International Atomic Energy Agency

<u>INDC(JPN)-144</u> Distrib.: L

INTERNATIONAL NUCLEAR DATA COMMITTEE

COMPILATION OF EXCITATION FUNCTIONS FOR THE PRODUCTION OF THE RADIONUCLIDES ¹²³I, ¹²³Xe AND ¹²³Cs BY CHARGED-PARTICLE INDUCED REACTIONS

A. Hashizume, Y. Tendow, K. Kitao^{*} RIKEN (The Institute of Physical and Chemical Research) Nuclear Data Group

* National Institute of Radiological Sciences

October 1990

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

COMPILATION OF EXCITATION FUNCTIONS FOR THE PRODUCTION OF THE RADIONUCLIDES ¹²³I, ¹²³Xe AND ¹²³Cs BY CHARGED-PARTICLE INDUCED REACTIONS

A. Hashizume, Y. Tendow, K. Kitao^{*} RIKEN (The Institute of Physical and Chemical Research) Nuclear Data Group

* National Institute of Radiological Sciences

October 1990

Reproduced by the IAEA in Austria October 1990

90-04838

Compilation of Excitation Functions for the Production of the Radionuclides 123_{I} , 123_{Xe} and 123_{Cs} by Charged-Particle Induced Reactions

Abstract

Available experimental data of charged-particle induced nuclear reactions for the production of the radionuclides 123_{I} , 123_{Xe} and 123_{CS} are reviewed and presented in graphical courves. Included are the reactions $124_{Te}(p,2n)123_{I}$, $127_{I}(p,5n)123_{Xe}$, $124_{Xe}(p,pn)123_{Xe}$, $122_{Te}(d,n)123_{I}$, $127_{I}(d,6n)123_{Xe}$, $127_{I}(d,p5n)123_{I}$, $121_{Sb}(a,2n)123_{I}$, $133_{CS}(p,spallation)123_{Xe}$, natBa(p,spallation)123_{Xe}, natLa(p,spallation)123_{Xe}, $124_{Xe}(p,2n)123_{CS}$, natLa(p,spallation)116-136_{CS}, $109_{Ag}(180,4n)123_{MCS}$.

I. Introduction

Owing to the suitable nuclear decay properties, ^{123}I is considered one of the best radionuclides for in vivo diagnostic nuclear-medical studies using single-photon emission computed tomography. Although more than twenty kinds of reactions have been proposed for the production of ^{123}I , selection should be made from several essential points of view, that is, the cost of enriched isotope for a target, ease of recovery and recovery percentage of the isotope after irradiation, beam requirements whether the kind of incident beam and its energy are easily available, production yield rate, chemical separation yield, ease of chemical process after irradiation and impurities of other radioactive iodine isotopes in the final product. Among them, excitation function is one of important factors to determine the production method. The excitation functions to produce ^{123}I , ^{123}Xe and ^{123}Cs were compiled in this report.

II. Reactions to produce ${}^{123}I$ and ${}^{123}Xe$

 124 Te(p,2n) reaction: This reaction has been used most extensively in the routine production of 123 I. Its excitation function was obtained by Kondo¹⁾ and is shown in Fig. 1. In the figure, 'ind' shows independent cross section. By using a 99.87 % isotopically enriched 124 Te target, cross sections were determined with uncertainties of 4-12 % except at the lowest energy. The cross sections were also measured with a 91.86 % enriched isotope as a target.¹⁾ As a whole, the cross sections were obtained at precision of about 10 %.

There are many reports concerning practical production yields of 123 I. The reported values are scattered in a wide range. A part of the reasons may be attributed to the loss of 123 I during irradiation. If the precaution is not taken, the product yield will be depend on the beam intensity because of loss of iodine during irradiation.

 $^{127}I(p,5n)^{123}Xe$ reaction: The excitation functions have been reported by five different authors.²⁻⁶⁾ Their functions are shown in Fig. 2. The values reported by Lagunas-Solar et al.⁶⁾ are most elaborated ones by taking into account various errors in the measurement. Each author took precautions against the loss of the target or reaction products during irradiation. Paans and Wilkins have measured the beam current directly; Dikšić⁴⁾ and Syme⁵⁾ used monitor reactions such as $^{27}Al(p,3pn)^{24}Na$ and $^{12}C(p,pn)^{11}C$. One of the reasons for differences among these absolute cross sections may be attributed to beam current integration.

 124 Xe(p,pn) 123 Xe reaction: The (p,pn) and (p,2n) reactions are important to obtain 123 Xe, ancestor of 123 I, from practical point of view. However their cross sections had not been measured until recently. In 1989, Kurenkov⁽⁷⁾ measured cross sections between the proton energy 17 and 33 MeV with precision of about 18 % using 99.9 % isotopically enriched 124 Xe target. The excitation function is shown in Fig. 3. In his measurements, the threshold is not so clear. The yield curve obtained by Firouzbakht⁽⁸⁾ with thin target shows sharp rise from 16 MeV to 20 MeV.

Deuteron induced reactions: The $^{122}\text{Te}(d,n)^{123}\text{I}$, $^{127}\text{I}(d,6n)^{123}\text{Xe}$ and $^{127}\text{I}(d,p5n)^{123}\text{I}$ reactions have been reported.^{9,10)} Zaidi⁹⁾ insisted that the $^{122}\text{Te}(d,n)$ reaction could produce ^{123}I with higher purity than obtaining from the 124 Te(p,n) reaction. The cross sections are plotted in Fig. 4-6. There is only one measurement concerning the absolute value for (d,n) reaction.

Alpha induced reactions: The ${}^{121}\mathrm{Sb}(\alpha, 2n){}^{123}\mathrm{I}$, ${}^{123}\mathrm{Sb}(\alpha, 4n)$ ${}^{123}\mathrm{I}$ and also ${}^{122}\mathrm{Te}(\alpha, 3n){}^{123}\mathrm{Xe}$ reactions were drawn attention among alpha induced reactions. The excitation function for ${}^{121}\mathrm{Sb}(\alpha, 2n){}^{123}\mathrm{I}$ has been measured from the interest in comparing them with a nuclear reaction theory. ${}^{11)}$ As shown in Fig. 7, absolute cross sections in the energy range from threshold to 27 MeV have been measured and compared with a statistical theory being taken into account the competition with β -decay.

The production yield rate of 123 Sb(α ,4n) has been measured in the incident energy range between 50 and 75 MeV.¹²⁾

The $^{122}\text{Te}(\Im, 3n)$ reaction¹³⁾ is one of methods to produce ^{123}Xe with small impurities such as ^{124}I , ^{125}I and others; however its cross section is not found in our survey.

Other reactions: Among other reactions explained above, 3 He induced reactions with 122 Te, and 123 Te targets have a high 123 Xe yield compared with alpha particle induced reactions. 14) However there are no reports on measurements of cross sections.

It is known that the spallation reaction induced by high energy protons have relatively high yield of 123 Xe. Peek¹⁴) and Adilbish¹⁵) reported spallation cross sections when 133 Cs, nat Ba and nat La were bombarded by high energy protons. The results are shown in Fig. 8-10. In the figure, 'cum' indicate that cross sections are cumulative. Adilbish¹⁵) also reported 123 Xe producing cross sections when 127 I was bombarded by 660 MeV protons. The value is 3.8 ± 0.4 mb. As there is one point for 127 I+p reaction, this deta is not presented in a figure. The cumulative cross sections for producing 123 Xe decrease slowly with increasing incident proton energies from 300 MeV to 660 MeV.

III. Reactions to produce ¹²³Cs

 124 Xe(p,2n) 123 Cs reaction: The precursor of 123 Xe is 123 Cs ($T_{1/2}$ =5.87 m). As 123 Cs is far apart from the nuclear stability line, the 124 Xe(p,2n) 123 Cs reaction is an only possible reaction type with light and low energy ions. Yield curve including 123 Xe(p,pn) reaction was studied by Firouzbakht⁽⁷⁾. The cross sections were measured by Kurenkov⁽⁷⁾ which was shown in Fig. 11. Sharp rise of curve is suggested from 16.0 MeV which is experimental threshold obtained by extrapolating to zero point in linear representation of excitation curve. The theoretical threshold obtained from Wapstra's table⁽¹⁶⁾, is 15.58 MeV.

Spallation: High energy protons or ³He incident ions combined with on line isotope separator have been used to produce 123 Cs, but there is only a report for absolute cross section measurements¹⁷⁾ in our survey. Cross sections to produce Cs isotopes by La + p(600 MeV) was shown in Fig. 12.

Heavy ion induced reactions: many combinations of targets and incident ions such as 10 B, 12 C, 14 N and 18 O have been utilized to produce 123 Cs. However, no cross section was reported in our survey except a relative value of excitation function for 109 Ag(18 O,4n) 123m Cs reaction. 18) Figure 13 shows relative cross sections for this reaction.

IV. Eye guide curves for excitation functions

The smooth lines in the Fig.1-10 are made for eye guide which were obtained by unweighted least squares fit to some order of poweres of exponent or a combination of several Gaussian distribution functions. In case of the $^{127}I(p,5n)^{123}Xe$ reaction, the curve between 68 and 85 MeV is not a real least squares fit but is connected smoothly by hand and this curve was replaced by a combination of Gaussian distribution functions. This procedure was needed because the experimental points were very dispersed between those obtained by Paans and by Dikšić. It seems there is no reason that sharp resonances are observed in this energy range and in this mass region. More experimental data are necessary in this energy range to solve the discrepancies.

V. Experimental conditions

Kinds of reactions, beam energies employed and methods of degrading the energies and method of beam current measurements reported are shown in Table I. Here, each report has been numbered in the second column and these numbers correspond to the first column in Table II and III. The targets, kinds of radiation detectors used, stopping powers employed are shown in Table II. The half-lives, energies of radiations detected, their intensities employed and errors are shown in Table III.

Acknowledgement - We would like to thank Dr J.J. Schmidt, head of Nuclear Data Section of International Atomic Energy Agency, Dr. H.D. Lemmel and Dr. K. Okamoto gave us convenience and encouragement for publishing this report. We would like to thank Dr. F.E. Chukreev for referencing of charged particle EXFOR file. We would like to thank for the staff of National Nuclear Data Center in Brookhaven National laboratory and those of NEA Data Bank for the original authors of some EXFOR files. We wish to thank Misses Y. Kidachi for reading excitation function data from original reports.

References

- 1. K. Kondo, R.M.Lambrecht and A. P. Wolf, Int. J. Appl. Radiat. Isotop. 28, 395(1977).
- S. R. Wilkins, S. T. Shimose, H. H. Hines, J. A. Jungerman, F. Hegedus, and G. L. DeNardo, Int. J. Appl. Radiat. Isotop. 26, 279(1975).
- 3. A. M. J. Paans, W. Vaalburg, G. Van Herk, and M. G. Woldring, Int. J. Appl. Radiat. Isotop., 27, 465(1976).
- 4. M. Dikśić and L. Yaffe, J. Inorg. and Chem. 39, 1299(1977).
- 5. D. B. Syme, E. Wood, I. M. Blair, S. Kew, M. Perry, and P. Cooper, Int. J. Appl. Radiat. Isotop. **29**, 29(1978).
- 6. M. C. Lagunas-Solar, O. F. Carvacho, Bo-Li Liu, Y. Jin, and Z. X. Sun, Int. J. Appl. Radiat. Isotop. 37, 823(1986).
- N. V. Kurenkov, A. B. Malinin, A.A. Sebyakin and N. I. Venikov, J. Radioanal. Nucl. Chem., letters 135, 39(1989).
- M. L. Firouzbakht, Ren-Rui Teng, D. J. Schlyer and A. P. Wolf, Radiochm. Acta 41, 1(1987).
- 9. J. H. Zaidi, S. M. Qaim, and G. Stocklin, Int. J. Appl. Radiat. Isotop. 34, 1425(1983).
- 10. R. Weinreich, O. Schult, and G. Stocklin, Int. J. Appl. Radiat. Isotop. 25, 535(1974).
 - O. W. B. Schult, Nuc. Instr. and Meth., 146, 301(1977).
- 11. A. Calboreanu, C. Pencea, and O. Salagean, Nucl. Phys., 383, 251(1982).
- 12. R. M. Lambrecht, A. P. Wolf, F. Helus, M. Untucht and W. Maier-Borst, Int. J. Appl. Radiat. Isotop., 27,675(1976).
- E.Lebowitz, M. W. Greene and P. Richards, Int. J. Appl. Radiat. Isotop., 22, 489(1971).
- 14. N. F. Peek and F. Hegedus, Int. J. Appl. Radiat. Isotop, 30, 631(1979).
- 15. M. Adilbish, V. G. Ghumin, V. A. Khalkin, O. Knotek, M. Ja Kuznetsova, Ju V. Norseev, V. I. Fominykh and N. G. Zaitseva, Int. J. Appl. Radiat. Isotop, 31, 163(1980).
- 16. A. H. Wapstra and G. Audi, Nucl. Phys. A432,1(1989).
- 17. H. L. Ravn, S. Sundell and L. Westgaard, J. Inorg. and Chem., 37, 383(1975).
- 18. Ch. Droste, W. Neubert, S. Chojnacki, T. Morek, K. F. Alexander and Z. Wilhelmi, Nucl. Phys. A192, 595(1972).
- 19. C. F. Williamson, J. P. Boujot, and J. Picard, Rapport CEA-R-3042(1966).
- 20. W. H. Barkas, and M. J. Berger, Tables of Energy Losses and Ranges of Heavy Charged Particles. Publ. 1133. Nat. Acad. Sci. Washington, D.C., p.103(1964).
- 21. J. F. Janni, Air Forces Weapons Lab. Technical Rep. No. AFWL-TR-65-150(1966); C. Tschalar, Rutherford lab. Rep. RHEL/R 146(1967).
- 22. R. L. Auble, Nuclear Data Sheets B7, 363(1972).
- 23. R. Strippler, D. Lode, h. Schrader and F. Munnich, Z. Phys. 242, 121(1971).
- 24. G. E. Erdtmann and W. Soyka, Rep. Jul-1003-AC(1974).
- 25. C. M. Lederer and V. M. Shirley (Eds), Table of Isotopes, 7th edn(John Wiley, New York, 1978).
- 26. R.C.Ragaini, W. D. Walters, G. E. Gordon and P. A. Baedecker, Nucl. Phys. A115,611(1968).

D. Nachtingall, 'Tables of Specific Gamma-Ray Constants', Verlag Karl Thiemig KG, München(1969).
 J. F. Janni, Atomic Data and Nuclear Data Tables, 27, 415

(1982).

Reaction	No.	First Author R	leferences	Incid	ent Encrgy MeV)	Minimum Energy (MeV)	Method of beam energy change	Beam current measurement
²⁴ Te(p,2n) ¹²³ I	-	K.Kondo	(1)	28.19	+ 0.30	9.95 ± 1.10	Stacked foil	Faraday cup
127-1	c			01.07				
I(p,5n)Xe	7	S.R.Wilkins	(2)	62	+ 0.5	45.4	Stacked foil	Faraday cup
	e.	A.M.J.Paans	(3)	66	< 0.6	46.4	By AVF cyclo.	Faraday cup
	4	M.Dikšić	(4)	85	2 +	45.0	Changed radius in synchrocyclo	12c(p,pn)11c, 63cu(p,n)63Zp, 27,1/2,2m,2Zp,
	S	D.B.Syme	(2)	159.5	+ 0.5	38.0	Stacked foil	12C(p,pn) 1C
	9	M.C.Lagunas- Solar	(9).	67.5	<u>+</u> 0.5	38.6	Stacked foil	Faraday cup
²⁴ Xe(p,pn) ¹²³ Xe	7	N.V.Kurenkov	(1)	34.7,	28.6, 27.5	17.2	Al degrader	Faraday cup Cu monitor
³³ Cs(p, spal) ¹²³ Xe ^{at} Ba(p, spal) ¹²³ Xe	8	N.F.Peek	(14)	590		320	Carbon degrader CsCl degrader	2^{7}_{27A1} (p, $3ng$) ²⁴ Na, 2^{7}_{A1} (p, x) 7^{2}_{2Na} ,
^{at} La(p,spal) ¹²³ Xe	6	M.Adilbish	(15)	660		ı	ı	27A1(p,3pn) ²⁴ Na
27 I (p, spal) 123 Xe	10	M.Adilbish	(12)	660		١		²⁷ Al(p,3pn) ²⁴ Næ
²² Te(d,n) ¹²³ I	11	J.H.Zaidi	(6)	14		7.4	Stacked foil	⁵¹ v(d, 2n) ⁵¹ Cr
²⁷ I(d,6n) ¹²³ Xe	12	R.Weinreich O.W.B.Schult	(10) (10)	0 0 0 8 0 0 8		46.1	Stacked foil	²⁷ Al(d,pغ) ²⁴ Na
²⁷ I (d, p5n) ¹²³ I	13	R.Weinreich O.W.B.Schult	(10)	5 0 0 0 0 0 0 0		55.1	Stacked foil	²⁷ Аl (d, р.ж) ²⁴ Na
²¹ Sb(α,2n) ¹²³ Ι	14	A.Calboreanu	(11)	27	+ 0.08	14.57 ± 0.60	Al degrader	Faraday cup
²⁴ Xe(p,2n) ¹²³ Cs	15	N.V.Kurenkov	(1)	34.7,	28.6, 27.5	17.2	Al degrader	Faraday cup Cu foil monitor
^{at} la(p,spal) ¹²³ Cs	16	H.L.Ruvn	(11)	600			۱	normalization320,1340386 sections of
⁰⁹ Ag(¹⁸ 0,4n) ^{123m} Cs	17	Ch. Droste	(18)	105		57	Al degrader	Faraday cup

Table II Targets, stopping powers, detectors and half-lives

6	First Author	Target	Stopping Power	Detector
	K.Kondo	12^{4} Te:91.86 %, 99.87 % 1.05±0.01 mg Te/cm ² Stacked with Cu and Al foils	Williamson (19)	Ge(Li)
2	S.R.Wilkins	Litium Iodide covered by 0.051 mm Ta foil, 2 MeV thick. (Cooling He gas was checked	Williamson (19)	Ge(Li), 2.6 keV(FWHM) at 1.33MeV
e	A.M.J.Paans	Nal, 1 Mev thickness covered by Al foils	ł	Ge(Li),3.8 keV at 1.33 MeV
4	M.Dikšić	CuI, CHI ₃ for E ₂ >45 MeV Ki and Al ₂ O ₃ for E ₂ >45 MeV Thickness is 1 MeV ^a t 50 MeV	I	Ge(Li), 3 keV at 1.33 MeV
S	D.B.Syme	KI, 0.33 g/cm ² (about 1-2 MeV) Powder is compressed and sealed with thin adhesive tape	Barkas & Berger(20)	Ge(Li), 3 keV at 149 keV
9	M.C.Lagunas- Solar	Nal pressed into a circular cavity of Al(0.95 cm dia., 0.045 cm in thickness 35 stack was used (Xe losses were checked)	Janni (21)	Ge, 2.5 keV at 662 keV
5	N.V.Kurenkov	124Xe gas in a capsule of 10 mm length, 5 mm diameter 1 atm., 280-300 um Al window	Janni (28)	Ge(Li)
80	N.F.Peek	CsCl, BaCO ₃ , La ₂ O ₃ 0.171-0.707 g/cm ² thickness 3 cm dia, in thin(0.5 mm) Al container	ı	Ge(Li), 2 keV at 1 MeV
<u>-</u> б	M.Adilbish	Aqueous solutions of CsNO ₃ , Ba(NO ₃) ₂ , La(NO ₃) ₃	I	Ge(Li),2.6 keV at 159 keV
. 0	M.Adilbish	Aqueous solutions of LiI	1	Ge(Li),2.6 keV at 159 keV

۰.

	Table II (continued)		
No. First Author	Target	Stopping Power	Detector
11 J.H.Zaidi	Natural Te and ¹²² Te(96.45 %) 4-4.5 mg/cm ² thickness on 25 um, 10 um Ti backing	Williamson (19)	Ge(Li)
12 R.Weinreich O.W.B.Schult	NaI pellets(0.1 gr/cm ²) in polyethylen foils(7 mg/cm ²)	Williamson (19)	Ge(Li)
13 R.Weinreich O.W.B.Schult	Same as above	Williamson (10)	Ge(Li)
14 A.Calboreanu	0.2-0.4 mg/cm ² Bvaporated on Al backings	Williamson (10)	Ge(Li)
15 N.V.Kurenkov	124Xe gas in a capsule of 10 mm length, 5 mm diameter 1 atm., 280-300 um Al window	Janni (28)	Ge(Li)
16 H.V.Ravn	70 g of La in Ta cylinder, 8cm long and 2 cm dia. Target were heated 1300 or 1400°C. Energy loss due to target thickness wa 12 % for incident protons. Isoptope separator on line.	Ŋ	Ge(Li) 4-7C plastic scintillator
17 Ch. Droste	Thin target, no detail is given by authors	ı	Ge(Li)

Table III Intensities of gamma-rays used and erros for cross sections.

.

:	Fist Author	Product '	T1/2	Ey	IS	Ref.for	Errors for cross sections
	K.Kondo	123 ₁ 1	3.3h	(keV) 159	(メ) 83	decay (22)	Counting error less than 3 % Target uniformity less than 2 Recoil loss very small Overall error 12
	S.R.Wilkins	12 ³ xe	1	149	I	(22)	Beam and spectral integration 5 Target uniformity 6 Detector efficiecy 6.7 Decay scheme 3 S-ray absorption correction 2 Overall error 12
	A.M.J.Paans	12 ³ xe	1	148.9 178.1	49.3 15.1	(22)	Ratio between Monitor(511 keV) 3 and 149 keV 5 Statistical error 5 Detector efficiency 10 Target uniformity 5 Dead time correction less than 1 Current integration less than 1 Overall error 12.5
	M.Diksic	1 ²³ xe 2.3	4	178.1 330.2 899.6 1093.4	19.5 3.2 3.2	(23)	Full-energy peak areas, decay curve analysis, monitor reactions are included. rema-ray intensities, counter efficiency, half-life are relatively small and neglected. 5.4-12.5
	D.B.Syme	12 ³ xe 1.9 ± 1	9 h 0.018	149	20	(24)	Target thickness Self-absorption of gamma-ray 0.60 2.00 Gamma detector calibration 2.06 3.55 Counting dead time 2.06 2.07 Counting dead time 3.06 2.07 Gamma-ray absolute abundance 5.01 Sub total 3.70 7.25 Monitor cross section 3.70 7.11 Overall 5.20 10.1

& Root mean square errors
* systematic errors

ŝ

No	Fist Author	Produc	st T _{1/2}	E _j (keV)	۲ ₅ (۶)	Ref.fo decay	r Errors for cross sections	
യ	M.C.Lagunas- Solar	123 _{Xe}	2.08 h	178 330	14.9 8.6	(25)	Incident beam energy Range value NaI target density NaI target thickness Total energy uncertainties 67 Mev	
							Beam-current integration Calibration sources Detector efficiency Counting geometry Decay constant Gamma-ray abundances Integration routine Total uncertainty(one standard deviation)	აფისი აფისი აკი აკი აკი აკი აკი აკი აკი აკი აკი აკ
2	N.V.Kurenkov	123 _{Xe}	2.08 h	148.91 177.99 330.19	4 9 9 9 9 9	i i	Proton energy Stopping power Proton absorber thickness Beaum current Effect of beam intensity Gas density Capsule volume Radionuclide assay and source geometry Statistical error Detector efficiency Gama-ray yield Total error(others included) 10	22196999 19008
ω	N.F.Peek	123 _X e	ı	149	50	(24).	Standard source Gamma-ray self-absorption dead time and secondary effect were considered. Over all	0 0
9 10	M.Adilbish	123 _{Xe}	2.08 h	148 178 330	50 16 8.6	I	No detail of errors are reported by the authors Overall error 5-10	9
11	J.H.Zaidi	123 ₁	13.02 h	159	82.9	(22)	Overall error 10-12	8
12	R.Weinreich O.W.B.Schult	123 _{Xe}	2.1 h	149	53	(23)	Detector efficiency(relative) Standard source	3
13	R.Weinreich O.W.B.Schult	123 _I	13.3 h	159	86	(26)	Detector efficiency Standard source	3

Table III (continued)

· O
Ū.
-
~
£
• – 1
1.
÷
2
0
~
0
ت
L.
<u> </u>
H
-
-
Ð
÷.
<u>`</u>
بب
a
ñ

1				
	<pre><1 </pre> <1 0.15 1.2	60 14 12	200 20	
Errors for cross sections	ounting error ypical error at 26.5 MeV 18.9	14.6 amma-ray yield or other errors refer to No.7 otal error	fficiency fluctuations due to performance of the target, ion-source, source collection etc. are estimated ield curve as a function of mass numbers are normalized using 9.4 ± 0.8 , 4.8 ± 0.6 and 1.26 ± 0.15 mb for $1\overline{3}2$ cs, 134 cs and $\overline{1}^{36}$ cs respectively. uggested total errors	roduct was checked by cross bombardment of $^{115}In(^{12}C, 4n)$ 123Cs. o detail is given by authors.
Ref.for decev	(27) C	, OÈÈÈ		μ z
15(2)	83	14.5 8.3 2.4	1	I
E (KeV)	159	97.36 586.54 741.31		ທ. ອ ອ
roduct T _{1/2}	23I 13.3 h	²³ Cs 5.87 m	ی د د	23mCs 1.6 s
Fist Author Pr	A.Calboreanu ¹²	N.V.Kurenkov ¹²	H.V.Ravn 12	ih. Droste 12
No.	14	15	16	17 C

.

Fig. l

•

.

۰.

> --

Fig. 6

4

0. Schult (10)

(dm) noitoe2 zeon0

••

A. Calboreanu (11)

• N. F. Peek (14), a closed circle shows independent data.

▲ M. Adilbish (15)

M. Adilbish (15)
 M. Adilbish (15)

M. Adilbish (15)

Fig. 13

(evijolan) noijoed zeond