}=3,102$
Isotropic distributions were assumed.
NF $=15$ Photon Energy Distributions
MT $=3.102$

```

Calculatod with GNASH/28/ modifiod by Yamamuro/29/
Table 1 Neutron Optical Potential Parameters
\begin{tabular}{|c|c|c|}
\hline Depth (MeV) & Radius(fm) & Diffusoness(fm) \\
\hline \(V=50.01-0.5528 \mathrm{E}\) & \(\mathrm{R} 0=5872\) & \(a 0=0.60\) \\
\hline \(W_{\text {s }}=8.165\) & Rs \(=6.594\) & as \(=0.44\) \\
\hline Wso \(=5.261\) & Rso \(=5.97\) & aso \(=0.267\) \\
\hline
\end{tabular}

Table 2 Level Donsity Parameters of Cd Isotopes
Nuclide SYST \(a(/ \mathrm{MoV}) \quad \mathrm{T}(\mathrm{MoV}) \quad \mathrm{C}(/ \mathrm{MeV}) \quad \mathrm{EX}(\mathrm{MoV})\) Pairing
\begin{tabular}{llllll}
\(48-C d-104\) & \(1.643 \mathrm{E}+01\) & \(6.403 \mathrm{E}-01\) & \(3.632 \mathrm{E}-01\) & \(7.266 \mathrm{E}+00\) & \(2.060 \mathrm{E}+00\) \\
\(48-\mathrm{Cd}-105\) & \(1.600 \mathrm{E}+01\) & \(6.850 \mathrm{E}-01\) & \(4.000 \mathrm{E}+00\) & \(6.612 \mathrm{E}+00\) & \(1.360 \mathrm{E}+00\) \\
\(48-\mathrm{Cd}-106\) & \(1.468 \mathrm{E}+01\) & \(6.950 \mathrm{E}-01\) & \(5.785 \mathrm{E}-01\) & \(7.078 \mathrm{E}+00\) & \(2.300 \mathrm{E}+00\) \\
\(48-\mathrm{Cd}-107\) & \(1.647 \mathrm{E}+01\) & \(6.740 \mathrm{E}-01\) & \(4.374 \mathrm{E}+00\) & \(6.626 \mathrm{E}+00\) & \(1.360 \mathrm{E}+00\) \\
\(48-\mathrm{Cd}-108\) & \(1.541 \mathrm{E}+01\) & \(6.900 \mathrm{E}-01\) & \(5.114 \mathrm{E}-01\) & \(7.656 \mathrm{E}+00\) & \(2.600 \mathrm{E}+00\) \\
\(48-\mathrm{Cd}-109\) & \(1.812 \mathrm{E}+01\) & \(6.120 \mathrm{E}-01\) & \(3.856 \mathrm{E}+00\) & \(6.132 \mathrm{E}+00\) & \(1.360 \mathrm{E}+00\) \\
\(48-\mathrm{Cd}-110\) & \(1.750 \mathrm{E}+01\) & \(6.300 \mathrm{E}-01\) & \(5.212 \mathrm{E}-01\) & \(7.482 \mathrm{E}+00\) & \(2.610 \mathrm{E}+00\) \\
\(48-\mathrm{Cd}-111\) & \(1.874 \mathrm{E}+01\) & \(5.930 \mathrm{E}-01\) & \(3.762 \mathrm{E}+00\) & \(6.000 \mathrm{~F}+00\) & \(1.360 \mathrm{E}+00\) \\
\(48-\mathrm{Cd}-112\) & \(1.797 \mathrm{E}+01\) & \(6.190 \mathrm{E}-01\) & \(6.327 \mathrm{E}-01\) & \(7.351 \mathrm{E}+00\) & \(2.500 \mathrm{E}+00\) \\
\(48-\mathrm{Cd}-113\) & \(1.973 \mathrm{E}+01\) & \(5.760 \mathrm{E}-01\) & \(4.397 \mathrm{E}+00\) & \(6.018 \mathrm{E}+00\) & \(1.360 \mathrm{E}+00\) \\
\(48-\mathrm{Cd}-114\) & \(1.910 \mathrm{E}+01\) & \(6.010 \mathrm{E}-01\) & \(5.651 \mathrm{E}-01\) & \(7.611 \mathrm{E}+00\) & \(2.680 \mathrm{E}+00\) \\
\(48-\mathrm{Cd}-116\) & \(2.072 \mathrm{E}+01\) & \(5.570 \mathrm{E}-01\) & \(4.806 \mathrm{E}+00\) & \(5.966 \mathrm{E}+00\) & \(1.360 \mathrm{E}+00\) \\
\(48-\mathrm{Cd}-116\) & \(1.990 \mathrm{E}+01\) & \(5.750 \mathrm{E}-01\) & \(6.265 \mathrm{E}-01\) & \(7.206 \mathrm{E}+00\) & \(2.510 \mathrm{E}+00\) \\
\(48-\mathrm{Cd}-117\) & \(2.107 \mathrm{E}+01\) & \(6.620 \mathrm{E}-01\) & \(6.164 \mathrm{E}+00\) & \(6.181 \mathrm{E}+00\) & \(1.360 \mathrm{E}+00\)
\end{tabular}
```

SYST: * = LDP's were determined from systematics.

```

\section*{References}
1) Kawai. M. ot al.: Proc. Int. Conf. on Nuclear Data for Science and Technology. Mito, p. 569 (1988).
2) Mughabghab, S.F. ot al.: "Noutron Cross Sections, Vol. I. Part A*, Academic Press (1981).
3) Anufriev et al.: Sov. At. Energy. 57. 502 (1985).
4) Liou. H.l., ot al.: Phys. Rev., C10, 709 (1974).
5) Musgrove. A.R. de L.. ot al.: J. Phys. G, 4. 771 (1978).
6) Alfimenkov et al.: Nucl. Phys., A398, 93 (1983).
7) Igarasi. S.: J. Nuci. Sci. Technol.. 12, 67 (1976).
8) Kompe. D.: Nuc1. Phys.. A133. 513 (1969).
9) Poonitz. W.P.: ANL-83-4, 239 (1982).
10) lijima, S. et al.: JAERI-M 87-025, p. 337 (1987).
11) Perey. F.G: Phys. Rev. 131, 745 (1963).
12) Huizenga. J.R. and Igo. G.: Nuct. Phys. 29. 462 (1962).
13) Lohr. J.M. and Haeberli. W.: Nucl. Phys. A232, 381 (1974).
14) Becchetti. F.D., Jr. and Greenlees, G.W.: Polarization Phenomena in Nuclear Reactions ((eds) H.H. Baishall and W. Haoberli). p. 682. The university of Wisconsin Press. (1971).
15) Gilbert. A. and Cameron. A.G.W.: Can. J. Phys., 43, 1446 (1965).
16) Iijima, S.. ot al.: J. Nucl. Sci. Technol. 21. 10 (1984).
17) Gruppolaar. H.: ECN-13 (1977).
18) Whalen, J.F. et al.: ANL-7210, 16 (1966).
19) Green. L. et al.: data in EXFOR (1971).
20) Poonitz. W.P. and Wfalen, J.F.: ANL/ADN-080 (1983).
21) ENSDF: Evaluated Nuclear Structure Data File (June 1987).
22) Matsumoto, J.: Private communication (1981).
23) Ledorer. C.M. . et al.: "Table of Iscropes. 7th Ed.', WileyInterscience Publication (1978).
24) Benzi, V. and Reffo. G.: CCDN-NW/10 (1969).
25) Kikuchi. K. and Kawai. M.: 'Nuclear Matter and Nuclear Reactions*. North Holland (1968).
26) Bychkov. V.M. ot al.: INDC(CCP)-146/LJ (1980).
27) Forrost, R.A.: AERE-R 12419 (1986).
28) Young, P.G. and Arthur. E.D.: LA-6947 (1977).
28) Ymamamuro. N.: JAERI-M 88-140 (1888).

\section*{History}

89-03 Data were constructed with those for \(\mathrm{Sb}-121\) and \(\mathrm{Sb}-123\) which were evaluated by JNDC FP Nuclear Data W.G./1/.

NF \(=1\) Genoral information
MT=451 Comments and dictionary

\section*{MF \(=2\) Resmance parameters}

MT=151 Resolved and unresolved resonance paramete:s
Resolved resonance parameters (MLBW formula)
1) \(\mathrm{Sb}-121\) : below 2 keV Evaluation was made on the basis of data measured by Ohkubo/21. Ohkubo ot al./3/. Bolotin and Chrien/4/. Wynchank ot al./5/. Muradjan ot al./6/ and Adamchuk ot al.171. Angular momentum 1 and spin \(J\) were based on the data by Belyaey ot al./8/. Baht et al./9/ and Cauvin et al./10/. The average radiative capture width of 0.089 oV was as sumed.
2) \(\mathrm{Sb}-123\) : below 2.5 keV

Evaluation was made on the basis of the data measured by Ohkubo/2/. Ohkubo ot al./11/. Stolvy and Hervey/12/. Bolotin and Chrien/4/. Wynchank ot al./5/. Muradjan ot al.16/ and Adamchuk ot al.171. Angular momentum 1 and spin \(J\) were based on the data by Baht et al./9/ and Cauvin et al./10/. The average radiative capture width of 0.098 oV was assumed.

Unresolved resonance region : up to 100 keV The neutron strength functions, SO. S1 and S2 were calculated with optical model code CASTHY/!3/. The observed level spacing was determined to reproduce the centure cross section calculated with CASTHY. The offective scattering radius was obtained from fitting to the calculated total cross section at 100 keV .

Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross soctions and res. integrals (barns) \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
\begin{tabular}{lll}
total & 8.843 & - \\
olastic & 3.722 & -
\end{tabular}
\(\mathrm{MF}=3\) Neutron cross sections
Below 100 keV , resonance parameters were given.
Above 100 keV , the spherical optical and statistical model calculation was performed with CASTHY/13/. by taking account of competing reactions, of which cross sections were calculated with PEGASUS/14/ standing on a preequilibrium and multi-step evaporation model. The OMP's for neut ron given in Table 1 were adopted from lijima and Kawai/15/ by modifying radius parameter of the spin-orbit term. The OMP's for charged particles are as follows:

Proton = Perey/16/
Alpha = Huizenga and Igo/17/
Deuteron = Lohr and Hasberli/18/

Helium-3 and triton = Becchetti and Greenlees/19/
Parameters for the composite level density formula of Girbert and Cameron/20/ were evaluated by lijima ot al./21/. More extensive determination and modification were made in the present work. Table 2 shows the level density paramnters used in the present calculation. Energy dependence of spi, cut-of \(f\) perameter in the energy range below E-joint is due to Gruppelarr /22/

MT = 1 Total
Spherical optical model calculation was adopted in the onergy ranges below 500 keV and above 11.5 MeV . Between 600 keV and 11.5 MeV . spline fitting to the experimental deta/23,24/ was performed.
\(M T=2\) Elastic scettering
Calculated as (total - sum of partial cross sections).
MT = 4. 51-91 Inelastic scattering
Spherical optical and statistical model calculation was
adopted. The level scheme was trisan from Ref./25/.

Overlapping levels were assumed sbove 1.15 MoV for \(\mathrm{Sb-1} 21\) and above 1.18 MoV for \(\mathrm{Sb}-123\). In the data file, Q-values of levels were slightly shifted to be consistent with their threshold energies.

MT \(=102\) Capture
Spherical optical and statistical model calculation with CASTHY/13/was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffol26/ and normalized to 1 milli-barn at 14 MeV .

The gamma-ray strength functions were adjusted to reproduce the capture cross sections.
cross section (30 keV) strength function
Sb-121 0.55 barn
Sb-123 0.34 barn
49.8E-4
26.7E-4
\(M T=16,17,22,28,32,33,103,104,105,107\)
(\(n, 2 n\)), (\(n, 3 n\)), (\(\left.n, n^{\prime} a\right),\left(n, n^{\prime} p\right),\left(n, n^{\prime} d\right),\left(n, n^{\prime} t\right)\),
(\(n, p\)), (n,d). (n,t) and (n.alpha) Cross Sections
These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code PEGASUS/14/.

The Kalbach's constants were estimated by the formula derived from Kikuchi-Kawai's formalism/27/ and level density parameters.
\[
\text { Sb-i 21: 145.3. Sb-123: } 174.0
\]

Finaliy, the (\(n, 2 n\)), (\(n, p\)) and (\(n, a \mid p h a\)) cross sections were modified as follows.

MT \(=251\) Mu-bar
Calculated with CASTHY/13/.
```

MF $=4$ Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are
given in the center-of-mass system for MT=2 and discrete inelas-
tic levels, and in the laboratory system for MT=91. They were
calculated with CASTHY/13/. For other reactions. isotropic
distributions in the laboratory system were assumed.
MF $=5$ Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with
PEGASUS/14/ for inelastic scattering from overlapping levels
and for other neutron emitting reactions.

```

Table 1 Noutron Optical Potential Parameters
\begin{tabular}{|c|c|c|}
\hline Depth (MeV) & Radius (fm) & Diffuseness (fm) \\
\hline \(V=47.64-0.473 E\) & \(\mathrm{RO}=6.256\) & \(a 0=0.62\) \\
\hline \(W_{s}=9.744\) & Fis \(=6.469\) & as \(=0.35\) \\
\hline \(W \mathrm{so}=7.0\) & Rso \(=6.241\) & aso: 0.62 . \\
\hline
\end{tabular}

Table 2 Level Density Parameters

\begin{tabular}{lllllll}
\(51-S b-121\) & \(1.730 E+01\) & \(5.740 E-01\) & \(1.715 \mathrm{E}+00\) & \(5.022 \mathrm{E}+00\) & \(1.240 \mathrm{E}+00\) \\
\(51-\mathrm{Sb}-122\) & \(1.772 \mathrm{E}+01\) & \(5.500 \mathrm{E}-01\) & \(1.346 \mathrm{E}+01\) & \(3.517 \mathrm{E}+00\) & 0.0 \\
\(5!-\mathrm{Sb}-123\) & \(1.585 \mathrm{E}+01\) & \(6.213 \mathrm{E}-01\) & \(1.285 \mathrm{E}+00\) & \(5.469 \mathrm{E}+00\) & \(1.430 \mathrm{E}+00\) \\
\(51-\mathrm{Sb}-124\) & \(1.696 \mathrm{E}+01\) & \(5.600 \mathrm{E}-01\) & \(1.090 \mathrm{E}+01\) & \(3.433 \mathrm{E}+00\) & 0.0
\end{tabular}

SYST: . = LDP's were determined from systematics.

\section*{References}
1) Kawai. M. et al.: Proc. Int. Conf. on Nuclear Data for Science and Technology, Mito. p. 588 (1988).
2) Ohkubo, M.: private communication (1983).
3) Ohkubo, M. et al.: J. Phys. Soc. Japan, 33, 1185 (1972).
4) Bolotin. H. and Chrien. R.E.: Nucl. Phys., 42, 676 (1963).
5) Wynchank, S.. ot al.: Phys. Rov., 166. 1234 (1968).
6) Muradjan, G.V., ot al.: Jaderno-Fizicheskie lssledovanija, 6. 64 (1968).
7) Adamchuk, Ju.V., et al.: |AE-2108 (1971).
8) Belyaev. F.N. et al.: "Proc. 6th ALI Union Conf. on Neutron Physics, Kiev 1983*, Vol. 2. 366 (1983).
9) Baht. M.R., et al.: Phys. Rev., C2, 1115 (1970).
10) Cauvin. B., ot al.: "Proc. 3rd Conf. on Neutron Cross Sections and Technol., Knoxville 1971*. Vol. 2. 785 (1971).
11) Ohkubo. M. et al.: J. Phys. Soc. Japan, 33, 1185 (1972).
12) Stolvy. A. and Harvey, J.A.: Phys. Rov., 108, 353 (1857).
13) Igarasi, S.: J. Nuci. Sci. Technol., 12, 67 (1975).
14) lijima, S. et al.: JAERI-M 87-025, p. 337 (1987).
16) Iijima, S. and Kawai, M.: J. Nucl. Sci. Technol., 20. 77 (1983).
16) Perey, F.G: Phys. Rev. 131. 745 (1963).
17) Huizenga, J.R. and Igo. G.: Nucl. Phys. 28. 462 (1962).
18) Lohr, J.M. and Haeberli. W.: Nucl. Phys. A232, 381 (1974).
19) Becchet i, F.D., Jr. and Greenlees, G.W.: Polarization Phenomena in Nuclear Reactions (leds) H.H. Barshall and W. Haeberli), p. 682. The university of Wisconsin Press. (1971).
20) Gilbert, A. and Cameron, A.G.W.: Can. J. Phys., 43, 1446 (1965).
21) Iijima, S., ot al.: J. Nucl. Sci. Technol. 21. 10 (1984).
22) Gruppelaar. H.: ECN-13 (1977).
23) Foster Jr.D.G. and Glasgow D.W.: Phys. Rev., C3. 576 (1971).
24) Smith, A.B. et al.: Nucl. Phys.. A415, 1 (1984).
25) Lederer. C.M., et al.: "Tablo of Isotopes. 7 th Ed.", WileyInterscience Publication (1978).
26) Benzi, V. and Reffo. G.: CCDN-NW/10 (1969).
27) Kikuchi. K. and Kawai. M.: "Nuclear Matter and Nuclear

Reactions*, North Holland (1988).
28) Bormann. M. ot al.: Nucl. Phys.. A115. 309 (1968).
29) Forrest. R.A.: AERE-R 12419 (1986).
```

51-Sb-121 JNDC Eval-Mar89 JNDC FP Nuclear Data W.G.
Dist-Oct 89

```

Histary
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/ 89-03 Modification was made/2/, and stored in JENDL-3.
```

MF = 1 General information
MT=451 Comments and dictionary

```
MF \(=2\) Resonance parameters
 MT=151 Resolved and unresolved resonance parameters
 Resolved resonance region (MLBW formula) ; below 2 keV
 Evaluation was made on the basis of the data measured by
 Ohkubo et al./3.4/. Bolotin and Chrien/5/, Wynchank et
 al./6/. Muradjan et al./7/ and Adamchuk et al./8/.
 Angular momentum 1 and \(s p i n ~ J\) were based on the data by
 Belyaev et al./9/. Baht et al./10/ and Cauvin et al./11/.
 The average radiative capture width of 0.089 eV was assumed.
 Unresolved resonance region : \(2 \mathrm{keV}-100 \mathrm{keV}\)
 The neutron strength functions, S0, S1 and S2 were calculated
 with optical model code CASTHY/12/. The observed level
 spacing was determined to reproduce the capture cross section
 calculated with CASTHY. The effective scattering radius was
 obtained from fitting to the calculated total cross section at
 100 keV .
 Typical values of the parameters at 70 keV :
 \(S 0=0.300 \mathrm{E}-4, \mathrm{~S} 1=2.700 \mathrm{E}-4, \mathrm{~S} 2=0.760 \mathrm{E}-4, \mathrm{GG}=0.100 \mathrm{eV}\)
 \(D_{0}=10.51 \mathrm{eV}, R=5.837 \mathrm{fm}\).
 Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns)
 \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
total 9.582
elastic \(\quad 3.590\)
capture \(5.991 \quad 215\)
\(\mathbf{M F}=3\) Neutron cross sections
 Below 100 keV , resonance parameters were given.
 Above 100 keV , the spherical optical and stetistical model
 calculation was performed with CASTHY/12/. by taking account of
 competing reactions, of which cross sections were calculated
 with PEGASUS/13/ standing on a preequilibrium and multi-step
 evaporation model. The OMP's for neutron given in Table 1 were
 taken from lijima and Kawai/14/ and rso was modified to
 reproduce the measured total cross sections. The ONP's for
 charged particles are as follows:
 Proton = Porey/15/
 Alpha \(=\) Huizenga and Igo/16/
 Deuteron = Lohr and Heeberii/17/
 Holium-3 and triton = Becchetti and Greenlees/18/
 Parameters for the composite level density formula of Girbert
 and Cameron/19/ were evaluated by lijima et al./20/. More
 extensive determination and modification were made in the
 present work. Table 2 shows the level density parameters used
 in the present calculation. Energy dependence of spin cut-off
parameter in the energy range below E-joint is due to Gruppelaar /21/.

MT \(=1\) Total
Spherical optical model calculation was adopted.
\(M T=2\) Elastic scattering
Calculated as (total - sum of partial cross sections).
MT \(=4\), 51 - 91 Inelastic scattering
Spherical optical and statistical model calculation was adopted. The level scheme was taken from Ref./22/.
\begin{tabular}{ccc}
No. & Energy (MeV) & Spin-parity \\
GR. & 0.0 & \(5 / 2+\) \\
1 & 0.0371 & \(7 / 2+\) \\
2 & 0.5076 & \(3 / 2+\) \\
3 & 0.5731 & \(1 / 2+\) \\
4 & 0.9470 & \(9 / 2+\) \\
5 & 1.0240 & \(7 / 2+\) \\
6 & 1.0355 & \(9 / 2+\) \\
7 & 1.1393 & \(11 / 2+\) \\
8 & 1.1447 & \(9 / 2+\)
\end{tabular}

Levels above 1.15 MeV were assumed to be overlapping.
MT \(=102\) Capture
Spherical optical and statistical model calculation with
CASTHY/12/ was adopted. Direct and semi-direct capture cross
sections were estimated according to the procedure of Benzi
and Reffol23/ and normalized to \(1 \mathrm{milli-barn}\) at 14 MeV .

The gamma-ray strength function (49.8E-4) was adjusted to reproduce the capture cross section of 550 milli -barns at 30 keV which was derived from natural \(S b\) data/24/ and CFRMF activation rate measurement (Sb-121/Sb-123=1.6)/25/.
```

MT = 16 (n,2n) Cross Section
MT = 17 (n,3n) Cross Section
MT = 22 (n,n'a) Cross Section
MT = 28 (n,n'p) Cross Section
MT = 32 (n, n'd) Cross Section
MT = 33 (n, n't) Cross Section
MT =103 (n,p) Cross Section
MT =104 (n,d) Cross Section
MT =105 (n.t) Cross Section
MT =107 (n,alpha) Cross Section

```

These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code PEGASUS/13/.

The Kalbach's constant \(K(=145.3)\) was estimated by the formula derived from Kikuchi-Kawai's formalism/26/ and level density parameters.

Finally, the (n,alpha) cross sections were normalized to the following values at 14.5 MeV :
```

        (n,alpha) 4.51 mb (systematics of Forrest/27/)
    ```

The (\(n, 2 n\)) cross section was determined by eye-guiding of the data measured by Bormann/28/.
```

MT = 251 Mu-bar
Ca!culated with CASTHY/12/.

```
MF \(=4\) Angular Distributions of Secondary Neutrons
 Legendre polynomial coofficients for angular distributions are
 given in the center-of-rnass system for MT=2 and discrete inelas-
 tic levels, and in the laboratory system for MT=91. They were
 calculated with CASTHY/12/. For other reactions, isotropic
 distributions in the laboratory system were assumed.

\section*{MF = 5 Energy Distributions of Secondary Neutrons}

Energy distributions of secondary neutrons were calcilated with PEGASUS/13/ for inelastic scattering from overlappiny levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters
\begin{tabular}{|c|c|c|}
\hline Depth (MeV) & Radius(fm) & Diffuseness(fm) \\
\hline \(V=47.64-0.473 \mathrm{E}\) & \(R 0=6.256\) & \(a 0=0.62\) \\
\hline \(W_{s}=9.744\) & Rs \(=6.469\) & \(\mathrm{as}_{\text {s }}=0.35\) \\
\hline \(\mathrm{Wso}=7.0\) & Rso \(=6.241\) & aso \(=0.62\) \\
\hline
\end{tabular}

Table 2 Level Density Parameters
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Nuclide & SYST & \(\mathrm{a}(\mathrm{MeV})\) & T(MeV) & \(\mathrm{C}(/ \mathrm{MeV})\) & EX(MoV) & Pairing \\
\hline 49-| n -117 & & \(1.678 \mathrm{E}+01\) & 6.010E-01 & 2.387E+00 & \(5.208 \mathrm{E}+00\) & \\
\hline 49-In-118 & - & \(1.804 \mathrm{E}+01\) & 6.084E-01 & 3.111E+01 & 4.636E+00 & 0.0 \\
\hline 49-1n-119 & & \(1.940 \mathrm{E}+01\) & \(5.340 \mathrm{E}-01\) & \(2.195 \mathrm{E}+00\) & 4.999E+00 & i . \(240 \mathrm{E}+0\) \\
\hline 49-In-120 & - & \(1.757 \mathrm{E}+01\) & 6.016E-01 & \(2.330 \mathrm{E}+01\) & \(4.366 \mathrm{E}+00\) & 0.0 \\
\hline 50-Sn-118 & & \(1.633 \mathrm{E}+01\) & 6.140E-01 & 3.341E-01 & 6.448E+00 & \(2.340 E+00\) \\
\hline 50-Sn-119 & & \(1.635 \mathrm{E}+01\) & \(5.990 \mathrm{E}-01\) & \(1.772 \mathrm{E}+00\) & \(5.050 \mathrm{E}+00\) & 1.190E+00 \\
\hline 50-Sn-120 & & 1.595E+01 & 6.540E-01 & 4.691E-01 & \(7.083 \mathrm{E}+00\) & 2.430E+00 \\
\hline 50-Sn-121 & & \(1.630 \mathrm{E}+01\) & 6.100E-01 & \(2.010 \mathrm{E}+00\) & 5.217E+00 & 1.190E+0 \\
\hline 51-Sb-119 & & \(1.858 \mathrm{E}+01\) & 6.040E-01 & \(5.801 \mathrm{E}+00\) & \(5.944 \mathrm{E}+00\) & 1.150E+00 \\
\hline 51-Sb-120 & - & \(1.834 \mathrm{E}+01\) & \(6.016 \mathrm{E}-01\) & 3.366E+01 & 4.659E+00 & 0.0 \\
\hline 51-Sb-121 & & \(1.730 \mathrm{E}+01\) & 5.740E-01 & \(1.715 \mathrm{E}+00\) & \(5.022 \mathrm{E}+00\) & \(1.240 \mathrm{E}+00\) \\
\hline 51-Sb-122 & & \(1.772 \mathrm{E}+01\) & \(5.500 \mathrm{E}-01\) & \(1.346 \mathrm{E}+01\) & \(3.517 E+00\) & 0.0 \\
\hline
\end{tabular}

SYST: * = LDP's were determined from systematics.
Spin cutoff params were calculated as 0.146.SQRT(a)-A.-(2/3). In the CASTHY calculation, spin cutoff factors at 0 MeV were assumed to be 9.25 for \(\mathbf{S b - 1 2 1}\) and 5.0 for \(\mathbf{S b - 1 2 2 .}\)

\section*{References}
1) Aoki. T. ot al.: Proc. Int. Conf. on Nuclear Data for Basic and Applied Science. Santa Fe., Vol. 2. p. 1627 (1985).
2) Kawai. M. et al.: Proc. Int. Conf. on Nuclear Data for Science and Technology. Mito. p. 569 (1988).
3) Ohkubo. M.: private communication (1983).
4) Ohkubo. M. ot al.: J. Phys. Soc. Japan, 33. 1185 (1972),
6) Bolotin, H., Chrien, R.E.: Nucl. Phys.. 42, 676 (1963).
6) Wynchank, S., ot al.: Phys. Rev., 166. 1234 (1968).
7) Muradjan, G.V.. et al.: Jaderno-Fizicheskie Issiedovanija, 6. 64 (1968).
8) Adamchuk, Ju.V., et al.: |AE-2108 (1971).
9) Belyaev, F.N. et al.: "Proc. 6 th ALI Union Conf, on Neutron Physics, Klev 1983", Vol. 2, 366 (1983).
10) Baht, M.R., et al.: Phys. Rev., C2, 1115 (1970).
11) Cauvin, B., et al.: "Proc. 3rd Conf. on Neutron Cross Sections and Technol., Knoxville 1971*. Vol. 2, 785 (1971).
12) Igarasi, S.: J. Nucl. Sci. Technol.. 12, 67 (1975).
13) Iijima, S. et al.: JAERI-M 87-025, p. 337 (1987).
14) I ijima, S. and Kawai. M.: J. Nucl. Sci. Technol., 20. 77 (1983).
15) Perey, F.G: Phys. Rev. 131. 745 (1963).
16) Huizenga, J.R. and Igo. G.: Nucl. Phys. 29, 462 (1962).
17) Lohr. J.M. and Haeberli, W.: Nucl. Phys. A232. 381 (1974).
18) Becchetti. F.D.. Jr. and Greenlees. G.W.: Polarization Phenomena in Nuclear Reactions ((eds) H.H. Barshall and W. Haeberli), p. 682, The university of Wisconsin Press. (1971).
19) Gilbert. A. and Cameron. A.G.W.: Can. J. Phys., 43. 1446 (1965).
20) lijima, S., et al.: J. Nucl. Sci. Technol. 21, 10 (1984).
21) Gruppelaar. H. : ECN-13 (1977).
22) Lederer, C.M. et al.: "Table of Isotopes, 7th Ed.'. WileyInterscience Publication (1978).
23) Benzi, V. and Reffo, G.: CCDN-NW/10 (1969).
24) Gibbons, J.H., et al.: Phys. Rev., 122, 182 (1961).
25) Harker, Y.D., Ander I. R.A.: NEANDC(E)209L, 5 (1979).
26) Kikuchi. K. and Kawai, M.: "Nuclear Matter and Nuclear Roactions*, North Holland (1968).
27) Forrest. R.A.: AERE-R 12419 (1986).
28) Bormann. M. et al.: Nucl. Phys.. A115. 309 (1968).
\[
\text { 51-Sb-1 } 23 \text { JNDC Eval-Mar } 89 \text { JNDC FP Nuclear Data W.G. }
\]
\[
\text { Dist-0ct } 89
\]

History
84-10 Evaluation for JENDL-2 wes made by JNDC FPND W. G. 11/ 89-03 Modification was made and stored in JENDL-3.

NF \(=1\) General information
MT=451 Comments and dictionary
MF \(=2\) Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 2.5 keV Evaluation was made on the basis of the data measured by Ohkubo/2/, Ohkubo et al./3/. Stolvy and Harvey/4/. Bolotin and Chrien/5/. Wynchank et al./6/. Muradjan et al./7/ and Adamchuk et al./8/. Angular momentum 1 and spin \(J\) were based on the data by Baht et al./9/ and Cauvin et al./10/. The average radiative capture width of 0.098 eV was assumed.
Unresolved resonance region : \(2.5 \mathrm{keV}-100 \mathrm{keV}\) The neutron strength functions. S0, S1 and S2 were calculated with optical model code CASTHY/i1/. The observed level spacing was determined to reproduce the capture cross section calculated with CASTHY. The effective scattering radius was obtained from fitting to the calculated total cross section at 100 keV .

Typical values of the parameters at 70 keV :
\(S 0=0.250 E-4, S 1=2.700 E-4, S 2=0.760 E-4, G G=0.100 \mathrm{eV}\) \(D_{0}=23.28 \mathrm{eV} . Q=5.856 \mathrm{fm}\).

Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns) \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
\begin{tabular}{lcc}
total & 8.086 & - \\
elastic & 3.899 & - \\
capture & 4.187 & 123
\end{tabular}
\(M F=3\) Neutron cross sections
Below 100 keV , resonance parameters were given.
Above 100 keV . the spherical optical and statistical model calculation was performed with CASTHY/11/. by taking account of competing reactions, of which cross sections were calculated with PEGASUS/12/ standing on a preequilit. Ium and multi-step evaporation model. The OMP's for neutron given in in Table 1 were taken from lijima and Kawai/13/ and rso was modified to reproduce the measured total cross sections. The ONP's for charged particles are as follows:

Proton = Perey/14/
Alpha = Huizenga and Igo/15/
Deuteron \(=\) Lohr and Haeberii/16/
Helium-3 and triton = Becchetti and Greenlees/17/
Parameters for the composite level density formula of Girbert and Cameron/18/ were evaluated by lijima et al./19/. More extensive determination and modification were made in the present work. Table 2 shows the level density parameters used in the present calculation. Energy dependence of spin cut-off
parameter in the energy range below E-joint is due to Gruppelaar /20/.
```

MT = 1 Toral

```

Spherical optical model calculation was adopted

MT \(=2\) Elastic scattering
Calculated as (total - sum of partial cross sections).

MT = 4. 51-91 Inelastic scattering
Spherical optical and statistical model calculation was
adopted. The level scheme was taken from Ref./21/.
\begin{tabular}{ccc}
No. & Energy (MeV) & Spin-parity \\
GR. & 0.0 & \(7 / 2+\) \\
1 & 0.1603 & \(5 / 2+\) \\
2 & 0.5421 & \(3 / 2+\) \\
3 & 0.7125 & \(1 / 2+\) \\
4 & 1.0302 & \(9 / 2+\) \\
5 & 1.0886 & \(9 / 2+\)
\end{tabular}

Levels above 1.18 MeV were assumed to be overlapping.
\(M T=102\) Capture
Spherical optical and statistical model calculation with CASTHY/11/ was adopted. Direct and semi-direct cepture cross sections were estimated according to the procedure of Benzi and Reffol22/ and normalized to 1 milli -barn at 14 MeV .

The gamma-ray strength function (25.7E-4) was adjusted to reproduce the capture cross section of 340 milli-barns at 30 keV which was derived from natural Sb data /23/ and CFRMF activation rate measurement (Sb-121/Sb-123=1.6)/24/.

MT \(=16 \quad(n, 2 n)\) Cross Section
MT \(=17\) (n,3n) Cross Section
MT \(=22\) (\(n, n^{\prime} a\)) Cross Section
MT \(=28\) (\(n, n^{\prime} p\)) Cross Section
MT \(=32\) (n.n'd) Cross Section
\(M T=33 \quad\left(n, n^{\prime} t\right)\) Cross Section
MT \(=103\) (\(n, p\)) Cross Section
MT \(=104\) (\(n, d\)) Cross Section
MT \(=105\) (\(n, t\)) Cross Section
MT \(=107\) (n.alpha) Cross Section
These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code PEGASUS/12/.

The Kalbach's constant \(K(=174)\) was estimated by the formula derived from Kikuchi-Kawai's formalism/25/ and level density parameters.

Finally, the (\(n, p\)) and (\(n, a l p h a\)) cross sections were normalized to the following values at 14.5 MeV :
\begin{tabular}{lll}
(n,p) & 4.70 mb (recommended by Forrest/26/) \\
(n, alpha) & 2.53 mb (systematics of Forrest/26/)
\end{tabular}

MT \(=251\) Mu-bar

Calculated with CA.STHY/11/.
MF \(=4\) Angular Distributions of Secondary Neutrons Legendre polynomial coefficients for angular distributions are given in the center-of-mass systom for MT=2 and discrete inelastic levels, and in the laboratory system for \(\mathrm{MT}=91\). They were calculated with CAS'THY/11/. For other reactions. isotropic distributions in tho laboratory systom wera assumed.

MF \(=5\) Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/12/ for inolastic scattering from overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters
\begin{tabular}{lll}
\multicolumn{1}{c}{ Depth (MeV) } & Radius(fm) & \\
Diffuseness(fm) \\
\(V=47.64-0.473 E\) & RO \(=6.256\) & a0 \(=0.62\) \\
\(W_{s}=9.744\) & Rs \(=6.469\) & as \(=0.35\) \\
\(W_{s o}=7.0\) & Rso \(=6.241\) & aso \(=0.62\)
\end{tabular}

Table 2 Level Density Parameters
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Nuclide & SY & \(a(/ \mathrm{MeV})\) & T & c & EX(MoV) & Pairing \\
\hline 49-1n-119 & & 1.940E+01 & 5.340E-01 & 2.196E+00 & 4.989E+00 & 1.24 \\
\hline 49-1 \(n-120\) & - & 1.757E+01 & 6.016E-01 & 2.330E+01 & 4.366E+00 & 0.0 \\
\hline 49-1n-121 & & 1.601E+01 & 6.060E-01 & 1.119E+00 & 5.277E+00 & 1.430E+00 \\
\hline 49-|n-122 & * & 1.707E+01 & \(5.968 \mathrm{E}-01\) & 1.737E+01 & 4.092E+00 & 0.0 \\
\hline 50-Sn-120 & & 1.595E+01 & 6.540E-01 & 4.691E-01 & 7.083E+00 & \(2.430 \mathrm{E}+00\) \\
\hline 50-Sn-1 21 & & \(1.630 \mathrm{E}+01\) & 6.100E-01 & 2.010E+00 & 5.217E+00 & 1.190E+00 \\
\hline 50-Sn-122 & & \(1.434 E+01\) & 7.060E-01 & \(3.423 E-01\) & \(7.416 \mathrm{E}+00\) & 2.620E+00 \\
\hline 50-Sn-123 & & 1.509E+01 & 6.870E-01 & \(3.062 \mathrm{E}+00\) & 6.032E+00 & 1.190E+00 \\
\hline 51-Sb-1 21 & & 1.730E+01 & \(5.740 E-01\) & 1.715E+00 & \(5.022 \mathrm{E}+00\) & 1.240E+00 \\
\hline 51-Sb-1 22 & & 1.772E+01 & \(5.500 \mathrm{E}-01\) & 1.346E+01 & \(3.517 \mathrm{E}+00\) & 0.0 \\
\hline 51-Sb-123 & & 1.585E+01 & \(6.213 \mathrm{E}-01\) & 1.285E+00 & \(5.469 \mathrm{E}+00\) & \(1.430 E+00\) \\
\hline 51-Sb-1 24 & & 1.696E+01 & 5.600E-01 & \(1.090 \mathrm{E}+01\) & \(3.433 \mathrm{E}+00\) & 0.0 \\
\hline
\end{tabular}

SYST: \(=\) LDP's were determined from systematics.

Spin cutoff params were calculated as \(0.146 \cdot \operatorname{SQRT}(a)=A=(2 / 3)\). In the CASTHY calculation. spin cutoff factors at 0 MeV were assumed to be 6.4 for \(\mathbf{S b - 1 2 3}\) and 5.0 for \(\mathbf{S b - 1 2 4 .}\)

\section*{References}
1) Aoki, T. et al.: Proc. Int. Conf. on Nuclear Data for Basic and Applied Science. Santa Fe.. Vol. 2, p. 1627 (1985).
2) Ohkubo, M.: Private communication (1983).
3) Ohkubo, M. et al.: J. Phys. Soc. Japan, 33, 1185 (1972).
4) Stolvy, A. and Harvey, J.A.: Phys. Rev.. 108, 353 (1957).
5) Bolotin. H. and Chrien, R.E.: Nucl. Phys.. 42, 676 (1963).
6) Wynchank, S. et al.: Phys. Rey.. 166. 1234 (1968).
7) Muradjan, G.V. et al.: Jaderno-Fizicheskie Issledovanija, 6. 64 (1968).
8) Adamchuk, Ju.V. et al,: |AE-2108 (1971).
9) Baht. M.R. et al.: Phys. Rev.. C2, 1115 (1970)
10) Cauvin. B. et al.: "Proc. 3rd Conf. on Neutron Cross Sections and Technol.. Knoxville 1971". Vol. 2. 785 (1971).
11) Igarasi. S.: J. Nucl. Sci. Technol., 12, 67 (1975).
12) lijima. S. et al.: JAER1-M 87-025. p. 337 (1987).
13) Iijima, S. and Kawai. M.: J. Nucl. Sci. Technol., 20, 77 (1983).
14) Perey, f.G: Phys. Rev. 131. 745 (1963).
15) Huizenga. J.R. and Igo. G.: Nucl. Phys. 29. 462 (1962).
16) Lohr. J.M. and Haeberli: W.: Nucl. Phys. A232, 381 (1974).
17) Becchet:i, F.D., Jr. and Greenlees, G.W.: Polarization Phenomena in Nuclear Reactions (leds) H.H. Barshall and W. Haeberli). p. 682. The university of Wisconsin Press. (1971)
18) Gilbert, A. and Cameron, A.G.W.: Can. J. Phys., 43. 1446 (1965).
18) lijima. S., et al.: J. Nucl. Sci. Technol. 21, 10 (1984).
20) Gruppelaar. H.: ECN-13 (1977).
21) Lederer, C.M., et al.: "Table of Isotopes. 7th Ed.". WileyInterscience Publication (1978).
22) Benzi, V. and Reffo. G.: CCDN-NW/10 (1969).
23) Gibbons. J.H., et al.: Phys. Rev., 122, 182 (1961).
24) Harker, Y.D., AnderI, R.A.: NEANDC(E)209L, 5 (1979).
25) Kikuchi. K. and Kawai. M.: 'Nuclear Matter and Nuclear Resctions*. North Holland (1968).
26) Forrest, R.A.: AERE-R 12418 (1986).constructed from the isotope deta by \(T\). Asami andT. Nakagawa (JAERI).
MF \(=1\) General information
 MT=451 Comments and dictionary
MF \(=2\) Resonance parameters
 MT=151 Resolved and unresolved resonance parameters
 Resolved resonance region (MLBW formula)
 Evaluation for each isotope was made by Kikuchi /1/.
 1) Eu-151: below 98.2 eV
 Parameters were mainly based on the data of Rahn et al.
 /2/, and for the lowest 2 levels. the deta of Tassan et
 al./3/. The capture width of \(0.093 \mathrm{eV} / 2 /\) was assumed
 for the levels whose radiative capture width was not
 measured. A negative resonance was added so as to
 reproduce the capture cross section of 9200 barns at 0.0253
 oV/4/.
 2)Eu-153: below 97.2 ev
 Neutron widths were obtained from the data of Rahn et al.
 \(/ 2 /\) and Anufriov ot al. \(/ 5 /\). Radiative capture widths
 were adopted from the data of Rahn et al. The parameters
 of 1.73-. 2.46-. 3.29-and \(3.94-\mathrm{eV}\) levels were taken from
 Maghabghab \(/ 6 /\) so as to reproduce the capture resonance
 integral of 1420 barns/6/. A negative resonance was added
 so as to reproduce the capture cross section of 390 berns
 and the elastic scattering of \(8.0+-0.2\) barns at 0.0253
 eV/4/.
 Unresolved resonance region : up to 100 keV
 The parameters were adjusted to reproduce the capture cross
 sections. The effective scattering radius was obtained from
 fiting to the calculated total cross section at 100 keV .
 Typical values of the parameters at 70 keV :
 1) \(E u-151\)
 \(S 0=3.699 E-4 . S 1=0.100 E-4, S 2=3.000 E-4, G G=0.091 \mathrm{eV}\)
 Do \(=0.408 \mathrm{eV}, R=6.870 \mathrm{fm}\).
 2) Eu-153
 \(S 0=2.602 \mathrm{E}-4 . \mathrm{S} 1=1.394 \mathrm{E}-4, \mathrm{~S} 2=2.946 \mathrm{E}-4 . \mathrm{GG}=0.094 \mathrm{eV}\)
 \(D_{0}=1.489 \mathrm{eV}, R=6.421 \mathrm{fm}\).
 Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns)
 \(2200 \mathrm{~m} / \mathrm{s}\) res. integ.
 total 4606
 elastic 5.248
 capture \(4601 \quad 2210\)
 (n.alpha) \(\quad\) 4.637E-06
NF \(=3\) Neutron cross sections
 Below 100 keV . resonance parameters were given
```

$M T=1$ Total
Below 10 MeV . calculated with the CASTHY code/7/. The optical
potential parameters listed in Table 1 used. Above 10 MeV .
cross section was determined from the data of Foster and
Glasgow/8/ for natural Eu.
MT $=2$ Elastic scattering
Calculated as (total - sum of partial cross sections).
MT = 4, 51-71, 91 Inelastic scattering
Calculated with the CASTHY code/7/. The level scheme used in
the calculations was taken from Ref. $19 /$

	Eu-151		Eu-153				
No	MT	energy ( MeV )	J-parity	No.	MT	energy	V) J-parity
g.s		0.0	5/2+	g.s		0.0	5/2+
1	51	0.02150	7/2+	1	52	0.0834	7/2+
2	58	0.19620	11/2-	2	53	0.0974	5/2-
3	59	0.19650	3/2+	3	54	0.1032	3/2+
4	61	0.2432	7/2-	4	55	0.1516	7/2-
5	62	0.2604	5/2+	5	56	0.1729	5/2+
6	64	0.3070	7/2+	8	57	0.1931	9/2+
7	65	0.3075	$5 / 2+$	7	60	0.2353	9/2-
8	88	0.3498	9/2-	8	63	0.2697	7/2+
9	69	0.3536	7/?-	$\theta$	68	0.3219	11/2-
10	71	0.4160	7/2+	10	67	0.3251	11/2+
				11	70	0.3964	9/2+
cont	91	0.420		cont	91	0.400	

```

Q-values of excited levels were shifted a little so as to be consistent with threshold energies.

MT = 102 Capture
Calculated from Eu-151 and -153 capture cross sections.
The Eu-151 capture cross section below 2 MeV was determined by eye-guiding the data measured by Macklin and Young/10/. and above 2 MeV . JENDL-2 data calculated with CASTHY was normalized to Macklin and Young at 2 MeV . For Eu-153, evaluation for JENDL-2 was adopted. Direct and semi-direct capture cross sections were added, which were estimated according to the procedure of Benzi and Reffo/11/ and normalized to \(1 \mathrm{milli-barn}\) at 14 MeV .
\(M T=16,17,22,28,103,107(n, 2 n),(n, 3 n),(n, n a),(n, n p)\),
(\(n, p\)) and (\(n, a\)) cross sections
Calculated with the GNASH code/12/ using the optical model
parameters in Table 2, which were determined so as to reproduce well the total cross section measured by Foster and Glasgow/8/ for natural Eu. The level scheme data were taken from Ref/9/. The calculated (\(n .2 n\)) and (\(n .3 n\)) cross sections were modified on the basis of the experimental data of Frehaut et al./13/ and Bayhurt/14/. respectively.

The (n.alpha) cross section in the resonance region was calculated from resonance parameters, by assuming a mean alpha width of \(9.0 E-11 \mathrm{eV}\) for Eu-151 and \(2.0 \mathrm{E}-10 \mathrm{eV}\) for \(\mathrm{Eu}-153\) so as
to reproduce the thermal cross section/6/. The cross section was averaged in suitabie energy intervals. Above the resolved resonance region, the cross section was connected smoothly to the GNASH calculation.
```

MT = 251 Mu-bar
Calculated with CASTHY/7/.

```
\(M F=4\) Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=81. They were calculated with CASTHY/7/. For other reaciions, the isotropic distributions in the laboratory system were assumed.

\section*{MF = 5 Energr Distributions of Secondary Neutrons}

Energy distributions of secondary neutrons were calculated with GNASH/12/.
```

MF = 12 Photon Production Multiplicities
MT=102, 107 (below 21.6437 keV)

```
 Calculuated with GNASH code/12/.
MF = 13 Photon Production Cross Sections
 MT=3 (above 21.6437 keV)
 Calculueted with GNASH code/12/.
MF = 14 Photon Angular Distributions
 \(M T=3,102\)
 Assumed to be isotropic.
MF \(=15\) Continuous Photon Energy Spectra
 \(\mathrm{MT}=3\). 102. 107
 Calculated with GNASH code/12/.

Table 1 Neutron Optical Potential Parameters (for CASTHY)
\[
\begin{aligned}
& V=43.71-0.0566 \cdot \mathrm{En}, \quad V \text { so }=7.9 \quad(\mathrm{MeV}) \\
& W_{s}=7.696 . \quad W_{v}=0.0 \quad(\mathrm{MeV}) \\
& r=1.270, \quad r s=1.440, \quad r s o=1.280 \quad(f m) \\
& a=0.60 . \quad b=0.45, \quad \text { aso }=0.60 \quad(\mathrm{fm})
\end{aligned}
\]

Table 2 Neutron Optical Potential Parameters (for GNASH)
\[
\begin{array}{rlrl}
V & =43.71-0.05655 . E n, & V s o=0.0 & (\mathrm{MeV}) \\
W & =7.696, & & W v=0.0 \\
r & =1.272, & r s=1.440, & r s o=1.270 \\
& (\mathrm{MeV} \\
a & =0.48 . & b=0.45, & a s o=0.48
\end{array}
\]

\section*{References}
1) Kikuchi. Y: et al.: JAERI-M 86-030 (1986).
2) Rahn. F., et al.: Phys. Rev.. C6. 251 (1972).
3) Tassan. S.. et al.: Nucl. Sci.. Eng.. 10. 169 (1961).
4) Mughabghab. S.F., Garber, D.I.: "Neutron Cross Sections. Vol.1. Resonance Parameters". BNL 325. 3rd Ed.. Vol. 1. (1973).
5) Anufriev, V.A., et al.: Sov. At. Energy. 46. 182 (1979).
6) Mughabghab. S.F. ot al.: "Neutron Cross Sections. Vol. I, Part A*. Academic Press (1981).
7) Igarasi, S.: J. Nucl. Sci. Technol., 12, 67 (1975).
8) Foster Jr.D.G. and Glasgow D.W.: Phys. Rev.. C3. 576 (1971).
9) ENSDF: Evaluated Nuclear Structure Data File (June 1987).
10) Macklin. R.L. and Young. P.G.: Nucl. Sci. Eng., 96. 189(1987).
11) Benzi. V. and Reffo, G.: CCDN-NW/10 (1969).
12) Young, P.G. and Arthur, E.D.: LA-6947 (1977).
13) Frehaut. J. et al.: data (1980) in the EXFOR file.
14) Bayhurst. B.P. ot al.: Phys. Rev., C12, 451 (1976).
```

    63-Eu-151 JAERI,JNDC Eval-Mar89 T.Asami, JNDC FP ND W.G.
                Dist-Oct 89
    History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-03 Evaluation for JENDL-3 was made by T.Asami (JAERI) and JNDC
FP Nuclear Data W.G.
MF = 1 General information
MT=451 Comments and dictionary
NF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 0.0982 keV
Evaluation was made by Kikuchi /2/. Parameters were adopted
mainly from the data measured by Rahn et al./3/. For the
lowest 2 levels, the data of Tassan et al./4/ were adopted.
The average capture width of 0.093 eV /3/ was assumed for the
levels whose radiative capture width was not measured. A
negative resonance was added at -0.00361 eV so as to reproduce
the capture cross section of 9200 +- 100 barns at 0.0253
ov/5/.
Unresolved resonance region : 0.0982 keV - 100 keV
The neutron strength functions S0, S1, S2 were based on the
compilation of Mughabghab/6/. The observed level spacing was
adjusted to reproduce the capture cross section measured by
Macklin and Young/7/. The effective scattering radius was
obtained from fitting to the calculated total cross section at
100 keV.
Typical values of the parameters at 70 koV:
S0 = 3.699E-4. S1 = 0.100E-4. S2 = 3.000E-4, GG = 0.091 eV
DO =0.408 eV, R =6.870 fm
Calculated 2200-m/s cross sections and res. integrals (barns)

	$2200 \mathrm{~m} / \mathrm{s}$	res. integ.
total	9201	-
olastic	3.207	-
capture	9198	3070

        (n,alpha) 8.806E-06
    ```
MF \(=3\) Neutron cross sections
 Below 100 keV . resonance parameters were given.
 \(M T=1\) Total
 Below 10 MeV , calculated with the CASTHY code/8/. The optical
 potential parameters listed in Table 1 used. Above 10 MeV ,
 determined from the data of Foster and Glasgow/9/ for
 natural Eu.
 MT \(=2\) Elastic scattoring
 Calculated as (total - sum of partial cross sections).
 MT \(=4,51-60,91\) Inelastic scattering
 Calculated with the CASTHY code/8/. The level scheme used in
 the calculations was takon from Ref./10/
\begin{tabular}{ccc}
No & level energr(MeV) & spin-parity \\
g.s & 0.0 & \(5 / 2+\) \\
1 & 0.02150 & \(7 / 2+\) \\
2 & 0.19620 & \(11 / 2-\) \\
3 & 0.19650 & \(3 / 2+\) \\
4 & 0.2432 & \(7 / 2-\) \\
5 & 0.2604 & \(5 / 2+\) \\
6 & 0.3070 & \(7 / 2+\) \\
7 & 0.3075 & \(5 / 2+\) \\
8 & 0.3498 & \(9 / 2-\) \\
9 & 0.3536 & \(7 / 2-\) \\
10 & 0.4160 & \(7 / 2+\) \\
Levels above 0.420 MeV were assumed to be overlapping
\end{tabular}

\section*{\(M T=102\) Capture}

Below 2 MeV , cross section was determined by eye-guiding the data measured by Macklin and Young/7/. Above 2 MeV . JENDL-2 data calculated with CASTHY was normalized to Macklin and Young at 2 MeV . Direct and semi-direct capture cross sections were added. which were estimated according to the procedure of Benzi and Reffo/11/ and normalized to 1 milli-barn at 14 MeV .
\(M T=16,17,22,28,103,107(n, 2 n),(n, 3 n),(n, n a),(n, n p)\),
(\(n, p\)) and (\(n, a\)) cross sections
Calculated with the GNASH code/12/ using the optical model parameters in Table 2, which were determined so as to reproduce well the total cross section measured by Foster and Glasgow/9/ for natural Eu. The level scheme data were taken from Ref/10/. The calculated (\(n, 2 n\)) and (\(n, 3 n\)) cross sections were modified on the basis of the experimental data of Frehaut et al./13/ and Bayhurt/14/, respectively.

The (\(n, a \mid p h a\)) cross section in the resonance region was calculated from resonance parameters, by assuming a mean alpha width of \(9.0 E-11 \mathrm{eV}\) so as to reproduce the thermal cross section/6/. The cross section was averaged in suitable energy intervals. Above 98.2 oV . the cross section was connected smoothly to the GNASH calculation.
```

MT = 251 Mu-bar
Calculated with CASTHY/8/.

```

MF \(=4\) Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/8/. For other reactions, the isotropic distributions in the laboratory system were assumed.

MF \(=5\) Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with GNASH/12/.

Table 1 Neutron Optical Potential Parameters (for CASTHY)
\[
\begin{array}{rlrl}
V & =43.71-0.0566 \cdot E n, & V s o=7.9 & (\mathrm{MeV}) \\
W s & =7.696, & & W v=0.0 \\
r & =1.270, & r s=1.440, & r s o=1.280 \\
(\mathrm{MeV}) \\
a & =0.60, & \varepsilon=0.45, & \text { aso }=0.60
\end{array}
\]

Table 2 Noutron Optical Potential Parameters (for GNASH)
\[
\begin{aligned}
& V=43.71-0.05655 \cdot E n, \quad V s o=0.0(\mathrm{MeV}) \\
& W_{s}=7.696 . \quad W_{v}=0.0 \quad(\mathrm{MeV}) \\
& r=1.272 \text {, } \mathrm{rs}=1.440 \text {, } \mathrm{rso}=1.270 \quad(\mathrm{fm}) \\
& a=0.48, \quad b=0.45, \quad \text { aso }=0.48 \quad(f m)
\end{aligned}
\]

References
1) Aoki, T. et al.: Proc. Int. Conf. on Nuclear Data for Basic and Applied Science, Santa Fe., Vol. 2, p. 1627 (1985).
2) Kikuchi. Y. et al.: JAERI-M 86-030 (1986).
3) Rahn, F.. et al.: Phys. Rev., C6, 251 (1972).
4) Tassan, S., et al.: Nucl. Sci.. Eng.. 10, 169 (1961).
5) Mughabghab, S.F., Garber. D.I.: 'Neutron Cross Sections, Vol.1, Resonance Parameters". BNL 325, 3rd Ed.. Vol. 1, (1973).
6) Mughabghab. S.F. ot al.: "Neitron Cross Sections, Vol. I. Part A*. Academic Press (1981).
7) Macklin, R.L. and Youns, P.G.: Nucl. Sci. Eng., 95, 189(1987).
8) Igarasi, S.: J. Nucl. Sci. Tochnol., 12, 87 (1975).
9) Foster Jr.D.G. and Glasgow D.W.: Phys. Rev., C3, 576 (1971).
10) ENSDF: Evaluated Nuclear Structure Date File (June 1987).
11) Benzi, V. and Reffo, G.: CCDN-NW/10 (1969).
12) Young, P.G. and Arthur, E.D.: LA-6947 (1977)
13) Frehaut. J. ot al.: deta (1980) in the EXFOR ile.
14) Bayhurst, B.P. ot al.: Phys. Rev.. C12. 451 (1975).

MAT number \(=3633\)
63-Eu-153 JEARI.JNDC Eval-Mar89 T.Asami, JNDC FP ND W.G.
Dist-Oct89
History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/ 89-03 Evaluation for JENDL-3 was made by T.Asami (JAERI) and JNDC FP Nuclear Data W.G.

MF = 1 General information
MT=451 Comments and dictionary
MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Evaluation was made by Kikuchi 12/. Neutron widths were obtained by averaging the data of Rahn et al./3/ and Anufriev et al./4/. Radiative capture widths were adopted from the data measured by Rahn et al. The parameters of 1.73-. 2.46-. 3.29- and \(3.94-\mathrm{eV}\) livels were taken from Mughabghab /5/ so as to reproduce the capture resonance integral of \(1420+-100\) barns recommended in Ref./5/. A negative resonance was added at -0.5 eV so as to reproduce the capture cross section of 390 + 20 barns and the olastic scattering of \(8.0+0.2\) barns at \(0.0253 \mathrm{oV} / 6 /\).
Unresolved resonance region : \(0.0972 \mathrm{koV}-100 \mathrm{keV}\)
Initial values of noutron strength functions were the same as JENDL-2 calculated with optical and statistiacl model code CASTHY/7/. They were adjusted to the capture cross section calculated with CASTHY for JENOL-2 which was in good agreoment with experimental data by Macklir and Young/8/. The observed level spacing was determined to reproduce the capture cross section at 30 keV . The effective scattering radius was obtained from fitting to the calculated total cross section at 100 keV .

Typical values of the parameters at 70 keV :
\[
\begin{aligned}
& S 0=2.602 \mathrm{E}-4, S 1=1.394 \mathrm{E}-4 . \mathrm{S} 2=2.946 \mathrm{E}-4, G G=0.094 \mathrm{oV} \\
& D_{0}=1.489 \mathrm{eV}, \mathrm{R}=6.421 \mathrm{fm} .
\end{aligned}
\]

Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integrals (barns) \(2200 \mathrm{~m} / \mathrm{s}\) ros. integ.
total 399.2
elastic
7.118
-
capture
392.1

1420
(n,alpha)
8.187E-07

MF \(=3\) Neutron cross sections
Below 100 keV. resonance parameters were given.
MT \(=1\) Total
Below 10 MeV , calculated with the CASTHY code/7/. The optical potential parameters listed in Table 1 used. Above 10 MeV . determined from the data of Foster and Glasgow/9/ for natural Eu.

MT \(=2\) Elastic scattering
Calculated as (total - sum of partial cross sections).
\(M T=4,51-91\) Inelastic scattering
Calculated with the CASTHY code/7/. The level scheme used in the calculations was taken from Ref./10/
\begin{tabular}{ccc}
No & level energy(MeV) & spin-parity \\
g.s. & 0.0 & \(6 / 2+\) \\
1 & 0.0834 & \(7 / 2+\) \\
2 & 0.0974 & \(6 / 2-\) \\
3 & 0.1032 & \(3 / 2+\) \\
4 & 0.1516 & \(7 / 2-\) \\
5 & 0.1729 & \(5 / 2+\) \\
6 & 0.1931 & \(9 / 2+\) \\
7 & 0.2353 & \(9 / 2-\) \\
8 & 0.2697 & \(7 / 2+\) \\
9 & 0.3219 & \(11 / 2-\) \\
10 & 0.3251 & \(11 / 2+\) \\
11 & 0.3964 & \(9 / 2+\)
\end{tabular}

Levels above 0.400 MeV were assumed to be overlapping.
\(M T=102\) Capture
Calculation for JENDL-2 with CASTHY/7/ was adopted. The following potential parameters were determined by lijima at al. /11/ to reproduce a systematic trend of the total cross section.
\begin{tabular}{|c|c|c|}
\hline Depth (MeV) & Radius(fm) & Diffuseness (fm) \\
\hline \(V=49.61\) & \(\mathrm{RO}=6.7926\) & \(a 0=0.6\) \\
\hline \(W \mathrm{~s}=10.595\) & Rs \(=7.6483\) & \(a_{s}=0.45\) \\
\hline Wso \(=7.0\) & Rso= 6.8461 & 'so \(=0.6\) \\
\hline
\end{tabular}

Parameters for the composite level density formula of GirbertCameron were evaluated as follows/12/. The coefficient of spin cut-off parameter C1 was taken as 0.146 . The energy dependence of spin cut-off parameter in the energy range below E-joint is due to Gruppelaar /13/.

Eu-153 Eu-154
Pairing energy (MeV) a (\(1 / \mathrm{MeV}\))
Spin cut-off param.
Nuclear temp. (MeV) C (\(1 / \mathrm{MeV}\)) E-joint (MeV)
\begin{tabular}{rr}
1.100 & 0.0 \\
27.860 & 22.670 \\
19.567 & 19.972 \\
0.455 & 0.432 \\
13.410 & 16.440 \\
5.399 & 2.784
\end{tabular}

The gamma-ray strength function (= 809.E-4) was adjusted to reproduce the experimental capture cross section of 680 milli barns at 250 keV measured by Macklin and Young/8/. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/14/ and normalized to \(1 \mathrm{milif-barn}\) at 14 MeV .
\(M T=16,17.22,28,103.107\) (n,2n). (n,3n). (n,na). (n, np),
(\(n, p\)) and (\(n, a\)) cross sections
Calculated with the GNASH code/15/ using the optical model
parameters in Table 2, which were determined so as to
reproduce well the total cross section measured by Foster and Glasgow/9/ for natural Eu. The level scheme data were taken from Ref/10/. The calculated (\(n, p\)) cross section was normalized at 14.5 MeV to an average value of the experimental data around \(14.5 \mathrm{MeV} / 16,17,18,19 /\).

The (\(n, a l p h a)\) cross section in the resonance region was calculated from resonance parametors, by assuming a mean alpha width of \(2.0 E-10 \mathrm{eV}\) so as to reproduce the thermal cross section/5/. The cross section was averaged in suitable energy intervals. Above 97.2 oV . the cross section was connected smoothly to the GNASH calculation.
```

MT = 251 Mu-bar
Calculated with CASTHY/7/.

```
MF \(=4\) Angular Distributions of Secondary Neutrons
 Legendre polynomial coefficients for angular distributions are
 given in the center-of-mass system for \(M T=2\) and discrete inelas-
 tic levels, and in the laboratory system for MT=91. They were
 calculated with CASTHY/7/. For other reactions. isotropic
 distributions in the laboratory system were assumed

MF \(=5\) Energy Distributions of Secondary Neutrons Energy distributions of secondary neutrons were calculated with GNASH/15/.

Table 1 Neutron Optical Potential Parameters (for CASTHY)
\[
\begin{aligned}
V & =43.71-0.0566 . E n, & V s o=7.9 & (\mathrm{MeV}) \\
W s & =7.696, & W v=0.0 & (\mathrm{MeV}) \\
r & =1.270, & r s=1.440, & r \text { so }=1.280 \\
a & =0.60, & b=0.45, & \text { aso }=0.60
\end{aligned}
\]

Table 2 Neutron Optical Potential Parameters (for GNASH)
\[
\begin{aligned}
V & =43.71-0.05655 . E n, & V s o=0.0 & (\mathrm{MeV}) \\
W s & =7.696, & W v=0.0 & (\mathrm{MeV} \\
r & =1.272, \quad r s=1.440, & r s o=1.270 & (\mathrm{fm}) \\
a & =0.48, & b=0.45, & \text { aso }=0.48
\end{aligned}
\]

\section*{References}
1) Aoki. T. et al.: Proc. Int. Conf. on Nuclear Data for Basic and Applied Science, Santa Fe.. Vol. 2. p. 1627 (1985).
2) Kikuchi, Y. et al.: JAERI-M 86-030 (1986).
3) Rahn, F., et al.: Phys. Rev., C6. 251 (1972).
4) Anufriev, V.A., et al.: Sov. At. Energy, 46. 182 (1979).
5) Mughabghab, S.F.: "Neutron Cross Sections. Vol. I. Part B", Academic Press (1984).
6) Mughabghab. S.F. and Garber, D.I.: "Neutron Cross Sections, Vol.1. Resonance Parameters*. BNL 325, 3rd Ed.. Vol. 1. (1973).
7) Igarasi, S.: J. Nucl. Sci. Technol., 12, 67 (1975).
8) Macklin. R.L. and Young. P.G.: Nucl. Sci. Eng. . 95. 189(1987).
9) Foster Jr.D.G. and Glasgow D.W.: Phys. Rev., C3. 576 (1971).
10) ENSDF: Evaluated Nuclear Structure Data File (June 1987).
11) Iijima, S. and Kawai, M.: J. Nucl. Sci. Technol., 20, 77
(1983).
12) Iijima, S., et al.: J. Nucl. Sci. Technol. 21, 10 (1984).
13) Gruppelaar. H.: ECN-13 (1977).
14) Benzi. V. and Reffo, G.: CCDN-NW/10 (1969).
16) Young. P.G. and Arthur, E.D.: LA-6947 (1977).
18) Coleman. R.F. et al.: Proc. Phys. Soc., 73, 215 (1959).
17) Qaim, S.M.: data in the EXFOR file (1974).
18) Pruys. H.S. ot al.: J. Inorg. Nucl. Chem.. 37. 1587 (1975).
19) Bari, A.: J. Radiosnal. Chem., 75, 189 (!982).
```

72-Hf- 0 NAIG+ Eval-Jul89 Hida, Yoshida and Shibata(JAERI)
Dist-Sep89

```

History
89-07 New evaluation for JENDL-3 was made by K.Hida, T. Yoshida
 (NAIG) and K.Shibata (JAERI).
MF=1 General Information
 MT=451 Descriptive deta and diotionary
MF=2 Resonance Parameters
 MT=151 Resolved and unresolved resonance parameters
 Resonance region: \(1.0 E-5\) oV to 50 keV
 Resolved resonances for NLBW formula
 Made up of isotopic files.
 Unresolved resonances
 Made up of isotopic files.
 \(2200 \mathrm{~m} / \mathrm{sec}\) cross sections and calculated res. integrals.
 \(2200 \mathrm{~m} / \mathrm{sec}\) res. integ.
 total 114.9 b -
 olastic 9.9 b -
 capture 105.0 b 1995.7 b
\(M F=3\) Neutron Cross Sections
Below 50 keV :
 No background was given.
Above 50 keV :
 MT \(=1 \quad\) Total
 50 keV - 110 keV : Made up of isotopic files.
 \(110 \mathrm{keV}-7.5 \mathrm{MeV}\) : Spline-function fiting to the experimental
 data/1/-/3/.
 7.5 MoV - 20 MoV : Made up of isotopic filos.
 \(M T=2 \quad\) Elastic
 Obtained by subtracting a sum of partial reaction cross sections
 from the total cross section.
MT=3 Nonelastic
 Sum of MT=4, 16, 17, 102, 103, 107.
MT=4 Total inelastic
 Sum of MT=51-79, 91.
MT=51-79. 91 Inelastic
 Made up of isotopic files.
 The discrete levels were lumped.
\(M T=16.17 .102 .103 .107\) (n,2n),(n,3n).(n,gamma).(n,p).(n,alpha)
 Made up of isotopic files.
MT=251 Mu-bar
 Calculated from MF/MT=4/2.
MF=4 Angular Distributions of Secondary Neutrons
 MT \(=2.51-79.91\)
 Made up of isotopic files.
MT=16.17
 Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
\(M T=16.17 .91\)
```

Made up of isotopic files.
MF=12 Photon Production Multiplicities and
MT=3,102
Made up isotopic files
MF=14 Photon Angular Distributions
MT=3.102
Isotropic.
MF=15 Continuous Photon Energy Spectra
MT=3.102
Made up of isotopic files.
References

1) Sherwood G.L. et al.: Nucl. Sci. Eng.. 39, 67 (1970).
2) Foster Jr. D.G. and Glasgow D.W.: Phys. Rev. C3, 576 (1971).
3) Poenitz W.P. and Whalen J.F.: ANL/NDM-80 (1983).
```
```

72-Hf-174 NAlG+ Eval-Jul89 Hida, Yoshida and Shibata(JAER|)
Dist-Sep89

```

History
89-07 New evaluation for JENDL-3 was made by K. Hida. T. Yoshida (NAIG) and K. Shibata (JAERI)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved end unresolved resonance parameters
Resolved resonances for MLBW formula
Energy range \(\quad 1.0 E-5 \mathrm{eV}\) to 220 eV .
Res. energies and Gam-n : BNL-325 /1/.
Gam-gamma \(\quad: 0.060 \mathrm{eV}\) assumed if unknown.
Radius \(\quad: 7.5 \mathrm{fm}\)
Unresolved resonances
Energy range : 220 eV to 50 keV .
SO. S1. R and Gam-gamma : Adjusted so that the calculated total and capture cross sections were reproduced well.
Results are \(D\)-obs \(=13.4 \mathrm{eV}, S 0=2.8 E-4, S 1=1.00 E-4\), \(R=7.9 \mathrm{fm}\) and Gam-gamma \(=0.054 \mathrm{eV}\).
\(2200 \mathrm{~m} / \mathrm{sec}\) cross sections and calculated res. integrals. \(2200 \mathrm{~m} / \mathrm{sec}\) res. integ.
total \(\quad 576.4 \mathrm{~b} \quad-\)
olastic 15.0 b -
capture 561.5 b 363.8 b

MF=3 Neutron Cross Sections
Below 50 keV :
No background was given.
Above 50 keV :
MT=1, 2.4,51-68,91,102 Total, elastic,inelastic and capture Calculated with ECIS /2/ and CASTHY /3/. Deformed optical potential for ECIS calculation was determined so as to reproduce
the experimental total cross section of natural hafnium.
starting with the Haouat potential /4/.

The deformation parameter Beta-2 was determined from the measured E2 transition probability data /5/. The lowest three levels belonging to the ground stats rotational band were coupled in the calculation. The spherical optical potential for CASTHY calculation is the same as that of JERDL-2.
\(V_{0}=38.0 . W_{s}=8.0+0.5 \cdot \operatorname{SQRT}(E n) . V_{s o}=7.0(\mathrm{MeV})\).
\(a 0=0.47\), as \(=0.52 \quad\), aso \(=0.47(\mathrm{fm})\).
\(r 0=1.32, r s=1.32 \quad\). \(r\) so \(=1.32(\mathrm{fm})\).
Competing processes \((n, 2 n)\) and (\(n, 3 n\)) were
calculated with GNASH /6/ and fed to ECIS-CASTHY calculation.
The level fluctuation and interference effects were considered.

Level scheme was taken from Table of lsotopes /7/.
No. Energy(MeV) Spin-Parity
\begin{tabular}{cll}
g.s. & 0.0 & \(0+\) \\
1 & 0.0910 & \(2+\) \\
2 & 0.2975 & \(4+\) \\
3 & 0.6084 & \(6+\) \\
4 & 0.8282 & \(0+\) \\
5 & 0.8002 & \(2+\) \\
6 & 1.0622 & \(4+\) \\
7 & 1.2268 & \(2+\) \\
8 & 1.3034 & \(3+\) \\
9 & 1.3087 & \(2+\) \\
10 & 1.3194 & \(2+\) \\
11 & 1.3365 & \(3+\) \\
12 & 1.3947 & \(4+\) \\
13 & 1.4253 & \(4-\) \\
14 & 1.4429 & \(5-\) \\
15 & 1.4489 & \(4+\) \\
16 & 1.4964 & \(2+\) \\
17 & 1.5034 & \(3+\) \\
18 & 1.6261 & \(4+\)
\end{tabular}

Continuum levels assumed above 1.6487 MeV .
The level density parameters for Gilbert and Cameron's formula
/8/ are the same as those of JENDL-2.
\begin{tabular}{cccccc}
& \(\mathrm{B}(1 / \mathrm{MeV})\) & \(\mathrm{C}(1 / \mathrm{MeV})\) & \(\mathrm{T}(\mathrm{MoV})\) & \(\mathrm{Ex}(\mathrm{MoV})\) & sigma*.2 \\
\(\mathrm{Hf}-174\) & 23.09 & 2.31 & 0.477 & 6.01 & 7.47 \\
\(\mathrm{Hf}-175\) & 22.93 & 10.0 & 0.484 & 4.42 & 6.00
\end{tabular}

> MT=3 Nonelastic

Sum of MT=4,16,17.102.
\(M T=16,17 \quad(n, 2 n)\) (\(n, 3 n\))
Calculated with GNASH /6/. The transmission coefficients for the incident channel were generated with ECIS /4/. while those for the exit channels with ELIESE-3 /8/. The preequilibrium parameter \(F 2\) was adjusted to reproduce the measured (\(n, 2 n\)) cross section at 14.5 MeV and resulted in \(\mathrm{F} 2=5.0\).

MT=25 \(\quad\) Mu-bar
Calculated with ECIS /2/ and CASTHY /3/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-68.91
Calculated with ECIS /2/ and CASTHY /3/.
MT=16.17
Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.91
Calculated with GNASH /6/.
MF=12 Photon Production Multiplicities MT=16,17,91,102
Calculated with GNASH /6/ and stored under Option-1 (photon production multiplicities). The photon strength functions for most nuclei wore taken from /1/. while those for some hafnium isotopes were determined from capture cross section normalization to the experimental data. The photon profile function is a superposition of the Berman-type giant dipole
```

    resonance /10/ and the pygmy resonance whose parameter values
    were cited from the neighbouring nucleus Ta /11/.
        EG1 = 15.23, EG2 = 12.3, Ep = 5.2 (MeV).
        GG1 = 4.48, GG2 = 2.43. Gp = 2.5 (MeV).
        sig-pygmy/sig-GDR = 0.0245.
    MT=61-68
    Stored under Option-2 (transition probability array). Data wore
    takon from /7/.
    MF=14 Photon Angular Distributions
MT=16,17,51-68,91,102
I sotropic.
MF=15 Continuous Photon Energy Spectra
MT=16.17,91.102
Calculated with GNASH /6/.
References
1) Mughabghab S.F.: Neutron Cross Soctions, vol.1. Part B (1984).
2) Raynal J.: IAEA SMR-9/8 (1970).
3) Igarasi S.: J. Nucl. Sci. Technol., 12, 67 (1975).
4) Haouat G. ot al.: Nucl. Sci. Eng., 81, 491 (1982).
5) Raman S. ot al.: At. Data Nucl. Data Tables. 36, 1 (1987).
6) Young P.G. and Arthur E.D.: LA-6947 (1977).
7) Lederor C.M. and Shirloy V.S.: Tablo of Isotopes 7th Edition
(1978).
8) Gilbort A. and Cameron A.G.W.: Can. J. Phys., 43. 1446 (1965).
9) Igarasi S.: JAERI-1224 (1972).
10) Berman B.L.: At. Data Nucl. Data Tables, 15, 319 (1975).
11) Igashira M. ot al.: Int. Symp. Capture Gamma-ray Specroscopy
and Rolatod Topics - 1984. 523 (1985).

```

MAT number \(=3722\)

> 72-Hf-176 NAlG+ Eval-Jul89 Hida, Yoshida and Shibata(JAERI) Dist-Sep89

History
89-07 New evaluation for JENDL-3 was made by K. Hidn. T. Yoshida (NAIG) and K.Shibata (JAERi).
\(M F=1\) General Information
\(M T=451\) Descriptive data and dictionary
MF=2 Resonanco Parametors
MT=151 Resolved and unresolved resonance parameters Resolved resonances for MLBW formula Energy range : \(1.0 \mathrm{E}-5 \mathrm{eV}\) to 700 eV . Res. energies and Gam-n : BNL-325 /1/. Gam-gamma \(: 0.060 \mathrm{eV}\) assumed if unknown. Radius \(: 7.6 \mathrm{fm}\)
Unresolved resonances
Energy renge : 700 eV to 50 keV .
So. S1, R and Gam-gamma : Adjusted so that the calculated total and capture cross sections were reproduced well
Results are \(D\)-obs \(=55.2 \mathrm{eV}, \mathrm{S} 0=2.00 \mathrm{E}-4, \mathrm{~S} 1=1.00 \mathrm{E}-4\), \(R=9.1 \mathrm{fm}\) and Gam-gamma \(=0.054 \mathrm{eV}\).
\(2200 \mathrm{~m} / \mathrm{sec}\) cross sections and calculated res. integrals. \(2200 \mathrm{~m} / \mathrm{sec}\) res. integ.
total 29.03 b elastic \(\quad 5.54 \mathrm{~b}\) capture 23.48 b 894.1 b

MF=3 Neutron Cross Sections
Below 50 keV :
No background was given.
Above 50 keV :
MT=1.2.4.51-73.91.102 Total, elastic,inelastic and capture Calculated with ECIS /2/ and CASTHY /3/. Deformed optical potential for ECIS calculation was determined so as to reproduce the experimental total cross section of natural hafnium. starting with the Haouat potential /4/.
\[
V 0=46.89-0.3 \cdot E n . W_{s}=3.84+0.4 \cdot E n(E n<10), V_{s o}=6.2(\mathrm{MeV})
\]
\[
7.84 \quad\left(E_{n}>10\right)
\]
\[
a 0=0.63 . \quad \text { as }=0.52 . \quad \text { aso }=0.47(\mathrm{fm})
\]
\[
r 0=1.24 . \quad r s=1.24 . \quad r s o=1.12(\mathrm{fm})
\]

Beta-2 \(=0.276 . \quad\) Beta-4 \(=0.0\).
The deformation parameter Beta-2 was determined from the measured E2 transition probability data /5/. The lowest three levels belonging to the ground state rotational band were coupled in the calculation. The spherical optical potential for CASTHY calculation is the same as that of JENDL-2.
```

Vo = 38.0. Ws = 8.0+0.5.SORT(En), Vso = 7.0 (MeV).
a0=0.47, as = 0.52 , aso = 0.47 (fm).
r0=1.32. rs=1.32 , rso = 1.32 (fm).

```

Capture cross section was normalized to the measured data of Beer et al. \(/ 6 /\) at 30 keV .
Competing processes (n,2n). (n,3n). (n,p), and (n,alpha) were
calculated with GNASH /7/ and fed to ECIS-CASTHY calculation.
The level fluctuation and interference effocts were considered. Level scheme was taken from Table of 1 sotopes 181.
No. Energy (MeV) Spin-Parity
\(\begin{array}{ll}\text { g.s. } & 0.0 \\ 1 & 0.08\end{array}\)
\(20.0883 \quad 2+\)
\(20.2902 \quad 4+\)
\(3 \quad 0.5970 \quad 6+\)
\(\begin{array}{lll}4 & 0.9980 & 8+ \\ 5 & 1.1499 & 0+\end{array}\)
\(\begin{array}{lll}6 & 1.2266 & 2+ \\ 7 & 1.2477 & 2-\end{array}\)
\begin{tabular}{rll}
8 & 1.2932 & \(0+\) \\
9 & 1.3133 & \(3-\) \\
10 & 1.3413 & \(2+\)
\end{tabular}
\begin{tabular}{lll}
10 & 1.3413 & \(2+\) \\
11 & 1.3794 & \(2+\) \\
12 & 1.4046 & \(4-\)
\end{tabular}
\begin{tabular}{lll}
13 & 1.4458 & \(3+\) \\
14 & 1.5777 & \(3+\)
\end{tabular}
\begin{tabular}{lll}
15 & 1.6434 & \(1-\)
\end{tabular}
\(161.6723 \quad 1+\)
17 1.7046 \(2+\)
\(18 \quad 1.7102 \quad 3\) -
\(191.7221 \quad 1\) -
\(20 \quad 1.7675 \quad 2\) -
21 1.7861 3 +
221.7937 3-

23 1.8190 0-
Continum levels assumed above 1.8400 MeV .
The level density parameters for Gilbert and Cameron's formula /9/ are the same as those of JENDL-2.
\begin{tabular}{cccccc}
& \(\mathrm{a}(1 / \mathrm{MeV})\) & \(\mathrm{C}(1 / \mathrm{MeV})\) & \(\mathrm{T}(\mathrm{MeV})\) & \(\mathrm{Ex}(\mathrm{MeV})\) & sigma. H 2 \\
\(\mathrm{Hf}-176\) & 22.77 & 1.74 & 0.454 & 4.38 & 6.09 \\
\(\mathrm{Hf}-177\) & 22.61 & 9.06 & 0.486 & 4.38 & 9.45
\end{tabular}

MT=3
Nonelastic
Sum of \(M T=4,16.17,102,103.107\).
\(M T=16.17,103,107 \quad(n, 2 n),(n, 3 n) .(n, p)\) and (n,alpha)
Calculated with GNASH /7i. The transmission coefficients for the incident channel were generated with ECIS /2/. while those for the exit channels with ELIESE-3 /10/. The preequilibrium
parameter \(F 2\) was adjusted to reproduce the measured (\(n, 2 n\)) cross
section at 14.5 MeV and resulted in \(\mathrm{F}_{2}=5.0\).
MT=251 Mu-bar
Calculated with ECIS /2/ and CASTHY /3/.
```

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-73.91
Calculated with ECIS /2/ and CASTHY /3/.
MT=16.17
Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.91
Calculated with GNASH /7/.

```
```

N:T=16,17,91,102,103,107
Calculatod with GNASH /7/ and storod under Option-1 (photon
production multiplicities). The photon strength functions for
most nuclel were taken from /1/. while those for some hafnium
isotopes were determined from capturo cross section
normalization to the experimental data. The photon profile
function is a superposition of the Berman-type giant dipolo
resonance /11/ and the pygmy resonance whose parameter values
were cited from the noighbouring nuclous Ta /12/.
EG1 = 15.23. EG2 = 12.3, Ep = 5.2 (MoV).
GG1 = 4.48, GG2 = 2.43, Gp = 2.5 (MoV).
sig-pygmy/sig-GDR = 0.0245.

```
 MT=51-73
 Stored under Option-2 (transition probability array). Data were
 taken from /8/.
MF=14 Photon Angular Distributions
 \(M T=16.17,51-68,91.102 .103 .107\)
 Isotropic.
MF=15 Continuous Photon Energy Spectra
 MT=16.17.91.102.103.107
 Calculated with GNASH/7/.

\section*{References}
1) Mughabghab S.F.: Noutron Cross Sections, vol.1. Port B (1984).
2) Raynal J.: IAEA SMR-9/8 (1970).
3) Igarasi S.: J. Nucl. Sci. Technol.. 12, 67 (1975).
4) Haouat G. ot al.: Nucl. Sci. Eng., 81, 491 (1982).
5) Raman S. ot el.: At. Data Nucl. Data Tables. 36. 1 (1987).
6) Boor H. ot al.: Phys. Rov.. C30. 464 (1984).
7) Young P.G. and Arthur E.D.: LA-6947 (1977).
8) Lederer C.M. and Shirley V.S.: Tablo of Isotopes 7th Edition (1979).
9) Gilbert A. and Cameron A.G.W.: Can. J. Phys., 43. 1446 (1965).
10) Igarasi S.: JAERI-1224 (1972).
11) Berman B.L.: At. Data Nucl. Data Tables. 15. 319 (1975).
12) Igashira M. ot al.: Int. Symp. Capturo Gomma-ray Specroscopy and Related Topics - 1984, 623 (1985).

MAT number \(=3723\)
72Hf-177 NAlG+ Eval-Jul89 Hida, Yoshida and Shibata(JAERI)

Dist-Sep88

\section*{History}

89-07 Now ovaluation for JENDL-3 was made by K. Hida. T. Yoshida (NAIG) and K.Shibata (JAERI).

MF=1 Goneral Information
Mi=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=161 Resolved and unresolved resonance parameters Resolved resonances for MLBW formula Energy range : 1.0E-5 oV to 250 oV . Res. energies and Gam-n : \(\mathrm{BNL}-325\) /1/. Gam-gamma : 0.065 eV assumed if unknown. Radius \(\quad 7.0 \mathrm{fm}\) Unresolved resonances
Energy range : 250 oV to 50 keV .

SO. S1. R and Gam-gamma : Adjusted so that the calculated total and capture cross sections were reproduced well.
Results are D-obs \(=3.58 \mathrm{eV}, \mathrm{SO}=2.50 \mathrm{E}-4, \mathrm{~S} 1=1.00 \mathrm{E}-4\), \(R=7.3 \mathrm{fm}\) and Gam-gamma \(=0.065 \mathrm{oV}\).

MF=3 Neutron Cross Sections
Below 50 keV :
No background was given.
Above 50 keV :
MT=1,2,4, 51-66,91,102 Total.elastic,inelastic and capture Calculated with ECIS /2/ and CASTHY /3/. Doformed optical potential for ECIS calculation was determined so as to reproduce the experimental total cross section of natural hafnium. starting with the Haoust potential /4/.
\[
\begin{align*}
& V_{0}=46.82-0.3 \cdot E n, W s=3.81+0.4 \cdot E n(E n<10), V s 0=6.2(M e V) . \\
& 7.81 \tag{En>10}\\
& a 0=0.63 . \quad \text { as }=0.62 \text {. } \\
& r 0=1.24 . \quad \text { rs }=1.24 \text {, } \\
& 0 s 0=0.47(\mathrm{fm}) . \\
& \text { Beta-2 }=0.273 \text {. Beta-4 = } 0.0 \text {. } \\
& r s 0=1.12(\mathrm{fm}) \text {. }
\end{align*}
\]

The deformation parameter Beta-2 was determined from the measured E2 transition probability data /5/. The lowest three levels belonging to the ground state rotational band were coupled in the calculation. The spherical optical potential for CASTHY calculation is the same as that of JENDL-2.
\(V 0=38.0 . W s=8.0+0.5-\operatorname{SORT}(E n) . V\) so \(=7.0(\mathrm{MoV})\).
\(\mathrm{a} 0=0.47\). as \(=0.52 \quad\). aso \(=0.47(\mathrm{fm})\).
\(r 0=1.32\), \(\mathrm{rs}=1.32 \quad, r 50=1.32(\mathrm{fm})\).
Capture cross section was normalized to the measured data of Beer et al. \(/ 6 /\) at 30 keV .
Competing processes \((n, 2 n),(n, 3 n),(n, p)\), and \((n, a l p h a)\) were
calculated with GNASH /7/ and fed to ECIS-CASTHY calculation. The level fluctuation and interference effects were considered. Level scheme was taken from Table of Isotopes /8/.
\begin{tabular}{ccr}
No. & Energy (MeV) & Spin-Par \\
g.s. & 0.0 & \(7 / 2-\) \\
1 & 0.1130 & \(9 / 2-\) \\
2 & 0.2497 & \(11 / 2-\) \\
3 & 0.3213 & \(9 / 2+\) \\
1 & 0.4095 & \(13 / 2-\) \\
5 & 0.4267 & \(11 / 2+\) \\
6 & 0.5081 & \(5 / 2-\) \\
7 & 0.5552 & \(13 / 2+\) \\
8 & 0.5913 & \(15 / 2-\) \\
9 & 0.6044 & \(7 / 2-\) \\
10 & 0.7085 & \(15 / 2+\) \\
11 & 0.7459 & \(7 / 2+\) \\
12 & 0.7945 & \(17 / 2-\) \\
13 & 0.8057 & \(3 / 2-\) \\
14 & 0.8474 & \(9 / 2+\) \\
15 & 0.8730 & \(5 / 2-\) \\
16 & 0.8828 & \(17 / 2+\)
\end{tabular}

Continuum levels assumed above 0.9480 MoV .
The level density parameters for Gilbert and Cameron's formula /9/ are the same as those of JENDL-2.
\begin{tabular}{llcccc}
& \(\mathrm{a}(1 / \mathrm{MeV})\) & \(\mathrm{C}(1 / \mathrm{MeV})\) & \(\mathrm{T}(\mathrm{MeV})\) & \(\mathrm{Ex}(\mathrm{MeV})\) & sigma...2 \\
\(\mathrm{Hf-177}\) & 22.61 & 0.06 & 0.486 & 4.38 & 9.45 \\
\(\mathrm{Hf}-178\) & 22.36 & 2.22 & 0.451 & 4.08 & 12.94
\end{tabular}

MT=3
Nonelastic
Sum of MT=4,16,17,102,103.107.
\(M T=16,17,103,107\) (\(n, 2 n\)). (\(n, 3 n\)), (\(n, p\)) and (\(n, a \mid p h a\)) Calculated with GNASH /7/. The transmission coefficients for the incident channel were generated with ECIS /2/. while those for the exit channels with ELIESE-3 /10/. The preequilibrium parameter F2 was F2 \(=5.0\).

\section*{MT=251 Mu-bar}

Calculated with ECIS /2/ and CASTHY /3/.
```

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-66.91
Calculated with ECIS /2/ and CASTHY /3/.
MT=16.17
Isotropic in the laboratry system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16,17.91
Calculated with GNASH /7/.

```
MF=12 Photon Production Multiplicities
 MT=16,17,91,102.103.107
 Calculated with GNASH /7/ and stored under Option-1 (photon
 production multiplicities). The photon strength functions for
 most nuclei were taken from /1/. while those for some hafnium
 isotopes were determined from capture cross section
 normalization to the experimental data. The photon profile
 function is a superposition of the Berman-type giant dipole
 resonance /11/ and the pygmy resonance whose parameter values
```

    were cited from the neighbouring nucleus Ta/12/.
        EG1 = 15.23. EG2 = 12.3. Ep = 5.2 (MeV).
        GG1 = 4.48, GG2 = 2.43, Gp=2.5 (MeV).
        sig-pygmy/sig-GDR = 0.0245 .
    MT=51-66
Stored under Option-2 (transition probability array). Data were
taken from /8/.
MF=14 Photon Angular Distributions
MT=16.17.51-66.91,102.103.107
Isotropic.
MF=15 Continuous Photon Energy Spectra
MT=16,17,91,102,103,107
Calculated with GNASH /7/.
References
1) Mughabghab S.F.: Neutron Cross Sections. vol.1. Part B (1984).
2) Raynal J.: IAEA SMR-9/8 (1970).
3) Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1975).
4) Haoual G. et al.: Nucl. Sci.: Eng., 81. 491 (1982).
5) Raman S. et al.: At. Data Nucl. Data Tables. 36. 1 (1987).
6) Beer H. et al.: Phys. Rev.. C30, 464 (1984).
7) Young P.G. and Arthur E.D.: LA-6947 (1977).
8) Lederer C.M. and Shirley V.S.: Table of Isotopes 7th Edition
(1979).
9) Gilbert A. and Cemeron A.G.W.: Can. J. Phys., 43. 1446 (1965).
10) Igarasi S.: JAERI-1224 (1972).
11) Berman B.L.: At. Data Nucl. Data Tables. 15. 319 (1975).
12) Igashira M. et al.: Int. Symp. Capture Gamma-ray Specroscopy
and Related Topics - 1984. 523 (1985).

```

72Hf-178 NAIG+ Eval-Jul89 Hide. Yoshida and Shibeta(JAERI) Dist-Sep89
History
89-07 New ovaluation for JENDL-s was made by K.Hida, T.Yoshida (NAIG) and K.Shibata (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonances for MLBW formula
Energy range : 0.5 eV to 1.5 keV

Res. energies and Gam-n : BNL-325 /1/.
Gam-gamma : 0.054 eV assumed if unknown.
Radius : 7.5 fm
Unresolved resonances
Energy range : 1.5 keV to 50 keV .
S0, S1, R and Gam-gamma : Adjusted so that the calculated total and capture cross section wero reproduced well.
Results are D-obs \(=89.9 \mathrm{OV} . \mathrm{S} 0=2.20 \mathrm{E}-4, \mathrm{~S} 1=0.61 \mathrm{E}-4\). \(R=8.5 \mathrm{~m}\) and Gam-gamma \(=0.054 \mathrm{oV}\).
\(2200 \mathrm{~m} / \mathrm{sec}\) cross sections and calculated res. integrals.
\(2200 \mathrm{~m} / \mathrm{sec}\) res. integ.
total 88.49 b olastic 4.46 b capture \(84.03 \mathrm{~b} \quad 1915.8 \mathrm{~b}\)

MF=3 Neutron Cross Sections
Below 50 keV :
No background was given.
Above 50 keV :
MT=1,2.4.51-71.91.102 Total, elastic,inelastic and capture Calculated with ECIS /2/ and CASTHY /3/. Deformed optical potential for ECIS calculation was determined so as to reproduce the experimental total cross section of natural hafnium. starting with the Haouat potential /4/.
\(\mathrm{V} 0=46.74-0.3 \cdot \mathrm{En}, \mathrm{W}_{\mathrm{s}}=3.77+0.4 \cdot \mathrm{En}(E n<10), \mathrm{Vso}=6.2(\mathrm{MoV})\). \(7.77 \quad(E n>10)\)
\(a 0=0.63 . \quad\) as \(=0.52, \quad\) aso \(=0.47(\mathrm{fm})\).
\(r 0=1.24 . \quad r s=1.24 . \quad r s o=1.12(\mathrm{fm})\).
Beta-2 \(\doteq 0.262 . \quad\) Beta-4 \(=0.0\).
The deformation parameter Beta-2 was determined from the measured E2 transition probability data /5/. The lowest three levels belonging to the ground state rotational band were coupled in the calculation. The spherical optical potential for CASTHY calculation is the same as that of JENDL-2.
\(V_{0}=38.0 . W_{s}=8.0+0.5 * \operatorname{SORT}(E n) . \quad V s o=7.0(\mathrm{MeV})\).
\(a 0=0.47 . a s=0.52 \quad\), aso \(=0.47(\mathrm{fm})\).
\(r 0=1.32, r s=1.32 \quad\). \(\mathrm{rso}=1.32(\mathrm{fm})\).
Capture cross section was normalized to the messured data of Beer ot al. \(16 /\) at 30 keV .
Competing processes (\(n, 2 n\)). (\(n, 3 n\)), (\(n, p\)), and (\(n\), alpha) were
```

    calculated with GNASH /7/ and fed to ECIS-CASTHY calculation.
    The level fluctustion and interference effects were considered.
    Level scheme was taken from Table of lsotopes /8/
No. Energr(MoV) Spin-Parity
g.s. 0.0 0+
10.0932 2+
2 0.3066 4+
3 0.6322 6 +
4 1.0585 1.1474
6 1.1746 2+
7 1.1993 0 +
8 1.2602 2-
9 1.2766 2+
10 1.3099 1-
11 1.3224 3-
12 1.3624 2-
13 1.3641 9 -
14 1.4340 0 +
15 1.4438 0 +
16 1.4790 8-
17 1.4961 2 +
18 1.5136 1-
19 1.5613 2 +
20 1.5665 1-
21 1.0016 10-
Continuum levels assumed above 1.8400 MoV .
The level density parameters for Gilbert and Cameron's formule /9/ are the same as those of JENDL-2.

|  | $\mathrm{a}(1 / \mathrm{MoV})$ | $\mathrm{C}(1 / \mathrm{MoV})$ | $\mathrm{T}(\mathrm{MoV})$ | $\mathrm{Ex}(\mathrm{MoV})$ | sigma=-2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Hf}-178$ | 22.36 | 2.22 | 0.451 | 4.08 | 12.94 |
| $\mathrm{Hf}-179$ | 22.57 | 6.88 | 0.465 | 3.98 | 9.31 |

MT=3
Nonelastic
Sum of $M T=4,16,17,102,103,107$.
$M T=16,17,103.107$ (n,2n), (n,3n), (n,p) and (n,alpha)
Calculated with GNASH /7/. The transmission coefficients for the incident channel were generated with ECIS /2/, while those for the exit channels with ELIESE-3 /10/. The preequilibrium parameter F2 was F2=5.0.

```

\section*{MT=251 Mu-bar}
```

Calculated with ECIS /2/ and CASTHY /3/.
MF=4 Angular Distributions of Secondary Noutrons
MT=2.51-71.91
Calculated with ECIS /2/ and CASTHY /3/.
MT=16.17
Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.91
Calculated with GNASH /7/.
MF=12 Photon Production Multiplicities
MT=16.17.91.102.103.107
Calculated with GNASH /7/ and stored under Option-1 (photon production multiplicities). The photon strength functions for

```
most nuclei were taken from /1/. while those for some halnium isotopes were determined from capture cross section normalization to the experimental data. The photon profile function is a superposition of the Berman-type giant dipole resonance /11/ and the pygmy resonance whose parameter values were cited from the neighbouring nucleus Ta/12/.
\(E G 1=15.23, \quad E G 2=12.3, \quad E p=5.2(\mathrm{MeV})\). GG1 \(=4.48 . \quad G G 2=2.43, \quad G p=2.5(\mathrm{MoV})\). sig-pygmy/sig-GDR \(=0.0245\).

MT=51-71
Stored under Option-2 (transition probability array). Data were taken from /8/.

MF=14 Photon Angular Distributions
\(\mathrm{MT}=16,17,51-71,91,102,103,107\)
Isotropic.
MF=15 Continuous Photon Energy Spectra
MT=16.17.91,102,103.107
Calculated with GNASH /7/.

\section*{References}
1) Mughabghab S.F.: Neutron Cross Sections, vol.1, Part B (1984).
2) Raynal J.: IAEA SMR-9/8 (1970).
3) Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1976).
4) Haouat G. et al.: Nucl. Sci. Eng., 81. 491 (1982).
5) Raman S. et al.: At. Data Nucl. Data Tables, 36, 1 (1987).
6) Beer H. and Macklin R.L.: Phys. Rev.. C26. 1404 (1982).
7) Young P.G. and Arthur E.D.: LA-6947 (1977).
8) Lederer C.M. and Shirley V.S.: Table of Isotopes 7th Edition (1979).
9) Gilbert A. and Cameron A.G.W.: Can. J. Phys.. 43. 1446 (1965).
10) Igarasi S.: JAERI-1224 (1972).
11) Berman B.L.: At. Data Nucl. Data Tables. 15, 319 (1975).
12) Igashira M. et al.: Int. Symp. Capture Gamma-ray Specroscopy and Related Topics - 1984, 523 (1985).

\section*{MAT number \(=3725\)}

72-Hf-179 NAIG+ Eval-Jul 89 Hida. Yoshida and Shibata(JAERI)
Dist-Sep89

\section*{History}

89-07 New evaluation for JENDL-3 was made by K.Hida, T.Yoshida (NAIG) and K.Shibata (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonances for MLBW formula
Energy range : \(1.0 E-5 \mathrm{eV}\) to 250 eV
Res. energies and Gam-n : BNL-325/1/. If unknown, Gam-n is calculated from D-obs and SO given in \(11 /\).
Gam-gamma : 0.066 eV assumed if unknown.
Radius
: 7.8 fm
Unresolved resonances
Energy range : 250 eV to 50 keV .

SO, S1. R and Gam-gamma : Adjusted so that the calculated total and capture cross sections were reproduced well.
Results are D-obs \(=6.71 \mathrm{oV}, \mathrm{SO}=2.20 \mathrm{E}-4 . \mathrm{Si}=0.83 \mathrm{E}-4\). \(R=7.7 \mathrm{fm}\) and Gam-gamma \(=\mathbf{0 . 0 0 6} \mathrm{oV}\).
```

2200 m/sec cross sections and calculated res. integrals.

```
 \(2200 \mathrm{~m} / \mathrm{sec}\) res. integ.
\begin{tabular}{lrc}
total & 49.5 b & - \\
olastic & 6.8 b & - \\
capture & 42.8 b & 523.0 b
\end{tabular}

MF=3 Neutron Cross Sections
Below 50 keV :
No background was given.
Above 50 keV :
MT=1,2.4.51-62.91,102 Total.elastic.inelastic and capture Calculated with ECIS /2/ and CASTHY /3/. Deformed optical potential for ECIS calculation was determined so as to reproduce the experimental total cross soction of natural hafnium. starting with the Haouat potential /4/.

Vo \(=46.66-0.3 \cdot E n . W s=3.73+0.4-E n(E n<10)\), \(V_{s o}=6.2\) (MoV). \(7.73 \quad(E n>10)\)
\[
a 0=0.63 . \quad \text { as }=0.52 . \quad \text { aso }=0.47(\mathrm{fm})
\]
\[
r 0=1.24 . \quad r s=1.24, \quad r s o=1.12(\mathrm{fm})
\]
\[
\text { Bet } a-2=0.261 . \quad \text { Beta-4 }=0.0
\]

The deformation parameter Beta-2 was determined from the measured E2 transition probability data /5/. The lowest three levels belonging to the ground state rotational band were coupled in the calculation. The spherical optical potential for CASTHY calculation is the same as that of JENDL-2.
\(V_{0}=38.0, W_{s}=8.0+0.5 . \operatorname{SORT}(E n) . V_{s o}=7.0(\mathrm{MoV})\),
\(a 0=0.47\). as \(=0.52 \quad\) aso \(=0.47(\mathrm{fm})\),
\(r 0=1.32 . r s=1.32 \quad, r s o=1.32(f m)\).
Capture cross section was normalized to the measured data of
```

Beer et al. /6/ at 30 keV.
Competing processes (n,2n). (n,3n). (n,p). and (n,alpha) were
calculated with GNASH /7/ and fed to ECIS-CASTHY calculation.
The level fluctuation and interference effects were considered.
Level scheme was taken from Table of Isotopes /8/.
No. Energy(MeV) Spin-Parity
10 0.8483 19/2+
11 0.8702 7/2 -

```
g.s. 0.0
\(10.1227 \quad 11 / 2+\)
\(20.2143 \quad 7 / 2\) -
\(3 \quad 0.2688 \quad 13 / 2+\)
\(40.3377 \quad 9 / 2\)
\(5 \quad 0.3750 \quad 1 / 2\)
\(6 \quad 0.4386 \quad 15 / 2+\)
\(7 \quad 0.5184 \quad 6 / 2-\)
\(8 \quad 0.6169 \quad 7 / 2\) -
\(9 \quad 0.6312 \quad 17 / 2+\)
\(12 \quad 1.0034 \quad 5 / 2+\)
```

Continuum levels assumed above 1.0700 MeV .
The level density parameters for Gilbert and Cameron's formula /9/ are the same as those of JENDL-2.

|  | $\mathrm{a}(1 / \mathrm{MoV})$ | $\mathrm{C}(1 / \mathrm{MoV})$ | $\mathrm{T}(\mathrm{MoV})$ | $\mathrm{Ex}(\mathrm{MoV})$ | sigma.-2 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Hf}-179$ | 22.57 | 6.88 | 0.465 | 3.98 | 9.31 |
| $\mathrm{Hf}-180$ | 21.37 | 2.35 | 0.619 | 6.42 | 7.64 |

MT=3
Nonelastic
Sum of MT=4,16,17,102,103.107.
$M T=16,17.103 .107(n, 2 n),(n, 3 n),(n, p)$ and (n,alpho)
Calculated with GNASH /7/. The transmission coefficients for the the incident channel were generated with ECIS /2/, while those fo the exit channels with ELIESE-3 /10/. The preequilibrium parameter $F 2$ was $F 2=5.0$.
MT=251 Mu-bar
Calculated with ECIS /2/ and CASTHY /3/.

```
```

MF=4 Angular Distributions of Secondary Neutrons

```
MF=4 Angular Distributions of Secondary Neutrons
 MT=2.51-62.91
 MT=2.51-62.91
 Calculated with ECIS /2/ and CASTHY /3/.
 Calculated with ECIS /2/ and CASTHY /3/.
 MT=16.17
 MT=16.17
 Isotropic in the laboratory system.
 Isotropic in the laboratory system.
NF=5 Energy Distributions of Secondary Neutrons
NF=5 Energy Distributions of Secondary Neutrons
 MT=16.17.91
 MT=16.17.91
 Calculated with GNASH /7/.
 Calculated with GNASH /7/.
Mr=12 Photon Production Multiplicities
 MT=16,17,91,102,103,107
 Calculated with GNASH /7/ and stored under Option-% (photon
 production.multiplicities). The photon strength functions for
 most nuclei were taken from /1/. while those for some hafnium
 isotopes were determined from capture cross section
 normalization to the experimental data. The photon profile
 function is a superposition of the Berman-type giant dipole
 resonance /11/ and the pygmy resonance whose parameter values
 were cited from the neighbouring nucieus Ta /12/.
 EG1 = 15.23, EG2 = 12.3. Ep = 5.2 (MeV).
```

$$
\text { GG1 }=4.48, \quad G G 2=2.43 . \quad G p=2.5(\mathrm{MeV})
$$

$$
\text { sig-pygmy/sig-GDR }=0.0245
$$

## MT=51-62

Storod under Option-2 (transition probability array). Data were taken from /8/.

MF=14 Photon Angular Distributions
$\mathrm{MT}=16,17,51-62,91,102,103,107$
Isotropic.
MF=15 Continuous Photon Energy Spectra
$M T=16,17.91,102,103,107$
Calculated with GNASH /7/.
References

1) Mughabghab S.F.: Neutron Cross Sections, vol.1. Part B (1984).
2) Raynal J.: IAEA SMR-9/8 (1970).
3) Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1975).
4) Haouat G. ot al.: Nucl. Sci. Eng.. 81. 491 (1982).
5) Raman S. et al.: At. Data Nucl. Data Tables. 36. 1 (1987).
6) Beer H. and Macki in R.L.: Phys. Rev.. C26, 1404 (1982).
7) Young P.G. and Arthur E.D.: LA-6947 (1977).
8) Lederer C.M. and Shirley V.S.: Tablo of lsotopes 7th Edition (1979).
9) Gilbert A. and Cameron A.G.W.: Can. J. Phys.. 43, 1446 (1966).
10) Igarasi S.: JAERI-1224 (1972).
11) Berman B.L.: At. Data Nucl. Data Tabies, 16, 319 (1976).
12) Igashira M. et al.: Int. Symp. Capture Gamma-ray Specroscopy and Related Topics - 1984. 623 (1985).
```
 72+Hf-180 NAIG+ Eval-Jul89 Hida. Yoshida and Shibata(JAERI)
 Dist-Sep89
 History
 89-07 Now ovaluation for JENDL-3 was made by K.Hida, T.Yoshida
 (NAIG) and K.Shibata (JAERI).
MF=1 General Information
 MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
 MT=161 Resolved and unresolved resonance parameters
 Resolved resonances for MLBW formula
 Energy range : 1.0E-5 oV to 2.5 keV
 Res, energies and Gam-n : BN-325/1/. If unknown. Gam-n is
 calculated from D-obs and SO, and
 in this case, Gam-gamma from
 (Gam-n)*(Gam-gamma)/(Gam-total).
 Gam-garmma :0.050 oV assumed if unknown.
 Radius : 8.0 fm
 Unresolved resonances
 Energy range : 2.5 keV to 50 keV.
 S0. S1.R and Gam-gamma : Adjusted so that the calculated total
 and capture cross sections were
 reproduced well.
 Results are D-obs = 158 oV, SO = 1.90E-4, S1 = 0.44E-4,
 R=8.5 fm and Gam-gamma = 0.05 oV .
 2200 m/sec cross sections and calculated res. integrals.
 2200 m/sec res. integ.
 total 34.2 b
 elastic 21.2 b -
 capture 13.0 b 34.1 b
```

MF=3 Neutron Cross Sections
Below 50 keV :
No background was given.
Above 50 keV :
MT=1,2,4,51-61,91,102 Total, elastic,inelastic and capture
Calculated with ECIS /2/ and CASTHY /3/. Deformed optical
potential for ECIS calculation was determined so as to reproduce
the experimental total cross section of natural hefnium.
starting with the Haouat potential /4/.
$V 0=46.60-0.3-E n, W s=3.70+0.4 \cdot E n(E n<10)$. Vso $=6.2(\mathrm{MeV})$.
$7.70 \quad(E n>10)$
$a 0=0.63, \quad a s=0.52 . \quad a s o=0.47(\mathrm{fm})$.
$r 0=1.24 . \quad r s=1.24 . \quad r s o=1.12(f m)$,
Beta-2 $=0.256$, Beta-4 $=0.0$.
The deformation parameter Beta-2 was determined from the
measured E2 transition probability data /5/. The lowest three
levels belonging to the ground state rotational band were
coupled in the calculation. The spherical optical potential for
CASTHY calculation is the semo as that of JENDL-2.
$\mathrm{V} 0=38.0 . \mathrm{Ws}=8.0+0.5-\operatorname{SORT}(\mathrm{En}) . \mathrm{Vso}=7.0(\mathrm{MoV})$.
$a 0=0.47 . \mathrm{as}=0.52 \quad, \mathrm{aso}=0.47(\mathrm{fm})$.
$r 0=1.32 . r s=1.32 \quad . r s o=1.32(f m)$.

Capture cross section was normalized to the measured data of Beer et al. $/ 6 /$ at 30 keV .
Competing processes (n,2n), (n,3n), (n,p), and (n,alpha) were calculated with GNASH /7/ and fed to ECIS-CASTHY calculation. The level fluctuation and interference effects were considered. Level scheme was taken from Table of Isotopes /8/.

| No. | Energy (MeV) | Spin-Parity |
| :---: | :---: | :---: |
| g.s. | 0.0 | $0+$ |
| 1 | 0.09332 | $2+$ |
| 2 | 0.3086 | $4+$ |
| 3 | 0.6409 | $6+$ |
| 4 | 1.0839 | $8+$ |
| 6 | 1.1416 | $8-$ |
| 6 | 1.1832 | $4+$ |
| 7 | 1.1997 | $2+$ |
| 8 | 1.2910 | $4+$ |
| 9 | 1.3744 | $3-$ |
| 10 | 1.4092 | $4+$ |
| 11 | 1.5393 | $3-$ |

Continumm levels assumed above 1.6076 MeV.
The level density parameters for Gilbert and Cameron's formula 19/ are the same as those of JENDL-2.

|  | $\mathrm{a}(1 / \mathrm{MeV})$ | $\mathrm{C}(1 / \mathrm{MeV})$ | $\mathrm{T}(\mathrm{MeV})$ | $\mathrm{Ex}(\mathrm{MeV})$ | sigma=-2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Hf}-180$ | 21.37 | 2.35 | 0.519 | 5.42 | 7.64 |
| $\mathrm{Hf}-181$ | 21.91 | 6.47 | 0.479 | 4.08 | 4.88 |

MT=3
Nonelastic
Sum of MT=4,16,17,102,103.107.
$M T=16,17,103,107$ ( $n, 2 n$ ), (n,3n), (n,p) and (n,alpha)
Calculated with GNASH /7/. The transmission coefficients for the incident channel were generated with ECIS /2/, while those for the exit channels with ELIESE-3 /10/. The preequilibrium parameter F2 was $\mathrm{F} 2=\mathrm{E} .0$.

MT=251 Mu-bar
Calculated with ECIS /2/ and CASTHY /3/.
MF=4 Angular Distributions of Secondary Noutrons
MT=2.51-61.91
Calculated with ECIS /2/ and CASTHY /3/.
MT=16.17
Isotropic in the laboratory systom.

## MF=5 Energy Distributions of Secondary Neutrons $\mathrm{MT}=16.17 .91$ <br> Calculated with GNASH /7/.

MF=12 Photon Production Multiplicities
$\mathrm{MT}=16,17,91,102,103,107$
Calculated with GNASH /7/ and stored under Option-1 (photon production multiplicities). The photon strength functions for most nuclei were taken from /1/. while those for some hafnium isotopes were determined from cepture cross section normalization to the experimental data. The photon profile function is a superposition of the Berman-type giant dipole resonance /11/ and the pygmy resonance whose parameter values were cited from the neighbouring nucleus Ta /12/.
$E G 1=15.23 . \quad E G 2=12.3 . \quad E p=5.2(\mathrm{MeV})$,

$$
\text { GG1 }=4.48 . \quad G G 2=2.43 . \quad G p=2.5(\mathrm{MeV}) .
$$

$$
\text { sig-pygmy/sig-GDR }=0.0246 .
$$

```
MT=51-61
 Stored under Option-2 (transition probability array). Data wore
 takon from /8/.
MF=14 Photon Angular Distributions
 MT=16,17,51-61,91,102,103,107
 Isotropic.
MF=16 Continuous Phot on Energy Spectra
 MT=16,17,01,102,103,107
 Calculated with GNASH /7/.
```

References

1) Mughabghab S.F.: Noutron Cross Sections. vol.1. Part 8 (1984).
2) Raynal J.: IAEA SMR-9/8 (1970).
3) Igarasi S.; J. Nucl. Sci. Tochnol., 12. 67 (1976).
4) Haouat G. et al.: Nucl. Sci. Eng.. 81. 491 (1982).
5) Raman S. ot al.: At. Data Nucl. Data Tables. 36. 1 (1987).
6) Beer H. and Macki in R.L.: Phys. Rev., C2t, 1404 (1982).
7) Young P.G. and Arthur E.D.: LA-6947 (1977).
8) Lederer C.M. and Shirley V.S.: Table of Isotopes 7th Edition (1979).
9) Gilbert A. and Camer on A.G.W.: Can. J. Phys.. 43. 1446 (1965).
10) Igarasi S.: JAERI-1224 (1972).
11) Berman B.L.: At. Data Nuci. Data Tables, 15, 319 (1975).
12) Igashira M. et al.: Int. Symp. Capture Gamma-ray Specroscopy and Relatod Topics - 1984. 523 (1985).

## HISTORY

76-03 The evaluation for JENDL-1 /1/ was made by H. Yamakoshi (Ship Research Institute) and JENDL-9 Compllation Group.
83-03 JENDL-1 data were adopted for JENDL-2 and extended to 20 MeV. MF= 6 was rovised, and unresolved resonance parameters wero added by Y.Kikuchi (JAERI) /2/.
83-11 Cormment dats wero added.
87-03 The evaluation for JENOL-3 was made by N. Yamamuro (NAIG). Resonance parameters were added by now experimental data. Neutron cross sections, except total and olastic scattering cross sections, and energy distributions of secondary neutrons and photons were calculated with GNASH /8/ and CASTHY /7/ codes.
$M F=1$ General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=161 Resolved and unresolved resonance parameters
Resolved parameters for M.BW formula
The energy region from 1.0E-5oV to 1.0 koV . Parameters were taken from Ref./3.4.5/ for positive resonances, and from END. A -IV for a negative resonance. The radiative width of 0.059 eV was assumed for the resonance whose radiative width was unknown.

Unresolved parameters
In the energy range from 1 to 100 keV . parameters were determined to reproduce the measured capture cross sections 14.6/. The paramoters are as follows.


MF=3 Neutron Cross Sections

MT=1 Total

Evaluated from experimental data.
MT=2 Elastic scattoring
(Total cross section) - (reaction cross section)
MT=4.51-64.91 Inelastic scattoring
Bolow 3 MeV.calculated with optical and statistical model code CASTHY/7/, and above 3 MeV calculated with statistical and preequilibrium model code GNASH/8/.
Wilmore-Hodgson's optical-model potential parameters/9/ were used,which reproduced the experimental nonelastic cross
sections up to 15 MeV .

| $V=47.01-0.267 E-0.00118 E$ | $(\mathrm{MeV})$ |
| :--- | :--- |
| $W_{8}=9.62-0.053 E$ | $(\mathrm{MoV})$ |
| $r o=1.268, \quad a=0.66$ | $(\mathrm{fm})$ |
| $r s=1.241, \quad a=0.48$ | $(\mathrm{fm})$ |

The level scheme was adopted from Ref./10/.

| No. | Energy (MoV) | Spin-Parity |
| :---: | :---: | :---: |
| g.s. | 0.0 | $7 / 2+$ |
| 1 | 0.0082 | $9 / 2-$ |
| 2 | 0.136 | $8 / 2+$ |
| 3 | 0.169 | $11 / 2-$ |
| 4 | 0.301 | $11 / 2+$ |
| 5 | 0.338 | $13 / 2-$ |
| 6 | 0.482 | $5 / 2+$ |
| 7 | 0.495 | $13 / 2+$ |
| 8 | 0.643 | $15 / 2-$ |
| 0 | 0.616 | $1 / 2+$ |
| 10 | 0.619 | $3 / 2+$ |
| 11 | 0.717 | $15 / 2+$ |
| 12 | 0.773 | $17 / 2-$ |
| 13 | 0.986 | $17 / 2+$ |
| 14 | 1.028 | $19 / 2-$ |

Levels above 1.03 MeV were assumed to overlapping. Level density parametors used were as follows.

|  | $1 /$ MoV | Pair-E | T(MoV) | E (MaV) | Spin-cutoff |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ta-178 | 22.5 | 0.0 | 0.54 | 4.2 | 13.0 |
| $T a-179$ | 22.0 | 0.4 | 0.53 | 4.2 | 18.0 |
| $T a-180$ | 22.5 | 0.0 | 0.54 | 4.2 | 13.0 |
| $T a-181$ | 22.0 | 0.73 | 0.52 | 4.3 | 29.0 |
| $T a-182$ | 21.8 | 0.0 | 0.56 | 4.3 | 13.0 |

MT=16 (n,2n) cross section
Calculated with GNASH/8/.
MT=17 (n.3n) cross section
Calculated with GNASH/8/.
MT=28 (n, n p) cross section
Calculated with GNASH /8/.
MT=102 Radiative cepture cross section
Calculated with CASTHY/7/.
NT=103 (n.p) cross section
Calculated with GNASH/8/.
MT=203 Total Hydrogen Production
Calculatad with GNASH/8/.
MT=251 Nu-bar
Calculated with CASTHY/7/.
MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with CASTHY/7/.
MT=51-64.91.16.17.28
I sotropic in the center-of-mass system was assumed.
MF=5 Energy Distributions of Secondary Neutrons
$\mathrm{MT}=16.17,28.81$
Calculated with GNASH/8/.
MF=12 Photon Production Multiplicities (optiont)
MT=51-64.91,16,17.28,102,103
Calculatod with GNASH/8/.

MF=14 Photon Angular Distributions Isotropic in the center-of-mass system was assumed.

MF=15 Continuous Photon Energy Spectra
$M T=91,16,17.28,102,103$
Calculated with GNASH/8/.

## References

1) Igarasi S. ot al.: JAERI 1261 (1979)
2) Nakagawa T.: JAERI-M 84-103 (1984)
3) Mughabghab.S.F. and Garder.D.I.: BNL325.3rdEd. (1973).
4) Macklin,R,L,: Nucl,Sci,Eng. . 86,362 (1984).
5) Tsubone, I., Nakajima,Y. and Kanda, Y.: private communication
6) Yamamuro.N. . Saito.K. . Emoto.T.. Wada,T., Fujita,Y, and Kobayashi.K.: J.NucI.Sci. Technol., 17.682 (1980).
7) Igarashi.S.: J.Nucl.Sci. Technol.,17.67 (1975).
8) Young.P.G. and Arthur, E.D.: "GNASH, Aprequilimu, statistical Nuclear-Model Code for Calculation of cross sections and Emission Spectia*. LA-6974 (1977).
9) Wilmore.D.and Hodgson.P.E.: Nucl, Phys., 55.673 (1964).
10) Firestone, R.B. Nucl, Data sheets 43.289 (1984).
```
74-W - O KHI ,NEDAC Eval-Mar 87 T, Watanabe(KHI), T. Asami (NEDAC)
Dist-Sep89
History
 87-03 Now evaluation was made for JENDL-3.
 87-03 Compiled by T. Asami.
 89-08 \(\mathrm{NF}^{\prime} / \mathrm{MT}=15 / 102\) modified.
```

MF=1 General Information
MT=451 Descriptive data and dictionary
Alt the data were constructed with the evaluated ones
of $W-182,-183,-184$ and -186 , taking account of their
abundances in the $W$ element. The abundance data were taken
from ref./1/ to be 0.263, 0.143, 0.3067 and 0.286 for $W$-182,
$-183,-184$ and -186 , respectively. All the data of $W-180$
were ignored because of its very low abundance.
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were taken from the
evaluated data on each stable isotope of tungsten.
The energy region was taken from $1.0 \mathrm{E}-5$ oV to 12 keV .
Calculated $2200 \mathrm{~m} / \mathrm{sec}$ crose sections and resonance integrals
are as follows:
$2200 \mathrm{~m} / \mathrm{s}$ cross section(b) res. integral(b)
elastic 4.87
capture 18.26
total 23.22
317.5
MF=3 Neutron Cross Sections
Below 12 koV , background cross section was given to compensate
the cross section of $W-183$ in the energies of 2.2 to 12 keV .
Above 12 keV . the total and partial cross sections were given
pointwise.
MT=1 Total
The data were constructed from the evaluated ones for four $W$
isotopes in taking account of their abundances.
MT=2 Elastic scattoring
Obtained by subtracting the sum of the partial cross sections
from the total cross section.
MT=4, 51-90. 91 Inelastic scattering
The data were constructed from the evaluated ones for each $W$
isotope as follows:

| MT | Level energy ( MoV ) | W-182 | W-183 | W-184 | W-186 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9.s. | 0.0 |  |  |  |  |
| 51 | 0.0465 |  | 51 |  |  |
| 52 | 0.0991 |  | 52 |  |  |
| 53 | 0.1001 | 51 |  |  |  |
| 54 | 0.1112 |  |  | 51 |  |
| 55 | 0.1226 |  |  |  | 51 |
| 56 | 0.2070 |  | 53 |  |  |
| 57 | 0.2088 |  | 54 |  |  |
| 58 | 0.2917 |  | 55 |  |  |
| 59 | 0.3089 |  | 56 |  |  |
| 60 | 0.3095 |  | 57 |  |  |

$81 \quad 0.3294 \quad 52$
620.3641
630.3968
$64 \quad 0.4121$
52
0.3641
$5 \quad 0.4870$
$6 \quad 0.5510$
0.6805
0.7377
10.7483
0.8088
0.8618
0.8820
52
65
50
53
67
68
62
52
66
53
54
70
55
71
0.8820
0.9033
56
72
0.9033
0.952667
73
0.9526
54
$1.0023 \quad 55$
75
56
53
60
58
58
2

```
 of W, taking account of their abundances in the W element.
MF=12 Photon Production Multiplicities
 MT=102
 Calculated with the GNASH code/3/.
MF=13 Photon Production Cros: Sections
 NT=3
 Calculated with the GNASH code/3/.
MF=14 Photon Angular Distributions
 MT=3 , 102
 Assumed to be isotropic in the laboratory system.
MF=15 Continuous Photon Energy Spectra
MT=3
 Calculated with the GNASH code/3/.
NT=102
 Calculated with the GNASH code/3/ and modified
 by using tho data in ENSDF/4/ at thermal onorgy.
Roferences
1) Holden. N.E., Martin, R.L. and Barnes. I.L. : Puro & Appl.
 Chom. 56, 675 (1984).
2) Gronier ot al. . CEA-N-2195 (1981).
3) Young. P.G. and Arthur, E.D. : LA-6947 (1977).
4) ENSDF(Evaluatod Nuclear Structuro Data File)
```

```
74-W -182 KHI.NEDAC Eval-Mar87 T.Watanabe(KHI). T.Asami (NEDAC)
 Dist-Sep89
History
 87-03 New evaluation was made for JENDL-3.
 87-03 Compiled by T.Asami.
```

MF=1 General Information
MT=461 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from $1.0 \mathrm{E}-5 \mathrm{eV}$ to 12 keV .
Parameters were evaluated in examining both the experimental
data/1/ - /3/ and the recommended data of BNL./4/.
For unknown radiative width, an average value of $53 \mathrm{milli} e V$
was assumed.
Parameters for negative resonance were selected so that the
$2200 \mathrm{~m} / \mathrm{s}$ cross section for capture reproduced gave a recommend-
ed value of 20.7 barns/4/ and gave a good fit to the experi-
mental data for total cross sections around thermal energies.
The scattering radius was assumed to be 7.5 Fermi.
Calculated $2200 \mathrm{~m} / \mathrm{sec}$ cross sections and resonance integrals
are as follows:
$2200 \mathrm{~m} / \mathrm{s}$ cross section(b) res. integral(b)
elastic $\quad 8.84$
capture 20.7
628.6
total 29.5
MF=3 Neutron Cross Sections
Below 12 keV . zero background cross section was given and all
the cross-section data are reproduced from the evaluated resolv-
ed resonance parameters with MLBW formula.
Above 12 keV . the total and partial cross sections were given
pointwise using the data taken mainly from the theoretical cal-
culations. The total, elastic and inelastic scattering, and
capture cross sections were calculated based on the coupled-
channel model and the spherical optical-statistical model.
The calculations were performed with a combined program of
the CASTHY code/5/ and the ECIS code/6/.
The optical potential parameters used are:
$\begin{aligned} V & =48.83-0.0809=E n, \quad V_{\text {so }}=5.6 & (\mathrm{MoV}) \\ W_{s} & =6.73-0.0536=E n, \quad W_{v}=0 & (\mathrm{MeV}) \\ r & =1.168, r s=1.268, r s o=1.592 & (\mathrm{fm}) \\ a & =0.617, \text { aso }=0.664, b=0.563 & (\mathrm{fm})\end{aligned}$
The deformed potential parameters were taken from the work of
Delaroche/7/.
MT=1 Total
As described above, calculated with the combined program of the
ECIS and CASTHY codes.
MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.
MT=4. 51-58, 91 Inelastic scattering
Calculated with the combined program of the ECIS/6/ and CASTHY

15/. taking account of the contribution from the competing processes.
The levol data used in the above calculations were taken from ref. $/ 8 /$ as follows:

| MT | Level onergy(MeV) | Spin-parity |
| ---: | :---: | :---: |
| g.s. | 0.0 | $0+$ |
| 1 | 0.1001 | $2+$ |
| 2 | 0.3294 | $4+$ |
| 3 | 0.6805 | $6+$ |
| 4 | 1.1357 | $0+$ |
| 5 | 1.1445 | $8+$ |
| 6 | 1.2214 | $2+$ |
| 7 | 1.2574 | $2+$ |
| 8 | 1.2892 | $2-$ |
| 9 | 1.3311 | $3+$ |
| 10 | 1.3738 | $3-$ |
| 11 | 1.4428 | $4+$ |
| 12 | 1.4875 | $4-$ |
| 13 | 1.5103 | $4-$ |
| 14 | 1.5532 | $5-$ |
| 15 | 1.6213 | $5+$ |
| 16 | 1.6236 | $5-$ |

Levels above 1.6883 MeV ware assumed to be overlapping.
The calculated date for the inelastic scattering were finally Iumped for the convenience on the construction of the element deta, es follows:
MT no. Level onergy(MeV) Lumping
510.10011
$520.3294 \quad 2$
53 0.6805 3
541.13574
55 1.1445 5
56 1.2214 6-8
57 1.3311 9-10
$581.4428 \quad 11-17$

MT=16, 22, 28, 103, 107 (n, 2n), (n, na), (n,np), (n,p), (n,a)
Calculated with the GNASH code/9/ including the precompound effect. Transmission coefficients for neutrons, protons and alphas were calculated with the ELIESE-3 code/10/ using the above optical model parameters, the Menet's ones/i1/ and the Huizenga-igo's/12/.. respectively.
Calculated data for the ( $n, p$ ) cross sections were normalized to the Qaim's experimental data of 5.9 milli barns at 14.7 MoV 113/.
MT=102 Capture
Calculated with the CASTHY code/5/ and normalized to 72 mb at 500 keV of Grenier et al.'s data/14/.
MT=251 Mu-bar
Calculated with the optical model.

```
MF=4 Angular Distributions of Secondery Neutrons
NT=2
 Calculated with the CASTHY code/5/.
MT=51-58, 91
```

Calculated with the combined program of the CASTHY/5/ and ECIS/6/ codes.
MT=16, 22, 28
Assumed to be isotropic in the laboratory system.
NF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/9/.
References

1) Camarda H.S. et al. : Phys. Rev. C8, 1813 (1973).
2) Ohkubo M. : JAERI-M 5624 (1974).
3) Mack I in R.L. et al. : LA-9200-MS (1982).
4) Mughaghab S.F. and Garber D.I. : "Neutron Cross Sections", Vol. 2. Part B (1984).
5) Igarasi s. : J. Nucl. Sci. Tech. 12, 67 (1975).
6) Raynal J. : (AEA-SMR-9/8 p. 281 (1972).
7) Delaroche J.F. et al. : 1979 Knoxville Conf. 336 (1979).
8) ENSDF (Evaluated Nuclear Structure Data File)
9) Young P.G. and Arthur. E.D. : LA-6947 (1977).
10) Igarasi S. : JAERI 1224 (1972).
11) Menet J.J.H. et al.: Phys. Rev. C4. 1114 (19/1).
12) Huizenga J.R. and Igo. G.J.: ANL-6373 (1961).
13) Daim S.M. : Nucl. Phys. A243. 317 (1975).
14) Grenier et al. : CEA-N-2195 (1981).
```
MAT number = 3742
 74-W -183 KHI.NEDAC Eval-Mar87 T.Watanabe(KHI). T.Asami(NEDAC)
 Dist-Sep89
History
 87-03 New evaluation was made for JENOL-3.
MF=1 General Information
 MT=451 Descriptive data and dictionary
NF=2 Resonance paremeters
 MT=151 Resolved resonance parameters
 Resolved parameters for MLBW formula were given in
 the energy region from 1.0E-5 oV to 2.2 keV.
 Parameters were evaluated in examining both the experimental
 data/1/ - /3/ and the recommended data of BNL/4/.
 For unknown radiative width, an everage value of 55 milli oV
 was assumed.
 Parameters for negative resonance were selected so that the
 2200 m/s cross section for capture reproduced gave a recommend-
 ed value of 10.2 barns/4/ and gave a good fit to the experi-
 mental data for total cross sections around thermal energies.
 The scattering radius was assumed to be 7.3 Fermi.
 Calculated 2200 m/sec cross sections and resonence integrals
 are as follows:
 2200 m/s cross section(b) res. integral(b)
 elastic 2.38
 capture 10.11
 12.49
MF=3 Neutron Cross Sections
 Below 2.2 keV, zero beckground cross section was given and all
 the cross-section data are reproduced from the ovaluated
 resonance parameters with MLBW formula.
 Above 2.2 keV, the total and partial cross sections were given
 pointwise.
 MT=1 total
 Optical and statistical model calculation was made with
 CASTHY code/5/. The optical potential parameters used are:
 V = 48.83-0.0809*En. Vso = 5.6 (MoV)
 Ws =6.73-0.0536.En. Wv = 0 (MoV)
 r=1.168, rs = 1.268, rso = 1.592 (fm)
 a=0.617. aso =0.664.b}=0.563\quad(fm
 MT=2 Elastic scattering
 Obtained by subtracting the sum of the partial cross sections
 from the total cross section.
MT=4. 51-60. 91 Inelastic scattering
 Calculated with CASTHY/5/. taking account of the contri-
 bution from the competing processes. The direct component was
 calculated with the coupled-channel optical model code ECIS/6/.
 The deformed potential parameters used were taken from the
 work of Delaroche/7/.
 The level data used in the above two calculations were taken
 from ref./8/ as follows:
 MTT Level energy(MeV) Spin-parity
 g.s. 0.0 0+
 10.0465 3-
```

```
\begin{tabular}{rrr}
2 & 0.0991 & \(5-\) \\
3 & 0.2070 & \(7-\) \\
4 & 0.2088 & \(3-\) \\
5 & 0.2917 & \(5-\) \\
6 & 0.3089 & \(9-\) \\
7 & 0.3096 & \(11+\) \\
8 & 0.4121 & \(7-\) \\
9 & 0.4530 & \(7-\) \\
10 & 0.4870 & \(13+\) \\
11 & 0.5510 & \(9-\) \\
12 & 0.5953 & \(9-\) \\
13 & 0.6228 & \(9+\)
\end{tabular}
Levels above 0.680 MeV were assumed to be overlapping.
The calculated data for the inelastic scattering were finally lumped for the convenience on the construction of the element data, as follows:
MT no. Level energy(MeV) Lumping
510.04651
\(52 \quad 0.0991 \quad 2\)
\(53 \quad 0.2070 \quad 3\)
54 0.2088 4
\(55 \quad 0.2917 \quad 5\)
\(56 \quad 0.3089 \quad 6\)
\(57 \quad 0.3095 \quad 7\)
\(58 \quad 0.4121 \quad 8-9\)
\(59 \quad 0.4870 \quad 10\)
\(60 \quad 0.5610 \quad 11\)-13
MT=16, 22, 28, 103, 107 (n, 2n). (n, na), (n,np). (n,p), (n,a)
Calculated with the GNASH code/g/ including the precompound effect. Transmission coefficients for neutrons, protons and alphes were calculated with the ELIESE-3 code/10/ using the above optical model parameters, the Menet's ones/11/ and the Huizenga-lgo's/12/, respectively.
Calculated data for the (\(n, p\)) cross sections were normalized to the Caim's experimental data of 4.1 milli barns at 14.7 MeV /13/.
MT=102 Capture
Calculated with the CASTHY code/5/ and normalized to 70 mb at \(500 \mathrm{keV} / 14 /\).
MT=251 Mu-bar
Calculated with the optical model.
```


## MF=4 Angular Distributions of Secondary Neutrons

``` MT=2
Calculated with the CASTHY code/5/.
MT=51-67, 91
Calculated with the combined program of the CASTHY/5/ and
ECIS/6/ codes.
MT=16, 22, 28
Assumed to be isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Noutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/9/.
```


## Reforences

1) Comarda H.S. ot al. : Phys. Rov. C8, 1813 (1973).
2) Onkubo M. : JAERI-M 5624 (1974).
3) Macklin R.L. et al. : LA-9200-MS (1982).
4) Mughaghab S.F. and Garbor D.I. : "Noutron Cross Soctions*. Vol. 2. Part B (1884).
5) Igarasi S.: J. Nucl. Sci. Teoh. 12. 67 (1076).
6) Raynal J. : |AEA-SMR-8/8 p. 281 (1972).
7) Delarocho J.F. et al. : 1978 Knoxvillo Conf. 336 (1979).
8) ENSDF(Evaluated Nuclear Structure Data Filo)
9) Young P.G. and Arthur. E.D. : LA-6947 (1977).
10) Igarasi S. : JAERI 1224 (1872).
11) Menet J.J.H. et al.: Phys. Rev. C4, 1114 (1971).
12) Huizenga J.R. and Igo. G.J.: ANL-6373 (1961).
13) QAIM S.M. : Nucl. Phys. A243, 317 (1975).
14) Grenier et al. : CEA-N-2185 (1881).
```
74-W -184 KHI,NEDAC Eval-Mar87 T.Watanabe(KHI). T.Asami(NEDAC)
Dist-Sep89
History
 87-03 Now evaluation was made for JENDl.-3.
 87-03 Compiled by T.Asami.
```

MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from $1.0 \mathrm{E}-5 \mathrm{eV}$ to 12 keV .
Parameters were evaluated in examining both the experimental
data/1/ - /3/ and the recommended data of BNL/4/.
For unknown radiative width, an average value of 57 milli oV
was assumed.
Parameters for negative resonance were selected so that the
$2200 \mathrm{~m} / \mathrm{s}$ cross section for capture reproduced gave a recommend-
ed value of $1.7 \mathrm{ba} . \mathrm{ns} / 4 /$ and gave a good fit to the experi-
mental data for total cross sections around thermal energies.
The scattering radius was assumed to be 7.5 Fermi.
Calculated $2200 \mathrm{~m} / \mathrm{sec}$ cross sections and resonance integrals
are as follows:
$2200 \mathrm{~m} / \mathrm{s}$ cross section(b) res. integral(bv)
elastic $\quad 7.35$
capture $\quad 1.70$
16.2
total 9.05
MF=3 Neutron Cross Sections
Below 12 keV , no background cross section wos given and oll the
cross-section data are reproduced from the evaluated resolved
resonance parameters with MLBW formula.
Above 12 keV , total and the partial cross sections were given
pointwise.
MT=1 Total
Optical and statistical model calculation was made with
CASTHY code/5/. The optical potential parameters used are:
$V=48.83-0.0809 . E n . \quad V s o=5.6 \quad(\mathrm{MeV})$
$W_{s}=0.73-0.0536-E n . \quad W_{v}=0 \quad(\mathrm{MeV})$
$r=1.168, r s=1.268, r s o=1.592 \quad(\mathrm{fm})$
$a=0.617$, aso $=0.664, b=0.563 \quad(f m)$
MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.
MT=4, 51-61, 91 inelastic scattering
Calculatod with CASTHY codo/5/, taking account of the contri-
bution from the competing processes. The direct component was
calculated with the coupled-channel optical model code ECIS/6/.
The deformed potential parameters used were taken from the
work of Delaroche/7/.
The level data used in the above two calculations were taken
from ref./8/ as follows:
$\begin{array}{ccc}\text { MT } & \text { Level energy(MoV) } & \text { Spin-parity } \\ \text { g.s. } & 0.0 & 0+\end{array}$

1	0.1112	$2+$
2	0.3641	$4+$
3	0.7483	$6+$
4	0.9033	$2+$
5	1.0023	$0+$
6	1.0059	$3+$
7	1.1214	$2+$
8	1.1300	$2-$
$\theta$	1.1338	$4+$
10	1.2213	$3-$
11	1.2850	$5-$
12	1.2941	$6+$
13	1.3221	$0+$
14	1.3453	$4-$
15	1.3590	$4+$
16	1.3863	$2+$
17	1.4250	$3+$
18	1.4310	$2+$
19	1.4462	$6-$

Levels above 1.4739 MeV were assumed to be overlapping.
The calculated data for the inelastic scattoring wore finally Iumped for the convenience on the construction of the element data, as follows:

MT no.	Level energy(MoV)	Lumping
51	0.1112	1
52	0.3641	2
53	0.7483	3
54	0.9033	4
65	1.0023	5
56	1.0059	6
57	1.1214	$7-9$
58	1.2213	10
59	1.2850	12
60	1.2941	$13-19$

$M T=16,22,28,103,107$ ( $1.2 n$ ). ( $n, n a$ ), ( $n, n p$ ), ( $n, p$ ), ( $n, a)$
Calculated with the GNASH code/9/ including the precompound effect. Transmission coefficients for neutrons, protons and alphas were calculated with the ELIESE-3 code/10/ using the above optical model paremeters, the Menet's ones/11/ and the Huizenga-lgo's/12/, rospectivoly.
Calculated data for the ( $n, p$ ) cross sections were normalized to the Qaim's experimental data of 2.9 milli barns at 14.7 MeV /13/.
Calculated data for the ( $n, n p$ ) cross sections were normalized to the Qaim's experimental data of 0.65 milli barn at 14.7 MeV 113/.
MT=102 Capture
Calculated with the CASTHY code/5/ and normalized to 49 mb at $500 \mathrm{keV} / 14 /$.
MT=251 Mu-bar
Calculated with the optical model.

Calculated with the CASTHY code/5/.
MT=51-61. 91
Calculated with the combined program of the CASTHY/E/ and ECIS/6/ codes.
MT=16. 22. 28
Isotropic in the laboratory eystem.
MF=5 Energy Distributions of Secondary Neutrons
$M T=16$. 22. 28. 81
Calculated with the GNASH code/9/.

## References

1) Camarda H.S. ot al. : Phys. Rov. C8. 1813 (1973).
2) Ohkubo M. : JAERI-M 5624 (1974).
3) Macki in R.L. et al. : LA-9200-MS (1982).
4) Mughaghab S.F. and Garber D.I. : 'Noutron Cross Sections", Vol.
2. part B (1984).
6) Igarasi S. : J. Nucl. Sci. Tech. 12, 67 (1975).
7) Ravnal J. : (AEA-SMR-9/8 p. 281 (1972).
8) Delarocho J.F. ot al. : 1979 Knoxville Conf. 336 (1979).
9) ENSDF(Evaluated Nuclear Structure Data Filo)
10) Young P.G. and Arthur E.D. : LA-6847 (1977).
11) Igarasi S. : JAEII 1224 (1972).
12) Monet J.J.H. et al.: Phys. Rev. C4, 1114 (1871).
13) Huizenga J.R. and Igo, G.J.: ANL-6373 (1961).
14) Qaim S.M. : Nucl. Phys. A243. 317 (1975).
15) Grenior ot al. : CEA-N-2195 (1981).
```
74-W -186 KHI.NEDAC Eval-Mar87 T.Watanabe(KHI), T.Asemi(NEDAC)
Dist-Sep89
History
 87-03 New evaluation was made for JENDL-3.
 87-03 Complled by T.Asami.
```

MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from $1.0 \mathrm{E}-5 \mathrm{oV}$ to 12 keV .
Parameters were evaluated in examining both the experimental
data/1/ - /3/ and the recommended data of BN./4/.
For unknown radiative width, an average value of $60 \mathrm{mil} \mathrm{mi}_{\mathrm{o}}$ ov
was assumed.
Parameters for negative resonance were selected so that the
$2200 \mathrm{~m} / \mathrm{s}$ cross section for capture reproduced gave a recommend-
ed velue of 37.8 barns/4/ and gave a good fit to the experi-
mental data for total cross seotions around thermsl energies.
The scattering radius was assumed to be 7.64 Fermi/4/.
Calculated $2200 \mathrm{~m} / \mathrm{sec}$ cross sections and resonance integrals
are as follows:
$2200 \mathrm{~m} / \mathrm{s}$ cross section(b) res. Integral(b)
elastic 0.14
capture 37.89
347.1
total 38.03
MF=3 Neutron Cross Sections
Below 12 keV, zero background cross section was given and all
the cross-section data are reproduced from the evaluated resoly-
ed resonance parameters with MLBW formula.
Above 12 keV , the total and partial cross sections were given
pointwise.
MT=1 total
Optical and statistical model calculation was made with
CASTHY code/5/. The optical potential parameters used are:
$V=48.83-0.0809 \times E n . \quad V s o=5.6 \quad$ (MoV)
$W_{s}=0.73-0.0536 \cdot E n . \quad W v=0 \quad$ (MeV)
$r=1.168, r s=1.268, r \equiv 0=1.592 \quad(\mathrm{fm})$
$a=0.617$, aso $=0.664 . b=0.563 \quad(\mathrm{fm})$
MT=2 Elastic scatiering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.
MT=4. 51-62. 91 Inelastic scattering
Calculated with CASTHY/5/. taking account of the contri-
bution from the competing processes. The direct component was
calculated with the coupled-channel optical model code ECIS/6/.
The deformed potential parameters used were taken from the
work of Delaroche/7/.
The level data used in the above two calculations were taken
from ref./8/ as follows:
MT Level energy(MoV) Spin-parity
g.s. $\quad 0.0$
0+

1	0.1226	$2+$
2	0.3968	$4+$
3	0.7377	$2+$
4	0.8088	$6+$
6	0.8618	$3+$
6	0.8820	$0+$
7	0.9526	$2-$
8	1.0070	$2+$
9	1.0316	$4+$
10	1.0452	$3-$
11	1.1500	$0+$
12	1.2840	$2+$
13	1.2980	$2+$
14	1.3220	

The calculated data for the inelastic scatterirg were finally Iumped for the convenience on the construction of the element deta, as follows:
MT no. Lovel energy (MeV) Lumping
510.12261
$52 \quad 0.3968 \quad 2$
630.7377 3
$540.8088 \quad 4$
$56 \quad 0.8618 \quad 6$
$56 \quad 0.8820 \quad 6$
$57 \quad 0.9526 \quad 7$
$58 \quad 1.0070 \quad 8$
$50 \quad 1.0316 \quad 9$
$60 \quad 1.0452 \quad 10$
$01 \quad 1.1500 \quad 11$
$621.2840 \quad 12-14$
$M T=16,22,28,103,107 \quad(n, 2 n),(n, n a),(n, n p),(n, p),(n, a)$
Calculated with the GNASH code/日/ including the precompound offect. Transmission coofficionts for noutrons, protons and alphas were calculated with the ELIESE-3 code/10/ using the above optical model parameters, the Menet's ones/fi/ and the Huizenga-lgo's/12/. respectivoly.
Calculated deta for the ( $n, p$ ) cross sections were normalized
to the Qaim's oxperimental data of 2.75 milli barns at 14.7 MeV
/13/.
Calculated data for the ( $n, n p$ ) cross sections were normalized to the Qaim's experimental data of 0.25 milli barns at 14.5 MeV /13/.
MT=102 Capture
Calculated with the CASTHY code/5/ and normalized to 49 mb
at $100 \mathrm{keV} / 141$.
MT=251 Mu-bar
Calculated with the optical model.
MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code/5/.
MT=51-62. 91
Calculated with the combinod program of the CASTHY/5/ and ECIS/6/ codes.

MT=16, 22, 28
Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/9/.

References

1) Camarda H.S. ot al. : Phys. Rev. C8, 1813 (1973).
2) Nhkubo M. : JAERI-M 5624 (1974).
3) Macklin R.L. ot al. : LA-920n-MS (1982).
4) Mughaghab S.F. and Garber D.I. : "Neutron Cross Sections", Vol. 2, part B (1984).
5) Igarasi S.: J. Nucl. Sci. Tech. 12. 67 (1975).
6) Raynal J. : IAEA-SMR-9/8 p. 281 (1972).
7) Delaroche J.F. ot al. : 1979 Knoxville Conf. 336 (1979).
8) ENSDF(Evaluated Nuclear Structure Data File)
9) Young P.G. and Arthur E.D. : LA-6947 (1977).
10) Igarasi S. : JAERI 1224 (1972).
11) Manet J.J.H. ot al.: Phys. Rev. C4, 1114 (1971).
12) Huizenga J.R. and Igo G.J.: ANL-6373 (1981).
13) Daim S.M. : Nucl. Phys. A243, 317 (1976).
14) Grenier et al. : CEA-N-2195 (1981).

## History

87-03 Newly evaluated for JENDL-3 by M.Mizumoto (JAERI)
87-11 Revision is recommended.
89-08 Revision is completed. Compilation was made by. T.Narita and T.Fukahori (JAERI)

MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula Resonance ranges:
Pb-204:1.0E-5 eV to 50 koV
Pb-206. Pb-207. Pb-208: 1.0E-05 to 480 keV
Parameters were evaluated from the following exp. data.
Pb-204:Hor en+84/1/
$\mathrm{Pb}-206:$ Hor en+79 /2/. Mizumoto+79 /3/
$\mathrm{Pb}-207$ :Allen+73/4/. Raman+77/5/. Horen+81 /6/
Pb-208:Allen+73 /4/. Macklin+77 /7/. Horen+86/8/
The s-wave resonance energy of $\mathrm{Pb}-208$ at 506 keV was changed to 525 keV in order to the interference mininum around 600 keV .

Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and res. integrals.
$2200 \mathrm{~m} / \mathrm{s}$ res. integ.
-lastic 11.261 b capture $0.172 \mathrm{~b} \quad 0.137 \mathrm{~b}$ total 11.433 b

MF=3 Neutron Cross Sections
Below 480 keV
Background cross sections are given for the elastic
scattering cross section.

```
Above 480 koV
MT=1 Total
 Cross sections in the energy range from 480 keV to 15 MeV were
 obtained based on the experimental data of Schwartz+77 /9/.
 Above 15 MeV, cross sections were calculated with an optical and
 statistical model code CASTHY /10/. The optical potential
 parameters were obtained by fitting average total cross section
 of natural lead as follows.
 V=47.0-0.250.E. Ws = 2.30 + 0.41 E E, Vso = 6.0 (MaV)
 r0=1.25 , rs = 1.30 , rso = 1.30 (fm)
 a0=0.65 , b = 0.48 , as0 = 0.689 (fm)
 Level density parameters were determined using low-lying
 lovel data and observed neutron resonance spacing.
MT=2 Elastic scattering
 (Total)-(All other partial cross sections)
MT=4,51-90.93 Inolastic scattering
 Calculated with CASTHY /10/ and a DWBA calculation code DWUCK
 /11/for each isotope and constructed according to their isotopic
 abundances.
```

        Level scheme was taken from Ref /12/
    | NO. | Energy (MeV) | Spin-Parity |  |
| :---: | :---: | :---: | :---: |
| g.s | 0.0 | 21 | 2.9396 |
| 1 | 0.5709 | 22 | 3.0165 |
| 2 | 0.8031 | 23 | - 3.1977 |
| 3 | 0.8986 | 24 | 3.2230 |
| 4 | 1.1670 | 26 | - 3.4130 |
| 5 | 1.3406 | 26 | 3.4750 |
| $\theta$ | 1.4666 | 27 | - 3.7085 |
| 7 | 1.6337 | 28 | 3.9198 |
| 8 | 1.6841 | 29 | 3.9464 |
| 9 | 1.9978 | 30 | - 3.9609 |
| 10 | 2.2002 | 31 | 3.9957 |
| 11 | 2.3398 | 32 | 4.0855 |
| 12 | 2.3843 | 33 | 4.1252 |
| 13 | 2.6146 | 34 | 4.1803 |
| 14 | 2.6230 | 35 | 4.2962 |
| 15 | 2.6476 | 36 | - 4.3237 |
| 16 | 2.6626 | 37 | 4.3584 |
| 17 | 2.7276 | 38 | 4.3929 |
| 18 | 2.7823 | 39 | 4.4237 |
| 19 | 2.8264 | 40 | . 4.4805 |
| 20 | 2.8645 |  |  |

Levels above 2.200 MeV were assumed to be continuum.
Levels without (•) marks are calculated with only CASTHY /10/.
MT=10.17 ( $n, 2 n$ ) and ( $n, 3 n$ )
Calculated for each isotope with a multi-step Hauser Feshbach code GNASH /13/, in which the Ignatyuk level density formula /14/ was incorporated, and constructed according to the isotopic abundances
The ( $n, 2 n$ ) cross section was normalized to the averaged value 2.184 b at 14 MeV based on the experimental values by Frohaut+80 /15/, |wasaki+85 /16/ Yanagi+82 /17/ and Takahashi+85 /18/.
MT=22 (n, n'alpha)
Calculated with GNASH /13/ for each isotope and constructed according to their abundances.
MT=28 ( $n, n^{\prime} p$ )
Calculated with GNASH /13/ for each isotope and constructed according to their abundances.
MT=102 capture
Calculated with CASTHY /10/ for $\mathrm{Pb}-204$. $\mathrm{Pb}-206$ and $\mathrm{Pb}-207$. For $\mathrm{Pb}-208$, estimated from the experimental data. The capture cross section of natural lead was constructed from these isotopes.
MT=103 (n.p)
Calculated with GNASH /13/ for each isotope and constructed according to their abundances.
MT=107 (n,a)
Calculated with GNASH /13/ for each isotope and constructed according to their abundances.
MT=251 Mu-bar
Calcuiated with CASTHY /10/.
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-90
: calculated with CASTHY /10/ and DWUCK /11/ for each isotope and constructed according to their abundances.

```
 MT=16.17.22.28.91 : assumed to be isotropic in the lab system.
```

MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.22.28.91: calculated with GNASH /13/ for asch
isotope and constructed according to
their ebundances.

MF=12 Gamma-ray Multiplicity Produced by Neutron Reactions MT=102 : calculated with GNASH /13/.

MF=13 Garma-ray Production Cross Sections MT=3 : calculated with GNASH /13/ for each isotope and constructed according to their abundances.

MF=14 Angular Distributions of Secondary Garma-rays
MT=3.102 : assumed isotropic.
MF=15 Energy Distribution of Secondary Gamma-rays MT=3.102 : calculated with GNASH /13/ for each isotope and constructed according to their abundances.

References

1) Horen D.J. et al. : Phys. Rev. C29. $212 \theta$ (1984).
2) Horen D.J. et al. : Phys. Rev. C20, 478 (1979).
3) Mizumoto M. et al. : Phys. Rev. Cis . 335 (1979).
4) Allon B.J. et al. : Phys. Rev., C8, 1504 (1973).
5) Raman S. et al. : Phys. rev. Lett., 39,598 (1977).
6) Horen D.J. et al. : Phya. Rev. C18, 722 (1978).
7) Macklin R.L. et al. : Astrophys. J. 217, 222 (1977).
8) Horen D. J. et al. : Phys. Rev. C34. 420 (1986).
9) Schwartz R.B. ot al.: NBS-Mono-138 (1974), Data in EXFOR (1971).
10) Igarasi S.: J. Nucl. Sci. Technol., 12, 67 (1975).
11) Kunz P.D. : Univ. Colorado (1974).
12) Lederer C.M. and Shirley V.S.: Table of isotopes, 7th ed.
13) Young P.G. and Arthur E.D.: LA-6974 (1977).
14) Ignatyuk A.V. ot al. : Sov. J. Nucl. Phys. 21, 255 (1975).
15) Frohaut et al. : BNL-NCS-51245 Vol 1 p399 (1980).
16) Iwasaki S. et al.: Proc. Santa Fo Conf. p191 (1985).
17) Yanagi et al. : OKTAVIAN reports A-84-02 (1982).
18) Takahashi et al. : Proc. Santa Fe Conf. p59 (1985).

## MAT number $=3821$

82-Pb-204 JAER I

> Eval-Jul87 M.Mizumoto Dist-Sep89

History
87-03 Newly evaluated for JENDL-3 by M. Mizumoto (JAERI)
87-11 Revise is recommended.
89-09 Revision is completed.
Compilation was made by $T$ Narita and T.Fukahori (JAERI)
MF=1 General Information
MT=461 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula Resonance ranges: $1.0 \mathrm{E}-5 \mathrm{eV}$ to 50 keV
Parameters were evaluated from the data of Horen+84/1/. Effective scattering radius of 8.5 fm was selected.

Calculated	$2200-\mathrm{m} / \mathrm{s}$ cross sections and res. integrals.	
	$2200 \mathrm{~m} / \mathrm{s}$	res. integ.
elastic	11.197 b	-
capture	0.661 b	1.848 b
total	11.867 b	-

MF=3 Neutron Cross Sections
Below 50 koV
Background cross sections are given for the olastic scattering cross section.

Above 50 keV
Cross sections were obtained from optical and statistical model calculations. The optical potential parameters were obtained by fitting average total cross section of natural lead as follows.

$$
\begin{aligned}
& V=47.0-0.250 \cdot E . \quad W_{s}=2.30+0.41 \cdot E . \quad V s o=0.0(\mathrm{MeV}) \\
& r 0=1.25 \quad, r \&=1.30 \quad, r 80=1.30(\mathrm{fm}) \\
& a 0=0.65 \quad, \quad b=0.48 \quad, \quad \mathrm{~s} 0=0.689(\mathrm{fm})
\end{aligned}
$$

Level density parameters wore determined using low-lying level data and observed neutron resonance spacing.

## MT=1 Total

Calculated with optical and statistical mode code CASTHY /2/
MT=2 Elastic scattering
(Total)-(Al| other partial cross sections)
MT=4.51-56.91 Inelastic scattering
Calculated with CASTHY /2/
Level scheme taken from Ref. /3/

No.	Energy(MoV)	Spin-Parity
g.s.	0.0	$0.0+$
1	0.8992	$2.0+$
2	1.2739	$4.0+$
3	1.5627	$4.0+$
4	1.8174	$4.0+$
5	2.0649	$5.0+$
6	2.1855	$9.0-$

Levels above 2.200 MeV were assumed to be continuum.

```
 MT=16.17 (\(n, 2 n\)) and (\(n, 3 n\))
 Calculated with a multi-step Hauser Feshbach model code GNASH/4/
 in which the lgnatyuk level density formula/5/ was incorporated.
 The (\(n, 2 n\)) cross section is normalized at 14 MeV to 2.12 barns
 by lkeda+87 /6/.
 MT=22 (n, n'alpha)
 Calculated with GNASH /4/.
MT=28 (\(n, n^{\prime} p\))
 Calculated with GNASH /4/.
 MT=102 capture
 Calculated with CASTHY /2/ and normalized to 0.661 barn
 at 0.025 eV .
\(M T=103\) (n.p)
 Calculated with GNASH /4/.
MT=107 (n, a)
 Calculated with GNASH /4/.
MT=251 Mu-bar
 Calculated with CASTHY / 2.
MF=4 Angular Distributions of Secondary Noutrons
 MT=2.51-56 : calculated with CASTHY/2/.
 \(\mathbf{M T}=16,17,22,28\) : assumed to be isotropic in the lab system.
 MT=91 : assumed the same distributions in the lab.
 system as those calculated with CASTHY /2/
 in the center-of-mass system.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16.17.22,28.91: calculated with GNASH /4/.
MF=12 Gamma-ray Multiplicity Produced by Neutron Reactions
 MT=16.17,51-56,22,91,102: calculated with GNASH /4/.
MF=14 Angular Distributions of Secondary Gamma-rays
 MT=16.17.51-56.22,91,102: assumed to be isotropic.
NF=15 Energy distribution of secondary gamma-rays
 MT=16.17.91.102: calculated with the GNASH /4/.
```


## Reforences

```
1) Horen D.J. ot al. : Phys. Rov. C29. 2126 (1984).
2) Igarasi S.: J. Nucl. Sci. Technol.. 12, 67 (1975).
3) Lederer C.M. and Shirley V.S.: Table of isotopes, 7 th ed.
4) Young P.G. and Arthur E.D.: LA-6974 (1977).
5) Ignatyuk A.V. ot al. : Sov. J. Nucl. Phys. 21. 255 (1975).
6) Ikeda Y. et al. : JAERI 1312 (1987).
```

82-Pb-206 JAERI Eval-Jul87 M.Mizumoto Dist-Sep89
History
87-03 Nowly evaluated for JENDL-3 by M.Mizumoto (JAERI)
87-11 Revise is recommended.
89-09 Revision is completed.
Compilation is made by T.Narita and T.Fukahori (JAERI)
MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula
Resonance ranges: $1.0 \mathrm{E}-5 \mathrm{eV}$ to 500 keV
Parameters were evaluated from the data of Horen+79 /1/. and Mizumoto+79 /2/. Effective scattering radius of 8.5 fm was selected.

Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and res. integrals. $2200 \mathrm{~m} / \mathrm{s}$ res. integ.
olastic $\quad 10.463 \mathrm{~b}$ -
capture 0.031 b
0.0980 b total
10.494 b

MF=3 Neutron Cross Sections
Below 500 keV
Background cross sections are given for the elastic
scattering cross section.

## Above 500 keV

Cross sections were obtained from optical and statistical model calculations. The optical potential parameters were obtained by fitting average total cross section of natural lead as follows.
$V=47.0-0.250-E . \quad W s=2.30+0.41 \cdot E, \quad V_{s o}=0.0(\mathrm{MeV})$
$r 0=1.25 \quad, r s=1.30 \quad, r s 0=1.30(\mathrm{fm})$
$a 0=0.65 \quad$. $b=0.48 \quad$ as0 $=0.689(f m)$
Level density parameters were determined using low-lying
level data and observed neutron resonance spacing.
MT=1 Total
Calculated with optical and statistical mode code CASTHY /3/
MT=2 Elastic scattering
(Total)-(All other partial cross sections)
MT=4.51-64.91 inelastic scattering
Calculated with CASTHY /3/ and DWEA calculation code DWUCK /4/.
Level Schemo taken from Ref /5/.

No.	Energy(MoV)	Spin-Parity
g.s.	0.0	$0.0+$
1	0.8031	$2.0+$
2	1.1670	$0.0+$
3	1.3406	$3.0+$
4	1.4666	$2.0+$
5	1.6841	$4.0+$
6	1.9978	$4.0+$
7	2.2002	$7.0-$

```
\begin{tabular}{rrr}
8 & 2.3843 & \(6.0-\) \\
9 & 2.6476 & \(3.0-\) \\
10 & 2.7823 & \(5.0-\) \\
11 & 2.8264 & \(4.0-\) \\
12 & 2.8646 & \(7.0-\) \\
13 & 2.9396 & \(6.0-\) \\
14 & 3.0165 & \(5.0-\)
\end{tabular}
Levels without (*) marks are calculated only with CASTHY /3/.
Levels above 3.100 MoV were assumed to be continumm.
\(M T=16(n, 2 n)\)
Calculated with a multi-step Hauser Feshbach code GNASH /6/
in which the lgnatyuk level density formula/7/ was incorporated.
and normalized to 2.17 barns at 14 MoV based on the
results (\(\times 1.1\)) by Frehaut \(+80 / 8 /\).
MT=17 (n,3n)
Calculated with GNASH /6/ and normalized to 0.245 barn at 20
MeV by Welch+81 /9/
MT=22 (n, n'alpha)
Calculated with GNASH /6/ and multiplied by 5.
MT=28 (\(n, n^{\prime} p\))
Calculated with GNASH /6/ and multiplied by 5.
MT=102 capture
Calculated with CASTHY /3/ and normalized to 0.0306 barn at 0.025 oV.
MT=103 (n,p)
Calculated with GNASH /6/ and normalized to 2.0 mb at
14.5 Mov by Belovickij+76/10/.
MT=107 (n, a)
Calculated with GNASH /6/ and multiplied by 5.
MT=251 Mu-bar
Calculated with CASTHY /3/.
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-64.91 : calculated with CASTHY /3/ and DWUCK /4/.
\(M T=16.17 .22 .28\) : assumed to be isotropic in the lab system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.22.28.91: calculated with GNASH/6/.
NF=12 Gamma-ray Muitiplicity Produced by Neutron Reactions
MT=16.17.22.28.51-64.91,102.103.107 : calculated with GNASH /6/.
MF=14 Angular Distributions of Secondary Garma-rays
\(M T=16,17,22,28,51-64,91,102,103,107\) : assumed isotropic.
MF=15 Energy Distribution of Secondary Gamma-rays
MT=16.17.22.28.91.102.107 : calculated with the GNASH /6/.
References
1) Horen D.J. et al. : Phys. Rev. C20, 478 (1979).
2) Mizumoto M. ot al. : Phys. Rev. C19 . 335 (1979)(1971).
3) Igarasi S.: J. Nuci. Sci. Technol., 12. 67 (1975).
4) Kunz P.D. : Univ. Colorado (1974).
5) Lederer C.M. and Shirley V.S.: Table of isotopes. 7th od.
6) Young P.G. and Arthur E.D. : LA-6974 (1977).
7) Ignatyuk ot al. : Sov. J. Nucl. Phys. 21. 255 (1975).
8) Frehaut et al. : BNL-NCS-51245 Vol 1 p399 (1980).
```

9) Wolch P. et al. : BAP. 26. 708 (1981).
10) Belovickij et al. : $75 \mathrm{KIEV}, 4.209$ (1976).
82-Pb-207 JAERI Eval-Jul87 M. Mizumoto

History
87-03 Newly evaluated for JENDL-3 by M.Mizumoto (JAERI)
87-11 Revise is recommended.
88-09 Revision is completed Compilation is made by T.Narita and T.Fukahori (JAERI)

MF=1 General Information
MT=451 Descriptive data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula
Resonance ranges: $1.0 E-5$ oV to 500 keV
Parameters were ovaluated from the data of Allen+73/i/
Raman+77 /2/ and Horen+79 /3/.
Effective scattering radius of 8.04 fm was selected.
Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and res. integrals. $2200 \mathrm{~m} / \mathrm{s}$ res. integ.
olastic $\quad 11.448 \mathrm{~b}$
capture $0.7120 \mathrm{~b} \quad 0.3725 \mathrm{~b}$ total
12.180 b

MF=3 Noutron Cross Sections
Below 500 keV
Background cross sections are given for the elastic scattering cross section.

Above 500 keV
Cross sections were obtained with optical and statistical model code CASTHY /4/. The optical potential parameters were obtained by fitting average total cross section of natural lead as follows.

$$
\begin{aligned}
& \mathrm{V}=47.0-0.250-\mathrm{E}, \quad W_{s}=2.3 \mathrm{C}+0.41 \cdot \mathrm{E}, \quad \mathrm{Vso}=0.0(\mathrm{MeV}) \\
& r 0=1.25 \quad, r 8=1.30 \quad, r s 0=1.30(f m) \\
& a 0=0.65 \quad b=0.48 \quad, a s 0=0.689(f m)
\end{aligned}
$$

Level density parameters were determined using low-lying level data and observed neutron resonance spacing. MT=1 Total
Calculated with CASTHY /4/.
MT=2 Elastic scattering
(Total)-(All other partial cross sections)
MT=4.51-59.91 Inelastic scattering
Calculated with CASTHY /4/ and the DWBA calculation code DMUCK /5/.
Level scheme taken from Ref /6/.

No.	Energy(MoV)	Spin-Parity
g.s.	0.0	$1 / 2-$
1	0.5709	$5 / 2-$
2	0.8986	$3 / 2-$
3	1.6337	$13 / 2+$
4	2.3398	$7 / 2-$
5	2.6230	$5 / 2+$
6	2.6626	$7 / 2+$

```
7 2.7276 9/2 +
8. 3.2230 11/2 +
9 - 3.4130 9/2 -
All discrete inelastic levels with mark (•) are calculated with both CASTHY /4/ and DWUCK /5/.
Levals above 3.500 MeV were assumed to be continuum.
MT=16.17 (n.2n) and (\(n, 3 n\))
Calculated with a multi-stop Hauser Feshbach code GNASH \(17 /\)
in which the Ignatyuk lovel density formula \(18 /\) was incorporated.
The (\(n, 2 n\)) cross section was normalized to 2.08 barns
at 14 MoV based on the results (x 1.1) by Frehaut \(+80 / 9 /\).
MT=22 (n, n'alpha)
Calculated with GNASH /7/ and multiplied by 5.
MT=2 (\(n, n^{\prime} p\))
Calculated with GNASH /7/ and multiplied by as the same factor as for MT=103.
MT=102 capture
Calculated with CASTHY /4/ and normalized to 0.710 barn at 0.025 eV .
MT=103 (n,p)
Calculated with GNASH /7/ and normalized to 1.6 mb at 14.5 MeV
by Belovickij+76 /10/
MT=107 (\(n, a\))
Calculated with GNASH /7/ and multiplied by 5.
MT=251 Mu-bar
Calculated with CASTHY /3/.
\(\mathrm{M}=\mathbf{4}^{\text {• Angular Distributions of Socondary Neutrons }}\)
MT=2.51-59.91 : calculated with CASTHY /3/ and DWUCK /4/.
MT=16.17.22.28 : assumed to be isotropic in the lab system.
MF=5 Energy Distributions of Socondary Neutrons
MT=16.17.22.28.91: calculated with GNASH /7/.
MF=12 Gamme-ray Multiplicity Produced by Neutron Reactions MT=16.17.22.28.51-59.91.102.103.107 : calculated with GNASH /7/.
MF=14 Angular Distributions of Secondary Garma-rays MT=16.17.22.28.51-59.91.102.103.107 : assumed isotropic.
MF=15 Energy Distribution of Secondary Garma-rays MT=16,17,22,28.91,102,103.107 : calculated with the GNASH /7/
```


## References

```
1) Allon B.d. ot al. : Phys. Rov.. C8. 1504 (1973).
2) Raman S. et al. : Phys. Rov. Lett.. 39.598 (1977)
3) Horon D.J. ot al. : Phys. Rev. C20. 478 (1979)
4) Igarasi S.: J. Nucl. Sci. Technol., 12, 67 (1975).
5) Kunz P.D. : Univ. Colorado (1974)
6) Loderer C.M. and Shirloy V.S.: Tabio of isotopes, 7th ed.
7) Young F.G. and Arthur E.D. : LA-1974 (1977)
8) Ignatyuk ot al. : Sov. J. Nuct. Fhys. 21, 255 (1975)
9) Frehaut et al. : BNL-NCS-51245 Vol 1 p399 (1980).
10) Belovickij et al. : 75 KIEV. 4, 209 (1976)
```

MAT number $=3824$
82-Pb-208 JAERI Eval-Jul 87 M.Mizumoto

Dist-Sep89
History
87-03 Newly evaluated for JENDL-3 by M.Mizumoto (JAERI)
87-11 Revision is recommended.
88-09 Revision is completed.
Compilation is made by T.Narita and T.Fukahori (JAERI)

MF=1 General Information
MT=451 Descriptive data and dictionary

NF=2 Resonance Parameters
MT=15i Resolved resonance parameters for MLBW formula Resonance ranges: $1.0 \mathrm{E}-5 \mathrm{oV}$ to 800 keV Parameters were evaluated from the data of Allen+73 /1/ Macklin+77 /2/ and Horen+86 /3/. Effective scattering radius of 6.5 fm was selected. The s-wave resonance onergy at 506 keV was changed to 525 keV to fit the interference around 600 keV region.

Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and ros. integrals. $2200 \mathrm{~m} / \mathrm{s}$ res. integ.

elastic	11.246 b	-
capture	0.4258 mb	7.207 mb
total	11.248 b	

NF=3 Neutron Cross Sections
Bolow 800 keV
Background cross sections are given for the olastic scattering cross section.

Above 800 keV
Cross sections were obtained with an optical and statistical model calculation code CASTHY /4/. The optical potential parameters were obtained by fitting average total cross section of natural lead as follows.
$V=47.0-0.250=E . \quad W_{s}=2.30+0.41-E . \quad V s o=6.0$ (MoV)
$r 0=1.25 \quad, r s=1.30 \quad, r s 0=1.30(f m)$
$a 0=0.65 \quad, b=0.48 \quad, \operatorname{aso}=0.689(f m)$
Level density parameters were determined using low-lying level data and observed neutron resonance spacing.
MT=1 Total
Calculated with CASTHY /4/.
MT=2 Elastic scattoring
(Total)-(All other partial cross sections)
MT=4.51-67.91 Inelastic scattering
Calculated with CASTHY /4/ and a DWBA calculation code
DWUCK /5/.
Level schemes were taken from Ref /6/

No.	Energy(MeV)	Spin-Parity
g.s.	0.0	$0+$
1	2.6146	$3-$
2	3.1977	$5-$
3	3.4750	$4-$
4	3.7085	$5-$

```
\begin{tabular}{rrr}
5 & 3.9199 & \(6-\) \\
6 & 3.9464 & \(5-\) \\
7 & -3.9609 & \(4-\) \\
8 & 3.9957 & \(5-\) \\
9 & 4.0855 & \(2+\) \\
10 & 4.1262 & \(4-\) \\
11 & 4.1803 & \(5-\) \\
12 & 4.2982 & \(5-\) \\
13 & 4.3237 & \(4+\) \\
14 & 4.3684 & \(4-\) \\
15 & 4.3829 & \(6-\) \\
18 & 4.4237 & \(6+\) \\
17 & 4.4805 & \(6-\)
\end{tabular}
Levels without (-) marks are calculated with only CASTHY /4/.
Levels above 4.500 MoV were assumed to be continumm.
\(\mathrm{NT}=16.17\) (\(n, 2 n\)) and (\(n, 3 n\))
Calculated with a multi-step Hauser Festbach model codo GNASH/7/
in which the lgnatyuk level density formula/8/ was incorporated.
The (\(n, 2 n\)) cross section was normalized to 2.13 barns at 14 MeV
based on the results (x1.1) by Frohaut+80 /9/.
MT=22 (n, n'alpha)
Calculated with GNASH \(/ 71\) and multipliod by 5.
MT=28 (n, n'p)
Calculated with GNASH \(/ 7 /\) and normalized to 26 mb at 20 MeV
by Welch+81 /10/.
MT=102 capture
Calculated with CASTHY \(/ 4 /\) and ostimatod from the experimental
data by Csikai+67 /11/. Draket71 /12/. Bergqvist+72 /13/
and Diven+60 /14/
MT=103 (n,p)
Calculated with GNASH /7/ and normalized to 4 mb at 18 MoV by Bass+68 /15/.
MT=107 (n, alpha)
Calculatod with GNASH /7/ and normalized to 1.6 mb at 14.6 by Coloman+59 /16/.
MT=251 Mu-bar
Calculated with CASTHY /4/.
```

```
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-67.81 : calculated with CASTHY /4/ and DWUCK /5/.
\(M T=16.17 .22 .28\) : assumed to be isotropic in tho lab systom.
```

```
MF=5 Energy Distributions of Secondary Noutrons
MT=16.17.22.28.51-67.91: calculated with GNASH /7/.
Mr=12 Gamma-ray Multiplicity Produced by Neutron Reactions
MT=16.17.22,28,51-67.91.102.103.107: calculated with GNASH /7/.
MF=14 Angular Distributions of Secondary Gamma-says
MT=16.17,22.28,51-67,91,102.103,107 : assumed isotropic.
NF=15 Energy Distribution of Secondary Garmma-rays
MT=16,17,22,28,91,102,103,107: calculated with the GNASH /7/.
```


## References

```
1) Allon B.J. ot al. : Phys. Rev.. C8. 1504 (1973).
2) Macklin R.L. et al. : Astrophys. J. 217. 222 (1977).
```

3) Horen D. J. et al. : Phys. Rov. C34. 420 (1986),
4) Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1975).
5) Kunz P.D.:Univ Colorado (1974).
6) Lederer C.M. and Shirloy V.S.: Table of isotopes. 7th ed.
7) Young P.G. and Arthur E.D. : LA-6974 (1977).
8) Ignatyuk ot al. : Sov. J. Nucl. Phys, 21. 255 (1976).
9) Frohaut ot al.: BNL-NCS-51245 volf p399 (1980).
10) Welch P. et al. : BAP, 26, 708 (1981).
11) Csikai J. ot al. Nucl. Phys. A95 (1967) 229.
12) Drake D. et al. :Phys. Lettors B36 (1971) 567.
13) Bergquist I. et al.: Nucl. Phys. A191(1972) 641.
14) Diven B.C. ot al. Phys. Rov. 120(1960) 556.
15) Bass ot al. : EANDC(E)-89.58 (1968).
16) Coleman R.F. et al. :Proc. Roy. Soc. (London) 73215 (1959).
83-Bi-209 JAERI Eval-May89 N. Yamamuro.A.Zukeran, JENDL-3 C.G.
Dist-Sep89

History
89-04 Evaluation was performed for JENDL-3.
89-05 Compiled by K. Shibata and T.Narita (JAERI).
$M F=1 \quad$ General Information
$M T=451 \quad$ Descriptivo data and dictionary
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula Parameters were mainly taken from the work of Mughabghab ot al. /1/.
Resonance region : $1.0 \mathrm{E}-5 \mathrm{oV}$ to 200 keV .
Scattering radius: 9.68 fm
Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and res. integrals $2200-\mathrm{m} / \mathrm{s}$ res. integ.
olastic 9.298 b capture $0.034 \mathrm{~b} \quad 0.207 \mathrm{~b}$ total 9.331 b

MF=3 Noutron Cross Sections
MT=1 Total
Below 200 keV : Background crose sections given betweon 30 keV and 200 keV .
200 keV to 20 MoV : Based on the experimental data 12,3.4/.
NT=2 Elastic scettering
(Total) - (Reaction cross section)
MT=3 Non elastic
Sum of MT=4, 16, 17, 22, 28, 102, 103, 104, 107
MT=4,51-62.91 Inelastic scattering
Statistical model calculations were made with the
SINCROS system /5/ using the modified Walter-Guss potential parametors for neutrons. For MT=51,52,58,62. the experimental deta of Smith et al./6/ wore adopted below 5 MeV . The calculated cross section of MT=91 was modified so as to reproduce the measurements of the total inelastic cross section below 8 MeV .
The direct-process components were considered for the leveis of MT=51,52,58.91 by the DWBA calculations.

The level scheme is given as follows:
No. Energy(MeV) Spin-Parity

g.s.	0.0	$9 / 2-$
1.	0.8964	$7 / 2-$
2.	1.6085	$13 / 2+$
3.	2.4300	$1 / 2+$
4.	2.4920	$3 / 2+$
5.	2.5645	$9 / 2+$
6.	2.5830	$7 / 2+$
7.	2.5990	$11 / 2+$
8.	2.6017	$13 / 2+$
9.	2.6170	$5 / 2+$
10.	2.7411	$15 / 2+$

```
 11. 2.7660 5/2 +
12. 2.8220 5/2-
Levels above 2.85 MoV were assumed to be overlapping.
\(M T=16,17,22,28,103,104,107(n, 2 n),(n, 3 n),\left(n, n^{\prime} a\right),\left(n, n^{\prime} p\right),(n, p)\)
(\(n, d\)) and (\(n, a\)) cross sections
Calculated with SINCROS/5/.
Optical potential parameters for proton, alpha-particle and deuteron were taken from the works of Perey/7/. Lemos/8/ and Lohr and Heeverli/9/, respectively.
The calculated (\(n, p\)) cross section was multiplied by 0.3333 in order to fit to the experimental data \(/ 10-12 /\) around 14 MeV .
MT=102 Radiative capture cross section
1.0E-5 oV to 200 keV : Resonance parameters given between 30 keV and 200 keV .
200 keV to 3 MeV : Calculated with the CASTHY code/13/.
The calculation was normalized to 4 mb at 100 keV .
3 MeV to \(20 \mathrm{MeV}:\) Based on the measurements./14-16/.
MT=251 Mu-bar
Calculated from File-4.
```

```
MF=4 Angular Distributions of Secondary Neutrons
```

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-62
MT=2.51-62
Calculated with CASTHY for equitibrium process.
Calculated with CASTHY for equitibrium process.
The components of the direct process were added to
The components of the direct process were added to
the levels of MT=61,52.68 by using the DWUCK code /17/.
the levels of MT=61,52.68 by using the DWUCK code /17/.
MT=16. 17. 22, 28
MT=16. 17. 22, 28
Assumed to be isotropic in the laboratory system.
Assumed to be isotropic in the laboratory system.
MT=91
MT=91
The Kalbach-Mann systematics/18/ adopted at 14 MeV .
The Kalbach-Mann systematics/18/ adopted at 14 MeV .
NF=5 Energy Distributions of Secondary Neutrons
NF=5 Energy Distributions of Secondary Neutrons
$\mathrm{MT}=16$. 17. 22, 28, 91
$\mathrm{MT}=16$. 17. 22, 28, 91
Calculated with SINCROS.
Calculated with SINCROS.
NF=12 Photon Production Multiplicities
MT=3.102
Calculated with SINCROS.
MF=14 Photon Angular Distributions
MT=3,102
Assumed to be isotropic.
MF=15 Photon Energy Distributions
MT=3.102
Calculated with SINCROS.

```

\section*{References}
1) Mughabghab S.F.. Divadeenarn M. and Hoiden N.E.: FNoutron Cross Sections. Vol. 1. Part \(A^{\circ}\). Academic Press (1981).
2) Foster. Jr.. D.G. and Glasgow, D.W.: Phys. Rev.. C3. 576 (1971).
3) Smith, A.B., ot al.: Nucl. Sci. Eng.. 41. 63 (1970).
4) Cierjacks. S.. et al.: "High Resolution Total Noutron Cross-Sections between 0.5 and \(30 \mathrm{MeV}^{*}\). KfK-1000, (1968).
6) Yamamuro. N.: A Nuclear Cross Section Calculation System with Simplified Input-Format". JAERI-M 88-140, (1988).
6) Smith. A., et al.: Nucl. Sci. Eng., 76, 69 (1980).
7) Parey, F.G.: Phys. Rev. 131. 745 (1983).
8) Lemos, O.F.: "Diffusion Elastique de Particules Alpha de 21 a 29.6 MoV sur des Noyaux de la Region Ti-2n*. Orsay Report. Series A., No. 138, (1972).
9) Lohr, J.M. and Haeberli, W.: Nucl. Phys. A232, 381 (1974).
10) Coleman, R.F., ot al.: Proc. Phys. Soc.(London), 73, 215 (1959).
11) Poularikas, A. and Fink, R.W.: Phys. Rev., 115. 989 (1958).
12) Belovitckij, G.E., et al.: Proc. 3rd All Union Conf.

Neutron Physics, Kiev, 1975, 4, 209 (1976).
13) Igarasi. S.: J. Nucl. Sci. Technol.. 12, 67 (1975).
14) Budnar. M., ot al.: 'Prompt Gamma-Ray Spectra and Integrated Cross Sections for the Radiative Capture of 14 MeV Neutrons for 28 Natural Targets in the Mass Region from 12 to 208*. INDC(YUG)-6.(1979).
15) Csikai. J.. ot al.: Nucl. Phys.. A95, 229 (1087).
10) Bergquist. I.. ot al.: Nucl. Phys.. A120. 101 (1968).
17) Kunz, P.D.: Univ. Colorado (1974).
18) Kalbach. C. and Mann. F.M.: Phys. Rev., C23. 112 (1981).

```

11	329.95	$3 / 2-$
12	334.52	$3 / 2+$
13	342.50	$3 / 2+$
14	342.92	$5 / 2+$

Levels above 368.43 keV were assumed to be overlapping. The level density parameters were taken from Ref, 5.
$M T=16.17 .37(n, 2 n),(n, 3 n)$ and $(n, 4 n)$ reaction cross sections Calculated with evaporation model.
MT=18 Fission cross section
Measured thermal cross section of 0.7 barn was taken from Ref. 6 , and $1 / v$ form was assumed below 4 oV. Above this energy, the constant cross section was adopted.
MT=102 Capture cross section
Measured thermal cross section of 130 barns was taken from
Ref. 6 , and $1 / v$ form was assumed below 4 oV. Above 4 oV . calculated with CASTHY. The gamma-ray strength function was ostimated from Gamma-gamma $=0.040 \mathrm{oV}$ and level spacing $=8 \mathrm{oV}$.
$M T=251 \quad \mathrm{Mu}-\mathrm{L}$
Calculated with CASTHY.
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-64.91 Calculated with optical model.
MT=16.17.18.37 Isotropic in the lab system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.37.91 Evaporation spectra
Obtained from level density parameters.
$M T=18$
Maxwellian fission spectrum.
Temperature was estimated from Z.e2/A dependence/7/.

```

\section*{References}
```

1) Howert on R.J.: Nucl. Sci. Eng., 62, 438 (1977).
2) Igarasi S.: J.Nucl.Sci.Technol..12,67 (1975).
3) Ohsawa T., Ohta M.: J. Nucl. Sci. Technol.. 18, 408 (1981).
4) Maples C.: Nucl. Data Sheets. 22. 243 (1977).
5) Gilbert A., Cameron A.G.W.: Can. J. Phys., 43, 1446 (1965).
6) Nughabghab S.F.: "Neutron Cross Sections. Vol.1, Neutron Resonance Parameters and Thermal Cross Sections. Part B. Z=61-100*. Academic Press (1984).
7) Smith A.B. ot al.: AML/NDM-50 (1979).
```

88-Ra-224 TIT Eval-Aug88 N. Takagi
Dist-Sep89
History
88-08 Now evaluation was made by N. Takagi (Tokyo Instituto of Technology. TIT)

NF=1 General Information
\(\mathrm{MT}=451\) Comment and dictionary
NF=2 Resonance parametors
MT=161 Resonance parameters
No resonance parameters were given.
\(2200-m / s\) cross sections and resonance integrals
\(2200 \mathrm{~m} / \mathrm{s}\) value Res. Int.

Total
24.50 b
12.50 b
12.00 b
29.0 b

MF=3 Neutron Cross Sections
\(\mathrm{MT}=1\) Total cross section Below 45 oV, calculated as sum of MT' = 2 and 102. Above 45 oV, optical model calculation was made with CASTHY/2/. The potential parametors/3/ used are as follows.
\begin{tabular}{|c|c|c|}
\hline \(V=41.0-0.0\) & & (MoV) \\
\hline \(W_{s}=6.4+0.16\) & T \(\langle\) En) & (MeV) \\
\hline \(W_{v}=0\) & , Vso \(=7.0\) & (MoV) \\
\hline \(r=r 80=1.31\) & . \(\mathrm{rs}=1.38\) & (fm) \\
\hline \(a=\) aso \(=0.47\) & . \(b=0.47\) & (fm) \\
\hline
\end{tabular}

MT=2 Elastic scattering cross section Below 45 oV . the constant cross section of 12.5 barns was assumed. which was the shape elastic scattering cross section calculated with optical model. Above this energy. optical model calculation was adopted.

MT=4,51-61.91 Inelastic scattoring cross sections. Optical and statistical model calculation was made with CASTHY/2/. The level scheme was taken from Ref. 4.
No energy(keV) spin-parity
g. \(\$\)

1
2
3
4
5
6
7
8
9 10
11
0.0
84.37
215.99
\(250.78 \quad 4+\)
290.36 3-
\(433.08 \quad 5-\)
\(479.30 \quad 6+\)
\(916.330+\)
\(965.51 \quad 2+\)
\(992.65 \quad 2+\)
1052.951 -
\(1089.98 \quad 2\) -

Levols above 1187 keV were assumed to be overlapping. The level density parameters were taken from Ref. 5.
\(M T=16,17,37(n, 2 n),(n, 3 n)\) and \((n, 4 n)\) reaction cross sections Calculated with evaporation model.

MT=102 Capture cross section Measured thermal cross section of 12 barns was taken from Ref. 6 , and \(1 / y\) form was assumed below 45 oV. Above 45 oV, cross section was calculsted with CASTHY. The gamma-ray strength function was estimated from Gamme-gamma \(=0.040 \mathrm{oV}\) and level spacing \(=90 \mathrm{oV}\).

MT=261 Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondery Neutrons
MT=2.51-81.91 Calculated with optical model.
\(M T=16.17 .37 \quad\) Isotropic in the lab system.
MF=5 Energy Distributions of Secondery Neutrons
MT=16.17.37.91 Evaporation spectra Obtained from level density parameters.

References
1) Howerton R.J.: Nucl. Sci. Eng., 62, 438 (1977).
2) Igarasi S.: J.Nucl.Sci.Tochnol..12.67 (1975).
3) Ohsawa T., Ohta M.: J. Nucl. Sci. Technol.. 18, 408 (1981).
4) Martin M.J.: Nucl. Data Sheets. 49. 83 (1986).
5) Gilbert A., Cameron A.G.W.: Can. J. Phys.. 43. 1446 (1965).
6) Mughabghab S.F.: "Noutron Cross Sections. Vol.1. Noutron Resonance Parameters and Thermal Cross Sections , Part B, Z=61-100*. Academic Press (1984).

MAT number \(=3883\)

MT=2 Elastic scattering cross section Below 2.5 oV. the constant cross section of 12.4 barns was assumed, which was the shape olastic scattering cross section calculated with optical model. Above this energy, optical model calculation was adopted.

MT=4.51-56.91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with CASTHY/2/. The level scheme was taken from Ref. 4. No onergy(keV) spin-parity g.s. \(0.0 \quad 3 / 2+\) \(1 \quad 25.39 \quad 5 / 2+\) \(2 \quad 42.75 \quad 3 / 2+\) \(3 \quad 100.60 \quad 9 / 2+\) \(4 \quad 111.60 \quad 7 / 2+\) \(5 \quad 149.90 \quad 3 / 2+\) \(6 \quad 179.80 \quad 3 / 2+\)
Levels above 203 keV were assumed to be overlapping. The level density parameters were taken from Ref. 5 .
\(M T=16,17,37\) (\(n, 2 n\)). (\(n, 3 n\)) and (\(n, 4 n\)) reaction cross sections Calculated with evaporation model.

MT=102 Capture cross section
Assumed to be 100 barns at 0.0253 oV , and in \(1 / \mathrm{v}\) form
```

            below 2.5 oV. Above 2.5 oV, calculated with CASTHY. The
        gamma-ray strength function was estimated from Gamma-gamm
        =0.040 oV and level spacing = 5 oV.
    MT=251 Mu-L
        Calculated with CASTHY.
    MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-56.91 Calculated with optical model.
MT=16,17.37 Isotropic in the lab system.
NF=5 Energy Distributions of Secondary Noutrons
MT=16.17.37.91 Evaporation spectra
Obtained from level density parameters.

```

\section*{References}
```

1) Howerton R.J.: Nucl. Sci. Eng.. 62. 438 (1977).
2) Igarasi S.: J.Nucl.Sci.Technol.. 12.67 (1975).
3) Ohsawa T., Ohta M.: J. Nucl. Sci. Technol.. 18, 408 (1981).
4) Toth K.S.: Nucl. Data Sheets. 27, 701 (1979).
5) Gilbert A., Comeron A.G.W.: Can. J. Phys.. 43. 1446 (1965).
```

MAT number \(=3884\)

MF=3 Neutron Cross Sections

MT=1 Total cross section
Below 1 keV, cross section was represented with resonanco parameters. Above 1 koV , optical model calculation was made with CASTHY/3/. The potontial parameters/4/ used are as follows.
\(V=41.0-0.05 \cdot E n \quad\) (MeV)
\(W_{s}=6.4+0.15=\operatorname{SORT}(E n)\) (MoV)
\(W y=0 \quad, V_{s o}=7.0 \quad\) (MoV)
\(r=r s o=1.31 \quad, r e=1.38\)
\(a=a s o=0.47 \quad, b=0.47\)
MT=2 Elastic scattering cross section Below 1 keV. cross section was represented with resonance parameters. Above 1 keV , optical model calculation was adopt ed.

MT=4.51-66.91 inelastic scattering cross sections. Optical and stetistical model calculation was mada with CASTHY/3/. The level scheme was taken from Ref. 5.
\begin{tabular}{ccc}
No & energy (keV) & spin-pari \\
g.s. & 0.0 & \(0+\) \\
1 & 67.67 & \(2+\) \\
2 & 211.54 & \(4+\) \\
3 & 253.73 & \(1-\) \\
4 & 321.54 & \(3-\) \\
5 & 416.60 & \(6+\) \\
6 & 446.20 & \(5-\) \\
7 & 626.90 & \(7-\)
\end{tabular}
```

8	650.00	$0+$
9	669.40	$8+$
10	824.60	$0+$
11	857.80	$9-$
12	873.70	$2+$
13	960.00	$10+$
14	1048.60	$1-$
15	1070.50	$2-$
16	1134.00	$11-$

Levels above 1446 koV were assumed to be overlapping. The level density parameters were taken from Ref. 6.
$M T=16,17,37$ ( $n, 2 n$ ), ( $n, 3 n$ ) and ( $n, 4 n$ ) reaction cross sections Calculated with evaporation model.
MT=18 Fission cross section
Measured thermal cross : tion of 0.05 mili -barn was taken from Ref. 6 , and $1 / v$ form was assumed below 15 eV . For energy region above fission threshold, the ovaluation was based on experimental data /7-10/. and between 15 eV and fission threshold, cross section was assumed to be the same as the value at 15 eV .
MT=102 Capture cross section
Below 1 keV, cross nection was represented with resonance parameters. Atove 1 keV , it was calculated with CASTHY.
The gamma-ray sirength function was estimated from Gamma-gamma $=0.040 \mathrm{oV}$ and lovel spacing $=30.3 \mathrm{oV}$.
NT=251 Mu-L
Calculated with CASTHY.
MF=4 Angular Distributions of Secondary Noutrons
MT=2.51-66.91 Calculated with optical model.
MT=16.17.18.37 Isotraric in the lab system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.37.91 Evaporation spectra
Obtained from level density parameters.
MT=18 Maxwollian fission spectrum.
Temperature was estimated from Z*-2/A dependence/11/.

```

\section*{References}
```

1) Howerton R.J.: NucI. Sci. Eng.. 62. 438 (1977).
2) Mughabghab S.F.: "Neutron Cross Sections. Vol.1. Neutron Resonance Parameters and Thermal Cross Sections. Part B. Z=61-100*. Academic Press (1984).
3) Igarasi S.: J.Nucl.Sci.Technol..12.67 (1975).
4) Ohsawa T., Ohta M.: J. Nucl. Sci. Technol., 18. 408 (1981).
5) Ellis-Akovali Y.A.: Nucl. Data Sheets, 50, 229 (1987).
6) Gilbert A. Cameron A.G.W.: Can. J. Phys.. 43. 1446 (1965).
7) Nobles R.A et al.: Nucl. Phys.. 5. 211 (1958).
8) Babenko Ju.A. et al.: Yad. Fiz., 7. 269 (1968).
9) Babenko ju. A. et el.: Nucl. Phys.. A213. 436 (1973).
10) Egorov S.A. et al.: Yad. Fiz.. 37. 819 (1983).
11) Smith A.B. et al.: ANL/NDM-50 (1979).
```

MAT number \(=3891\)
89-Ac-225 TIT Eval-Aug88 N. Takagi
Dist-Sop89

History
88-08 Now ovaluation was mado by N. Takagi (Tokyo Instituto of Technology. TIT)

MF=1 General Information
MT=451 Comment and dictionary
NF=2 Resonance parameters
MT=151 Resonance parameters
No resonance parametors wore given.
\(2200-m / s\) cross sections and resonance integrals
\(2200 \mathrm{~m} / \mathrm{s}\) value
1012.40 b
12.40 b 1000.00 b

Res. Int.
Total Elastic Copturo

1590 b

NF=3 Noutron Cross Sections
MT=1 Total cross section
Below 0.6 oV, oalculated as sum of MT's \(=2\) and 102. Above 0.6 eV , optical model calculation was made with CASTHY/2/. The potential paremeters/3/ used are as follows.
\[
\begin{array}{lll}
V=41.0-0.05 \cdot E n & (M o V) \\
W_{s}=6.4+0.15 \cdot \operatorname{SORT}(E n) & (\mathrm{MoV}) \\
W_{v}=0 & , V s o=7.0 & (\mathrm{MoV}) \\
r=r s o=1.31 & , r s=1.38 & (\mathrm{fm}) \\
a=a s o=0.47 & , b=0.47 & (\mathrm{fm}) \tag{fm}
\end{array}
\]

MT=2 Elastic scattering cross section
Below 0.6 oV . the constent cross section of 12.4 barns was essumed. which was the shape elastic scattering cross section calculated with optical model. Above this energy. optical model calculation was adoptod.

MT=4.51.91 Inelez:ic scattoring crose sections.
Optical and scatistical model calculation was mado with CASTHY/2/. The level scheme was taken from Ref. 4.
\begin{tabular}{ccc}
No & onergy(koV) & spin-parity \\
g.s. & 0.0 & \(3 / 2+\) \\
1 & 40.0 & \(3 / 2+\)
\end{tabular}

Levels above 64 keV were assumed to be overlapping. The level density parameters were taken from Ref. 5.
\(M T=\{6.17,37(n, 2 n) .(n, 3 n)\) and \((n, 4 n)\) reaction cross sections Calculated with evapcration model.

MT=102 Capture cross section
Assumed to be 1000 barns at 0.0253 oV by the correlation of thermal cross section with number of excess neutrons. Below 0.6 eV. the \(1 / v\) form was assumed. Above this energy, calculated with CASTHY. The gamma-ray strength function was estimated from Gamma-gamma \(=0.040 \mathrm{eV}\) and
lovel spacing \(=1.2 \mathrm{oV}\).
MT=251 ML-L
Calculated with CASTHY.
MF=4 Angular Distributions of Secondary Neutrons MT=2, 61,91 Calculated with optical model. MT=16.17.37 Isotropic in the lab aystem.

MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.37.91 Evaporation spectra
Obtained from level density parameters.

\section*{References}
1) Howerton R.J.: Nuci. Sci. Eng., 62, 438 (1977).
2) Igarasi S.: J.Nucl.Sci.Technol..12.67 (1975).
3) Ohsawa T., Ohta M.: J. Nucl. Sci. Technol.. 18. 408 (1981).
4) Toth K.S.: Nucl. Data Sheets. 27. 701 (1979).
5) Gilbert A. Cameron A.G.W.: Can. J. Phys., 43. 1446 (1965).

MAT number \(=3892\)

MT=2 Elastic scattering cross section Below 0.4 oV, the constant cross section of 12.4 barns was assumed, which was the shape elastic scattering cross section calculated with optical model. Above this energy. optical model calculation was adopted.

MT=4.91 Inolastic scattering cross sections.
Calculated with optical and statistical models by means of CASTHY/2/. No excited levels were taken into calculation. because spin of all levels were unknown/4/.
\begin{tabular}{ccc}
No & energy(koV) & spin-parity \\
g. 3. & 0.0 & \(1+\)
\end{tabular}

Levels above 290 keV were assumed to be overlapping. The level density parameters were taken from Ref. 5.
\(M T=16.17 .37\) (n.2n). (n.3n) and (n.4n) reaction cross soctions Calculated with evaporation model.

MT=102 Capture cross section
Assumed to be 100 barns at 0.0253 oV , and in \(1 / \mathrm{y}\) form below 0.4 oV . Above 0.4 oV , calculated with CASTHY. The gamma-ray strength function was estimated from Garma-gamma \(=0.040 \mathrm{eV}\) and level spacing \(=0.8 \mathrm{oV}\).
```

MT=251 Mu-L
Calculated with CASTHY.

```
NF=4 Angular Distributions of Secondary Neutrons
 MT=2.91 Calculated with optical model.
 MT=16,17.37 Isotropic in the lab system.
MF=5 Energy Distributions of Secondary Noutron:
 MT=10,17,37,91 Evaporation spectra
 Obtained from level density parameters.

\section*{Reforences}
1) Howerton R.J.: Nucl. Sci. Eng., 82. 438 (1971).
2) Igarasi S.: J.Nuci.Sci.Technol..12.67 (1975).
3) Ohsawa T., Ohta M.: J. Mucl. Sci. Technol.. 18. 408 (1981).
4) Ellis-Akovali Y.A.: Nuc:. Data Sheets. 50. 229 (1987).
5) Gilbert A. Cameron A.G.W.: Can. J. Phys.. 43, 1446 (1985).

The levol density parameters were taken from Ref. 5.
\[
M T=16,17,37(n, 2 n),(n, 3 n) \text { and }(n, 4 n) \text { reaction cross sections }
\] Calculated with evaporation model.
```

MT=18 Fission cross section
Measured thermal cros: section of 0.28 milli-barn was
taken from Ref. 6 , and 1/v form was assumed below 36 oV.
Above fission threshold onergy. experimental data/7/ wore
adopted, and in the energy range between 36 oV and fission
threshold, cross section was assumed to be constant with
the value at 36 oV.

```
 MT=102 Capture cross section
 Measured thermal cross section of 880 barns was taken from
 Ref. 6 , and \(1 / v\) form was assumed below 36 oV . The cross
 section near 36 eV was adjusted so as to reproduce the
 measured resonance integral/6/. Above 0.45 eV . cross
 section was celculated with CASTHY. The garmmo-ray
 strength function was estimated from Germma-gamma \(=0.040\)
 oV and level spacing \(=72 \mathrm{oV}\).
 MT=251 Mu-L
 Calculated with CASTHY.
```

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-59,91 Calculated with optical model.
MT=16.17.18.37 Isotropic in the lab system.

```
MF=5 Energy Distributions of Secondary Neutrons
 MT=16.17.37.81 Evaporation spectra
 Obtained from level density parameters.
 MT=18 Maxwollian fission spectrum.
 Tomperature was estimated from Z-*2/A dependence/8/.
References
1) Howerton R.J.: Nucl. Sci. Eng., 62, 438 (1977).
2) Igarasi S.: J.Necl.Sci.Technol..12,67 (1975).
3) Ohsawe -., Ohta M.: J. Nucl. Sci. Technol., 18, 408 (1981).
4) Maples C.: Nucl. Data Shests. 22. 275 (1977).
5) Gilbert A.. Cameron A.G.W.: Can. J. Phys.. 43. 1446 (1965).
6) Mughabghab S.F.: 'Neutron Cross Sections, Vol.1. Neutron Resonance Parameters and Thermal Cross Sections. Part B. \(Z=61-100^{*}\). Academic Press (1984).
7) Kuks I.M. et al.: Yad. Fiz. Iss., 26, 46 (1978).
8) Smith A.B. ot al.: ANE/NDM-50 (1979).

MAT number \(=3901\)
\[
\begin{array}{cl}
\text { 90-Th-227 TIT } & \text { Eval-Aug88 N. Takagi } \\
& \text { Dist-Sep89 }
\end{array}
\]
```

History
88-08 New evaluation was made by N. Takagi (Tokyo Institute of
Tachnology. TIT)
NF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Evalusted with semi empirical formula of Howerton/1/.
NF=2 Resonance parameters
MT=151 Resonance parameters
No resonance parameters were given.
2200-m/s cross sections and resonance integrals
2200 m/s value Res. Int.
Total
1748.40 b
Elastic
Fission
Capture
12.40 b -
202.00 b 210 b
1635.00 b 1420 b
NF=3 Noutron Cross Sections
MT=1 Total cross section
Bolow 0.45 oV, calculated as sum of MT's=2, 18 and 102.
Above 0.46 eV, optical model calculation was made with
CASTHY/2/. The potential parameters/3/ used are as
fol lows.

```

```

    MT=2 Elastic scattering cross section
        Bolow 0.45 oV. the constant cross section of 12.4 barns
        was assumed, which was the shape olastic scattoring cross
        section calculated with optical model. Above this energy.
        optical model calculaticn was adopted.
    MT=4. 91 Inelastic scattering cross sections.
        Optical and statistical model calculation was made with
        CASTHY/2/: No excited levels were taken into the
        calculation.
    | No | energy (koV) | spin-parity |
| :---: | :---: | :---: |
| g.s. | 0.0 | $3 / 2+$ |

    Levels above 9.3 keV/4/ were assumed to be overlapping.
    The level density parameters were taken from Ref. 5.
    MT=16.17.37 (n,2n), (n.3r.) and (n.4n) reaction cross sections
Calculated with evaporation model.
MT=18 Fission cross section
Measured thermal cross section of 202 barns was taken from Ref. 6 , and $1 / \mathrm{y}$ form was assumed below 0.45 oV. In the

```
energy range above 0.45 eV , the shape was assumed to be the same as Th-233 fission cross section and it was normalized to the systematics of Behrens and Howerton/7/.
```

MT=102 Capture cross section
The thermal cross section of 1535 barns was estimated from
the ratio of fission and capture oross sections at 1 oV
and the measured flssion cross section at 0.0253 eV/6/.
and the 1/v form was assumed below 0.45 oV
Above 0.45 oV. oross seotion was calculated with CASTHY.
The gamma-ray strength function was estimsted from
Garmma-gamma = 0.040 oV and level spacing =0.0 oV .

```
\(M T=251\) Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.91 Calculated with optical model.
\(\mathrm{MT}=16.17 .18 .37 \quad\) Isotropic in the lab system.
NF=5 Energy Distributions of Secondary Noutrons
MT=16.17.37.91 Evaporation spectra
Obtained from level density parameters.
MT=18 Maxwellian tission epectrum.
Temperature was estimated from Z*•2/A dependence/8/.

\section*{Roferences}
1) Howert on R.J.: Nucl. Sci. Eng., 02,438 (1877),
2) Igarasi S.: J.Nuci.Sci.Technol.,12.67 (1975).
3) Ohsawa T., Ohta M.: J. Nucl. Sci. Technol., 18, 408 (1981).
4) Maples C.: Nuci. Data Sheets. 22. 275 (1977).
5) Gilbert A., Cameron A.G.W.: Can. J. Phis.. 43. 1446 (1965).
6) Mughabghab S.F.: "Noutron Cross Sections. Vol. 1, Noutron Resonance Parametors and Thermal Cross Sections. Part B. Z=61-100*. Academic Press (1984).
7) Behrons J.W., Howert on R.J: Nucl. Sci. Eng.. 65. 484. (1978).
8) Smith A.B. ot al.: ANL/NDM-50 (1878).

90-Th-228 Kinki U. Eval-Jun87 T. Ohsawa
Dist-Sep89
History
81-04 Evaluation for JENDL-2 was made by T. Ohsawa- and M. Ohta (Kyushu University). Detaile of the evaluation are described in Ref. /1/. (•present address: Kinki University)
83-11 Fission spectrum was added. Resonance formula was changed to MLBW formula. The total, (\(n, 2 n\)) and (\(n, 3 n\)) cross sections were modified.
87-06 Almost of JENDL-2 data were adopted for JENDL-3. (MF3.MT17). (MF3.MT9i) and (MF3.MT102) were slightly modified in high energy region.
Compilation was made by T.Nakagawa (JAERI).
MF=1 General Informetion
MT=451 Comments and dictionary
MT=452 Total number of neutrons emitted per fission Calculated with the semi-empirical formula of Howerton /2/.

MF=2 Resonance Parameters
MT=151 Resolved resonances
Resonance region is below 7.798 oV. Parametors were given for the MLBW formula. Only two resonances were observed by Simpson et al. /3/. An additional term with \(1 / v\) dependence was assumed to reproduce the thermal capture cross gection. Fission cross section was also assumed to have \(1 / v\) behavior.

Calculated \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integ. (barns) \(2200-\mathrm{m} / \mathrm{s}\) Res. integ.
\begin{tabular}{lcc}
Elastic & 12.81 & Bes \\
Capture & 119.8 & 1170
\end{tabular}
Fission \(0.300 \quad 1.02\) Total 133.0

These parmeters were taken from those for Th-232 /4/.
MT=2 Elastic scattering cross section
Based on statistical and optical model calculations using the code CASTHY /5/.
MT=4.51-62.91 Inolastic scattering cross section
Statistical and optical model calculations.
Level scheme of Th-228/6/.
No. Energy(MeV) Spin-Parity
```

g.s.	0.0	$0+$
1	0.0576	$2+$
2	0.1869	$4+$
3	0.328	$1-$
4	0.3961	$3-$
5	0.6193	$6-$
6	0.8317	$0-$
7	0.8746	$2+$
8	0.8441	$2+$
9	0.852	$1-$
10	0.9688	$2+$
11	1.016	$3-$
12	1.0224	$3+$

Levels above 1.025 MoV were assumed to be overlapping.
MT=16,17 (n,2n) and (n,3n) cross sections
Calculated by means of the evaporation model of Segev and
Caner 17/.
MT=18 Fission cross section
The data of Vorotnikov et al. /8/ were adopted up to 5 MoV.
The fission cross section of the neighboring even-even
isotope Th-230 normalized to join smoothly to the deta of
Vorotnikov ot al. was adopted above 5 MoV.
MT=102 Capture cros: section
Statistical and optical model calculations wit'i gamma-ray
strength function of 0.00781.
MT=251 Mu-bor
Calculated with opticel model.
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-82.91
Statistical and optical model calculations.
MT=16,17,18
Assumed to be isotropic in the laboratory system.
NF=5 Energy Distributions of Secondary Noutrons
MT=16,17.91
Evaporation spectra
MT=18
Fission spectrum ostimatod from Z.ez/A systematics by Smith
ot al. /9/.

```

\section*{References}
```

1) Ohsawa T. and Ohta M.: Merroirs Faculty of Engineering. Kyushu Univ. 40, 149 (1980).
2) Howerton R.J.: Nucl. Sci. Eng. 82. 438 (1977).
3) Simpson O.D. ot al.: itid. 29. 423 (1967).
4) Ohsawa T. and Ohta M.: J. Nucl. Sci. Technol. 18. 408 (1981).
5) Igarasi S.: ibid. 12. 67 (1975).
6) Lederer C.M. and Shirly V.S. (Ed.): Table of lsotopes, 7th Edition (1978).
7) Segev M. and Caner M.: Ann. Nucl. Energy 5, 239 (1978).
8) Vorotnikov ot al.: Sov. J. Nucl. Phys. 16, 505 (1973).
9) Smith A.B. ot al.: ANL/NDM-50 (1979).
```

\section*{MAT number \(=3903\)}

80-Th-229 TIT
Eval-Aug88 N. Takagi
Dist-Sep89
History
87-08 New evaluation was made by N. Takagi (Tokyo Institute of Technology. T|T)

\section*{NF=1 Genoral Information}

MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Evaluated with semi empirical formula of Howerton/1/.
NF=2 Resonance parameters
MT=151 Resolved resonance parameters : 1.0E-5 oV to 9.5 oV Single-level Brait Wigner formula was adoptert. Parameters wore determined on the basis of recommendation of Nugabghab /2/. For the levels whose radiative width and/or fission width were unknown, average gemma-g of 0.043 oV was assumed, fission widths were calculated from (peak sig)-(gamma-f). Effective scettoring radius was assumed to be 10 fm .
\(2200-\mathrm{m} / \mathrm{f}\) cross sections and resonance integrals \(2200 \mathrm{~m} / \mathrm{s}\) value Res. Int.
Total 104.09 b Elastic 9.928 b Fission 30.84 b 444 b Capture 63.34 b 1230 b

MF=3 Neutron Cross Sections
NT=1 Total cross section Above 9.5 oV . optical model calculation was made with CASTHY/3/. The potential paramotors/4/ used ore as follows.

NT=2 Elastic scattering cross section Optical model calculation was adopted.

NT=4.51-54.91 Inelastic scattering cross sections. Optical and statistical mode lcalculation was made with CASTHY/3/. The level scheme was taken from Ref. 5.
\begin{tabular}{ccc}
No & energy(koV) & spin-parity \\
g.s. & 0.0 & \(5 / 2+\) \\
1 & 0.1 & \(3 / 2+\) \\
2 & 20.0 & \(3 / 2+\) \\
3 & 29.2 & \(5 / 2+\) \\
4 & 42.5 & \(7 / 2+\)
\end{tabular}

Levels above 67 keV were assumed to be overlapping. The level density parameters were taken from Ref. 6 .
\(M T=16.17 .37\) (n,2n). (n,3n) and (n.4n) reaction cross sections Calculated with evaporation modal.
```

    MT=18 Fission cross section
        Above 9.5 oV, the cross-section shape was assumed to be
        the same as Th-233 fission cross section and it was
        normalized by the factor obtained from systematics of
        Behrens and Howerton/7/.
    MT=102 Capture crose section
        Calculated with CASTHY. The gamma-ray strength function
        was estimated from Gamma-g = 0.040 oV and lovel spacing =
        0.53 oV.
    MT=251 Mu-L
        Calculated with CASTHY.
    MF=4 Angular Distributions of Secondary Noutrons
MT=2.51-54.91 Calculated with optical model.
MT=16.17.18.37 Isotropic in the lab system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37 Evaporation spectra were given
MT=18 Maxwellian fission spectrum. Temperature
was estimated from Z..2/A volues /8/.

```

\section*{References}
```

1) Howerton R.J.: Nucl. Sci. Eng., 02. 438 (1977).
2) Mughabhab S.F.: 'Noutron Cross Sections. Vol.1, Neutron Resonance Parameters and Thermal Cross Sections. Part B. Z=61-100*. Academic Press (1984).
3) Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1975).
4) Ohsawo T. and Ohta M.: J. Nucl. Sci. Technol.. 18. 408 (1881).
5) Toth K.S.: Nucl. Dato Sheots. 24, 263 (1978).
6) Gilbert A., Cameron A.G.W.: Coni. J. Phyz, 43, 1446 (1965).
7) Behrens J.W. and Howerton R.J: Nucl. Sci. Eng., 65, 464. (1978).
8) Smith A.B. ot al. : ANL/NDM-50 (1979).
```

\section*{History}

81-04 Evaluation for JENDL-2 was made by T. Ohsawa and M. Ohta
(Kyushu University: present address of Ohsawa is Kinki University). Details of evaluation are described in Ref. /1/.
83-11 Fission spectrum was added. Rosonance parameters, and total. (\(n, 2 n\)) and (\(n, 3 n\)) oross sections were modified.
87-07 Evaluation for JENDL-2 was adopted to JENDL-3. But recalculation of cross sections and angular distributions was made with the same OMP and level density parameters.
Compilation was made by T.Nakagawa (JAERI).
MF=1 General Information
MT=451 Comments and Dictionary
MT=452 Total number of neutrons emitted per fission Calculated with the semi-empirical formula of Howerton /2/.

MF=2 Resonance Parameters
MT=151 Resolved resonances
Resonance region is below 584.26 oV . The MLBW formula was selected to reproduce resonance cross sections. A total number of 28 resonances up to 583 oV messured by Kalebin et al. /3/ were adopted in the present evaluation.
A background torm with l/v dependence was adted in order to reproduce the thermal capture cross section.

Calculaced \(2200-\mathrm{m} / \mathrm{s}\) cross sections and res. integ. (barns)
\(2200-\mathrm{m} / \mathrm{s}\) Res. Integ.
\begin{tabular}{lcc}
total & 32.32 & - \\
elastic & 9.774 & - \\
fission & 0.0 &
\end{tabular}
\begin{tabular}{lll}
fission & 0.0 & 1.08
\end{tabular} capture \(22.55 \quad 1040\)

MF=3 Neutron Cross Sections
Below 564.26 eV is the resonance region where the background cross sections are given. Above 564.28 eV , the cross sections were evaluated as follows.

MT=1 Total cross section
Optical model calculation with the following parameters:
\(V=41.0-0.05 \mathrm{E} \quad(\mathrm{MeV})\).
Ws = \(6.4 ; 0.15 \cdot \operatorname{SORT}(E)\) (MeV), - der. Woods-Saxon -
\(V_{s o}=7.0 \quad(\mathrm{MoV})\).
\(r O=r s o=1.31 \quad(f m)\).
\(r s=1.38\) (fm).
\(a=b=\) aso \(=0.47 \quad(\mathrm{fm})\).
These parameters ware taken from those for Th-232/4/.
MT=2 Elastic scattering cross section
Statistical and optical model calculations using the code CASTHY /5/.
MT=4,51-63.91 inelastic scattering cross section Statistical and optical model calculations.
\begin{tabular}{ccc}
Level scheme of Th-230 \(/ 6 /\). \\
No. & Energy \((\mathrm{MeV})\) & Spin-Parity \\
g.s. & 0.0 & \(0+\) \\
1 & 0.0534 & \(2+\) \\
2 & 0.173 & \(4+\) \\
3 & 0.367 & \(0+\) \\
4 & 0.506 & \(1-\) \\
6 & 0.571 & \(3-\) \\
6 & 0.636 & \(0+\) \\
7 & 0.678 & \(2+\) \\
8 & 0.882 & \(5-\) \\
9 & 0.781 & \(2+\) \\
10 & 0.881 & \(4+\) \\
11 & 0.951 & \(1-\) \\
12 & 1.009 & \(2+\) \\
13 & 1.012 & \(3-\)
\end{tabular}

Levels atove 1.02 MeV were assumed to be overlapping.
\(M T=16,17\) (\(n, 2 n\)) and (\(n, 3 n\)) cross sections
Calculated by means of the evaporation model of Segev and Caner /7/.
MT=18 Fission cross section
Evaluation was made on the basis of the data of Muir et al. \(/ 8 /\) up to 2 MeV . Above 2 MeV , the fission probability data c: Back et al. \(19 /\) were used to calculate the fission cross section.
MT=102 Capture cross section
Statistical and optical model calculations with gamma-ray
strength function of 0.00791.
MT=251 Mu-bar
Calculated with CASTHY.
MF=4 Angular Distribut ons of Secondary Neutrons
\(\mathrm{MT}=2,51-63,91\)
Statistical and optical módel calculations.
\(M T=16,17.18\)
Assumed to be isotropic in the laboratory system.
MF=5 Energv Distributions of Secondary Neutrons
MT=16.17.91
Evaporation spectra.
MT=18
Fission spectrum estimated from 2-a/A systematics by Smith et al. /10/.

\section*{References}
1) Ohsawa T. and Ohta M.: Memoirs Faculty of Engineering. Krushu Univ. 40. 149 (1980).
2) Howert on R.J.: Nucl. Sci. Eng. 62, 438 (1977).
3) Kalebin S.M. et al.: Sov. J. Atom. Energy 26. 588 (1969).
4) Ohsawa T. and Ofita M.: J. Nucl. Sci. Technol. 18. 408 (1981).
5) Igarasi S.: ibid. 12. 6? (1975).
6) Lederer C.M. and Shirly V.S. (Ed.): Table of Isotopes, 7th Edition (1978).
7) Segev M. and Caner M.: Ann. Nucl. Energy 5. 239(1978).
8) Muir D.W. et al.: Proc. 3rd Conf. on Neutron Cross Sections and Technology. Knoxviile (1971). p. 292.
9) Back B.B. et al.: Phys. Rev. C13, 2374 (1974).
10) Smith A.B. ot al.: ANL/NDM-50 (1979).
90-Th-232 Kinki U. Eval-Mar87 T. Ohsawa

\section*{History}

87-03 Re-valuation was mado by \(T\). Ohsawa (Kinki University). The following parts of previous evaluation \(/ 1 /\) were revised with new one.
resonance parameters, elastic and inelastic scattering,
Nu-p. Nu-d, energy distributions of neutrons.
88-09 Fission cross section was modified a little.
89-02 Fission product yiolds (MF=8) were replaced with JNDC FP Decay File version-2.
89-04 Fission spectrum was modified.
The compilation was made by T. Nakagawa(JAERI).
NF=1 General Information
MT=451 Descriptive data and dictionary
MT=452 Number of Neutrons per Fission
Sum of prompt and delayed noutrons.
MT=455 Delayed Neutrons per Fission Nu-d based on Tuttle's recommendation /2/.
MT=456 Prompt Neutrons per Flssion
Taken from Davey's recommendation /3/.
MF=2 Resonance Parameters
MT=151 Resolved and Unresolved Resonance Parameters
Resolved resonances for MLBW formula : 1.0E-5 oV - 3.5 keV
The parameters of JENDL-2 which were mainly based on Ref. 4 and BNL 325 (3rd) were modified as follows:
(1) For 22 resonances in the lower energy region which make major contribution to the resonance integral, the new parameters of Kobayashi /5/ were adopted:
(2) The average radiative width of 24.7 meV were attributed to those resonances for which the radiative width was not known.
Unresolved resonances : \(3.5 \mathrm{keV}-50 \mathrm{keV}\)
Average resonance parameters were given. The energy dependent \(S 0\) and \(S 1\) were calculated so as to reproduce the total and capture cross sections in this region.
Fixed parameters :
\(G G=0.0212 \mathrm{oV}\). D-obs \(=18.84 \mathrm{oV}, R=10.01 \mathrm{fm}\).
Typical strength functions at 10 keV :
\(S 0=0.93 \mathrm{E}-4 . \mathrm{S} 1=1.96 \mathrm{E}-4\)
Calculated \(2200-\mathrm{m} /\) sec cross sections and resonance integrals
\begin{tabular}{lcc}
& \(2200 \mathrm{~m} / \mathrm{sec}\) & Res. integ. \\
total & 21.11 b & - \\
elastic & 13.70 b & - \\
fission & 0.0 b & 0.636 b \\
capture & 7.40 b & 84.4 b
\end{tabular}

MF=3 Neutron Cross Sections
Below 3.5 keV :
Background cross section is given for the capture.
Above 50 keV :
```

MT=1 Total
Based on the experimental data of Whalen/6/. Foster /7/ and
Fasoli/8/ in the size resonance region, and Kobayashi/9/.
Whalen/6/ and Uttley/10.19/ below 1.5 MeV, and optical model
calculation above 14 MeV.
MT=2 Elastic Scattering
Obtained by subtracting the sum of capture, inelastic.
fission, (n,2n). (n,3n) cross sections from the total cross
section.
MT=4 Total Inelastic Scattering Cross Section
Sum of partial inelastic scattering cross sections.
MT=16 (n,2n)
Calculated with the mode: of Segev et al./12/.
MT=17 (n.3n)
Calculated with the model of Segev et al./12/.
MT=18 Fission
The ratio data Th-232/U-235 of Behrens/13/ were multiplied
with the evaluated data/14/ of U-235(n,f).
MT=51-52 Inelastic scattering to the 1st and 2nd levels.
Calculated with consistent combination of coupled-channel
(CC) and Hauser-Feshbach(HF) methods (CC/HF method)/15/.
The code JUPITOR-1/16/ was used for CC-calculations,
ELIESE-3/17/ for the HF-calculations.
MT=55,59,62,66 Inelastic scattering to the 5th, 9th, 12th
and 16th levels.
Compound nuclear component was calculated with the code
ELIESE-3 using the generalized transmission coefficients
calculated with JUPITOR-1 for the entrance channel. Direct
reaction component was calculated with the code DWUCK/18/.
MT=53,54,56-58,60,61,63-65,67-70,91 Inelastic scattering
to the other discrete and continuum levels.
Calculated with ELIESE-3 using the generalized trans-
mission coefficients for the entrance channel.
MT=102 Capture
Based on the measurement of Kobayashi/19/ and calculation
with the code CASTHY/20/.
The parameters for the CC and spherical optical potentials
were taken from Haouat et al./21/ and Ohsawa et al./22/.
respectively:

```

CC
\(V=46.4-0.3-E n\)
\(W_{s}=3.6+0.4-E n\)
\(V \mathrm{so}=6.2\)
\(r=1.26\)
\(r s=1.26\)
\(r s o=1.12\)
\(\mathrm{a}=0.63\)
as \(=0.52\)
aso \(=0.47\)
beta2=0.190
beta4=0.071

SOM
\(V=41.0-0.05 \cdot \mathrm{En} \quad(\mathrm{MeV})\)
\(W_{s}=6.4+0.15 \cdot \operatorname{SQRT}(E n)(\mathrm{MeV})\)
\(V \mathrm{Vo}=7.0 \quad\) (MeV)
\(r=1.31\) (fm)
\(r s=1.38 \quad(\mathrm{fm})\)
\(r s o=1.31 \quad(f m)\)
\(a=0.47 \quad(f m)\)
as \(=0.47 \quad(\mathrm{fm})\)
aso \(=0.47 \quad(\mathrm{fm})\)

The level scheme was taken from Ref./23/.
\begin{tabular}{clc}
No. & Energy(MoV) & Spin-Parity \\
gs & 0 & \(0+\) \\
1 & 0.049 & \(2+\)
\end{tabular}
```

2	0.162	$4+$
3	0.333	$6+$
4	0.557	$8+$
5	0.714	$1-$
6	0.730	$0+$
7	0.7741	$2+$
8	0.7743	$3-$
9	0.785	$2+$
10	0.830	$3-$
11	0.873	$4+$
12	0.883	$5-$
13	0.889	$4+$
14	0.960	$5+$
15	1.054	$2-$
16	1.073	$2+$
17	1.0777	$1-$
18	1.078	$0+$
19	1.094	$3+$
20	1.105	$3-$

Continum levels were assumed above 1.110 MeV . The level density parameters of Gilbert and Cameron/24/ were used.

```
```

MT=251 Mu-bar

```
MT=251 Mu-bar
 Calculated with the optical model.
 Calculated with the optical model.
MF=4 Angular Distributions of Secondary Noutrons
 MT=2 Elastic scattering
 Calculated with CC/HF method/15/.
 MT=81-70 Inelastic
 Calculated with CC/HF method/45/ and DWBA/18/.
 MT={6,17.18,01 (n,2n). (n,3n), fission and continuum inelastic
 Assumed to be isotropic in the LAB system.
MF=5 Energy Distributions of Secondery Neutrons
 MT=16.17.91 (n,2n). (n,3n) and continuum inelastic
 Calculated with PEGASUS/25/.
 MT=18 Fission
 Maxwell spectrum. The temperature parameters were estimate
 from the systematics of Howerton-Doyas/26/.
 MT=455 Delayed Neutrons
 The evaluation by Saphier et al./27/ was adopted.
MF=8 Fission Product Yield Data
 MT=454 Independent Yields
 Taken from JNCC FP Decay File version-2/28/.
 MT=459 Cumulative Yields
 Taken from JNDC FP Decay File version-2/28/.
```


## References

1) Ohsawa, T., et al:: J. Nucl. Sci. Technol.. 18, 408 (1981).
2) Tuttle.R.J.. et al.: INDC(NDS)-107/G, p. 29 (1979).
3) Davey.W.G.: Nucl. Sci. Eng., 44. 345 (1971).
4) Rahn.F., et al.; Phys. Rev., C6. 1854 (1972).
5) Kobayashi, K.: Private communication (1986).
6) Whalen,F.F.. and Smith.A.B.; Nucl. Sci. Eng.. 67. 129 (1978).
7) Foster.D.G. et al.: Private communication (1367): Phys. Rev. C3. 596 (1971)
8) Fasoli.U., ot al.: Nucl. Phys.. A161, 369 (1970).
9) Kobayashi.K., et al.: Nucl. Sci. Eng., 65. 347 (1978).
10) Uttley.C.A., ot al.: EANDC Conf, on TOF Methods. Saclay (1961) p. 109
11) Uttley.C.A. et al.: Proc. 1st Conf. on Nuclear Data for Reactors. Paris (1966).
12) Segev. M., et al.: Ann. Nucl, Energy 6. 239 (1978).
13) Behrens,J.W., et al.: UCID-17442 (1977): Phys. Lett. 69B. 278 (1977).
14) Matsunobu.H.; Privato communication (1979).
15) Ohsawa.T., et al.: Proc. Int. Conf. on Nuclear Data for Basic and Applied Science (1985) Vol.2, p.1193
16) Tamura,T.; Rev. Mod. Phys., 37. 679 (1965).
17) Igarasi.S.; JAERI-1223 (1973).
18) Kunz.P.D.: C00-535-606 and -613 (1969).
19) Kobayashi, K. et al; Preprint 1978 Fall Mtg. at. Energy Soc Jepan. D23 (1978).
20) Igarasi.S.; J. Nucl. Sci. Technol.. 12, 67 (1975).
21) Haouat. G. et al.: Nucl. Sci. Eng.. 81, 491 (1982).
22) Ohsawa, T. et al.: J. Nucl. Sci. Technol., 18, 408 (1980).
23) Chan.D.W.S., et al.; Phys. Rev., C26. 841 (1982)
24) Gilbert.A. and Cameron,A.G.W.: Can. J. Phys., 24, 63 (1965).
25) Iijima,S.. et al.: JAERI-M 87-025, p. 337 (1987).
26) Howerton.R.J. and Doyas.R.J.; Nucl.Sci. Eng.. 46, 414 (1971).
27) Saphier.D., et al.: Nucl. Sci. Eng., 62, 660 (1977).
28) JNDC Decay Heat Evaluation WG; private communicetion (1988).

90-Th-233 Kinki U. Eval-Jul87 T.Ohsawa
Dist-Sep89
History
81-04 Evaluation for JENDL-2 was made by T. Ohsawa and M. Ohta (Kyushu University: present address of Ohsawa is Kinki Univ.). Details of the evaluation are described in Ref. /1/.
83-11 Fission spectrum was added. The total, (n,2n) and (n, $3 n$ ) cross sections were modified.
87-07 JENDL-2 data were adopted for JENDL-3.
Compilation was made by T.Nakagawa (JAERI).
MF=1 General Information
MT=45i Comments and dictionary
MT=452 Total number of neutrons emitted per fission
Calculated with the serni-empirical formula of Howerton $/ 2 /$.
MF=2 Resonance Parameters
MT=151 Resolved resonances
No resolved resonances were adopted, since there were no measurements made. Capture and fission cross sections at 0.0253 eV were extrapolated up to 200 eV by assuming the form of $1 / v$ for the former, and up to 20 keV by assuming the form of $1 / v$ plus the constant value of 0.3 barns for the
latter.
Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and res. integ. (barns) $2200-\mathrm{m} / \mathrm{s}$ Res. Integ.
total 1478.0 $\begin{array}{lll}\text { elastic } & 13.0 & - \\ \text { fission } & 15.0 & 11.1\end{array}$ $\begin{array}{lll}\text { elastic } & 13.0 & - \\ \text { fission } & 15.0 & 11.1\end{array}$ capture 1450.0643

MF=3 Neutron Cross Sections
MT=1 Total cross section
Optical model calculation with the following parameters:
$V=41.0-0.05 * E \quad(M e V)$.
$W_{s}=6.4+0.15 \cdot \operatorname{SORT}(E)(M e V)$. -- der. Woods-Saxon -Vso $=7.0$ $r 0=r s o=1.31 \quad(f m)$.
$r s=1.38$
(fm).
$a=b=a s o=0.47 \quad(f m)$.
These parameters were taken from those for Th-232/3/.
MT=2 Elastic scattering cross section
Statistical and optical model calculations using the code CASTHY /4/.
MT=4.51-65.91 Inelastic scattering cross section Statistical and optical model calculations.

Level scheme of Th-233 /5/.
No. Energy(MoV) Spin-Parity
g.s. $0.0 \quad 1 / 2+$
$10.01687 \quad 3 / 2+$
$20.05456 \quad 5 / 2+$
$3 \quad 0.09363 \quad 7 / 2+$

```
 4 0.37121 5/2 +
 5 0.53958 1/2-
 6 0.58393 1/2+
 7 0.6115 3/2+
 8 0.62902 5/2 +
 9 0.6822 3/2-
 10 0.7135 1/2+
 11 0.7218 3/2+
 12 0.7695 5/2+
 14 0.8914
 15 0.9476 3/2-
 Levels above 0,95 MeV were assumed to be overlapping.
 MT=16.17 (n,2n) and (n,3n) cross sections
 Calculated by means of the evaporation model of Segev and
 Caner /6/.
 MT=18 Fission cross section
 Fission probability deduced from direct reaction /7, 8/
 was used to calculate the fission cross section.
 MT=102 Capture cross section
 Statistical and optical model calculations with gamma-ray
 strength function of 0.00352.
 MT=251 Mu-bar
 Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons
 MT=2,51-65,91
 Statistical and optical model calculations.
 MT=16,17,18
 Assumed to be isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16.17.91
 Evaporation spectra.
 MT=18
 Fission spectrum estimated from Z*-2/A systematics of Smith
 et al. /9/
```


## References

1) Ohsawa T. and Ohta M. : Memoirs Faculty of Engineering. Kyushu Univ. 40. 149 (1980).
2) Howerton R.J.: Nucl. Sci. Eng. 62, 438 (1977).
3) Ohsawa T. and Ohta M.: J. Nucl. Sci. Technol. 18. 408 (1981).
4) Igarasi S.: ibid. 12, 67 (1975).
5) Lederer C.M. and Shirly V.S. (Ed.): Table of Isotopes. 7th Edition (1978).
6) Segev M. and Canar M. : Ann. Nucl. Energy 5. 239(1978).
7) Back B.B. et al.: Phys. Rev. C13. 2374 (1974).
8) Cramer J.D. and Britt H.C.: Nucl. Sci. Eng. 41. 177 (1970).
9) Smith A.B. et al.: ANL/NDM-50 (1979).
```
 90-Th-234 Kinki U. Eval-Jı187 T.Ohsawa
 Dist-Sep89
History
81-04 Evaluation for JERrL-2 was made by T. Ohsawa and M. Ohta
 (Kyushu University: present address of Ohsawa is Kinki
 Univ.). Details of the evaluation are describod in Ref.
 /1/.
83-11 Fission spectrum was given. The tocal. (n,2n) and (n,3n)
 cross sections were modified.
87-07 JENDL-2 data were adopted for JENDL-3.
Compilation was made by T.Nakagawa(JAERI).
```

MF=1 General Information
MT=451 Comments and dictionary
NT $=45$ ? Total number of neutrons emitted per fission
Calculated with the semi-empirical formula of Howerton $/ 2 /$.
MF=2 Resonance Parameters
MT=151 Resolved resonances
No resolved resonances were adopted. since there were no
measurements made. Capture and fission cross sections at
0.0253 ov were extrapolated on an $1 / v$ basis up to an energy
of 15 oV .
Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and res. integ. (barns)
$2200-\mathrm{m} / \mathrm{s}$ Res. Integ.
total 14.75 -
elastic 13.0 -
$\begin{array}{lll}\text { fission } & 0.0 & 0.26\end{array}$
$\begin{array}{lll}\text { capture } & 1.75 & 93.7\end{array}$
NF=3 Noutron Cross Sections
MT=1 Total cross section
Optical model calculation with the following parametors:
$V=41.0-0.05-E \quad$ (MoV).
$W_{s}=6.4+0.15-$ SQRT $(E)$ (MoV). - der. Woods-Saxon -
Vso $=7.0$
$r 0=r s o=1.31 \quad(f m)$.
$r s=1.38 \quad(f m)$.
$a=b=a s o=0.47$ (fm).
These parameters were taken from those for Th-232/3/.
MT=2 Elastic scattoring cross section
Statistical. and optical model calculations using the code
CASTHY /4/.
MT=4.51-67.91 Inolastic scattoring cross section
Statistical and optical model calculations.
Level scheme of Th-234 (estimated from systematics)
No. Energy(MeV) Spin-Parity
g.s. $0.0 \quad 0$ +
1 . $0.048 \quad 2+$
$20.160 \quad 4+$
$3 \quad 0.336 \quad 6+$
$40.576 \quad 8+$
$50.730 \quad 0+$

```
 6 0.767 2+
 7 0.785 2+
 8 0.853 4+
 9 0.882 1 -
 10 0.889 4+
 11 0.942 3-
 12 0.987 6+
 13 1.050 5 -
 14 i.053 6 +
 15 1.073 8+
 16 1.206 7+
 17 1.277 8+
Levels above 1.06 MoV were assumed to be overlapping.
MT=16,17 (\(n, 2 n\)) and (\(n, 3 n\)) cross sections
Calculated by means of the ovaporation model of Segev and Caner /5/.
MT=18 Fission cross section
Fission probability deduced from direct reaction \(/ 6 /\) and systematics of Behrens \(/ 7 /\) wero used to obtain fission cross section.
MT=102 Capture cross section
Statistical and optical model calculations with gamma-ray strength function of 0.00791 .
MT=251 Mu-bar
Calculated with optical model.
Mr=4 Angular Distributions of Secondary Neutrons
MT=2.51-67.91
Statistical and optical model calculations.
MT=16,17.18
Assumed to be isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
\(\mathrm{MT}=16.17 .91\)
Evaporation spectra were given.
\(M T=18\)
Fission spectrum was estimated from Z-a/A systematics of Smith ot al. /8/.
References
1) Ohsawa T. and Ohta M.: Momoirs Faculty of Engineering, Kyushu Univ. 40. 149 (1980).
2) Howerton R.J.: Nucl. Sci. Eng. 62. 438 (1977).
3) Ohsawn T. and Ohta M.: J. Nucl. Sci. Technol. 18, 408 (1981)
4) Igarasi S.: ibid. 12. 67 (1975).
5) Segev M. and Caner M.: Ann. Nucl. Energy 5, 239(1978).
6) Back B.B. et al.: Phys. Rev. C13. 2374 (1974).
7) Behrens J.W.: UCID-17509-2 (1977): Phys. Rev. Let t. 39, 68 (1977).
8) Smith A.B. ot al.: AML/NDM-50 (1979).
```



## MT=1 Total cross section

Calculated with the coupled-channel(CC) model code JUPITOR-1/6/. The potential parameters used for the CC-
calculations are given below.
MT=2 Elastic scattering
Ct:ained by subtracting the sum of capture, inelastic.
tission. ( $n, 2 n$ ) and ( $n, 3 n$ ) reaction cross sections from the total cross section.
$M T=16 \quad(n, 2 n)$
Calculated with the model of Segev et al.17.

```
MT=17 (n,3n)
```

Calculated with the model of Segov et al./7/.
MT=18 Fission
Based on the experimental data of Plattard/4/ below 12 MeV . Above 12 MeV , the evaluation of Mann/9/ was adopted after appropriate renormalization.
$M T=53.63$ Inelastic scattering to the 3 rd and 13 th excited levels(members of the ground state rotational band). Calculated with the consistent combination of CC and Hauser-Feshbach(HF) methods (CC/HF method)/9/. The code JUPITOR-1 was used for the CC calculations, and ELIESE-3 $110 /$ for the $H$ calculations.

MT=51-52,54-62,64-70,91 Inelastic scattering to the other discrete and continuum lovels.
Compound nuclear component was calculated with the code ELIESE-3 using the goneralized transmission coefficients calculated with JUPITOR-1 for the entrance channel. The level density parameters were taken from Gilbert-Cameron /11/.

MT=102 Capture
Calculated with the code CASTHY/12/. The average radiative width and level spacing used to normalize the calculation aro 40 moV and 0.47 oV . respectively/3/.

The parameters for the CC and spherical optical potentials were taken from Haouat et al./13/ and Ohsawa et al./14/ respectively.


The level scheme was taken from Nualear Data Sheets/15/.
No.
Enargy (MeV)
Spin-Parity
gs
0.0

3/2-

```
 1 0.0093 1/2-
2 0.0585 7/2-
3 0.0778 5/2-
4 0.0842 5/2+
5 0.1013 7/2+
6 0.1029 3/2+
7 0.1116 9/2+
8 0.1340 11/2+
O 0.1693 11/2-
10 0.1741 5/2-
11 0.1835 5/2+
12 0.189 13/2+
13 0.2183 7/2-
14 0.2473 7/2+
15 0.2720 9/2-
16 0.287 1/2+
17 0.3179 3/2+
18 0.3202 3/2-
19 0.3400 11/2-
20 0.3518 5/2-
Cont inuum levels were assumed above 0.38 MeV . The level density parameters were taken from Gilbert-Cameron/11/.
MT=251 Mu-bar
Calculated with the optical model.
```


## MF=4 Angular Distribution of Secondary Noutrons

```
- MT=2 Elastic scattering Calculated with the CC/HF method.
MT=51-70 Inelastic scattering
Calculated with the CC/HF method for the 3rd and 13 th excited levels. For the other levels, calculations with ELIESE-3 using the generalized transmission coefficients for the entrance channel were adopted, and isotropic distributions were assumed above 5.0 MeV because of zero cross sections.
MT=91 Inelastic scattering to the continumm
Isotropic distributions in Lab. system was assumed.
MF=5 Energy Distributions of Secondary Noutrons
MT=16.17.91 (n.2n). (n,3n) and continuum inelastic
Evaporation spectra.
MT=18 Fission
Maxwell spectrum (taken from ENDF/B-V).
```


## References

```
1) Tuttle. R.J.: INDC(NDS)-107/G (1979).
2) Bois. R. and Frehaut. J.: CEA-R-4791 (1976).
3) Hussein. A. et al.: Nucl. Sci. Eng.. 78, 370 (1981).
4) Plattard, S. et al.: 79 Knoxvillo. p. 491
5) Mughabghaib, S.F.: "Neutron Cross Sections", vol. 1, part B, Academic Press (1984).
```

6) Tamura,T.: Rev. Mod. Phys. 37. 679 (1965).
7) Segov.M. ot ol.: Ann. Nucl. Energy 7. 57 (1980).
8) Mann. F.M.: HEDL-THE-78-100 (1979).
9) Ohsawa,T., et al.: 85 Santa Fo. 21193 (1985).
10) Igarasi. S.: JAERI-1223 (1973).
11) Gilbert. M. and Cameron. A.G.W.: Can. J. Phys., 43. 1446 (1966).
12) Igarasi. S.: J. Nuci. Sci. Technol.,12, 67 (1975).
13) Haouat, G. ot al.: ibiđ. 81. 419 (1982).
14) Ohsawa. T, et al.: J. Nucl. Sci. Techrol. 18, 408 (1980).
15) Schmorak, M.R.: Nucl. Data Shoots 21, 91 (1977).

MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 1 oV , calculated as sum of $\mathrm{MT}^{\prime} \mathrm{s}=2$, 18 and 102.
Above 1 oV, optical model calculation was made with
CASTHY/2/. The potential parameters/3/ used are as
follows.

$V=41.0-0.05$		(MeV)
$W_{s}=6.4+0.15$	RT(En)	(MeV)
Wy=0	Vso $=7.0$	(MoV)
$r=r s o=1.31$	. rs = 1.38	(fm)
$0=$ aso $=0.47$	. $b=0.47$	(fm)

MT=2 Elastic scattering cross section Below 1 eV , assumed to be the same as shape elastic scattering cross section calculated with the optical model. Above 1 eV , optical model calculation was adopted.

MT=4. 91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with CASTHY/2/. No excited levels wore recommended in Ref. 4. No energy(keV) spin-parity g.s. $0.0 \quad 2$ -

Levels above 50 keV were assumed to be overlapping.
The level density parameters were taken from Ref. 5.
$M T=16,17,37$ ( $n, 2 n$ ). ( $n, 3 n$ ) and ( $n, 4 n$ ) reaction cross sections Calculated with evaporation model.

MT=18 Fission cross section
Measured thermal cross section of 700 barns was taken from
Ref. 6 , and $1 / v$ form was assumed below 1 eV . For energies above 1 eV . the shape was assumed to be the same
as U-233 fission cross section and normalized to the systematics by Behrens and Howerton/7/.

```
 MT=102 Capture cross section
 Measured thermal cross section of 464 barns was taken from
 Ref. 6 , and l/v form was assumed below 1 eV. The cross
 section shape near I oV was adjusted so as to reproduce
 the resonance integral/6/. Above 1 oV, calrulated with
 CASTHY. The gamma-ray strength function was estimated
 from Gamma-gamma = 0.040 eV and level spacing = 0.417 eV .
```

    MT \(=251 \quad\) Mu-L
        Calculated with CASTHY.
    MF=4 Angular Distributions of Secondary Neutrons
$M T=2,91 \quad$ Calculated with optical model.
$M T=16.17 .18 .37 \quad$ Isotropic in the lab system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.37.91 Evaporation spectra
Obtained from level density parameters.
MT=18 Maxwellian fission spectrum.
Temperature was estimated from Z-*2/A dependence/8/.
References
1) Howerton R.J.: Nucl. Sci. Eng., 62. 438 (1977).
2) Igarasi S.: J.Nucl.Sci.Technol.,12,67 (1975).
3) Ohsawa T., Ohta M.: J. Nucl. Sci. Technol., 18, 408 (1981).
4) Schmorax M.R.: Nucl. Data Sheets. 36. 367 (1982).
5) Gilbert A., Cameron A.G.W.: Can. J. Phys.. 43. 1446 (1965).
6) Mughahghab S.F.: "Neutron Cross Sections, Vol.1. Neutron
Resonance Perameters and Thermal Cross Sections, Part B,
Z=61-100*. Academic Press (1984).
7) Behrens J.W., Howerton R.J: Nucl. Sci. Eng., 65, 464, (1978).
8) Smith A.B. et al.: ANL/NDM-50 (1979).

```
91-Pa-233 Kinki U.+ Eval-Mar87 T.Ohsawa, M.Inoue and T.Nakagawa
 Dist-Sop89
```

History
87-03 Re-evaluation was performed for JENDL-3 by T. Ohsawa, M. Inoue (Kyushu University) and T.Nakagawa(JAERI)

Compilation was made by T.Nakagawa.

```
MF=1 General Information
```

    MT=451 Deseriptive data and dictionary
    MT=452 Number of neutrons per fission
        Sum of \(\mathrm{Nu}-\mathrm{p}\) ( \(\mathrm{MT}=456\) ) and \(\mathrm{Nu}-\mathrm{d}\) ( \(M T=455\) )
    MT=455 Number of delayed neutrons
        Taken from Tuttle's semi-empirical formula /i/. Energy
        dependence was ignored.
    MT=456 Number of prompt neutrons
        Based on the semi-empirical formula by Bois and Frehaut /2/.
    MF=2. $M T=151$ Resonance Parameters
Resolved resonances for SLBW formula: from 1.0E-5 to 16.5 eV
Parameters were taken from the recommendation by Mughabghab
/3/ and modified to reproduce thermal cross sections and
resonance integral of capture/3/.
Unresolved resonance parameters: from 16.5 oV to 40 keV
Average resonance parameters recommended by Mughabghab /3/
were adopted.
$\mathrm{SO}=0.75 \mathrm{E}-4, \quad \mathrm{~S} 1=1.5 \mathrm{E}-4, \mathrm{D}-\mathrm{obs}=0.69 \mathrm{oV}$,
gamma width $=0.047 \mathrm{eV}$
(St was adjusted with ASREP/5/ so as to reproduce total
and capture cross sections around 20 keV.$)$
Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and resonance integrals
$2200-\mathrm{m} / \mathrm{s}$ res. integ.
total $\quad 53.051$ B
olastic 13.021
fission $0.0 \quad 2.1$ b
capture 40.031864
NF=3 Neutron Cross Sections
Below 40 keV , the resonance parameters were given. Above 40
koV. cross sections wore ovaluated as follows.
MT=1 Total cross section
Calculated with the coupled-channel(CC) model code
JUPITOR-1/5/. The potential parameters used for the CC-
calculations are given below.
MT=2 Elastic scattering
Obtained by subtracting the sum of capture. inelastic.
fission. ( $n, 2 n$ ) and ( $n, 3 n$ ) reaction cross sections from the
total cross section.
$M T=16$ (n,2n)
Calculated with the model of Segev et al./6/.

```
\(M T=17\) (n,3n)
 Calculated with the model of Segev et al./6/.
MT=18 Fission
 Calculated using the experimental data on the fission
 probability/7/.
```

$M T=53.66$ Inelastic scattering to the 3 rd and 16 th excited levels (members of the ground state rotational band).
Calculated with the consistent combination of CC and Hauser-Feshbach(HF) methods (CC/HF method)/8/. The code JUPITOR-1 was used for the CC calculations, and ELIESE-3 /O/ for the HF calculations.

MT=51-52.54-65,67-70.91 Inelastic scattering to the other discrete and continuum levels.
Compound nuclear component was calculated with the code ELIESE-3 using the generalized transmission coefficients calculated with JUPITOR-1 for the entrance channel. The level density parameters were taken from Gilbert-Cameron /10/.

MT=102 Capture
Calculated with the code CASTHY/11/. The average radiative width and level spacing used to normalize the calculation are 40 meV and 0.79 eV . respectively/12/.

The parameters for the CC and spherical optical potentials were taken from Haouat et al./13/ and Ohsawa et al./14/ respectively.

CC
$V=46.4-0.3 \cdot E n$
$W_{s}=3.6+0.4-E n$
Vso $=6.2$
$r=1.26$
$r s=1.26$
$r s o=1.12$
$a=0.63$
as $=0.52$
aso= 0.47
beta2=0.190
beta4=0.071

SOM
$V=41.0-0.05-E n \quad$ (MeV)
$W_{s}=6.4+0.15 . \operatorname{SQRT}(E n)(\mathrm{MeV})$
$V \mathrm{Vo}=7.0$ (MeV)
$r=1.31 \quad(f m)$
$r s=1.38 \quad(\mathrm{fm})$
$r s o=1.31 \quad(f m)$
$a=0.47 \quad(\mathrm{fm})$
$a s=0.52 \quad(f m)$
aso $=0.47 \quad(\mathrm{fm})$

The level scheme was taken from Nuclear Data Sheets/15/, except the 300.4 keV -level, for which 7/2- was adopted instead of 7/2+ according to the suggestion of Gonzalez/16/.

No.	Energr (MoV)	Spin-P8
gs	0.0	$3 / 2-$
1	0.0067	$1 / 2-$
2	0.0572	$7 / 2-$
3	0.0706	$5 / 2-$
4	0.0865	$5 / 2+$
5	0.0947	$3 / 2+$
6	0.1036	$7 / 2+$
7	0.1090	$9 / 2+$
8	0.1634	$11 / 2+$
9	0.1691	$1 / 2+$

```
\begin{tabular}{lll}
10 & 0.1792 & \(9 / 2-\) \\
11 & 0.2017 & \(3 / 2+\) \\
12 & 0.2123 & \(5 / 2+\) \\
13 & 0.2379 & \(9 / 2+\) \\
14 & 0.2573 & \(6 / 2-\) \\
15 & 0.2796 & \(7 / 2+\) \\
16 & 0.3004 & \(7 / 2-\) \\
17 & 0.3061 & \(7 / 2+\) \\
18 & 0.3661 & \(9 / 2+\) \\
19 & 0.4477 & \(3 / 2-\) \\
20 & 0.4546 & \(3 / 2+\)
\end{tabular}
Continum levels were assumed above 0.5 MeV . The level density parameters were taken from Gilbert-Cameron/7/.
MT=251 Mu-bar
Calculated from angular distributions.
MF=4 Angular Distribution of Secondary Neutrons
MT=2 Elastic scattering
Calculated with the CC/HF method.
MT=51-70 Inelastic scattering
Calculated with the CC/HF method for the 3rd and 13 th excited levels. For the other levels, calculations with ELIESE-3 using the generalized transmission coefficients for the entrance channel were adopted.
MT=91 Inelastic scattering to the continumm
Isotropic distribution was assiamed in the laboratory system.
```


## MF=5 Energy Distributions of Secondary Neutrons

```
MT=16.17.91 (n,2n). (n.3n) and continumm inelastic
Evaporation spectra based on the level density parameters
```


## MT=18 Fission

```
Maxwell spectrum (taken from ENDF/B-V).
```


## References

```
1) Tuttle, R.J.: iNDC(NDS)-107/G, p. 29 (1979).
2) Bois. R. and Frehaut, J.: CEA-R-4791 (1976).
3) Mughabghab, S.F: "Neutron Cross Sections", vol. 1, part B, Academic Press (1984).
4) Kikuchi. Y.: privato communication.
5) Tamm.ra. T.: Rev. Mod. Phys. 37, 679 (1965).
6) Segev. M. et al.: Ann. Nucl. Energy 7. 577 (1980).
7) Gavron, A.: Phys. Rev. C13. 2374 (1978).
8) Chsawa. T. et al.: Proc. Conf. Nucl. Data for Basic and Applied Sci. 2. 1193 (1985).
9) Igerasi. S.: JAERI-1223 (1973).
10) Gilbert. M. and Cameron.A.G.W.: Can. J. Phys.. 43. 1446(1966).
11) Igarasi. S.: J. Mucl. Sci. Technol..12. 67 (1975).
12) Hussein. 2. ot al.: Nucl. Sci. Eng., 78, 370 (1981).
13) Haouat. G. et al.: ibid. 81. 419 (1982).
14) Ohsawa. T. et al.:J. Nucl. Sci. Technol. 18. 408 (1980).
```

15) Ellis. Y.A.: Nucl. Data Sheets, 24. 289 (1978).
16) Gonzalez, L. ot al.: Nucl. Phys. A324, 126 (1979).

92-U-232 Kinki U.+ Eval-Mar87 T. Ohsawa and T. Nakagawa Dist-Sep89
History
87-03 Evaluation was carried out by T. Ohsawa (Kinki University) and T. Nakagawa (JAERI).
T.Nakagawa: resonance parameters
T.Ohsawa : other quantities

Compilation was made by T.Nakagawa (JAERI),
MF=1 General Information
MT=451 Descriptive data and dictionary
MT=452 Total number of neutrons per fission
Sum of Nu -p and Nu -d
MT=455 Number of delayed neutrons
Determined from Tutte's semi-empirical formula /1/.
MT=456 Number of prompt neutrons
Based on the semi-empirical formula by Bois and Frehaut /2/.


MF=3 Neutron Cross Sections
Above 200 eV
MT=1 Total Calculated with the spherical optical model.

The parameters for the spherical optical parameters were as follows:

$$
\begin{aligned}
& V=40.47-0.06=E n \quad(\mathrm{MeV}), \quad V_{s o}=8.8(\mathrm{MeV}) \\
& W s=6.8+0.04 \cdot \operatorname{SORT}(E n)(\mathrm{MeV}) . \quad W_{v}=0.0 \\
& r=1.32(\mathrm{fm}) . r s=1.38(\mathrm{fm}) . r s 0=1.22(\mathrm{fm}) \\
& a=a s=a s 0=0.47 \quad(\mathrm{fm}) .
\end{aligned}
$$

This set of parameters was found to give good agreement with the measurements of Simpson et al./6/ in the energy region from 1 keV to 10 koV .
MT=2 Elastic Scattering
Calculated with the code CASTHY/7/.
$M T=16 \quad$ (n.2n)
Calculated with the model of Segev-Fahima/8/.

MT=17 (n.3n)
Calculated with the model of Segev-Fahima/8/.
MT=18 Fission
Calculated by using the fission probability data of Gavron ot al./9/ and compound formation cross sections calculated with the optical model. Below 1 keV , the cross section was determined on the basis of Farrell/5/.
MT=61-60.91 Inelastic scattering to the discrete and con-
tinuous levels
Calculated with the code CASTHY/7/. The level scheme was taken from Lederer et al./10/ and Sohmorak/11/.

No.	Energy (MoV)	Spin-P
gs	0.0	$0+$
1	0.048	$2+$
2	0.167	$4+$
3	0.323	$6+$
4	0.541	$8+$
5	0.563	$1-$
6	0.629	$3-$
7	0.692	$0+$
8	0.736	$2+$
9	0.805	$10+$
10	0.867	$2+$

Continuum region was assumed above 1.0 MeV. The level density parameters of Gilbert-Cameron/12/ were used.
MT=102 Capturo
Calculated with the code CASTHY/7/.
MT=251 Mu-bar
Calculated with the code CASTHY/7/.
NF=4 Angular Distributions of Secondary Neutrons
MT=2 Elastic scattering
Calculated with the code CASTHY/7/.
MT=61-60.91 Inelastic scattering
Calculated with the code CASTHY/7/.
$M T=16,17(n, 2 n)$. ( $n, 3 n$ )
Assumed to be isotropic in the Lab system.
MF=5 Energy Distributions of the Secondary Noutrons
$M T=16.1791(n, 2 n),(n, 3 n)$ and continum inelastic Evaporation spectra.
MT=18 Fission
Maxwell spectrum. The temperature parameters were estimated from the systematics of Howerton-Doyas/13/.

## References

1) Tuttle.R.J.: INDC(NDS)-107/G, p. 29 (1979).
2) Bois.R. and Frehaut.J.: CEA-R-4791 (1976).
3) Mughabghab.S.F.: "Neutron Cross Sections", Vol.1, Part B, Academic Press \{1984).
4) Auchampaugh.G.F.. ot al.: Nucl. Phys.. Al12. 329 (1968).
5) Farrell.J.A.: LA-4420.3 (1970). data = EXFOR 10055002.
6) Simpson.O.D. et al: Nucl. Sci. Eng. 29. 415 (1967).
7) Igarasi.S.: J. Nucl. Sci. Technol. 12. 67 (1975).
8) Segev.M. and Fahima,Y.: Ann. Nucl. Energy 7. 557 (1980).
9) Gavron. A. et al.: Phys. Rev. C13, 2374 (1976).
10) Lederer,C.M., ot al.: Table of Isotopes (1978), p. 1422
11) Schmorak, M.K.: Nucl. Data Sheets 20, No. 2 (1977).
12) Gilbert. A. and Cameron.A.G.: Can. J. Phys. 43, 1446 (1965).
13) Howerton.R.J. and Doyas.R.J.: Nucl. Sci. Eng. 46. 414 (1971).

92-i -233 SAEI+ Eval-Mar87 H. Mat sunobu,Y.Kikuchi.T.Nakagawa
History
82-06 Evaluation for JENDL-2 was made by N. Asano (SAEI).
H. Mat sunobu (SAEI) and Y.Kikuchi (JAERI).

87-03 Re-evaluation for JENDL-3 was made by H.Matsunobu (SAE:)
Main part of revision was the cross sections above 10 keV
and angular and onergy distributions of neutrons.
Data were compiled by T. Nakagawa (JAERI).
MF=1 Goneral Information
MT=451 Cormments and dictionary
MT=452 Nu-total
Sum of $\mathrm{Nu}-\mathrm{d}$ and $\mathrm{Nu}-\mathrm{p}$
$M T=455 \quad \mathrm{Nu}-\mathrm{d}$
Below 4 MeV
$\mathrm{Nu}-\mathrm{d}=0.0075094+4.627 \mathrm{E}-5 \cdot \ln (\mathrm{E}(\mathrm{MeV}))$
Between 4 and 20 MeV
Based on the data of Masters ot al. /1/ and Evans et al. /2/.
MT $=456 \quad \mathrm{Nu}-\mathrm{p}$
Renormslization was made to 3.756 of $\mathrm{Cf}-252$.
Below 1 MeV
$N u-p=2.486+0.1121 \cdot(E-D E)$.
where DE is difference of average fragment kinetic onergy between incident and thermal neutron energies. It was taken from data of Boldeman et al. /3/.
Between 1 and 2.73 MeV
$\mathrm{Nu}-\mathrm{p}=2.436+0.1279 . E$
Between 2.73 and 7.47 MoV
$\mathrm{Nu}-\mathrm{p}=2.327+0.1678 * E$
Above 7.47 MeV
$\mathrm{Nu}-\mathrm{p}=2.857+0.09689 \cdot E$
NF=2 Resonance Parameters
MT=151
a) Resolved resonance region ( 1 oV to 100 oV )

Resolved resonance perameters for the ingle-level BreitWigner formula besed on the data of Nizemuddin and Blons 14/.
b) Unresolved resonance region ( 0.1 keV to 30 keV )

Parameters were deduced with ASREP code /5/ so as to reproduce the evaluated cross sections in this energy region.

NF=3 Neutron Cross Sections
a) Thermal energy region (below 1.0 eV )

MT=1 Total
Sum of partial cross sections
MT=2 Elastic scattering
Calculated from resolyed resonance parameters by using the effective scattering radius of 8.93 fm .
MT=18 Fission
Based on data of Weston et al. 18/. Cao ot al. /7/.
Deruyttor and Wagemans /8/ and Pshenichny ot al. /8/.

```
MT=102 Capture
 Based on the data of Weston et al. 16/.
 2200-m/s cross sections and calculated res. integrals
 2200 m/s Res. Integ.
 total 587.9 b -
 elastic 12.70 b -
 fission 529.9 b 772 b
 capture 45.30 b 139 b
b) Resonance Region (from 1 oV to 30 keV)
 Represented with resolved and unresolved resonance parame-
 ters and background cross sections. The unresolved
 resonance parameters wero determined to reproduce cross
 cross sections evaluated as follows.
c) Smooth part (above 30 keV)
MT:=1 Total
 Based on the data of Poenitz /10,11/. Betweon 10 and 48 keV.
 cross-section curve calculated with the statistical-model
 code CASTHY /12/ and the coupled-channel theory code ECIS
 /13/ was normalized at 48 keV.
MT=2 Elastic
 Obtained by subtracting non-elastic scattering cross section
 from the total cross section.
MT=4 and 51-64.91 Inolastic scattering
 Calculated with CASTHY /12/ and ECIS /13/. Coupled levels
 were first three levels. Deformed CNP was adopted from the
 recommendation by Haouat et al, /14/, and spherical ONP the
 same as that used for JENDL-2.
 Deformed OMP
 V =46.4-0.3\bulletE , Ws=3.3 +0.4*E , Vso=8.2 (MaV)
 r0=1.26 , rs=1.26 , rso=1.12(fm)
 a0=0.63 , b =0.52 , aso=0.47 (fm)
 Beta-2=0.22. Beta-4=0.08
 Spherical OMP
 V =41.8-0.20-E+0.008-E*2. Ws=6.50-0.16-E. Vso=6.0 (MeV)
 r0=1.31 , rs=1.36 , rso=1.32(fm)
 80=0.57 ,b =0.44 ,aso=0.50(fm)
 (dir. W.S.)
 Level scheme was taken from Ref. /15/.
 No. Energy(MoV) Spin-Parity
 g.s. 0.0 5/2 + .
 1 0.04035 7/2 + .
 2 0.0922 9/2 + *
 3 0.1551 11/2 + *
 4 0.29882 5/2-
 5 0.31191 3/2+
 6 0.3208 7/2-
 7 0.34047 5/2
 8 0.3537 9/2-
 9 0.397 11/2 -
 10 0.39849 1/2 +
 11 0.41576 3/2 +
 12 0.5039 7/2 -
```

13	0.6467	$5 / 2+$
14	0.5971	$7 / 2+$

Above 0.6 MeV . assumed to be overlapped. Levels with asterisk were coupled in the ECIS calculation.

```
MT=16,17 (n,2n) and (n,3n)
 Calculated by Pearlstein's method /16/. The (n.2n) cross
 section was normalized to fission-spectrum-averaged value of
 0.00408 b measured by Kobayashi /17/.
MT=18 Fission
 Based on the oxperimontal data of Gwin ot al. /18/, Carlson
 et al. /19/. Manabs et al. /20/, Kanda et al. /21/. Iwasaki
 et al. /22/. Meadows /23,24/ and Poenitz /25/, and the
 fission cross section of U-236 obtained by tho simultaneous
 evaluation /26/.
MT=102 Capture
 In the energy range from 30 keV to 1 MeV, the alpha values
 measured by Hopkins and Diven /27/ were multiplied by the
 fission cross section. In the high energy region, values
 calculated with CASTHY and ECIS were normalized to 0.0578 b
 at }1\mathrm{ MoV.
MT=251 Mu-bar
 Calculated with CASTHY and ECIS.
```

MF $=4$ Angular Distributions of Secondary Neutrons
MT=2, 51-64 and 91
Calculated with CASTHY and ECIS.
$\mathrm{MT}=16,17$ and 18
Assumed to be isotropic in the Lab system.
MF=5 Energy Distributions of Secondary Noutrons
MT=16,17,91
Calculated with PEGASUS /28/.
MT=18 Fission spectrum
Calculated with Madland-Nix formula /29/. The following
parameters were taken from Ref./29/.
Average onergy release $\quad=\mathbf{1 8 8 . 9 7 1 ~ M e V}$
Total average FF kinetic energy $\quad=172.1 \mathrm{MoV}$
Average Masses of Light and heavy FF = 95 and 139
Level density parameter =A/11
MT=455 Delayed neutrons
Recommendation by Saphiar et al. $130 /$ was adopted.
MF=8 Fission Product Yields
MT=454 Fission product yield data (independent)
MT=459 Fission product vield data (cumulative) ${ }^{\text {. }}$
Both were taken from JNDC FP Decay Data file version $2 / 31 /$.
References
1) Master C.F. ot aj.: Nucl. Sci. Eng., 36. 202 (1969).
2) Evans A.E. et al.: Nucl. Sci. Eng.. 50. 80 (1973).
3) Boldeman J.W. et al.: Nucl. Phys.. A265. 337 (1976).
4) Nizarruddin S. and Blons J.: Nucl. Sci. Eng. . 54, 116 (1974).
5) Kikuchi Y.: to be publishod.
6) Weston L.W. et al.: Nucl. Sci. Eng., 42. 143 (1970).
7) Cao M.G. et al.: J. Nucl. Energy, 24, 111 (1970).
8) Deruytter A.J. and Wagmans .: Nuci. Sci. Eng.. 54, 423 (1974).
9) Pshenichny V.A. ot al.: $\operatorname{INDC}(C C P)-111 / \mathrm{U}, 23$ (1978).
10) Poenitz W.P. of al.: Nucl. Sci. Eng.. 78. 333 (1981).
11) Poenitz W.P. ot al.: ANL/NDM-80 (1983).
12) Igarasi s.: J. Nucl. Sci. Technol.. 12, 67 (1975).
13) Raynal J.: ECIS.
14) Haouat G.. ot al.: Nucl. Sci. Eng., 81. 491 (1982)
15) Lederer D.G. and Shirley V.S.: Table of 1sotopes, 7th Ed. (1978).
16) Pearlstein S.: Nucl. Sci. Eng.. 23, 238 (1965).
17) Kobayashi K.: J. Nucl. Sci. Tochnol.. 10. 668 (1973).
18) Gwin R. ot al.: Nucl. Scl. Eng.. 69, 79 (1976).
19) Carlson G.W. and Behrens J.W.: Nucl. Sci. Eng.. 66, 205 (1978)
20) Manabe F.. et al. : 1987 Annual Mooting of Atomic Energy

Socioty of Japan. Nagoya, p. 167 (1987) in Japanese.
21) Kanda K., et al.: 1985 Santa-Fe, p. 669 (1985).
22) Iwasaki T., et al.: private communication (1987).
23) Meadows J.W.: Nucl. Sci. Eng.. 64, 317 (1974).
24) Meadows J.W.: Actinide Newsletter, 10. 27 (1987).
25) Poonitz W.P.: AM./NDM-36 (1978).
26) Kanda Y. et al.: 1985 Santa Fe, 2. 1567 (1986).
27) Hopkins J.C. and Diven B.C.: Nucl. Sci. Eng.. 12, 169 (1962).
28) Iijima S. et al.: JAERI-M 87-025, p. 337 (1987).
29) Madland D.G. and Nix J.R.: Nucl. Sci. Eng., 81, 213 (1982).
30) Saphier D., et al.: Nucl. Sci. Eng., 62, 660 (1977).
31) JNDC Decay Heat Evaluation WG: private communication(1989).

## MAT number $=3923$

92-U-234 Kawasaki Eval-Mar87 T.Watanabe
Dist-Sep89
History
87-03 New evaluation for JENDL-3 was made by T. Watanabe (Kwasaki Heavy Ind.)
87-08 Compilation was made by T.Nakegawa (JAERI)
MF=1 General Information
MT=45. 1 Descriptive data and dictionary
MT=452 Number of neutrons per fission
Tak on from ENDF/B-V1 ovaluation(=JENDL-2).
MF=2 Resonance Parameters
MT=251 Resonance Parameters ; 1.0E-5 oV -- 50 keV
Resolved resonances for MLBW formula . $1.0 \mathrm{E}-5 \mathrm{oV}-1.5 \mathrm{koV}$ Parameters of Ref./1/ were adopted after modification of an average radiative width to $0.026 \mathrm{oV} / 2 /$. A negative level was added at $\mathbf{- 2 . 0 6} \mathrm{oV}$ so as to reproduce the cross sections at $0.0253 \mathrm{eV} / 2 /$.

Total $=119.1+1.3 \mathrm{~b}$
Elastic $=19.6+1.0 \mathrm{~b}$
Capture $=99.8+1.3 \mathrm{~b}$
Unresolved resonances $\quad: 1.5 \mathrm{keV}-50 \mathrm{keV}$
The following parameters were given. $\langle W G\rangle=0.026 \mathrm{oV} / 21 .\langle W F\rangle=0.0 \mathrm{oV}, D-\mathrm{obs}=10.0 \mathrm{oV} / 2 /$. $S-0=0.96 \mathrm{E}-4$ (calculatod with ECIS/3/). S-1 $=1.197 E-4$ (adjusted to the total cross section calculated with ECIS/3/). $R=9.70 \mathrm{fm}$ (adjusted to the total cross section at 50 keV ).

Calculated $2200 \mathrm{~m} / \mathrm{s}$ cross sections and resonance integrals.

$2200 \mathrm{~m} / \mathrm{s}$	Resonance integral
119.2 b	-
19.41 b	-
6.22 mb	6.72 b
99.75 b	632 b

MF=3 Noutron Cross Sections
Below 50 keV , resonance parameters were evaluated.
Background cross sections for the fission were given in the unresolved resonance region.

> MT= $1,2,4,51-62.91 .102$ Total. elastic and inelastic scettering. and capture
> Calculated with couplod-channel code ECIS/3/ and spherical optical and statistical model code CASTHY/4/.
> The Deformed optical potential parameters of Lagrange/5/ were adopted for the ECIS calculation.

```
V = 46.42-0.3*En, ro = 1.26. a0=0.63
Ws = 3.72 + 0.4 En. rs = 1.26. b =0.52
 En up to }10\textrm{MoV
```

```
 =7.72
 En above 10 MoV
Vso = 6.2 rso= 1.12 aso=0.47
beta2 = 0.194
beta4 = 0.071
```

The spherical optical potontial parameters for the CASTHY calculation were determined so as to reproduce the total cross section calculated with ECIS by using the above OMP.

```
V = 41.49-0.1360 . En
Ws = 0.284 - 0.2086 - En+ 0.03225 . En * - 2
V:0}=4.248
r=1.316, rs=1.381, rso= 1.15
a0}=0.528, b = 0.372, aso=0.597
```

The level scheme was taken from Ref./6/.

No.	Energy (MoV)	Spin-Parity Coupled Ivi
g.s	0.0	$0+$
1	0.04348	$2+$
2	0.14334	$4+$
3	0.29806	$6+$
4	0.48702	$8+$
5	0.7412	$10+$
6	0.78628	$1+$
7	0.80989	$0+$
8	0.84785	$4+$
9	0.8626	$6+$
10	0.8691	$3+$
11	0.9896	$2-$
12	1.0236	$4+$

Cont inuum levels wore assumed above 1.024 MeV

Level density paremeters were ovaluated using D-obs and excited level data/2.6/.

	$a(1 / \mathrm{MoV})$	$\mathrm{T}(\mathrm{MoV})$	$\mathrm{Ex}(\mathrm{MoV})$	$\mathrm{Sig} \cdot=2(0)$
$92-\mathrm{U}-234$	28.348	0.4058	4.769	16.872
$92-\mathrm{U}-235$	31.415	0.3814	4.231	14.378

The gamme-ray strength function ( $=84.6 \mathrm{E}-4$ ) was determined by normalizing the capturo cross section to 0.46535 b at 50 keV which was calculated from abovementioned unresolved resonance parameters.
$M T=16.17$ ( $n .2 n$ ) and ( $n, 3 n$ )
JENDL-2 data calculated with the evaporation model were renormalized so that ther might be consistent with the fission and compound formation cross sections calculated with ECIS and CASTHY.

## MT=18 Fission

Experimental data $/ 7,8,9 /$ of fission cross section ratio to U-235 were evaluated. Fission cross section was obtained by multiplying the $\mathbf{U - 2 3 5}$ fission cross section/10/ to the ratio.

```
 MT=251 Mu-L bar
 Calculated with ECIS and CASTHY.
MF=4 Angular Distributions of Secondary Neutrons
 MT=2,51-62.91 Calculated with ECIS and CASTHY
 MT=16.17.18 Assumed to be isotropic in the lab. system.
NF=5 Energy Distributions of Secondary Noutrons
 MT=16.17.91 Table type data wore given.
 Spectra were oalculated with proequilibrium and multi-
 step evaporation model code PEGASUS /11/.
 MT=18
 Calculated with the formula of Madland and Nix /12/.
 Constant compound nucleus formation cross section model
 was adopted
 Total average FF kinetic energy = 171.09 MeV
 Average onergy release = 187.976 MeV
 Average mass number of light FF = 95
 Average mass number of heavy FF = 140
 Level density parameter = A/10.0
References
 1) James G.D. ot al: Phy. Rov., C16. 2083 (1077).
 2) Mughabghab S.F.: "Neutron cross sections, Vol 1, Part B".
 Academic Press (1984).
 3) Raynal J.: IAEA SNR-9/8 (1970).
 4) Igaresi S.: J. Nuol. Sci. Tochnol.. 12. 67 (1976).
 5) Lagrange C.H.: NEANDC(E)-228 (1982).
 6) Ellis-Akovali Y.A.: Nucl. Data Sheets. 40, 567 (1983).
 7) Behrens J.W. and Carlson G.W.: Nucl. Sci. Eng., 63, 2501977).
 8) Moadows J.W.: Nucl. Sci. Eng.. 65, 171 (1978).
 8) Kanda K. ot al.: 1985 Santa Fo. 1. 569 (1986).
10) Matsunobu H.: JENDL-3 U-235 ovaluation (1987).
11) Iijima S. et al.: to be published.
12) Madland D.G. and Nix J.R.: Nucl. Sci. Eng., 81, 213 (1982).
```

92-U-235 SAEI+ Eval-Mar87 H.Mat sunobu.K.Hida, T.Nakagawa+ Dist-Sop89

```
History
87-03 Newly ovaluated for JENDL-3 by the following ovaluators.
 K.Hida (NAIG) gamma-ray production data
 Y.Nakajima (JAERI) resolvod resonances
 T.Nakagawo (JAERI) unresolved resonances
 H.Matsunobu (SAEI) other quantities
88-08 Data were partly modified to final JENDL-3 data.
 Nu-bar. Unresolvod resonance parameters.
89-02 FP yields were roplaced with JNDC FP Decay File version-2.
 Data were compiled in ENDF-5 format by T.Nakagawa (JAERI)
MF=1 General Information
 MT=451 Comments and dictionary
 MT=452 Total number of neutrons per fission
 Sum of nu-p (MT=456) and nu-d (MT=455).
 MT=455 Delayed noutron data
 Evaluated on the basis of the experimental data by Keepin ot
 al. /1/. Keepin /2/., Masters et al. /3/, Conant and Palmedo
 14/. Evans and Thorpe /5/. Cox /6/. Besant et al. /7/ and
 Synetos and Williams /8/.
 MT=456 Number of prompt noutrons
 Evaluated on the basis of the experimental data by Boldeman
 and Walsh /9/, Soloilhac et al. /10/, Frohaut ot al.
 /11,12/. Meadows and Whalen /13/. Prokhorova et al./14.15/.
 Savin et al. /16/, Kaeppeler and Bandl /17/. Boldeman et al.
 /18/. Frohaut and Boldeman /10/. Boldeman and Frohaut /20/.
 Gwin et al. /21/. Frehaut ot al. /22/. Gwin ot al. /23/.
 Howo /24/. and Boldeman and Hines /25/. The standard value
 of 3.756 of Cf-252 nu-p was used in the present evaluation.
MF=2 Resonance Parameters
 MT=151
 1) Resolved resonances : 1.0 - 100 oV
 2g-Gamma-n : Simple average of experimental data.
 Gamme-g : Weighted average of experimental data.
 Garmma-f : Calculated from the averaged fission area.
 Details of the evaluation given in Ref. /26/.
 Total spin J values were taken from Moore ot al./27/.
 2) Unresolved resonance paremeters : 100 oV - 30 keV
 The evaluated total. capture and fission cross sections were
 fitted by adjusting S0. S1 and Gamma-f. The fission cross
 section was based on the experimental data of Weston and
 Todd /28/. The capture cross section was determined as
 (Sig-f)-(alpha(JENDL-2)).
 2200-m/s cross sections and calculated res. integrals.
 2200 m/s res. integ.
 clastic 14.64 b -
 fission 584.0 b 275 b
 capture 96.0 b }152\mathrm{ b
 total 694.6 b -
```

Below 1.0 eV : Based on the experimental data.
Between 1.0 and 100 eV : Background data for resonance parameters are given to well reproduce the experimental data.
Above 100 eV: Data were evaluated as follows. Between 100 eV and 30 keV . the unresolved resonance parameters were given to reproduce these cross sections.
MT=1 Total
Evaluated on the basis of the experimental data by Uttley et al. 129/. Boeckoff et al, 130/. Sohwartz ot al, /31/. Groen ot al. /32/. Fostor and Glasgow/33/. Poonitz ot al, /34/. and Poenitz and Whal en 135/.
$M T=2 \quad$ Elastic scattering
Evaluated on the basis of the experimental data by Smith /36/. Smith and Whalen /37/ and Knitter et al. /38/ in the energy range from 0.3 to 2.3 MoV . In the remaining onergy range it was derived by subtracting sum of partial cross sections from total cross section.
MT=4.51-79.91.251 Inelastic scattering cross section and mu-bar Evaluated on the basis of experimental data and calculation with optical and statistical models, and coupled chanrel theory taking into account of deformation of nucleus. The calculated inelastic scattering cross sections wore decreased by factor of 0.9 below about $2 \mathrm{MoV} s o$ as to be in agreement with Smith et al. /39/.

Deformed optical potential parameters were adoptod from the recommendation by Haouat et al. 140/.

beta-2 $=0.22$, beta-4 $=0.08$
The spherical optical potential parameters were obtained by fiting the experimental data of the total cross section. $V=40.90-0.04 . E n . W_{s}=6.5+0.26 \cdot E n . V s o=7.0$ (MeV) $r 0=1.312, \quad r s=1.375, \quad r 80=1.320(\mathrm{fm})$ $a=0.490, \quad b=0.454 . \quad$ ao $=0.470(\mathrm{fm})$

Statistical model calculation with CASTHY code /41/.
Compoting processes : fission (n,2n). (n,3n). (n,4n).
Level fluctuation was considered.
The level scheme taken from Refs./42.43/.

No.	Energy(keV)	Spin-Parity
g.s.	0.0	$7 / 2-$
1	0.075	$1 / 2+$
2	13.038	$3 / 2+$
3	46.347	$9 / 2-$
4	51.697	$5 / 2+$
5	81.732	$7 / 2+$
6	103.2	$11 / 2-$
7	129.292	$5 / 2+$
8	150.4	$9 / 2+$
9	170.7	$13 / 2-$
10	171.378	$7 / 2+$
11	197.1	$11 / 2+$
12	225.40	$9 / 2+$

```
\begin{tabular}{llr}
13 & 249.1 & \(15 / 2-\) \\
14 & 291.1 & \(11 / 2+\) \\
15 & 294.7 & \(13 / 2+\) \\
16 & 332.818 & \(5 / 2+\) \\
17 & 338.8 & \(17 / 2-\) \\
18 & 357.2 & \(15 / 2+\) \\
19 & 367.05 & \(7 / 2+\) \\
20 & 368.8 & \(13 / 2+\) \\
21 & 393.184 & \(3 / 2+\) \\
22 & 414.8 & \(9 / 2+\) \\
23 & 426.71 & \(5 / 2+\) \\
24 & 446.7 & \(7 / 2+\) \\
25 & 474.27 & \(7 / 2+\) \\
26 & 510.0 & \(9 / 2+\) \\
27 & 533.2 & \(9 / 2+\) \\
28 & 607.7 & \(11 / 2+\) \\
29 & 633.04 & \(5 / 2+\)
\end{tabular}
Continum levols assumed above 650 keV .
Tho level density parameters : Gilbert and Cameron /44/.
MT \(=16,17,37(n, 2 n),(n, 3 n),(n, 4 n)\)
Evaluated on the basis of the following experimental data and calculation with evaporation model.
\[
\begin{aligned}
& (n, 2 n) \\
& (n, 3 n) \text { and }(n, 4 n): \text { Frehaut et al. } 145 / \\
& \text { : Veeser and Arthur } / 46 /
\end{aligned}
\]
MT=18 Fission
Derived with simultaneous evaluation/47/ on the basis of the
capture cross sections of \(A u-187\) and U-238, the fission cross sections of U-235, -238. Pu-239, -240 and -241 in the energy range from 50 keV to 20 MeV . Experimental data of U-235 considered in this evaluation are as follows:
Perez et al. 148/, Poenitz /49.50/. Czirr and Sidhu /51.52.53/. Szabo and Morquette /54/, Barton ot al. /65/. Cance and Grenier 150.67/. Carlson and Patriale 158/. Kari /59/. Adamov ot al. /60/. Arlt ot al. /6i, 62/. Wasson et al. \(163,64 / . \operatorname{Li}\) et al. /65/. Mahdavi et al. 166/, Carlson and Behrens /67/. Corvi et al. 168/. Dushin et al. /69/ and Weston and Todd /28/.
MT=102 Capture
Derived from the evaluated alpha value and fission cross section below 1 MeV. Calculated with CASTHY above 1 MoV.
Alpha value was evaluated on the basis of the experimental data by Kononov et al. /70/. Dvukhsherstnov et al. /71/, Gwin et al. 172/. Bluhm and Yon /73/. Hopkins and Divon 174/. Boer and Koeppeler /75/ and Corvi ot al. /68/
MF=4 Angular Distributions of Secondary Neutrons
\begin{tabular}{ll}
\(M T=2\). & \(51-79.91\) \\
\(M T=16.17 .18 .37\) & Calculated with CASTHY and ECIS codes.
\end{tabular}
NF=5 Energy Distributions of Secondary Neutrons
\(M T=16.17 .37 .91\)
Calculated with PEGASUS/76/ on the basis of preequilibrium and multi-step evaporation model.
\(\mathrm{NT}=18\)
Distributions calculated with the formula of Madland and Nix
```

```
 /77/ were adopted. Constant compound nucleus formation
 cross section model was adopted.
 Total average FF kinetic energy = 171.8 MeV
 Average energy release = 186.980 MeV
 Avorage mass number of light FF = 96
 Average mass number of heavy FF = 140
 Level density parameter = A/9.6
 MT=455
 Taken from Saphier et al. /78/
MF=8 Fission Product Yiold Data
 MT=454 and 459
 Both were taken from NNOC FP Decay File version-2 /79/.
MF=12 Photon Production Multiplicities (option 1)
 Given for the following sections below 369.579 keV
 MT=18 Fission
 The thermal neutron-induced fission gamma spectrum
 measured by Verbinski /81/ was adopted.
 MT=51-69 Inolastic Scattering
 The photon branching data taken from /43/ were converted
 to the photon multiplicities.
 MT=102 Capture
 Calculated with GNASH /80/, where the pygmy resonance
 was introduced /82/.
Mm=13 Photon Production Cross Sections
 MT=3 Non-olastic
 Calculated with GNASH /80/ above 369.578 keV.
 Verbinski's data /81/ were used up to 20 MeV.
MF=14 Photon Angular Distributions
 MT=3.18.51-69.102
 Isotropic distributions were assumed.
MF=15 Continuous Photon Energy Spectra
 MT=3.102
 Calculated with GNASH /80/
 MT=18
 Experimental data by Verbinski /81/ were adopted.
```

References
1) Keepin G.R. et al.: J. Nucl. Energy, 6. 1 (1957).
2) Keepin G.R.: LA-4320 (1969).
3) Masters C.F. ot al.: Nucl. Sci. Eng., 36, 202 (1969).
4) Conant J.F. and Palmedo P.F.: Nucl. Sci. Eng., 44, 173(1971).
5) Evans A.E. and Thorpe M.M.: Nucl. SCi. Eng. . 50, 80 (1973).
6) Cox S.A.: ANL/NDM-5 (1974).
7) Besant C.B. et al.: British Nucl. Energy Soc., 16, 161(1977).
8) Synetos S. and Williams J.G.: INDC(NDS)-107, 183 (1979).
9) Boldeman J.W. and Walsh R.L.: J. Nucl. Energy, 24, 191 (1970).
10) Soloilhac M. ot al.: J. Nucl. Energy. 23, 257 (1969).
11) Frehaut J. ot al.: EANDC-154U, p. 67 (1973).
12) Frehaut J. ot al.: 1973 Rochester Symp.. Vol.2. p. 201 (1973).
13) Meadows J.W. and Whalen J.F.: J. Nucl. Energy. 21. 157 (1967).
14) Prokhorova L.I. and Smironkin G.N.: Sov. J. Nucl. Phys.. 7.
579 (1968).
15) Prokhorova L.I. et al.: Sov., Atom. Ener.. 30. 307 (1971).
16) Savin M.B. et al.: 1970 Helsinki Conf.. Vol.2. p. 157 (1970).
17) Kaeppeler K. and Bandl R. -E.: Ann. Nucl. Energr. 3. 31 (1976).
18) Boldeman J.W. et al.: Nucl. Sci. Eng.. 63. 430 (1977)
19) Frehaut J. and Boldeman J.W.: 1978 Harwell Conf.. 421 (1978).
20) Boldeman J.W. and Frehaut J.: Nucl. Sci. Eng.. 76. 49 (1980).
21) Gwin R. ot al.: ORNL/TM-7148 (1980)
22) Frehaut J. et al.: 1982 Antwerp Conf., 78 (1982).
23) Gwin R. et al.: Nucl. Sci. Eng., 87, 381 (1984).
24) Howe R.E.: Nucl. Sci. Eng., 86. 157 (1984).
25) Boldeman J.W. and Hines M.G.: Nucl. Sci. Eng. . 91. 114(1985).
26) Nakagawa T. et al.: JAERI-M 9823 (1981)
27) Moore M.S. et al.: Phys. Rev.. C18,1328 (1978).
28) Weston L.W. and Todd J.H.: Nucl. Sci. Eng.. 88. 567(1984).
29) Uttlev C.A. et al.: 1966 Paris Conf.. Vol.1. p. 165 (1966).
30) Boeck off K.H. et al.: J. Nucl. Energy. 26, 91 (1972).
31) Schwartz R.B. et al.: Nucl. Sci. EEg., 54, 322 (1974)
32) Green F.L. et al.: WAPD-TM-1073 (1973).
33) Foster D.G. and Glasgow D.W.:Phys. Rev., C3. 576 (1971).
34) Poenitz W.P. et al.: Nucl. Sci. Eng.. 78. 333 (1981).
35) Poenitz W.P. and Whalen J.F.: AN./NDM-80 (1983).
36) Smith A.B.: Nucl. Sci. Eng., 18, 126 (1964).
37) Smith A.B. and Whalen J.F.: Phys. Rev. Letters. 16. 526(1966).
38) Knitter H.H. et al.: Zoit. Physik. 257. 108 (1972).
39) Smith A.B. et al.: 1982 Antwerp Conf.. 39 (1982).
40) Haoust G. et al.: Nucl. Sci. Eng., 81, 491 (1982).
41) Igarasi S.: J. Nucl. Sci. Technol., 12. 67 (1975).
42) Lederer C.M. and Shirley V.S.: Table of leotopes. 7 th Ed.
43) Schmorak M.R.: Nucl. Data Sheets. 40. 1 (1983).
44) Gilbert A. and Cameron A.G.W.: Can. J. Phys., 43, 1446 (1985).
45) Frehaut J. et al.: Nucl. SCi. Eng. . 74. 29 (1980).
46) Veeser L.R. and Arther E.D.: 1978 Harwell Conf.. p.1054(1978).
47) Kanda Y. et al.: 1985 Santa Fe. 2. 1567 (1986).
48) Perez R.B. et al.: Nucl. Sci. Eng., 65, 203 (1974).
49) Poenitz W.P.: Nuci. Sci. Eng.. 53. 370 (1974).
50) Poenitz W.P.: Nucl. Sci. Eng. . 64. 894 (1977).
51) Czirr J.B. and Sidhu G.S.: Nucl. Sci. Eng., 57. 18 (1975).
52) Czirr J.B. and Sidhu G.S.: Nucl. Sci. Eng.. 58. 371 (1975).
53) Czirr J.B. and Sidhu G.S.: Nucl. Sci. Eng., 60. 383 (1976).
54) Szabo I. and Marquette G.P.: ANL-76-90, p. 208 (1976).
55) Barton D.M. et al.: Nucl. Sci. Eng.. 60. 369 (1976).
56) Cance M. and Grenier G.: Nuci. Sci. Eng.. 68, 197 (1978).
57) Cance M. and Grenier G.: CEA-N-2194 (1981)
58) Carlson A.D. and Patrick B.H.: 1978 Harwell Conf., 880(1978).
59) Kari K.: KfK-2873 (1978).
60) Adarmov V.M. et al.: 1979 Knoxville Conf.. 995 (1979).
61) Arit R. et al.: 1979 Knoxville Conf.. 990 (1979).
62) Arlt R. et al.: 1983 Smolenice Conf.. 174 (1983).
63) Wasson O.A. at al: Nucl. Sci. Eng.. 80. 282 (1982).
64) Wasson O.A. et al.: Nuci. Sci. Eng.. 81. 196 (1982).
65) Li Jingwen et al.: 1982 Antwerp Conf.. 55 (1982).
66) Mahdavi M. et al.: 1982 Antwerp Conf.. 58 (1982).
67) Carlson A.D. and Behrons J.W.: 1982 Antwerp Conf., 456(1982).
68) Corvi F. et al.: NEANDC(E) 232U. vol. 3. 5 (1982).
69) Dushin V.N. et al.: Sov. Atom. Energy. 55, 656 (1984).
70) Kononov V.N. et al.: Sav. Atom. Ener.. 38, 105 (1975).
71) Dvukhsherstnov V.G. ot al.: Sov. Atom. Ener.. 39. 670 (1976).
72) Gwin R. et al.: Nucl. Sci. Eng. 59, 79 (1976).
73) Bluhm H. and Yon C.S.: Nucl. Sci. Eng.. 61. 471 (1976).
74) Hopkins J.C. and Diven B.C.: Nucl. Sci. Eng.. 12. 169 (1962).
75) Beer H. and Kaeppeler K.: Phys. Rev. C20, 201 (1979).
76) Iijima S. et al.: JAERI-M 87-025, p, 337 (1987).
77) Madland D.G. and Nix J.R.: Nucl. Sci. Eng.. 81, 213 (1982).
78) Saphior D. ot al.: Nucl. Sci. Eng., 62, 660 (1977).
79) NNDC working group on Decay Heat: private communication(1989).
80) Young P.G. ot al.: LA-6947 (1977).
81) Verbinski V.V. et al.: Phys. Rev.. C7. 1173 (1973).
82) Hida K.: JAERI-M 85-035. p. 166. (1885).

$$
\begin{aligned}
& \text { 92-U -236 NAIG Eval-Mar88 T.Yoshida } \\
& \text { Dist-Sep89 }
\end{aligned}
$$

## History

79－03 New cualuation for JENDL－2 was made by T．Yoshida（NAIG）．
86－12 JENDL－2 data ware oritically reviewed．
88－03 JENDL－2 data were revised to make JENDL－3 on the basis of the 86－12 review．Now Russian measurements（1982－1986） ware fully adopted，resultantly leading to a nearly 30 per－cent reduction of capture cross－section above 1.6 keV ． Sub－threshold fission curve was introduced between 1.5 keV and 700 keV ．Unknown gamma－f was assumed to be 0.354 milli－oV．
Data were comp led by T．Nakagawo（JAERI）．
MF＝1 General Information
MT＝451 Descriptive data and dictionary
MT＝462 N：ther of neutrons per fission
Taken.$⿰ ㇒ ⿻ 二 丨 冂 刂 灬$ Malinovskii＇s paper／1／
MF＝2 MT＝151 ssonance parameters
Resolved re mances for MLBW formula ： $1.0 \mathrm{E}-5 \mathrm{oV}$ to 1.5 keV
Res．energies and Gam－n（for Gam－n greater than 0．1．Gam－g）
：Carraro $/ 21$
Garn－n（for Gam－n smaller than 0．1－Garn－g）：Mowissen／3／ Gom－g ：Mowissen／3／，when not given，mean value was taken． Gem－f ：Theobald／4／．

Average Gam－g $=23.0 \mathrm{milli}-\mathrm{eV}$
Average Gam－f $=0.354 \mathrm{milli-eV}$
A negative resonance was introduced to reproduce the 2200－ $\mathrm{m} / \mathrm{s}$ capture cross section of（5．11＋－0．21）barns recommended in BNL－325 4th edition．
Unresolved resonances ： 1.5 keV to 40 keV
Parameters were determined to reproduce total and capture cross sections calculated with CASTHY and ovaluated fission cross section．Obtained parameters are：

SO $=0.906 \mathrm{E}-4 . \mathrm{S} 1=$ energy dependent（ $1.8 \mathrm{E}-4-2.7 \mathrm{E}-4$ ） Garn－g $=0.023 \mathrm{oV}$ ．Gam－f $=$ energy dependent $R=9.36 \mathrm{fm}, \mathrm{D}$－obs $=$ energy dependent（14．66－13．57 oV）

Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and res．integrals $2200-\mathrm{m} / \mathrm{sec}$ Res．Integ．
total 13.69 b－
elastic 8.337 b－
fission $\quad 0.0613$ b $\quad 7.77$ b
capture 5.295 b 346 b

## MF＝3 Neutron Cross Sections

Below 1.5 keV ．all background cross sections are zero．
Above 1.5 koV ，daṭa were evaluated as follows．In the energy
range from 1.5 to 40 keV ，unresolved resonance parameters were evaluated and background cross section was given to elastic scattering．

MT＝1，2．4．51－79．91，102．251 Sig－t，Sig－el．Sig－in．Sig－c．Mu－bar Coupled channel and statistical model calculations were made
with ECIS /6/ and CASTHY codes /7/. respectivoly
The deformed optical potential parameters after Haouat and Lagrange /5/:

$$
\begin{aligned}
& V_{r}=49.8-16 \cdot s y-0.3-E n \quad(\mathrm{MeV}) . \\
& W_{s}=5.3-8-s y+0.4-E n \quad(E n . L T .10 \mathrm{MeV})(\mathrm{MeV}) \text {, } \\
& =9.3-8 . s y \quad(E n . G E .10 \mathrm{MeV})(\mathrm{MeV}) \text {. } \\
& \mathrm{Vso}=6.2 \\
& \text { (MoV). } \\
& \text { where sy=(N-Z)/A } \\
& r=1.26, r s=1.26, r s o=1.12 \\
& a=0.63 \text {, as }=0.52 \text {, aso }=0.47 \\
& \text { (fm), } \\
& \text { a=0.63. (fm). }
\end{aligned}
$$

The spherical optical potential parameters for the statistical model calculation with CASTHY:

$V r=40.8-0.05 \cdot E n$,	$(\mathrm{MeV})$.
$W_{s}=6.5+0.16 \cdot \mathrm{En}$	$(\mathrm{MoV})$.
$V s o=7.0$	$(\mathrm{MeV})$.
$r=1.32 . r s=1.38, r s o=1.32$	$(\mathrm{fm})$.
$\mathrm{a}=0.47, \mathrm{as}=0.47, \mathrm{as}=0.47$	$(\mathrm{fm})$.

Competing processes : fission. ( $n, 2 n$ ) and ( $n, 3 n$ ) Level fluctuation was considered. The garmma-ray strength function was determined so that the calculated capture cross section reproduced the measured value of 0.85 barn /8/ around 10 keV .
The level scheme taken from Ref. 18/.

No.	Energy (MoV)	J-Parity	No.	Energy (MeV)	J-Parity
gs	0.0	0 +	1	0.04524	$2+$
2	0.14948	$4+$	3	0.30979	$6+$
4	0.52225	$8+$	5	0.68757	1 -
6	0.7442	3 -	7	0.7828	$10+$
8	0.8476	5 -	9	0.81816	0 +
10	0.9581	$2+$	11	0.9604	$2+$
12	0.9670	1 -	13	0.9880	$2-$
14	1.0014	$3+$	15	1.0020	7-
16	1.0356	3 -	17	1.0512	$4+$
18	1.0529	4 -	19	1.0587	$4+$
20	1.0661	$3+$	21	1.0700	4 -
22	1.0862	$12+$	23	1.0938	$2+$
24	1.1044	5 -	25	1.1110	2 -
26	1.1267	$5+$	27	1.1470	$3+$
28	1.1494	3 -	29	1.1640	6 -

Continuum levels assumed above 1.17 MoV .
The ground state, 1-st and 2-nd excited levels were coupled in the ECIS calculation.
$M T=16.17$ ( $n, 2 n$ ) and ( $n, 3 n$ )
Calculated with the PEGASUS code $/ 10 /$.
MT=18 Fission
Evaluated on the basis of measured data of U-236/U-235
/11.12/. To get absolute value Matsunobu's evaluation /13/ for U-235(n,f) was omployed.


MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.91 Calculated with PEGASUS.

```
 MT=18 Maxwellian fission spectrum. Temperature was
 estimated from Z.-2/A values /14/.
MF=8 Fission Product Yields Data
 MT=454 Independent yields
 MT=459 Cumulative yields
 Both were taken from JNDC FP Decay Data File version-2/i5/.
References
 1) V.V. Malinovskii et al.: Atomnayo Energiya, 53 (1982) }8
 2) G. Carraro. ot al.: Nucl. Phys.. A275 (1976) 333
 3) L. Mewissen, ot al.: 1975 Woshington, }729\mathrm{ (1875).
 4) J.P. Theobald: Nucl. Phys..181 (1972) 637.
 5) cited by P.G. Young In Proc. Specialists' Mtg on Use of
 Oplical Model. Paris, NEANDC - 222 U (1986)
 6) J. Raynal: IAEA SNR-9/8 (1970).
 7) S. Igarosi: J. Nucl. Sci. Technol.. 12 (1075) 67.
 8) A.A. Bergman: Atomnaya Energiya, 52 (1982) 409.
 O.T. Grudzevich et al.: IAEA INDC(CCP)-220/L (1984)
 A.N. Gudkov: Atomnaya Energiya. 61 (1986) 379
 9) M.R. Schmorak: Nucl. Data Sheets. 20 (1977) }192
10) S. Iijima et al.: JAERI-M 87-025, 337 (1987).
11) J.W. Behrens and C.W. Carlson: Nucl. Sci. Eng.. 63 (1977) }250
12) J.W. Meadows: Nucl. Sci. Eng., 65 (1978) 171.
13) H. Mat sunobu: evaluation for JENDL-3 (MAT=3924).
14) A.B. Smith et al.: ANL/NDN-50 (1979).
15) NNDC Working Group on Decay Heat: private communication(1989).
```

MAT nurnber $=3926$

$$
\begin{array}{r}
\text { 92-U -238 KYU.JAERI+ Eval-Apr87 Y.Kanda et al. } \\
\text { Dist-Sep89 }
\end{array}
$$

History
87-01 Simultaneous evaluation for fission and capture cross sections was completed in the energy range above 50 keV .
87-04 Other quantities were evaluated by
Y. Kanda and Y. Uenohara (Kyushu Univ.): MF's =3, 4 and 5 above resonance region.
T. Nakagawa (JAERI) : Resolved resonance parameters and background cross sections.
K. Hida (NA|G) : Data for gamma-ray production.

88-03 Data of total. elastic. inelastio (MT=59, 60) and capture cross sections were partly modified.
89-03 Data of total. elastic. inelastic and caprure cross sections were modified. Unresolved resonance parameters were also modified. FP yields were added.

MF=1 General Information
MT=451 Descriptive data and directory records
MT=452 Number of neutrons per fission
Sum of MT's= 455 and 456
MT=455 Delayed neutron data
Taken from Ref./1/.
MT=456 Number of prompt neutrons per fission Taken from evaluation by Frehaut /2/.

MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance paramsters

1) Resolved resonance parameters for MLBW formula
(resolved resonance region $=1.0 \mathrm{E}-6 \mathrm{eV}$ to 9.6 keV ) After JENDL-2 evaluation /3/. Extensive analysis was made by Olsen /4/. In the JENDL-3 evaluation, the parameters were modified from JENDL-2 on the basis of of Olsen's deta and resonance region was oxtended up to 9.5 keV . $R^{\prime}$ and parameters of the $6.67-o V$ level were adjusted to reproduce the thermal cross sections.

Resonance energy and neutron widths: weighted average of JENDL-2 and Olsen's data.
Capture and fission widths : Sarne as JENDL-2.
Effective scattering Radius : 9.7 fm
l-assignment : based on the mothod by Bollinger and Thomas 15/.
2) Unresolved resonance parameters
(unresolved resonance region $=9.5 \mathrm{keV}$ to 50.0 keV ) Parameters were obtained with the parameter fitting code ASREP/6/ so as to reproduce the cross sections evaluated in this energy region.
$2200-\mathrm{m} / \mathrm{s}$ cross sections and calculated resonance integrals.
$2200 \mathrm{~m} / \mathrm{s}(b)$ res. integ. (b)
total 1.1 .820
clastic 9.139
fission
$0.110 E-6$
2.02
capture
2.681
279.

```
MF=3 Neutron Cross Sections
 Below 50 keV, background cross sections were given. In the
 resolved resonance region, they were estimated from picket-
 fence model and numbers of missing levels.
 Above 50 keV, cross sections were evaluated as follows:
 MT=1 Total
 The same as JENDL-2 which were based on the following
 experimental data.
 Below 500 keV: Uttloy et al.171, Whalon et al./8/.
 Poenitz et al./8/. Tsubone et al./10/
 0.5-4.5 MeV: Poenitz et al./9/, Tsubone et al./10/.
 Kopsch ot al./11/.
 4.5 - 15 MoV : Foster and Glasgow /12/
 15-20 MoV : Bratenahl et al./13/. Peterson et al./14/.
MT=2 Elastic Scattering
 Calculated as (Total)-(Partial cross sections)
MT=4, 51-76, 91 Total and partial inelastic scattering
 Cross sections were calculated by taking account of direct
 and compound processes. Cross sactions for MT's = above 60
 were increased by 5 % to final JENOL-3.
 1) Direct process
 Coupled-channel model code ECIS/15/ was used together with
 spherical optical and statistical model code CASTHY/16/ for
 colculation of inelastic cross sections to the 1-st and
 second levels. Cross sections were normalized to the
 experimental data/17.18.19/ around 3 MeV of incident energy.
 The optical potential parameters were taken from Ref./17/.
 VO=46.2-0.3E, Ws = 3.6 + 0.4E, Vso = 6.2 (MEV)
 r=1.26, rs=1.26, rso=1.12
 (fm)
 a=0.63,as=0.62, aso=0.47 (fm)
 beta-2 =0.198, beta-4 =0.057
 Direct cross sections to the other levels were calculated
 with DWUCK4/20/. Those of 3-rd, 6, 8, 9, 10, 11, 13 and
 14-th levels were normalized to the experimental data /21/.
 Normalization factors to other levels were estimated from
 these results.
 The op!ical potential parameters /22/ used in DWUCK-4:
 V0 = 50.378-0.354E-27.073(N-Z)/A. (MoV)
 WS = 9.265-0.232E+0.03318E*-2-12.666(N-Z)/A.(MeV)
 Vso=6.2, (MoV)
 r=1:264.a = 0.612. . (fm)
 rs=1.256. as = 0.553+0.0144E. (fm)
 rso=1.1. aso=0.75 (fm)
2) Compound process:
Calculated with CASTHY /16/. The same optical potential parameters as those for ECIS calculation were used.
```

Level Scheme /23/

NO.	ENERGY(NEV)	SPIN-PARITY
G.S.	0.0	$0+$
1	0.044889	$2+$



MT=16 (n,2n)
Smooth cross section was determined on the basis of Frehaut et al. $/ 24 /$ below 15 MeV , and Veeser ot al. $/ 25 /$ and Karius ot al. $126 /$ above 15 MeV .

MT=17 (n,3n)
Based on Veeser ot al.125/
MT=18 Fission
Below 100 keV : Taken from experimental data /27/.
$100-600 \mathrm{keV}$ : Evaluated on the besis of the data of
Diffilippo ot al. /28/. Behrens and Carlson /29/.
Nordborg ot al. $130 /$ and Meadows /31.32/.
Above 600 keV : Results of simultaneous evaluation $/ 32 /$ made by considering the experimental data of Refs./29-32, 34-43/.

MT=102 Capture
Below 300 keV, evaluation was mainly based on the data measured by Kazakov et al./44/. Above 300 keV , data were taken from JENDL-2 which were determined mainly from the measurements by Poenitz /43/. Panitkin and Sherman /45/. Moxon /46/. Fricke et al. /47/ and Menlove and Poenitz /48/. At high energies. siight modification was made.

MT=251 Mu-L bar
Calculated from the angular distributions in NF=4. MT=2.

```
 ELIESE-3/49/.
 MT=53-76 Calculated with DWUCK4/20/ and ELIESE3
 MT=10,17.18,91 Assumed to be isotropic in the lab, system.
MF=Б Enorgy Distributions of Socondary Noutrons
 MT=16.17 Evaporation spectrum.
 MT=91 Evaporation spectrum in a table form.
 MT=18
 Calculated with the formula of Madland and Nix /50/.
 Constant compound nuclous formation cross section model was
 adopted.
 Total average FF kinetic energy = 170.07 MoV
 Average onergy roloase = 186.436 MoV
 Average mass number of light FF = 98
 Average mass number of heavy FF = 141
 Leval density parameter = A/10.0
 MT=455
 Taken from Saphier et al. /51/
MF=8 Fission Product Yiolds Data
 MT=454 Independent yields
 MT=459 Cumulative yiolds
 Both were taken from NNDC FP Decay Data File version-2/52/.
MF=12 Photon Production Multiplicitios (optior: 1)
 Given for the following sections below 933.941 keV.
 MT=18 Fission
 The thermal neutron-induced fission gamma spectrum of U-235
 measured by Verbinaki /54/ was adopted for the whole energy
 region. The intensity of photon below 0.14 MoV, where no
 data were given, was assumed to be the same as that between
 0.14 and 0.3 MoV.
 MT=51-59 Inolastic
 Photon branching data were taken from Ref./55/, and
 converted to photon multiplicities.
 MT=102 Capturo
 Calculated with GNASH/53/. In the case where the obtained
 multiplicities were too large, they were ronormalized by
 using energy balance.
MF=13 Photon Production cross sections
 MT=3 Non-elastic
 Photon production crosz section calculated with GNASH /53/
 were grouped into the non-elastic in the energy range above
 933.941 keV. Transmission coefficients for incident channel
 were generated with ECIS/15/, and those for exit channel
 with ELIESE-3/49/. The data for fission were based on the
 measured U-235 spectra /54/. Further details are given in
 Ref./56/
MF=14 Angular Distributions of Photons
 Isotropic distributions were assumed for all sections.
MF=15 Continuous Photon Energy Spectra
 MT=3 Non-olastic
 Calculated with GNASH /53/.
 MT=18 Fission
```

```
 U-235 spectra measured by Verbinski/54/.
MT=102 capture
 Calculated with GNASH/53/.
```

References

1) Evance A.E. ot al.: Nucl. Sci. Eng., 50, 80 (1973), and Tuttle T.R.J.: Nucl. Sci. Eng., 56. 37 (1876)
2) Frohaut J.: $\operatorname{NEANDC(E)}$ 238/I (1986).
3) Nakagawa T. et al.: JAERI-M 882 (1981).
4) Olson D.K.: ORNL/TM-8023 (ENDF-338) (1884).
5) Bollinger L.M. and Thomas G.E.: Phys. Rev.. 171, 1293 (1988)
6) Kikuchi Y.: private communication.
7) Uttlor C.A. ot al.: 1960 Paris Conf.. 1. 165 (1967).
8) Whalen J.F. et al.: Nucl. Inst. Moth.. 39. 185 (1966).
9) Poanitz W.P. at al.: Nucl. Sci. Eng.. 78. 833 (1981).
10) Tsubone 1. ot al.: Nucl. Sci. Eng.. 88. 579 (1984).
11) Kopsch D. et al.: 1970 Helsinki, 2, 39 (1970).
12) Foster D.G.Jr. and Glasgow D.W.: Phys. Rev.. C3. 576 (1971).
13) Bratenahl A. et al.: Phys. Rev., 110, 927 (1958).
14) Peterson J.M. et al.: Phys. Rev.. 120, 520 (1960).
15) Raynal J.: IAEA SNR-9/8 (1970).
16) Igarasi S.: J. Nucl. Sci. Technol.. 12, 67 (1975).
17) Haouat G. ot al.: Nucl. Sci. Eng., 81, 491 (1982).
18) Guenther P.: ANL-NDM-16 (1975).
19) Beghian L.E. ot al.: Nucl. Soi. Eng., 69, 191 (1979).
20) Kunz P.D: unpublished.
21) Haouat G. ot al.: NEANDC-158 (1982).
22) Madland D.G. and Young P.G.: "neutron Nuoleus Optical Potential for the Actinide Region ${ }^{\circ}$ IAEA-190, p. 251 (1978).
23) Shurskikov E.N. ot al.: Nuclear Data Sheets. 38, 277 (1883).
24) Frehaut J. ot al.: Nucl. Sci. Eng., 74, 19 (1980).
25) Veeser L.R. et al.: 1978 Harwell Conf., 1054 (1978).
26) Karius H. et al.: J. Phys., G5. 5. 715 (1878).
27) Difillipo F.C. ot al.: Nucl. Sci. Eng.. 63. 153 (1977).
28) Difillipo F.C. et al.: Nucl. Sci. Eng.. 68. 43 (1978).
29) Behrens J.W. and Carlson G.W.: Nucl. Sci. Eng.. 63, 250 (1977).
30) Nordborg C. ot al: ANL-76-90, 128 (1976).
31) Meadows J.W.: Nucl. Sci. Eng., 58, 255 (1975).
32) Meadows J.W.: Nucl. Sci. Eng., 49, 310 (1972).
33) Kanda Y. ot al.: 1985 Santa Fe. 2. 1567 (1986).
34) Cance M. and Grenier G.:Nucl. Sci. Eng., 68, 197 (1978).
35) Bilaud P. et al.:1958 Geneva.16, 106, 5809 (1958).
36) Adamov V.M. et al.: 1977 NBS. 313 (1977).
37) Arlt R. et al.: KE. 24. 48, 8102 (1981).
38) Cierjacks S. et al.:1976 ANL, 94 (1976).
39) Goverdovskii A.A. et al.: 1983 Kiev, 2, 159 (1983).
40) Androsenko S.D. et al.: 1983 Kiev, 2, 153 (1983).
41) Fursov B.I. et al.: Sov. Atom. Enorg.. 43. 808 (1978).
42) Poenitz W.P. and Armani R.J.: J. Nucl. Eneg.. 26. 483 (1972).
43) Poenitz W.P.: Nucl. Sci. Eng., 57. 300 (1975).
44) Kazakov L.E. et al.: Yad. Konst.. 3 (1986).
45) Panitkin Yu.G. and Sherman L.E.: Atomnaya Energiya, 39, 17 (1975).
46) Moxon M.C.: Private Communication to the NEA Data Bank (1971).
47) Fricke M.P. et al.: 1970 Helsinki. 265 (1970).
48) Menlove H.O. and Poenitz W.P.: Nucl. Sci. Eng., 33, 24 (1968).
49) Igarasi S.: JAERI-1224 (1972).
50) Madland D.G. and Nix J.R.: Nucl. Sci. 81. 213 (1982).
51) Saphier D. ot al.: Nucl. Sci. Eng., 62, 660 (1977).
52) JNDC Working Group on Decay Heat: private communication(1989).
53) Young P.G. at al.: LA-6947 (1977).
54) Vorbinski V.V. et al: Phys. Rev., C7. 1173 (1973).
55) Shurshikov E.N. et al.: Nucl. Data Sheets, 38, 277 (1883).
56) Hida K.: JAERI-M 85-036, 166 (1885).
```
 83-Np-237 Kyushu U.+ Eval-Nov87 Y.Uonohara. Y.Kanda
 Dist-Jan88
```


## History

78-03 Now evaluation was made by N. Wachi and Y.Kanda (Kyushu University), and Y,Kikuchi (JAER!).
87-11 ( $n, 2 n$ ). ( $n, 3 n$ ) and fission crose sections ware re-evaluated In the energy rage above 100 keV by Y.Uenohara and Y.Kanda (Kyushu University).
88-01 Compilad by T.Nakagawa (JAERI).
Modified quantities : (1,462), (1,456), (3,2). (3,16)
( 3,17 ) and (3.18)
88-02 FP yiolds were takon from JNDC FP Decay File version-2. 89-03 (n, 2n) reaction cross section was modified.

```
MF=1 General Information
 MT=451 Comments and dictionary
 MT=452 Number of noutrons per fission
 Sum of MT=455 and MT=456.
 MT=455 Dolayod noutron data
 Experimental data of Benedetti + /1/ and systematics
 by Tuttle /2/.
 MT=456 Number of neutrons per fission
 Based on experimental data of Frehaut + /3/.
```

$M F=2$. $M T=151$ Resonance parameters
Resolved resonances for SLBW formula : 1.0E-5 - 130 oV
Res. energy, Gam-n, Gam-g: Weston and Todd /4/.
Gem-f : Plattard + / $/$ /.
Average Gam-g $=40 \mathrm{milli}-\mathrm{sV}$.
A negative resonance added.
Unresolyed resonances : 130 oV - 30 keV
Parameters by Weston and Todd /4/ with slight modification
Adopted parameters :
$S 0=1.02 \mathrm{E}-4, \mathrm{~S} 1=1.888 \mathrm{E}-4, \mathrm{D}-\mathrm{Obs}=0.45 \mathrm{oV}$
Gem-g=40 milli-oV.
Gem-f values determined so that Sig-f $=0.009 \mathrm{~b}$.
Calculated $2200 \mathrm{~m} / \mathrm{s}$ cross sections and resonance integrals:
$2200 \mathrm{~m} / \mathrm{s}$ value Res. Int.

total	$:$	208.6	$b$	-	
elastic	$:$	27.62	$b$	-	
fission $:$	0.01821	$b$	6.36	$b$	
capture $:$	181.0	$b$	663	$b$	

## NF=3 Noutron Cross Sections

MT=1,4.51-64,91,102.251 Total. inelastic. capture and Mu-bar Calculated with optical and statistical model code CASTHY 16/.

The spherical optical potential parameters :

$V=43.55$	,$W_{s}=11.0 \quad$.	$V s o=7.0$	$(\mathrm{MoV})$
$r=r s=1.32$	$r s o=1.3$	$(\mathrm{fm})$	
$a=b=0.47$	$a s o=0.4$	$(\mathrm{fm})$	

In the statistical model calculation with CASTHY code. competing processes, fission. (n,2n) and (n,3n), and level fluctuation were considered. The level scheme was taken

```
 from compilation by Ellis/7/.
\begin{tabular}{rcc}
No & Energy (MeV) & Spin-Parity \\
g.s. & 0.0 & \(5 / 2+\) \\
1 & 0.03320 & \(7 / 2+\) \\
2 & 0.05954 & \(6 / 2-\) \\
3 & 0.07580 & \(9 / 2+\) \\
4 & 0.10296 & \(7 / 2-\) \\
5 & 0.13000 & \(11 / 2+\) \\
6 & 0.15852 & \(9 / 2-\) \\
7 & 0.2260 & \(11 / 2-\) \\
8 & 0.26754 & \(3 / 2-\) \\
9 & 0.281 & \(1 / 2-\) \\
10 & 0.305 & \(13 / 2-\) \\
11 & 0.327 & \(7 / 2-\) \\
12 & 0.332 & \(1 / 2+\) \\
13 & 0.357 & \(5 / 2-\) \\
14 & 0.369 & \(5 / 2+\)
\end{tabular}
Continuum levels assumed above 0.370 MeV . The level density parameters were taken from Gilbert and Cameron /8/. The germma-ray strength function for the capture cross section was determined so that \(\operatorname{Sig-c}=0.742\) b at 200 keV .
MT=2 Elastic scattoring
Calculated as (total - sum of partial cross sections).
MT=16
(n,2n)
For JENDL-2, data were oalculated with the evaporation model of Segevt/9/. The data for JENDL-3 were ovaluated by fitting to the following experimental data.
Porkint /10/. Landrumt /11/, Lindket/12/, Fort+/13/,
Gromovat /14/ and Kornilovt/15/.
The data of JENDL-2 were used as prior values, and 50\% fractional standard deviations were assigned to them.
\(M T=17\)
(n,3n)
For JENDL-2, calculated with the evaporation model of Segev \(+/ 9 /\). Above 16.5 MaV , the JENDL-2 deta wore modified by adding the values of (Sig-2n of JENDL-2)-(Sig-2n of JENDL-3). Below 16.5 MoV , the shape of (\(n, 3 n\)) cross section of JENDL-2 was normalized to the modified value at 16.5 MeV .
Fission
Evaluated from measured data. Above 100 keV ; simultaneous evaluation method was used by taking account of the following experimental data.
Kleme /16/. Protopopov+ /17/. Schmitt+/18/. Grundl /19/. Iyert/20/. Jiacoletti+/21/. Kobayashit/22/. Arlt+ /23/. Cancet /24/. Garleat /25/. Kuprijanov+/26/. Whitet /27.28/. Steint /29/. Behrens+/30/ and Meadows /31/.
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-64.91 Calculated with the optical model.
\(M T=16.17 .18 \quad\) Isotropic in the laboratory system.
```

```
MF=5 Energy Distributions of Secondary Neutrons
 \(M T=16.17 .91 \quad\) Evaporation spectrum.
 MT=18 Estimated from Z--2/A systematics by Smith +/32/
 by assuming \(E(C f-252)=2.13 \mathrm{MeV}\).
```

```
MF=8 Fission Product Yields
 MT=454 and 459
 Both were taken from JNDC FP Decay Data File version-2/33/.
```

References
1) G. Benedetti et al.: Nucl. Sci. Eng.. 80. 379 (1982).
2) R.J. Tuttle: INDC(NDS)-107/G+Special. p. 29 (1979).
3) J. Frehaut et al.: CEA-N-2196 (1981).
4) L.W. Weston and J.H. Todd: Nuci. Sci. Eng., 79. 184 (1981).
5) S. Plattard et al.: Nucl. Sci. Eng.. 61. 477 (1976).
6) S.Igarasi: J. Nucl. Sci. Technol.. 12, 67 (1975).
7) Y.A. Ellis: Nucl. Deta Sheets. B6. 539 (1971).
8) A. Gilbert and A.G.W. Cameron: Can. J. Phys.. 43, 1446 (1965)
9) M. Segev et al.: Annals of Nucl. Energy. 5. 239 (1978).
10) J. Parkin. et al.: Nucl. Energ. 14. 69 (1961).
11) J. Landrum, et al.: Phys. Rev., C8, 1938 (1969)
12) K.E.A.Lindke: Phys. Rev. C12, 1507 (1975).
13) E. Fort, et al.: 82Antwerp. 673 (1982).
14) E.A. Gromova. et al.: At. Energ.. 54. 108 (1983).
15) N.V. Kornilov, et al.: At. Energ., 68, 117 (1983).
16) E.D. Klema: Phys. Rev., 72, 88, (1947).
17) A.N. Protopopov, et al.: At. Energ.. 4. 190 (1958).
18) H.W. Schmitt, et al.: Phys, Rev.. 116. 1675 (1959).
19) J.A. Grundl: Nucl. Sci. Eng., 30, 39 (1967).
20) R.H. lyer, ot al.: 69Roorkee, 2, 289 (1969).
21) R.J. Jiacoletti. et al.: Nucl. Sci. Eng., 48, 412 (1872).
22) K. Kobayashi. et al.: Private communication (1973).
23) R. Arit. et al.: Kernonergie 24, 48 (1981).
24) M. Cance, et al.: 82Antwerp. 51 (1982).
25) 1. Garlea, et al.: INDC(ROM)-15 (1983).
26) V.M. Kuprijanov, et al.: At. Energ. 45. 440 (1978).
27) P.H. White. et al.: 65Salzburg. 1. 218 (1965).
28) P.H. White, ot al.: J. Nucl. Energ., 21. 871 (1967).
29) W.E. Stein, et al.: 68Washigton, 1. 627 (1968)
30) J.W. Behrens, et al.: Nucl. Sci. Eng., 80. 393 (1982).
31) J.W. Meadows: Nucl. Sci. Eng., 85, 271 (1983).
32) A.B. Smith et al.: ANL/NDM-50 (1979).
33) JNDC Workin Group on Decay Heat: private cormmunication(1989).

```
 93-Np-239 Krushu U.+ Eval-Mar76 Y.Kanda, JENDL-CG
 Dist-Sop89
History
76-03 The evaluation for JENDL-1 was performed by Kanda (Kyushu Univ.) and JENOL-1 Compilation Group. Details are given in Ref. /1/.
83-03 JENDL-1 data wore adopted for JENDL-2 and extended to 20 MoV. MF=5 was revised.
87-07 Data format was converted into ENDF-5 format and adopted to JENDL-3.
\(N F=1\) General Information
MT=451 Descriptive data and dictionary
MT=452 Number of neutrons per fission
Taken from the Np-237 data of ENDF/B-IV.
```

MF=2 Resonance Parameters
MT=151 No resonance parameters were given.

$2200-\mathrm{m} / \mathrm{sec}$	cross sections and calculeted resonance integrals.	
2200 m/sec	res. integ.	
total	47.50 b	-
elastic	10.50 b	-
fission	0.0 b	7.06 b
csinture	37.00 b	$445 . \mathrm{b}$

NF=3 Noutron Cross Sections
Bolow 4.0 eV.
MT $=1$ Total
Sum of partial cross sections.
MT=2 Elastic scattering
The constant cross section of 10.5 barns was assumed from
Sig=4-3.14-(0.147-A-*(1/3))=22.
MT=18 Fission
Assumed to be zero barns.
MT=102 Capture
The form of $1 / v$ was assumed. The $2200-\mathrm{m} / \mathrm{sec}$ cross section was adopted from the experimental data by Stoughton and Halperin /2/.
Above 4.0 oV.
MT=1 Total
Calculated with optical and statistical model code CASTHY /3/. Optical potential parameters were obtained by Onta and Miyamoto /4/ by using the total cross section of Pu-239.
$V=45.87-0.2 \cdot$ en. $W_{i}=0.06 . W_{s}=14.1 . V s o=7.3$ (MoV)
$r=1.27 \quad, r i=1.27, r s=1.302, r s 0=1.27$ ( fm)
$a 0=0.652 \quad, a i=0.315, a s=0.98, a s o=0.652(\mathrm{fm})$
MT=2 Elastic scattering
Calculated with CASTHY /3/.
MT=4.51-58.91 Inelastic scattering
Calculated with CASTHY /3/. The level scheme was adopted from Nucl. Data Sheets Vol. 6.

No. Energy(MoV) Spin-Parity
g.s. $0.0 \quad 5 / 2+$
$10.03114 \quad 7 / 2+$

```
 2 0.07112 8/2 +
 3 0.07467 5/2 -
 4 0.11766 11/2 +
 5 0.1230 7/2 -
 6 0.17305 0/2 -
 7 0.2414 11/2 -
 8 0.320 13/2 -
 Levels above 430 koV were assumed to overlapping. In the
 calculation the capture, fission. (n,2n) and (n,3n) cross
 section: were considered as competing processes.
 MT=10,17 (n,2n) and (n,3n)
 Calculated with Pearlatein's method /5/.
 MT=18 Fission
 Estimated from the Np-237 fission cross section by normali-
 zing with neutron separation energles.
 MT=102 Capture
 Below 100 keV, the cross section was calculated from
 Sig = 435 / SQRT(En) barns.
 Above 100 keV, the shape of the experimental data for No-237
 by Nagle et al. /6/ was adopted and normalized to 1.4 berns
 at }100\textrm{keV}
MT=251 Mu-bar
 Calculated with CASTHY /3/.
MF=4 Angular Distributions of Secondary Neutrons
 MT=2 Calculated with CASTHY code /3/.
 MT=51-58 Isotrapic in the center-of-mess system.
 MT=16.17.18.91 Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Noutrons
 MT=16.17.91 Evaporation spectrum.
 MT=18 Maxwellian fission spectrum estimated from
 Z-02/A systematics/7/.
References
1) Igarasi S. et al.: JAERI 1261 (1979).
2) Stoughton R.W. and Halperin J.: Nucl. Sci. Eng., 6, 100 (1959).
3) Igarasi S.: J. Nuci. Sci. Technol.. 12, 67 (1975).
4) Ohte M. and Miyamoto K.: J. Nucl. Sci. Technol., 10, 583 (4973).
5) Pearlstein S.: Nuci. Sci. Eng., 23, 238 (1965).
6) Nagel R.J. et al.: 1971 Knoxville Conf., 259 (1971).
7) Smith A.B. ot al.: ANL/NDM-50 (1979).
```

94-Pu-236 MAPI.JAERI Eval-Apr 79 T.Hojuyama. Y.Kikuchi, T.Nakagawa Dist-Sep89
History
79-04 Now ovaluation was made by $T$. Hojuyama (MAPI) /1/ in the energy range from $1.0 \mathrm{E}-5$ oV to 20 MoV .
89-07 Cross sections below 9.15 oV were modified by Y.Kikuchi and T.Nakagawa (JAERI).

NF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Nu-p and Nu-d for thermal neutron based on Manero's semiempirical formula $/ 2 /$. Neutron-energy dependence of Nu based on Howerton's ovaluation /3/.

NF=2 Resonance Parameters
MT=151 Resolved resonance parameters : $1.0 E-5$ to 9.15 oV Average capture width, SO, <D> and R were estimated from systematics/4.5/. The first positive resonance was located at 6.3 eV , and its neutron width was estimated from 50 . The fission width was determined so that the fission cross section caiculated from unresolved resonance formula with the fission width might smoothly connect at 10 keV to the cross nection in high energy region. A negative resonance was added at -0.8 oV and the parameters were adjusted so as to reproduce the fission oross section of 170 b at 0.0253 oV/4/ and reasonable capture cross section.

<WG>	$: 0.030 \mathrm{oV}$
$R$	$: 9.46 \mathrm{fm}$
<D>	$: 6.3 \mathrm{oV}$
S 0	$: 1.25 E-4 / 4.5 /$

Calculated $2200 \mathrm{~m} / \mathrm{s}$ cross sections and resonance integrals.
$2200 \mathrm{~m} / \mathrm{sec}$ Res. Integ.
total 331.1 b

olastic	16.34	$b$	-
fission	169.4	$b$	58.8 b

NF=3 Neutron Cross Sections
MT= 1 Total cross section Obtained by optical model calculation. Optical potential parameters were taken from Murata's ovaluation /7/ except real potential.
——optical Potential Parameters--
$V=39.5-0.05=E n \quad$ (MoV)
$\mathrm{Ws}^{2}=6.5+0.15=\mathrm{En} \quad$ (MoV)
$\mathrm{Vso}=7.0$ (MeV)
$r 0=r s o=1.32 . r s=1.38(\mathrm{fm})$
$a=\mathrm{aso}=0.47 \mathrm{f} \mathrm{b}=0.47(\mathrm{fm})$
MT= 2 Elastic scattering cross section
Obtained by optical and statistical model calculations.
MT=4.51-54.91 Inelastic scattering cross sections
Obtained by optical and statistical model calculations.

```
 Level scheme was taken from Ref./8/ except 4th level of
 which energy was based on Lynn /9/.
\begin{tabular}{ccc}
No. & En(keV) & Spin-Parity \\
g.s. & 0.0 & \(0+\) \\
1 & 14.6 & \(2+\) \\
2 & 145 & \(4+\) \\
3 & 305 & \(6+\) \\
4 & 623 & \(8+\)
\end{tabular}
Continuum levels assumed above 661 koV .
MT=16,17 (\(n, 2 n\)) and (\(n, 3 n\)) cross sections
Calculated with statistical model based on Pearlstein /10/.
MT=18,19.20.21 Fission cross sections
Below 10 keV :
Calculated from the unresolved resonanse formula with the following parameters.
SO \(=1.25 \mathrm{E}-4 . S 1=2.22 \mathrm{E}-4,\langle D\rangle=6.3 \mathrm{eV}\), \(\langle W G\rangle=0.0415 \mathrm{eV} .\langle W F\rangle=0.00355 \mathrm{eV}\).
Above 10 keV :
Calculated from fission plateau cross sections /7.12/ and Hill-Wheeler type barrier penetration factor /11/.
Fission barrier parameters were taken from Weigmann /13/.
MT=102 Capture cross section
Calculated by optical and statistical model with <WG> of \(41.5 \mathrm{milli}-\mathrm{eV}\) and \(\langle\mathrm{D}>\) of 6.3 oV .
MT=251 Mu-bar
Calculated with optical model.
MF=4 Angular Distribution of Secondary Neutrons
MT=2 Based on optical and statistical model calculation.
MT=51-54 |sotropic in the center-of-mass system.
MT=16-21.91 Isotropic in the laboratory system.
```

```
MF=5 Energy Distribution of Secondary Neutrons
MT=16.17.91 Evaporation spectrum assumed
MT=18,19,20.21 Fission spectrum of Maxwollian form adopted. Theta taken from evaluation of Terreli/14/.
```

Reforences

1) Hojuyama T.: Proc. ' 79 Fall Meet. of A.E.S.J..Tokai (1979) C 43.
2) Manero F. and Konshin V.A.: At. Energy Rev.,10,(1972) 637.
3) Howerton R.J.: Nuc1. Sci. Eng. .62.(1977) 438
4) Mughabghab S.F. and Garber D.I.: BNL 325.3rd Ed..1.(1973). Mughabghab S.F.: "Neutron Cross Sections. Vol. 1, Part B'. Academic Press (1984).
5) Musgrove A.R.de L.: AAEC/E 277 (1973).
6) Gindler J.E. et al.: Phys. Rev.,115,(1959) 1271.
7) Matsunobu H. et al.: Proc. Int. Conf. on Nuclear Cross Sections for Technology. Knoxvillo (1979) 715.
8) Schmorak M.R.: Nucl. Data Sheets,20.(1977) 165.
9) Lynn J.E.: The Theory of Neutron Resonance Reactions(1968). Oxford University Press.
10) Pearlstein S.: Nucl. Sci. Eng. . 23.(1965) 238.
11) Hill D.L. and Wheeler J.A.: Phys. Rev.. 89.(1953) 1102.
12) Behrens J.W.: Phys. Rev. Lett., 39.(1977) 68
13) Weigmann H. and Theobald J.P.: Nucl Phys..A187.(1972) 305
14) Torroll J.: Proc. LAEA Symposium on Physics and Chemistry of Fission . Salzburg (1965)

## MAT number $=3942$

94-Pu-238 MAPI, JAERI Eval-Mar89 T.Kawakita, T.Nakagawa Dist-Sep89
History
79-03 New evaluation was made by T.Kawakita (PNC).
89-03 Re-evaluat ion was made by T.Kawakita (MAPI) and T.Nakag-: a(JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary
MT=452 Number of neutrons per fission
The thermal value of prompt neutrons was based on experimental data of Jaffey /1/ and Nu-d was taken from semi-empirical formula by Manero /2/. The energy dependent term was estimated from Howrton's formula /3/.
(Only total nu is given in the file.)
MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula.
Energy range is from $1.0 \mathrm{E}-5 \mathrm{eV}$ to 500 eV . Parameters were
taken from the following experimental data.
49 resonances above 10 eV : Silbert /4/
4 resonances bolow 10 eV : Young /5/
The parameters of two negat ive and $2.9-e V$ resonances were adjusted to the thermal cross sections/6/.

Calculated $2200-\mathrm{m} / \mathrm{s}$ cross sections and resonance integrals 2200-m/s
total 586.7 b
olastic 28.53 b
fission $17.89 \mathrm{~b} \quad 32.7 \mathrm{~b}$
capture $640.3 \mathrm{~b} \quad 154$ b

## MF=3 Neutron Cross Sections

The energy region below 500 eV is the resonance region. Above 500 eV . the cross sections wero evaluated as follows.

```
MT=1,2.4,51-78,91,102 Total, olastic and ineiastic scattering.
 and capture cross sections
 Calculated with optical and statistical models. CASTHY/7/
 was used for the calculation.
 Optical potential parameters:
 The real potential was adjusted so as to obtained the
 reasonable compound nucleus formation cross section. The
 other parameters were taken from Murata's evaluation /8/.
 V = 38.8-0.05.En (MoV)
 Ws = 6.5 + 0.15-En (MoV)
 Vso=7.0 (MoV)
 a = b =.aso= 0.47 (fm)
 r = rso= 1:32 (fm)
 rs=1.52 (fm)
```

The level scheme:
Taken from Ref. /9/.

No.	Energr(keV)	Spin-Parity
g.s.	0.0	$0+$
1	44.08	$2+$
2	145.98	$4+$
3	303.4	$6+$
4	514.0	$8+$
5	605.1	$1-$
6	681.4	$3-$
7	783.2	$5-$
8	941.5	$0+$
9	982.77	$1-$
10	968.2	$2-$
11	983.0	$2+$
12	985.5	$2-$
13	1028.65	$2+$
14	1069.95	$3+$
15	1082.57	$4-$
16	1125.8	$4+$
17	1174.5	$2+$
18	1202.7	$3-$
19	1228.6	$0+$
20	1284.2	$2+$
21	1310.3	$2+$
22	1426.6	$0+$
23	447.3	$1-$
24	1458.5	$2+$
25	1560.0	$1-$
26	1696.6	$2+$
27	1621.4	$1-$
28	1636.6	$1-$

Continuum lavels assumad above 1.65 MeV .
The level density parameters of Gilbert and Cameron /10/.
The fission. ( $n, 2 n$ ) and ( $n, 3 n$ ) cross sections were taken
into account as the competing processes.
For the capture cross section, the garmma-ray strength function was estimated from D-obs $=9.6$ oV and average radiativo width $=0.04 \mathrm{oV}$.

MT=16,17 (n,2n) and (n,3n) raaction cross sections
Calculation based on the Pearlstain's method /11/.
MT=18 Fission cross section
Evaluated mainly on the besis of data moasured by
Budtz-Jorgensen/12/. Other experiments /4, 13-20/ were also taken into consideration.
MT=251 Mu-bar
Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons
$\mathrm{A}^{\prime} \mathrm{T}=2.51-78.91$
Calculated with optical model.
MT=16,17,18
Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16,17.91
Evaporation spectrum was assumed.
$M T=18$

## Maxwellian type fission spectrum. Tomperature was estimated from Z.-2/A systematics by Smith ot al. /21/.

## References

1) A.H. Jaffoy ot al.: Nucl. Phys., A146 (1970).
2) F. Manero ot al.: Atom. Energy Rev., 10, 637 (1972).
3) R.J. Howerton: Nucl. Sci. Eng., 62, 438 (1977).
4) M.G. Silbert et al.: Nucl. Sci. Eng., 52, 176 (1973).
5) T.E. Young et al.: Nucl. Sci. Eng., 30, 355 (1967).
6) Mughabghab S.F.: 'Neutron Cros: Sections, vol. 1, part B'. Academic Press (1984).
7) S. Igarasi: J. Nucl. Sci. Technol.. 12, 67 (1975).
8) T. Murata: private cormmunication.
9) C.M. Lederer et al.: Table of Isotopes, 7th Ed. (1978).
10) A. Gilbert and A.G.W. Cameron: Can. J. Phys.. 43. 1446 (1965).
11) S. Pearlstein: Nucl. Sci. Eng.. 23. 238 (1965).
12) C. Budtz-Jorgensen et al.: 1982 Antwerp, 206 (1983).
13) D.M. Barton and P.G. Koonty: Phys. Rev.. 162, 1070 (1967).
14) E.F. Fomushkin et al.: Sov. J. Nucl. Phys.. 5. 689 (1967).
15) S.B. Ermagambetov and G.N. Shironkin: Sov. J. Nucl. Phys.. 25, 1364 (1968)
16) D.M. Drake et al.: LA-4420, p. 101 (1970).
17) S.B. Ermagambetov ot al.: Sov. J. Nucl. Energy. 29. 1190(1970).
18) E.F. Fomushkin ot al.: Sov. J. Nucl. Phys., 10, 629 (1970).
19) D.L. Shpak ot al,: JETP Letters, 15, 228 (1972).
20) B. Alam et al.: Nucl. Sci. Eng., 99, 267 (1988).
21) A.B. Smith et al.: ANL/NDM-50 (1979).

MAT number $=3943$

```
94-Pu-239 NAIG Eval-Mar87 M.Kawai. T.Yoshida. K.Hida
Dist-Sop89
History
87-03 Evaluation was made by
 M.Kawal and K.Hida(NAIG) : cross sections above
 resonance region and other quantitles.
 T.Yoshida(NAIG) : resonance parameters and background
 oross sections.
88-08 Partly modified.
 Nu-bar, Resolved resons.. (n,2n).
89-02 FP yields were taken from JNDC FP Decay Data File version-2.
89-03 Unresolved resonance parameters were slightly modified.
```

    Data were compiled by T.Nakagawa (JAERI).
    MF=1 General Information
MT=451 Descriptive data and dictionary
MT=452 Number of neutrons per fission
Sum of $\mathrm{Nu}-\mathrm{p}$ ( $\mathrm{MT}=456$ ) and $\mathrm{Nu}-\mathrm{d}$ ( $\mathrm{MT}=455$ ).
MT=455 Delayed neutron data
Evaluated data by Tuttle /1/ were adopted.
MT=456 Number of prompt neutrons per fission
Standard Cf-252 SF Nu-p was taken to be 3.756. Thermal Nu-p
was 2.8781 that was a mean value of experimental data. The
energy dependent Nu-p was obtained from
below $10 \mathrm{oV}:$ Ref./2/ multiplied by 1.001
10 oV <En< 500 oV: Ref. $13 / \mathrm{multiplied}$ by 1.0035
5000 V <En< 100 koV : Ref./2/ multiplied by 1.001
above 500 keV : Refs./4-8/
Factors are ratios of 2.8781 and the experiments at thermal
energy.
MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters
Resolved res. parameters for Reich-Moore formuls: up to 1 koV
Parameters were taken from Refs./9/ and /19/, in which the
fission cross section measured by Weston and Todd /11/ had
been used as the basis of analysis. Ths parameters given in
Ref. $/ 10 /$ were revised in 1988 by tic original authors and
these final values /12/ were adopted here.
Unresolved resonances : from 1 to 30 koV .
The energy dependent S0. S1 and fission width were deter-
mined so as to reproduce the evaluated total. capture and
fission cross sections.
$2200-\mathrm{m} / \mathrm{sec}$ cross sections and calculated resonance integrals.
$2200 \mathrm{~m} / \mathrm{s}$ res. integ.
total 1025.5 b -
olastic
8.831 b
$\begin{array}{llll}\text { fission } & 746.7 & \text { b } & 299 \\ \text { capture } & 270.0 & \text { b } & 185\end{array}$

## MF=3 Noutron Cross Sections

Between 1 and 30 keV . cross sections wero roplaced with unresolved resonance parameters.

```
MT=1 Total
 Bolow }7\textrm{MoV}\mathrm{ . JENDL-2 ovaluation which were based on the
 experiments of Refs./13-17/ was adopted. Above 7 MeV.
 experimental data by Poenitz /18/ were adopted.
MT=2 Elastic scattering
 Calculated as (Total) - (Partial cross sections).
MT=4. 51-68, 91 Inolastic ecattering
 The direct component was calculated with coupled channel code
 ECIS /19/. Eight states, marked with an asterisk in the
 level scheme given below, of the ground state rotational band
 were coupled in the calculation. Deformed optical potential
 parameters with a derivative Woods-Saxon absorption term were
 taken from Ref.120/:
```



```
Beta-2= 0.21, Beta-4= 0.066
The compound component was calculated with optical and
statistical model code CASTHY /21/, taking into occount level
fluctuation and interference effects. The fission, (n,2n).
(n,3n), and (n,4n) reactions were considered as competing
processes.
The neutron transmission coefficients for the incident channel were generated with ECIS, whereas those for the exit
channel were calculated with CASTHY using spherical optical
potential parameters adopted for JENDL-2 evaluation:
 V = 40.72-0.05=En (MoV)
 Ws = 6.78-0.28.En (MoV)
 Vso=7.0
 r=rso= 1.32. rs =1.357 (fm)
 a =aso=b=0.47
 (fm)
```

The surface absorption is of derivative Woods-Saxon type. The level scheme was taken from Ref./22/:

No.	Energy(keV)	Spin-Parity Coupled level	
g.s.	0.0	$1 / 2+$	
1	7.86	$3 / 2+$	
2	57.28	$5 / 2+$	
3	75.71	$7 / 2+$	
4	163.76	$9 / 2+$	
5	184.	$11 / 2+$	
6	285.46	$5 / 2+$	
7	317.	$13 / 2+$	
8	330.13	$7 / 2+$	
9	360.	$15 / 2+$	
10	387.41	$9 / 2+$	
11	391.6	$7 / 2-$	
12	435.	$9 / 2-$	


13	462.	$11 / 2+$
14	469.8	$1 / 2-$
15	488.	$11 / 2-$
16	492.1	$3 / 2-$
17	505.5	$5 / 2-$
18	511.84	$7 / 2+$

Continuum levels were assumed above 538 koV .
$M T=16,17,37 \quad(n, 2 n),(n, 3 n)$, and $(n, 4 n)$
Calculated with a modified version of GNASH /23/. The neutron transmission coefficients were generated with ECIS
/19/ and optical model code ELIESE-3 /24/. respectively. using the above-mentioned deformed and spherical potentials. The level schemes for Pu-236, -237, $\mathbf{2 3 8}, \mathbf{2 3 9}$ and -240 were taken from Refs. $/ 22 /$ and $/ 25-28 /$. The Gilbert-Cameron's composite formula /29/ was used to reprosent the level density. Level density parameters were determined from the observed s-wave resonance spacing /30/ and the level schemes. The spin cut-off factors in the constant temperature model were represented by Gruppelaar's prescription /31/.

	Pu-236	Pu-237	Pu-238	Pu-239	Pu-240
a (1/MoV)	25.50	28.00	2 C .23	29.44	26.96
T ( MeV )	0.442	0.416	0.422	0.398	0.412
C (1/MeV)	3.06	14.5	2.88	15.0	3.30
E-joint ( MeV )	4.71	4.09	4.38	3.97	4.26
sigma- 2	8.03	8.18	0.47	11.0	9.69
no. levels	4.0	19.0	22.0	18.0	28.0
E-max (MeV)	0.307	0.4736	1.3103	0.5118	1.2621
D-obs (oV)	0.395	10.7	0.383	9.0	2.3
Gamma-g(eV)	0.043	0.027	0.043	0.034	0.043

D-obs of Pu-238, -237 and -238 were not available from Ref. 130/. and hence the parameters " $a$ " for these nuclei were determined assuming its linear dependence on the mass $A$ :

$$
a=0.365 \cdot A-60.64 \quad \text { for even-even Pu isotopes }
$$

$$
a=0.659 \cdot A-128.18 \quad \text { for odd-mass Pu isotopes }
$$

which were derived by analyzing the data of Pu-241. -242. -243 , and -244 as well as Pu-239 and -240 . Low-lying levels were hardly observad for Pu-236 and it was assumed to be identical to that of Pu-238 to determine the constant temperature parameters.

Evaluated fission cross section described below was fed to GNASH as a competing process. The preequilibrium process was taken into account. Though the parameter F2 was adjusted, the calculated ( $n, 2 n$ ) cross section failed to well reproduce the measured data. Therofore, the measured ( $n, 2 n$ ) cross section of Frehaut et al./33/ was adopted in place of the calculated one.

MT=18 Fission
Below 50 ke /
Besed on measurements of Ref./34/ and Ref./35/.
Above 50 keV
Simultaneous evaluetion was performed by Kanda et al./36/

```
MT=102 Capture
 The cross section in the onergy range below 1 MeV was derived
 as a product of the evaluated fission cross section and alpha
 value. The alpha values are identical to those of JENDL-2.
 Above 1 MeV the results of the statistical model calculation
 with CASTHY /21/ linked with ECIS /19/ were adopted. The
 photon strength function was normalized in the CASTHY
 calculation so as to reproduce the capture cross section of
 280 mb at 100 keV.
```

MT=251 Mu-bar
Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-68.91 Calculatod with ECIS /19/ and CASTHY /21/.
MT=16.17.18.37 Isotropic in the laboratory system.

```
MF=5 Energy Distributions Secondary Neutrons
 MT=16.17.37.81
 Calculated with threshold cross section calculation code
 PEGASUS /37/ on the basis of preequilibrium and multi-step
 evaporation model.
 MT=18
 Distributions calculated with the formula of Madiand and Nix
 /38/ were adopted. Constant compound nucleus formation cross
 soction model was adopted.
 Toral average FF kinetic energy = 177.1 MeV
 Average energy releese = 198.154 MeV
 Average mass number of light FF = 100
 Average mass number of heavy FF = 140
 Lovel density parameter =A/9.0
 MT=455
 Taken from Saphier et al. /39/
```

MF=8 Fission product yiolds
MT=454 Independent yields
MT=459 Cumulative yields
Both were taken from NDC FP Decay Data File version-2/40/.
MF=12 Photon Production Multiplicities and Transition
Probability arrays
MT=16.17.37.81.102 (n, 2n). (n, 3n), (n,4n), inelastic Scatering
to the continuum, and Capture
Data calculated with GNASH /23/ wore stored under Option-1
(multiplicities). The photon branching data were taken from
Refs. /22/ and /25-28/. Some assumptions were made for
levels of Pu-237 and -238 which had no information on
branching: If E1 transitions were allowed to lower levels.
the transition probabilities were equally shared among
thom. If not, equally shared collective E2 transitions were
assumed. The photon strength functions were represented by
the Brink-Axel type giant dipole resonance with conventional
resonance positions and widths. They were normalized to
input values at the thermal energy. The pygmy resonance was
introduced only for Pu-240. The parameters were assumed to
be the same as those of U-238 /41/.

```
 MT=18 Fission
 Stored under Option-1 (multiplicities). The thermal neutron
 induced fission gamma spectrum messured by Verbinski /42/
 was adopted and used up to 20 MeV neutron. Since no deta
 were given for the photons below 0.14 MeV. it was assumed to
 be the same as that of the photons between 0.14 and 0.3 MeV.
 MT=51-68 Inelastic Scattering
 Stored under Option-2 (transition probability arrays). Data
 were taken from Ref./22/, and the same assumptions as
 described above were applied to the levels to which no data
 were given.
MF=14 Photon Angular Distributions
 MT=16,17,18,37,51-68.91,102 Isotropic.
MF=15 Continunus Photon Energy Spectra
 MT=16.1,.3%.91.102 Calculated with GNASH /23/
 MT=18 Experimental data by Verbinski /42/
 were adopted.
```


## References

```
1) Tuttle R.J.: INDC(NDS)-107/G + Special. 29 (1980).
2) Gwin R. ot al.: Nucl. Soi. Eng., 94, 385 (1988).
3) Frefaut J.: \(\operatorname{NEANOC(E)-238/L~(1986).~}\)
4) Gwin R. ot al.: Nucl. Sci. Eng., 87, 381 (1984).
5) Soleilhac M. et al.: 70 Helsinki , 2. 145 (1970).
6) Solellhac M. et al.: J. Nucl. Energy. 23. 257 (1968).
7). Nurpoisov 8. ot al.: At. Energiya, 39, 199 (1975).
8) Vorodin K.E. ot al.: At. Energiya. 33. 901 (1972).
9) Porez B. ot al.: Nucl. Sci. Eng., 93 , 31 (1986).
10) Derrion H. et al.: OPAL-TM-10098 (1987).
11) Weston L.W. ot al.: Nucl. Sci. Eng.. 88, 567 (1984).
12) de Saussure G.: private communication (1988).
and Derrion H. ot al.: ORNL/TM-10986 (1989).
13) Uttely C.A.: EANDC(UK)-40 (1964).
14) Schwartz R.g. et al.: Nucl. Sci. Eng., 54. 322 (1974).
15) Foster D.G.Jr. and Glagow D.W.: Phys. Rev., C3. 576 (1971).
18) Smith A.B. ot al.: J. Nucl. Energy, 27. 317 (1973).
17) Nadolny ot al.: C00-3058-39, 33 (1973).
18) Poonitz W.P. ot al.: Nucl. Sci. Eng., 78, 333 (1981).
19) Raynal J.: IAEA SMR-9/8 (1970).
20) Arthur E.D. et al.: Nucl. Sci. Eng. 88, 56 (1984).
21) Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1975):
22) Schmorak M.R:: Nucl. Data Sheets. 40. 1 (1983).
23) Young P.G. ot al.: LA-6947 (1971).
24) Igarasi S.: JAERI-1224 (1972).
25) Schmorak M.R.: Nucl. Data Sheets. 36, 367 (1982).
26) Ellis-Akovali Y.A.: ibid.. 49, 181 (1986).
27) Shurshikov E.N.: ibid.. 38. 277 (1983).
28) Shurshikov E.N. ot al.: ibid.. 43. 245 (1984).
29) Gilbert A. ot al.: Can. J. Phys. 43, 1448 (1965).
30) Mughabghab S.F.: Neutron Cross Sections, vol 1, Part B (1984).
31) Gruppolaar H.: ECN-13 (1977).
32) Yamarmuro N. et al.: JAERI-M 87-025, 347 (1987).
33) Frehaut J. et al.: CEA-N-2500 (1986).
```

34) Gayther D.B.: 1975 Washington. 2. 560 (1975).
35) Wagemans C. et al.: Ann. Nucl. Energy, 7, 495 (1980).
36) Kanda Y. et al.: 1985 Santa Fe, 2, 1567 (1986).
37) Iijima S. et al.: to be published.
38) Madland D.G. and Nix J.R.: Nucl. Sci. Eng. 81. 213 (1982).
39) Saphier D. et al.: Nucl. Sci. Eng., 62. 660 (1977).
40) NDC working group on Decay Heat: private communication(1989).
41) Hida K.: JAERI-M 85-036. 166 (1985).
42) Verbinski V.V. at al.: Phys. Rev.. C7. 1173 (1973).
94-Pu-240 NAlG+

Eval-May87 T.Murata, A.Zukeran<br>Dist-Sep89

## History

87-05 Evaluation was made by
T.Murata (NAIG) : Cross sections above resonance region and other quantities.
A.Zukeran(Hitachi): Resonance parameters.

88-00 MT's=16, 17, 37 and 102 were modified.
89-02 FP yields were taken from JNDC FP Decay File version-2.
Compilation was made by T. Nakagawa (JAERI).
MF=1 General Information
MT=451 Comments and dictionary
MT=452 Number of noutrons per fission
Sum of MT=455(delayed neutrons) and MT=456(prompt neutrons).
MT=455 Delayed neutron data
Assumed to be the same as those of Pu-239.
MT=456 Number of prompt neutrons Linear least-squares fitting to the experimental data of Frehaut ot al. /1/ renormalized to Cf-252 $\mathrm{Nu}-\mathrm{p}=3.756$.

MF:=2 Resonanco Parameters
MT=151 Resolved and unresolved resonance parameters

1) Resolved resonances for MLBW formula (1.0E-5 to 4 keV )

Parameters of a negative and the $1.057-0 \mathrm{~V}$ resonances were revised on the basis of recommendation by Mughabghab /2/. Neutron and capture widths of other levels were based on the experimental data by Hockenbury et al. /3/ in the energy range from 20 to 500 oV , and Kolar and Boeckhoff /4/from 500 oV to 4 keV . The ayerage capture width of 29.5 millimeV was assumed for the resonances whose capture widths were unknown. Below 610 oV , the sub-threshold fission widths were calculated from the area data by Weston and Todd $/ 5 /$. Above 610 oV. they were taken from the data by Auchampaugh and Weston /6/.
2) Unresolved resonances ( 4 to 40 keV )

Energy dependent parameters were determined to reproduce the evaluated cross sections in this energy region. Fission widths were adjusted to average cross sections measured by Weston and Todd /5/.

Calculated $2200-\mathrm{m} / \mathrm{sec}$ cross sections and res. integerals. $2200-\mathrm{m} / \mathrm{sec}$ res. integ.
total 291.13 b
elastic
fission
capture
1.644 b
0.0588 b
8.94 b
289.4 b 8110. b

## MF=3 Neutron Cross Sections

Below 4 keV : Background cross sections are given to the capture cross section.
Above 4 keV : Evaluated as follows. In the energy range from 4 to 40 keV . the cross sections are represented with the unresolved resonance parameters, and the background cross sections are given in MF=3.

```
MT=1 Total
 Evaluated with spline fitting to the experimental dats of
 Smith et al./7/. Kaeppeler et al./8/ and Poenitz ot al./9/
MT=2 Elastic scattering
 Obtained by subtracting the other cross sections from total
 cross section.
MT=4 Total inelastic scattering
 Sum of partial inelastic scattering cross sections (MT=61
 to MT=91).
```

MT=51-78. 91 Partial inelastic scattering Below 3 MeV , the results of statistical and coupled- channel calculation made by Lagrange et al. $/ 10 /$ were adopted. For some levels, for which Smith's experimental data /11/ were available, the calculated results ware normalized (for $1 s t$, 2nd, 3rd, 5th and 9 to 11 th levels).

Level scheme

$M T=16.17,37$ ( $n, 2 n$ ). ( $n, 3 n$ ) and ( $n, 4 n$ )
Calculated from neutron emission cross section and branching ratio to each reaction channel. Neutron emission cross section was obtained by subtracting the fission and capture cross sections from compound nuclous formation cross section
calculated with spherical optical model. Branching ratio was obtained from formalism given by Segev et al. /12/

MT=18 Fission
Below 100 keV : Average values of fission cross section measured by Weston and Todd /5/ were normalized to the value at 100 keV of the simultaneous evaluation.
Above 100 keV : Simultaneous evaluation was made by taking account of experimental data of fission ratio and absolute cross sections of U-236, U-238, Pu-239. Pu-240 and Pu-241. and capture cross section of Au-197/13/.

MT=102 Capture
Below 350 keV : Based on the experimental data of Hockenbury et al. /3/. Waston and Todd /14/ and the ratio data of Wisshak and Kaeppeler /15/ with the capture cross section of Au-197 113/. As a guide line. statistical model calculation was made with CASTHY code /16/.
Above 350 keV : The statistical model calculation was normalized to the value at 350 keV . Direct and collective capture was included in high energy region adopting the value for U-238 given by Kitazawa ot al. /17/.

The spherical optical potential parameters

$$
\begin{array}{lll}
V=40.6-0.05 \cdot E n, & W_{s}=6.5+0.16 \cdot E n(M o V) \\
V s o=7.0 & & (\mathrm{MoV}) \\
r=r s o=1.32 & (\mathrm{fm}) \\
r=a s=880=0.47 & & (\mathrm{fm})
\end{array}
$$

Level density parameters were determined to reproduce the resonance level spacings and stairceses of discrete lovels.

MT=251 Mu-bar
The same as JENDL-1/18/ except for 20 MeV .
MF=4 Angular Distributions of Socondary Noutrons $M T=2$

Taken from JENDL-2 /18!.
$\mathrm{MT}=16,17.18,37,91$
Assumed to be isotropic in the laboratory system.
MT=51-78
For the 1 st and 2nd levels, results of Lagrange ot al. /10/
were adopted. For others, statistical and OWBA calculations
were made.
MF=5 Energy Distributions of Secondary Neutrons MT=16.17.91

Calculated with pre-compound and multi-step evaporation
theory code PEGASUS /19/.
MT=37
Evaporation spectrum was given.
MT=18 Fission spectra
Calculated from Madiand-Nix formula /20/.
Average energy release $\quad=199.179 \mathrm{MeV}$

Total average FF kinetic energy $\quad=177.53 \mathrm{MoV}$
Average mass number of light FF $=101$
Average mass number of heavy FF $\quad=140$
Level density parameter =A/10.0

MT=455 Delayed neutron spectra
Assumed to be the same as Pu-239 which were taken from the evaluation by Saphier et al. /21/.

MF=8 Fission Product Yiolds
MT=454 Independent yields
MT=459 Cumulative yields
Both were taken from JNDC FP Decay File version-2/22/.

## Roforences

1) Frohaut J., ot al.: CEA(R) 4626 (1974).
2) Mughabghab S.F.: 'Noutron Cross Sections, Vol. 1, Part B'. Acadomic Pross (1984).
3) Hockenbury R.W. ot al.: Nuc1. Sci. Eng., 49. 153 (1972).
4) Kolar W. and Boockhoff K.H.: J. Nucl. Enorgy, 22. 299 (1868).
5) Weston L.W. and Todd J.H.: Nucl. Sci. Eng., 88, 567 (1984).
6) Auchampaugh G.F. and Weston L.E.: Phys. Rev., C12. 1850 (1975)
7) Smith A.B. ot al.: Nucl. Sci. Eng.. 47, 19 (1972).
8) Kaeppler F., ot al.: Proc. of Moeting on Nuclear Data of Higher Pu and Am Isotopes for Reactor Application, held at BNK. p. 49 (1978)
9) Poenitz W.P.. ot al.; Nucl. Sci. Eng., 78, 333 (1981), and ANL/NDM-80 (1983).
10) Lagrange Ch. and Jary J.: NEANDC(E) 198*L' (1978).
11) Smith A.B.. ot al.: |AEA-153. p. 447 (1973).
12) Segev M., ot al.: Annals of Nucl. Energy, 5, 239 (1978).
13) Kanda Y. ot al.: 1985 Santa Fo, 2. 1587 (1986).
14) Weston L.W. and Todd J.H.: Nucl. Sci. Eng..63, 143 (1977).
15) Wisshak K. and Kaeppoler F.: Nuol. Sci. Eng., 66, 363 (1978) and Nucl. Sci. Eng.. 69. 39 (1979).
16) Igarasi S.: J. Nucl. Sci. Technol., 12, 67 (1975).
17) Kitazawa H., ot al.: Nucl. Phys.. A307. 1 (1978).
18) Igarasi S.. of al.: JAERI 1261 (1979).
19) I ij ima S., ot al.: JAERI-M 87-025, p. 337 (1987).
20) Madland D.G. and Nix J.R.: Nucl. Sci. Eng., 81, 213 (1982).
21) Saphior D., ot al.: Nucl. Sci. Eng., 62, 660 (1977).
94-Pu-241 JAERI Eval-Oct87 Y.Kikuchi.N.Sekine, T.Nakagawa

History
79-10 New evaluation was made by Y.Kikuchi (JAERI) and N. Sekine (HEC). Data of JENDL-1 /1/ were superseded.
79-12 Files 2, 3 and 4 were released as JENDL-2B /2/.
87-03 Data were revised by adopting the simultaneous evaluation for the fisstion cross section.
89-02 FP Yields were added.
MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission Sum of Nu -p ( $\mathrm{MT}=456$ ) and $\mathrm{Nu}-\mathrm{d}$ ( $M T=455$ ).
MT=455 Delayed neutron data Data of Benedetti $+/ 3 /$
MT=456 Number of prompt neutrons per fission Data of Boldeman and Frehaut /4/ for thermal fission were adopted at low energy by assuming Nu-p(Cf-252 spontaneous fission) $=3.753$ for JENDL-2. For JENDL-3. data were increased by a factor of $3.766 / 3.753$. An energy dependent term was based on Frehaut $+/ 5 /$

MF=2, MT=151 Resonance Parameters (the same as JENDL-2)
Resolved resonances : 1 - 100 oV
JENDL-1 data /1/ modified for better fit to experiments. A negative resonance added. Background cross section applied for fission and capture.

Unresolved resonances : $100 \mathrm{oV}-30 \mathrm{keV}$ Obtained by fitting evalusted fission and capture cross sections.

Energy dependent parameters : So, S1 and Gam-f.
Fixed parameters : $R=9.8 \mathrm{fm}$. Gam-g $=0.040 \mathrm{fr}$.
D-obs $=0.85 \mathrm{oV}$
$2200-\mathrm{m} / \mathrm{sec}$ cross sections and calculated resonance integrals.

	$2200 \mathrm{~m} / \mathrm{sec}$	Res. Int	
total	1388.2 b	-	
olastic	10.23 b	-	
fission	1016.	b	590
capture	363.0	b	187 b

```
MF=3 Neutron Cross Sections
 Point-wise data below 1 oV down to 1.0E-5 oV
 Total : on the basis of the data of Smith + /6/
 Fission : on the basis of the data of Wagemans + /7/
 Elastic : calculated from resonace parameters
 Capture : total - (fission + olastic)
```

Background cross sections for resolved resonances are given, and no background cross sections for unresolved resonances.

Above 30 keV . smooth cross sections given as follows.

```
MT=1. 2, 4, 51-61, 91, 251 : Tatal, elastic. inelastic
 scattering cross sections and mu-bar
 Calculated with optical and statistical models. Optical
 potential parameters used were obtained from systematics /8/
 \(V=40.25-0.05 \cdot E n, W_{s}=6.5, V\) so \(=7.0 \quad(\mathrm{MeV})\)
 \(r=r s o=1.32 \quad, r s=1.38 \quad(f m)\)
 \(a=b=a s o=0.47 \quad\) (fm)
 Statistical model calculation was performed with CASTHY code
```

    19/. Taken into the calculation were compoting processes
    (fission, ( \(n, 2 n\) ), ( \(n, 3 n),(n, 4 n)\) ) and lovel fluctuation.
    The level scheme taken from Ref. /10/.
    | No | Energy(keV) | Spin-Parity |
| :---: | :---: | :---: |
| 9.3. | 0 | $5 / 2+$ |
| 1 | 41.8 | $7 / 2+$ |
| 2 | 94.0 | $9 / 2+$ |
| 3 | 161.5 | $1 / 2+$ |
| 4 | 170.8 | $3 / 2+$ |
| 5 | 223.1 | $5 / 2+$ |
| 6 | 230.0 | $9 / 2+$ |
| 7 | 242.7 | $7 / 2+$ |
| 8 | 300 | $11 / 2+$ |
| 9 | 335 | $9 / 2+$ |
| 10 | 368 | $13 / 2+$ |
| 11 | 445 | $11 / 2-$ |

Continum levels assumed above 490 keV .
The level density parameters : Gilbert and Cameron /11/.
$M T=16,17,37 \quad(n, 2 n),(n, 3 n),(n, 4 n)$
Calculated with ovaporation model.
MT=18 Fission
Above 70 keV , simultaneous evaluation with $\mathrm{U}-235, \mathrm{U}-238$,
Pu-240. Pu-241/12/ were adopted. The experimental data
taken into account are those Dy Szabot/13.14/. Carlsont
/15.16/. Fursov+/17/and Keappelert/18/. Below 45 keV .
JENDL-2 was anopted. These two sets of data were
connected smoothly between 45 and 70 keV .
$M T=102$
Capture
Based on the data of Alpha by Westont /19/ up to 250 keV . Calculated with CASTHY above 250 keV . The gamma-ray strength function was determined so the: Sig-c $=\mathbf{2 6 9} \mathrm{mb}$ at 250 kaV .

Mr=4 Angular Distributions of Secondary Neutrons
MT=2. 51-61 : Calculated with CASTHY.
MT=16.17.18.37.91 : Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Noutrons
$\mathrm{MT}=16.17 .18 .37 .91$
Calculated with pre-equilibrium and multi-step evaporation code PEGASUS/20/.
MT=18 Prompt fission neutron spectrum.
Determined from Z-2/A systematics by Smith et al. /21/.
MT=455 Delayed neutron spectrum.
Evaluation by Sahier et al. /22/ was adopted.

```
NF=8 Fission Product Yields
 MT=454 Independent yields
 MT=459 Cumulative yields
 Both were taken from JNDC FP Decay File version-2/23/.
```


## Reforences

```
1) Kikuchi Y.: J. Nucl. Sci. Technol.. 14. 467 (1977).
2) Kikuchi Y. et.al.: J. Nucl. Sci. Technol.. 17, 567 (1980).
3) Benedetti G.et. al.: Nucl. Sci. Eng., 80. 379 (1982).
4) Boldeman J.W. and Frohaut J.: Nucl. Sci. Eng. 76, 49 (1980).
5) Frohaut J. et.al.: CEA-R-4020 (1974),
6) Smith J.R. and Young T.E.: (N-1317, p. 11 (1970).
7) Wagemans C. and Deruytter A.J.: Nucl. Sci. Eng. 60, 44(1976).
8) Matsunobu H. et.al.: 1979 Knoxville Conf., p.715. NBS Special Publication 594 (1980).
9) Igarasi S.: J. Nucl. Sci. Technol., 12, 67 (1975).
10) Lederer C.M. and Shirley V.S.: Table of Isotopes . 7 th Ed.
11) Gilbert A. and Camer on A.G.W.: Can. J. Phys., 43. 1446 (1965).
12) Kanda Y. ot al.: 1985. Santa Fo, 2. 1567 (1986)..
13) Szabo I. ot.al.: CONF-701002. p. 257 (1971).
14) Szabo J.et.al.: 1973 Kiev Conf, Vol.3. p. 27 (1973).
15) CarIson G.W.
16) Carlson G.W. and Behrens J.W.: Nuci. Sci. Eng. . 68, 128 (1978).
17) Fursov B.I. et.al.: Sov. At. Energy. 44. 262 (1978).
18) Kaeppeler F. and Pfletschinger E.: Nuc. Sci. Eng., 51, 124 (1973).
19) Weston L.W. and Todd J.H.: Nucl.Sci.Eng., 65.464 (1978).
20) Iijima S. ot al.: JAERI-M 87-025. 337 (1987).
21) Smith A. ot al.: ANL/NDM-50 (1979).
22) Sahior D. ot al.: Nucl. Sci. Eng.. 62, 860 (1977).
23) JNDC Working Group on Decay Heat: private communication(1989).
```

MAT number $=3946$
94-Pu-242 NAIG Eval-Mar87 T.Murata. M.Kawai
Dist-Sep89
History
87-05 Evaluation was made by
T.Murate 〈NAIG〉: Cross sections above resonance region and other quantities.
M.Kawal (NAIG): Resonance parameters.

89-02 FP Yields were added.
Compilation was made by T. Nakagawa (JAERI).
MF=1 General Information
MT=45! Descriptive data and dictionary
MT=452 Total number of noutrons per fission Taken from ENDF/B-IV/1/.
$\mathrm{NF}=2$ Resonance Parameters
MT=151 Resonance parameters
Resolved resonance parameters for MLBW ( $1.0 \mathrm{E}-5 \mathrm{oV}$ to 1.15 keV )
Evaluation for JENDL-2 was modified on the basis of fission
cross section measurements by Woigmann ot al. /2/
Res. Energies $\quad=$ ENL 325 (3rd) /3/
Neutron and capture widths = Poortmans et al. /4/,
Auchampaugh ot $1 . / 5 /$
Fission widths $\quad=$ Weigmann ot $\mathbf{1}$. /2/
$R \quad=9.0 \mathrm{fm}$
Average capture width $=0.0242 \mathrm{eV}$
Two negative resonances were added to reproduce $2200-\mathrm{m} / \mathrm{s}$ cross sections recommended by Mughabghab /8/
Unresolved resonance parameters ( 1.15 to 40 keV ) Parameters were determined to reproduce cross sections ovaluated as described below.

Caiculated	$2200-\mathrm{m} / \mathrm{s}$ cross sections and resonance integrals	
	$2200-\mathrm{m} / \mathrm{s}(\mathrm{b})$	res. integ. $(\mathrm{b})$
total	27.11	-
elastic	8.32	-
fission	0.00256	5.58
capture	18.79	1130

NF=3 Neutron Cross Sections
Below 40 keV . represented with resonance parametera.
MT=1 SIG-TOT
Below 6 keV : Experimental data of Young and Reeder /7/ were averaged over some keV energy interval.
Above 6 keV : Spline fiting to experimental data of Kaeppoler ot al. $18 /$ and Moore ot al. $/ 8 /$

MT=2 SIG-EL
Obtained by subtracting other cross sections from total.
ITT=4 SIG-INEL
Sum of partial inelastic cross sections
MT=51-91 Partial SIG-INEL

Below 3 MeV : The results of statistical and coupled channel calculation of Lagrange ot al. $/ 10 /$ were adopted.
Above 3 MoV : Extrapolation of the values was made based on DWBA calculation.

Leval Schem		
No.	Energy ( MeV )	Spin-Parity
G.S.	0.0	0 +
1	0.04285	$2+$
2	0.141685	+
3	0.284314	+
4	0.4976	$8+$
5	0.59736	1 -
6	0.64889	3
7	0.74232	5 -
8	0.8607	0 +
9	0.90032	$2+$
10	0.93807	-
11	0.95887	2 -
12	0.9924	+
13	1.0018	3 -
14	1.0306	$3+$
15	1.0375	4 -
18	1.0784	$4+$
17	1.0895	0 +
18	1.1155	$5-$
19	1.1370	$2+$
20	1.1615	6
21	1.1778	3
22	1.223	$2+$
23	1.2325	$4+$
24	1.2408	1
25	1.2621	3 +
28	1.2820	3
27	1.30873	5 -
28	1.41079	0 +

Levels above 1.41079 MoV wers assumed to be continuum.
MT=16.17.37 Sigmas of ( $n, 2 n$ ). ( $n, 3 n$ ) and ( $n, 4 n$ )
Given by multiplication of noutron omission cross section and branching ratio to each reaction. The neutron emission cross section was obtained by subtracting fission and capture cross sections from reaction cross section calculated with spherical optical model. The branching ratio was calculated with the formalism given by Segev et al./11/

MT=18 SIG-FISS
Below 100 keV : Shape of SIG-FISS determined on the fission area data of Auchampaugh ot al./12/ Then normalized to the value of higher energy region.
Above 100 keV : Fisson ratio to $\mathrm{U}-235$ was determined on the experimental data of Behrens ot al./13/ and multiplied by U-235 fission cross section /14/.

Energy region of $\mathbf{6} \mathrm{keV}$ to 210 keV : Determined on the basis of

```
 experimental data of Hochenbury et al./15/ and Wisshak and
 Kaeppeler /16/.
 Other energy region : Statistical calculation result with
 CASTHY code /17/ was normalized to SIG-CAP in the region of
 6 to 210 keV. Direct and colloctive capture processes were
 included in high energy region using the value of U-238
 given by Kitazawa et al./18/
 * - Parameters for the CASTHY code calculation
 Spherical optical potential parameters
 V=40. 1-0.05En , Ws=6.6+0.16En , Vso=7.0 (MoV)
 r=1.32 , re=1.38 , r80=1.32 (fm)
 a=as=aso=0.47 (fm)
 Levol density parameters were determined to reproduce the
 resonence levol spacings and lovol schemo sum staircases.
 MT=251 Mu-L
 Assumed to be the same as that of Pu-240.
N==4 Angular Distributions
 The same distributions as Pu-240 were assumed, which were
 detormined as follows.
 MT=2 DSIG-EI
 Sphorical optical model calculation
 MT=51 to 91 DSIG-Inel
 For the 1st and 2nd levels the results of calculation of
 Lagrange ot al./10/ aro availablo and thoir rosults were
 adopted. For other levels, statistical plus DWBA calcu-
 lations were made.
NF=5 Enorgy Distributions of Secondary Noutrons
 MT=16.17 and 91
 Distributions wero calculated with PEGASUS/19/
 MT=37
 Evaporation spoctrum was taksn from JENDL-2
 MT=18
 Takon from JENDL-2. Temperature was estimated from 2--2/A
 systematics by Smith ote al. /20/
Mr=8 Fission Product Yields
 MT=454 Independent Yields
 MT=459 Cumulativo Yiolds
 Both were taken from NNDC FP Decay Data File version-2/21/.
```

References

1) Gerber.D. (editor) : BAL 17641 (1975).
2) Weigmann.H. Wartena.J.A. and Burkholz.C. : Nucl. Phys. A438, 333 (1985).
3) Mughabghab.S.F. and Garber.D.I. : ENL 325. 3rd Ed., vol. 1 (1973)
4) Poortmans, F. ot al. : Nucl. Phys.. A207. 342 (1973).
5) Auchmpaugh.G.F. and Bowman.C.D. : Phys. Rov.. C7. 2085 (1973).
6) Mughabghab.S.F. : "Neut ron Cross Sections". Vol. 1. part B. Academic Press (1984).
7) Young.T.E. and Reeder.S.D. : Rucl. Sci. Eng., 40. 389 (1970).
8) Kaeppeler.F. et al. : Proc. of Meeting on Nuclear Data of Higher Pu and Am Isotopeps For Reactor Application, p. 49 (1978, BNL).
9) More.M.S. ot al. : Proc. of Nuclear cross sections for Tochnology, p. 703 (1979. Knoxville).
10) Lagrange.Ch. and Jary.J. : $\operatorname{NEANDC}(E)$ 198*'L (1978).
11) Segev.M. ot al. : Annals of Nucl. Energy. 5, 239 (1978).
12) Auchampaugh.G.F. ot al. : Nucl. Phys., A171, 31 (1971).
13) Behrens,J.W. ot al. : Nuol. Sci. Eng., 66. 433 (1978).
14) Matsunobu.H. ot al. : Evaluation for JENDL-3 (1987).
15) Hockenbury.R.W. ot al. : NBS Special Publication 425, Vol. 2. p. 584 (1975).
16) Wisshak,K. and Kaeppeler,F. : Nucl. Sci. Eng., 66, 363 (1978). Nucl. Sci. Eng., 69. 39 (1879).
17) Igarasi.S. : J. Nucl. Sci. Technol.. 12. 67 (1975).
18) Kitazawa.H. ot al. : Nucl. Phys.. A307. 1 (1978).
19) lijima, S. et al. : JAERI-M 87-025, p. 337 (1987).
20) Smith. A.B. ot al.: ANL/NDM-50 (1979).
21) JNDC Working Group on Decay Heat: private communication(1989).

MAT number $=3951$


MT=4.51-66.91 Inelastic scattering cross sections Optical and statistical model calculation with CASTHY code 19/. The level scheme was taken from Ref. /12/

```
\begin{tabular}{ccc}
No & energy(kov) & spin-parity \\
g.s. & 0 & \(5 / 2-\) \\
1 & 41.176 & \(7 / 2-\) \\
2 & 93.05 & \(9 / 2-\) \\
3 & 158.0 & \(11 / 2-\) \\
4 & 205.883 & \(5 / 2+\) \\
6 & 236.0 & \(7 / 2+\) \\
6 & 272.0 & \(9 / 2+\) \\
7 & 320.0 & \(11 / 2+\) \\
8 & 471.81 & \(3 / 2-\) \\
9 & 604.448 & \(6 / 2-\) \\
10 & 649.0 & \(7 / 2-\) \\
11 & 623.1 & \(1 / 2+\) \\
12 & 636.869 & \(3 / 2-\) \\
13 & 652.089 & \(1 / 2-\) \\
14 & 653.23 & \(3 / 2+\) \\
15 & 670.24 & \(3 / 2+\) \\
16 & 682.0 & \(11 / 2-\)
\end{tabular}
Continum levels assumed above 732 keV . The level density parameters were determined on the basis of number of excited levols/13/ and resonance level spacing/14/.
\(M T=16,17(n, 2 n)\) and \((n, 3 n)\) reaction cross sections
JENDL-2 data calculated with evaporation madel were
adopted.
MT=18 Fission cross section Evaluated on the basis of the data by Dabbs et al./8/
MT=102 Capture cross section Evaluated on the basis of the measured data of Vanpraet et al./7/ in the unresolved rasonance region. Above 30 keV , Calculation with CASTHY was adopted. The germa-ray strength function was determined so that the cross section was 1.7 barns at 60 keV .
```

```
MT=251 Mu-bar
```

MT=251 Mu-bar
Calculated with optical model.
Calculated with optical model.
MF=4 Angular Distributions of Secondary Neutrons

MT $=2,51-66.91$	Calculated with CASTHY.
MT=16.17.18	Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.91 Evaporation spectrum.
MT=18 Maxwellian fission spectrum. Tomperature was estimated from Z-*2/A values /15/.

```

MF=8 Fission product yield data
```

MT=454 Fission product yield date
Taken from ENDF/B-IV, and renormalized to 2.0.

```

\section*{References}
1) Kikuchi Y.: JAERI M 82-096 (1982).
2) Nakagawa T.: JAERI-M 88-008 (1989).
3) Tuttle R.J.: INDC(NDS)-107/G+Special, p. 29 (1979)
4) Jaffoy A.H. and Lorner J.L.: Nucl.Phys.,A146.1 (1970).
6) Dorrion H. and Lucas B.: 1975 Washington. p. 637. NBS-Sp-426 (1975).
6) Kikuchi Y.: privato communication.
7) Vanpraet G. ot al.: 1985 Santa Fe. 1. 493 (1986).
8) Dabbs J.W.T. ot al.: Nucl. Sci. Eng., 83, 22 (1983).
9) Igarasi S.: J.Nucl.Sci.Tochnol.,12.67 (1975)
10) Igarasi S. and Nakagawa T.: JAERI-M 8342 (1979).
11) Phillips T.W. and Howe R.E.: Nucl. Sci. Eng., 69. 376 (1979).
12) Ellis-Akovali Y.A.: Nucl. Data Shoots. 44. 407 (1985).
13) ENSDF. Evaluatod Nuclear Structure Data Filo (1988).
14) Mughabghab S.F.: "Neutron Cross Sections. Vol. 1, Part B". Academic Press, Inc. (1984)
15) Smith A.B. et al.: ANL/ADM-50 (1979).
```

    95-Am-242 JAERI Eval-Mar80 T.Nakagawa, S.Igarasi
    JAERI-M 8903 (1980) Dist-Sep89
History
80-03 Now evaluation was made by T.Nakagawa and S.Igarasi(JAERI).
Details are given in Ref. /1/.
87-04 Format was translated to ENDF-5 format.
88-03 Since no recent experimental data were available. the data
of JENDL-2 were adopted for JENDL-3.
MF=1 General Information
MT=451 Comment and dictionary
MT=462 Number of neutrons per fission
Sum of prompt and delayed neutrons.
MT=465 Delayed neutron data
Estimated from Tuttie's semi-empirical formula /2/.
MT=456 Number of prompt neutrons per fission
Semi-empirical formula by Howerton /3/
Nu-p=3.268 + 0.172-E(MeV).
MF=2 Resonance Parameters
MT=151 No resonance parameters

```
\(2200 \mathrm{~m} / \mathrm{s}\) cross sections and calculated resonance integrals.

\begin{tabular}{ccc}
\(2200 \mathrm{~m} / \mathrm{sec}\) & Res. Integ. \\
total & 7611.44 b & - \\
elastic & 11.44 b & - \\
fission & 2100.0 b & 1280 b \\
capture & 5500.0 b & 391 b
\end{tabular}
MF=3 Neutron Cross Sections
 \(\mathrm{MT}=1,2,4.51-72.81,102,251\)
 Sig-t.Sig-el.Sig-in.Sig-c, Mu-bar
 Below 0.225 eV :
 1/v form was assumed for fission and capture crose
 sections. Effective scattering radius of 9.54 fm was
 used for olastic scattering cross-section calculation.
 Above 0.225 eV :
 Optical and statistical models were used.
 The spherical optical potential parameters (MoV. fm) :
 \(V=42.0-0.107-E, r=1.282, a=0.6\)
 \(W_{s}=9.0-0.339 \cdot E+0.0531-E \cdot+2 . r=1.29 . a=0.5\)
 \(V \mathrm{so}=7.0, r=1.282, a=0.6\)
 Statistical model calculation with CASTHY code /4/.
 Competing processes : fission, (n,2n) and (n,3n).
 Level fluctuation considered. Gam-g \(=0.05 \mathrm{eV}\) and
 \(0=0.45 \mathrm{oV}\) used for capture cross section calculation.
 The level scheme taken from the compilation by Ellis
 and Haese /5/.
\begin{tabular}{ccc}
No. & Energy(MoV) & Spin-Parity \\
g.s. & 0.0 & 1 \\
1. & 0.044 & - \\
2 & 0.049 & 3 \\
3 & 0.049 & - \\
4 & 0.074 & 2 \\
5 & 0.113 & - \\
6 & 0.148 & 6 \\
\hline
\end{tabular}
\begin{tabular}{rrrl}
7 & 0.148 & 5 & - \\
8 & 0.190 & 7 & - \\
9 & 0.242 & 3 & - \\
10 & 0.263 & 6 & - \\
11 & 0.263 & 7 & - \\
12 & 0.288 & 4 & - \\
13 & 0.288 & 2 & - \\
14 & 0.325 & 3 & - \\
15 & 0.341 & 5 & - \\
16 & 0.377 & 4 & - \\
17 & 0.410 & 6 & - \\
18 & 0.430 & 5 & - \\
18 & 0.488 & 7 & - \\
20 & 0.500 & 8 & - \\
21 & 0.681 & 7 & - \\
22 & 0.678 & 8 & -
\end{tabular}

Overlapping levels are assumed above 0.681 MeV .
The levol density parameters of Gilbert and Cameron /8/.
MT=16.17 (n,2n) and (n,3n) cross sections
Calculated with the ovaporation model by Pearlstein /7/.
MT=18 Fission cross section
The ompirical formula used for the Am-242m data was applied by shifting the energy origin to \(\mathbf{- 4 9} \mathrm{koV}\).
```

MF=4 Angular Distributions of Secondary Noutrons
MT=2 Legendre coefficients are given by the optical and
statistical model calculations.
MT=10,17,18,91 lsotropio distributions in the center-of-mass
system.
MT=51-72 Isotropic distributions in the laboratory system.
MF=5 Energr Distributions of Secondary Noutrons
MT=16,17.81 Evaparation spactrum
MT=18 Fission spectrum estimated from Za-2/A systematics by
Smith ot ol. /8/ by assuming $E(C f-252)=2.13 \mathrm{MoV}$.

```

\section*{Reforences}
1) T. Nakagawa and S. Igarasi : JAERI-M 8903 (1980), in Japanese.
2) R.J. Tuttlo : INDC(NDS)-107/G+Special. 29 (1979).
3) R.J. Howerton : Nucl. Sci. Eng.. 62, 438 (1977).
4) S. Igarasi : J. Nucl. Sci. Technol.. 12, 67(1975).
5) Y.A. Ellis and R.L. Haeso : Nucl. Data Shoots 21. 615 (1977).
6) A. Gilbert and A.G.W. Cameron : Can. J. Phys.. 43, 1446 (1985).
7) S. Pearlstoin : Nucl. Sci. Eng.. 23, 238 (1865).
8) A.B. Smith ot al. : ANL/NDM-50 (1979).

MAT number \(=3953\)
```

    95-Am-242mJAERI
    JAER! -M 89-008
Eval-Mar88 T.Nakagawa
Dist-Sep89
History
80-03 Now ovaluation was made by T.Nakagawa and S.Igarasi (JAERI).
Details aro given in Ref. /1/.
88-03 Re-evaluation was made for JENDL-3 by T.Nakagawa (JAER|)/2/.
NF=1 General Information
MT=451 Comment and diotionary
MT=452 Number of neutrons per fission
Sum of prompt and delayed noutrons.
MT=465 Delayad neutron data
Estimated from Tuttle's somimempirical formula /3/.
MT=466 Number of prompt noutrons per fission
Based on the relative measurements /4.5/ to the U-235
data, and on the empirical formula by Howerton /6/.
NF=2 Resonance Parameters
MT=151 Resonance parameters
Resolved resonance parameters : below 20 oV
Parameters for 48 levels deduced by Browne ot al./7/
and the single level Breit-Wigner formula were adopted.
Unresolved resonance parameters : 20 oV - 30 keV
Parameters were determined so as to reproduce the
fission cross section of Browne et al./7/. Background
sig was given to the fisslon at low onergies.
Average WG = 0.05 oV. Average WE= = 1.28 oV.
D-obs = 0.4 oV, S0 = 1.07E-4. S1 = 0-dependent.
R=9.59 fm
Calculated 2200m/s cross sections and resonance integrals.
2200 m/sec Res. Integ.
total 7989. b -
Olastic 5.867 b -
fission 6409. b 1560 b
capture 1264. b 246 b

```

\section*{MF=3 Neutron Cross Sections}
```

Below 30 keV: Cross sections were represented with the resonance parameters.
Above 30 keV :
MT=1,2 Total and elastic scattering crose sections Calculated with optical and statistical model code CASTHY/8/.
The spherical optical potential parametors (MoV. fm) :
$\mathrm{V}=42.0-0.107 \cdot \mathrm{E}, \mathrm{r}=1.282, \mathrm{a}=0.6$
Ws=9.0-0.339.E $+0.0531-E-2, r=1.29, a=0.5$
$V \mathrm{so}=7.0, r=1.282, \mathrm{a}=0.6$
MT=4.51-72.91 Inelastic scattoring cross sections
Calculated with CASTHY/8/. The level scheme was taken from the compilation by Ellis and Haese /9/, with shifted evergy origin at -49 koV .

```
```

No.	Energy (MeV)	Spin-Parity	
g.s.	-0.049	1	-
1	-0.005	0	-
2	0.0	3	-
3	0.0 (meta stable)	5	-
4	0.025	2	-
6	0.064	6	-
6	0.099	4	-
7	0.098	5	-
8	0.141	7	-
9	0.193	3	-
10	0.214	6	-
11	0.214	7	-
12	0.238	4	-
13	0.239	2	-
14	0.276	3	-
15	0.292	5	-
16	0.323	4	-
17	0.361	6	-
18	0.381	5	-
19	0.439	7	-
20	0.451	6	-
21	0.532	7	-
22	0.630	8	-

Overlapping levels were assumed above 0.632 MeV . The level density parameters were determined on the basis of number of excited lovels/10/ and resonance lovel spacing/11/.

	Am-243	Am-242
$a(1 / \mathrm{MoV})$	31.3	28.6
$\mathrm{~T}(\mathrm{MoV})$	0.355	0.342
$\mathrm{C}(1 / \mathrm{MoV})$	11.71	22.88
$\mathrm{E}-\mathrm{X}(\mathrm{MoV})$	3.278	2.323
spin-cut off(1/MoV-0.5)	31.81	30.85
pairing $\mathrm{E}(\mathrm{MoV})$	0.5	0.0

MT=16.17 (n.2n) and (n.3n) cross sections
Taken from JENDL-2 calculated with the evaporation model by Pearlstein /12/.
MT=18 Fission cross section
Determined by cubic spline-fitting to the date measured by Browne ot al./7/
MT=102 Capture cross section
Calculated with CASTHY/8/. The gamma-ray strength function was estimated from WG=0.05 oV and D-obs=0.4 eV.
MT=251 Mu-L bar
Calculated with CASTHY/B/.
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-72.81
Legendre coefficients were given by the optical and statistical model calculations.
MT=16.17.18
Isotropic distributions in the laboratory system.

```
```

MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.91 Evaporation spectrum with nuclear temperature
calculated from level densities.
MT=18 Fission spectrum estimated from Z--2/A systematics by
Smith et al. /13/ by assuming E(Cf-252) = 2.13 MoV.

```
References
1) Nakagawa T. and Igarasi S.: JAERI-M 8903 (1980), in Japaneso.
2) Nakagawa T.: JAERI-M 89-008 (1989).
3) Tuttle R.J.: INDC(NDS)-107/G+Special. 28 (1979).
4) Jaffey A.H. and Lernar J.L.: Nucl. Phys., A146, 1 (1970).
5) Kroshkin N.I. and Zamyatnin Yu.S.: Atom. Energ.. 20. 95 (1970). Sov. Atom. Energy, 29. 790 (1970).
6) Howerton R.J.: Nucl. Sci. Eng. 62. 438 (1977).
7) Browne J.C. et al.: Phys. Rev.. C29, 2188(1984).
8) Igarasi S.: J. Nucl. Sci. Technol., 12, 67 (1975).
9) Ellis Y.A. and Haese R.L.: Nucl. Data Sheets 21. 615 (1977).
10) ENSDF. Evaluated Nuclear Structure Data File (1988).
11) Mughabghab S.F.: "Neutron Cross Sections, Vol. 1. Part B", Academic Press, Inc. (1984).
12) Pearlstein S.: Nucl. Sci. Eng.. 23. 238 (1965).
13) Smith A.B. ot al. : ANL/NDM-50 (1979).

MAT number \(=3954\)

\(\mathrm{MF}=2, \mathrm{MT}=151\) Resonance parameters
Resolvod resonances for MLBW formula : 1.0E-5-215 oV.
JENDL-2 evaluation/2/ was based on the data of Simpson ot al./5/. The fission widths were modified for JENDL-3 on the basis of Knittor and Budtz-Jorgensen/6/. Values of total spin were assumed arbitrarily.

Unresolved resonances : 215 oV - 30 koV
Parameters of JENDL-2 were adopted.
Obtained from optical model calouletion:
\(\mathrm{SO}=0.93 \mathrm{E}-4, \mathrm{~S} 1=2.44 \mathrm{E}-4, \mathrm{R}=8.34 \mathrm{fm}\)
Estimated from resolved resonances:
Dobs=0.67 oV. WG=0.039 eV. WF=0.00012 oV
Calculated \(2200 \mathrm{~m} / \mathrm{s}\) cross sections and resonance integrals \(2200 \mathrm{~m} / \mathrm{s}\) value Res. Int.
total
elastic fission capture
86.10 b
7.483 b \(0.1161 \mathrm{~b} \quad 7.59 \mathrm{~b}\) 78.50 b 1830 b

MF=3 Neutron Cross Sections
Below 30 keV: Cross sections were represented with the resonance parameters.
Above 30 keV :
MT=1.2 Total and elastic scattering cross sections Calculated with optical and statistical model code CASTHY/7/. Optical potential parameters were obtained /8/ by fitting the data of Philifips and Howe /9/ for Am-241:
\(V=43.4-0.107 \bullet E n \quad\) (MeV)
\(W s=6.95-0.339-E n+0.0531-E n=2\) (MeV)
Vso \(=7.0\) (MoV)
\(r=r s o=1.282 \quad\). rs \(=1.29 \quad(\mathrm{fm})\)
\(a=\) aso \(=0.60 \quad . b=0.5 \quad(\mathrm{fm})\)
```

MT=4.51-59.91 Inelastic scattering cross sections Calculated with CASTHY/8/. The level scheme was taken from Ref. /10/

No	Energy(keV)	Spin-Parity
g.s.	0	$5 / 2-$
1	42.2	$7 / 2-$
2	84.0	$5 / 2+$
3	96.4	$9 / 2-$
4	109.3	$7 / 2+$
5	143.5	$9 / 2+$
6	189.3	$11 / 2+$
7	266.0	$3 / 2-$
8	300.0	$5 / 2-$
9	345.0	$7 / 2-$
9		
ntinumm levels assumed above 383 keV.		

The level density parameters were determined on the basis of number of excited levels/11/ and resonance level spacing/12/.

	Am-244	Am-243
$\mathrm{a}(1 / \mathrm{MoV})$	30.3	31.3
$\mathrm{~T}(\mathrm{MeV})$	0.340	0.355
$\mathrm{C}(1 / \mathrm{MeV})$	26.47	11.71
$\mathrm{E}-\mathrm{x}(\mathrm{MeV})$	2.373	3.278
$\mathrm{MeV}-\mathrm{CO}$		
$\mathrm{E}(\mathrm{MeV})$	31.30	31.81
$\mathrm{E}(\mathrm{Me})$	0.0	0.5

$M T=16.17 .37$ ( $n, 2 n$ ). ( $n, 3 n$ ) and ( $n, 4 n$ ) reaction cross sections Taken from JENDL-2 calculated with the evaporation model.
MT=18 Fission cross section
$30 \mathrm{keV}-100 \mathrm{keV}$ : smooth corve connecting the data in the unresolved resonance region and above 100 keV
$100 \mathrm{keV}-10 \mathrm{MoV}$ : Spline-fitting to Kanda et al./13/. Fursov et al./14/ and Knitter and Budtz-Jorgenson/6/.
$10 \mathrm{MeV}-20 \mathrm{MeV}$ : Shape was estimated on the basis of Behrens and Browne/15/

```

MT=102 Capture cross section Calculated with CASTHY/8/. The gamna-ray strength function was determined to reproduce the cross section of 2.2 b at \(30 \mathrm{koV} / 16 /\).

MT=251 Mu-L bar
Calculated with CASTHY/8/.
```

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-59.91
Legendre coefficients were given by the optical and
statistical modol calculation.
MT=16,17,18,37
Isotropic distributions in the laboratory system.
NF=5 Energy Distributions of Secondary Neutrons
MT=16.17.37.91
Evaporation spectrum with nuclear temperature calculated
from leval densities.

```
\(M T=18\)
Maxwollian fission spectrum estimated from 2-.2/A systomatics by Smith ot al./17/.

MF=8 Fission product vield data
MT=454 Fission product yiold data Taken from ENDF/B-IV and ronormalized to 2.0.

\section*{References}
1) Igarasi S. and Nakagawa T.: JAERI-M 7174 (1977).
2) Kikuchi Y.: JAERI-M 82-096 (1982).
3) Nakagawa T.: JAERI-M 89-008 (1989).
4) Tuttle R.J. : INDC(NDS)-107/G+Special , p. 29 (1979).
6) Simpson O.D. ot al. : Nucl.Sci.Eng., 55.273(1974)
6) Knitter H. H and Budtz-Jorgenson C.: 86 Santa Fo. 1. 413 (1986).
7) Igarasi S.: J. Nucl. Sci. Tochnol., 12. 67 (1975).
8) Igarasi S. and Nakagawa T.: JAERI-M 8342 (1979).
9) Phillips T.W. and Howe R.E. : Nucl. Sci. Eng.. 69. 375 (1979).
10) Ellis-Akovali Y.A.: Nuci. Deta Shoots, 33. 79 (1981).
11) ENSDF, Evaluated Nuclear Structure Data File (1988).
12) Nughabghab S.F.: 'Noutron Cross Sections, Vol. 1, Part B'. Acadomic Press. Ine. (1984).
13) Kanda K. ot al.: J. Nucl. Sci. Technol., 24, 423 (1987).
14) Fursov B. ot al.: 85 Santa Fo, 1, 641 (1986).
15) Behrons J.W. and Browne J.C.: Nucl. Soi. Eng.. 77. 444 (1981).
16) Weston L.W. and Todd J.H.: Nucl. Sci. Eng., 91, 444 (1985).
17) Smith A.B.: ANL/NDM-50 (1979).

95-Am-244 JAERI Eval-Mar88 T.Nakagawa
JAERI-M 89-008 Dist-Sep89
History
88-03 Evaluated for JENDL-3 was made by T.Nakagawa (JAERI)/1/.
```

MF=1 Genoral Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Sum of Nu-p (MT=458) and Nu-d (MT=455).
MT=455 Delayed neutron date
Estimated from somi-ompirical formula by Tuttle /2/.
MT=456 Number of prompt neutrons
Estimated from semi-empirical formula by Howerton/3/.

```
MF=2.MT=151 Resonance parameters
 No resonance parameters were given.
 \(2200-\mathrm{m} / \mathrm{s}\) cross sections and resonance integrals
 \(2200 \mathrm{~m} / \mathrm{s}\) value Res. Int.
 total 2812. b -
 elastic 11.62 b -
 fission 2300. b 1260 b
 capture 600. b 316 b
MF=3 Neutron Cross Sections
 MT=1 Total cross section
 Below 0.07 oV , sum of partial cross sections. Above 0.07
 oV, calculated with optical and statistical model code
 CASTHY/4/. The same optical potential parameters as those
 for Am-242 which were obtained /5/ by fitting the data of
 Phillips and Howe /6/ for Am-241, and modified a little.
 \(V=42.0-0.107 \cdot E n \quad(\mathrm{MeV})\)
 \(W_{s}=9.0-0.339 \cdot E n+0.0531 \cdot E n \cdot-2 \quad(\mathrm{MeV})\)
 \(V_{80}=7.0\) (MoV)
 \(r=r 80=1.282 \quad, r s=1.29 \quad(f m)\)
 \(a=\) aso \(=0.60\), \(b=0.5 \quad(f m)\)
 MT=2 Elastic scattoring cross section
 Calculated with CASTHY/4/.

MT=4.51-75.91 Inelastic scattering cross sections
Calculated with CASTHY/4/. The level scheme was taken from Ref. 171
\begin{tabular}{ccc}
No & Energy(keV) & Spin-Parity \\
g.s. & 0 & \(6-\) \\
1 & 68.0 & \(1+\) \\
2 & 100.309 & \(2+\) \\
3 & 123.281 & \(3+\) \\
4 & 148.283 & \(4+\) \\
5 & 175.657 & \(1-\) \\
6 & 183.511 & \(5-\) \\
7 & 197.295 & \(2-\) \\
8 & 228.299 & \(3-\) \\
9 & 281.696 & \(2-\) \\
10 & 272.202 & \(4-\)
\end{tabular}
\begin{tabular}{lll}
11 & 289.212 & \(1-\) \\
12 & 296.658 & \(3-\) \\
13 & 322.761 & \(5-\) \\
14 & 365.575 & \(0-\) \\
15 & 342.650 & \(3-\) \\
16 & 343.658 & \(4-\) \\
17 & 348.405 & \(3+\) \\
18 & 381.838 & \(2-\) \\
19 & 377.067 & \(0+\) \\
20 & 390.028 & \(4+\) \\
21 & 398.743 & \(6-\) \\
22 & 414.688 & \(2+\) \\
23 & 418.957 & \(2+\) \\
24 & 420.131 & \(2+\) \\
25 & 421.204 & \(3-\)
\end{tabular}
Levels above 435 keV were assumed to be overlapping The level density parameters were determined on the basis of number of excited lovels/8/ and resonance level spacing/9/.
\begin{tabular}{rcc}
& Arn-245 & Am-244 \\
\(a(1 / \mathrm{MoV})\) & 31.3 & 30.3 \\
\(\mathrm{~T}(\mathrm{MoV})\) & 0.360 & 0.340 \\
\(\mathrm{C}(1 / \mathrm{MoV})\) & 18.06 & 26.47 \\
\(\mathrm{E}-\mathrm{X}(\mathrm{MoV})\) & 3.265 & 2.373 \\
spin-cut off(1/MoV-O.5) & 31.98 & 31.39 \\
pairing \(\mathrm{E}(\mathrm{MoV})\) & 0.39 & 0.0
\end{tabular}
\(M T=16.17 .37(n, 2 n),(n, 3 n)\) and (n.4n) reaction oross seotions Calculated with ovaporation model.
MT=18 Fission cross section
Below 0.07 eV . \(1 / \mathrm{y}\) shaped eross section was normalized to 2300 + 300 b at \(0.0253 \mathrm{eV} / 9 /\). Above 0.07 eV . the cross section was assumed to be the same as that of Am-242g (MAT=3952 of JENDL-3).
MT=102 Capture cross section
Below 0.07 oV, \(1 / v\) cross section was normalized to 800 b at 0.0253 oV that was estimated by assuming the same cross section ratio as highor onergy region. Above 0.07 oV . calculated with CASTHY/4/. The gemme-ray strength function was determined from \(D\)-obs \(=0.13\) oV calculated from level density pararneters and \(W G=0.05 \mathrm{oV}\).
MT=251 Mu-L bar Calculated with CASTHY/4/.
\(M F=4\) Anguiar Distributions of Secondary Noutrons
MT=2.51-75.91
Legendre coefficients were given by the optical and statistical model calculation.
\(M T=16.17 .18 .37\)
Isotropic distributions in the laboratory system.

\footnotetext{
MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.37.91
Evaporation spectrum with nuclear temperature calculated
}
```

        from lovel densities
    MT=18
Maxwellian fission spectrum estimated from Z.-2/A
systomatics by Smith ot al./10/.

```

References
1) Nakagawa T.: JAERI-M 89-008 (1989).
2) Tuttle R.J.: \(\operatorname{INDC}(\) NDS \()-107 / \mathrm{G}+\) Speoial , p. 29 (1979).
3) Howerton R.J.: Nucl. Sci. Eng.. 62. 438 (1977).
4) Igarasi S.: J. Nucl. Sci. Teohnol.. 12. 67 (1976).
5) Igarasi S. and Nakagawa T.: JAERI-M 8342 (1979).
6) Phillipi T.W. and Howe R.E.: Nucl. Soi. Eng., 69, 3 i5 (1979).
7) Shurshikov E.N.: Nucl. Data Sheots, 49. 785 (1986).
8) ENSDF. Evaluatod Nuclear Structure Data File (1988).
9) Mughabghab S.F.: "Neutron Cross Sections, Vol. 1. Part B". Academic Press, Inc. (1984).
10) Smith A.B.: ANL/NDM-60 (1979).

\begin{tabular}{lll}
11 & 201.212 & \(1-\) \\
12 & 208.658 & \(3-\) \\
13 & 234.751 & \(5-\) \\
14 & 247.575 & \(0-\) \\
15 & 254.650 & \(3-\) \\
16 & 255.658 & \(4-\) \\
17 & 260.405 & \(3+\) \\
18 & 273.838 & \(2-\) \\
19 & 289.057 & \(0+\) \\
20 & 302.028 & \(4+\) \\
21 & 310.743 & \(5-\) \\
22 & 326.688 & \(2+\) \\
23 & 330.957 & \(2+\) \\
24 & 332.131 & \(2+\) \\
25 & 333.204 & \(3-\)
\end{tabular}
Levels above 447 keV were assumed to be overlapping. The level density parameters were determined on the basis of number of excited levels/8/ and resonance level spacing/9/.
\begin{tabular}{|c|c|c|}
\hline & Am-245 & Am-244 \\
\hline a (1/MoV) & 31.3 & 30.3 \\
\hline T(MoV) & 0.360 & 0.340 \\
\hline \(\mathrm{C}(1 / \mathrm{MeV})\) & 18.06 & 26.47 \\
\hline \(\mathrm{E}-\mathrm{x}\) (MoV) & 3.265 & 2.373 \\
\hline n-cut of \(\mathrm{f}(1 / \mathrm{Me} / \mathrm{lo-0.5})\) & 31.98 & 31.39 \\
\hline pairing E (MeV) & 0.39 & 0.0 \\
\hline
\end{tabular}
MT=16,17.37 (n,2n), (n,3n) and (\(n, 4 n\)) reaction aross seotions Calculated with evaporation model.
MT=18 Fission cross section
Below 0.07 oV, \(1 / v\) shaped oross section was normalized to \(1600+300 \mathrm{~b}\) at \(0.0253 \mathrm{eV} / \mathrm{g} /\). Above 0.07 eV . the cross section was assumed to be the same as that of Am-242g (MAT=3952 of JENDL-3).

\section*{MT=102 Capture cross section}
Below 0.07 oV . \(1 / \mathrm{v}\) cross section was normalized to 400 b at 0.0253 oV that was estimated by assuming the same cross section ratio as higher energy region. Above 0.07 oV . calculated with CASTHY/4/. The gamma-ray strength function was determined from D -obs \(=0.13 \mathrm{eV}\) calculated from level density parameters and \(W G=0.05 \mathrm{eV}\).
Mr=251 Mu-L bar
Calculeted with CASTHY/4/.

\section*{MF=4 Angular Distributions of Secondary Neutrons \\ MT=2.51-75.91 \\ Legendre coefficients were given by the optical and statistical model calculation.}
MT=16,17,18,37
Isotropic distributions in the laboratory system.
```

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17.37.91
Evaporation spectrum with nuclear tomperature calculated

```
```

    from level densities.
    MT=18
Maxwollian fission spectrum estimated from Zn.2/A
systematics by Smith et al./10/.

```
References
1) Nakagawa T.: JAERI-M 89-008 (1889).
2) Tuttle R.J.: INDC(NDS)-107/G+Special , p. 28 (1978).
3) Howerton R.J.: Nucl. Sci. Eng., 62. 43B (1977).
4) Igarasi S.: J. Nucl. Sci. Technol., 12. 67 (1975).
5) Igarasi S. and Nakagawa T.: JAERI-M 8342 (1970).
6) Phillips T.W. and Howe R.E.: Nucl. Sci. Eng.. 69. 376 (1879).
7) Shurshikov E.N.: Nucl. Data Sheets. 49. 785 (1986).
8) ENSDF, Evaluated Nuclear Structure Data File (1988).
9) Mughabghab S.F.: "Noutron Cross Sections, Vol. 1, Part B", Acadomic Pross. Inc. (1984).
10) Smith A.B.: ANL/NDM-50 (1879).
96-Cm-241 JAERI Eval-Mar89 T.Nakagawa
```

History
89-03 Evaluation for JENDL-3 was made by T. Nakagawa(JAERI)/1/.
MF=1 General Information
MT=451 Descriptive deta
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456
MT=465 Delayed neutron data
Estimated from the systematlcs by Tuttle/2/.
MT=456 Number of prompt neutrons per fission
Based on the empirical formula by Howerton /3/.
NF=2 Resonance Parameters
MT=151 No esonance parameters were given.
Calculated 2200m/s cross sections and resonance integrals.
2200 m/sec Res. Integ.
total
fission 700.0 b 969 b
capture 140.0 b 160 b
MF=3 Noutron Cross Sections
Below 1 oV:
This energy range was assumed to be the thermal region, and
fission and capture oross seotions with 1/v shape were given
and olastic scattering with o constant value. The total cross
section is a sum of them.

```

Above 1 oV:
```

    MT=1.2.4.51-54.81.102.251 Total. Elastic and Inelastic
            scattering. Capture cross sections and Nu-L
            Calculated with optical and statistical model code
            CASTHY/4/.
    ```
 The spherical optical potential parameters (MoV,fm):
 \(V=42.0-0.107 . E n . \quad r=1.282 . a=0.60\)
 \(W_{s}=6.95-0.339-E n+0.0531 * E n * 2\), \(r s=1.29\), b \(=0.50\)
 (derivative Woods-Saxon form)
 Vso=7.0.
 \(r 80=1.282\). \(\theta 80=0.60\)
 This set of potential paramuters was determined /5/ to
 reproduce well the total cross section of Am-241 by
 Phillips and Howe /6/, and a real part was modified a
 little to give alightly high reaction cross sections in
 a low energy region.
 In the statistical model calculation, competing processes
 of fission. (n.2n) and (n.3ri). and level fluctuation were
 considered. The level scheme of Cm - 241 was taken from the
 compilation by Ellis-Akovali /7/:
 No. Energy(MoV) Spin-Parity
 g.s.
 0.0
 1/2 +
\begin{tabular}{lll}
1 & 0.0530 & \(3 / 2+\) \\
2 & 0.103 & \(5 / 2+\) \\
3 & 0.157 & \(7 / 2+\) \\
4 & 0.255 & \(9 / 2+\)
\end{tabular}

Overlapping levels were assumed above 0.36 MeV . The level density parameters were determined on the basis of numbers of excited levels.
\begin{tabular}{|c|c|c|}
\hline exaited & Cm-242 & Cm-241 \\
\hline \(0(1 / \mathrm{MeV})\) & 28.0 & 28.67 \\
\hline T(MeV) & 0.40 & 0.378 \\
\hline \(\mathrm{C}(1 / \mathrm{MoV})\) & 2.6771 & 6.287 \\
\hline \(\mathrm{E}-\mathrm{x}(\mathrm{MoV})\) & 4.3163 & 3.560 \\
\hline apin-cut off(1/MeV-0.6) & 30.00 & 30.22 \\
\hline pairing E(MeV) & 0.16 & 0.72 \\
\hline
\end{tabular}

Average radiative width \(=0.040 \mathrm{oV}\) and \(D=6.6 \mathrm{oV}\) obtained from the level density parameters were used for the capture cross section calculation.
\(\mathrm{MT}=16,17(\mathrm{n}, 2 \mathrm{n})\) and (n,3n) cross sections
Calculated with the evaporation model by Pearlstein /8/. Neutron emission cross section was assumed to be (compound nucleus formation cross section calculated with optical model - fission).

MT=18 Fission cross section
The same cross section as Cm-243/1! was assumed, Below 1 keV, structure was replaced with a smooth curve.

MF=4 Angular Distributions of Secondary Noutrons
MT=2.5I-54.91
Legendre coefficients calculated with the optical and statistical models wore given.
\(M T=16,17,18\)
Isotropic distributions in the laboratory systam.
MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.91 Evaporation spectrum.
MT=18 Estimatod from Z.-2/A systematics by Smith ot al. /9/. assuming \(E(C f-252)=2.13 \mathrm{MoV}\).

\section*{References}
1) Nakagawa T.: to be published as JAERI \(M\) report.
2) Tuttle R.J.: INDC(NDS)-107/G+Special. 29 (1979).
3) Howerton R.J.: Nucl. Sci. Eng. 62. 438 (1977).
4) Igarasi S.: J.Nucl.Sci.Technol. 12. 67 (1975).
5) Igarasi S. and Nakagawa T.: JAERI-M 8342 (19879).
6) Phillips T.W. and Howe R.E.: Nucl. Sci. Eng. . 68, 375 (1979).
7) Ellis-Akovali Y.A.: Nucl. Data Sheets. 44, 407 (1985).
8) Pearlstein S.: J. Nucl. Energy 27. 81 (1973).
9) A.B. Smith ot al.: AM_/ADM-50 (1979).
```

96-Cm-242 JAERI Eval-Mar89 T.Nakagawa
Dist-Sop89

```

History
79-03 Evaluation for JENDL-2 was made by S.Igarasi and T.Nakagawa (JAERI) /1/.
89-03 Re-evaluation for JENDL-3 was made by T.Nakagawa(JAER1)/2/.
```

MF=1 General Information
MT=451 Descriptive data
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456.
MT=455 Delayed neutron data
Estimated from the systematics by Tuttle /3/.
MT=452 Number of neutrons per fission
Based on the empirical formula by Howerton /4/.

```
MF=2 Resonance Parameters
 MT=151 Resonance parameters
 Resolved resonance region : \(1.0 E-5\) oV to 275 eV .
 Resonance energies \(=\) Altamonor et al. \(/ 5 /\).
 Neutron widths \(=\) Altamonov et al. \(/ 5 /\).
 Radiative widths \(=0.040 \mathrm{eV}\).
 Fission widths \(=\) Almet al. /6/ for the low-lying 4
 levels, and the average value of 0.004 oV
 for other levels.
 Scattoring radius \(=9.38 \mathrm{fm}\).
 A negative resonance was added at -3.45 oV, and its
 parameters wore adjusted so as to reproduce woll the
 thermal cross sections/7/. Background cross section was
 given to the fission cross section.
 Unresolved resonance parameters : 275 oV - 40 keV
 Parameters wore determined with a fitting codo ASREP /8/
 so as to reproduce the fission cross section measured by
 Alam et al./6/, and total cross section at 40 keV .
 Energy independent parameters:
 \(R=9.093 \mathrm{fm}, \mathrm{S} 0=0.92 \mathrm{E}-4, \mathrm{~S} 2=0.97 E-4 . \mathrm{WG}=0.04 \mathrm{oV}\).
 Energy dependent paremetors at 1 keV :
 \(S 1=3.04 E-4 . W F=0.093 \mathrm{oV} . D=17.16 \mathrm{oV}\).
 Calculated \(2200 \mathrm{~m} / \mathrm{s}\) cross sections and resonance integrals.
 \(2200 \mathrm{~m} / \mathrm{sec}\) Res. Integ.
 total
 32.57 b
 elastic
 fission
 11.61 b
 \(5.084 \mathrm{~b} \quad 20.0 \mathrm{~b}\)
 capture 15.90 b 109 b
MF=3 Neutron Cross Sections
 Below 40 keV , cross sections were represented with resonance
 parameters.
MT=1, 2,4,51-53, 91, 102, 251 Total. Elastic and Inelastic
 scattering, Capture cross sections and Mu-L
 Calculated with optical and statistical model code
 CASTHY/9/.
 The spherical optical potential parameters (MeV,fm):
```

V =43.4-0.107-En, r =1.282, a =0.60
Ws =6.95-0.339-En+0.0531*En**2. rs =1.20 b =0.50
(derivative Woods-Saxon form)
Vso=7.0, rso=1.282, aso=0.60
This set of potential parameters was determined /1/ to
reproduce well the total cross section of Am-241 by
Phillips and Howe /10/.
In the statistical model calculation, competing processes of fission, ( $n, 2 n$ ) and ( $n, 3 n$ ). and lovol fluctuation woro considered. The lovel soheme of $\mathrm{Cm}-242$ was taken from ENSDF /11/:

| No. | Energy (MeV) | Spin-Parity |
| :---: | :---: | :---: |
| g. s. | 0.0 | $0+$ |
| 1 | 0.04213 | $2+$ |
| 2 | 0.138 | $4+$ |
| 3 | 0.284 | $6+$ |

Overlapping lovels are assumed above 0.36 MeV . The love: density parameters were detormined on the basis of numbers of excited levels/11/.

|  | $C m-243$ | $C m-242$ |
| ---: | :--- | :--- | :--- |
| $a(1 / \mathrm{MoV})$ | 28.0 | 28.0 |
| $\mathrm{~T}(\mathrm{MoV})$ | 0.40 | 0.40 |
| $\mathrm{C}(1 / \mathrm{MoV})$ | 7.5405 | 2.5771 |
| $\mathrm{E}-\mathrm{X}(\mathrm{MoV})$ | 3.8863 | 4.3163 |
| spin-cutoff(1/MeV.-0.5) | 30.08 | 30.00 |
| pairing $\mathrm{E}(\mathrm{MoV})$ | 0.72 | 0.15 |

Average radiative width $=0.040$ oV and $D=18 \mathrm{eV}$ obtained from the level density parameters were used for the capture cross seotion calculation.
$M T=16.17$ ( $n, 2 n$ ) and ( $n, 3 n$ ) oross sections
Calculated with the evaporation model by Pearlstein /12/.
Neutron emission cross section was assumed to be (compound nucleus formation cross section calculated with optical model - fission).
MT=18 Fission cross section Below 1 MeV, cross section was determined on the besis of data measured by Alam ot al./6/ and Vorotnikov et al.113/. Above 1 MeV . JENDL-2 evaluation was adopted. which was based on the shape of $\mathrm{Cm}-244 / 14 /$ and the ompirical formula on the fission-cross-section systemstics around 4 MoV by Behrens and Howerton /15/.
MF=4 Angular Distributions of Secondary Noutrons
MT=2.51-53.91
Legendre coefficient: calculated with the optical and statistical models were given.
MT=16.17.18 Isotropic distributions in tho laboratory system.

```

\section*{NF=5 Energy Distributions of Secondary Noutrons}
```

MT=16.17.91 Evaporation spectrum.
MT=18 Estimated from Z**2/A systematics by Smith et al. /16/. assuming $E(C f-252)=2.13 \mathrm{MoV}$.

```

\section*{References}
1) Igarasi S. and Nakagawa T.: JAERI-M 8342 (1979).
2) Nakagawa T.: to be published as JAERI-M report.
3) Tuttle R.J.: IADC(NDS)-107/G+Special. 29 (1979).
4) Howerton R.J.: Nucl. Sci. Ens. 62. 438 (1977).
5) Artamonov V.S. ot al. : Proc. of 4th All Union Conf. on Neutron Physics, Kiov (1977). Vol. 2, 257.
6) Alam B. et al.: Nucl. Sci. Eng., 99, 267 (1988).
7) Mughabghab S.F.: 'Noutron Cross Soctions, vol. 1, part 8", Academic Press (1984).
B) Kikuchi Y.: privato communioation.
0) Igarasi S.: J. Nucl. Sci. Technol., 12, 67 (1975).
10) Phillips T.W. and Howe R.E.: Nucl. Sci. Eng. 69, 375 (1979).
11) ENSDF, Evaluated Nuclear Structure Data File, as of Jan. 1989.
12) Poarlstoin S.: J. Nucl. Energy 27, 81 (1973).
13) Vorotnikov P.E. ot al.: Sov. J. Nucl. Phys.. 40. 726 (1984).
14) Igarasi S. and Nakagawa T.: JAERI-M 7175 (1977).
15) Behrens J.W. and Howerton R.J.: Nucl. Sci. Eng.. 65, 464 (1978).
16) Smith A.B. ot al.: ANL/NDM-50 (1979).

\section*{MAT number \(=3963\)}

96-Cm-243 JAERJ Eval-Mar89 T.Nakagawa
Dist-Sep89
```

History
81-03 Evaluation for JENDL-2 was made by T.Nakagawa and S.Igarasi
(JAERI) /1/.
89-03 Re-ovaluation for JENDL-3 was made bv. T.Nakagawa (JAERI)/2/.
MF=1 General Information
MT=451 Descriptive date
MT=452 Number of neutrons por fission
Sum of MT=455 and MT=456.
MT=455 Delayed noutron data
Estimated from the systematics by Tuttle /3/.
MT=4b6 Number of prornpt neutrons per fission
Based on the experimental data at thermal energy by Jaffey
and Lerner /4/, and Zhuravlev et al. /5/, and on the
empirical formula by Howerton /6/.

```
MF=2 Resonance Parameters
 MT=151 Resonance parameters
 Resolved resonance region (SLBW): 1.0E-5 oV to 70 oV .
 Resonance energies \(=\) Anufriev ot al. \(/ 7 /\)
 Noutron widths \(\quad=\) Anufriev ot al. /7/ (assuming 2g-1)
 Radiative widths \(=0.040 \mathrm{eV}\) (essumed)
 Fission widths \(\quad=\) total width /7/ - (WN+WG)
 Scattering radius \(=10 \mathrm{fm}\).
 A negative resonance was adopted so as to reproduce well
 the thermal cross sections/8/.
 Unresolved resonance parameters : 70 oV - 40 keV
 Parameters were determined with a fitting code ASREP/9/ so
 as to reproduce the fission cross section based on Silbert
 /10/, and the total cross seotion calculatod with optical
 model.
 Energy independent parameters:
 \(R=9.810 \mathrm{fm} . \mathrm{S} 2=1.70 \mathrm{E}-4\). WG=0.04 \(\mathrm{eV}, W F=1.481 \mathrm{eV}\)
 Enorgy dependent parameters ot 1 keV :
 \(S O=1.32 E-4, S 1=1.06 E-4, D=0.799\) oV.
 Calculated \(2200 \mathrm{~m} / \mathrm{s}\) cross sections and resonance integrals.
 \(2200 \mathrm{~m} / \mathrm{sec}\) Ros. Integ.
 757.5 b
 9.926 b -
 017.4 b 1560 b
 \(130.2 b \quad 199 b\)

NF=3 Neutron Cross Sections
Beiow 40 keV . cross sections wore represented with resonance paramoters.

MT=1.2.4.51-63.91.102.251 Total. Elastic and Inolastic scattering, Capture cross sections and Mu-L

Calculated with optical and statistical model code CASTHY/111.
The spherical optical potential parameters (MoV,fm):
\[
V=41.0-0.107-E n, \quad r=1.282, a=0.60
\]

Ws \(==6.95-0.339 \cdot E n+0.0531 \cdot E n * 2, \quad r s=1.29, \quad b=0.50\) (derivative Woods-Saxon form)
Vso=:7.0. \(\quad \mathrm{rso}=1.282\), aso=0.60
This set of potential parameters was determined /12/ to reprodu, well the total cross section of Am-24i by Phillips and Howe /13/, and a real part was modified a little to give a slightly large strength function in a low energy region.

In the statistical model calculation, competing processes of fisiion, (\(n, 2 n\)), (\(n, 3 n\)) and (\(n, 4 l i j\), and level fluctuation were considared. The level scheme of \(\mathrm{Cm}-243\) was teik \(3 n\) from the complation by Ellis-Akovali /14/:
\begin{tabular}{rlr}
No. & Energy (MoV) & Spin-Parity \\
g.s. & 0.0 & \(5 / 2+\) \\
1 & 0.042 & \(7 / 2+\) \\
2 & 0.9074 & \(1 / 2+\) \\
3 & 0.094 & \(9 / 2+\) \\
4 & 0.094 & \(3 / 2+\) \\
5 & 0.133 & \(7 / 2+\) \\
6 & 0.153 & \(11 / 2+\) \\
7 & 0.164 & \(9 / 2+\) \\
8 & 0.219 & \(13 / 2+\) \\
9 & 0.228 & \(11 / 2+\) \\
10 & 0.260 & \(15 / 2+\) \\
11 & 0.530 & \(1 / 2+\) \\
12 & 0.729 & \(3 / 2-\)
\end{tabular}

Overlapping levels are assumed ajove 0.82 MoV . The level density parameters ware determined on the basis of numbers of excited levels/15/ and resonance level spacing/8/.

Cm -244 \(\mathrm{Cm}-243\)
\begin{tabular}{rll}
g(1/MeV) & 28.0 & 28.0 \\
\(T(\mathrm{MeV})\) & 0.395 & 0.40 \\
\(\mathrm{C}(1 / \mathrm{MeV})\) & 1.8807 & 7.5405 \\
\(\mathrm{E}-\mathrm{X}(\mathrm{MeV})\) & 4.2893 & 3.8863 \\
spin-cut off(1/MeV.eO.5) & 30.17 & 30.08 \\
pairing \(\mathrm{E}(\mathrm{MeV})\) & 1.22 & 0.72
\end{tabular}

Average radiative width \(=0.040 \mathrm{eV}\) and \(\mathrm{D}=0.809 \mathrm{eV} / 7 /\) were usud for the capture cross section calculation.

MT=16.17.37 (n,2n). (n,3n) and (n,4n) cross sections
Calculated with the evapuration model by Pearlstein/16!. Noutron emission cross section was assumed to be (compound nucleus formation cross section calculated with optical model - fission).

MT=18 Fission cross.section
Below 10 keV : taken from JENDL-2 evaluation based on Silbert /10i.
\(10 \mathrm{keV}-3 \mathrm{MeV}:\) determined from Fomushkin et al. /17/. Above 3 MeV . : estimated.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-63,91
Legendre coefficients calculated with CASTHY /11/.
```

    MT=16,17,18,37
    Isotropic distributions in the laboratory system
    ```
```

MF=5 Energy Distributions of Secondary Neutrons

```
MF=5 Energy Distributions of Secondary Neutrons
 MT=16,17,37,91 Evaporation Spectrum.
 MT=16,17,37,91 Evaporation Spectrum.
 MT=18 Fission spectrum estimated from Z*-2/A systematics by
 MT=18 Fission spectrum estimated from Z*-2/A systematics by
 Smith ot al, /18/ by assuming E(Cf-252) = 2.13 MoV.
 Smith ot al, /18/ by assuming E(Cf-252) = 2.13 MoV.
Reforences
 1) Nakagawa T. and Igarasi S.: JAERI-M 9601 (1981).
 2) Nakagawa T.: to be published as JAERI-M report.
 3) Tuttlo R.J.: INDC(NDS)-107/G+Spocial, 29 (1979)
 4) Jaffey A.H. and Lernor J.L.: Nucl. Phys.. A145, 1, (1970).
 5) Zhuravlav K.D. et al. : Proc. 2nd Nat. Soviet Conf. on Neut.
 Phys.. Vol.4, 57 (1974).
 6) Howerton R.J.: Nucl. Sci. Eng.. 62, 438 (1977).
 7) Anufriev V.A. ot al.: Sov. At. Energy. 51. 736 (1982)
 8) Mughabghab S.F.: "Neutron Cross Sections, vol.1, Part B".
 Academic Press (1984).
 9) Kikuchi Y.: private communication.
10) Silbert M.G.: LA-6239 (1976).
11) Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1975).
12) Igarasi S. and Nakagawa T.: JAERI-M 8342 (1979).
13) Phillips T.W. and Howe R.E.: Nucl. Sci. Eng. 69. 375 (1979).
14) Ellis-Akovali Y.A.: Nucl. Data Shoets, 44. 407 (1985).
15) ENSDF, Evaluated Nucloar Structuro Data Filo, as of Jan. 1989.
16) Pearlstein S.: J. Nucl. Energy 27. 81 (1973).
17) Fomushkin E.F. et al.: Sov. At. Energy. 62, 337 (1987).
18) A.B. Smith et al. : ANL/NDM-50 (1979).
```


## MAT number $=3964$

96-Cm-244 JAERI Eval-Mar89 T.Nakagawa
Dist-Sep89

```
History
77-03 Evaluation for JENDL-2 was made by S.Igarasi and T.Nakagawa
 (JAERI) /1/.
89-03 Re-ovaluation for JENDL-3 was made by T.Nakagawa(JAER\)/2/.
MF=1 General Information
 MT=451 Descriptive data
 MT=452 Number of neutrons per fission
 Sum of MT=455 and MT=456.
 MT=455 Number of delayed neutrons per fission
 Estimated from semi-empirical formula by Tuttle /3/.
 MT=456 Number of prompt neutrons per fission
 Determined from semi-empirical formula by Howerton /4/.
```

MF=2 Resonance Parameters
MT=151 Resonance parameters
Resolved resonance region (MLBW) : $1.0 E-5$ to 1 keV
Above 20 oV, parameters by Moore and Keyworth /5/ were
adopted assuming neutror width of 0.2 iV for 646.9. 759.7,
9i4.0 and 971.5-oV levels, and below 20 eV , evaluation by
Benjamin et al. /6/. The fission widths of low-lying 4
levels were replaced with those by Maguire et al. /7/.
Radiative width $=0.037 \mathrm{oV}$ (assumed)
Scattering radius $=11.2 \mathrm{fm}$ (adjusted to 11.6 b
at 0.0253 oV $/ 8 /$.
A negative resonance at -1.48 eV was adopted and its
parameters were adjusted so as to reproduce well the
thermal cross sections/8/.
Unresolved resonance parameters : $70 \mathrm{oV}-40 \mathrm{keV}$
Parameters were determined with a fitting code ASREP/9/ so
as to reproduce the fission cross section of Maguire et
al. 17/, and the total and capture cross sections calcu-
lated with optical and statistical models.
Energy independent parameters:
$R=9.221 \mathrm{fm}, \mathrm{S} 0=0.9 E-4, S 2=0.92 E-4$. $W G=0.04 \mathrm{eV}$.
Energy dependent parameters at 1 keV :
$S 1=3.06 E-4$. $W F=0.00244 \mathrm{oV} . \mathrm{D}=11.98 \mathrm{oV}$.
Calculated $2200 \mathrm{~m} / \mathrm{s}$ cross sections and resonance integrals.
$2200 \mathrm{~m} / \mathrm{sec}$ Res. Integ.
total 27.20 b
elastic $\quad 11.06$ b
fission $\quad 1.037 \mathrm{~b} \quad 13.2 \mathrm{~b}$
capture $\quad 15.10$ b 661 b

## MF=3 Neutron Cross Sections

Below 40 keV . cross sections were represented with resonance parameters.

MT=1,2.4.51-62.91.102.251 Total. Elastic and Inelastic
scattering. Capture cross sections and Mu-L
Calculated with optical and statistical model code
CASTHY/10/.

The spherical optical potential parameters (MeV,fm):
$V=43.4-0.107-E n, \quad r=1.282$, $a=0.60$
$W_{s}=6.95-0.339 . E n+0.0531-E n *-2, r s=1.29, \quad b=0.50$
(derivative Woods-Saxon form)
$\mathrm{Vso}=7.0, \quad \mathrm{rso}=1.282$, aso $=0.60$
This set of potential parameters was determined /11/ to reproduce well the total cross section of Am-241 by Phillips and Howe /12/. The strength function of 0.81E-4 calculatad with this OMP is in very good agreament with experiments/8/.

In the statistical model calculation, competing processes of fission. $(n, 2 n)$ and $(n, 3 n)$, and level
fluctuation were considered. The level scheme of $\mathrm{Cm}-244$ was taken from the compilation by Shurshikov /13/:

No.	Energy (MeV)	Spin-Par	
g.s.	0.0	0	+
1	0.04297	2	+
2	0.14235	4	+
3	0.29621	6	+
4	0.50179	8	+
5	0.970	2	+
6	0.98491	0	+
7	1.0208	2	+
8	1.038	2	+
9	1.0402	6	+
10	1.0842	1	+
11	1.1059	1	-
12	1.187	2	+

Overlapping levels are assumed above 1.2 MeV . The level density parameters were determined on the basis of numbers of excited levels/14/ and resonance level spacing/8/.

	$C m-245$	$C m-244$
$a(1 / \mathrm{MeV})$	30.0	28.0
$\mathrm{~T}(\mathrm{MeV})$	0.391	0.395
$\mathrm{C}(1 / \mathrm{MeV})$	11.288	1.8807
$\mathrm{E}-\mathrm{X}(\mathrm{MeV})$	4.0295	4.2893
spin-cutoff(1/MeV -0.5$)$	31.31	30.17
pairing $\mathrm{E}(\mathrm{MeV})$	0.72	1.22

Average radiative width $=0.037 \mathrm{eV}$ and $\mathrm{D}=12 \mathrm{oV}$ were used for the capture cross section calculation.

MT=16.17 (n,2n) and (n,3n) cross sections
Calculated with the evaporation model by Pearlstein /i5/. Neutron emission cross section was assumed to be (compound nucleus formation cross section calculated with optical model - fission).

MT=18 Fission cross section
Below 100 keV : smooth curve besed on Maguire et al. /7/. 100 - 800 keV : JEMDL-2 was adopted. which was obtained by fitting a semi-empirical formula to the experimental data of Ref. /5/.
$0.8-8 \mathrm{MeV}$ : estimated from experimental data/5.16.17/
Above 8 MeV : the same as JENDL-2.

```
MF=4 Angular Distributions of Secondary Neutrons
 MT=2.51-62.91
 Legendre coefficients were given by the optical and
 statistical madel calculations.
 MT=16,17,18
 Isotropic distributions in the laboratory system.
NF=5 Energy Distributions of Secondary Neutrons
 MT=16,17,91 Evaporation spectrum
 MT=18 Fission spectrum estimated from Z--2/A systematics by
 Smith e: al. /18/ by assuming E(Cf-252) = 2.13 MeV.
```

    References
    1) Igarasi S. and Nakagawa T.: JAERI-M 7175 (1977).
    2) Nakagawa T.: to be publishod as JAERI-M report.
    3) Tuttle R.J.: INDC(NDS)-107/G+Special. 29 (1979).
    4) Howerton R.J.: NucI. Sci. Eng., 62, 438 (1977).
    5) Moore M.S. and Keyworth G.A.: Phys. Rev., C3, 1656 (1971).
    6) Benjamin R.W. et al.: Nucl. Sci. Eng. 47, 203 (1972).
    7) Maguire Jr.H.T. et al.: Nucl. Sci. Eng., 89. 293 (1985)
    8) Mughabghab S.F.: "Neutron Cross Sections, vol.1, Part B",
        Academic Press (1984).
    9) Kikuchi Y.: private communication.
    10) Igarasi S.: J. Nucl. Sci. Tochnol., 12. 67 (1975).
    11) Igarasi S. and Nakagawa T.: JAERI-M 8342 (1979).
    12) Phillips T.W. and Howe R.E.: Nucl. Sci. Eng. 69. 375 (1979).
    13) Shurshikov E.N.: Nucl. Data Sheets. 49. 785 (1986).
    14) ENSDF. Evaluated Nuclear Structure Data File. as of Jan. 1989
    15). Pearlstein S.: Nucl. Sci. Eng. 23. 238 (1965).
    16) Fomushkin E.F. et al.: Sov. J. Nucl. Phys.. 31. 19 (1980).
    17) Vorotnikov P.E. et al.: Sov. At. Energy. 57. 504 (1985).
    18) Smith A.B. ot al.: ANL/NDM-50 (1979).
    MAT number $=3965$
96-Cm-245 JAERI Eval-Mar89 T.Nakagawa
Dist-Mar89

## History

78-03 Evaluation was made by S.Igarasi and T.Nakagawa (JAERI)/1/. 89-03 Re-evaluation for JENDL-3 was made by T.Nakagawa(JAERI)/2/.

MF=1 General Information
MT=451 Desoriptive deta
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456.
MT=455 Number of delayed neutrons per fission
Estimated from the systematics proposed by Tuttle /3/.
MT=456 Number of prompt neutrons per fission
Experimental data by Howe /4/ were adopted. Their data are much smaller than other experiments $/ 5,6.7 /$.

NF=2 Resonance Parameters
MT=151 Resonance parameters
Resolved resonance rogion (SLBW) : 1.0E-5 to 60 oV
Parameters for Reich-Moore formula by Moore and Keyworth /8/ were adopted above 20 oV . and those by Browne ot al. 19/ below 20 oV with a little modification of a negative resonance so that the thermal cross section could be in agreement with the experimental data. The differences between Reich-Moore and single-leval B-W formulas are treated as the background cross sections.

Radiative width $=0.04 \mathrm{oV}$
Scattering radius $=\mathbf{1 0 . 0} \mathbf{f m}$
Unresolved resonance parameters : 60 oV - 40 keV Parameters were determined with a fitting code ASREP/10/ so as to reproduce the fission cross section of Moore and Keyworth /8/, and the total and capture cross sections calculated with optical and statistical models.

Energy independent parameters:
$R=9.43 \mathrm{fm}, S 0=1.02 E-4, S 1=2.24 E-4, S 2=0.9 E-4$. WG=0.04 oV.
Energy dependent porameters at 1 keV : $W F=2.01 \mathrm{oV}, \mathrm{D}=1.397 \mathrm{oV}$.

Calculated $2200 \mathrm{~m} / \mathrm{s}$ cross sections and resonance integrals. $2200 \mathrm{~m} / \mathrm{sec}$ Res. Integ.

## total

elastic f.ission capture

## MF=3 Neutron Cross Sections

Below 40 keV . cross sections were represented with resonance parameters.

MT=1,2,4.51-73.91, 102;251 Total. Elastic and Inelastic scattoring. Capture cross sections and Mu-L

Calculated with optical and statistical model code CASTHY/11/.
The spherical optical potential parameters (MeV.fm):

```
V =42.7-0.107-En. r =1.282, a =0.60
Ws =6.95-0.339-En+0.0531*Er**2,rs=1.23, b =0.50
 (derivative Woods-Saxon form)
Vso=7.0. rso=1.282. aso=0.6u
This set of potential perameters was determined /12/ to
reproduce well the total cross section of Am-241 by
Phillips and Howe /12/. The strength function of 1.02E-4
calculated with this OMP is in good agreement with
1.18E-4/14/.
```

In the statistical model calculation, conmeting processes of fission. ( $n, 2 n$ ), ( $n, 3 n$ ) and ( $n, 4 n$ ), and level fluctuation were considered. The level scheme of $\mathrm{Cm}-245$ was taken from the compilation by Ellis-Akovali 115/:

No.	Energy(MeV)	Spin-Parity
g.s.	0.0	$7 / 2+$
1	0.0548	$9 / 2+$
2	0.1215	$11 / 2+$
3	0.1974	$13 / 2+$
4	0.25285	$5 / 2+$
5	0.2958	$7 / 2+$
6	0.35086	$9 / 2+$
7	0.35595	$1 / 2+$
8	0.3615	$3 / 2+$
9	0.3883	$9 / 2-$
10	0.4167	$11 / 2+$
11	0.4188	$5 / 2+$
12	0.431	$11 / 2+$
13	0.4429	$13 / 2+$
14	0.498	$13 / 2-$
15	0.5091	$9 / 2+$
16	0.532	$3 / 2+$
17	0.555	$5 / 2-$
18	0.63365	$9 / 2-$
19	0.6435	$1 / 2+$
20	0.66155	+
21	0.7018	
22	0.722	0.741


	$C m-246$	$C m-245$
$a(1 / \mathrm{MeV})$	27.7	30.0
$T(\mathrm{MeV})$	0.395	0.391
$\mathrm{C}(1 / \mathrm{MeV})$	2.2560	11.288
$\mathrm{E}-\mathrm{x}(\mathrm{MeV})$	4.1307	4.0295
spin-cutoff(1/MoV=O.D)	30.17	31.31
pairing $\mathrm{E}(\mathrm{MeV})$	1.11	0.72

Average radiative width $=0.040 \mathrm{oV}$ and $\mathrm{D}=1.4 \mathrm{oV} / 14 /$ were used for the capture cross section calculation.
$M T=16,17,37(n, 2 n) .(n, 3 n)$ and (n,4n) cross sections
Calculated with the evaporation model by Pearlstein /17/.

```
 Nautron emission cross section was assumed to be (compound
 nucleus formation cross section calculated with optical
 model - fission).
 MT=18 Fission cross section
 Below 100 keV: JENDL-2 was adopted, which was obtained by
 fitting a semi-empirical formula to the
 experimentel data of Ref. /8/.
 Above 100 keV: based on the experimental data of White
 and Browne /18/.
MF=4 Angular Distributions of Secondery Neutrons
 MT=2.51-73.91
 Legendre coefficients were given by the op:ical and
 statistical model calculations.
 MT=16.17.18.37
 Isotropic distributions in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16.17.37.91 Evaporation spectrum
 MT=18 Fission spectrum estimated from Z**2/A systematics by
 Smith et al./19/ by assuming E(Cf-252) = 2.13 MeV.
```


## References

```
1) Igarasi S. and Nakagawa T.: JAERI-M 7733 (1978).
2) Nakagawa T.: to be published as JAERI-M report.
3) Tuttle R.J.: Proc. Consultants \({ }^{\text {(Meating on Delayed Noutron }}\) Properties, 1973 Vienna, 29, also INDC(NDS)-107/G+Special (1979).
4) Howe R.E. ot al.: Nucl Phys., A407. 193 (1983).
5) Jaffer A.H. and Lerner J.L.: Nucl. Phys.. A145. 1 (1970).
6) Kroshkin N.I. and Zamyatnin Yu.S.: Atom. Energ., 29. 95 (1970). also Sov. Atom. Energy. 29. 790 (1970).
7) Zhuraviev K.D. et al.: 1973 Kiev, Vol.4, 57 (1973).
8) Moore M.S. and Keyworth G.A.: Phys. Rev., C3. 1656 (1971).
9) Browne J.C. et al. : Nucl. Sci. Eng.. 65. 166 (1978).
10) Kikuchi Y.: private communication.
11) Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1975).
12) Igarasi S. and Nakagawa T.: JAERI-M 8342 (1979).
13) Phillips T.W. and Howe R.E.: Nucl. Sci. Eng. 69. 375 (1979).
14) Mughabghab S.F.: 'Neutron Cross Sections. vol.1, Part B". Academic Press (1984).
15) Ellis-Akovali Y.A.: Nucl. Data Sheets, 33, 119 (1981).
16) ENSDF. Evaluated Nuclear Structure Data File, as of Jan. 1989.
17) Pearlstein S.: Nucl. Sci. Eng., 23. 238 (1965).
18) White R.M. and Browne J.C.: 1983 Antwerp. 218 (1983).
19) Smith A.B. et al.: ANL/NDM-50 (1979).
```

```
MAT number = 3966
```

96-Cm-246 JAERI Eval-Mar87 Y.Kikuchi. T.Nakagawa

History
87-03 New evaluation was made by Y.Kikuchi (JAERI)/1/.
89-03 Re-evaluation for JENDL-3 was made by T.Nakagawa(JAERI) /2/.
$M F=1$
MF=1 General Information
MT=451 Doscriptivo data
MT=462 Number of neutrons per fission Sum of $M T=455$ and $M T=456$.
MT=456 Number of delayed noutrons
Semi-empirical formula by Tuttle /3/.
MT=456 Number of prompt neutrons per fission
Semi-empirical formula by Howerton /4/.

MF=2 Resonance Parameters
MT=151 Resonance parameters
Resolved resonance region (MLBW) : 1.0E-5 to 330 eV
Evaluation was based on the experimental data /5-9/ as follows:

Resonance energies $=$ Refs. 6 and 8.
Neutron widths $=$ Refs. 5, 6 and 7.
Radiative widths $=$ Refs. 6 and 8, and average width of 0.031 eV was assumed.
Fission widths $\quad=$ Refs. 8 and 9 . WF of 4.315-eV level was adjusted to the thermal crosi section.
Scat+ering radius $=9.85 \mathrm{fm}$. (adjusted to 11.1 bat $0.0253 \mathrm{oV} / 10 /$ )
1/v background data ware given to fission cross section. Unresolved resonance region : 330 eV to 30 keV Obtained from optical model calculation:
$S 0=0.94 E-4, S 1=3.17 E-4, \quad S 2=0.88 E-4, R=9.15 \mathrm{fm}$.
Estimated from resolved resonances:
D-obs=31.7 oV. WG=31 milli-eV.
WF obtained by fitting the data of Stopa et al./9/.

Calculated $2200 \mathrm{~m} / \mathrm{s}$ cross sections and resonance integrals $2200 \mathrm{~m} / \mathrm{sec}$ Res. Integ.

## total

12.51 b
-
elastic
11.08 b
fission $0.14 b \quad 9.90$ b
capture
1.291 b

113 b
MF=3 Neutron Cross Sections
Below 30 keV. cross sections were represented with resonance parameters.

MT=1.2.4.51-79.91.102.251 Total. Elastic and Inelastic
scattering. Capture cross sections and Mu-L
Calculated with optical and statistical model code CASTHY/11/.
The spherical optical potential parameters (MeV.fm):

$$
V=43.4-0.107 \cdot E n,
$$

$$
r=1.282, a=0.60
$$

    Ws \(=6.95-0.339 * E n+0.0531 * E n * 2 . r s=1.29, \quad b=0.50\)
            (derivative Woods-Saxon form)
                \(V s o=7.0, \quad r s o=1.282\), aso \(=0.60\)
    This set of potential parameters was determined /12/ to
reproduce well the total cross section of Am-241 by
Phillips and Howe /13/.
In the statistical model calculation, competing processes
of fission, $(n, 2 n),(n, 3 n)$ and $(n, 4 n)$, and level
fluctuetion were considered. The level scheme of $\mathrm{Cm}-246$
was taken from Rof./14/.

No.	Enorgy (koV)	Spin-Parity
g.s.	0	0 -
1	42.85	$2+$
2	141.99	$4+$
3	295.5	$6+$
4	500.0	$8+$
5	841.7	2 -
6	876.4	3 -
7	923.3	4-
8	981.0	5 -
9	1051	6 -
10	1079	1 -
11	1105	2 -
12	1124	$2+$
13	1128	3 -
14	1129	7 -
15	1165	$3+$
16	1175	$0+$
17	1179	8 -
18	1211	$2+$
19	1220	$4+$
20	1250	1 -
21	1289	$0+$
22	1300	$3-$
23	1318	$2+$
24	1349	1 -
25	1367	2 -
26	1379	$4+$
27	1452	$1+$
28	1478	$2+$
29	1509	$3+$
nt inuu	ls assumed	ve 1526 keV

The level density parameters were taken from Gilbert and Cameron /15/. The gamma-ray strength function of $9.76 \mathrm{E}-4$ deduced from resonance parameters.
$M T=16,17,37(n, 2 n) .(n, 3 n) .(n, 4 n)$ reaction cross sections Calculated with evaporation model/16/.
MT=18 Fission
Evaluated on the basis of the measured data by Stopa et al./9/ and Fomushkin ot al./17/.

## MF=4 Angular Distributions of Secondary Neutrons

 MT=2.51-79.91Legendre coefficients were given by the optical and

```
 statistical model calculations.
 MT=16,17,18,37
 Isotropic distributions in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16,17,37.91 Evaporation spectrum
 MT=18 Fission spectrum
 Temperature of 1.48 MeV was ostimated from data of
 Zhuravlav ot al. /18/ for Cm-245 and Cmm247.
```


## References

```
1) Kikuchi Y.: JAERI-M 83-236 (1984).
2) Nakagawa T.: to be published as JAERI-M report.
3) Tuttle R.J.: INDC(NDS)-107/G+special. 29 (1979).
4) Howerton R.J.: Nucl. Sci. Eng., 62. 438(1977).
5) Borroth T.R. ot al.: Nucl. Sci. Eng., 49. 145(1972).
6) Bonjamin R.W. ot al.: Nucl. Sci. Eng.. 55, 440(1974).
7) Belanova T.S. et al.: Sov. At. Energy, 39, 1020(1975).
8) Moore M.S. and Keyworth G.A.: Phys. Rev.. C3, 1656(1971).
9) Stopa C.R.S. ot al.: 1982 Kiamesha, 1090 (1982), and Maguire Jr. H.T. et al.: Nucl. Sci. Eng.. 89. 293 (1985).
10) Mughabghab S.F.: "Neutron Cross Sections, vol.1, Part B*. Academic Pross (1984).
11) Igarasi S.: J. Nucl. Sci. Technol.. 12, 67 (1975).
12) Igarasi S. and Nakagawa T.: JAERI-M 8342 (1979).
13) Phillips T.W. and Howo F.R.: Nucl. Sci. Eng. . 69. 375(1979).
14) Lederer C.M. and Shirley V.S.: Table of lsotopes. 7th ed. (1978).
15) Gilbert A. and Cameron A.G.W.: Can. J. Phys., 43, 1446 (1965),
16) Pearlstein S.: Nucl. Sci. Eng., 23. 238 (1965).
17) Fomshkin E.F. ot al.: Sov. J. Nucl. Phys., 31, 19(1980).
18) Zhuraviov K.D. et al.: 1973 Kiev, vol.4. 57 (1973).
```

96-Cm-247 JAERI Eval-Mar89 T.Nakagawa, Y.Kikuchi
Dist-Mar 89
History
83-03 Evaluation was by Y.Kikuchi(JAERI)/Ref.1/.
89-03 Re-evaluation was made for JENDL-3 by T.Nakagawa(JAERI)/2/.

```
MF=1 General Information
 MT=451 Descriptive data
 MT=452 Number of neutrons per fission
 Sum of MT=455 and MT=456.
 MT=455 Number of delayed neutrons per fission
 Semi-empirical formula by Tuttle /3/.
 MT=456 Number of prompt noutrons per fission
 Thermal value of Zhuravlev et al./4/ and energy dependent
 term of Howerton /5/.
```

MF=2 Resonance Parameters
MT=151 Resonance parameters
Resolved resonance region (MLBW) : 1.0E-5 to 60 eV
Evaluation was based on the experimental data of Moore and
Keyworth /6/ and Belanova et al.ifi. The parameters of
1.25-eV level were taken from Mughabghab /8/.
Radiative widths $\quad=0.040$ oV was assumed.
Scattering radius $=9.14 \mathrm{fm}$.
A negative resonance was added at -0.3 eV .
Unresolved ressnance region : 60 oV to 30 keV
Parameters were determined with a fitting code ASREP/9/
so as to reproduce the fission cross section of Moore and
Keyworth /6/, and the total and capture cross sections
calculated with optical and statistical models.
Energy independent parameters:
$R=9.386 \mathrm{fm}, \mathrm{S} 2=0.86 \mathrm{E}-4$, $W G=0.04 \mathrm{eV}$.
$W F(4-)=0.0534 \mathrm{eV}, \operatorname{WF}(5-)=0.5 \mathrm{eV}, \quad W F(3+)=0.08 \mathrm{eV}$,
$W F(4+)=0.68 \mathrm{eV}, \quad W F(5+)=0.05 \mathrm{eV}, W F(6+)=0.47 \mathrm{eV}$.
WF estimated by systematic survey $/ 10 /$
Energy dependent parameters at 0.9 keV :
$S 0=0.774 E-4, S 1=2.89 E-4 . \mathrm{D}=1.397$ oV.
calcuiated $2200 \mathrm{~m} / \mathrm{s}$ cross sections and resonance integrals
$2200 \mathrm{~m} / \mathrm{sec}$ Res. Integ.
total 147.8 b -
elastic 8.775 b -
fission 81.79 b 612 b
capture 57.20 b 535 b

MF=3 Neutron Cross Sections
Below 30 keV . cross sections were represented with resonance parameters.

MT $=1,2,4,51-60,91,102,251$ Total. Elastic and Inelastic
scattering. Capture cross sections and Mu-L
Calculated with optical and stetistical model code CASTHY/11/.
The spherical optical potential parameters (MeV, fm):

$$
V=43.4-0.107-E n, \quad r=1.282, a=0.60
$$

$$
\begin{aligned}
& \text { Ws }=6.95-0.339 \cdot E n+0.0531 \cdot E n * 2, r s=1.29, \quad b=0.50 \\
& \text { (derivative Woods-Saxon form) } \\
& \text { Vso=7.0. } \quad r s o=1.282 \text {, aso }=0.60
\end{aligned}
$$

This set of potential parameters was determined /12/ 10 reproduce well the total cross section of Am-241 by Phillips and Howe /13/.

In the statistical model calculation, competing processes of fission, $(n, 2 n),(n, 3 n)$ and $(n, 4 n)$, and level fluctuation were considered. The level scheme of $\mathrm{Cm}-247$ was taken from Ref./14/.

No.	Energy $(k a V)$	Spin-Parity
g.s.	0	$9 / 2-$
1	61.5	$11 / 2-$
2	133	$13 / 2-$
3	227	$5 / 2+$
4	266	$7 / 2+$
5	285	$7 / 2+$
6	317	$9 / 2+$
7	342	$9 / 2+$
8	404	$1 / 2+$
9	433	$3 / 2+$
10	449	$5 / 2+$

Continuum levols assumed above 479 kev. The level density parameters were taken from Gilbert and Cameron/15/. The gamma-ray strength function of 2.29E-2 was deduced from resonance parameters.

```
MT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections
``` Calculated with evaporation modeli16/.
```

MT=18 Fission
Evaluated on the basis of the measured data by Moore and
Keyworth /6/ below 50 keV. Above this energy, the data of
Fomushkin et al./17/ were adopted.

```
NF=4 Angular Distributions of Secondary Noutrons
    \(\mathrm{MT}=2.51-60.91\)
            Legendre coefficients were given by the optical and
            statistical model calculations.
        \(M T=16,17.18 .37\)
            Isotropic distributions in the laboratory system.
MF=5 Energy Distributions of Secondery Neutrons
    MT=16.17.37.91 Evaporation spectrum
    MT=18 Fission spectrum
            Temperature of 1.47 MeV was estimated from data of
            Zhuraviev et al. /4/.

\section*{References}
1) Kikuchi Y.: JAERI-M 83-236(1984).
2) Nakagawa T.: to be published as JAERI-M report.
3) Tuttlo R.J.: INDC(NDS)-107/g+special. 29 (1979).
4) Zhuravlev K.D. et al.: 1973 Kiev. vol.4. 57 (1973).
5) Howerton R.J.: Nucl. Sci. Eng. . 62. 438(1977).
6) Noore M.S. and Keyworth G.A.: Phys. Rev., C3, 1656(1971)
7) Belanova T.S. et al.: Sov. At. Energy, 47, 772(1979).
8) Mughabghab S.F.: "Neutron Cross Sections, vol.1, Part B". Academic Press (1984).
9) Kikuchi Y.: private communication.
10) Kikuchi Y. and An S.: J. Nucl. Sci. Technol.. 7. 157 (1970).
11) Igarasi S.: J. Nucl. Sci. Technol.. 12. 67 (1975).
12) Igarasi S. and Nakagawa T.: JAERI-M 8342 (1979).
13) Phillips T.W. and Howe F.R.: Nucl. Soi. Eng., 69, 375(1970).
14) Lederer C.M. and Shirley V.S.: Table of Isotopes . 7thed.. (1978).
15) Gilbert A. and Cameron A.G.W. : Can. J. Phys.. 43, 1446(1965).
16) Pearlstein S.: Nucl. Sci. Eng.. 23. 238 (1965).
17) Fomushkin E.F. ot al.: Sov. At, Energy, 62, 340 (1987).


MF=2 Resonance Parameters
MT=151 Resonance parameters
Resolved resonance region (MLBW) : \(1.0 \mathrm{E}-5\) to 1.5 keV Resonance energies, neutron and radiative widths were taken from the experimental deta of Benjamin ot al./4/. For resonances whose radiative width was unknown, the average value of \(0.026 \mathrm{oV} / 4 /\) was adopted. Fission widths and the average fission width of 0.0013 oV were adopted from Moore and Keyworth /5/. The average fission width was used for all pesonances of which fission width had not been measured. R=9.1 fm was assumed to reproduce the potential scattering cross section of 10.4 barns assumed by Benjamin et al./4/. The neutron width of the first resonance was slightly adjusted to reproduce the capture cross section of 2.57 barns at 0.0253 oV. Background cross sections were given only for the fission and total cross sections by assuming the form of \(1 / v\). The thermal cross sections to be reproduced were estimated from available oxporimental data.
Unresolved resonance region : 1.5 keV to 30 keV Obtained from optical model calculation: \(S 1=3.32 \mathrm{E}-4, \quad \delta 2=0.844 \mathrm{E}-4, \mathrm{R}=8.88 \mathrm{fm}\).
Estimated from resolved resonances:
D-obs=40.0 oV, Gam-g=26 milli-oV. \(S 0=1.2 E-4\)
Gam-f obtained by fitting the data of Stopa et al./6/.
calculated \(2200 \mathrm{~m} / \mathrm{s}\) cross sections and resonance integrals
\(2200 \mathrm{~m} / \mathrm{s}\) value res. int.
total 9.455 b
elastic \(\quad 6.514\) b
fission 0.370 b
capture \(\quad 2.570\) b
17.5 b
260. b

MF=3 Neutron Cross Sections
Below 30 keV . cross sections were represented with resonance parameters.

MT=1.2.4.51-58.91.102.251 Total. Elastic and Inelastic
scattering. Capture cross sections and Mu-L Calculated with optical and statistical model code

\section*{CASTHY/7/.}

The spherical optical potential parameters ( \(\mathrm{MeV}, \mathrm{fm}\) ):
\[
\begin{aligned}
& V=43.4-0.107 * E n, \quad r=1.282, a=0.60 \\
& \text { Ws }=6.95-0.339 \cdot E n+0.0531-E n \cdots 2, r s=1.29 . \quad b=0.50 \\
& \text { (derivative Woods-Saxon form) } \\
& \text { Vso=7.0, } \quad r o=1.282 \text {, aso=0.60 } \\
& \text { This set of potential parameters was determined /8/ to } \\
& \text { reproduce well the total cross section of Am-241 by } \\
& \text { Phillips and Howe /9/. }
\end{aligned}
\]

In the statistical model calculation, competing processes of fission. ( \(n, 2 n\) ). ( \(n, 3 n\) ) and ( \(n, 4 n\) ), and leval fluctuation were considered. The level scheme of \(\mathrm{Cm}-248\) was taken from Ref./10/
\begin{tabular}{ccc} 
No. & Energy(keV) & Spin-parity \\
g.s. & 0 & \(0+\) \\
1 & 43.40 & \(2+\) \\
2 & 143.6 & \(4+\) \\
3 & 297 & \(6+\) \\
4 & 510 & \(8+\) \\
5 & 1048 & \(2+\) \\
6 & 1050 & \(1-\) \\
7 & 1084 & \(0+\) \\
8 & 1094 & \(3-\)
\end{tabular}

Continuum levels assumed above 1126 keV . The level density parameters : Gilbert and Cameron /11/. Gamma-ray strength function of 6.5E-4 deduced from resonance parameters.

MT=16.17.37 (n,2n). (n,3n) and (n,4n) reaction cross sections Calculated with evaporation model/12/.

MT=18 Fission
Evaluated on the basis of the measured data by Stopa et al./6/ and Fomushkin et al./13/.

MF=4 Angular Distributions of Secondary Neutrons MT=2.51-58 Calculated with optical model. \(M T=16,17,18,37.91\) Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons MT=16.17.37.91 Evaporation spectrum.
MT=18 Maxwellian fission spectrum.
Temperature estimated from systematics of Smith et al./14/.

\section*{References}
1) Kikuchi Y. and Nakagawa T.: JAERI-M 84-116 (1984).
2) Tuttie R.J.: INDC(NDS)-107/g+special, 29 (1979).
3) Howerton R.J.: Nucl. Sci. Eng., 62. 438(1977).
4) Benjamin R.W et al.: Nucl. Sci. Eng., 55, 440(1974).
5) Moore M.S. and Keyworth G.A.: Phys. Rev., C3, 1656(1971)
6) Stopa C.R.S. et al.: 1982 Kiamesha, 1090 (1982), and

Maguire Jr. H.T. et al.: Nucl. Sci. Eng., 89, 293 (1985).
7) Igarasi S.: J. Nucl. Sci. Technol.. 12, 67 (1975).
8) Igarasi S. and Nakagawa T.: JAERI-M 8342 (1979).
9) Phillips T.W. and Howe F.R.: Nucl. Sci. Eng., 69, 375(1979).
10) Lederer C.M. and Shirley V.S.: Table of Isotopes, 7th ed (1978)
11) Gilbert A. and Cameron A.G.W.: Can. J. Phys., 43, 1446(1965)
12) Pearlstein S.: Nuci. Sci. Eng., 23. 238 (1965).
13) Fomushkin E.F. et ai.: Sov. J. Nucl. Phrs., 31, 19 (1980)
14) Smith A.B. ot al.: ANL/NDM-50 (1979).
\begin{tabular}{ll} 
96-Cm-249 JAERI Eval-Mar84 Y.Kikuchi and T. Nakagawa \\
JAERI-M \(84-116\) & Dist-Sep89
\end{tabular}

History
84-03 New evaluation for JENDL-3 was made by Y.Kikuchi and T.Nakagawa (JAERI). Details aro given in "of. /1/.

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Number of noutrons per fission
Sum of \(M T=465\) and \(M T=466\).
\(M T=455\) Number of delayed neutrons per fission
Semi-empirical formula by Tuttle /2/.
MT=456 Number of nautrons per fission
Semi-empirical formula by Howerton /3/.
NF=2 Resonance Parameters
MT=151 Resonance parameters
\(1 / v\) region : \(1.0 E-5\) to 4.15 oV
No resolved resonances were given.
Unresolved resonance region : 4.16 eV to 30 koV
Obtained from optical model calculation:
\(S 0=1.08 E-4, S 1=3.95 E-4, S 2=1.04 E-4, R=8.8 \mathrm{fm}\).
Estimated from level density parameters and systematics \(D\)-obs=8.3 \(\mathrm{eV}, G a m-g=40 \mathrm{milli-eV}\)
Gam-f obtained by fitting the estimated fission cross section(see below).
\begin{tabular}{lccc}
\(2200 \mathrm{~m} / \mathrm{s}\) & cross sections and calculated resonance integrals \\
& \(2200 \mathrm{~m} / \mathrm{s}\) & value & res. int. \\
total & 13.22 & b & - \\
elastic & 10.80 & b & - \\
fission & 0.820 & b & 139 b \\
capture & 1.600 & b & 215 b
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(N \mathrm{FF}=3\) & \begin{tabular}{l}
Neutron Cross Sections \\
Below 4.15 eV , pointwise cross sections were given as follows: \\
MT=1(total) : sum of partial cross sections, \\
MT=2(elastic scat.): 10.8 b calculated with optical model. \\
MT=18(fission): \(1 / v\) shape( 0.82 b at 0.0253 eV estimated \\
from ratio of fission and capture cross \\
sections in unresolved resonance region).
\end{tabular} \\
\hline & MT=102 (capiture) : \(1 / \mathrm{v}\) shape (1.6 b at 0.0253 .0 V \\
\hline & obtained from measurements by Diamond/4/) Between 4.15 eV and 30 koV , cross sections were represented with resonance parameters. \\
\hline
\end{tabular}

MT=1,2.4.51-57.91,102.251 Total. Elastic and Inelastic scattering. Capture cross sections and Mu-L.

Calculated with optical and statistical model code CASTHY/5/.
The spherical optical potential parameters (MeV,fm):
\[
\begin{aligned}
V= & 43.4-0.107 \cdot E n, \quad r=1.282, \quad a=0.60 \\
\text { Ws }=6.95-0.339 * E n+0.0531=E n-2 . r s=1.29 . & b=0.50 \\
& (\text { derivalive Woods-Saxon form) }
\end{aligned}
\]
```

 Vso=7.0, rso=1.282. aso=0.60
 This set of potential parameters was determined /6/ to
reproduce well the total cross section of Am-241 by
Phillips and Howe /7/.
In the statistical model calculation, competing processes of fission, ($n, 2 n$), (n,3n) and (n,4n), and lovel fluctuation were considered. The level scheme of $\mathrm{Cm}-249$ was taken from Ref. 181.

Nu.	Energy(keV)	Spin-parity
g.s.	0	$1 / 2+$
1	26.22	$3 / 2+$
2	42.4	$5 / 2+$
3	62.18	$7 / 2+$
4	110	$9 / 2+$
5	110.1	$7 / 2+$
6	146	$9 / 2+$
7	208	$3 / 2+$

Continuum levels assumed above 220 keV .
The level density parameters : Gilbert and Cameron /9/. Gamma-ray strength function of $4.8 \mathrm{E}-4$ deduced from unresolved resonance parameters.
$M T=16,17,37$ (n,2n). (n,3n) and (n,4n) reaction cross sections Calculated with ovaporation model/10/.

```

\section*{MT=18 Fission}
```

Estimated as 0.95 - sig-f(Cm-247) by using systematics of Behrens and Howerton /11/.
MF=4 Angular Distributions of Secondary Noutrons
MT=2.51-57 Calculated with optical model.
MT=16.17.18.37.91 Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.37.91 Evaporation spectrum.
MT=18 Naxwellian fission spectrum.
Temperature estimated from systematics of Smith et al./12/.

```

References
1) Kikuchi Y. and Nakagawa T.: JAERI-M 84-116 (1984).
2) TuttleR.J.: INDC(NDS)-107/G+special. 29 (1979).
3) Howerton R.J.: Nucl. Sci. Eng.. 62, 438(1977).
4) Diamond H. et al.: ANL-7330 (1967).
5) Igarasi.S.: J. Nucl. Sci. Technol.. 12. 67 (1975).
6) Igarasi S. and Nakagawa T.: JAERI-M 8342 (1979).
7) Phillips T.W. and Howe F.R.: Nucl. Sci. Eng., 69. 375 (1979).
8) Lederer C.M. and Stirley V.S.: Table of Isotopes. 7 th ed. (1978).
9) Gilbert A. and Cemeron A.G.W.: Can. J. Phys.. 43. 1448(1965).
10) Pearlstein S.: Nucl. Sci. Eng., 23. 238 (1965).
11) Behrens J.W. and Howerton R.J.: Huci. Sci. Eng.. 65,464(1978).
12) Smith A.B. et al.: ANL/NDM-50 (1979).

MAT number \(=3970\)
```

96-Cm-250 TIT Eval-Aug87 N.Takagi
Dist-Sep89
History
87-08 New evaluation was made by N. Takagi (Tokyo Institute of
Technology. TIT)
89-08 Cross sections were modified below 90 oV.
MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Evaluated with semi empirical formula of Howerton/1/.
NF=2 Resonance parameters
MT=151 Resonance parameters
No resonance parameters were given.
2200-m/s cross sections and resonance integrals
2200 m/s value Res. Int.
Total 11.20 b -
Elastic 10.80 b -
Fission 0.002 b 6.86 b
Capture 0.10 b 8.23 b
MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 90 eV, calculatod as sum of MT': = 2. 18 and 102,
Above 90 eV. optical model calculation was made with
CASTHY/2/. The potential parameters/3/ used are as
follows.
V=43.4-0.107.En (MeV)
Ws=6.95-0.339.En + 0.0531.En**2 (MoV)
Wv= 0 , Vso = 7.0 (MoV)
r=rso = 1.282 , rs = 1.29 (fm)
O tso = 0.60 ,b =0.5 (fm)
MT=2 Elastic scattering crosa section
Below 90 eV, the constant cross section of 10.8 barns was
assumed, which was the shape elastic scattering cross
section calculated with optical model. Above this energy.
optical model calculation was adopted.
MT=4.51-52.91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with
CASTHY/2/. The level scheme was taken from Ref. 4.

No	energy (keV)	epin-parity
g.s.	0	$0+$
1	43	$2+$
2	142	$4+$
ove 200 keV were assumed to be overlapping.		
density parameters were taken from Ref. 5.		

```

MT=16.17.37 \((n, 2 n),(n, 3 n)\) and \((n, 4 n)\) reaction cross sections Calculated with evaporation model.

MT=18 Fission cross section

The cross section was assumed to be 0.1 bern at 0.0253 eV from the systomatics of Prince/6/, and assumed the form of \(1 / v\) below 90 eV . At onergies above 90 eV , the shape of the Cm-248 fission cross section was adopted, and it was normalized to the systematics of Behrens and Howerton/7/.
```

MT=102 Capture cross section
The cross section was assumed to be 20 barns at 0.0253 oV
fron: the systematics of Prince/6/ and the correlation of
thermal cross sections with number of oxcess noutron. The
l/v form was assumed below 90 oV. Above 90 oV, the cross
section was calculated witn CASTHY. The gamma-ray strength
function was estimated from Gamma-gamma = 0.040 oV and
level spacing = 180 ov.
MT=251 Mu-L
Calculated with CASTHY.

```
MF=4 Angular D: stributions of Secondary Noutrons
    MT=2.51-52.91 Calculated with optical model.
    \(M T=16.17 .18 .37 \quad\) Isotropic in the lab system.
MF=5 Energy Distributions of Secondary Neutrons
    MT=16.17.37.91 Evaporation spectra
            Obtained from level density parameters.
    MT=18 Maxwollian fission spectrum.
            Temparaluro was estimated from Z.e2/A dependence/8/.

\section*{References}
1) Howerton R.J.: Nuci. Sci. Eng., 62. 438 (1077).
2) Igarasi S.: J.Nucl.Sci.Technol.,12,67 (1976).
3) Igarasi S., Nakagawa T.: JAERI-M 8342 (1979).
4) Schmorak M.R.: Nucl. Data Sheets, 32. 87 (1981).
5) Gilbert A., Cameron A.G.W.: Can. J. Phys., 43. 1446 (1965).
8) Prince A.: Proc. Conf. on Nucl. Cross Sections and Technol., Washington D.C., 4-7 March. (1968). NBS special publication 299. 2. 951 (1968)
7) Behrens J.W. and Howerton R.J: Nucl. Sci. Eng., 65, 464, (1978).
8) Smith A.B. ot al.: ANL/NDM-50 (1979).
```

 97-Bk-249 JAERI Eval-Mar85 Y.Kikuchi and T.Nakagawa
 JAERI-M 85-138 Dist-Sep89
History
85-03 Now evaluation for JENDL-3 was made by Y.Kikuchi and
T.Nakagawa (JAERI). Details are given in Ref. /1/.
88-02 Data were checked and copied into JENDL-3.
MF=1 General Information
MT=451 Comments and dictionary
MT=452. Number of neutrons per fission
Sum of MT's=456 and 456.
MT=455 Delayed neutron dota
Semi-empirical formula by Tuttle /2/.
MT=456 Delayed neutron data
Semi-empirical formula by Howerton /3/.

```
MF=2. MT=151 Resonance Parameters
    Resolved resonances for MLBW formula : \(1.0 E-5 \mathrm{eV}\) to 60 oV
        Resonance energies, neutron and radiative widths were taken
        from the experimental data of Benjamin+ /4/. For resonances
        whose radiative width was unknown, the average value of 0.0357
        oV /4/ was adopted. Fission width of 0.0002 eV was estimated
        from the thermal fission cross section, which was estimated
        from the systematics of capture to fission ratio by Prince/5/.
        The parameters of the negative resonance wero adjusted so as
        to reproduce the thermal cross eotions. No background
        correction was applied.
    Unresolved resonances : \(60 \mathrm{eV}-30 \mathrm{keV}\)
        Obtained from optical model calculation:
            \(\mathrm{S} 1=3.0 \mathrm{E}-4 \quad . \mathrm{S} 2=0.83 \mathrm{E}-4 \quad . \mathrm{R}=9.07 \mathrm{fm}\).
        Estimated from resolved resonances:
            Dobs=1.16 ev, gam-g=35.7 milli-eV . \(S 0=1.13 E-4\)
            gam-f \(=0.2 \mathrm{milli}-\mathrm{oV}\).
    Calculated \(2206 \mathrm{~m} / \mathrm{s}\) cross sections and resonance integrals
        \(2200 \mathrm{~m} / \mathrm{s}\) value res. int
        total 717.5 b -
        olastic \(\quad 3.93 \quad b \quad\) -
        fission \(\quad 3.96 \quad 12.1\) b
        capture 709.6 b 1130 b
MF=3 Noutron Cross Sections
    \(\mathrm{MT}=1,2,4,51-68,91,102,251\) Sig-t, sig-el, sig-in,sig-c,mu-bar
        Calculated with optical and statistical models.
        Optical potential parameters were obtained by fitting the
        total cross section of Phillips and Howe /6/ for Am-241:
            \(V=43.4-0.107\)-En (MeV)
            \(W s=6.95-0.339-E n+0.0531-E n=2 \quad\) (MeV)
            \(W v=0 \quad, V s o=7.0 \quad\) (MoV)
            \(r=r s o=1.282 \quad, r s=1.29 \quad(\mathrm{fm})\)
                \(a=\) aso \(=0.60 \quad, b=0.5 \quad(f m)\)
        Statistical model calculation with CASTHY code /7/.
            Competing processes : fission.(n,2n).(n,3n).(n,4n).
            Level fluctuation considered.

The level scheme taken from Ref. /8/.
\begin{tabular}{rcc} 
No. & Energy (keV) & Spin-parity \\
g.s. & 0 & \(7 / 2+\) \\
1 & 8.8 & \(3 / 2-\) \\
2 & 39.6 & \(5 / 2-\) \\
3 & 41.8 & \(9 / 2+\) \\
4 & 82.6 & \(7 / 2-\) \\
5 & 93.74 & \(11 / 2+\) \\
6 & 137.7 & \(9 / 2-\) \\
7 & 156.84 & \(13 / 2+\) \\
8 & 204.6 & \(11 / 2+\) \\
9 & 229.3 & \(15 / 2+\) \\
10 & 283.0 & \(13 / 2-\) \\
11 & 313.0 & \(17 / 2+\) \\
12 & 372.8 & \(15 / 2-\) \\
13 & 377.6 & \(1 / 2+\) \\
14 & 389.2 & \(5 / 2+\) \\
15 & 410.6 & \(3 / 2+\) \\
16 & 421.3 & \(5 / 2+\) \\
17 & 428.9 & \(7 / 2+\) \\
18 & 474.9 & \(9 / 2+\)
\end{tabular}

Continum ievols assumed above 519 keV .
The level density parameters : Gilbert and Cameron /9/.
Gamma-ray strongth function of \(3.2 E-2\) deduced from resonance parameters.
\[
M T=\{6,17,37 \quad(n, 2 n),(n, 3 n),(n, 4 n)
\]

Calculated with ovaporation model.

> MT=18 Fission     Evaluated on the basis of the measured data by Silber . Vorotonikov \(+/ 11 /\) and Fomushkint \(/ 12 /\).
```

MF=4 Angular Distributions of Secondary Noutrons
MT=2.51-68 Calculated with optical model.
MT=16.17.18.37.91 Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Noutrons
MT=16.17.37.91 Evaporation spectrum.
MT=18 Maxwellian fission spactrum.
Temperature estimated from systematics of
Smith+/13/.

```

\section*{References}
1) Kikuchi Y, and Nakagawa T.: JAERI-M 85-138 (1985).
2) Tuttle R.J.: INDC(NDS)-107/G+Special. p. 29 (1979).
3) Howerton R.J.: Nucl. Sci. Eng., 62. 438 (1977).
4) Benjamin R.W. et al.: Nuci. Sci. Eng.. 85. 261 (1983).
5) Prince A.: Trans. Am. Nucl. Soc.. 10. 228 (1967)
6) Phillips T.W. and Howe F.R.: Nucl. Sci. Eng., 69. 375 (1979).
7) Igarasi S.: J. Nuci. Sci. Technol.. 12. 67 (1975).
8) Lederer C.M. and Shirley V.S.: Table of Isotopes, 7 th ed.
9) Gilbert A. and Cameron A.G.W.: Cen. J. Phys.. 43, 1446 (1965).
10) Silbert M.G.: Nucl. Sci. Eng.. 63. 198 (1977).
11) Vorotnikov I.V. et al.: Sov. J. Nucl. Phys., 10, 419 (1970).
12) Fornshkin E.F. ot al.: Sov. J. Nucl. Phys., 14, 41 (1972).
13) Smith A.B. et el.: ANL/NDM-50 (1979).
```

97-Bk-250 JAERI Eval-Mar87 T.Nakagawa
JAERI-M 88-004 Dist-Sep89
History
87-03 New evaluation was made by T.Nakagawa (JAERI).
Details are described in Ref. /1/.
MF=1 General Information
MT=4Б1 Comments and dictionary
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456
MT=465 Delayed neutron data
Based on semi-empirical formula by Tuttle /2/.
MT=456 Number of prompt neutrons per fission
Based on semi-empirical formula by Howerton /3/.

```
MF \(=2, M T=151\) Resonance Parameters
    Resolved resonance parameters (MLBW) : 1.0E-5 eV TO 100 eV
        Resonance parameters were hypothetically generated adopting
        the following average values.
            \(D\)-obs \(=2.09 \mathrm{eV}\) (from level density parameters)
            S0. \(\mathrm{S} 1=0.83 \mathrm{E}-4,3.37 \mathrm{E}-4\) (from optical model calc.)
            Radiative width \(=0.035 \mathrm{eV}\) (same as Cf-252)
            Fission width \(=0.095\) oV (assumed that the ratio of
                fission to radiative width is equal to
                cross section ratio)
    The energy of first level was adjusted to reproduce the
    \(2200-\mathrm{m} / \mathrm{s}\) cross sections of 350 barns \(/ 4 /\) and 960 barns \(/ 5 /\) for
    capture and fission, respectively.
    Unresolved resonances
        : 0.1 to 30 keV
        By adopting parameters used for resolved resonance generation
        as initial values. they were adjusted to reproduce the
        evaluated fission and capture cross sections by using ASREP
        16/. Final values of the parameters ere.
            \(S 0=0.82 \mathrm{E}-4, \mathrm{~S} 1=3.9 \mathrm{E}-4 . \mathrm{D}\)-obs \(=2.09 \mathrm{eV}\).
            radiative width \(=0.035 \mathrm{oV}, R=9.02 \mathrm{fm}\).
            fission width \(=0.104 \mathrm{eV}\) at \(100 \mathrm{eV}, 0.208 \mathrm{eV}\) at 30 keV .
    Calculated \(2200 \mathrm{~m} / \mathrm{s}\) cross sections and resonance integrals
                \(2200 \mathrm{~m} / \mathrm{s}\) value Res. Int.
            Total
                1325.0 B
                                12.22 B
            \(\begin{array}{llll}\text { Fission } & 959.3 & B & 517 .\end{array}\)
            Cepture 353.4 B 199. B

\section*{MF=3 Neutron Cross Sections}
1) The optical model calculation was performed with code CASTHY 17/. Optical potential parameters used were obtsined /8/ by fitting the total cross section measured by Phillips and Howe 19/ for Am-241:
\[
\begin{aligned}
& V=43.4-0.107 . E n \quad \text { (MoV) } \\
& W_{s}=6.95-0.339 \cdot E n+0.0531 \cdot E n \cdot-2 \\
& \text { (MeV) } \\
& \text { (in the Derivative Woods-Saxon form) } \\
& W_{v}=0 \quad \text {, } V_{s o}=7.0 \text { (MoV) } \\
& r=r s o=1.282 \quad . r s=1.29 \quad(\mathrm{fm})
\end{aligned}
\]
\[
a=a s o=0.60 \quad, b=0.5 \quad(\mathrm{fm})
\]
2) In the statistical calculation, the fission, ( \(n, 2 n\) ), ( \(n, 3 n\) ) and ( \(n, 4 n\) ) cross sections were considered as the competing proccess cross sections.
3) The level density parameters were derived from resonance level spacings and low laying excited levels on the basis of Gilbert-Cameron's formula/10/.
\begin{tabular}{rrrrrrr} 
Isotope & 247 & 248 & 249 & 250 & 251 \\
B(1/MoV) & 28.1 & 27.8 & 34.2 & 30.05 & 30.0 \\
Spin-cutoff fact & 30.47 & 30.39 & 33.79 & 31.76 & 31.82 \\
Pairing E(MoV) & 0.39 & 0.0 & 0.903 & 0.0 & 0.865 \\
Tomp. (MeV) & 0.364 & 0.326 & 0.366 & 0.340 & 0.385 \\
C(1/MoV) & 2.90 & 10.8 & 12.2 & 24.6 & 6.66 \\
Ex(MoV) & 7.97 & 1.85 & 4.30 & 2.34 & 4.05 \\
\hline
\end{tabular}

Below 30 keV . cross sections are represented with resonance parameters.
\(M T=1.2\) Total and Elastic scattering
The optical model calculation was adopted.
\(M T=4.51\) to 68 and 91 Inolastic scattering
The level scheme was taken from Ref. /11/.
\begin{tabular}{ccc} 
No. & Energy(keV) & spin-parity \\
\hline Ground & 0.0 & \(2-\) \\
1 & 34.5 & \(3-\) \\
2 & 35.6 & \(4+\) \\
3 & 78.1 & \(5+\) \\
4 & 86.4 & \(7+\) \\
5 & 97.0 & \(5-\) \\
6 & 104.1 & \(1-\) \\
7 & 125.4 & \(2-\) \\
8 & 129.0 & \(6+\) \\
9 & 131.9 & \(3+\) \\
10 & 157.0 & \(8+\) \\
11 & 167.0 & \(6+\) \\
12 & 175.4 & \(7+\) \\
13 & 191.0 & \(2+\) \\
14 & 211.8 & \(3+\) \\
15 & 237.0 & \(7-\) \\
16 & 242.0 & \(4+\) \\
17 & 248.0 & \\
18 & 270.0 & \\
\hline
\end{tabular}

Levels above 296 keV were assumed to be overlapping.
MT=16. 17 and \(37 .(n, 2 n),(n, 3 n)\) and ( \(n, 4 n\) )
Calculated with evaporation model by taking the compound nucleus formation cross section calculated with optical model.

MT=18 Fission
Shape of the Cf-251 fission cross section /12/ was adopted
and multiplied by the factor of 0.84.

MT=102 Radiative capture
Calculated with CASTHY. The average radiative width of 0.035
eV and s-wave level spacing of 2.09 eV were assumed.
MT=251 Mu-bar
Calculated with CASTHY.
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-68 Celculated with optical model.
\(M T=10,17.18,37.91\) Isotropic distributions in the laboratory system were assumed.

MF=5 Energy Distributions of Secondary Neutrons
\(M T=16,17.37 .91 \quad\) Evaporation spectrum assumed.
MT=18 Maxwellian fission spectrum.
Temperature estimated from systematics of Smith et al./13/.

\section*{References}
1) Nakagawa. T.: JAERI-M 88-004 (1987)
2) Tuttle. R.J.: \(\operatorname{INDG}(N D S)-107 / G+S P E C I A L . P .29\) (1979).
3) Howerton. R.J.: Nucl. Sci. Eng.. 62. 438 (1977).
4) Mughabghab, S.F.: Neutron Cross Sections, Vol.1, part B, Academic Press (1984)
5) Diamond. H., ot al.: J. Inorg. Nucl. Chem., 30. 2553 (1968).
6) Igarasi, S.: J. Nucl. Sci. Technol., 12. 87 (1975).
7) Kikuchi, Y.: private communication.
8) Igarasi. S. and Nakagawa T.: JAERI-M 8342 (1979).
9) Phillips, T.W. and Howe. F.R.: Nucl. Sci. Eng., 69, 375(1979).
10) Gilbert A. and Cameron A.G.W. : Can. J. Phys.. 43. 1448(1965).
11) Schmorak, M.R.: Nucl. Data Sheets. 32. 87 (1981).
12) Nakagawa, T: JAERI-M 86-086 (1986).
13) Smith. A.B. et al.: ANL/NDM-50 (1979).
```

98-Cf-249 JAERI Eval-Mar85 Y.Kikuchi and T.Nakagawa
JAERI-M 85-138 Dist-Sep89
History
85-03 New evaluation for JENDL-3 was made by Y.Kikuchi and
T.Nakagawa (JAERI). Details are given in Ref. /1/.
88-02 Data wore checked and adopted for JENDL-3.

```
MF=1 Goneral Information
    MT=461 Comments and dictionary
    MT=452 Number of neutrons per fission
                        Sum of MT's = 455 and 456 .
    MT=455 Delayed neutron data
                            Semi-empirical formula by Tuttle/1/.
    MT=456 Number of prompt neutrons per fission
                Semi-empirical formula by Howerton /3/.
MF=2. MT=151 Resonance Parameters
    Resolved resonances for MLBW formula : 1.0E-5 eV to 70 eV
        Resonance energies, neutron and fission widths were taken
        from the experimental data of Benjamint /4/. The radiative
        width was assumed to be 0.04 eV according to Dabbst \(/ 5 /\).
        A negat ive resonance was added so as to reproduce the thermal
        cross sections. No background correction was applied.
    Unresolved resonances : \(70 \mathrm{oV}-30 \mathrm{keV}\)
        Obtained from optical model calculation:
            \(S 1=3.15 \mathrm{E}-4, \mathrm{~S} 2=0.83 \mathrm{E}-4, \mathrm{R}=9.08 \mathrm{fm}\).
        Estimated from resolved resonances:
            Dobs=1.16 oV, gam-g=40 milii-eV . \(\mathrm{SO}=1.06 \mathrm{E}-4\)
        Fission widths were estimated from the channel theory of
        fission /6/. SO. S1 and S2 values were adjusted so as to
        reproduce the fission cross section measured by Dabbs+/5/.
    Calculated \(2200 \mathrm{~m} / \mathrm{s}\) cross sections and resonance integrals
                        \(2200 \mathrm{~m} / \mathrm{s}\) value res. int.
            total 2176.7 b -
        elastic
        fission 1666 b 2220 b
        capture 504.5 b 695 b
MF=3 Neutron Cross Sections
    MT=1.2.4.51-63.91.102.251 sig-t.sig-el.sig-in.sig-c.mu-bar
        Calculated with optical and statistical models.
        Optical potential parameters wore obtained by fitting the
        total cross section of Phillips and Howe /7/ for Am-241:
            \(V=43.4-0.107 \cdot E n \quad(\mathrm{MeV})\)
            \(W_{s}=6.95-0.339 . E n+0.0531-E n=2 \quad\) (MeV)
            \(W_{v}=0 \quad\), Vso \(=7.0 \quad(\mathrm{MeV})\)
            \(r=r s o=1.282 \quad, r s=1.29 \quad(f m)\)
            \(a=\) aso \(=0.60\), \(b=0.5 \quad\) ( fm )
            Statistical model calculation with CASTHY code /8/.
            Competing processes : fission,(n,2n),(n,3n).(n,4n).
            Level fluctuation considered.
        The level schome taken from Ref. /9/.
        No. Energy(keV) Spin-parity
\begin{tabular}{ccc} 
g.s. & 0 & \(9 / 2-\) \\
1 & 62.47 & \(11 / 2-\) \\
2 & 136.2 & \(13 / 2-\) \\
3 & 145.0 & \(5 / 2+\) \\
4 & 188.0 & \(7 / 2+\) \\
5 & 219.0 & \(15 / 2-\) \\
6 & 243.1 & \(9 / 2+\) \\
7 & 378.6 & \(7 / 2+\) \\
8 & 416.6 & \(1 / 2+\) \\
9 & 437.5 & \(9 / 2+\) \\
10 & 440.0 & \(3 / 2+\) \\
11 & 443.0 & \(7 / 2+\) \\
12 & 460.0 & \(5 / 2+\) \\
13 & 500.6 & \(8 / 2+\) \\
Continuum levels assumed above 560 keV.
\end{tabular}

The level density parameters : Gilbert and Cameron /10/. gamma-ray strengt! function of \(3.3 E-2\) deduced from resonance parameters.
\(M T=16,17.37 \quad(n, 2 n),(n, 3 n),(n, 4 n)\)
Calculated with evaporation model.
MT=18 Fission
Evaluated on the basis of the measured data by Silbert/11/. Dabbst/5/ and Kupriyanov+ /12/.

MF=4 Angular Distributions of Secondary Neutrons
\(\mathrm{MT}=2.51-63 \quad\) Calculated with optical model.
\(\mathrm{MT}=16.17 .18,37.91 \quad\) Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16.17,37.91 Evaporation spectrum.
MT=18 Maxwellian fission spectrum.
Temperature estimated from systematies of Smith+/13/.

References
1) Kikuchi Y. and Nakagawa T.: JAERI-M 85-138 (1985).
2) Tuttle R.J.: INDC(NDS)-107/G+Special. p. 29 (1979).
3) Howerton R.J.: Nucl. Sci. Eng., 62, 438 (1977).
4) Benjamin R.W. et al.: Nucl. Sci. Eng.. 85, 261 (1983).
5) Dabbs J.W.T. et al.: ORNL-4973, p. 181 (1974).
6) Kikuchi Y. and An S.: J. Nucl. Sci. Technol., 7. 157 (1970).
7) Phillips T.W. and Howe F.R.: Nucl. Sci. Eng., 69. 375 (1979).
8) Igarasi S.: J. Nucl. Sci. Technol., 12. 67 (1975).
9) Lederer C.M. and Shirley V.S.: Table of lsotopes, 7th ed.
10) Gilbert A. and Cameron A.G.W.: Can. J. Phys.. 43. 1446(1965).
11) Silbert M.G.: Nucl. Sci. Eng., 51, 376 (1973).
12) Kupriyanov V.M. et al.: Sov. Atom. Energy, 55, 472 (1984).
13) Smith A.B. et al.: AN_/NDM-50 (1979).


MF=3 Neutron Cross Sections
MT=1 Total
MT=2 Elastic scattering
MT=4. 51 to 79 and 91 Inelastic scattering
MT=102 Radiative capture
MT=251 Mu-bar
Calculated with the program CASTHY /4/ based on the optical and statistical models. Optical potential parameters were obtained \(/ 5 /\) by fitting the total cross section of Phillips and Howe /6/ for Am-241:
\begin{tabular}{lll}
\(V=43.4-0.107 \cdot E n\) & \((\mathrm{MeV})\) \\
\(W s=6.95-0.339 \cdot E n+0.0531 \cdot E n=2\) & \((\mathrm{MeV})\) \\
\(W v=0\) & \(\quad V \mathrm{Vo}=7.0\) & \((\mathrm{MeV})\) \\
\(r=r\) so \(=1.282 \quad, r s=1.29\) & \((\mathrm{fm})\) \\
\(a=a s o=0.60 \quad, b=0.5\) & \((\mathrm{fm})\)
\end{tabular}

In the statistical calculation, level fluctuation and competing process (fission. (n,2n) and (n,3n)) were taken into account. The level scheme was taken from Ref. /7/.

No. Energy(keV) J-parity No. Energy(keV) J-parity
\begin{tabular}{cccccc} 
ground & 0.0 & \(0+\) & & 15 & 1209.98 \\
1 & 42.722 & \(2+\) & 16 & 1211. & \(2-\) \\
2 & 141.886 & \(4+\) & 17 & 1244.51 & \(3-\) \\
3 & 296.25 & \(6+\) & 18 & 1255.47 & \(4-\) \\
4 & 871.64 & \(2-\) & 19 & 1266.65 & \(0+\) \\
5 & 906.90 & \(3-\) & 20 & 1296.64 & \(2+\) \\
6 & 952.07 & \(4-\) & 21 & 1311.07 & \(6-\) \\
7 & 1008.6 & \(5-\) & 22 & 1335. & \(3-\) \\
8 & 1031.85 & \(2+\) & 23 & 1377.83 & \(6-\) \\
9 & 1070. & \(6-\) & 24 & 1385.49 & \((1+)\) \\
10 & 1071.38 & \(3+\) & 25 & 1396.16 & \(6-\) \\
11 & 1123. & \(4+\) & 26 & 1411.34 & \((1+)\) \\
12 & 1154.23 & \(0+\) & 27 & 1426.86 & \(3-\) \\
13 & 1175.52 & \(1-\) & 28 & 1457.83 & \(6-\) \\
14 & 1189.40 & \(2+\) & 29 & 1478.45 & \(5-\) \\
\hline
\end{tabular}

Levels above 1.50 MeV were assumed to be overlapping. The level density parameters were derived from resonance level spacings and low laying excited levels on the basis of Gilbert-Cameron's foumula \(/ 8 /\). The average radiative capture width of 0.0369 oV and \(s\)-wave level spacing of 16 oV were assumed.

MT=16 and 17 (n,2n) and (n,3n)
Calculated with evaporation model.
MT=18 Fission
Evaluated on the basis of the systematics.
```

NF=4 Angular Distributions of Secondary Neutrons
MT=2.51-79 Calculated with optical model.
MT=16,17.18,91 Isotropic distributions in the laboratory
system were assumed.

```
MF=5 Energy Distributions of Secondary Noutrons
    MT=16.17.91 Evaporation spectrum.
    MT=18 Maxwellian fission spectrum.
                                    Temperature estimated from systematics of
                                    Smithet al. 19/.

References
1) Nakagawa. T.: JAERI-M 86-086 (1986).
2) Tuttle. R.J.: INDC(NDS)-107/G+Special, p. 29 (1979).
3) Howerton. R.J.: Nucl. Sci. Eng., 62. 438 (1977).
4) Igarasi. S.: J. Nucl. Sci. Technol.. 12. 67 (1975).
5) Igarasi. S. and Nakasawa, T.: JAERI-M 8342 (1979).
6) Phillips. T.W. and Howe, F.R.: Nucl. Sci. Eng., 69. 375(1979).
7) Schmorak, M.R.: Nucli. Data Sheets. 32. 87 (1981).
8) Gilbert A. and Cameron A.G.W.: Can. J. Phys.. 43. 1446 (1965).
9) Smith A.B. et al.: ANL/NDM-50 (1979).
\[
\begin{aligned}
& \text { 98-Cf-251 JAERI } \\
& \text { JAERI-M 86-086 }
\end{aligned}
\]

\section*{Eval-Mar86 T.Nakagawa Dist-Sep89}

\section*{History}

86-03 New evaluation was made by T.Nakagawa (JAERI).
Details are described in Ref. /1/.

\section*{MF=1 General Information}

MT \(=\mathbf{4 5 1}\) Comments and dictionary
MT=452 Number of neutrons per fission Sum of MT=455 and MT=456
MT=455 Delayed neutron data
Based on semi-empirical formula by Tuttle/2/.
MT=456 Number of prompt neutrons per fission Based on semi-empirical formula by Howerton /3/.
```

MF=2,MT=151 Resonance Parameters
Resolved resonances for SLBW formula : 1.0E-5 eV to 150 eV
Hypothetical resonance levels were gonerated, and their
parameters were determined from the assumed average parameters
D-0 = 6.3 eV, radiative capture width = 0.0435 eV ,
S-0 = 1.0E-4, fission with = 0.0746 eV. R = 9.253 fm.
Parameters of the negative and first positive levels were
adjusted so as to reproduce the thermal cross sections and
resonance integrals.
Unresolved resonances : 150 eV to 30 koV
Parameters were adjusted so as to reproduce the assumed
fission and radiative capture cross sections.
S-0 = 0.843E-4, S-1 = 4.56E-4, R=8.842 fm.
D-0 = 6.3 eV, radiative width = 0.0435 oV,
fission width = 0.281 oV (for l=0), = 0.551 eV (for L=1)

```
    Calculated \(2200 \mathrm{~m} / \mathrm{s}\) cross sections and resonance integrals
                        \(2200-\mathrm{m} / \mathrm{s}\) value res. int.
\begin{tabular}{lclcl} 
total & 7889.4 & \(b\) & - & \\
olastic & 76.04 & \(b\) & - & \\
fission & 4935.4 & \(b\) & 2780. & \(b\) \\
capture & 2877.9 & \(b\) & 1600. & \(b\)
\end{tabular}
MF=3 Neutron Cross Sections
    MT=1 Total
    MT=2 Elastic scattering
    MT=4. 51 to 73 and 91 Inelastic scattering
    MT=102 Radiat ive capture
    MT=251 Mu-bar
        Calculated with the program CASTHY /4/ based on the optical
        and statistical models. Optical potential parameters were
        obtained \(/ 5\) / by fititing the total cross section of Phillips
        and Howe /6/ for Arm-241:
                \(V=43.4-0.107 \cdot E n \quad\) (MeV)
                \(W_{s}=6.95-0.339 * E n+0.0531 * E n * 2\) (MeV)
                \(W_{v}=0\). \(V\) so \(=7.0\) (MeV)
                \(r=r s o=1.282 \quad, r s=1.29 \quad(\mathrm{fm})\)
                \(a=a s o=0.60 \quad, b=0.5 \quad\) (fm)

In the statistical calculation, level fluctuation and competing process(fission, (n,2n). (n,3n) and (n,4n)) were
taken into account. The level scheme was taken from Ref. 171.
No. Energy(keV) J-parity No. Energy(keV) J-parity
\begin{tabular}{ccc} 
ground & 0.0 & \(1 / 2+\) \\
1 & 24.825 & \(3 / 2+\) \\
2 & 47.828 & \(5 / 2+\) \\
3 & 105.73 & \(7 / 2+\) \\
4 & 106.304 & \(7 / 2+\) \\
5 & 146.46 & \(9 / 2+\) \\
6 & 186.31 & \(9 / 2+\) \\
7 & 171.69 & \(3 / 2+\) \\
8 & 211.72 & \(5 / 2+\) \\
9 & 237.76 & \(11 / 2+\) \\
10 & 239.34 & \(11 / 2+\) \\
11 & 258.44 & \(7 / 2+\)
\end{tabular}
\begin{tabular}{llr} 
& & \\
& 295.7 & \(13 / 2+\) \\
13 & 319.29 & \(9 / 2+\) \\
14 & 325.35 & \(13 / 2+\) \\
15 & 370.39 & \(11 / 2-\) \\
16 & 392.0 & \(11 / 2+\) \\
17 & 424.10 & \(15 / 2+\) \\
18 & 434.3 & \(9 / 2-\) \\
19 & 442. & \(13 / 2-\) \\
20 & 514. & \(11 / 2-\) \\
21 & 544.05 & \(5 / 2+\) \\
22 & 690.18 & \(7 / 2+\) \\
23 & 849.2 & \(9 / 2+\)
\end{tabular}

Levels above 700 keV were assumed to be overlapping. The level density parameters were derived from resonance level spacings and low laying excited levels on the basis of Gilbert-Cameron's foumula /8/. The average radiative capture width of 0.0435 eV and s -wave level spacing of 6.3 eV were as sumed.
\(M T=16,17\) and 37 ( \(n, 2 n\) ), ( \(n, 3 n\) ) and ( \(n, 4 n\) )
Calculated with evaporation model.
MT=18 Fission
Evaluated on the basis of the systematics.
MF=4 Angular Distributions of Sacondary Neutrons
MT=2.51-73 Calculated with optical model
MT=16.17.18.37.91 Isotropic distributions in the laboratory system were assumed.

MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.37.91 Evaporation spectrum.
MT \(=18\)
Maxwellian fission spectrum.
Temperature estimated from systematics of Smith ot al./9/.

\section*{References}
1) Nakagawa, T.: JAERI-M 86-086 (1986).
2) Tuttle. R.J.: INDC(NDS)-107/G+Special. p. 29 (1979).
3) Howerton, R.J.: Nucl. Sci. Eng., 62, 438 (1977).
4) Igarasi, S.: J. Nucl. Sci. Technol., 12, 67 (1975).
5) Igarasi, S. and Nakasawa. T. : JAERI-M 8342 (1979).
6) Phillips. T.W. and Howe. F.R.: Nucl. Sci. Eng.. 69. 375(1979).
7) Schmorak. M.R.: Nucl. Data Sheots. 32. 87 (1981).
8) Gilbert, A. and Cameron, A.G.W.: Can. J. Phys.. 43.1446(1965).
9) Smith A.B. et al.: ANL/NDM-50 (1979).

MAT number \(=3984\)
\begin{tabular}{ll} 
98-Cf-252 JAERI Eval-Mar87 T.Nakagawa \\
JAERI-M 88-004 & Dist-Sep89
\end{tabular}

History
87-03 New evaluation was made by T.Nakagawa (JAERI).
Details aro described in Ref. /I/.
NF=1 General Information
MT=451 Comments and dictionary
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456
MT \(=455\) Delayed neutron data
Based on semi-empirical formula by Tuttle /2/.
MT=456 Number of prompt neutrons per fission Based on semi-empirical formula by Howerton /3/.
\(M_{F}=2 . M T=151\) Resonance Parameters
Resolved resonance parameters (MLBW) : 1.OE-5 oV TO 1 koV Resonance parameters were taken from Moore el al. /4/ by assuming an average value of radiative capture width (0.035 eV ) and fission width ( 0.035 eV ). Two hypothetical resonances at 1.4 and -3.5 eV were adopted to reproduce the \(2200-\mathrm{m} / \mathrm{s}\) cross sections and resonance integrals /5.6/. Scattering radius of 9.23 fm was estimated from the shape elastic scattering cross section calculated with CASTHY /7/ from optical potential parameters given below.
Unresolved resonances : 1 to 30 keV - Parameters were estimated from resolved resonances and adjusted so as to reproduce the evaluated fission and capture cross sections by using ASREP /8/. Values of the parameters are D-obs \(=27\) oV. \(R=8.9 \mathrm{fm}\) and \(\mathrm{SO}, \mathrm{S} 1\), capture and fi sion widths are as follows.
\begin{tabular}{ccccc} 
Energy & SO & S1 & Capt-width & Fiss-widtit \\
1.0 keV & \(1.22-4\) & \(3.37-4\) & 0.035 oV & 0.056 oV \\
30.0 & \(1.22-4\) & \(3.37-4\) & 0.035 & 0.096
\end{tabular}

Calculated \(2200 \mathrm{~m} / \mathrm{s}\) cross sections and resonance integrals \(2200 \mathrm{~m} / \mathrm{s}\) value Res. Int.
\begin{tabular}{lllcl} 
Total & 64.77 & \(B\) & - \\
Elastic & 11.04 & B & - & \\
Fission & 33.03 & \(B\) & 111. & \(B\) \\
Captura & 20.71 & \(B\) & 47.4 & \(B\)
\end{tabular}

MF=3 Neutron Cros's Sections
Below 30.keV, cross sections are represented with resonance parameters. Above 30 keV , data were mainly calculated with optical and statistical models.
1) The optical model calculation was performed with code CASTHY /7/. Optical potential parameters used were obtained /9/ by fitting the total cross section measured by Phillips and Howe /10/ for Am-241:
\[
\begin{aligned}
& V=43.4-0.107 \cdot E n(\mathrm{MeV}) \\
& \text { Ws }=6.95-0.339 * E n+0.0531 \cdot E n * 2 \\
& \text { (in the Derivative Woods-Saxon form) }
\end{aligned}
\]
\(W v=0\)
. \(V\) so \(=7.0\)
( MeV )
\begin{tabular}{lll}
\(r=r s o=1.282\) &,\(r s=1.29\) & \((f m)\) \\
\(a=a s o=0.60\) &,\(b=0.5\) & \((f m)\)
\end{tabular}
2) In the statistical calculation, the fission, (n, 2n), (n, \(3 n\) ) and ( \(n, 4 n\) ) cross sections were considered as the competing process cross sections.
3) The level density parameters were derived from resonance levol spacings and low laying excited levels on the basis of Gilbert-Cameron's formula /i1/.
\begin{tabular}{|c|c|c|c|c|c|}
\hline I sotope & 248 & 250 & 251 & 252 & 253 \\
\hline a(1/MeV) & 29.4 & 31.2 & 32.2 & 31.6 & 32.2 \\
\hline Spin-cutoff fact & 31.25 & 32.36 & 32.87 & 32.74 & 33.14 \\
\hline Pairing E(MeV) & 1.16 & 1.673 & 0.77 & 1.635 & 0.77 \\
\hline Temp. ( MeV ) & 0.3693 & 0.4025 & 0.3809 & 0.3927 & 0.3322 \\
\hline \(\mathrm{C}(1 / \mathrm{MeV})\) & 1.625 & 2.093 & 14.84 & 1.895 & 3.59 \\
\hline Ex(MeV) & 3.854 & 5.418 & 4.204 & 5.233 & 3.226 \\
\hline
\end{tabular}

MT=1.2 Total and olastic scattoring The optical model calculation was adopted,

MT=4. 51 to 59 and 91 Inelastic scattering
The level scheme was taken from Ref. /12/.
\begin{tabular}{ccc} 
No. & Energy (koV) & spin-parity \\
\hline Ground & 0.0 & \(0+\) \\
1 & 45.75 & \(2+\) \\
2 & 151.73 & \(4+\) \\
3 & 804.82 & \(2+\) \\
4 & 830.81 & \(2-\) \\
5 & 845.72 & \(3+\) \\
6 & 867.51 & \(3-\) \\
7 & 900.3 & \(4+\) \\
8 & 917.03 & \(4-\) \\
9 & 969.83 & \(3+\) \\
\hline
\end{tabular}

Levels above 1.03 MeV were assumed to be overlapping.

MT=16, 17 and 37 (n,2n). (n,3n) and (n,4n)
Calculated with evaporation model by taking the compound nucleus formation cross section calculated with optical model.

MT=18 Fission
Evaluated on the basis of experimental data by Moore el al. /4/.

MT=102 Radiative capture
Calculated with CASTHY. The average radiative width of 0.035
oV and s-wave level spacing of 27 oV were assumed.
MT=251 Mu-bar
Calculated with CASTHY.
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-59 Calculated with optical model.
```

 MT=16.17.18.37.91 Isotropic distributions in the laboratory
 system were assumed.
 MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.37.91 Evaporation spectrum assumed.
MT=18 Maxwellian fission spectrum.
Temperature estimated from systematics of
Smith et al./13/.
Reforences
1) Nakagawa, T.: JAERI-M 88-004 (1987).
2) Tuttle, R.J.: INDG(NDS)-107/G+SPECIAL, P. }28\mathrm{ (1979).
3) Howerton, R.J.: Nucl. Sci. Eng.. 62. 438 (1977).
4) Moore. M.S., et al.: Phys. Rev., C4. 273 (1971).
5) Halporin, J., et al.: Nucl. Sci. Eng., 37, 228 (1960).
6) Halperin, J., ot al.: ORNL 4706, 53 (1971).
7) Igarasi. S.: J. Nucl. Sci. Technol.. 12, 67 (1975).
8) Kikuchi. Y.: private communication.
9) Igarasi, S. and Nakagawa T.: JAERI-M 8342 (1979).
10) Phillips, T.W. and Howe, F.R.: Nucl. Sci. Eng., 69, 375(1979).
11) Gilbert A. and Cameron A.G.W. : Can. J. Phys., 43, 1446(1065).
12) Schmorak. M.R.: Nucl. Data Sheets. 32. 87 (1981)
13) Smith A.B. et al.: ANL/NDM-50 (1979).

```

```

MF=3 Neutron Cross Sections
MT=1 Total cross section
Bolow 120 oV. calculatod as sum of MT's = 2, 18 and 102.
Above 120 oV. optical model calculation was mede with
CASTHY/2/. The potential parameters/3/ used are as
follows.

```


MT=2 Elastic scattering crose section Below 120 eV , the constant cross section of 10.6 barns was assumed, which was the shape elastic scattering cross section calculated with optical model. Above this energy. optical model calculation was adoptod.

MT=4,51.91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with CASTHY/2/. The level scheme was taken from Ref. 4.
\begin{tabular}{ccc} 
No & energy(koV) & spin-parity \\
g.s. & 0.0 & \(0+\) \\
1 & 45.0 & \(2+\)
\end{tabular}

Levels above 140 keV were assumad to be overlapping. The level density parameters were taken from Ref. 5.

NT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections Calculated with evaporation model.

MT=18 Fission cross section
The thermal cross section of 2.0 barns was estimated from the ratio of fission and capture cross sections at 1 eV
and measured capture cross section at 0.0253 eV . The form of \(1 / \mathrm{v}\) was assumed below 120 eV . For energy above 120 eV . the shape of Cf-252 fission cross section was adopted and it was normalized to the systematics of Behrens and Howerton/6/.
```

MT=102 Capture cross section
Measured thermal cross section of 4.5 barns was taken from
Ref, 7 , and 1/v form was assumed below 120 eV. Above 120
eV, the cross section was calculated with CASTHY.
The gamma-ray strength function was estimated from
Gamma-gamma = 0.040 eV and lovol spacing = 240 oV .

```
    MT=251 Mu-L
        Calculated with CASTHY.
MF=4 Angular Distributions of Secondary Neutrons
    MT=2.51.91 Calculated with optical model.
    MT=16.17.18.37 Isotropic in the lab system.
MF=5 Energy Distributions of Secondary Noutrons
    \(\mathrm{MT}=16.17 .37 .91 \quad\) Evaporation spectra.
        Obtained from level density parameters.
    MT=18 Maxwellian fission spoctr'dm.
        Temperature was estimated from Z-*2/A, dependence/8/.
References
    1) Howerton R.J.: Nual. Sci. Eng., 62. 438 (1977).
    2) Jgarasi S.: J.Nucl.Sci.Technol.,12.67 (1975).
    3) Igarasi S., Nakagawa T.: JAERI-M 8342 (1979).
    4) Schmorak M.R.: Nucl. Data Sheets, 32, 87 (1981).
    5) Gilbert A.. Cameron A.G.W.: Can. J. Phys., 43. 1446 (1985).
    6) Behrens J.W. and Howerton R.J: Nucl. Sci. Eng., 65, 464,
        (1978).
    7) Mughabghab S.F.: "Neutron Cross Sections, Vol.1. Neutron
        Resonance Parameters and Thermal Cross Sections. Part B.
        2=61-100*. Academic Press (1984).
    8) Smith A.B. et al. : ANL/NDM-50 (1979).
```

 99-Es-254 TIT Eval-Aug87 N.Takagi
 Dist-Sep89
 History
87-08 New evaluation was made by N. Takagi (Tokyo Institute of
Technolagy, TIT)
MF=1 General Information
MT=451 Comment and dictionary
MT=462 Number of noutrons per fission
Evaluated with semi ompirical formula of Howerion/1/
NF=2 Resonance parameters
MT=151 Resonance parameters
No resonance parameters were given
2200-m/s cross sections and resonance integrals
2200 m/s value Res. Int
Total
Elastic
2004.90 b
10.60 b -
Fission 1966.00 b l220 b
Capture 28.30 b 18.0 b
NF=3 Noutron Cross Sections
MT=1 Total cross section
Below 5 eV. calculated as sum of MT's = 2. 18 and 102
Above 5 eV. optical model calculation was made with
CASTHY/2/. The potontial parameters/3/ used are as
follows.

```

```

 MT=2 Elastic scattering cross section
 Below 5 eV. the constant cross section of 10.6 barns was
 assumed, which was the shape elsstic scettering cross
 section calculated with optical model. Above this energy.
 optical model calculation was edopted
 MT=4.51-52.81 Inelastic scattering cross sections.
 Optical and statistical model calculation was made with
 CASTHY/2/. The level scheme was taken from Ref. 4
 No energy(keV) spin-parity
 g.8. 0.0 7+
 1 78.0 2 +
 Levels above 503 keV were assumed to be overlapping.
 The level density parameters were taken from Ref 5
 NT=16.17.3, (n.2n). (n,3n) and (n.4n) reaction cross sections
 Calculated with evaporation model.
 MT=18 Fission cross section
 Measured thermal cross section of 1966 barns was taken
 from Ref, 6. The 1/v form wes assumed below 5 eV. The
    ```
```

shape of cross section near 5 oV was adjusted so as to
reproduce the measured resonance integral of 1200+-250
barns/6/. Above' 5 oV, the cross section shape was assumed
to be the same as Bk-250 fission cross section and it was
normalized to systematics of Behrens and Howerton/7/.
MT=102 Capture cross section
Measured thermal cross section of 28.3 barns was taken
from Ref. 6 , and 1/v form was assumed below 5 oV. The
cross section near 5 eV was adiusied so as to reproduce
the measured resonance integral of 18.2+-1 5 barns/6/
Above 5 oV, calculated with CASTHY. The gammo-ray sirength
function was estimated from Gamme-gamma = 0.040 eV and
level spacing = 2 oV
MT=251 Mu-L
Calculatad with CASTHY
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-52.91 Calculated with optical model
MT=16.17.18.37 Isotropic in the lab system
MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.37.91 Evaporation spectra
Obtained from level density parameters
MT=18 Maxwellian fission spectrum
Temperature was estimeted from 2..2/A dependence/8/
Relerences

1) Howerion R J Nuci Sci Eng. 62. 438 (197))
2) Igeras: S J Ruci Sci Technol . 12.67 (1975)
3) Igerasi S . Nokagawa T JAERIH 8342 (1979)
4) Schmorek M R Mucl Daie Sheefs. 32. 81 (1981)
5) Gilbert A. Cemeron A GW Cen J Phys. 43. 1446 (1965)
6) Mughabghab S F Mautron Cross Sections. Vol 1. Neutron Resonance Parmmeters and Thermil Cross Sections. Part B. Z=1-100*. Academic Press (1984)
7) Behrens $J W$. Howerion $R J$ Nuci Sci Eng. 65. 164. (1878)
```


\section*{MAT number \(=3992\)}

99-Es-255 TIT Eval-Aug87 N. Takagi
Dist-Sep89
History
87-08 New evaluation was made by N. Takagi (Tokyo Institute of Technology. TIT)

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Evaluated with semi empirical formula of Howerton/1/.
MF=2 Resonance parameters
MT=151 Resonance parameters
No resonance parameters were given.
\(2200-\mathrm{m} / \mathrm{s}\) cross sections and resonance intagrals
\begin{tabular}{cccc}
\(2200 \mathrm{~m} / \mathrm{s}\) & value & Res. Int. \\
79.03 & b & - & \\
10.60 & b & - & \\
13.43 & b & 93.3 b \\
55.00 & b & 278 & b
\end{tabular}

MF=3 Noutron Cross Sections
MT=1 Total cross section
Below 2.47 oV . calculatod as sum of \(\mathrm{MT}^{\prime} \mathrm{s}=2,18\) and 102 . Above 2.47 eV , optical model calculation was made with CASTHY/2I. The potential parameters/3/ used are as follows.


MT=2 Elastic scettering cross section Below 2.47 eV . the constant cross section of 10.6 barns was assumed. which was the shape elastic scattering cross section calculated with optical model. Above this energy. optical model calculation was adoptod.

NT=4.51-53.91 Inelastic scattering cross sections. Optical and statistical model calculation was made with CASTHY/2/. The level scheme was assumed to be the same as that of Es-253 taken from Ref. 4.
\begin{tabular}{ccc} 
No & energy(keV) & spin-perity \\
g.s. & 0.0 & \(7 / 2+\) \\
1 & 48.0 & \(9 / 2+\) \\
2 & 50.0 & \(3 / 2-\) \\
3 & 420.0 & \(7 / 2-\)
\end{tabular}

Levels above 500 keV were assumed to be overlapping. The ievel density parameters were teken from Ref. 5.
\(M T=16.17 .37\) ( \(n, 2 n\) ), ( \(n, 3 n\) ) and ( \(n, 4 n\) ) reaction cross sections Calculated with evaporation model.
```

 MT=18 Fission cross section
 Measured thermal cross section of 13.43 barns was taken
 from Ref. 6 , and 1/v form was assumed below 2.47 eV.
 Above 2.47 eV, the cross section shape was assumed to be
 the same as Cf-252 fission cross section and it was
 normalized to the systematics by Behrens and Howerton/7/.
 MT=102 Capture cross section
 Measured thermal cross section of 55.0 barns was taken
 from Ref. 6. . and 1/v form was assumed below 2.47 eV.
 Above 2.47 eV, calculated with CASTHY. The gamma-ray
 strength function was estimated from Gamma-gamma = 0.040
 oV and lovel spacing=4.94 eV .
 MT=251 Mu-L
 Calculated with CASTHY.
 MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-63.91 Calculated with optical model.
MT=16,17.18,37 Isotropic in the lab system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16,17.37,91 Evaporation spectra
Obtained from level density parameters.
MT=18 Maxwellian fission spectrum.
Tomperature was estimated from 2:-2/A dependence/8/.

```

\section*{References}
```

1) Howerton R.J.: NucI. Sci. Eng., 62, 438 (1977).
2) Igarasi S.: J.Nucl.Sci.Technol.,12,07 (1976).
3) Igarasi S.. Nakagawa T.: JAERI-M 8342 (1979).
4) Schmorak M.R.: Nucl. Data Sheets, 34, 1 (1981).
5) Gilbert A., Cameron A.G.W.: Can. J. Phys., 43, 1446 (1965).
6) Mughabghab S.F.: 'Neutron Cross Sections, Vol.1. Noutron Resonance Parameters and Thermal Cross Sections. Part B. 2=61-100'. Academic Pross (1984).
7) Behrens J.W., Howerton R.J: Nucl. Sci. Eng., 65, 464. (1978).
8) Smith A.B. ot al.: ANL/NDM-50 (1979).
```

MAT number \(=3995\)


MT=2 Elastic scattering cross section Bolow 3.8 oV, the constant cross section of 10.6 barns was assumed, which was the shape elastic scattering cross section calculated with optical model. Above this energy. optical model calculation was adopted.

MT=4.51.91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with CASTHY/2/. The level scheme was taken from Rof. 4.
\begin{tabular}{ccc} 
No & energy(keV) & spin-parity \\
g.s. & 0 & \(7 / 2+\) \\
1 & 60 & \(9 / 2+\)
\end{tabular}

Levels above 94 kev were assumed to be overlapping.
The level density parameters were taken from Ref. 5.
\(M T=16.17 .37\) (n,2n). (n,3n) and (n.4n) reaction cross sections Calculated with evaporation model.

MT=18 Fission cross section
Measured thermal eross section of 3360 barns was taken from Ref. 6 . and \(1 / \mathrm{y}\) form was assumed below 3.8 dV .

Above 3.8 eV . the shape was assumed to be the same as Bk-250 fission cross section and it was normalizad to the systematics by Behrens and Howerton/7/.

MT=102 Capture cross section Measured thermal cross section of 26 barns was taken from Ref. 6 , and \(1 / v\) form was assumed below 3.8 eV . Above 3.8 oV, calculated with CASTHY. The gamma-ray strength function was estimated from Gamma-garma \(=0.040 \mathrm{oV}\) and levol spacing \(=7.6 \mathrm{oV}\).

MT=251 Mu-L
Calculated with CASTHY.
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51.91 Calculated with optical model.
MT=16.17.18.37 Isotropic in the lab system.
```

MF=5 Energy Distributions of Secondery Noutrons
MT=16.17.37.91 Evaporation spectra.
Obtained from level density paremeters.
MT=18 Maxwellian fission spectrum.
Temperaturo was estimeted from 2--2/A dependence/8/.

```

\section*{Roferences}
1) Howerton R.J.: Nucl. Sci. Eng., 62, 438 (1877).
2) Igarasi S.: J.Nucl.Soi.Technol..12.67 (1976).
3) Igarasi S., Nakagawo T.: JAERI-M 8342 (1879).
4) Schmorak M.R.: Nucl. Data Sheets, 34, 1 (1981).
5) Gilbert A. Cameron A.G.W.: Can. J. Phys.. 43, 1446 (1985).
6) Mughabghab S.F.: "Noutron Cross Sections. Vol.1. Noutron Resonance Parameters and Thermal Cross Sections. Part B. Z=61-100*. Acadomic Press (1984).
7) Behreris J.W., Howerton R.J: Nucl. Sci. Eng., 85, 464, (1978).
8) Smith A.B. ot al.: ANL/NDM-50 (1979).```


[^0]:    Keywords: JENDL-3. Neutron Nuclear Data. Nuclear Data Library, Evaluation. Data Compilation, Cross Section, Calculation, Fission Reactors, Fusion Reactors. Shielding

[^1]:    *) Gamma-ray production data are included.

