JP9105158

NEANDC (J)-159/U INDC (JPN)-147/L

JAERI-M 91-009

POLARIZED PROTON INDUCED REACTIONS ON LITHIUM ISOTOPES

AROUND 14 MEV

February 1991

Norihiko KOORI^{*1}, Isao KUMABE^{*1}, Mikio HYAKUTAKE^{*1} Yukinobu WATANABE^{*2}, Koichi ORITO^{*2}, Katsumi AKAGI^{*2}, Akihide IIDA^{*2} Makoto ERIGUCHI^{*2}, Yoshihisa WAKUTA^{*2}, Kenshi SAGARA^{*2} Hiroyuki NAKAMURA^{*2}, Kazuhide MAEDA^{*2} and Takao NAKASHIMA^{*2}

日本原子力研究所 Japan Atomic Energy Research Institute

JAERI-Mレホートは、日本原子力研究所が不定期に公刊している研究報告書です 入手の間合わせば、日本原子力研究所技術情報部情報資料課(〒319-11美城県期珂郡東 海村)あて、お申しこしくたさい。なお、このほかに財団法人原子力弘済会資料センター 〒319-11 美城県期珂郡東海村日本原子力研究所内。ご復写による実費通布をおこなって おります。

JAERI-M reports are issued irregularly.

.

Inquiries about availability of the reports should be addressed to Information Division. Department of Technical Information, Japan Atomic Energy Research Institute, Tokaimura, Naka-gun, Ibaraki-ken 319-11, Japan.

Japan Atomic Energy Research Institute, 1991

編集兼	绝打	日本原子力研究所
ED	60	株原子力資料サービス

Polarized Proton Induced Reactions on Lithium Isotopes around 14 MeV

Norihiko KOORI^{*1}, Isao KUMABE^{*2}, Mikio HYAKUTAKE^{*3} Yukinobu WATANABE^{*2}, Koichi OR1TO^{*2}, Katsumi AKAGI^{*2} Akihide IIDA^{*2}, Makoto ERIGUCHI^{*2}, Yoshihisa WAKUTA^{*2} Kenshi SAGARA^{*2}, Hiroyuki NAKAMURA^{*2}, Kazuhide MAEDA^{*2} and Takao NAKASHIMA*2

> Department of Physics Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

> > (Received January 21, 1991)

Differential cross sections, analyzing powers, and double differential cross sections were measured for 6 Li(p,x) reactions at 14.0 MeV and for ⁷Li(p,x) reactions at 12.0, 14.0 and 16.0 MeV. The three-body breakup reactions of ${}^{6}Li(p,d)p\alpha$, ${}^{6}Li(p,\alpha)pd$ and ${}^{7}Li(p,t)p\alpha$ were intensively studied in order to understand their reaction mechanisms, which must be similar in the neutron induced reactions. Moreover, the contribution of the four-body 6 Li(p,2p)n α breakup reaction in the ⁶Li(p,xp) reaction has been estimated and analyzed on the basis of the sequential decay processes. The optical potential of the p-7Li system has been discussed.

Keywords: Differential Cross Sections, Analyzing Powers, 12.0, 14.0, 16.0 MeV, ⁶Li, ⁷Li, Double Differential Cross Sections

This work was performed under the contract between Japan Atomic Energy Research Institute and Kyushu University in 1989 fiscal year. *l University of Tokushima

^{*2} Kyushu University

^{*3} Sasebo Technical College

JAERI M 91 009

14 MeV 近傍におけるリチウム同位体の偏極陽子による反応

日本原子力研究所東海研究所物理部

秦折 範彦・・閑部 助二・百武 幹雄二・渡辺 幸信' 織戸 浩一二・赤木 克巳二・飯田 章英二・江里口 誠 和久田義久二・相良 建至二・中村 裕之二・前田 和秀二 中島 孝夫二

(1991年1月21日受理)

14 MeV における Li (p, x) 反応および 12, 14, 16 MeV における Li (p, x) 反応の微分断面 積、偏極分解能, 二重微分断面積を測定した。 Li (p, d) p α , 'Li (p, α) pd, 'Li (p, t) p α 三体崩壊反応については、反応機構を詳細に検討した。その結果、対応する中性子誘起反応にも 有効である。また、 Li (p, xp) 反応における、 'Li (p, 2p) n α 四体崩壊反応の寄与を測定して、 順次崩壊過程に基づく解析を行った。 p 「Li 系の光学ポテンシャルについても議論を行った」

本報告書は、日本原子力研究所が平成元年度に九州大学に委託して行った研究の成果である。 東海研究所:〒319-11 次城県那珂郡東海村自方字白根2-1

*1 徳島大学

^{*2} 九州大学

^{* 3} 佐世保王業高等専門学校

Contents

1. Intr	oduction	1
2. Exp	erimental Procedure	2
3. Exp	erimental Results	2
3.1	⁶ Li(p,d)po reaction	2
3.2	⁶ Li(p, ³ He)α and ⁶ Li(p,α)pd reactions	3
3.3	⁶ Li(p,2p)n α reaction	3
3.4	⁷ Li(p,d) ⁶ Li* reaction	3
3.5	⁷ Li(p,t)pa reaction	4
3.6	Energy dependence of ⁷ Li(p,p') scattering	4
3.7	Errors	4
4. Theo	pretical Analyses and Discussion	4
4.1	Three-body breakup reactions	4
4.2	⁶ Li(p,2p)nα reaction	5
4.3	Two-body reactions	6
4.4	Optical potentials for ⁷ Li(p,p') scattering at 12, 14 and 16 MeV	6
5. Sum	mary	7
Referenc	es	8
Appendi	ces	1

目 次

1	. ¥	ħ	Ē	•••••	•••••	• • • • • • •	•••••	••••	••••	•••••	•••••	•••••	•••••	••••	•••••	• • • • • •	•••••	•••••	• • • • • • •	••	1
2	. 9	医験力	法	•••••			•••••	•••••	••••	•••••	••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••	2
3	. 9	に験約	惈	•••••	•••••	•••••	•••••		••••	•••••	••••	•••••	••••	•••••	•••••	•••••	•••••	•••••	•••••	••	2
	3.1	۴Li	(р,	d) p <i>a</i>)	反応	•••••			•••••	•••••	••••	•••••	••••		•••••	•••••	•••••	•••••	••••	••	2
	3.2	۴Li	(p,	^з Не) <i>а</i>	Ł€Li	(p, 6	α) p	od 反応	Ċ.	•••••	•••••	•••••	•••••	••••	•••••	•••••	•••••	•••••	• • • • • • • •	••	3
	3.3	*Li	(р,	2p) n <i>a</i>	: 反応	••••		••••••	••••	• • • • • •		•••••	••••	••••	•••••	•••••	•••••	•••••		••	3
	3.4	'Li	(p,	d) "Li*	反応	•••••	•••••		••••	•••••	••••	•••••	••••	••••	••••		•••••	•••••		•	3
	3.5	'Li	(р,	t) p <i>a</i> !	反応	•••••	•••••	• • • • • • • • •	•••••	•••••	••••	••••	••••	• • • • • •	••••	•••••	•••••	•••••		•	4
	3.6	'Li	(р,	p′)散刮	しのエ	ネルキ	デーダ	转存性		•••••	••••	•••••	••••	• • • • • •	•••••	••••	•••••	•••••	•••••	•	4
	3.7	誤		差		•••••	•••••	• • • • • • • • •	•••••	•••••	••••		••••	• • • • • •	•••••			•••••		•	4
4	月	論解	析と	:議論	•••••	•••••	•••••	•••••	••••	•••••	•••••		••••		•••••	•••••	•••••			•	4
	4.1	-1	本崩り	壞反応 ·	•••••	••••••	•••••	•••••	• • • • •	••••	•••••		••••	• • • • • •	•••••	•••••	•••••	•••••	•••••	•	4
	4.2	6Li	(n,	2p) n <i>a</i>	反応	••••		• • • • • • • • •	••••	•••••	•••••	••••	••••	• • • • • •	• • • • • •	•••••	•••••	•••••	•••••	•	5
	4.3	}	如	芯		•••••		•••••	••••	•••••	••••	•••••	••••	•••••	• • • • • •	•••••	•••••	•••••	•••••	•	6
	4.4	12,	14,	16 MeV	V にお	ける	Li (p, p'))散	転の	り光	学ポ	テン	12.	ャル		•••••	•••••	•••••	•	6
5.	新		語	•••••		••••	•••••	•••••	••••	•••••	••••	••••		••••	•••••	•••••	•••••	•••••	•••••	•	7
坟	5	献	•••••	•••••	•••••	•••••	•••••		••••	•••••	••••	•••••		••••	•••••	•••••	•••••	•••••	•••••	• ;	8
付	ł	鍅	•••••			•••••	•••••		••••	• • • • • •		• • • • • •	••••	•••••	•••••		•••••	•••••	••••	• 3	1

1. Introduction

In the previous report[1], we have emphasized the importance of the nuclear data for 6.7Li isotopes: Especially, tritium production cross sections and double differential cross sections (DDX) of inelastic scattering are related to the tritium breeding ratio and neutron transport in the fusion reactor blanket. Precise measurements were recently reported on the ⁷Li(n,t) reaction and ⁶Li(n,n') scattering[2-5] to refine their nuclear data. Moreover, an evaluated data library JENDL-3 has very recently become available for the development of fusion reactors. In the evaluation of nuclear data for lithium isotopes, experimental data were treated by means of rather simple theories[6], because of difficulties in theoretical analyses of reactions including three-body breakup processes. It is highly necessary to establish nuclear theories for evaluation of reactions involving lithium isotopes.

Precise double differential cross sections and analyzing powers have to be measured for study of their adoptability of recently developed theories[7,8] to the reactions. Proton induced reactions are preferable to the purpose, being superior in precision against neutron induced reactions. Experimental data of polarized proton induced reactions on the lithium isotopes, however, are very scarce even in an energy region of 10-18 MeV. Hence, systematic studies of the scattering and reaction on the lithium isotopes by use of polarized proton beams will give valuable information for modelling of nuclear reactions for lithium isotopes.

We have previously reported the data of differential cross sections and analyzing powers for the proton scattering on 6,7 Li, and of their double differential cross sections of the (p,p') inelastic scattering at 14 MeV. The optical potential parameters including the spin dependent terms of V_{so}, r_{so} and a_{so} were determined for the elastic scattering. Since the differential cross sections and analyzing powers for the inelastic scattering could not be reproduced by use of the optical potentials with standard energy dependence, we searched the optical potential parameters for the exit channels. This indicates that low excited states of the isotopes have rather different properties from the ground one. It may be due to the fact that the excited states of 6,7 Li can decay into more than two particles. Furthermore, the double differential cross sections, the continuum energy spectra, were reasonably reproduced using the DWBA calculation for the discretized continuum states, which have obtained by a microscopic d- α and t- α cluster model.

In this report, we will describe experimental data of 6,7 Li(p,x) reactions measured around 14 MeV and their theoretical interpretation. In Section 2 and 3, the experimental procedure and results will be given, and theoretical analyses of the results will be presented in Section 4. The measured data will be summarized in numerical form in Appendices.

2. Experimental Procedure

As previously described[1], polarized and unpolarized proton beams from the tandem Van de Graaff accelerator at Kyushu University were used for measurements of 6,7 Li(p,x) reactions around 14.0 MeV. Emitted particles were detected with a counter telescope, which consisted of 15.5 µm and 75 µm thick transmission-type Si (Δ E) detectors and a 2000 µm thick Si (E) detector; the solid angle of the counter telescope was 0.297 msr. Energy spectra were measured separately in a low energy region (1 MeV - several MeV) and in a high energy region (above 2.5 MeV), so that good particle identification could be obtained in each energy region. The lowest energy in the measurement was 1.0 MeV for protons, 1.3 MeV for deuterons, 1.5 MeV for tritons, and 4.7 MeV for alphas. The over-all energy resolution for protons was about 95 keV in fwhm, which was mainly due to the kinematical spreading. The measurements were carried out at every 10° from 10° to 160° and 165°. The targets used were self-supporting Li metallic foils of about 1 mg/cm² thick (enrichment : 95.59% for ⁶Li, and 99.99% for ⁷Li).

The beam polarization, which was monitored with a polarimeter at the down stream of the scattering chamber, was 0.83 in average during the measurements. The polarimeter consisted of a ⁴He gas target and a pair of ΔE +E Si detectors fixed at ±113° with respect to the beam direction[9], where the analyzing power of ⁴He was known to be 1.00 - 0.98 for 12 - 16 MeV protons[10].

3. Experimental Results

3.1 ⁶Li(p,d)p α reaction

This three-body breakup reaction is in the charge symmetry to the neutron induced ${}^{6}\text{Li}(n,d)n\alpha$ reaction. Figure 1 presents the double differential cross sections (DDX) measured at the incident energy of 14 MeV. A broad peak due to the p- α final state interaction (FSI) is clearly seen in the high energy region in the spectra. In addition, the spectra for forward angles are affected by the d- α FSI in the low energy region; the interacting d- α system may come from decays of the 1st and 3rd excited states of ${}^{6}\text{Li}$. These FSIs are dominant as well as the direct three-body breakup process. The analyzing powers were measured as a function of deuteron energy; an example of them will be shown in Section 4.1.

3.2 ⁶Li(p,³He) α and ⁶Li(p, α)pd reactions

Figure 2 shows the obtained differential cross sections and analyzing powers of the ${}^{6}\text{Li}(p,{}^{3}\text{He})\alpha$ reaction. Since the reaction is similar to the ${}^{6}\text{Li}(n,t)\alpha$ reaction, these cross sections are compared in the figure. While the angular distributions have a similar shape, the cross sections for the ${}^{6}\text{Li}(n,t)\alpha$ reaction[2] are slightly higher than those for the ${}^{6}\text{Li}(p,{}^{3}\text{He})\alpha$ reaction.

These data were obtained in simultaneous measurements of ³He and α . The double differential cross sections of these particles are presented in Fig.3. Two sharp peaks in the spectra correspond to ³He and α from the two-body reaction. The continuum region of the spectra is attributable to the ⁶Li(p, α)pd reaction. Hence, the p-d FSI may contribute in this region.

3.3 ⁶Li(p,2p)na reaction

In the ⁶Li(p,p') continuum spectra reported previously[1], the contribution from the ⁶Li(p,2p) reaction seemed to be dominant in the low energy region. It is due to that ⁶Li may easily decay into p, n and α . The four-body breakup reaction is, therefore, included in the continuum spectra of the ⁶Li(p,p') scattering. This four-body breakup reaction is also in the charge symmetry to the ⁶Li(n,2n)p α reaction which contributes to neutron slowing down in the fusion reactor blanket. In order to estimate the contribution of the ⁶Li(p,2p) reaction into the (p,p') continuum spectra, we have measured the p-p correlation spectra in several kinematical conditions. For the measurement we used another counter telescope fixed at 50° in the same reaction plane. The obtained correlation spectra shown in Fig.4(a) are for the fixed counter telescope, and those shown in Fig.4(b) for the turnable counter telescope. The ⁶Li(p,2p) spectrum which is obtained by integration of the correlation spectra over the angle well reproduces the low energy part of the ⁶Li(p,p') scattering DDX spectra, as shown in Fig.5. Thus, the ⁶Li(p,2p)n α reaction dominates the proton DDX at low energies.

3.4 ⁷Li(p,d)⁶Li* reaction

This reaction is not in the charge symmetry to the neutron induced reaction of ${}^{7}\text{Li}(n,d){}^{6}\text{He} \longrightarrow 2n + \alpha$. The ${}^{7}\text{Li}(p,d){}^{6}\text{Li}*$ reaction is, however, interesting to understand the reaction mechanism of lithium isotopes. Here, we only summarize the measured data. Figure 6 shows the differential cross sections and analyzing powers for the ground state and the 1st and 2nd excited states of ${}^{6}\text{Li}$. Theoretical calculations will be discusses in Section 4.3. It should be noted that double differential cross sections of deuteron spectra (shown in Fig.7) include the contribution from the ${}^{7}\text{Li}(p,d)\alpha$ and ${}^{7}\text{Li}(p,d)np\alpha$ reactions.

3.5 ⁷Li(p,t)p α reaction

This reaction, which is in the charge symmetry to the ⁷Li(n,t)n α tritium breading reaction, has been measured to study the reaction mechanism. The double differential cross sections of this reaction are presented in Fig.8. As similarly to the ⁶Li(p,d)p α reaction, the p- α FSI and t- α FSI effects are clearly found in the spectrum.

3.6 Energy dependence of ⁷Li(p,p') scattering

This scattering has been measured at 12 and 16 MeV for a study of the energy dependence of the optical potential. In the previous report we presented the data of this scattering at 14 MeV. In Fig.9 the differential cross sections and analyzing powers are shown for comparison with each other.

3.7 Errors

Errors in the differential cross sections were estimated as described in the previous report[1]. A systematic uncertainty of about 10% due to the target thickness have to be taken into account in the absolute values. This uncertainty is not included in the errors indicated in figures and tables. Errors in the DDX for energy bins, which are given in numerical form in Appendices, are statistical only. Concerning errors in the analyzing powers, errors for the discrete peaks measured with polarized and unpolarized beams and for the beam polarization were taken into account. Details are given in the previous report[1].

4. Theoretical Analyses and Discussion

4.1 Three-body breakup reactions

In the presently studied reactions, three-body breakup reactions are predominant, as seen in the $^{6,7}Li(p,p')$ scattering spectra, because $^{6,7}Li$ have typical d- α and t- α cluster structures. Since analyses based on the Faddeev formalism were not available for three-body breakup reactions containing composite particles, we applied the final state interaction (FSI) model for the $^{6}Li(p,d)p\alpha$, $^{6}Li(p,\alpha)pd$ and $^{7}Li(p,t)p\alpha$ reactions.

(1) ${}^{6}Li(p,d)p\alpha$ reaction

The calculated results are compared with the measured spectrum in Fig. 10(a). The energy spectra are well reproduced by the calculation based on the FSI model. The p- α FSI is evident in high energies, and the d- α FSIs corresponding to decays from the 1st and 3rd excited states of ⁶Li contribute in low and intermediate energies. Since the absolute value of cross sections cannot be obtained in the FSI frame work, their contributions were extracted by fits of the calculated spectra to the measured one. In Fig.10(b) angular distributions

present the contributions from the p- α and d- α FSIs and from the direct three-body breakup process. At forward angles the p- α FSI is dominant, and the direct three-body breakup largely contributes around 30°, and then decreases smoothly. The d- α FSI contributions decrease with increase in angle. The empirically determined contributions for these processes are to be useful when analyses become possible on the basis of the Faddeev formalism for the three-body breakup reactions including composite particles. The observed analyzing powers as a function of energy are useful to criticize the theoretical calculations. It should be noted that the analyzing powers change evidently around the FSI energy regions, as shown in the lower part of Fig.10(a).

(2) $^{6}Li(p,\alpha)pd$ reaction

This reaction is the same as the ${}^{6}Li(p,d)p\alpha$ reaction discussed above, but the observed particle is different. Hence, similar analyses to the above can be applied. The result obtained on the basis of the FSI model is compared with the spectrum measured at 20° in Fig.11. The p-d FSI contributes over the whole energy region in the spectrum as well as the direct three-body breakup process. On the other hand, the p- α FSI, as a decay from the 1st excited state of ${}^{6}Li$, enhances in the middle of the spectrum; the shape of this part of the spectrum is well reproduced by the FSI model. Large negative analyzing powers were observed in the high energy end of the spectrum.

(3) $^{7}Li(p,t)p\alpha$ reaction

As shown in Fig.12, the observed peak in the high energy end and the bump in the middle of the spectrum are well explained by the p- α and t- α FSIs. In energies lower than 4 MeV, however, the spectrum could not be reproduced. It may be due to that the t- α FSI was only considered to the 2nd excited state (7/2⁻) of ⁷Li in the present calculation. As shown in the lower part of the spectra, the measured analyzing powers change significantly around the FSI region.

4.2 ⁶Li(p,2p)nα reaction

Possible processes leading the 6 Li(p,2p) reaction can be listed as follows:

p + ⁶ Li>	⁶ Li* + p ₁ :	⁶ Li*> d* + α:	$d^* - > n + p_2$.	1
	⁵ Li + d*:	${}^{5}\text{Li} -> p_1 + \alpha$:	$d^* - > n + p_2$.	2
	³ He* + α :	3 He*> p ₁ + d*:	$d^* - n + p_2$.	3
	$p_1 + d^* + \alpha$:	$d^* -> n + p_2$.		4
	$p_1 + p_2 + {}^{5}He:$	${}^{5}\text{He}> n + \alpha$.		5
	$p_1 + p_2 + n + \alpha.$			6

These processes are composed of two-body sequential decay reactions, three-body breakup reactions followed by two-body sequential decay processes, and a four-body direct breakup reaction. In the present work, these processes were calculated on the basis of the phase space model, where the sequential decays were assumed to be affected by the final sate interactions[11]. The calculated ${}^{6}Li(p,2p)$ reaction spectra are presented and compared with the measured ${}^{6}Li(p,p')$ spectra in Fig.13. Processes 4 and 1 are dominant in the reaction. Referring the previous calculation on the basis of the DWBA for the discretized continuum states[1], we can find that the spectra are explained by the processes through the discretized continuum states and the sequential decays.

This theoretical calculation was applied to the $^{6}Li(n,n')$ scattering[12] in order to confirm this interpretation. As shown in Fig.14, the fit is ameliorated in the low energy region.

4.3 Two-body reactions

The two-body reaction of ${}^{6}\text{Li}(p,{}^{3}\text{He})\alpha$ was compared with a finite range DWBA calculation for the pickup and knockout processes in the cluster model, in which ${}^{6}\text{Li}$ was assumed to consist of α +d and ${}^{3}\text{He+t}$ systems[13]. This DWBA calculation reproduces fairly well the present differential cross sections.

The angular distribution and analyzing powers of the $^{7}\text{Li}(p,d)^{6}\text{Li}^{*}$ reaction could not be reproduced by means of DWBA, especially its analyzing powers; the calculated results are shown by solid lines in Fig.6. This may be due to that the excited states of $^{6}\text{Li}^{*}$ have not the same characteristics as the ground state: As discussed previously for the $^{6}\text{Li}(p,p')^{6}\text{Li}^{*}$ scattering, different exit channel optical potentials should be taken into account for the excited states.

4.4 Optical potentials for ⁷Li(p,p') scattering at 12, 14 and 16 MeV

The energy dependence of the optical potential parameters around 14 MeV can be discussed on the basis of the analyses of the elastic and inelastic scattering in the p- 7 Li system. The data were analyzed by the same theoretical methods as described in the previous report[1]. Here, the obtained the arameters are summarized in Table 1.

In Fig.9, solid lines indicate the results from the spherical optical model and DWBA calculations, and dashed lines those from the coupled channel calculations. As described previously[1], although both cross sections and analyzing powers for the elastic scattering are very well fitted, those for the inelastic scattering are not well reproduced even by means of the coupled channel calculations. Concerning the energy dependences of the parameters of V_0 and W_s that were derived by the spherical optical model, the gradients of V_0 and W_s for the CM proton energy were obtained to be -1.29 and -1.13, respectively. These gradients are different from those given for the neutron scattering by Dave and Gould (-0.001 for V_0 and +1.113 for W_s)[14].

Since the 2nd excited state (4.63 MeV, 7/2⁻) of ⁷Li can decay into t and α , the optical potential for the exit channel may be different from that of the entrance channel. In order to reproduce well the analyzing powers for the excited states, largely modified optical

potentials should be used for the exit channel. Distinct differences are found in the diffuseness a_i of the absorption term and in the spin dependent terms of V_{so} , r_{so} and a_{so} . As shown in Fig.15, the fit to the analyzing powers are ameliorated, but the differential cross sections are not so well reproduced at backward angles. The optical potential was similarly derived for the 1st excited state (0.478 MeV, 1/2⁻), though this state does not decay into particles. The fits are similar to those for the 2nd excited state. The spin dependent parameter V_{so} for this state was required to be 0 MeV in order to obtain better fit to the analyzing powers. The attempt to obtain better fits in the analyzing powers for the low excited states suggests that the excited states may have much different properties from the ground one.

5. Summary

Differential cross sections, analyzing powers, and double differential cross sections were measured for ${}^{6}\text{Li}(p,x)$ reactions at 14.0 MeV and for ${}^{7}\text{Li}(p,x)$ reactions at 12.0, 14.0 and 16.0 MeV. The three-body breakup reactions of ${}^{6}\text{Li}(p,d)p\alpha$, ${}^{6}\text{Li}(p,\alpha)pd$ and ${}^{7}\text{Li}(p,t)p\alpha$ were intensively studied in order to understand their reaction mechanisms. Theoretical analyses based on the FSI model well reproduces the energy spectra, though the model cannot provide the absolute cross sections. Moreover, the contribution of the four-body ${}^{6}\text{Li}(p,2p)n\alpha$ breakup reaction in the ${}^{6}\text{Li}(p,xp)$ reaction was estimated on the basis of the sequential decay processes. The sequential decay processes should also be taken into account for analyses of the ${}^{6}\text{Li}(n,xn)$ reaction spectra. Concerning the optical potential of the p- ${}^{7}\text{Li}$ system, the theoretical method previously reported was applied to extract the potential parameters for the exit channel, where the excited states of ${}^{7}\text{Li}$ may spread largely due to the breakup process. This type of study on the proton scattering may be valuable for modelling of nuclear reactions and for evaluation of neutron scattering[15].

References

- N. Koori, I. Kumabe, M. Hyakutake, K. Orito, K. Akagi, A. Iida, Y. Watanabe, K. Sagara, H. Nakamura, K. Maeda, T. Nakashima, M. Kamimura and Y. Sakuragi, "Polarized Proton Scattering on Lithium Isotopes at 14 MeV", JAERI-M 89-167 (1989).
- [2] S. Higuchi, K. Shibata, S. Shirato and H. Yamada, Nucl. Phys. A384 (1982) 51.
- [3] S. Chiba, M. Baba, H. Nakashima, M. Ono, N. Yabuta, S. Yukinori and N. Hirakawa, J. Nucl. Sci. Technol. 22 (1985) 771.
- [4] H.H. Hogue, P.L. von Behren, D.W. Glasgow, S.G. Glendinning, P.W. Lisowski, C.E. Nelson, F.O. Purser, W. Tornow, C.R. Gould and L.W. Seagondollar, Nucl. Sci. Eng. 68 (1979) 22.
- [5] A. Takahashi, J. Yamamoto, K. Oshima, M. Ueda, M. Fukazawa, Y. Yanagi, J. Miyaguchi and K. Sumita, J. Nucl. Sci. Technol. 21 (1984) 577.
- [6] K. Shibata, "Evaluation of Neutron Nuclear Data of 6Li for JENDL-3", JAERI-M 198 (1984); "Evaluation of Neutron Nuclear Data of 7Li for JENDL-3" JAERI-M 204 (1984).
- [7] M. Kamimura, Y. Sakuragi, M. Yahiro and M. Tanifuji, J. Phys. Soc. Jpn. Suppl. 55 (1986) 205.
- [8] See Proc. 11th Int. Conf. on Few-Body Systems in Particle and Nuclear Physics, Nucl. Phys. A463 (1987).
- [9] K. Sagara, K. Maeda, H. Nakamura, M. Izumi, T. Yamaoka, Y. Nishida, M. Nakashima, and T. Nakashima, Nucl. Instr. & Meth. A270 (1988) 444.
- [10] P. Schwandt, T.B. Clegg and W. Haeberli, Nucl. Phys. A163 (1971) 432.
- [11] T.D. Beynon and A.J. Oastler, Ann. Nucl. Energy, 6 (1979) 527.
- [12] S. Chiba, M. Baba, N. Yabuta, T. Kikuchi, M. Ishikawa, N. Hirakawa, and K. Sugiyama, Proc. Int. Conf. on Nuclear Data for Science and Technology, Mito (1988) 253.
- [13] M.F. Werby, M.B. Greenfield, K.W. Kemper, D.L. McShan, and S. Edwards, Phys. Rev. C8 (1973) 106.
- [14] J.H. Dave and C.R. Gould, Phys. Rev. C28 (1983) 2212.
- [15] N. Koori, I. Kumabe, M. Hyakutake, K. Orito, K. Akagi, Y. Watanabe, K. Ogawa, N. Oda, J. Yano, A. Iida, K. Sagara, H. Nakamura, K. Maeda, T. Nakashima and M. Kamimura, Proc. Int. Conf. on Nuclear Data for Science and Technology, Mito (1988) 1165.

Table 1 Optical potential parameters for ⁷Li at 12, 14, and 16 MeV

_	V ₀ (MeV)	r() (fm)	a() (fm)	W _s (MeV)	r _i (fm)	a _i (fm)	V _{SO} (MeV)	r _{so} (fm)	a _{so} (fm)
12 MeV	52.59	1.211	0.770	12.353	1.506	0.294	5.051	1.291	0.358
14 MeV	50.30	1.288	0.640	9.463	1.186	0.513	9.249	1.188	0.507
16 MeV	48.64	1.297	0.603	8.881	1.207	0.550	7.707	1.236	0.40 <u>2</u>

Spherical optical model (ECIS79).

DWBA (DWUCK).

Modified optical potential parameters for the exit channel of the 1st excited state.

	V ₍₎ (MeV)	r() (fm)	a() (fm)	W _S (MeV)	ri (ſm)	a _i (fm)	V _{SO} (McV)	r _{so} (fm)	a _{so} (fm)
12 MeV	45	1.1	0.70	8.0	1.5	0.5	0	-	-
14 MeV	40	1.1	0.70	8.0	1.5	0.5	0	-	-
<u>16 MeV</u>	35	1.1	0.7 0	9.0	1.5	0.5	0		

DWBA (DWUCK).

Modified optical potential parameters for the exit channel of the 2nd excited state.

	V ₀ (MeV)	r() (fm)	a () (fm)	W _s (MeV)	ri (fm)	a _i (fm)	V _{so} (McV)	r _{so} (fm)	a _{so} (fm)
12 MeV	48	3.5	1.0	10.0	2.0	1.2	10	4.0	2.0
14 MeV	35	3.5	2.0	8.0	2.0	1.5	10	4.0	2.0
<u>16 McV</u>	25	3.5	2.2	6.0	2.0	2.0	10	4.0	2.0

Coupled channel method (ECIS79).

	V0 (MeV)	r() (fm)	a() (fm)	Ws (MeV)	r _i (fm)	a _i (fm)	V _{so} (MeV)	r _{so} (fm)	a _{so} (fm)	β ₂	χ _σ ²/Ν	χ _A ² /N
12 MeV	49.62	1.134	0.544	1.940	1.765	0.700	5.906	1.082	0.333	0.985	28.32	4.97
14 Mc V	52.23	1.127	0.583	2.529	1.571	0.732	6.565	1.141	0.432	0.961	26.96	2.81
16 MeV	52.56	1.130	0.575	2. 95 7	1.296	0.766	6.250	1.112	0.371	0.985	24.61	1.84

Fig. 1 Double differential cross sections of the 6 Li(p,d)p α reaction at 14 MeV.

Fig.1 Continued.

Fig.2 Differential cross sections and analyzing powers of the ${}^{6}Li(p,{}^{3}He)\alpha$ reaction at 14 MeV. Solid symbols are the measured data of this reaction, and open circles those of the ${}^{6}Li(n,t)\alpha$ reaction.

Fig.3 Continued.

Fig.4 Two-proton correlation spectra of the ⁶Li(p,2p)nα reaction at 14 MeV.
(a) Spectra for the fixed (50°) counter telescope, and (b) for the turnable counter telescope.

Fig.5 Contribution of the ⁶Li(p,2p)n α reaction in the ⁶Li(p,xp) reaction at 14 MeV. Points were obtained by integration of the correlation spectra shown in Fig.4.

Fig.6 Differential cross sections and analyzing powers of the ⁷Li(p,d)⁶Li* reaction at 12, 14 and 16 MeV. Solid lines are theoretical results of the DWBA calculation.

Fig.6 Continued.

Fig.7 Double differential cross sections of the ⁷Li(p,d) reaction at 14 MeV. The continuum part contains the ⁷Li(p,d)d α reaction.

Fig.7 Continued.

Fig.8 Double differential cross sections of the 7 Li(p,t)p α reaction at 14 MeV.

Fig.8 Continued.

Fig.9 Differential cross sections and analyzing powers of the ⁷Li(p,p') scattering at 12, 14 and 16 MeV. Solid lines are theoretical results of the spherical optical model and DWBA calculation, and dashed lines those of the coupled channel calculation.

Fig.9 Continued.

-- 24 --

Fig.10 (a) Theoretical results obtained by the FSI model for the ${}^{6}\text{Li}(p,d)p\alpha$ reaction. Analyzing powers are shown as a function of energy. (b) Angular distributions of the p- α , d- α FSI and direct breakup components.

Fig. 11 Theoretical results obtained by the FSI model for the ${}^{6}Li(p,\alpha)pd$ reaction. Analyzing powers are shown as a function of energy.

Fig.12 Theoretical results obtained by the FSI model for the 7 Li(p,t)p α reaction. Analyzing powers are shown as a function of energy.

Fig.13 Theoretical results obtained by the sequential decays with FSI model for the ⁶Li(p,2p)nα reaction.
 The results are compared with the ⁶Li(p,xp) continuum spectrum. Dotted lines indicate the spectrum of p1 from the process 4, long dashed lines the spectrum of p2 from the process 4, dot-dashed lines the spectrum from the process 1 through the 3rd excited state of ⁶Li, double dot-dashed lines the spectrum from the process 2, and solid lines their sum.

Fig. 14 Theoretical results for the ${}^{6}Li(n,2n)p\alpha$ reaction compared with the ${}^{6}Li(n,xn)$ continuum spectrum at 18 MeV[12]. Legends are the same as Fig. 13.

Fig.15 Effect of the modified optical potential for the exit channels of the ⁷Li(p,p') scattering at 12 and 16 MeV. Solid lines indicate the results of the spherical optical model and DWBA calculation and dashed lines that of DWBA calculation with modified potential for the exit channels. The potential parameters are summarized in Table 1.

Appendices:

The numerical data given in the appendices are available in a floppy disk.

Appendix 1	Double differential cross sections of the 6 Li(p,d)p α reaction at 14 MeV.
Appendix 2	Differential cross sections and analyzing powers of the 6 Li(p, ³ He) α
	reaction at 14 MeV.
Appendix 3	Double differential cross sections of the ${}^{6}Li(p,\alpha)pd$ reaction including
	the 6 Li(p, ³ He) α reaction at 14 MeV.
Appendix 4	Differential cross sections and analyzing powers of the ⁷ Li(p,d) ⁶ Li*
	reaction at 12, 14 and 16 MeV.
Appendix 5	Double differential cross sections of the ⁷ Li(p,d) reaction at 14 MeV.
Appendix 6	Double differential cross sections of the ⁷ Li(p,t) reaction at 14 MeV.
Appendix 7	Differential cross sections and analyzing powers of the ⁷ Li(p,p') ⁷ Li*
	scattering at 12 and 16 MeV.

Appendix 1 Double differential cross sections (mb/sr/MeV) of the ⁶Li(p,d)pa reaction at 14 MeV.

filler 6Li(p,d) DDX (error) fill Ep = 14 NeV LAB.ANGLE = 20 deg [POL = NON]

0.2 0.3 0.4 0.5 0.6 6.1 0.8 0.0 0.1 0.5 energy/ 1.0 / 1.10200 (5.376-07) 6.916-01 (4.266-07) 3.300-01 (2.946-02) 1.186400 (5.576-021 3.192400 (1.022-01) 4.046400 (1.032-01) 3.996400 (1.022-01) 4.566400 (1.032-01) 4.566400 (1.032-01) 2.0 / 4.502100 (1.072-01) 4.552100 (1.102-01) 4.552100 (1.072-01) 4.752100 (1.122-01) 4.842100 (1.1122-01) 4.752100 (1.122-01) 4.7 1.0 / 4.77E+00 (1.12E-01) 4.52E+00 (1.10E-01) 4.53E+00 (1.09E-01) 4.51E+00 (1.10E-01) 4.53E+00 (1.10E-01) 4.53E+00 (1.10E-01) 4.52E+00 (1.10E-01) 4.52E+00 (1.10E-01) 4.52E+00 (1.10E-01) 4.53E+00 (1.10E-01) 4.5 4.0 / 5.866100 (1.40E-01) 6.126400 (1.43E-01) 5.496100 (1.35E-01) 4.046400 (1.16E-01) 3.546100 (1.08E-01) 3.376400 (1.05E-01) 3.3 5.0 / 3.54E+00 (1.09E-01) 3.49E+00 (1.04E-01) 3.30E+00 (1.03E-01) 3.18E+00 (1.03E-01) 3.20E+00 (1.03E-01) 3.30E+00 (1.05E-01) 3.30E+00 (1.05E-01) 3.49E+00 (1.05E+00) 3.4 6.0 / 3.30E+00 (1.05E-01) 3.53E+00 (1.07E-01) 3.42E+00 (1.07E-01) 3.45E+00 (1.10E-01) 4.10E+00 (1.17E-01) 4.40E+00 (1.17E-01) 4.33E+00 (1.17E-01) 4.10E+00 (1.17E-01) 4.57E+00 (1.23E-01) 7 0 / 4.42E100 (1.21E-01) 4.52E100 (1.23E-01) 4.50E100 (1.22E-01) 4.44E100 (1.23E-01) 4.72E100 (1.23E-01) 4.89E100 (1.28E-01) 4.95E100 (1.28E-01) 4.9 8.0 / 5.41E100 (1.34E-01) 5.43E100 (1.38E-01) 5.93E100 (1.40E-01) 6.24E100 (1.44E-01) 7.85E100 (1.45E-01) 7.78E100 (1.59E-01) 7.78E100 (1.45E-01) 8.14E100 (1.45E-01) 7.85E100 (1.59E-01) 7.78E100 (1.45E-01) 8.14E100 (1.45E-01) 7.85E100 (1.59E-01) 7.78E100 (1.45E-01) 8.14E100 (1.45E-01) 7.85E100 (1.59E-01) 7.78E100 (1.45E-01) 8.14E100 (1.45E-01) 7.85E100 (1.59E-01) 7.78E100 (1.45E-01) 8.14E100 (1.45E-01) 7.85E100 (1.59E-01) 7.78E100 (1.45E-01) 8.14E100 (1.45E-01) 7.85E100 (1.59E-01) 7.78E100 (1.45E-01) 8.14E100 (1.45E-01) 7.85E100 (1.59E-01) 7.78E100 (1.59E-01) 7.78E100 (1.45E-01) 8.14E100 (1.45E-01) 7.85E100 (1.45E-01) 7.78E100 (1.45E-01) 7.7 9.0 / B.98E100 [1,73E-01] 9.43E100 [1.77E-01] 9.99E100 [1.67E-01] 1.72E101 [1.93E-01] 1.25E101 [2.03E-01] 1.35E101 [2.11E-01] 1.48E101 [2.22E-01] 1.59E101 [2.35E-01] 1.8E101 [2.45E-01] 1.9E101 [2. 10.0 / 2.15E101 (2.46E-01) 2.21E101 (2.71E-01) 2.20E101 (2.70E-01) 7.70E101 (2.50E-01) 1.57E101 / 2.29E-01] 1.27E101 (2.05E-01) 1.35E101 (1.45E-01) 7.75E100 (1.4E-01) 5.40E101 (2.50E-01) 1.37E101 (2.05E-01) 1.27E101 (2.05E-01) 1.27 11.0 / 4.09E+00 (1.17E-01) 2.80E+00 (9.65E-02) 1.92E+00 (7.99E-02) 1.25E+00 (4.45E-02) 7.27E-01 (4.92E-02) 3.19E-0. (3.26E-02) 1.13E-01 (1.94E-02) 3.34E-02 (1.05E-02) 1.34E-02 (6.68E-03)

DDX (error) ### Ep = 14 MeV LAB.ANGLE = 30 deg[POL = NON]###### 6Li(p.d) 0.5 0.6 0.7 0.8 0.9 energy/ 0.0 0.1 0.2 0.3 0.4 0.0 / 0.00E+00 (0.00E+00) 0.00E+00 } 0.00E+00] 0.00E 1.0 / 1.17E+00 (4.48E-02) 7.78E-01 (3.65E-02) 4.21E-01 (4.06E-02) 4.47E+00 (7.62E-02) 3.36E+00 (8.25E-02) 4.27E+00 (8.56E-02) 4.25E+00 (8.55E-02) 4.39E+00 (8.68E-02) 4.47E+00 (8.76E-02) 2.0 / 4.55E100 (4.87E-02) 4.80E100 (9.08E-02) 4.68E100 (9.19E-02) 4.91E100 (9.19E-02) 4.85E100 (9.19E-02) 4.85 3.0 / 4.58E+00 (8.87E-02) 4.78E+00 (9.06E-02) 4.83E+00 (9.11E-02) 4.78E+00 (9.06E-02) 4.49E+00 (8.97E-02) 4.71E+00 (8.97E-02) 4.72E+00 (9.01E-02) 4.76E+00 (9.04E-02) 4.97E+00 (9.04E-02) 4.77E+00 (9.04E-02) 4.7 4.0 / 3.52E100 (9.01E-02) 3.50E100 (8.86E-02) 3.45E100 (8.80E-02) 3.39E100 (8.49E-02) 3.08E100 (8.31E-02) 3.14E100 (8.40E-02) 3.23E100 (8.51E-02) 3.23E100 (8.45E-02) 3.23E100 (8.49E-02) 3.2 5.0 / 3.04E+00 (8.74E-02) 3.14E+00 (8.39E-02) 3.04E+00 (8.29E-02) 3.04E+00 (8.29E-02) 3.04E+00 (8.29E-02) 3.04E+00 (8.29E-02) 3.14E+00 (8.42E-02) 3.14E+00 (8.29E-02) 3.14E+00 (8.29E-02) 3.14E+00 (8.29E-02) 3.14E+00 (8.29E-02) 3.04E+00 (8.29E-02) 3.0 6.0 / 3.35E+00 (8.66E-02) 3.52E+00 (8.88E-02) 3.51E+00 (8.87E-02) 3.40E+00 (8.73E-02) 3.39E+00 (8.72E-02) 3.39E+00 (8.86E-02) 3.40E+00 (8.73E-02) 3.44E+00 (8.78E-02) 3.44E+00 (8.78E+00) 3.44E+00 (8.78E+00) 3.44E+00 (8.78E+00) 3.44E+00 (8.78E+00) 3.4 7.0 / 3_35E+00 (8.67E-02) 3.47E+00 (8.83E-02) 3.55E+00 (8.93E-02) 3.49E+00 (8.84E-02) 3.55E+00 (8.92E-02) 3.64E+00 (9.03E-02) 3.69E+00 (9.10E-02) 3.69E+00 (9.23E-02) 3.49E+00 (9.23E-02) 3.69E+00 (9.23E+02) 3.6 8.0 / 3.88E+00 (9.32E+00 (9.84E+02) 5.19E+00 (1.08E-01) 4.79E+00 (1.04E-01) 4.73E+00 (1.03E-01) 4.82E+00 (1.07E-01) 5.09E+00 (1.07E-01) 5.29E+00 (1.14E-01) 6.17E+00 (1.14E-01) 6.17E+00 (1.14E-01) 9.0 / 6.43E+00 (1.24E-01) 7.36E+00 (1.24E-01) 8.19E+00 (1.36E-01) 8.29E+00 (1.38E-01) 9.31E+00 (1.44E-01) 9.98E+00 (1.50E-01) 1.04E+01 (1.53E-01) 1.03E+01 (1.53E-01) 1.03E+01 (1.53E-01) 9.29E+00 (1.44E-01) 10.0 / 7.628100 (1.318-01) 6.268100 (1.198-01) 5.218100 (1.068-01) 3.868100 (1.338-02) 2.818100 (7.948-02) 2.098100 (6.858-02) 1.338100 (5.478-02) 9.748-01 (4.678-02) 6.068-01 (3.698-02) 3.458-01 (2.788-02) 11.0 / 1.73E-01 (1.97E-02) 7.85E-02 (1.33E-02) 4.73E-02 (1.05E-02) 5.37E-02 (1.10E-02) 5.38E-02 (1.10E-02) 2.47E-02 (7.44E-03)

assess Gl.i (p.d) DDX (error) and Ep = 14 NeV LAB.ANGLE = 40 deg

6Li(p,d) DDX (error) ### Ep = 14 NeV

POL = NON 1

 $\{ POL = NON \}$

0.2 0.3 0.4 0.5 0.6 0.7 01 0.1 enersy/ 9.9 a 0 / 0.001+00 { 0.001+00 } 0.001+00 } 0.001+00 } 0.001+00 { 0.001+00 } 0.001+00 } 0.001+00 } 0.001+00] 0.001+00] 0.001+00] 0.001+00 } 0.001+00 \\ 0.001+00 } 0.001+00 \\ 0.001 1.0/ 3.651-01 (5.14E-02) 7.62E-01 (1.82E-02) 9.07E-01 (1.82E-02) 9.07E-01 (3.41E-02) 4.55E+00 (7.07E-02) 4.55E+00 (7.45E-02) 4.55E+00 (7.43E-02) 4.95E+00 (7.43E+02) 4.95 2.0 / 5.246+00 [8.196-02] 5.156+00 [8.126-02] 5.36+00 [8.246-02] 5.19(+06 [8.356-02] 5.376+00 [8.246-02] 5.376+00 [8.236-02] 5.296+00 [8.236-02] 5.296+00 [8.246-02] 5.276 3.0 / 4.90(100 [7.92E-02] 4.95(100 [7.92E-02] 4.87(100 [7.13E-02] 4.47(100 [7.33E-02] 4.37(100 [6.91(E-02] 3.77(100 [6.64(E-02] 3.35(100 [6.55(E-02] 3.55(100 [6.75(-02] 3.55(100 [6.75(-02] 3.55(100 [6.75(100 [7.75(100 [100 [100 [100 [100 [100 [100 [100 [100 [100 [1 4 0 / 3.791 100 (6.58E-02) 5.55100 (6.78E-02) 3.38E100 (6.76E-07) 3.40E100 (6.88E-07) 3.43E100 (6.71E-07) 3.70E100 (6.58E-07) 3.13E100 (6.58E-07) 3.43E100 (6.76E-07) 3.40E100 (6.76E-07) 3.4 5.0 / J. 081 +00 | 6.45E-02] 3.05E+00 | 6.45E-02] 3.02E+00 | 6.45E-02] 3.02E+00 | 6.39E-02] 3.11E+00 | 6.49E-02] 3.11E+00 | 6.49E-02] 3.11E+00 | 6.49E-02] 3.02E+00 | 6.39E-02] 3.02E+00 | 6.39E-02] 3.11E+00 | 6.39E-02] 3.11E+00 | 6.49E-02] 3.02E+00 | 6.49E-02] 3.02E+00 | 6.49E-02] 3.11E+00 | 6.49E-02] 3.02E+00 | 6.49E-02] 3.02E+00 | 6.49E-02] 3.02E+00 | 6.49E-02] 3.11E+00 | 6.49E-02] 3.11E+00 | 6.49E-02] 3.04E+00 | 6.49E-02] 3.04E+00 | 6.49E-02] 3.04E+00 | 6.49E-02] 3.04E+00 | 6.49E-02] 3.11E+00 | 6.49E+02] 3.04E+00 | 6.49E+00 | 6.49E+0 a.0 / 3.016+00 (4.386-02) 2.496+00 (4.286-02) 2.456+00 (4.216-02) 2.456+00 (4.216-02) 2.456+00 (4.066-02) 2.456+00 (4.036-02) 2.456+00 (4.006-02) 2.456+000(4.006-02) 2.456+000(4.006-02) 2.456+000(4.006-02) 2.456+000(4.006-02) 2.456+000(4.006-02) 2.4 1.9 / 2.70E+00 (6.04E-021 2.71E+00 (6.05E-02) 2.58E+00 (6.05E-02) 2.71E+00 (6.05E-02) 2.79E+00 (6.15E-02) 2.79E+00 (6.14E-02) 2.98E+00 (6.35E-02) 3.10E+00 (6.35E-02) 3.1 8.0 / 3.056100 (6.43E-02) 3.27E100 (6.65E-02) 3.47E100 (6.84E-02) 3.83E100 (7.20E-02) 4.22E100 (7.35E-02) 4.55E100 (7.82E-02) 4.93E100 (8.44E-02) 5.27E100 (8.44E-02) 5.2 9.0 / 5.97E+00 / 8.95E+02 / 5.94E+00 / 8.94E+02 / 5.94E+00 / 8.93E+02 / 5.94E+00 / 8.49E+02 / 4.55E+02 / 4.55E 10.0 / 9.4EE-01 (3.58E-02) 6.74E-01 (1.02E-02) 4.21E-01 (2.40E-02) 2.67E-03 (1.9VE-02) 1.68E-01 (1.51E-02) 8.01E-02 (1.04E-02) 3.90E-02 (7.26E-03) 3.80E-02 (7.17E-03)

6Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 50 deg I POL = NON 10.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.4 energy 0.9 0.0 / 0.05100 { 0.005100 } 0.005100 \\ 0.005100 } 0.005100 \\ 0.005100 } 0.005100 \\ 0.0051 1.0 / J.19E-01 (2.02E-02) 5.72E-01 (2.71E-02) 2.60E-01 (1.82E-02) 1.07E+00 (3.69E-02) 4.27E+00 (7.37E-02) 4.84E+00 (7.35E-02) 4.54E+00 (7.35E-02) 5.21E+00 (8.15E-02) 5.52E+00 (8.15E-02) 5.49E+00 (8.36E-02) 3.0 / 3.68E+00 (7.03E-02) 3.50E+00 (6.68E-02) 3.43E+00 (6.64E-02) 3.4 4.0 / 3.406400 (*6.236-02) 3.356400 (6.496-02) 3.376400 (6.516-02) 3.266400 (6.596-02) 3.066400 (6.396-02) 3.46400 (6.476-02) 3.056400 (6.376-02) 2.976400 (6.376-02) 2.976400 (6.246-02) 5.0 / 2.85E100 (4.16E-02) 2.91E100 (6.23E-02) 3.08E100 (6.41E-07) 2.94E100 (6.26E-02) 2.61E100 (5.29E-02) 2.51E100 (5.79E-02) 2.51E100 (5.79E-02) 2.48E100 (5.79E-02) 2.4 6.0 / 2.30E+00 (5.54E-02) 2.27E+00 (5.50E-02) 2.20E+00 (5.42E-02) 2.23E+00 (5.45E-02) 2.30E+00 (5.34E-02) 2.30E+00 (5.34E-02) 2.12E+00 (5.34E-02) 2.1 2.0 / 2.16E100 (5.37E-02) 2.37E100 (5.57E-02) 2.61E100 (5.40E-02) 2.37E100 (5.62E-02) 2.57E100 (5.60E-02) 2.66E100 (5.98E-02) 2.91E100 (6.24E-02) 3.14E100 (6.47E-02) 3.27E100 (6.40E-02) 8.0 / J.556+00 (4.89E-02) 3.876+00 (7.39E-02) 4.11E+00 (7.41E+02) 4.246+00 (7.52E+02) 4.356+00 (7.39E+02) 3.956+00 (7.266+02) 3.536+00 (6.876+02) 3.536+00 (6.386+02) 3.245+00 (5.216+02) 3.2500 (9.0 / 1,966+00 (5,116-02) 1,446+00 (4,366-02) 1,076+00 (3,696-02) 2,326-01 (3,336-02) 5,126-01 (2,416-02) 3,856-03 (2,276-02) 2,365-01 (1,276-02) 1,206-01 (1,276-02) 5,686-02 (0,716-03) 1,6316-02 (4,646-03) 10.0 / 1.136-02 (3.886-03)

energy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 9.8 0.9 0.0 / 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00] 0.00E+ 1.0 / 1.72E-01 (1.48E-02) 2.47E-01 (1.77E-02) 2.15E-01 (1.65E-02) 1.08E+00 (3.71E-02) 4.95E+00 (7.67E-02) 4.95E+00 (7.89E+02) 4.97E+00 (7.95E+02) 4.97E+00 (7.95E+02) 4.97E+00 (7.95E+02) 4.96E+00 (7.95E+02) 4.9 2.0 / 4.905+00 (7.886-02) 4.776+00 (7.866-02) 4.766+00 (7.616-02) 4.796+00 (7.386-02) 3.956+00 (6.666-02) 3.356+00 (6.650-02) 3.296+00 (6.466-02) 3 3.0 / 3.33E+00 (6.50E-02) 3.35E+00 (6.52E-02) 3.26E+00 (6.43E-02) 3.21E+00 (6.35E-02) 3.23E+00 (6.40E-02) 3.12E+00 (6.29E-02) 3.32E+00 (6.54E-02) 3.23E+00 (6.54E-02) 3.2 4.0 / 2.816400 (6.106-02) 2.816400 (6.106-02) 2.796400 (6.066-02) 2.556400 (5.816-02) 2.546400 (5.796-02) 2.516400 (5.786-02) 2.526400 (5.786-02) 2.526400 (5.786-02) 2.426400 (5.666-02) 2.236400 (5.436-02) 5.0 / 2.20E+00 (5.40E+02) 1.99E+00 (5.13E+02) 1.95E+00 (5.03E+02) 1.91E+00 (5.03E+02) 1.89E+00 (4.95E+02) 1.85E+00 (4.95E+02) 1.38E+00 (4.95E+02) 1.3 6.0 / 1.71E100 (4.76E-02) 1.69E100 (4.33E-02) 1.60E100 (4.61E-02) 1.73E100 (4.79E-02) 1.73E100 (4.79E-02) 2.25E100 (5.46E-02) 2.03E100 (5.16E-02) 1.69E100 (4.99E-02) 1.945100 (5.07E-02) 7.0 / 2.105400 (5.275-02) 2.295400 (5.515-02) 2.255400 (5.455-02) 2.435400 (5.675-02) 2.715400 (5.995-02) 3.075400 (6.325-02) 3.115400 (6.415-02) 3.025400 (6.375-02) 2.725400 (5.995-02) 8.0 / 2.30E100 (5.52E-02) 1.91E100 (5.03E-02) 1.47E100 (4.41E-02) 1.18E100 (3.94E-02) 9.21E-01 (3.49E-02) 7.19E-01 (3.06E-02) (.93E-01 (2.55E-02) 3.84E-01 (2.26E-02) 2.25E-01 (1.72E-02) 1.35E-01 (1.33E-02) 1.0 / 6.47E-02 (1.25E-031 2.30E-02 (5.51E-03)

LAB.ANGLE = 60 deg

300 16 IV 1MAVE

GLi(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 70 deg

ž

L.

0.2 0.3 0.4 0.5 energy/ 0.0 0.1 0.6 0.7 0.8 0.9 0.0 / 0.00E+00 { 0.00E+00 } 0.00E+00 \\ 0.00E+00 } 0.00E+00 \\ 0.00E 1.0 / 0.00E+00 { 0.00E+00 } 0.00E+00 } 0.00E+00 } 0.00E+00 } 0.00E+00 } 0.00E+00] 0.00E+00] 0.00E+00 } 0.00E+00 } 0.00E+00 } 0.00E+00 } 0.00E+00 } 4.67E+01 } 2.43E+02 } 3.97E+00 } 3.57E+00 } 4.77E+02 } 3.57E+00 } 4.77E+00 } 4.77E 2.0 / 3.28E+00 (6.44E-02) 2.76E+00 (5.78E-02) 2.75E+00 (5.78E+02) 2.89E+02 | 2.88E+02 | 5.88E+02 | 2.88E+00 (5.88E-02) 2.71E+00 (5.88E-02) 2.88E+00 (5.88E+02) 2.88E+00 (5 1.0 / 2.75E+00 (5.40E-02) 2.70E+00 (5.81E-02) 2.67E+00 (5.81E-02) 2.56E+00 (5.58E-02) 2.45E+00 (5.58E-02) 2.31E+00 (5.48E-02) 2.21E+00 (5.35E-02) 2.22E+00 (5.35E-02) 2.22E+00 (5.35E-02) 2.20E+00 (5.20E+02) 2.2 4.0 / 7.06E400 (5.21E-02) 2.13E400 (5.31E-02) 2.30E400 (5.51E-02) 1.47E400 (5.10E-02) 1.87E400 (4.49E-02) 1.72E400 (4.76E-02) 1.59E400 (4.59E-02) 1.59E400 (4.59E-02) 1.59E400 (4.59E-02) 1.47E400 (4.59E-02) 1.47E400 (4.59E-02) 1.59E400 (4.59E-02) 1.5 5.0 / 1.45E+00 (4.37E+02) 1.42E+00 (4.33E+02) 1.37E+00 (4.25E+02) 1.46E+00 (4.30E+02) 1.47E+00 (4.34E+02) 1.42E+00 (4.24E+02) 1.36E+00 (4.24E+02) 1.47E+00 (4.24E+02) 1.4 4.0 / 1.78E+00 (4.85E-02) 1.66E+00 (4.68E-02) 1.56E+00 (4.54E-02) 1.68E+00 (4.71E-02) 1.22E+00 (4.90E-02) 1.79E+00 (5.07E-02) 2.04E+00 (5.19E-02) 2.13E+00 (5.37E-02) 2.1 7.0 / 2.18E+00 (5.36E-02) 2.00E+00 (5.14E-02) 1.85E+00 (4.95E-02) 1.53E+00 (4.50E-02) 9.37E-01 (3.52E-02) 6.98E-01 (3.04E-02) 5.40E-01 (2.67E-02) 4.57E-01 (2.66E-02) 3.09E-01 (2.02E-02) 8.0 / 2.12E-01 (1.47E-02) 1.21E-01 (1.26E-02) 5.84E-02 (8.78E-03) 1.18E-02 (3.94E-03)

[POL = NON .]

6Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 80 deg [POL = NON]

energy/ 0.0 0.1 0.2 0.3 0.0 0.5 0.6 0.8 0.7 0.9 0.0 / 0.00E+00 { 0.00E+00 } 0.00E+00 } 0.00E+00 } 0.00E+00 } 0.00E+00] 0.00E+00 } 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E 1.0 / 8.40E-02 (1.03E-02) (1.15E-02) 9.95E-02 (1.12E-02) 6.26E-01 (2.80E-02) 2.30E+00 (5.85E-02) 2.47E+00 (5.57E-02) 2.29E+00 (5.35E-02) 1.96E+00 (4.96E-02) 2.18F+00 (5.23E-02) 2.0 / 2.20E100 (5.26E-02) 2.23E100 (5.28E-02) 2.27E100 (5.37E-02) 2.27E100 (5.33E-02) 2.26E100 (5.32E-02) 2.35E100 (5.34E-02) 2.23E100 (5.30E-02) 2.23E100 (5.32E-02) 2.23E100 (5.24E-02) 2.23 3.0 / 2.06E400 (5.09E-02) 2.04E400 (5.06E-02) 1.95E400 (4.95E-02) 1.94E400 (4.93E-02) 1.79E400 (4.71E-02) 1.79E400 (4.73E-02) 1.75E400 (4.73E-02) 1.7 4.0 / 1.52E100 (4.48E-02) 1.46E100 (4.38E-02) 1.42E100 (4.33E-02) 1.36E100 (4.28E-02) 1.23E100 (4.09E-02) 1.25E100 (4.09E-02) 1.25E100 (4.08E-02) 1.23E100 (4.03E-02) 1.23E100 (4.04E-02) 1.2 5.0 / 1.23E100 (4.03E-02) 1.31E100 (4.14E-02) 1.31E100 (4.14E-02) 1.67E100 (4.69E-02) 1.63E100 (4.69E-02) 1.53E100 (4.49E-02) 1.57E100 (4.55E-02) 1.5 6.0 / 1.99E100 (5.12E-02) 2.01E100 (5.15E-02) 2.05E100 (5.20E-02) 1.92E100 (5.03E-02) 1.81E100 (4.88E-02) 1.41E100 (4.32E-02) 1.32E100 (3.84E-02) 9.34E-01 (3.81E-02) 6.46E-01 (2.92E-02) 5.31E-01 (2.92E-02) 1.81E100 (4.88E-02) 1.41E100 (4.38E-02) 1.4 7.0 / 4.18E-01 (2.35E-02) 2.60E-01 (1.85E-02) 1.97E-01 (1.61E-02) 1.11E-01 (1.21E-02) 5.29E-02 (8.35E-03) 2.44E-02 (5.67E-03)

6Li(p,d) DDX (error) ### Ep = 14 MeV LAB,ANGLE = 90 deg(POL = NON)energy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 / 5.50E-02 (8.30E-03) 7.69E-02 (9.81E-03) 6.71E-02 (9.17E-03) 3.44E-01 (2.07E-02) 1.34E+00 (4.09E-02) 1.52E+00 (4.52E-02) 1.71E+00 (4.62E-02) 1.7 2.0 / 1.74E+00 (4.67E-02) 1.79E+00 (4.73E-02) 1.75E+00 (4.68E-02) 1.74E+00 (4.67E-02) 1.89E+00 (4.68E-02) 1.74E+00 (4.66E-02) 1.73E+00 (4.65E-02) 1.74E+00 (4.65E-02) 1.74 3.0 / 1.622100 [4.512-02] 1.582100 [4.452-02] 1.512100 [4.392-02] 1.572100 [4.432-02] 1.502100 [4.332-02] 1.332100 [4.092-02] 1.242100 [3.942-02] 1.242100 [3.942-02] 1.27 4.0 / 1.19E100 (3.86E-02) 1.16E100 (3.94E-02) 1.15E100 (3.90E-02) 1.16E100 (4.00E-02) 1.16E100 (3.92E-02) 1.16E100 (4.05E-02) 1.14E100 (4.05E-02) 1.14 5.0 / 1.48E+00 (4.42E+02) 1.66E+00 (4.67E+02) 1.66E+00 (4.67E+02) 1.98E+00 (4.97E+02) 1.98E+00 (5.10E+02) 2.05E+00 (5.20E+02) 2.00E+00 (5.13E+02) 1.87E+00 (4.43E+02) 1.13E+00 (4.43E+02) 1.1 6.0 / 8.25E-01 (3.30E-02) 6.29E-01 (2.88E-02) 4.68E-01 (2.48E-02) 3.26E-01 (2.35E-01 (1.77E-02) 1.60E-01 (1.45E-02) 8.03E-02 (1.03E-02) 1.24E-02 (4.53E-03) 1.24E-02 (4.55E-03) 1.24E-02 (4.53E-03) 1.24E-02 (4.54E-03) 1.24E-02) 1.24E-02 (4.54E-03) 1.24E-02) 1.24E-02 (4.54E-03) 1.24E

6Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 100 deg [POL = NON]

energy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 0.0 / 0.00E+00 { 0.00E+00 } 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+ 1.0 / 5.48E-02 (8.38E-03) 5.72E-02 (8.71E-03) 5.70E-02 (8.55E-03) 2.86E-01 (1.91E-02) 1.21E+00 (3.94E-02) 1.31E+00 (4.14E-02) 1.31E+00 (4.16E-02) 1.31E+00 (4.16E+02) 1.31E+00 (4.16E+02) 1.31E+00 (4.16E 2.0 / 1.42E100 (4.27E-02) 1.47E100 (4.35E-02) 1.44E100 (4.30E-02) 1.44E100 (4.37E-02) 1.49E100 (4.27E-02) 1.38E100 (4.27E-02) 1.43E100 (4.27E-02) 1.43E100 (4.37E-02) 1.44E100 (4.37E-02) 1.4 3.0 / 1.736+00 (3.486-02) 1.246+00 (4.036-02) 1.136+00 (3.686-02) 1.056+00 (3.686-02) 1.026+00 (3.686-02) 1.026+00 (3.666-02) 1.036+000 (3.666-02) 1.036+000 (3.666-02) 1.036+000 (3.666-02) 1.036+000 (3.660+000) 1.036+0000 (3.666-02) 1.036+00000 (3.666-02) 1.036+000000000 4.0 / 1.08E+00 { 3.78E-02 } 1.23E+00 { 4.03E-02 } 1.23E+00 { 4.03E-02 } 1.36E+00 { 4.23E-02 } 1.66E+00 { 4.59E-02 } 1.46E+02 } 1.72E+00 { 4.76E-02 } 1.87E+00 { 4.77E-02 } 1.86E+00 { 4.77E-02 } 1.86E+00 { 4.77E-02 } 1.86E+00 { 4.77E-02 } 1.87E+00 { 4.77E+02 } 1.87E+00 } 1.87E+00 { 4.77E+02 } 1.87E+00 { 4.77E+02 } 1.87E+00 { 4.77E+02 } 1.87E+00 } 1.87E+00 { 4.77E+02 } 1.87E+00 } 1.87E+00 { 4.77E+02 } 1.87E+00 } 1.87E 5.0 / 2.23E+00 (5.42E+02) 2.06E+00 (5.21E+02) 1.71E+00 (4.75E+02) 1.07E+00 (4.09E+02) 4.09E+02) 4.09E+01 (2.97E+02) 4.35E+01 (2.39E+02) 3.05E+01 (2.00E+02) 2.20E+01 (1.70E+02) 1.05E+01 (1.7 6.0 / 5.95E-02 (8.86E-03) 2.27E-02 (5.46E-03) 1.25E-02 (4.05E-03)

states GLi(p,d) DDX (error) sst Ep = 14 MeV LAB.ANGLE = 110 deg I POL = NON I 0.3 0.4 0.5 0.6 0.7 0.2 0.8 ener gy/ 0.0 0.1 0.9 0.0 / 0.00E+00 | 0.00E 1.0 / 2.19[-02 (6.2)[-03] 4.22E-03 (4.60E-07 (8.0)[-03] 3.20[-01 (7.12E-07) 1.20[+00 (4.11E-07) 1.41E+00 (4.45E-07) 1.45E+00 (4.55E-07) 1.45E+00 (4.55E+07) 1.45E+00 (4. 2.07 1.456+00 (4.526-02) 1.466+00 (4.586-02) 1.406+00 (4.446-02) 1.486+00 (4.446-02) 1.456+00 (4.526-02) 1.356+00 (4.506-02) 1.256+00 (4.186-02) 1.256+00 (4.186-02) 1.156+00 (4.186-02) 1. 1 0 / 1 13E+00 (3.99E-02) 1.10E+00 (3.93E-02) 1.09E+00 (3.91E-02) 1.08E+00 (3.89E-02) 1.07E+00 (3.89E-02) 1.13E+00 (3.98E-02) 1.13E+00 (3.98E-02) 1.22E+00 (4.04E-02) 1.36E+00 (4.04E+02) 1.3 4.0 / 1.60[100 (4.59[-02] 1.64[100 (4.68[-02] 1.78[100 (5.10[-02] 2.19[100 (5.37[-02] 2.18[100 (5.37[-02] 1.69[100 (5.73[-02] 1.59[100 (4.72[-02] 1.59[100 (4.55[-02] 1.59[100 (5.37[100 (5.37[100 (5.3 5.0 / 4.40E-01 [2.40E-02] 3.46E-03 [2.14E-02] 2.50E-01 [1.82E-02] 1.55E-01 [1.43E-02] 8.13E-02 [1.04E-02] 3.05E-02 [4.34E-03] ###### GLi(p,d) DDX (error).### Ep = 14 NeV LAB.ANGLE = 120 deg[POL = NON]0.1 0.4 0.5 0.6 0.7 0.1 0.2 0.8 0.1 EVEL BAR 0.0 0.0 / 0.00[+00 { 0.00[+00 } 0.00[+00] 0.00[+00] 0.00[+00] 0.00[+00] 0.00[+00 } 0.00[+00] 0.00[+ 1.0 / 1.40E-01 (1.34E-02) 1.40E-01 (1.34E-02) 1.98E-01 (1.55E-02) 4.55E-01 (2.41E-02) 1.05E+00 (3.45E-02) 1.11E+00 (3.77E-02) 1.1 2.0 / 1.15+00 { 3.755-02} 1.135+00 { 3.755-02} 1.205+00 { 3.705-02} 1.205+00 { 3.905-02} 1.135+00 { 3.805-02} 9.955-01 { 3.545-02} 1.075+00 { 3.675-02} 9.855-01 { 3.545-02} 1.015+00 { 3.595-02} 3.0 / 1.056400 (3.656-02) 1.026400 (3.656-02) 1.026400 (3.636-02) 1.026400 (3.706-02) 1.306400 (4.076-02) 1.486400 (4.146-02) 1.546400 (4.436-02) 1.776400 (4.886-02) 1.976400 (5.126-02) 4.0 / 2.19[100 (5.31E-02] 2.18[100 (5.38E-02] 2.05E100 (5.38E-02] 1.59E100 (5.38E-02] 1.20E100 (3.98E-02] 5.21E-01 (2.42E-02] 3.29E-01 (2.42E-02] 1.97E-01 (1.48E-02] 4.11E-02 (1.10E-02) (1.10E-02) 5.0 / 4.20E-02 (7.44E-03) [POL = NON]###### 6Li(p.d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 130 degenergy/ 0.0 0.3 0.4 0.5 0.6 0.7 0.9 0.1 0.2 0.8 0.0 / 0.00E+00 (0.00E+00) 0.00E+00] 0.00E 1.0 / 1.08E-01 (2.16E-02) 3.03E-01 (2.15E-02) 6.37E-01 (3.11E-02) 9.37E-01 (3.78E-02) 1.10E+00 (4.10E-02) 1.11E+00 (4.22E-02) 1.06E+00 (4.02E-02) 1.20E+00 (4.27E-02) 1.20 2.0 / 1.116+00 (4.10E-02) 1.126+00 (4.13E-02) 1.05E+00 (3.99E-02) 1.06E+00 (4.04E-02) 1.09E+00 (4.04E-02) 1.14E+00 (4.16E-02) 1.14E+00 (4.16E-02) 1.20E+00 (4.24E-02) 1.21E+00 (4.24E+02) 1.21E+00 (4.24E+02) 1.21E+00 (4.24E+02) 1.21E+00 (4.24E+02) 1 5.0 / 1.36E+00 (4.55E-02) 1.66E+00 (5.17E-02) 1.76E+00 (5.17E-02) 1.96E+00 (5.49E-02) 2.17E+00 (5.45E-02) 2.10E+00 (5.45E-02) 2.10E+00 (5.25E-02) 2.07E+00 (5.25E-02) 1.66E+00 (4.91E-02) 4.0 / 1.33E+00 (4.19E-02) 9.27E-01 (3.59(-02) 4.05E-01 (2.83E-02) 4.15E-01 (2.34E-02) 2.51E-01 (1.82E-02) 1.56E-01 / 1.43E-02) 7.06E-02 (9.65E-03) 4.54E-02 (4.51E-03) **######** 6Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 140 deg[POL = NON]0.3 0.4 0.5 0.6 0.7 0.8 0.9 energy/ 0.0 0.1 0.2 0.0 / 0.00E+00 { 0.00E+00 } 0.00E+00 } 0.00E+00 } 0.00E+00 } 0.00E+00] 0.00E 1.0 / 3.136-01 (2.186-02) 3.146-01 (2.186-07) 6.136-01 (3.056-02) 9.766-01 (3.856-02) 1.186400 (4.246-02) 1.206400 (4.266-02) 1.19 2.0 / 9.32E-01 (3.76E-02) 9.44E-01 (3.89E-02) 1.10E100 (4.08E-02) 1.10E100 (4.19E-02) 1.16E100 (4.70E-02) 1.19E100 (4.72E-02) 1.31E100 (4.77E-02) 1.465400 (4.71E-02) 1.30E100 (4.71E-02) 1.3 3.0 / 1.886400 (5.356-02) 1.486400 (5.486-02) 2.056400 (5.556-02) 2.076400 (5.616-02) 1.864400 (5.376-02) 1.396400 (4.116400 (4.116402) 8.566-01 (3.616-02) 6.326-01 (3.616-02) 4.766-01 (2.695-07) 4.0 / 4.285-01 (2.376-02) 2.935-01 (1.965-02) 1.735-01 (1.515-02) 7.115-02 (9.675-03) 1.845-02 (4.925-03) **######** 6Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 150 deg[POL = NON] energy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 / 0.00E+00 { 0.00E+00 } 0.00E+00 } 0.00E+00 } 0.00E+00 } 0.00E+00 } 0.00E+00] 0.00E+00] 0.00E+00] 0.00E+00 } 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E 1.0 / 1.0/2-02 1.492-01 (1.492-02) 1.492-01 (1.532-02) 3.952-01 (3.232-02) 7.552-01 (3.232-02) 1.152400 (3.982-02) 1.152400 (3.922-02) 1.052400 (3.98 2.0 / 9.972-01 (3.712-02) 9.722-01 (3.672-02) 1.022+00 (3.752-02) 1.102+00 (3.912-02) 1.052+00 (3.852-02) 1.352+00 (4.282-02) 1.452+00 (4.482-02) 1.672+00 (4.802-02) 1.832+00 (5.072-02) 3.0 / 1.895100 (5.115-02) 2.055100 (5.325-02) 1.815100 (5.005-02) 1.235100 (4.665-02) 4.205-02) 4.265-01 (3.685-02) 6.865-01 (3.085-02) 6.525-01 (2.315-02) 4.295-01 (2.385-02) 3.335-01 (2.095-02)

4.0 / 1.54E-01 (1.43E-02) 5.32E-02 (8.17E-03)

33

DAERI NI 91 009

ffffff GLi(p,d) DDX (error) ### Ep = 14 NeV LAU.ANGLE = 160 deg [POL = NON]

energy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.7 0.0 / 0.00[100] 0

6L1(p,d) DDX (error) ### Ep = 14 NeV LAB.ANGLE = 165 deg [POL = NON] 0.5 ENECAY/ 0.0 0.1 0.2 0.3 0.1 0.6 0.7 0,8 8.1 0.0 / 0.00E+00 | 0.00E 1.0 / 1.21E-01 (1.23E-02) 9.44E-02 (1.10E-02) 2.44E-01 (1.82E-02) 4.34E-01 (2.81E-02) 1.14E100 (3.77E-02) 1.04E100 (3.61E-02) 9.87E-01 (3.51E-02) 5.65E-01 (3.47E-02) 9.10E-01 (3.37E-02) 9.31E-01 (3.41E-02) 2.0 / 8.68E-01 (3.29E-02) 8.96E-01 (3.35E-02) 1.01E+00 (3.55E-02) 1.05E+00 (3.62E-02) 1.41E+00 (4.19E-02) 1.48E+00 (4.30E-02) 1.67E+00 (4.56E-02) 1.75E+00 (4.77E-02) 1.75E+00 (4.68E-02) 3.0 / 1.636+00 (4.526-02) 1.386+00 (4.166-02) 9.616-01 (3.466-02) 7.506-01 (3.066-02) 5.336-01 (2.586-02) 3.466-01 (2.086-02) 1.626-01 (1.426-02) 1.62

θlab. (deg)	θ c.m. (deg)	dσ/dΩ (mb/sr)	Analyzing Power
9.797 19.726 29.674 39.641 49.635 59.640 69.671 79.724 89.795	12.796 25.682 38.427 50.951 63.180 75.022 86.425 87.838 97.330 99.750 107.698	3.318E+00 ± 9.736E-02 1.805E+00 ± 6.412E-02 1.226E+00 ± 5.073E-02 1.183E+00 ± 5.062E-02 1.255E+00 ± 5.376E-02 1.344E+00 ± 5.777E-02 1.427E+00 ± 6.206E-02 1.418E+00 ± 6.735E-02 1.531E+00 ± 6.146E-02 1.589E+00 ± 7.195E-02	$\begin{array}{c} 0.05592 \pm 0.03582\\ 0.12649 \pm 0.04672\\ 0.1928 \pm 0.05524\\ 0.18484 \pm 0.05623\\ 0.04874 \pm 0.06098\\ -0.09006 \pm 0.06809\\ -0.30145 \pm 0.08117\\ -0.38660 \pm 0.05631\\ -0.58947 \pm 0.09893\\ -0.63309 \pm 0.05628\\ -0.80540 \pm 0.11825 \end{array}$
99.047 108.993	112.256 116.719 125.273 125.891 138.674 152.359 166.222	1.556E+00 ± 5.931E-02 1.481E+00 ± 7.294E-02 1.278E+00 ± 5.080E-02 1.270E+00 ± 6.983E-02 9.148E-01 ± 4.032E-02 1.046E+00 ± 4.304E-02 1.573E+00 ± 5.539E-02	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Appendix 2 Differential cross sections and analyzing powers of the ${}^{6}\text{Li}(p,{}^{3}\text{He})\alpha$ reaction at 14 MeV. Data for which Lab. angles are not given are obtained from the data of recoiled α -particles.

Appendix 3 Double differential cross sections (mb/sr/MeV) of the ${}^{6}Li(p,\alpha)pd$ reaction including the the ${}^{6}Li(p,{}^{3}He)\alpha$ reaction

at 14 MeV.

LAB.ANGLE = 10 deg ###### GLi(p, 3He&a) DDX (error) ### Ep = 14 MeV I POL = NON I 0.3 0.4 0.5 energy/ 0.0 0,1 0.7 0.6 0,7 0.8 0.9 0.0 / 0.00E+00] 0.00E 1.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 | 0.00E 2.0 / 0.00E+00 | 0.00E+ 4.0 / 0.00E+00 [0.00E+00] 0.00E+00 [0.00E+00] 4.42E-01 [4.88E-02] 3.24E+00 [1.10E-01] 2.83E+00 [1.02E-01] 1.51E+00 [7.49E-02] 1.47E+00 [7.47E-02] 5.75E+00 [1.46E-01] 9.42E+00 [1.87E-01] 9.42E+00 [1.02E+01] 9.42E+00] 1.02E+01] 9.42E+00 [1.02E+01] 9.42E+00] 1.02E+01] 9.42E+01] 9.42E+ 5.0 / 9.07E+00 (1.83E-01) 8.76E+00 (1.80E-01) 8.76E+00 (1.80E-01) 8.76E+00 (1.82E-01) 8.89E+00 (1.81E-01) 9.11E+00 (1.84E-01) 9.12E+00 (1.84E-01) 9.68E+00 (1.80E+01) 9.68E+00 (1.83E+01) 8.76E+00 (1.80E+01) 8.7 6.0 / 8.35E+00 (1.75E-01) 8.05E+00 (1.73E-01) 7.00E+00 (1.67E-01) 7.15E+00 (1.62E-01) 7.15E+00 (1.63E-01) 7.1 7.0 / 6.84E100 (1.59E-01) 7.10E100 (1.62E-01) 7.00E100 (1.61E-01) 7.08E100 (1.62E-01) 6.92E100 (1.69E-01) 7.15E100 (1.63E-01) 7.02E100 (1.61E-01) 7.07E100 (1.61E-01) 7.27E100 (1.64E-01) 8.0 / 6.91E+00 (1.40E-01) 4.23E+00 (1.52E-01) 4.06E+00 (1.50E-01) 5.6E+00 (1.45E-01) 4.94E+00 (1.35E-01) 4.94E+00 (1.35E+01) 4.94 9.0 / 3.31E400 (1:11E-01) 3.05E400 (1.06E-01) 2.67E400 (9.94E-02) 2.15E400 (8.92E-02) 1.61E400 (0.18E-02) 1.40E400 (7.20E-02) 9.34E-01 (5.08E-02) 6.96E-01 (4.19E-02) 3.04E-01 (3.36E-02) 10.0 / 2.01E+01 (2.73E+02) 1.08E+02 (3.27E+02 (3.47E+02) 4.46E+02 (1.42E+02) 5.74E+02 (1.46E+02) 3.74E+02 (1.45E+02) 4.06E+02 (1.23E+02) 2.57E+02 (9.76E+03) 4.79E+02 (1.33E+02) 4.86E+02 (1.33E+02) 11.0 / 2.70E-02 (9.02E-03) 4.15E-02 (1.24E-02) 5.86E-02 (1.47E-02) 5.86E-02 (1.45E-02) 4.45E-02 (1.69E-02) 7.68E-02 (1.69E-02) 1.15E-01 (2.41E-02) 1.67E-01 (2.41E-02) 1.6 12.0 / 2.97E-01 (3.32E-02) 3.97E-01 (3.48E-02) 4.44E-01 (4.06E-02) 6.11E-01 (4.76E-02) 6.38E-02) 6.97E-01 (5.08E-02) 7.99E-01 (5.48E-02) 8.91E-01 (5.48E-02) 8.44E-02 1.17E+00 (6.58E-02) 13.0 / 1.40E+00 (8.17E+02) 3.02E+00 (1.04E+01) 3.47E+00 (1.20E+01) 4.29E+00 (1.26E+01) 4.05E+00 (1.23E+01) 3.73E+00 (1.14E+01) 2.30E+00 (9.22E+02) 8.42E+01 (3.73E+02) 3.74E+01 (3.73E+02) 3.64E+01 (3.73E+02) 14.0 / 5.36E-01 (4.46E-02) 7.02E-01 (5.10E-02) 8.81E-01 (5.71E-02) 9.55E-01 (5.95E-02) 1.08E+00 (6.33E-02) 1.37E+00 (7.14E-02) 1.47E+00 (7.39E-02) 1.80E+00 (8.17E-02) 1.80E+00 (8.17E-02) 15.0 / 2.04E100 (8.69E-02) 2.69E100 (9.49E-02) 4.84E100 (1.34E-01) 8.47E100 (1.77E-01) 1.01E101 (1.94E-01) 8.89E100 (1.87E-01) 5.07E100 (1.37E-01) 1.63E100 (7.78E-02) 5.37E-01 (4.44E-02) 3.02E-01 (3.34E-02) 14.0 / 1.36E-01 (2.25E-02) 1.04E-01 (1.97E-02) 1.05E-01 (1.98E-02) 1.05E-01 (1.98E-02) 1.36E-02 (1.78E-02) 7.07E-02 (1.62E-02) 7.07E-02 (1.62E-02) 3.08E-02 (1.07E-02) 1.66E-02 (1.07E-02) 1.67E-02) 1.67E-02 (1.07E-02) 1.67E-02 (1.07E-02) 1.67E-02) 1.67E-02 (1.07E-02) 1.67E-02 (1.07E-02) 1.67E-02) 1.67E-02 (1.07E-02) 1.67E-02 (1.07E-02) 1.67E-02) 1.67E-02 (1.07E-02) 1.67E-02) 1.67E-02 (1.07E-02) 1.67E-02) 1.67E 17.0 / 5.83E-02 (1.47E-02) 2.36E-02 (9.34E-03) 3.55E-02 (1.15E-02) 2.81E-02 (9.49E-02 (9.49E-03) 2.22E-02 (9.49E-03) 2.54E-02 (9.71E-03) 2.80E-02 (1.02E-02) 1.70E-02 (7.98E-83) 1.34E-02 (7.10E-03) 18.0 / 1.02E-02 (0.20E-03) 1.97E-02 (0.55E-03) 2.26E-02 (9.15E-03) 1.52E-02 (7.51E-03) 1.22E-02 (6.75E-03) 4.41E-02 (1.28E-02) 2.77E-02 (1.01E-02) 1.74E-02 (0.03E-03) 1.51E-02 (7.48E-03) 1.74E-02 (0.02E-03) 19.0 / 1.53E-02 (7.54E-03) 2.18E-02 (8.98E-03) 1.77E-02 (8.09E-03)

GLi(p, 3Heka) DDX (error) ### Ep = 14 Nev LAB.ANGLE = 20 deg

0.4 0.3 0.5 0,6 energy/ 0.0 0.1 0.2 0.7 0.8 0,9 0.0/ 0.00[+00] 0 1.0 / 0.00[+00 | 0.00[7.0 / 0.00[+00 | 0.00[+ 3.0 / 0.00[+00] 0 4.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 2.47E+01 (2.53E+02) 1.20E+00 (5.57E+02) 1.30E+00 (5.79E+02) 7.23E+01 (4.32E+02) 1.41E+00 (6.03E+02) 6.39E+00 (1.28E+01) 7.75E+00 (1.58E+01) 7.75E+00 (1.58E+01) 5.0 / 8.9[E+00 (1.52E-01) 8.65E+00 (1.49E-01) 8.46E+00 (1.49E-01) 9.76E+00 (1.50E-01) 9.17E+00 (1.56E-01) 9.38E+00 (1.56E-01) 9.10E+00 (1.53E-01) 7.33E+00 (1.53E+01) 7.3 6.0 / 6.96E+00 (1.34E-01) 6.77E+00 (1.32E-01) 6.38E+00 (1.28E-01) 6.12E+00 (1.28E-01) 6.04E+00 (1.28E+01) 6.58E+00 (1.30E+01) 5.97E+00 (1.28E+01) 5.47E+00 (1.38E+00 (1.38E+00 (1.38E+00 (1.28E+01) 5.74E+00 (1 7.0 / 5.40E+00 (1.18E-01) 5.4E+00 (1.2E-01) 5.26E+00 (1.16E-01) 5.39E+00 (1.18E-01) 5.32E+00 (1.18E-01) 5.32E+00 (1.18E-01) 5.33E+00 (1.18E+00) 5.33E 8.0 / 4.635+00 (1.12E-01) 4.20E+00 (1.04E-01) 3.79E+00 (9.89E-02) 3.70E+00 (9.77E-02) 3.32E+00 (9.26E-02) 3.43E+00 : 9.00E-02) 3.43E+00 (9.41E-02) 3.43E+00 (8.95E-02) 2.29E+00 (2.69E-02) 1.97E+00 (7.03E-02) 9.0 / 1.496100 [6.706-02] 1.296100 [5.776-02] 9.926-01 [5.046-02] 7.046-01 [4.266-02] 2.706-01 [2.446-02] 1.706-01 [2.106-02] 1.096-02 [1.356-02] 3.816-02 [9.996-03] 2.206-02 [7.536-03] 10 0 / 1 94E-07 / 7 07E-031 / 33E-02 (5.86E-03) 7.10E-02 (7.36E-03) 7.11E-02 (7.36E-03) 1.94E-02 (7.12E-03) 1.33E-02 (5.66E-03) 9.92E-03 (5.06E-03) 1.30E-02 (5.28E-03) 5.35E-02 (9.70E-03) 11.0 / 3.58E-02 (9.60E-03) 2.04E-02 (7.25E-03) 3.84E-02 (9.96E-03) 3.39E-02 (9.36E-03) 6.56E-02 (1.39E-02) 8.60E-02 (1.49E-02) 9.82E-02 (1.59E-02) 1.43E-01 (1.39E-02) 1.43E-01 (1.43E-01) 1.44E-01 (1.44E-01) 1. 12.0 / 2.31E-01 (2.47E-02) 2.18E-01 (2.37E-02) 2.89E-01 (2.73E-02) 3.42E+00 (9.49E-02) 4.56E-01 (3.43E-02) 4.40E-01 (4.04E-02) 1.42E+00 (6.04E-02) 2.61E+00 (8.21E-02) 3.42E+00 (9.40E-02) 3.43E+00 (9.40E-02) 13.0 / 3.40E+00 (9.36E+02) 2.15E+00 (7.45E+02) 7.08E+01 (4.27E+02) 1.41E+01 (1.91E+02) 5.44E+02 (1.18E+02) 6.19E+02 (1.26E+02) 1.05E+01 (1.2.64E+02) 1.57E+01 (1.2.64E+02) 1.57E+01 (1.2.52E+02) 1.57 14.0 / 2,73E-01 (2.65E-02) 2,54E-01 (2.56E-02) 2,54E-01 (2.56E-02) 3,58E-01 (3.58E-02) 4.37E-01 (3.37E-01 (3.57E-02) 6.84E-01 (4.20E-02) 9.91E-01 (5.06E-02) 2.35E400 (7.78E-02) 5.51E400 (1.19E-01) 15.0 / 7.45E+00 (1.39E+01) 6.45E+00 (1.29E+01) 3.09E+00 (8.92E+02) 6.46E+01 (4.08E+02) 1.24E+02 (1.24E+02) 4.44E+02 (1.07E+02) 4.55E+02 (1.08E+02) 4.70E+02 (1.08E+02) 4.61E+02 (1.09E+02) 16.0 / 5.34E-02 (1.17E-02) 2.34E-02 (7.77E-03) 5.20E-02 (1.16E-02) 2.94E-02 (8.71E-03) 1.04E-02 (5.19E-03) 2.77E-02 (6.80E-03) 3.04E-02 (8.80E-03) 2.44E-02 (8.25E-03) 1.81E-02 (6.94E-03)

6Li(p.3He&g) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 30 deg [POL = NON] 0.3 0,4 0.5 0.6 0.7 0.8 0.9 energy/ 0.0 0.1 0.2 0.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00] 0.00E 1.0 / 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+000 0.00E+00) 0.00E+000 0.00E+00) 0.00E+000 0.00E+000 0.00E+00) 0.00E+000 0.00E+000 0.00E+000 0.00E+00) 0.00E+000 2.0 / 0.00E+00 { 0.00E+00 } 0.00E+00] 0.00E 3.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E 4.0 / 0.00E100 (0.00E100) 0.00E100 (1.01E-01) 9.15E100 (1.25E-02) 4.19E-01 (2.75E-02) 3.70E-01 (2.51E-02) 4.27E100 (4.67E-02) 6.29E100 (1.01E-01) 9.15E100 (1.25E-01) 9.15E100 (1.25E-5.0 / 7,92E100 (1.16E-01) 7.43E100 (1.13E-01) 7.50E100 (1.15E-01) 8.19E100 (1.16E-01) 2.65E400 (1.14E-01) 4.56E400 (1.06E-01) 5.66E400 (9.78E-02) 5.14E100 (9.38E-02) 4.91E400 (9.16E-02) 6.0 / 4.85E+00 (9.13E-02) 4.82E+00 (9.07E-02) 4.05E+00 (9.97E+02) 4.97E+00 (9.34E+02) 4.32E+00 (8.79E+02) 4.32E+00 (8.55E+02) 4.32E+00 (8.44E+02) 3.93E+00 (8.15E+02) 4.32E+00 (8.55E+02) 4.52E+00 (8.55E+00) 4.5 7.0 / 3.66E+00 (4.13E-02) 3.72E+00 (7.72E-02) 3.31E+00 (7.52E-02) 3.33E+00 (7.55E-07) 3.07E+00 (7.24E-02) 3.07E+00 (7.24E-02) 2.67E+00 (6.75E-02) 7.59E+00 (6.75E-02) 7.59E+00 (6.75E-02) 7.59E+00 (6.75E-02) 7.59E+00 (7.52E-02) 7.5 8.0 / 1.85E100 (5.43E-02) 1.43E100 (5.28E-02) 1.48E100 (5.04E-02) 1.40E100 (4.892-02) 1.37E100 (4.84E-02) 9.89E-01 (4.18-02) 6.84E-01 (3.42E-02) 4.59E-01 (2.40E-02) 3.58E-01 (2.47E-02) 1.72E-01 (1.72E-02) 9.0 / 1.07E-01 (1.35E-02) 4.81E-02 (9.07E-03) 2.16E-02 (6.08E-03) 1.38E-03) 1.21E-02 (4.54E-03) 5.03E-03 (2.93E-03) 5.31E-03 (3.01E-03) 1.6E-02 (4.45E-03) 7.28E-03) 7.28E-03 (3.53E-03) 7.28E-03 (3.53E-03) 7.28E-03) 10.0 / 1.42E-02 (4.93E-03) 1.43E-02 (4.94E-03) 7.43E-03 (3.56E-03) 5.13E-03 (2.96E-03) 1.60E-02 (5.23E-03) 1.48E-02 (5.03E-03) 2.27E-02 (5.23E-03) 4.23E-02 (5.23E-03) 5.24E-02 (5.23E-03) 11.0 / 5.77E-02 (9.49E-03) 5.70E-02 (9.47E-03) 5.10E-02 (1.18E-02) 9.95E-02 (1.27E-02) 1.12E-01 (1.39E-02) 1.91E-01 (1.61E-02) 2.6EE-01 (2.13E-02) 6.54E-01 (3.34E-02) 2.21E+00 (4.15E-02) 12.0 / 3.65E+00 (7.95E-02) 3.76E+00 (8.01E-02) 2.94E+00 (7.05E-02) 1.80E+00 (5.55E-02) 5.56E-01 (3.08E-02) 5.70E-02 (9.87E-03) 2.37E-02 (4.74E-03) 1.31E-07 (4.74E-03) 1.52E-03) 2.52E-03) 2.52E-03 13.0 / 4.41E-02 (8.68E-03) 5.38E-02 (9.59E-03) 7.85E-02 (1.16E-02) 7.76E-02 (1.15E-02) 8.51E-02 (1.21E-02) 8.20E-02 (1.16E-02) 1.16E-01 (1.41E-02) 1.57E-01 (1.64E-02) 1.55E-01 (1.63E-02) 2.22E-01 (1.75E-02) 14.0 / 3.99E-01 (2.61E-02) 1.63E+00 (5.28E-02) 4.11E+00 (8.39E-02) 5.45E+00 (9.65E-02) 4.61E+00 (8.88E-02) 1.99E+00 (5.83E-02)

[POL = NON]

ARTARA GLI(D. 3He&a) DDX (error) ATA Ep = 14 MeV LAB.ANGLE = 40 deg

[POL = NON]

0.2 0.3 0.4 0.5 0.6 0.7 0.5 energy/ 0.0 0.1 0.9 a a / a cottog { 0.000 tog } 0 1.0 / 0.00[+00] 0 1 0 / D 00F100 1 0.00F100 1 0.00F 4 0 / D DOFIOD 1 0 00F+001 1.28E-03 1.28E-03 1.83E-02 1.00E-023 4.22E-01 (2.32E-021 1.32E-01 (2.42E-02) 1.32E-01 (2.66E-021 4.43E+00 (7.52E-02) 6.82E+00 (9.34E-023 6.30E+00 (6.88E+02) 5.0 / 5.846+00 (8.646-02) 5.840+00 (8.686-02) 6.126+00 (8.856-02) 4.026+00 (8.826-02) 4.336+00 (7.196-02) 6.0 / 3.95E+00 (7.11E-02) 3.97E+00 (7.15E-02) 3.75E+00 (6.92E+02) 3.49E+00 (6.68E-02) 3.13E+00 (6.32E+02) 7.97E+00 (6.11E+02) 7.14E+00 (5.63E+02) 7.24E+00 (5.35E+02) 7.0 / 1.952+00 (5.012-02) 1.812+00 (4.812-02) 1.732+00 (4.702-02) 1.552+00 (4.157-72) 1.332+00 (4.157-72) 1.112+00 (3.782-02) 7.632-01 (3.122-02) 5.472-01 (2.652-02) 4.552-61 (2.412-02) 8.0 / 3.65F-01 (2.16E-07) 5.01E-01 (2.53E-07) 5.71E-01 (2.70E-02) 2.66E-01 (1.84E-02) 9.96E-07 (1.13E-02) 5.76E-07 (8.59E-03) 1.85E-07 (7.07E-03) 1.36E-07 (4.17E-03) 1.77E-03 9.23E-03 (3.43E-03) 9.0 / 8.95E-03 (3.38E-03) 9.52E-03 (3.49E-03) 9.61E-03 (3.51E-03) 7.00E-02 (5.05E-03) 8.44E-03 (3.29E-03) 1.48E-02 (4.35E-03) 1.31E-02 (4.18E-03) 1.56E-02 (4.41E-03) 1.56 10.0 / 4.585-02 (4.185-03) 6.672-02 (9.245-03) 9.265-02 (1.095-02) 1.235-02) 1.205-03 (1.245-02) 1.335-03 (1.335-03 (1.335-02) 1.815-01 (1.525-02) 2.245-03 (1.545-02) 3.165-01 (2.015-02) 4.785-01 (2.015-02) 4. 11.0 / 1.216100 (3.936-02) 2.786400 (5.966-02) 4.166400 (7.296-02) 4.276400 (7.396-02) 3.896400 (7.056-02) 2.626400 (5.746-02) 8.306-01 (3.266-02) 1.096-01 (3.266-02) 2.396-02 (5.556-03) 2.056-02 (5.126-03) 12.0 / 2,89E-02 (4.08E-03) 2,48E-02 (5,63E-03) 3,38E-02 (6.58E-03) 4.55E-02 (1.03E-02) 8.36E-02 (1.03E-02) 8.36E-02 (1.03E-02) 9.10E-02 (1.08E-02) 9.10E-02 (1.08E-02) 1.18E-01 (1.23E-021 (1 13.0 / 1.72E-01 (1.48E-02) 1.73E-01 (1.49E-02) 3.06E-01 (1.98E-02) 6.72E-01 (2.93E-02) 2.14E+00 (5.23E-02) 4.72E+00 (7.35E-02) 4.86E+00 (7.89E-02) 3.32E+00 (6.51E-02) 1.11E+00 (3.77E-02) 1.79E-01 (1.51E-02)

[POL = NON] ###### 6Li(p.3He&a) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 50 deg0.3 0.4 0.5 0.6 0.1 0.8 0.9 0.1 0.2 energy/ 0.0 0.0 / 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+ 1.0 / 0.00E+00 { 0.00E+00 } 0.00E+00 } 0.00E+00 { 0.00E+00 } 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E 2.0 / 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00] 0.00E 3.0 / 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00] 0.00E 4.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 6.84E-02 (9.33E-03) 3.11E-01 (1.99E-02) 3.03E-01 (1.96E-02) 2.81E-01 (1.89E-02) 8.54E-01 (3.30E-02) 3.60E+00 (6.77E-02) 5.55E+00 (8.41E+02) 5.41E+00 (8.30E-02) 5.0 / 5.28E+00 (8.21E-02) 4.88E+00 (7.89E-02) 4.13E+00 (7.22E-02) 3.87E+00 (4.72E-02) 3.47E+00 (4.52E-02) 3.47E+00 (4.51E-02) 3.19E+00 (4.51E-02) 2.73E+00 (4.12E-02) 2.73E+00 (5.89E-07) 6.0 / 2.52E+00 (5.67E-02) 2.11E+00 (5.17E-02) 1.94E+00 (4.97E-02) 1.36E+00 (4.37E-02) 1.36E+00 (3.88E-02) 9.51E-01 (3.48E-02) 7.28E+01 (3.05E-02) 4.50E+01 (2.88E+02) 5.49E+02 (2.69E+02) 7.0 / 5.06E-01 (2.54E-02) 5.49E-01 (2.54E-02) 6.05E-01 (2.78E-02) 3.85E-01 (2.78E-02) 1.90E-01 (1.55E-02) 1.44E-01 (1.37E-02) 1.27E-01 (1.27E-02) 1.44E-01 (1.45E-02) 3.55E-01 (2.18E-02) 5.35E-01 (2.18E-02) 5.3 8.0 / 1.59E-01 (1.42E-02) 3.71E-02 (6.88E-03) 1.97E-02 (4.95E-03) 1.10E-02 (3.75E-03) 1.57E-03 (5.49E-03) 1.51E-02 (4.38E-03) 1.86E-07 (4.87E-03) 2.00E-02 (5.05E-03) 2.25E-02 (5.36E-03) 3.44E-02 (6.62E-33) 9.0 / 4.946-02 (7.956-03) 5.086-02 (8.046-03) 7.946-02 (1.016-02) 1.236-01 (1.256-02) 1.376-01 (1.376-01 (1.516-02) 2.166-01 (1.666-02) 3.346-01 (2.066-02) 6.006-01 (2.766-02) 1.356+00 (4.216-02) 10.0 / 2,98E+00 (6.16E-02) 4.18E+00 (7.30E-02) 4.55E+00 (7.46E-02) 3.29E+00 (6.48E-02) 1.45E+00 (4.34E-02) 2.22E-01 (1.86E-02) 4.38E+02 (7.47E-03) 1.37E+02 (4.18E-03) 2.65E+02 (5.64E+03) 11.0 / 2.28E-02 (5.39E-03) 1.15E-02 (3.83E-03) 1.88E-02 (4.89E-03) 3.78E-02 (6.94E-03) 5.18E-02 (9.42E-03) 7.26E-02 (1.02E-02) 9.05E-02 (1.07E-02) 1.26E-01 (1.27E-02) 1.35E-02 (1.37E-02) 12.0 / 1.56E-01 (1.41E-02) 2.09E-01 (1.63E-02) 3.22E-01 (2.03E-02) 7.71E-01 (3.14E-02) 2.74E+00 (5.35E-02) 4.28E+00 (7.39E-02) 4.78E+00 (7.80E-02) 3.30E+00 (6.49E-02) 1.04E+00 (3.44E-02) 1.22E+01 (1.23E+02)

ISTERS GLI(p. 3Hekg) DDX (error) ISE Ep = 14 MeV LAB. ANGLE = 60 deg

0.3 0,3 5.4 05 0.6 0.7 energy/ 0.0 0.1 6.8 0.9 0.0/ 0.00[+00 { 0.00[+00] 0.00[+00] 0.00[+00] 0.00[+00 } 0.00[+00] 0.00[+0 L 0 / 0.00[+00] 7 0 / 0.00[+00 { 0.00[+00 } 0.00[+00] 0.00[+ 3 0 / 0.001+001 (0.001+001 (0.001+001 (0.001+003) (0.001+003 (0.001+003) (0.001+003 (0.001+003 (0.001+003) (0.001+003 (0.001+003) (0.001+003 (0.001+003) (0.001+003) 4.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 1.65E-02 (4.8+E-03) 1.22E-01 (1.24E-02) 1.58E-02) 1.58E-02) 6.28E-01 (2.82E-02) 2.88E+00 (6.14E-02) 4.43E+00 (7.49E+00) 6.282E+00 (6.14E+02) 4.43E+00 (7.49E+02) 3.22E+00 (6.38E+02) 1.59E+01 (1.33E+02) 6.28E+01 (2.82E+02) 2.88E+02) 1.58E+02) 1.58E+02] 1. 5 0 / 2,58E100 { 5,11E-021 2,33E100 { 5,28E-021 2,20E100 { 5,28E-021 2,20E100 { 5,28E-021 1,20E100 { 4,28E-021 1,22E100 { 3,92E-021 1,20E100 { 3,92E-021 1,2 6.0 / 1.70E-01 (2.16E-02) 2.72E-01 (1.85E ^) * 89E-01 (1.55E-02) 1.49E-01 (1.37E-02) 1.45E-01 (1.45E-02) 2.27E-01 (1.70E-02) 3.12E-01 (1.99E-02) 4.21E-01 (1.55E-02) 2.90E-01 | 1.91E-02) 1.0 / 9.41E-02 (1.09E-02) 4.14E-02 (.24E-03) 4.04E-02 (1.12E-03) 1.34E-01 (1.130E-02) 3.41E-01 (1.20E-02) 3.34E-01 (1.73E-02) 3.81E-02 (6.95E-03) 1.67E-02 (4.59E-03) 1.34E-02 (4.59E-02) 1.3 8.0 / 3.71E-02 (6.85E-03) 6.05E-02 (9.35E-03) 7.38E-02 (9.66E-03) 8.37E-02 (1.03E-02) 1.98E-01 (1.58E-02) 3.82E-01 (2.20E-02) 8.48E-01 (3.28E-02) 2.01E+00 (5.05E-02) 3.28E+00 1 6.44E-021 9.0 / 3.72E+00 (6.86E-02) 3.65E+00 (6.60E-02) 3.46E+00 (6.60E-02) 2.54E+00 (5.67E+02) 9.97E+01 (3.55E+02) 1.63E+01 (1.44E+02) 1.81E+02 (4.79E+03) 2.14E+02 (5.70E+03) 2.30E+02 (5.70E+03) 2.3 10.0 / 1.372-02 (4.102-03) 2.466-07 (5.582-03) 1.316-07 (4.072-02) 1.692-07 (4.622-03) 3.272-02 (6.432-03) 3.502-07 (6.712-03) 4.762-03 4.762-07 (9.252-03) 4.772-07 (9.252-03) 4.772-07 (9.252-03) 4.772-07 (9.252-03) 4.772-07 (9.252-03) 4.772-07 (9.252-03) 4.772-07 (9.25 11.0 / 1.58E-01 (1.42E-02) 3.27E-01 (2.02E-02] 7.95E-01 (3.43E-02) 2.32E+00 (5.41E-02) 3.86E+00 (6.98E-02) 4.33E+00 (7.40E-02) 3.57E+00 (6.72E-02) 1.56E+00 (4.45E-02) 2.25E-01 (1.49E-02)

[POL = NON 1

6Li(p, 3He&a) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 70 deg[POL = NON] energyi 0.0 8.1 0.2 6,3 0.4 0.5 0.6 0.1 0.8 6,5 0.0 / 0.00E+00 { 0.00E+00 } 0.00E+00 } 0.00E+00 { 0.00E+00 } 0.00E+00 { 0.00E+00 } 0.00E+00 } 0.00E+00 } 0.00E+00] 0.00E+ 1.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 2.0 / 0.00F+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+000 0.00E+000 0.00E+00) 0.00E+000 0.00E+000 0.00E+000 0.00E+00) 0.00E+000 0.00E+000 0.00E+000 0.00E+00) 0. 3.0 / 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E 4.0 / 0.006+00 (0.006+00) 0.006+00) 0.006+00] 0.006+00] 1.646-02 [4.556-03] 2.316-02 [5.396-03] 4.606-02 [7.616-03] 2.536-01 [1.786-02] 9.026-01 [1.786-02] 9.026-01 [1.786-02] 1.176+00 [3.846-02] 4.066+00 [3.846-02] 4.066+00] 3.846-02] 5.0 / 4.45E-01 (2.85E-02) 4.15E-01 (2.88E-02) 2.80E-01 (1.88E-02) 2.18E-01 (1.68E-02) 1.33E-01 (1.29E-02) 9.59E-02 (1.10E-02) 6.52E-02 (9.22E-03) 6.58E-02 (9.22E-03) 5.05E-02 (3.88E-02) 7.88E-03 6.0 / 7.97E-02 (9.98E-03) 8.44E-02 (1.03E-02) 1.14E-01 (1.20E-02) 1.18E-01 (1.27E-02) 6.17E-02 (8.81E-03) 2.40E-02 (5.11E-03) 1.41E-02 (4.27E-03) 1.93E-02 (4.93E-03) 7.0 / 6.98E-02 (9.37E-03) 1.84E-01 (1.52E-02) 2.22E-01 (1.67E-02) 1.73E-01 (1.47E-02) 2.90E-01 (1.91E-02) 6.96E-01 (2.96E-02) 1.38E+00 (4.17E-02) 2.39E+00 (5.25E-02) 2.62E+00 (5.74E-02) 2.72E+00 (5.74E-02) 2.74E+00 (5.74E+02) 2.7 8.0 / 2.47E+00 (5.57E+02) 2.51E+00 (5.47E+02] 1.78E+00 (4.73E+02) 1.01E+01 (2.98E+02) 1.52E+02 (4.37E+03) 4.12E+02 (3.78E+03) 4.08E+03 (2.26E+03) 1.08E+02 (3.48E+03) 7.42E+03 (3.14E+03) 9.0 / 1.11E-02 (3.73E-03) 9.37E-03 (3.75E-03) 9.51E-03 (3.76E-03) 1.14E-07 (4.79E-03) 1.51E-07 (4.99E-03) 2.56E-07 (5.68E-03) 2.56E-07 (5.68E-03) 4.25E-07 (7.31E-03) 7.51E-07 (9.72E-03) 10.0 / 1.71E-01 (1.47E-02) 5.14E-01 (2.54E-02) 1.49E+00 (4.62E-02) 3.48E+00 (6.62E-02) 3.94E+00 (7.04E-02) 3.79E+00 (6.91E-02) 2.45E+00 (5.56E-02) 6.54E-01 (2.87E-02)

6Li(p,3He&α) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 80 deg [POL = NON]

0.5 energy/ 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 / 0.00E+00 (0.00E+00) (0 1.0 / 0.00E+00 { 0.00E+00 } 0.00E+00 { 0.00E+00 } 0.00E+00 \\ 0.00E+00 } 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E 2.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00] 0.00E+ 3.0 / 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00] 0.00E+ 4.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 4.34E-63 (2.33E-03) 3.20E-02 (4.33E-03) 7.25E-02 (7.33E-03) 7.25E-02) 7.25E-02 (7.33E-03) 7.25E-02 (7.35E-03) 7.25E-02 (7.35E-03) 7.25E-02 (7.35E-03) 7.25E-02 (7.35E-03) 7.25E-02) 7.25E-02 (7.35E-03) 7.25E-02) 7.25E-02) 7.25E-02 (7.35E-03) 7.25E-02) 7.25E-02) 7.25E-02) 7.25E-02) 7.25E-02) 7.25E 5.0 / 1.17E-01 (1.21E-02) 8.66E-02 (1.05E-02) 5.34E-02 (8.18E-03) 4.20E-07 (7.26E-03) 5.12E-02 (8.01E-03) 5.78E-02 (8.50E-03) 7.22E-02 (9.51E-03) 8.50E-02 (1.05E-02) 9.38E-02 (1.05E-02) 1.17E-01 (1.21E-02) 6.0 / 8.75E-02 (1.05E-02) 1.15E-01 (1.20E-02) 2.59E-01 (1.80E-02) 4.83E-00 (2.41E-02) 1.95E-01 (3.33E-02) 1.39E100 (4.41E-02) 1.70E100 (4.41E-02) 1.79E100 (4.74E-02) 1.89E100 (4.81E-02) 1.8 7.0 / 1.786100 (4.726-02) 1.476100 (4.306-02) 9.796-01 (3.506-02) 3.346-01 (2.056-02) 4.596-02 (7.596-03) 6.936-03 (2.956-03) 2.156-03 (1.646-03) 5.376-03 (2.596-03) 6.276-03 (3.506-02) 8.906-03 (3.346-03) 8.0 / 6.33E-03 (2.82E-03) 5.76E-03 (2.49E-03) 9.09E-03 (3.38E-03) 1.24E-03 (3.38E-03) 1.44E-03 (3.28E-03) 1.42E-02 (4.60E-03) 1.42E-02 (4.22E-03) 3.58E-02 (6.70E-03) 1.70E-02 (9.50E-03) 1.97E-01 (1.57E-02) 9.0 / 4.86E-01 (2.47E-02) 1.44E+00 (4.25E-07) 2.62E+00 (5.73E-02) 3.27E+00 (6.36E-02) 3.27E+00 (6.42E-02) 2.62E+00 (5.94E-02) 1.77E+00 (4.71E-02) 4.01E-01 (2.24E-02)

	00000000		888888888		222222		888888
	0.00640 0.00640 0.00640 0.00640 1.54640 1.54640		9.006+0 9.006+0 9.006+0 9.006+0 1.316-0 1.376-0 1.376-0 1.179 1.17		0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.34000 1.34000 1.34000		0.00640 0.00640 0.00640 0.00640 3.09640 2.95640
					.8888558		
	0 0.06 0.07 0.05 1.75 5.05 5.05 5.05 5.05 5.05 5.05 5.05 5		9.00 9.00 9.00 9.72 9.72 7.13 1.315		0.000 0.000 0.000 0.000 0.000 0.000 0.000		9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00
	E 400) E 400] E 400]		X +00) X +00)		X 100) X 100) X 100) X 100) X 100) X 100) X 100) X 100) X 100) X 100)		0(+00) 0(+00) 0(+00) 0(+00) 1(-03) 1(-03)
	(0.00 (0.00 (0.00 (1.76 (1.76 (1.76 (1.76 (1.76 (1.76 (1.76)		(0.00 (0.00 (0.00 (1.00 (1.01 (1.01		(0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00))))))))))		0.0.0 2.0.0 2.0.0 2.0.0 2.0 2.0 2.0 2.0
	0.8 006 400 006 400 006 400 006 400 006 400 006 400 007 400 000 000 000 000 000 000 000 000 000		0.8 00E+00 00E+00 00E+00 00E+00 00E+00 00E+00 05E-01 05E-01 97E-01		0.8 006400 006400 006400 006400 006400 006400 006400 006400 006400 006400 006400 006400		006 00 006 00 000 000 000 000 000000
-		~		-	3333338	-	888888
NON	0.006+0 0.006+0 0.006+0 0.006+0 1.536-0 3.556-0 3.556-0 3.066-0	NON	0.00640 0.00640 0.00640 0.00640 0.00640 0.00640 0.00640 0.216-0	NON	0.00E+0 0.00E+0 0.00E+0 0.00E+0 2.54E-0 1.26E-0	NON	0.00E+0 0.00E+0 0.00E+0 0.00E+0 4.55E-0 1.83E-0
		= 1C	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- JC	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 7C	
Pol	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	l PC	0.000 0.000 0.000 0.000 0.0100 0.0100000000	Ъ Ц	0,006 0,006 0,006 1,426 1,426	ЪС]	0.00E 0.00E 0.00E 0.00E 1.62E 2.62E
-	06 400) 06 400) 76 -03) 76 -03) 76 -03)		06 +00) 06 +00) 06 +00) 16 +00] 16 +00] 26 +02] 26 +02]		0E +00) DE +00) 0E +00) 9E -02) 2E -02) 2E -02)		00 + 000) 00 + 000] 00 + 0
	000014		1 0.0 1				
	0.6 0.00[+00 0.00[+00 0.00[+00 0.00[+00 1.00[+00 1.05[+00 1.45[+00 1.45[+00 1.45[+00		0.6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.55E-01 1.97E-01 1.97E-01 1.6EE+00		0.6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.30E-01 1.33E+00		9.6 9.00E+00 9.00E+00 0.00E+00 0.00E+00 7.05E-01 7.05E-01 1.41E-01
	006 00) 006 00) 006 00) 006 00) 536 00) 566 00 566 00 566 00 116 00 316 02 316 02 316 02		00E 400) 00E 400) 00E 400) 00E 400] 00E 400] 00E 400] 43E -03) 43E -03)		00E 400) 00E 400} 00E 400} 00E 400} 00E 400] 00E 400] 10E -02]		.00E+00) .00E+00) .00E+00) .00E+00] .00E+00] .00E-02]
	8355555555	14	83538888	50	8338888 83388888	50	5-5-5-5-5 5-5-5-5-5 5-5-5-5-5-5 5-5-5-5-5-5-5 5-5-5-5-5-5-5-5-5 5-
l dei	0.0061 0.0061 0.006 5.106-1 1.046 1.046 1.046 2.666 2.666	90 Q	0.006+ 0.006+ 0.006+ 0.006+ 1.936- 1.936- 1.936- 1.306+	10 de	0.005* 0.005* 0.005* 0.005* 1.976- 1.055*	50 de	0.006+ 0.006+ 0.006+ 3.136- 2.555- 5.176-
- 3([400] [1 1	(+00) (+0) (+			1	£+00) (+
310	[0.00 [0.00 [0.00 [2.14 [2.46] [2.46] [2.46]	GLE	(0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.01 (0.00 (0.01) (0.00 (0.01) (0.00) (0.01) (0.00) (0.0)	GLE	(0.00 (0.00 (0.00 (0.00 (2.73) (2.73)	GLE	(0.00 (0.00 (0.00 (0.00 (1.41 (1.41))
3. AN	0.4 00(10000000000000000000000000000000000	B.AN	0.4 0.6 006+00 0000 0000 00000000	9.AN	0.4 0.4 006400 006400 006400 006400 006400 006400	NV.6	0.4 0.6 006400 006400 006400 006400 006400 006400 006400 006400 006400 006400
['V]	223266666	ΓVΊ	39393936	[V]	20000000000000000000000000000000000000	EAI	8688888
2	0 300 (0 3	>		>		>	0.00640 0.00640 0.00640 0.00640 0.00640 0.00640
4 Mc	7, 00 00 00 00 00 00 00 00 00 00 00 00 00	4 Me	1 2 0 0 0 5 7 7 7 7 8 9 0 0 0 5 7 7 7 7 8 9 0 0 5 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 Me	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 Me	2666665
	0.00 0.00 0.00 0.00 0.00 1.50 1.50 1.50		0 0.0000 0.000 0.0000 0.0000 0.0000 0.000000		0.000 0.000 1.7500 1.75000 1.75000 1.75000 1.75000 1.75000 1.75000 1.75000 1.75000 1.75000 1.750000 1.750000 1.75000000000000000000000000000000000000		0.00E 0.00E 0.00E 0.00E 0.00E 0.00E
Ęр	0(100) 0(10) 0(100) 0(100)	а	(100) (10) (1	Ер	K (00) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100)	Εp	6 + 00) 6 + 00) 6 + 00) 7 + 00)
53		11	0.00 0.00	838			0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0
(. u.	0.2 006400 0.006400 0.006400 0.006400 0.006400 5.54601 5.54601 2.346400	ror)	0.2 0.000000000000000000000000000000000	70r)	0.2 0.00E400 0.00E400 0.00E400 0.00E400 0.00E400 0.00E400 0.00E400 0.00E400 0.00E400 0.00E400	.or)	0.2 0.06 +00 0.006 +00 0.006 +00 0.006 +00 0.006 +00 0.006 +00 0.006 +00
(G L.		ina)		(eri	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(eri	
XQQ	0.006 0.006 0.006 1.0.006 1.0.006 1.3.566 1.3.566 1.3.566	XQQ	(0.006 (0.006 (0.006 (1.756 (1.756	XQQ	0.006 0.006 0.006 0.006 1.146 1.146	XQQ	0.000 0.000 0.000 1.280 3.480
2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	î	0.1 66400 66400 66400 66400 66400	÷	1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
lle& o		lle& o		He& o		He&o	
(b , 3	.00E 400 .00E 400	(p, 3	.00E +00 .00E +00 .00E +00 .00E +00 .00E +00 .00E +00 .43E -02	(p, 3	.00E +00 .00E +00 .00E +00 .00E +00 .00E +00 .00E +00 .14E -02 .14E -02	(p, 3)	006 400 006 400 006 400 006 400 006 400
61.i		6Li	555888880	611	2210000	6111	0000000 0000000 0000000
Ξ	0. 0.005 0.005 0.005 0.005 1.095 3.755 9.755	Ξ	0.005 00000000	,,,	0.006* 0.006* 0.006* 0.006* 1.116- 1.096* 1.096* 1.096*		0.00E1 0.00E1 0.00E1 0.00E1 2.76E1 2.76E1
	6.01 6.01 6.01 7.01 6.01 7.01 7.01	1	6131/ 0.0/ 3.0/ 4.0/ 6.0/ 7.0/		10.01		100000
	5		5		5		

	^e Li ground (1+)		Li 1st (2.185	Nev 3 +)	⁶ Li 2nd (3.562 Hev 0 +)				
θ c.m (deg)	dσ/dΩ (mb/sr)	Analyzing Power	θc.m. (deg)	dσ/dΩ (mb/sr)	Analyzing power	θ c.m. (1eg)	dσ/dΩ (mb/sr)	Analyzing Power		
12.9	5.38 ± 0.12	0.0037± 0.018	13.8	0.890± 0.040	0.013 ± 0.078	15.0	0.245± 0.030	- 0.222 ± 0.217		
25.8	8.40 ± 0.17	0.063 ± 0.010	27.6	1.11 ± 0.032	0.0094± 0.039	30.0	0.230 ± 0.017	- 0.234 ± 0.129		
38.6	4.51 ± 0.096	0.098 ± 0.012	41.2	1.05 ± 0.027	0.176 ± 0.027	44.8	0.171± 0.010	- 0.175 ± 0.109		
51.2	1.59 ± 0.036	0.299 ± 0.020	54.5	1.11 ± 0.029	0.251 ± 0.027	59.2	0.159 ± 0.010	0.264 ± 0.092		
63.4	1.28 ± 0.029	0.235 ± 0.018	67.4	1.24 ± 0.028	0.257 ± 0.021	73.1	0.160 ± 0.008	0.366 ± 0.067		
75.2	1.15 ± 0.026	0.102 ± 0.018	79.8	1.22 ± 0.028	0.111 ± 0.019	86.4	0.171 ± 0.009	0.032 ± 0.082		
86.5	1.28 ± 0.029	-0.024 ± 0.018	91.5	1.20 ± 0.028	0.075 ± 0.020					
97.3	1.26 ± 0.029	-0.040 ± 0.020	102.6	1.14 ± 0.027	- 0.0096± 0.022					
107.6	1.13 ± 0.027	- 0.044 ± 0.022	113.0	1.18 ± 0.029	-0.019 ± 0.023					
117.5	1.01 ± 0.025	-0.0002 ± 0.024								
126.7	0.990± 0.025	0.0040 ± 0.026								
135.3	0.999± 0.026	-0.026 ± 0.027								
143.5	1.09 ± 0.028	-0.050 ± 0.026								
151.3	1.18 ± 0.030	-0.037 ± 0.026								
158.8	1.29 ± 0.033	-0.011 ± 0.026								
166.0	1.34 ± 0.034	0.0049 ± 0.027								
169.6	1.36 ± 0.035	-0.018 ± 0.027								

Appendix 4-1 Differential cross sections and analyzing powers of the ⁷Li(p,d)⁶Li* reaction at 12 MeV.

	^e Li ground (1 +)		ⁿ Li 1st (2.185	Hev 3 +)		⁶ Li 2nd (3.562	Mev 0 +)
θc.m (deg)	dơ/dΩ (mb/sr)	Analyzing Power	θ c.m. (deg)	dσ/dΩ (mb/sr)	Analyzing power	θc.a. (deg)	dσ/dΩ (mb/sr)	Analyzing Power
12.8	6.78 ± 0.16	0.032 ± 0.027	13.3	2.70 ± 0.077	- 0.038 ± 0.045	13.9	0.693+ 0.051	- 0 235 + 0 122
25.5	8.37 ± 0.18	0.035 ± 0.013	26.6	2.62 ± 0.064	0.122 ± 0.023	27.8	0.719±0.026	-0.300 + 0.060
38.1	3.59 ± 0.079	0.100 ± 0.028	39.8	1.60 ± 0.039	0.289 ± 0.031	41.5	0.491 ± 0.018	- 0.215 + 0.067
50.5	1.18 ± 0.029	0.255 ± 0.031	52.6	I.27 ± 0.031	0.216 ± 0.031	54.9	0.266± 0.012	- 0.017 + 0.076
62.6	1.30 ± 0.029	0.128 ± 0.017	65.1	0.882 ± 0.021	0.169 ± 0.021	67.8	0.159 ± 0.0081	0.152 + 0.074
74.2	1.51 ± 0.033	- 0.034 ± 0.017	77.2	0.856± 0.021	0.118 ± 0.022	80.3	0.160± 0.0086	0.115 + 0.080
85.5	1.48 ± 0.033	0.0092 ± 0.017	88.7	0.818± 0.020	0.075 ± 0.024	92.1	0.162 ± 0.0092	0.276 + 0.074
96.3	1.37 ± 0.031	0.075 ± 0.018	9.66	0.834± 0.022	0.036 ± 0.026	103.2	0.168± 0.0095	0.291 ± 0.076
106.5	1.27 ± 0.030	0.145 土 0.020	109.9	0.890 ± 0.023	0.063 ± 0.025	113.6	0.151 ± 0.010	0.174 + 0.105
116.4	1.11 ± 0.027	0.116 ± 0.025	119.8	0.901 ± 0.023	-0.062 ± 0.027	123.4	0.130+0.011	-0.100 + 0.138
125.6	0.776 ± 0.020	0.131 ± 0.031	128.8	1.05 ± 0.029	-0.179 ± 0.028			001 . T 001 .
134.4	0.828± 0.022	-0.0023 ± 0.029	137.3	1.20 ± 0.031	-0.257 ± 0.026			
142.7	0.901± 0.024	-0.018 ± 0.029	145.3	1.34 ± 0.034	- 0.230 + 0.026			
150.6	1.03 ± 0.027	-0.026 ± 0.028	152.8	1.47 ± 0.038	-0.202 + 0.026			
158.3	1.08 ± 0.028	-0.023 ± 0.028						
165.7	1.14 ± 0.030	- 0.020 ± 0.028						
169.3	1.20 ± 0.031	-0.053 ± 0.027						

Appendix 4-2 Differential cross sections and analyzing powers of the ⁷Li(p,d)⁶Li* reaction at 14 MeV.

Kev 0 +)	Analyzing Power	- 0 145 + 0 000	100.0 T 051.0	- 0.160 ± 0.036	CBN.N I 001.V -	AGN'N I TIT'N -	- 0.090 ± 0.048	0.092 ± 0.060	0.030 ± 0.089	0.037 + 0.152	- 0 0048 + 0 102	76710 70100.0			
°Li 2nd (3.562	dσ/dΩ (mb/sr)	1 16 + A A26	0 627 + 0 015	0 2224 0 0075	0 1034 0 0067	1000'0 T 001 0	1.1130 T U.UUI	0.213± 0.0073	0.157 ± 0.0088	0.161 ± 0.011	0.136 ± 0.012	0 100 + 0 017	170-0 TOET-0		
	θ c.a. (deg)	26.7	40.0	52 9	55.5			2.60	100.3	120.4	137.9	152 2	7.0.7		
fev 3 +)	Analyzing power	0.098 ± 0.039	0.265 ± 0.027	0.135 ± 0.026	0.168 + 0.041			160.0 I CC1.0	0.070 ± 0.027	0.031 ± 0.038	- 0.0064± 0.040	-0.337 + 0.037		- 0 165 + 0 000	700.0 T 001.0
⁹ Li 1st (2.185)	dơ/dΩ (mb/sr)	3.56 ± 0.074	1.64 ± 0.035	1.22 ± 0.026	1.31 ± 0.028	1.24 + 0.076		670 0 T 50 T	1.00 ± 0.023	1.05 ± 0.023	0.894 ± 0.023	1.05 ± 0.027	1.32 + 0.034	1.64 + 0 047	
-	θ с.∎. (deg)	26.0	38.9	51.5	63.8	75.7	R7_1		8.18	108.2	118.1	135.9	151.7	166.2	
(+	Analyzing Power	0.056 ± 0.037	0.135 ± 0.026	0.141 ± 0.026	0.020 ± 0.036	-0.073 ± 0.026	0.001 ± 0.036	0 150 4 0 027	170°0 T 000 0	0.232 ± 0.044	0.184 ± 0.030	0.071 ± 0.041	0.028 ± 0.041		- 0.016 ± 0.034
^e Li ground (1	dσ/dΩ (∎b/sr)	9.34 ± 0.189	3.31 ± 0.068	1.31 ± 0.027	1.51 ± 0.031	1.44 ± 0.030	1.25 ± 0.027	1 15 + 0 075		1.110 ± 1.12	670'0 I 696'0	0.946± 0.026	0.798± 0.021	1.02 ± 0.027	1.23 ± 0.032
	θ c. n (deg)	25.2	37.7	50.0	61.9	73.6	84.8	35.5	105.0	0.001	C.CI1	124.8	133.8	150.2	165.4

Appendix 4-3 Differential cross sections and analyzing powers of the ⁷Li(p,d)⁶Li* reaction at 16 MeV.

Appendix 5 Double differential cross sections (mb/sr/MeV) of the ⁷Li(p,d) reaction at 14 MeV.

7Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 10 deg [POL = NON]

0.2 0.3 0.4 0.5 0.6 1.0 8.0 0.9 sneroy/ 0.0 0.1 0.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 8.37E-01 (1.22E-01) 8.01E-01 (1.19E-01) 6.30E-01 (1.06E-01) 2.16E-01 (6.20E-02) 8.88E-02 (3.97E-02) 1.0 / 3.87E-01 (8.29E-02) 5.38E-01 (9.77E-02) 3.16E+00 (2.37E-01) 5.69E+00 (3.18E-01) 4.94E+00 (2.34E-01) 3.09E+00 (2.34E-01) 2.09E+00 (1.92E-01) 1.98E+00 (1.87E-01) 1.82E+00 (1.88E+00) 1.88E+00 (1.88E+00) 1.88E+00) 1.88E+00 (1.88E+00) 1.88E+00) 1.88E+00 (1.88E+00) 1.88E+00) 1.88E+000 1.88E+000 1.88E+000 1.88E+000 1.88E+000 1.88E+000 1.88E+000 1.88E+00 2.0 / 1.57E+00 (1.67E-01) 1.40E+00 (1.57E-01) 1.70E+00 (1.73E-01) 1.35E+00 (1.55E-01) 1.44E+00 (1.60E-01) 1.64E+00 (1.70E-01) 1.53E+00 (1.65E-01) 1.5 3.0 / 1.535+00 (1.65E-01) 1.555+00 (1.66E-01) 1.525+00 (1.64E-01) 1.485+00 (1.64E-01) 1.575+00 (1.67E-01) 1.725+00 (1.755-01) 1.725+00 (1.775-01) 1.645+00 (1.675-01) 1.775+00 (1.675-01) 1.775+00 (1.775-01) 1.755+00 (1.675-01) 1.755+00 (1.675-01) 1.755+00 (1.675-01) 1.755+00 (1.675-01) 1.755+00 (1.775-01) 1.75 4.0 / 1.49E+00 (1.63E-01) 1.41E+00 (1.58E-01) 1.42E+00 (1.49E-01) 1.46E+00 (1.59E-01) 1.61E+00 (1.67E-01) 1.70E+00 (1.72E-01) 1.31E+00 (1.50E-01) 1.32E+00 (1.52E+01) 1.32E+00 (1.59E-01) 1.33E+00 (1.59E-01) 1.3 5.0 / 1.36E+00 (1.54E-01) 1.52E+00 (1.62E-01) 3.25E+00 (2.37E-01) 7.27E+00 (3.55E-01) 3.64E+00 (2.51E-01) 9.40E-01 (1.28E-01) 7.47E-01 (1.14E-01) 9.25E-01 (1.27E-01) 8.56E-01 (1.22E-01) 7.47E-01 (1.14E-01) 6.0 / 6.17E-01 (1.03E-01) 1.07E+00 (1.35E-01) 1.06E+00 (1.35E-01) 1.07E+00 (1.35E-01) 2.11E+00 (1.91E-01) 1.12E+01 (4.40E-01) 2.40E+01 (6.45E-01) 9.95E+00 (4.15E-01) 1.66E+00 (1.66E-01) 7.0 / 2.72E-01 (6.86E-02) 1.52E-01 (5.12E-02) 1.03E-01 (4.22E-02) 1.48E-01 (5.06E-02) 5.61E-02 (3.12E-02) 8.33E-02 (3.80E-02) 2.08E-01 (6.00E-02) 2.32E-01 (6.34E-02) 3.14E-01 (7.38E-02) 5.88E-01 (1.01E-01) 8.0 / 6.21E-01 (1.04E-01) 5.79E-01 (1.00E-01) 4.50E-01 (8.83E-02) 5.28E-01 (9.56E-02) 8.93E-01 (1.24E-01) 9.49E-01 (1.28E-01) 1.75E+00 (1.75E-01) 1.34E+01 (4.81E-01) 6.04E+01 (1.02E+00) 3.08E+01 (7.30E-01) 9.0 / 3.06E-000 (2.30E-01) 1.05E-01 (4.27E-02) 7.73E-02 (J.66E-02) 2.14E-02 (1.93E-02) 2.24E-02 (1.93E-02) 1.73E-02 (1.73E-02) 4.19E-02 (2.69E-02)

7Li(p.d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 20 deg[POL = NON] energy/ 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00] 0.00E 1,0 / 8,19E-02 (2,38E-02) 2,29E-01 (3,98E-02) 3,16E-01 (4,67E-02) 4,25E-01 (5,42E-02) 2,01E+00 (1,18E-01) 2,51E+00 (1,32E-01) 2,38E+00 (1,32E-01) 2,46E+00 (1,32E-01) 2,46E+00 (1,32E-01) 2,47E+00 (1,32E-01) 2,57E+00 (1,32E+01) 2,5 2.0 / 2.56E+00 (1.33E-01) 2.28E+00 (1.25E-01) 2.40E+00 (1.29E-01) 2.49E+00 (1.31E-01) 2.13E+00 (1.21E-01) 2.43E+00 (1.23E-01) 2.31E+00 (1.22E-01) 2.14E+00 (1.22E-01) 2.1 3.0 / 2.34E100 (1.27E-01) 2.53E+00 (1.32E-01) 2.17E100 (1.22E-01) 2.34E100 (1.27E-01) 2.05E100 (1.17E-01) 1.98E100 (1.17E-01) 1.88E100 (1.14E-01) 1.88E100 (1.14E-01) 1.36E100 (9.68E-02) 1.23E100 (9.20E-02) 4.0 / 1.25E+00 (9.28E-02) 1.27E+00 (9.45E-02) 1.27E+00 (9.45E-02) 1.47E+00 (1.07E-01) 1.43E+00 (1.05E-01) 1.41E+00 (1.05E-01) 1.37E+00 (1.04E-01) 1.21E+00 (9.68E-02) 1.11E+00 (9.28E-02) 1.10E+00 (9.28E-02) 1.21E+00 (9.28E-02) 1.2 5.0 / 2.99E+00 (1.52E-01) 9.61E+00 (2.73E-01) 3.92E+00 (1.74E-01) 1.02E+00 (8.08E-02) 7.77E-01 (7.76E-02) 8.49E-01 (8.11E-02) 8.38E-01 (8.06E-02) 8.77E-01 (8.24E-02) 8.06E-01 (7.90E-02) 8.64E-01 (8.18E-02) 6.0 / 9.53E-01 (8.59E-02) 9.42E-01 (8.54E-02) 1.20E+00 (9.66E-02) 1.98E+00 (1.24E-01) 1.16E+01 (3.00E-01) 2.49E+01 (4.39E-01) 7.25E+00 (2.37E-01) 8.41E-01 (8.07E-02) 2.32E-01 (4.24E-02) 1.43E+01 (3.32E-02) 7.0 / 9.26E-02 (2.68E-02) 8.15E-02 (2.51E-02) 1.95E-02 (1.23E-02) 6.93E-02 (2.32E-02) 9.77E-02 (2.31E-02) 6.86E-02 (2.31E-02) 6.90E-02 (2.31E-02) 1.90E-01 (2.79E-02) 2.48E-01 (4.38E-02) 8.0 / 4.00E-01 (5.57E-02) 4.59E-02) 5.30E-01 (6.41E-02) 7.23E-01 (7.48E-02) 2.13E+00 (1.28E-01) 3.20E+01 (4.98E-01) 8.39E+01 (8.06E-01) 1.20E+01 (3.62E-01) 7.21E-01 (7.47E-02) 7.35E-02 (2.39E-02) 9.0 / 3.85E-02 (1.73E-02) 2.34E-02 (1.35E-02)

7Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 30 deg[POL = NON] 0.9 anergy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 2.14E-02 (8.60E-03) 1.46E-01 (2.24E-02) 7.54E-02 (1.62E-02) 2.39E-02 (9.09E-03) 0.00E+00 (0.00E+00) 1.0 / 7.18E-02 (1.58E-02) 2.88E-01 (3.16E-02) 2.99E-01 (3.21E-02) 4.06E-01 (3.75E-02) 1.92E+00 (8.14E-02) 2.20E+00 (8.74E-02) 2.21E+00 (8.74E-02) 2.22E+00 (8.84E-02) 2.0 / 2.216100 (8.756-02) 2.196100 (8.756-02) 2.216100 (8.756-02) 1.986100 (8.756-02) 1.946100 (8.196-02) 1.956100 (8.216-02) 1.956100 (8.216-02) 2.066100 (8.446-02) 2.156100 (8.596-02) 3.0 / 2.10E+00 { 8.52E-02 } 1.98E+00 { 8.28E-02 } 1.74E+00 { 7.76E-02 } 1.61E+00 { 7.76E-02 } 1.55E+00 { 7.31E-02 } 1.11E+00 { 6.19E-02 } 1.13E+00 { 6.26E-02 } 1.23E+00 { 6.51E-02 } 1.39E+00 { 6.51E-02 } 1.39E+00 { 6.52E-02 } 1.39E+00 { 6.51E-02 } 1.39E+00 { 6.52E-02 } 1.39E+00 { 7.62E-02 } 1.39E+00 { 7.62E-4.0 / 1.30E+00 (6.49E-02) 1.32E+00 (6.75E-02) 1.37E+00 (7.99E-02) 1.34E+00 (7.58E-02) 1.08E+00 (7.10E-02) 1.04E+00 (6.95E-02) 2.08E+00 (9.84E-02) 6.26E+00 (1.71E-01) 3.25E+00 (1.23E+01) 5.0 / 9.002-01 (6.48E-02) 8.47E-01 (6.28E-02) 8.19E-01 (6.18E-02) 7.28E-01 (5.50E-02) 6.50E-02) 6.66E-01 (5.55E-02) 6.61E-01 (5.55E-02) 6.33E-01 (5.43E-02) 7.11E-01 (5.76E-02) 8.12E-01 (6.15E-02) 6.0 / 1.57E+00 (0.56E-02) 0.95E+00 (2.04E-01) 1.42E+01 (2.57E-01) 2.51E+00 (1.10E-01) 3.71E-01 (4.16E-02) 1.62E-01 (2.74E-02) 1.11E-01 (2.77E-02) 6.03E-02 (1.68E-02) 2.64E-02 (1.11E-02) 1.97E-02 (9.59E-03) 7.0 / 5.77E-03 (5.18E-03) 3.15E-02 (1.21E-02) 1.86E-02 (9.32E-03) 1.40E-02 (8.07E-03) 6.43E-03 (5.47E-03) 3.28E-02 (1.24E-02) 8.18E-02 (1.95E-02) 2.52E-01 (3.09E-02) 1.61E-01 (2.74E-02) 2.52E-01 (3.43E-02) 8.0 / 4.11E-01 (4.37E-02) 3,43E+00 (1,30E-01) 3,01E+01 (3,74E-01) 2,02E+01 (3,07E-01) 1,55E+00 (8,49E-02) 8,45E-02 (1,98E-02) 2,46E-02 (1,07E-02) 1,36E-02 (7,96E-03) 9.32E-03 (4.59E-03)

7Li(p.d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 40 deg

[POL = NON]

0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 anergy/ 0.1 0.0/ 0.00E+00 (0.00E+00) 3.65E-02 (1.12E-02) 8.13E-02 (1.60E-02) 6.53E-02 (1.50E-02) 3.46E-03) 0.00E+00 | 0.00E+00 | 0.00E+00) 1.0 / 5.81E-02 (1.42E-02) 1.80E-01 (2.50E-02) 2.90E-01 (3.16E-02) 3.12E-01 (3.28E-02) 1.51E+00 (7.21E-02) 1.96E+00 (8.23E-02) 1.85E+00 (8.06E-02) 1.86E+00 (8.06E-02) 1.90E+00 (8.11E-02) 1.92E+00 (8.14E-02) 2.0 / 1.81E400 (7.91E-02) 1.71E400 (7.69E-02) 1.79E400 (7.68E-02) 1.66E400 (7.57E-02) 1.80E400 (7.87E-02) 1.72E400 (7.47E-02) 1.92E400 (8.14E-02) 1.66E400 (7.68E-02) 1.66E400 (7.58E-02) 1.66E400 (7.58E-02) 3 0 / 1.45F100 (7.07E-02) 1.41E100 (6.97E-02) 1.10E100 (6.16E-02) 9.83E-01 (5.83E-02) 1.02E100 (5.95E-02) 1.07E100 (6.06E-02) 1.07E100 (6.14E-02) 1.4E100 (6.27E-02) 1.19E100 (6.427E-02) 4.0 / 9.80E-01 (5.82E-02) 1.02E+00 (5.98E-02) 1.02E+00 (5.98E-02) 1.19E+00 (6.44E-02) 3.41E+00 (1.07E-01) 2.34E+00 (9.03E-02) 6.98E-01 (5.60E-02) 6.65E-01 (4.60E-02) 6.65E-01 (4.62E-02) 6.03E-01 (4.57E-02) 5.0 / 5.98E-01 (4.57E-02) 6.14E-01 (4.63E-02) 5.07E-01 (4.21E-02) 5.56E-01 (4.41E-02) 5.86E-01 (4.52E-02) 6.76E-01 (4.52E-02) 6.77E-01 8.86E-00 (1.79E-01 8.86E-00 (1.79E-01 8.86E-00 (1.79E-01 8.86E-00 (1.79E-01 8.86E-00 8.20E-02) 6.76E-01 8.86E-00 8.20E-02 6.0 / 1.69E-02 (2.43E-02) 7.11E-02 (1.58E-02) 4.05E-02 (1.59E-02) 5.29E-02 (1.36E-02) 1.91E-02 (8.17E-03) 1.89E-02 (8.13E-03) 5.33E-03 (4.31E-03) 2.26E-02 (8.88E-03) 1.05E-02 (8.05E-03) 7.0 / 2.00E-02 (8.35E-03) 3.74E-02 (1.14E-02) 6.46E-02 (1.50E-02) 5.07E-02 (1.54E-02) 9.08E-02 (1.78E-02) 5.01E-01 (4.18E-02) 6.33E+00 (1.49E-01) 9.62E+00 (1.43E-01) 9.62E+00 (1.43E-02) 6.35E+02 (1.54E-02) 6.35E+02 (1.54E-02) 6.35E+03 (1.54E-02) 6.33E+00 (1.43E-02) 6.35E+02 (1.54E-02) 6.35E+02 (1.54E-02) 6.35E+03 (1.54E-02) 6.3 8.0 / 4.88E-02 (1.30E-02) 1.61E-02 (7.51E-03)

7Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 50 deg [POL = NON]

0.3 0.5 aner 4¥/ 0.0 0.1 0.2 0.4 0.6 0.7 0.8 0.9 0.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 4.88E-02 (9.19E-03) 1.53E-01 (1.62E-02) 8.08E-02 (1.18E-02) 2.22E-03 (2.29E-03) 3.02E-03 (2.29E-03) 1.0 / 2.44E-02 (6.50E-03) 1.56E-01 (1.64E-02) 2.53E-01 (2.09E-02) 4.87E-01 (2.09E-02) 1.42E+00 (4.95E-02) 1.66E+00 (5.36E-02) 1.56E+00 (5.38E-02) 1.56E+00 (5.38E+02) 1.56 2.0 / 1.57E+00 (5.37E-02) 1.68E+00 (5.37E-02) 1.77E+00 (5.57E-02) 1.66E+00 (5.36E-02) 1.39E+00 (4.91E-02) 1.39E+00 (4.75E-02) 1.9E+00 (4.55E-02) 1.9E+00 (4.55E+00 (4.55E+00) 1.9E+00 (4.55E+00 (4.55E+00) 1.9E+00 (4. 3.0 / 8.78E-01 (3.90E-02) 1.07E+00 (4.29E-02) 9.45E-01 (4.04E-02) 9.29E-01 (4.01E-02) 8.93E-01 (3.95E-02) 7.91E-01 (3.96E-02) 8.62E-01 (3.86E-02) 1.70E+00 (5.43E-02) 4.0 / 1.96E+00 (5.83E-02) 7.77E-01 (3.67E-02) 5.81E-01 (3.17E-02) 5.60E-01 (3.15E-02) 5.00E-01 (2.97E-02) 5.22E-01 (3.02E-02) 5.14E-01 (2.99E-02) 4.76E-01 (2.90E-02) 4.82E-01 (2.90E-02) 5.0 / 6.01E-01 (3.24E-02) 1.42E+00 (4.97E-02) 6.83E+00 (1.07E+01) 1.07E+01 (1.37E-01) 2.36E+00 (6.42E-02) 2.70E-01 (2.17E-02) 9.41E-02 (1.28E-02) 4.20E-02 (8.56E-03) 2.16E-02 (4.13E-03) 1.44E-02 (5.00E-03) 6.0 / 1.50E-02 (5.11E-03) 1.61E-02 (5.29E-03) 1.20E-02 (4.58E-03) 1.07E-02 (5.07E-03) 1.47E-02 (5.07E-03) 1.47E-02 (5.07E-03) 3.68E-02 (0.01E-03) 4.69E-02 (0.01E-03) 4.69E-02 (1.14E-02) 7.0 / 1.85E-01 (1.80E-02) 1.82E100 (5.63E-02) 9.79E100 (1.31E-01) 5.84E100 (1.01E-01) 4.61E-01 (2.83E-02) 4.50E-02 (8.85E-03) 2.59E-02 (6.72E-03) 1.55E-02 (5.20E-03) 7.38E-03 (3.59E-03)

7Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 60 deg[POL = NON] EOBERGY/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0. 0.9 0.0 / 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 3.19E-02 (7.41E-03) 5.94E-02 (1.01E-02) 4.50E-02 (1.23E-02 (4.60E-03) 2.56E-03 (2.10E-03) 1.0 / J.22E-02 (7.43E-03) 1.29E-01 (1.49E-02) 1.91E-01 (1.81E-02) 1.24E+02 (2.71E-02) 1.24E+02 (3.61E-02) 1.54E+00 (5.17E-02) 1.58E+00 (5.17E-02) 1.5 2.0 / 1,62E+00 (5,27E-02) 1,33E+00 (4,78E-02) 1,33E+00 (4,59E-02) 1,33E+00 (4,40E-02) 9,83E-01 (4,11E-02) 8,64E-01 (3,85E-02) 8,64E-01 (3,85E-02) 7,53E-01 (3,66E-02) 9,11E-01 (3,95E-02) 9,07E-01 (3,95E-02) 3.0 / 8.40E-01 (3.80E-02) 8.11E-01 (3.73E-02) 6.98E-01 (3.46E-02) 7.79E-01 (3.66E-02) 8.50E-02) 1.76E+00 (5.50E-02) 1.50E+00 (5.50E-02) 6.83E-01 (3.42E-02) 5.53E-01 (3.08E-02) 6.16E-01 (3.25E-02) 4.0 / 4.81E-01 (2.88E-02) 3.93E-01 (2.60E-02) 4.58E-01 (2.81E-02) 4.56E-01 (2.81E-02) 5.96E-01 (3.21E-02) 5.9 5.0 / 1.56E-01 (1.65E-02) 7.51E-02 (1.14E-02) 4.96E-02 (5.22E-03) 2.42E-02 (6.47E-03) 2.61E-02 (6.72E-03) 1.18E-02 (4.51E-03) 1.51E-02 (5.71E-03) 1.54E-02 (5.16E-03) 1.58E-02 (5.22E-03) 1.51E-02 (5.11E-03) 4.0 / 1.51E-02 (5.12E-03) 3.00E-02 (7.20E-03) 4.28E-02 (8.61E-03) 8.51E-02 (1.21E-02) 1.74E-01 (1.74E-02) 1.27E100 (4.69E-02) 9.31E100 (1.27E-01) 7.88E100 (1.17E-01) 7.52E-01 (3.61E-02) 6.80E-02 (1.09E-02) 7.0 / 2.33E-02 (4.36E-03) 1.90E-02 (5.74E-03) 1.25E-02 (4.66E-03) 5.61E-03 (3.12E-03) 3.87E-03 (2.59E-03)

7Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 70 deg[POL = NON]eneray/ 0.0 0.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0 9 0.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00] 3.15E-02 (1.37E-03) 4.57E-02 (8.89E-03) 2.07E-02 (5.91E-03) 7.25E-03 (3.54E-03) 1.13E-03 (1.13E-03) 1.0 / 1.19E-02 (4.55E-03) 6.13E-02 (1.03E-02) 1.57E-01 (1.65E-02) 3.92E-01 (2.60E-02) 1.45E+00 (4.64E-02) 1.45E+00 (4.93E-02) 1.28E+00 (4.72E-02) 1.26E+00 (4.68E-02) 1.06E+00 (4.29E-02) 2.0 / 8.57E-01 (3.85E-02) 8.08E-01 (3.74E-02) 8.17E-01 (3.74E-02) 8.23E-01 (3.77E-02) 7.54E-01 (3.61E-02) 6.94E-01 (3.47E-02) 6.87E-01 (3.45E-02) 6.51E-01 (3.36E-02) 6.31E-01 (3.41E-02) 3.0 / 1.30E+00 (4.73E-02) 1.50E+00 (5.10E-02) 7.20E-01 (3.53E-02) 4.39E-01 (2.76E-02) 4.39E-01 (2.78E-02) 4.38E-01 (2.59E-02) 3.88E-01 (2.59E-02) 3.85E-01 (2.58E-02) 4.39E-01 (2.68E-02) 4.0 / 6.06E-01 (3.24E-02) 1.44E+00 (5.00E-02) 6.65E+00 (1.07E-01) 5.69E+00 (9.91E-02) 7.75E-01 (3.66E-02) 1.16E-01 (1.41E-02) 5.62E-03 (2.49E-02 (6.55E-03) 1.39E-02 (4.69E-03) 9.46E-03 (4.04E-03) 5.0 / 1.47E-02 (5.04E-03) 1.11E-02 (4.39E-03) 1.11E-02 (4.39E-03) 1.45E-03 (3.59E-03) 1.40E-02 (4.92E-03) 2.20E-02 (6.17E-03) 1.89E-02 (5.72E-03) 4.45E-02 (6.77E-03) 9.94E-02 (1.31E-02) 9.97E-01 (4.15E-02) 6.0 / 8.41E+00 (1.21E-01) 7.30E+00 (1.13E-01) 6.40E-01 (3.35E-02) 5.99E-02 (1.02E-02) 1.88E-02 (5.70E-03) 2.17E-02 (6.13E-03) 1.40E-02 (4.91E-03) 4.60E-03 (2.84E-03) 8.23E-03 (3.77E-03)

7Li(p.d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 80 deg

7Li(p,d) DDX (error) ### Ep = 14 MeV

[POL = NON]

[POL = NON]

0.3 0.4 0.5 energy/ 0.0 0.1 0.2 0.6 0.7 0.8 0.9 0.0 / 0.00E+00 / 1.77E-02 (5.54E-03) 1.77E-02 (5.54E-03) 1.21E-02 (4.58E-03) 0.00E+00 / 0.00E+00 1.0 / 2.05E-02 (5.96E-02) 7.60E-02 (1.15E-02) 1.96E-01 (1.35E-02) 1.91E-01 (1.82E-02) 8.33E-01 (3.60E-02) 8.30E-01 (3.79E-02) 7.11E-01 (3.51E-02) 6.56E-01 (3.40E-02) 8.30E-02) 2.0 / 6.79E-01 (3.43E-02) 6.44E-01 (3.34E-02) 6.45E-01 (3.34E-02) 5.95E-01 (3.21E-02) 4.99E-01 (2.94E-02) 6.15E-01 (3.26E-02) 1.46E+00 (5.03E-02) 1.12E+00 (4.40E-02) 4.31E-01 (2.73E-02) 3.96E-01 (2.62E-02) 3.0 / 4.12E-01 (2.67E-02) 3.19E-01 (2.35E-02) 3.38E-01 (2.56E-02) 3.38E-01 (2.40E-02) 3.49E-01 (2.56E-02) 3.78E-01 (2.56E-02) 3.78E-01 (2.56E-02) 4.87E-02) 4.87E-01 (2.90E-02) 4.0 / B.48E-02 (1.21F-02) 3.83E-02 (8.13E-03) 2.39E-02 (6.43E-03) 1.38E-02 (4.84E-03) 1.38E-02 (4.54E-03) 1.51E-02 (5.10E-03) 1.99E-02 (5.10E-03) 1.9 5.0 / 2.07E-02 (5.98E-03) 3.84E-02 (6.15E-03) 6.15E-02 (1.03E-02) 4.14E-01 (2.68E-02) 5.00E+00 (4.10E-01) 1.26E+00 (4.67E-02) 5.99E-02 (1.02E-02) 1.94E-02 (5.43E-03) 6.0 / 9.47E-03 (4.05E-03)

0.2 0.3 0.4 0.5 0.6 0.7 energy/ 0.0 0.1 0.8 0.9 0.0 / 0.00E100 (0.00E100) 9.07E-03 (3.96E-03) 1.94E-02 (5.80E-03) 6.93E-03 (3.46E-03) 3.46E-03 (2.45E-03) 1.29E-03 (1.50E-03) 1.0 / 1.76E-02 (5.52E-03) 7.31E-02 (1.13E-02) 8.84E-02 (1.24E-02) 1.17E-01 (1.42E-02) 5.12E-01 (2.98E-02) 6.52E-01 (3.36E-02) 6.03E-01 (3.23E-02) 7.17E-01 (3.52E-02) 5.76E-01 (3.16E-02) 5.16E-01 (2.99E-02) 2.0 / 4.66E-01 (2.82E-02) 5.92E-01 (3.20E-02) 1.07E+00 (4.39E-02) 9.97E-01 (4.16E-02) 3.40E-01 (2.43E-02) 3.51E-01 (2.47E-02) 3.40E-01 (2.43E-02) 3.57E-01 (2.49E-02) 3.57E-01 (2.49E-02) 3.29E-01 (2.39E-02) 3.08E-01 (2.39E-02) 3.08E-01 (2.39E-02) 3.40E-01 (2.43E-02) 3.4 3.0 / 3.37E-01 (2.42E-02) 4.48E-01 (2.79E-02) 2.00E+00 (5.88E-02) 5.03E+00 (9.33E-02) 1.49E+00 (5.07E-02) 1.18E-01 (1.43E-02) 4.99E-02 (9.30E-03) 4.27E-02 (5.04E-03) 2.03E+02 (5.74E-03) 2.94E-02 (7.13E-03) 4.0 / 3.44E-02 (7.72E-03) 9.47E-03 (4.05E-03) 1.39E-02 (4.91E-03) 1.05E-02 (4.26E-03) 1.08E-02 (4.75E-03) 1.30E-02 (4.75E-03) 3.92E-02 (8.24E-03) 1.01E-01 (1.32E-02) 1.42E100 (4.95E-02) 6.66E100 (1.07E-01) 5.0 / J.87E+00 (8.18E-02) 3.03E-01 (2.29E-02) 2.65E-02 (6.76E-03) 1.05E-02 (4.26E-03) 6.92E-03 (3.46E-03)

LAB, ANGLE = 90 deg

7Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 100 deg[POL = NON]energy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 / 0.00E+00 / 1.27E-02 / 4.19E-03 / 4.56E-03 / 2.81E-03 / 6.84E-03 / 3.44E-03 / 0.00E+00 / 0.00E 1.0 / 1.02E-02 (4.20E-03) 4.32E-02 (8.64E-03) 9.21E-02 (1.26E-02) 1.14E-01 (1.40E-02) 4.78E-01 (2.03E-02) 5.29E-01 (3.02E-02) 5.08E-01 (7.96E-02) 4.74E-01 (2.93E-02) 4.74E-01 (3.41E-02) 9.52E-01 (4.05E-02) 2.0 / 6.48E-01 (3.34E-02) 3.36E-01 (2.41E-02) 2.91E-01 (2.24E-02) 3.35E-01 (2.37E-02) 3.52E-01 (2.47E-02) 3.21E-01 (2.38E-02) 2.87E-01 (2.23E-02) 4.43E-01 (2.76E-02) 2.01E400 (5.89E-02) 4.28E100 (5.89E-02) 3.0 / 1.34E400 (4.01E-02) 1.08E-01 (1.34E-02) 5.75E-02 (9.94E-03) 3.75E-02 (8.04E-03) 3.26E-02 (6.01E-03) 2.35E-02 (6.37E-03) 3.26E-02 (7.50E-03) 4.04E-02 (8.35E-03) 3.87E-02 (8.17E-03) 4.0 / 4.88E-02 (9.18E-03) 1.68E-02 (5.39E-03) 5.19E-02 (9.47E-03) 8.04E-01 (3.73E-02) 4.80E+00 (9.11E-02) 3.72E+00 (8.02E-02) 3.48E-01 (2.45E-02) 1.89E-02 (5.72E-03) 9.42E-03 (4.04E-03)

7Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 110 deg[POL = NON]anergy/ 0.0 0.1 0.2 0.8 0.9 0.3 0.4 0.5 0.6 07 0.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 1.94E-02 (5.78E-03) 5.53E-03 (1.72E-03) 1.72E-03) 1.72E-03 (1.72E-03) 1.72E-03 (1.72E-03) 1.72E-03) 1.72E-03 (1.72E-03) 1.72E-03 (1.72E-03) 1.72E-03) 1.72E-03) 1.72E-03 (1.72E-03) 1.72E-03) 1.72E-03) 1.72E-03) 1.72E-03 (1.72E-03) 1.72E 1.0 / 0.00E+00 (0.00E+00) 2.49E-02 (6.55E-03) 5.59E-02 (9.82E-03) 1.00E-01 (1.32E-02) 3.73E-01 (2.61E-02) 5.71E-01 (3.14E-02) 7.81E-01 (3.67E-02) 6.52E-01 (3.35E-02) 3.50E-01 (2.46E-02) 3.40E-01 (2.42E-02) 2.0 / 3.26E-01 (2.37E-02) 3.00E-01 (2.27E-02) 3.38E-01 (2.41E-02) 3.71E-01 (2.53E-02) 6.16E-01 (3.26E-02) 3.21E+00 (7.44E-02) 3.59E+00 (7.87E-02) 4.40E-01 (2.75E-02) 4.21E-02 (8.53E-03) 4.21E-02 (8.53E-03) 3.0 / 1.93E-02 (5.77E-03) 2.36E-02 (6.38E-03) 3.68E-02 (7.96E-03) 2.19E-02 (6.14E-03) 2.67E-02 (6.29E-03) 3.96E-02 (9.29E-03) 4.86E-02 (9.16E-03) 4.13E-02 (8.44E-03) 6.98E-02 (1.10E-02) 9.02E-01 (3.94E-02) 4.0 / 4.52E+00 (8.83E-02) 6.89E-01 (3.45E-02) 1.83E-02 (5.62E-03)

7Li(p,d) DDX (error) ### Ep = 14 MeV 1 POL = NON 1LAB.ANGLE = $120 \deg$ energy/ 0.0 0.5 0.7 8.0 0.9 0.1 0.2 0.3 0.4 0.6 0.0 / 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00] 3.50E+03 (2.45E+03) 3.38E+03 (2.41E+03) 0.00E+00] 0.00E 1.0 / 5.10E-03 (2.96E-03) 2.91E-02 (7.08E-03) 3.60E-02 (7.87E-03) 1.20E-01 (1.44E-02) 7.28E-01 (3.54E-02) 6.14E-01 (3.25E-02) 2.96E-01 (2.25E-02) 3.16E-01 (2.33E-02) 3.15E-01 (2.33E-02) 3.25E-01 (2.33E-02) 3 2.0 / 3.92E-01 (7.60E-02) 5.41E-01 (3.05E-02) 2.81E+00 (6.95E-02) 4.03E+00 (8.33E-02) 7.81E-01 (3.67E-02) 7.39E-02 (1.13E-02) 3.55E-02 (7.81E-03) 2.70E-02 (6.81E-03) 1.68E-02 (5.37E-03) 1.16E-02 (4.46E-03) 3.0 / 1.63E-02 (5.30E-03) 1.87E-02 (5.68E-03) 2.07E-02 (4.49E-03) 2.63E-02 (6.73E-03) 7.05E-02 (1.10E-02) 1.77E+00 (5.44E-02) 3.19E+00 (6.07E-02) 3.48E-01 (2.45E-02) 1.78E+02 (5.53E-03) 4.0 / 1.448-02 (4.988-03) 5.168-03 (2.988-03)

anergy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 / 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 3.45E-03 (2.44E-03] 3.45E-03 (2.44E-03] 1.72E-03 (0.72E-03] 0.00E100 (0.00E400) 0.00E400 (0.00E400) 0.00E100 (0.00E400) 0.00E100 (0.00E400) 3.45E-03 (2.44E-03] 1.72E-03 (1.72E-03] 0.00E400 (0.00E400) 0.00E400 (0.00E400) 0.00E100 (0

[POL = NON]

7Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 140 deg [POL = NON]

snergy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 5.20E-03 (3.00E-03) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00 (0.00E+00) 0.00E+00 (0

7Li(p.d) DDX (error) ### Bp = 14 MeV LAB.ANGLE = 150 deg[POL = NON]enerov/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 8.0 0.9 0.0 / 0.00E+00 (0.00E+00) 1.72E-03 (1.72E-03) 1.72E-03) 0.00E+00 } 0.00E+00 } 0.00E+00) 0.00E+00] 0.00E 1.0 / 6.79E-03 (3.42E-03) 2.12E-02 (6.05E-03) 2.88E-02 (7.05E-03) 6.46E-02 (1.06E-02) 2.41E-01 (2.04E-02) 4.08E-01 (2.65E-02) 1.39E+00 (4.89E-02) 3.97E+00 (6.28E-02) 2.99E+00 (7.18E-02) 2.70E-01 (1.95E-02) 2.0 / 4.86E-02 (9.16E-03) 2.66E-02 (6.77E-03) 1.69E-02 (5.40E-03) 1.52E-02 (5.11E-03) 7.77E-02 (6.91E-03) 7.47E-02 (4.81E-03) 2.48E-02 (6.54E-03) 1.33E-02 (1.52E-02) 7.45E+00 (6.50E-02) 3.0 / 3.32E+00 (7.57E-02) 2.10E-01 (1.91E-02) 3.59E-03 (2.49E-03)

?Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 160 deg [POL = NON]

snargy/ 0.0 C.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.7 0.0 / 0.00E+00 { 0.00E+00 {

7Li(p,d) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 165 deg [POL = NON]

energy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 1.45E-03 (2.44E-03) 4.6FE-04 (8.9FE-04) (2.9EE-03 (2.27E-03) 0.00E+00 (0.00E+00) 1.0 / 1.9E+02 (4.54E-03) 2.12E-02 (4.56E-03) 3.37E-02 (7.62E-03) 1.15E-01 (1.41E-02) 4.97E-01 (2.93E-02) 2.57E+00 (4.66E-02) 3.79E+00 (8.09E-02) 1.79E+00 (5.56E-02) 1.10E-01 (1.38E-02) 4.84E+02 (9.14E-03) 2.45E-03 (2.27E-03) 2.38E+00 (4.56E-03) 2.38E+00 (4.56E-03) 2.39E+02 (4.58E+03) 2.54E+02 (4.58E+03) 2.54E+02 (4.58E+03) 1.12E-01 (1.39E+02) 1.77E+00 (5.52E+02) 3.88E+00 (8.14E+02) 4.17E+01 (3.26E+02) 3.74E+02 (5.77E+03) 9.99E+03 (4.15E+03) 2.39E+02 (4.58E+03) 2.54E+02 (4.58E+03) 2.54E+02 (4.58E+03) 1.12E+01 (1.39E+02) 1.77E+00 (5.52E+02) 3.88E+00 (8.14E+02) 4.17E+01 (3.26E+02) 3.74E+02 (5.77E+03) 9.99E+03 (4.15E+03) 2.39E+02 (4.58E+03) 2.54E+02 (4.58E+03) 2.54E+02 (4.58E+03) 1.12E+01 (1.39E+02) 1.77E+00 (5.52E+02) 3.88E+00 (8.14E+02) 4.17E+01 (3.26E+02) 3.74E+02 (5.77E+03) 9.99E+03 (4.15E+03) 2.39E+02 (5.58E+03) 2.54E+02 (5.57E+02) 1.77E+00 (5.52E+02) 1.77E+00 (5.52E+02) 3.88E+00 (8.14E+02) 4.17E+01 (3.26E+02) 3.74E+02 (5.77E+03) 9.99E+03 (4.15E+03) 9.99E Appendix 6 Double differential cross sections (mb/sr/MeV) of the ⁷Li(p,t) reaction at 14 MeV.

7Li(p,t) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 10 deg [POL = NON]

0.2 0.3 0.4 0.5 0.6 0.7 8.0 0.9 energy/ 0.0 0.1 0.0 / 0.002+00 (0.002+00) 0.002+00 (0.002+00) 0.002+00) 0.002+00 (0.002+00) 0.002+00 (0.002+00) 1.542+00 (2.142-01) 1.922-01 (7.552-02) 1.512+00 (2.122-01) 4.802+00 (3.782-01) 7.562+00 (4.742-01) 1.0 / 3.75F+00 (3.34E-01) 1.18E+00 (1.87E-01) 5.59E-01 (1.27E-01) 3.34E-01 (1.14E-01) 3.59E+00 (3.27E-01) 7.46E+00 (4.71E-01) 6.64E+00 (4.44E-01) 6.06E+00 (4.24E-01) 5.24E+00 (3.95E-01) 2.0 / 5.82E+00 (4.16E-01) 4.93E+00 (3.83E-01) 5.12E+00 (3.69E-01) 5.10E+00 (3.65E-01) 5.00E+00 (3.89E-01) 5.38E+00 (4.00E-01) 4.39E+00 (3.61E-01) 4.80E+00 (3.78E-01) 5.10E+00 (3.89E-01) 3.0 / 5.552+00 (4.052-01) 6.082+00 (4.252-01) 5.102+00 (3.892-01) 5.282+00 (3.962-01) 5.692+00 (4.112-01) 6.182+00 (4.282-01) 5.512+00 (4.082-01) 5.312+00 (3.972-01) 5.292+00 (4.082-01) 5.292+000 (4.082-01) 5.292+000 (4.082-01) 5.292+000 (4.082-01) 5.292+000 (4.082-0 4.0 / 5.88E+00 (4.18E-01) 5.74E+00 (4.13E-01) 5.93E+00 (4.20E-01) 6.33E+00 (4.34E-01) 5.89E+00 (4.18E-01) 5.92E+00 (4.19E-01) 5.75E+00 (4.13E-01) 5.7 5.0 / 5.43E+00 (3.06E-01) 5.76E+00 (3.15E-01) 5.84E+00 (3.18E-01) 5.87E+00 (3.19E-01) 6.72E+00 (3.29E-01) 6.72E+00 (3.29E-01) 5.78E+00 (3.16E-01) 5.7 6.0 / 5.54F100 (3.09E-01) 5.94E100 (3.20E-01) 5.34E100 (3.04E-01) 5.29E100 (3.02E-01) 5.34E100 (3.04E-01) 4.55E100 (2.44E-01) 3.44E100 (2.45E-01) 2.97E100 (2.27E-01) 3.15E100 (2.33E-01) 7.0 / 2.89E+00 (2.24E-01) 3.55E+00 (2.48E-01) 3.11E+00 (2.32E-01) 3.46E+00 (2.45E-01) 3.49E+00 (2.45E-01) 4.11E+00 (2.65E-01) 3.41E+00 (2.45E-01) 4.44E+00 (2.77E-01) 8.0 / 3.92E+00 (2.60E-01) 4.69E+00 (2.85E-01) 4.65E+00 (2.84E-01) 5.41E+00 (3.06E-01) 5.89E+00 (3.19E-01) 6.78E+00 (3.42E-01) 7.69E+00 (3.64E-01) 8.19E+00 (3.76E-01) 9.14E+00 (3.97E-01) 1.01E+01 (4.17E-01) 9.0 / 1.19E+01 (4.53E-01) 1.17E+01 (4.50E-01) 1.21E+01 (4.56E-01) 1.29E+01 (4.73E-01) 1.22E+01 (4.73E-01) 1.07E+01 (4.30E-01) 8.29E+00 (3.78E-01) 6.07E+00 (3.78E-01) 6.07E+00 (3.78E-01) 4.28E+00 (2.72E-01) 10.0 / J.66E+00 (2.52E-01) 2.83E+00 (2.21E-01) 1.73E+00 (1.73E+01) 8.57E-01 (1.72E-01) 7.87E-01 (1.16E-01) 4.56E+01 (8.87E-02) 1.61E-01 (5.28E+02) 2.67E+02 (2.15E+02) (1.73E+02 (1.73E+02) (1.73E+02)

7Li(p.t) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 20 deg[POL = NON] 0.5 0.7 0.8 energy/ 0.0 0.1 0.2 0.3 0.4 0.6 0.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 } 0.00E+00 \\ 0.00E+00 } 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E 1.0 / 4.15E-02 (1.69E-02) 1.38E-02 (9.77E-03) 6.91E-03 (6.91E-03) 3.47E-02 (1.55E-02) 1.67E-01 (3.39E-02) 3.37E+00 (1.53E-01) 5.43E+00 (1.94E-01) 5.48E+00 (1.98E+01) 5.44E+00 (1.92E+01) 5.44E+00) 5.44E+00 (1.92E+01) 5.44E+00) 5.44E+00 (1.92E+01) 5.44E+00 (1.92E+01) 5.44E+00) 5.44E+00 (1.92E+01) 5.44E+00) 5.44E+00 (1.92E+01) 5.44E+00 (1.92E+01) 5.44E+00) 5.44E+00) 5.44E+00 (1.92E+01) 5.44E+00) 5.44E+00 (1.92E+01) 5.44E+00) 5.44E+00 (1.92E+01) 5.44E+00) 5.44E+0 2.0 / 5.24E+00 (1.90E-01) 5.38E+00 (1.93E-01) 5.24E+00 (1.93E-01) 5.24E+00 (1.93E-01) 5.35E+00 (1.91E-01) 5.35E+00 (1.92E-01) 5.35E+00 (1.93E-01) 5.55E+00 (1.93E-01) 5.55 3.0 / 5.88E+00 (2.02E-01) 5.30E+00 (1.91E-01) 5.72E+00 (1.98E-01) 5.58E+00 (1.96E-01) 5.66E+00 (1.96E-01) 5.65E+00 (1.98E-01) 5.59E+00 (1.98E-01) 5.59 4.0 / 5.73E+00 (1.99E-01) 5.34E+00 (1.92E-01) 5.46E+00 (1.94E-01) 5.71E+00 (1.99E-01) 5.92E+00 (2.02E-01) 5.95E+00 (2.02E-01) 5.95E+00 (1.99E-01) 5.23E+00 (1.99E-01) 5.23E+00 (1.98E+00 (1.84E-01) 5.0 / 5.24E+00 (Z.01E-01) 5.20E+00 (Z.00E-01) 4.96E+00 (J.96E-01) 5.28E+00 (Z.02E-01) 5.46E+00 (Z.03E-01) 5.46E+00 (J.98E+01) 5.36E+00 (Z.08E-01) 5.36E+00 (Z.03E-01) 5.36E+00 (Z.03E+00) 5.3 6.0 / 5.12E+00 (2.10E-01) 5.65E+00 (2.09E-01) 4.58E+00 (1.68E-01) 3.39E+00 (1.62E-01) 3.46E+00 (1.63E-01) 3.52E+00 (1.65E-01) 3.43E+00 (1.63E-01) 3.44E+00 (1.63E-01) 3.44E+00 (1.63E-01) 3.28E+00 (1.63E-01) 3.44E+00 (1.63E-01) 3.28E+00 (1.63E-01) 3.28E+00 (1.63E-01) 3.44E+00 (1.63E-01) 3.28E+00 (1.63E-01) 3.28E+00 (1.63E-01) 3.28E+00 (1.63E-01) 3.28E+00 (1.63E-01) 3.44E+00 (1.63E-01) 3.28E+00 (1.63E-01) 3.28E+00 (1.63E-01) 3.28E+00 (1.63E-01) 3.44E+00 (1.63E-01) 3.28E+00 (1.63E-01) 3.44E+00 (1.63E-01) 3.28E+00 (1.63E-01) 3.2 7.0 / 3.28E+00 (1.59E-01) 3.47E+00 (1.64E-01) 3.73E+00 (1.69E-01) 3.52E+00 (1.65E-01) 3.52E+00 (1.65E-01) 3.52E+00 (1.65E-01) 3.59E+00 (1.64E-01) 3.72E+00 (1.64E-01) 3.72 8.0 / 3.02E+00 (1.72E-01) 3.89E+00 (1.73E-01) 4.11E+00 (1.78E-01) 4.07E+00 (1.77E-01) 4.39E+00 (1.84E-01) 4.39E+00 (1.95E+01) 5.41E+00 (2.04E-01) 5.41E+00 (1.95E+01) 5.19E+00 (2.00E-01) 9.0 / 5.21E400 (2.00E-01) 4.31E400 (1.82E-01) 4.22E400 (1.80E-01) 3.36E400 (1.61E-01) 2.87E400 (1.49E-01) 2.25E400 (1.32E-01) 1.85E400 (1.20E-01) 1.50E400 (1.00E-01) 1.07E400 (9.09E-02) 7.17E-01 (7.44E-02) 10.0 / 5.33E-01 (6.41E-02) 3.52E-01 (5.71E-02) 1.18E-01 (3.02E-02) 4.94E-02 (1.95E-02) 7.71E-03 (7.71E-03)

7Li(p,t) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 30 deg

0.9 energy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 2.12E-02 (8.56E-03) 5.05E-03 (4.18E-03) 2.42E-02 (9.15E-03) 3.45E-02 (1.12E-02) 3.46E-02 (1.09E-02) 1.0 / 1.13E-02 (6.25E-03) 1.64E-02 (7.53E-03) 0.00E+00 (0.00E+00) 3.46E-02 (1.09E-02) 8.72E-02 (1.74E-02) 2.26E+00 (8.84E-02) 3.92E+00 (1.16E-01) 3.88E+00 (1.16E-01) 4.08E+00 (1.19E-01) 4.12E+00 (1.19E-01) 2.0 / 4.40E+00 (1.23E-01) 4.74E+00 (1.23E-01) 4.58E+00 (1.26E-01) 4.58E+00 (1.26E-01) 4.76E+00 (1.28E-01) 5.00E+00 (1.31E-01) 5.00E+00 (1.32E-01) 5.0 3.0 / 5.34E+00 (1.36E-01) 5.24E+00 (1.32E-01) 5.04E+00 (1.32E-01) 5.03E+00 (1.32E-01) 4.96E+00 (1.31E-01) 5.03E+00 (1.32E-01) 4.91E+00 (1.29E-01) 4.73E+00 (1.29E+01) 4.73 4.0 / 4.62E+00 (1.26E-01) 4.56E+00 (1.26E-01) 4.35E+00 (1.23E-01) 4.35E+00 (1.30E-01) 5.30E+00 (1.35E-01) 4.85E+00 (1.30E-01) 4.59E+00 (1.26E-01) 4.59E+00 (1.26E+00) 4.59E+00 (1.26E+00) 4.59E+00 (1.26E+00) 4.59E+00 (1.26E+00) 4.5 5.0 / 4.72E+00 (1.48E-01) 4.70E+00 (1.50E-01) 5.14E+00 (1.54E-01) 5.04E+00 (1.53E-01) 5.13E+00 (1.54E-01) 5.25E+00 (1.54E-01) 4.70E+00 (1.54E-01) 4.73E+00 (1.48E-01) 4.73E+00 (1.48E+01) 4.7 6.0 / 3.42E+00 (1.28E-01) 3.55E+00 (1.28E-01) 3.46E+00 (1.27E-01) 3.71E+00 (1.31E-01) J.67E+00 (1.30E-01) J.58E+00 (1.29E-01) 3.58E+00 (1.27E-01) 3.68E+00 (1.30E-01) 3.6 7.0 / 3.81E100 (1.33E-01) 4.04E100 (1.37E-01) 4.05E100 (1.37E-01) 4.24E100 (1.42E-01) 4.36E100 (1.43E-01) 4.61E100 (1.46E-01) 4.81E100 (1.49E-01) 5.07E100 (1.53E-01) 5.45E100 (1.59E-01) 8.0 / S.94E+00 (1.66E-01) 6.51E+00 (1.73E-01) 6.08E+00 (1.78E-01) 7.07E+30 (1.88E-01) 7.05E+00 (1.88E-01) 7.07E+00 (1.68E-01) 6.64E+00 (1.75E-01) 5.60E+00 (1.61E+01) 4.38E+00 (1.42E+01) 3.70E+00 (1.31E+01) 7.07E+00 (1.68E+01) 7.0 9.0 / 2.69E+00 (1.11E-01) 1.84E+00 (9.22E-02) 1.32E+00 (7.80E-02) 1.00E+00 (6.81E-02) 7.24E-01 (5.78E-02) 4.85E-01 (3.73E-02) 7.45E-01 (3.36E-02) 1.59E-01 (2.71E-02) 2.53E-02 (1.08E-02) 1.85E-02 (9.24E-03) 10.0 / 5.936-03 (5.236-05)

[POL = NON]

[POL = NON]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 energy/ 0.0 0.9 0.0 / 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 9.73E-04 (1.83E-03) 6.91E-03 (4.89E-03) 3.46E-02 (1.09E-02) 2.60E-02 (9.47E-03) 1.0 / 1.04E-02 (5.99E-03) 0.00E+00 (0.00E+00) 6.10E-03 (4.59E-03) 3.89E-02 (1.16E-02) 9.01E-02 (1.76E-02) 1.97E+00 (8.26E-02) 3.45E+00 (1.109E-01) 3.63E+00 (1.12E-01) 3.78E+00 (1.12E-01) 4.20E+00 (1.21E-01) 2.0 (4.32E+00 (1.22E-01) 4.24E+00 (1.22E-01) 4.60E+00 (1.22E-01) 4.60E+00 (1.22E-01) 4.72E+00 (1.22E+00) 4.72E+00 (1.22E+00) 4.72E+00 (1.22E+00) 4.7 3.0 / 4.72F+00 (1.28E-01) 5.05E+00 (1.32E-01) 5.30E+00 (1.35E-01) 4.82E+00 (1.28E-01) 5.04E+00 (1.32E-01) 4.87E+00 (1.32E+00) 4.8 4.0 / 4.42E+00 (1.24E-01) 4.34E+00 (1.22E-01) 4.20E+00 (1.21E-01) 4.18E+00 (1.20E-01) 4.30E+00 (1.30E-01) 5.42E+00 (1.37E-01) 4.31E+00 (1.28E-01) 4.35E+00 (1.23E-01) 4.3 5.0 / 4.176100 (1.20E-01) 4.62E100 (1.27E-01) 4.62 6.0 / 3.29E400 (1.07E-01) 3.37E400 (1.08E-01) 3.30E400 (1.10E-01) 3.46E400 (1.10E-01) 3.37E400 (1.16E-01) 4.09E400 (1.19E-01) 4.10E400 (1.19E-01) 4.40E400 (1.23E-01) 4.85E400 (1.30E-01) 7.0 / 4,872+00 (1,30E-01) 5.18E+00 (1.34E-01) 5.65E+00 (1.40E-01) 6.322+00 (1.48E-01) 6.87E+00 (1.54E-01) 7.30E+00 (1.59E-01) 8.25E+00 (1.69E-01) 8.34E+00 (1.73E-01) 8.64E+00 (1.73E-01) 8.65E+00 (1.73E-01) 8.64E+00 (1.73E+00) 8.64E+00 (1.73E-01) 8.64E+00 (1.73E-01) 8.64E+00 (1.73E-01) 8 8.0 / 7,795400 (1.64E-01) 6,71E400 (1.52E-01) 5.23E400 (1.35E-01) 3.90E400 (1.16E-01) 2.86E400 (9.96E-02) 1.91E400 (8.14E-02) 1.49E400 (7.19E-02) 9.25E-01 (5.66E-02) 5.05E-01 (4.18E-02) 3.51E-01 (3.49E-02) 9.0 / 1.83E-01 (2.52E-02) 4.78E-02 (1.29E-02) 1.74E-02 (7.76E-03)

7Li(p,t) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 50 deg [POL = NON]

enargy/ 0.0 0.1 D.2 0.3 0.4 0.5 0.6 0.7 0.9 0.8 0.0 / 0.00E+00 { 0.00E+00 } 0.00E+00 } 5.19E-03 { 3.00E-03 } 1.55E-02 { 5.18E-03 } 1.74E-02 { 5.48E-03 } 1.74E-02 { 5.48E-03 } 1.0 / 1.99E-02 (5.87E-03) 2.58E-03 (2.11E-03) 1.73E-03 (1.73E-03) 1.91E-02 (5.75E-03) 7.56E-02 (1.14E-02) 1.57E+00 (5.22E-02) 3.05E+00 (7.24E-02) 3.65E+00 (7.24E-02) 3.82E+00 (8.13E-02) 3.96E+00 (8.28E-02) 2.0 / 4.11E+00 (8.43E-02) 4.20E+00 (8.53E-02) 4.40E+00 (8.72E-02) 4.49E+00 (8.91E-02) 4.60E+00 (8.92E-02) 4.67E+00 (8.99E-02) 4.76E+00 (9.17E-02) 4.74E+00 (9.17E-02) 4.74E+00 (9.07E-02) 4.70E+00 (9.07E+02) 4.70E+00 (9.07E+02) 4.70E+00 (9.07E+02) 4.70E+00 (9.07E+02) 3.0 / 4.88E+00 (9.19E-02) 4.65E+00 (8.97E-02) 4.95E+00 (9.25E-02) 4.84E+00 (9.15E-02) 4.64E+00 (8.97E-02) 4.43E+00 (8.76E-02) 4.39E+00 (8.76E-02) 4.24E+00 (8.59E-02) 4.25E+00 (8.59E-02) 4.2 4.0 / 4.07E+00 (8.39E-02) 3.95E+00 (8.27E-02) 3.65E+00 (8.17E-02) 3.65E+00 (7.90E-02) 4.04E+00 (8.36E-02) 3.96E+00 (8.38E-02) 2.91E+00 (7.10E-02) 2.91E+00 (6.68E-02) 2.52E+00 (6.68E-02) 2.5 5.0 / 2.60EHOD (6.71E-02) 2.57EHOD (6.70E-02) 2.57EHOD (6.67E-02) 2.51EHOD (6.59E-02) 2.65EHOD (6.77E-02) 2.68EHOD (6.71E-02) 2.61EHOD (6.72E-02) 2.92EHOD (7.11E-02) 2.97EHOD (7.11E-02) 2.9 6.0 / J.21E+00 (7.46E-02) J.3JE+00 (7.59E-02) J.3E+00 (7.65E-02) J.6JE+00 (7.93E-02) J.71E+00 (8.02E-02) J.95E+60 (8.28E-02) 4.41E+00 (8.74E-02) 4.91E+00 (9.28E-02) 5.35E+00 (9.63E-02) 6.01E+00 (1.02E-01) 7.0 / 6.37[+00 (1.05E-01) 6.57E+00 (1.07E-01) 6.35E+00 (1.05E-01) 5.77E+00 (9.95E-02) 4.99E+00 (9.30E-02) 3.96E+00 (8.28E-02) 2.88E+00 (7.07E-02) 2.24E+00 (6.23E-02) 1.55E+00 (4.37E-02) 1.10E+00 (4.37E-02) 1.10 8.0 / 7.25E-01 (3.54E-02) 4.18E-01 (2.69E-02) 2.48E-01 (2.07E-02) 1.54E-01 (1.63E-02) 4.97E-02 (9.28E-03)

7Li(p,t) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 60 deg [POL = NON]energy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 / 0.00E100 (0.00E100) 0.00E100) 0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100) 3.91E-03 (2.59E-03) 1.71E-03 (1.71E-03 (1.71E-03 (2.76E-03) 3.15E-02 (7.37E-03) 3.13E-02 (7.32E-03) 1.0 / 2.48E-02 (6.52E-03) 2.55E-03 (2.09E-03) 0.00E+00 (0.00E+00) 2.40E-02 (6.41E-03) 9.25E-02 (1.26E-02) 1.58E+00 (5.20E+02) 3.04E+00 (7.21E-02) 3.0 2.0 / 3.85E+00 (8.12E-02) 4.02E+00 (8.30E-02) 4.34E+00 (8.62E-02) 4.36E+00 (8.63E-02) 4.33E+00 (8.63E-02) 4.35E+00 (8.63E-02) 4.3 3.0 / 4.17E+00 (8.45E-02) 4.24E+00 (8.52E-02) 4.00E+00 (8.27E-02) 3.91E+00 (8.18E-02) 3.63E+00 (7.68E-02) 3.50E+00 (7.74E-02) 3.28E+00 (7.49E-02) 3.09E+00 (7.27E-02) 2.89E+00 (7.03E-02) 4.0 / 2.43E400 (6.45E-02) 2.23E400 (6.17E-02) 2.18E400 (6.11E-02) 2.09E400 (5.98E-02) 2.21E400 (6.15E-02) 2.21E400 (6.15E-02) 2.12E400 (6.05E-02) 2.1 5.0 / 7.01E+00 (5.89E-02) 2.13E+00 (6.07E-02) 2.14E+00 (6.07E-02) 2.22E+00 (6.07E-02) 2.32e+00 (6.37E-02) 2.34E+00 (6.37E-02) 2.34E+00 (6.41E-02) 2.54E+00 (6.41E+02) 2.54E+00 (6.41E+02) 2.54E+00 (6.41E+02) 2.54E+00 (6.41E+02) 2.5 6.0 / 2.96E+00 (7.16E-02) 3.73E+00 (7.48E-02) 3.41E+00 (7.68E-02) 3.63E+00 (7.92E-02) 3.67E+00 (7.96E-02) 3.63E+00 (7.23E-02) 2.40E+00 (6.44E-02) 1.99E+00 (5.86E-02) 1.59E+00 (5.24E-02) 7.0 / 1.16E400 (4.48E-02) 7.89E-01 (3.69E-02) 5.86E-01 (3.18E-02) 4.10E-01 (2.66E-02) 2.25E-01 (1.97E-02) 1.04E-01 (1.34E-02) 3.98E-02 (8.29E-03) 1.59E-02 (5.24E-03) 1.81E-02 (5.59E-03) 7.51E-03 (3.60E-03) 8.0 / 5.47E-03 (3.07E-03)

7Li(p,t) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 70 deg

[POL = NON]

0.2 0.3 0.4 0.5 0.6 0.1 08 0 9 energy/ 0.0 0 1 0.0 / 0.00F+00 (0.00F+00) 0.00F+00 (0.00F+00) 0.00F+00 (0.00F+00) 0.00F+00 (0.00F+00) 0.00F+00) 0.00F+00) 2.53F-03 (2.09F-03) 1.04E-02 (4.25E-03) 2.34E-02 (6.36E-03) 0.00F+00 (0.00F+00) 0.00F+ 1.0 / 0.00E+00 (0.00E+00) 5.35E-01 (J.0+E-02) J.51E+00 (7.79E-02) 3.62E+00 (7.79E+02) 3.79E+02) 3.79E+00 (7.79E+02) 3.79E+00 (7.7 2 0 / 3 74F+00 (R. 07F-02) 3 94F+00 (B. 76E-02) 3.94E+00 (B. 78E-02) 3.94E+00 (B. 74E+00 (B. 74E+ 3.0 / 3.21E+00 (7.46E-02) 3.13E+00 (7.36E-02) 2.73E+00 (6.86E-02) 2.35E+00 (6.38E-02) 1.75E+00 (5.81E-02) 1.77E+00 (5.53E-02) 1.73E+00 (5.47E-02) 1.72E+00 (5.46E-07) 4.0 / 1_71EH00 (5_44E-02) 1.62E+00 (5_30E-02) 1.81E+00 (5_59E-02) 2.25E+00 (6_24E-02) 1.89E+00 (5_31E-02) 1.82E+00 (5_61E-02) 1.70E+00 (5_44E-02) 1.59E+00 (5_53E-02) 1.5 5.0 / 1.65F+00 (5.34F-02) 1.73E+00 (5.47E-02) 1.80E+00 (5.58E-02) 1.91E+00 (5.74E-02) 1.93E+00 (5.77E-02) 1.94E+00 (5.82E-02) 2.10E+00 (5.04E-02) 2.04E+00 (5.94E-02) 1.79E+00 (5.57E-02) 1.65E+00 (5.34E-02) 1.73E+00 (5.57E-02) 1.7 6 0 / 1 15Fr00 (4.45F-02) 8.93F-01 (3.93E-02) 7.32E-01 (3.56E-02) 4.94E-01 (2.92E-02) 3.82E-01 (2.57E-02) 2.14E-01 (1.92E-02) 1.54F-01 (1.63E-02) 8.93F-02 (4.38E-02) 7.32E-01 (3.56E-02) 4.94E-01 (2.92E-02) 3.82E-01 (2.57E-02) 2.36E-02 (4.38E-02) 7.32E-01 (2.92E-02) 3.82E-01 (2.57E-02) 2.36E-02 (4.38E-02) 7.32E-01 (2.92E-02) 3.82E-01 (2.57E-02) 3.82E-01 (2.57E-02) 3.84E-02 (4.38E-02) 7.32E-01 (3.56E-02) 3.84E-02 (4.38E-02) 3.8 7.0 / 4.58E-03 (2.81E-03)

7Li(p,t) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 80 deg [POL = NON]

energy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 / 0.00F+00 (0.00F+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 5.13E+03 (2.97E+03) 1.25E+02 (4.65E+03) 9.96E+03 (4.14E+03) 1.0 / 5.17E-03 (2.99E-03) 1.72E-03 (1.72E-03) 0.00E+00 (0.00E+00) 3.52E-03 (2.47E-03) 6.23E-02 (1.04E-02) 1.95E+00 (5.81E-02) 3.35E+00 (7.64E-02) 3.38E+00 (7.64E-02) 3.59E+00 (7.77E-02) 3.59E+00 (7.87E-02) 2.0 / 3.50E100 (7.76E-02) 3.35E100 (7.61E-02) 3.41E100 (7.67E-02) 3.24E100 (7.47E-02) 2.97E100 (7.15E-02) 2.95E100 (7.15E-02) 2.74E100 (6.686E-02) 2.66E100 (6.77E-02) 2.18E100 (6.14E-02) 1.89E100 (5.71E-02) 3.0 / 1.74E+00 (5.48E+02) 1.68E+00 (5.38E-02) 1.57E+00 (5.26E-02) 1.65E+00 (5.34E+02) 1.50E+00 (5.08E+02) 1.45E+00 (5.08E+02) 1.53E+00 (5.38E+02) 1.57E+00 (5.28E+02) 1.40E+00 (4.92E+02) 4.0 / 1.34E+00 (4.81E-02) 1.39E+00 (4.90E-02) 1.25E+00 (4.64E-02) 1.39E+00 (4.87E-02) 1.48E+00 (5.06E-02) 1.44E+00 (4.98E-02) 1.31E+00 (4.76E-02) 1.31E+00 (4.65E-02) 1.3 5.0 / 1 20F400 (4.54F-02) 1.07F400 (4.29E-02) 8.97E-01 (3.94E-02) 6.71E-01 (3.41E-02) 5.19E-01 (3.00E-02) 4.20E-01 (2.69E-02) 3.09E-01 (2.31E-02) 2.01E-01 (1.86E-02) 1.18E-01 (1.43E-02) 6.71E-01 (3.41E-02) 6.79E-02 (1.08E-02) 6.0 / 2.27E-02 (6.27E-03) 1.19E-02 (4.54E-03) 6.15E-03 (3.26E-03)

7Li(p.t) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 90 deg [POL = NON]ener qy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 / 0.00F+00 (0.00E+00) 0.00F+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00F+00 (0.00F+00) 0.00F+00 (0.00E+00) 1.72F-03 (1.72F-03) 0.00F+00 (0.00E+00) 3.00E+03 5.62E+03 5 1.0 / 1.72E-03 (1.72E-03) 0.00E+00 (0.00E+00) 2.64E-03 (2.13E-03) 4.26E-03 (2.71E-03) 4.26E-03 (2.71E-03) 4.59E-02 (8.89E-03, 1.77E+00 (5.53E-02) 2.81E+00 (6.97E-02) 2.92E+00 (7.09E-02) 2.97E+00 (7.05E-02) 2.87E+00 (7.05E+02) 2.87E+00 (7.05E+00) 2.87E+00 (7.05E+00) 2.87E+00 (7.05E+00) 2.87E+00 (7.05E+00) 2. 2.0 / 2.81E+00 (6.96E-02) 2.65E+00 (6.76E-02) 2.51E+00 (6.57E-02) 1.78E+00 (5.54E-02) 1.61E+00 (5.27E-02) 1.51E+00 (4.86E-02) 1.44E+00 (4.98E-02) 1.44E+00 (4.98E-02) 3.0 / 1.42E100 (4.95E-02) 1.38E100 (4.97E-02) 1.37E100 (4.55E-02) 1.31E100 (4.76E-02) 1.33E100 (4.78E-02) 1.31E100 (4.71E-02) 1.21E100 (4.57E-02) 1.20E100 (4.55E-02) 1.10E100 (4.55E-02) 1.10E100 (4.55E-02) 1.20E100 (4.55E-02) 1.20 4.0 / 1.13E+00 (4.41E-02) 1.17E+00 (4.49E-02) 1.0E+00 (4.26E-02) 9.90E+01 (4.13E+02) 8.26E-01 (3.77E-02) 2.77E+01 (3.21E-02) 4.01E+01 (2.63E+02) 3.32E+01 (2.39E+02) 2.00E+01 (1.86E+02) 5.0 / 1.69E-01 (1.71E-02) 9.47E-02 (1.28E-02) 4 52E-02 (8.93E-03) 1.72E-02 (5.45E-03) 2.61E-03 (2.12E-03) 3.49E-03 (2.45E-03) 52E-03 (2.09E-03)

7Li(p,t) DDX (error) ### Ep = 14 MeV LAB, ANGLE = 100 deg[POL = NON] energy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 / 0.00E+00 { 0.00E+00 } 2.12E-03 { 1.91E-03 } 3.09E-03 { 2.59E-03 } 2.61E-03 { 2.12E-03 } 2.12E-03 { 2.99E-03 } 1.0 / 1.73E-03 (1.73E-03) 8.79E-04 (1.23E-03) 8.46E-04 (1.21E-03) 3.45E-03 (2.44E-03) 7.21E-02 (1.12E-02) 1.83E+00 (5.62E-02) 2.64E+00 (5.75E-02) 2.37E+00 (5.40E-02) 2.03E+00 (5.92E-02) 2.0 / 1.55E400 (5.14E-02) 1.32E400 (4.78E-02) 1.34E400 (4.81E-02) 1.47E400 (5.03E-02) 1.43E400 (4.97E-02) 1.38E400 (4.67E-02) 1.27E400 (4.67E-02) 1.41E400 (4.92E-02) 1.35E400 (4.82E-02) 1.37E400 (4.86E-02) 3.0 / 1.40E+00 (4.91E-02) 1.26E+00 (4.66E-02) 1.22E+00 (4.59E-02) 1.21E+00 (4.51E-02) 1.23E+00 (4.60E-02) 1.27E+00 (4.67E-02) 1.17E+00 (4.67E-02) 1.27E+00 (4.67E-02) 1.27E+00 (4.67E-02) 1.17E+00 (4.57E-02) 1.17 4.0 / 6.89E-01 (3.45E-02) 5.44E-01 (3.06E-02) 3.59E-01 (2.49E-02) 2.50E-01 (2.08E-02) 3.58E-01 (2.49E-02) 4.28E-02 (8.59E-03) 2.62E-02 (6.72E-03) 7.82E-03 (3.67E-03)

52 20

LAB.ANGLE = 110 deg [POL = NON] ###### 71.i(p.t) DDX (error) ### Ep = 14 MeV 0.3 0.4 0.5 0.6 0.7 0.8 energy/ 0.0 0.1 0.2 0.9 0.0 / 0.00F+00 / 0.00F+00 / 0.00F+00 / 0.00F+00 / 0.00F+00 / 0.00F+00 / 0.00E+00 / 0.00E 1.0 / 1.72E-03 (1.72E-03) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.50E-03 (3.45E-03) 0.0E-07) 1.50E+00 (5.09E-02) 1.76E+00 (5.51E-02) 1.41E+00 (4.94E-02) 1.39E+00 (4.94E-02) 1.34E+00) 1.34E+ 2.0 / 1.30E+00 (4.74E-02) 1.36E+00 (4.84E-02) 1.37E+00 (4.84E-02) 1.37E+00 (4.86E-02) 1.37E+00 (4.88E-02) 1.33E+00 (4.74E-02) 1.28E+00 (4.64E-02) 1.28E+00 (4.64E-02) 1.38E+00 (4.64E-02) 3.0 / 1.24F100 (4.63E-02) 1.32E100 (4.78E-02) 1.36E100 (4.84E-02) 1.26E100 (4.66E-02) 1.12E100 (4.39E-02) 8.32E-01 (3.79E-02) 6.05E-01 (3.23E-02) 4.81E-01 (2.88E-02) 2.61E-01 (2.12E-02) 1.78F-01 (1.75F-02) 4.0 / 2.30E-01 (1.99E-02) 1.29E-01 (1.49E-02) 2.06E-02 (5.96E-03) 7.26E-03 (3.54E-03) 1.19E-02 (4.53E-03) 3.62E-04 (7.90E-04)

7Li(p,t) DDX (error) **###** Ep = 14 MeV LAB.ANGLE = 120 deg { POL = NON }

energy/ 0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 n 9 0.0 / 0.005+00 (0.005+00) 0.005+00) 0.005+00) 0.005+00) 0.005+00) 0.005+00) 0.005+00) 3.445-03 (2.435-03) 1.725-03 (1.725-03) 1.725-03 (1.725-03) 1.725-03) 1.725-03) 1.0 / 1.72E-03 (1.72E-03 (1.72E-03) 0.00E+00 (0.00E+00) 1.72E-03 (1.72E-03) 2.50E-02 (6.66E-03) 8.28E-01 (3.77E-02) 1.30E+00 (4.77E-02) 1.30E 2.0 / 1.37E/00 (4.85E-02) 1.36E/00 (4.83E-02) 1.36E/00 (4.86E-02) 1.36E/00 (4.84E-02) 1.36E/00 (4.84E-02) 1.34E/00 (4.81E-02) 1.3 3.0 / 1.29EHOD (4.71E-02) 8.97E-01 (3.93E-02) 6.77E-01 (3.41E-02) 4.93E-01 (2.91E-02) 2.74E-01 (2.17E-02) 1.41E-01 (1.55E-02) 8.75E-02 (1.23E-02) 1.53E-01 (1.62E-02) 3.56E-02 (7.83E-03) 1.18E-02 (4.50E-03) 4.0 / 7.44E-03 (3.58E-03)

7Li(p.t) DDX (error) ### Ep = 14 MeV LAB, ANGLE = 130 deg[POL = NON] 0.5 0.9 ener dy/ 0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.0 / 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00] 0.00E+00] 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00] 1.72E-03 { 1.72E-03 } 0.00E+00 } 1.0 / 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00 0 .0.00E+00 0 .0.00E+00 1.45E+03 (2.44E+03 2.72E+07 (6.85E+03) 7.93E+01 (3.70E+02) 1.31E+00 (4.76E+02) 1.34E+00 (4.81E+02) 1.35E+00 (4.89E+02) 1 2.0 / 1.40E+00 (4.91E-02) 1.37E+00 (4.07E-02) 1.35E+00 (5.10E-02) 1.51E+00 (5.33E-02) 1.67E+00 (5.33E-02) 1.67E+00 (5.39E-02) 1.35E+00 (5.39E-02) 1.35E+00 (4.03E-02) 9.05E-01 (4.12E-02) 6.67E-01 (3.39E-02) 3.0 / 4.46E-01 (2.77E-02) 2.74E-01 (2.17E-02) 1.01E-01 (1.32E-02) 5.95E-02 (1.01E-02) 8.56E-02 (1.21E-02) 2.88E-02 (7.05E-03) 2.93E-03 (2.25E-03) 5.74E-03 (3.15E-03)

7Li(p,t) DDX (error) ### Ep = 14 MeV LAB, ANGLE = 140 deg[POL = NON]0.4 0.5 0.6 07 0.8 0.9 eneroy/ 0.0 0.1 S.2 0.3 1.0 / 0.00E+00 (0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00) 0.00E+00 (0.00E+00) 4.73E-02 (9.03E-03) 8.63E-01 (3.66E-02) 1.35E+00 (4.83E-02) 1.35E+00 (4.82E-02) 1.48E+00 (5.05E-02) 1.43E+00 (4.96E-02) 2.0 / 1.42E+00 (4.95E-02) 1.67E+00 (5.37E-02) 1.71E+00 (5.43E-02) 1.61E+00 (5.58E-02) 1.61E+00 (5.31E-02) 1.31E+00 (4.35E-02) 1.94E+01 (3.93E+02) 5.62E+01 (3.11E+02) 3.05E+01 (3.29E+02) 1.51E+01 (1.61E+02) 3.0 / 7.44E-02 (1.13E-02) 3.89E-02 (8.19E-03) 8.26E-02 (1.19E-02) 1.81E-02 (5.58E-03) 1.03E-02 (4.22E-03) 6.90E-03 (3.45E-03) 3.45E-03 (2.44E-03)

7bi(p,t) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 150 deg [POL = NON]

snergy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 / 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 1.72E-03 (1.72E-03) 0.00E100 (0.00E100) 0.00E100 (1.72E-03) (1.72E-03) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 1.72E-03 (1.72E-03) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 1.72E-03 (1.72E-03) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 1.72E-03 (1.72E-03) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 1.72E-03 (1.72E-03) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 1.72E-03 (1.72E-03) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 1.72E-03 (1.72E-03) 1.72E-03 (1.72E-03) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 1.72E-03 (1.72E-03) 1.72E-03 (1.72E-03) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 1.72E-03 (1.72E-03) 1.72E-03 (1.72E-03) 1.56E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 1.72E-03 (1.72E-03) 1.56E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 0.00E100 (0.00E100) 1.72E-03 (1.72E-03) 1.72E-03 (1.72E-03) 1.56E100 (0.00E100) 0.00E100 (0.00E100) ###### 7Li(p,t) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 160 deg [POL = NON]

energy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 0.00E400 (0.00E400) 0.00E400 (0.00E400 (0.00E400) 0.00E400 (0.00E400) 0.00E400 (0.00E400) 0.00E400 (0.00E400) 0.00E400 (0.00E400 (0.00E400) 0.00E400 (0.00E400) 0.00E400 (0.00E400 (0.00E400) 0.00E400 (0.00E400 (0.00E400) 0.00E400 (0.00E400 (0.00E400) 0.00E400 (0.00E400 (0.00E400 (0.00E400) 0.00E400 (0.00E400 (0.00E400 (0.00E400) 0.00E400 (0.00E400 (0.00E400 (0.00E400) 0.00E400 (0.00E400 (0.0

7Li(p,t) DDX (error) ### Ep = 14 MeV LAB.ANGLE = 165 deg[POL = NON] energy/ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 8.0 0.9 0.0 / 0.00E+00 (0.00E+00) 0.00E+00) 1.72E-03 (1.72E-03) 0.00E+00 (0.00E+00) 3.45E-03 (2.44E-03) 1.0 / 1.72E-03 (1.72E-03) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00) 3.84E-02 (8.14E-03) 9.00E-01 (3.94E-02) 1.40E+00 (4.92E-02) 1.40E+00 (4.91E-02) 1.81E+00 (5.59E-02) 1.93E+00 (5.74E-02) 2.0 / 1.89E+00 (5.70E-02) 1.50E+00 (5.09E-02) 1.50E+00 (4.32E-02) 6.51E-01 (3.35E-02) 3.37E-01 (2.41E-02) 1.57E-01 (1.65E-02) 4.57E-02 (8.88E-03) 1.72E-02 (5.45E-03) 5.47E-02 (9.71E-03) 3.75E-02 (9.04E-03) 3.0 / 1.13E-02 (4.41E-03)

		LI 131 (0.470	nev 1/2 -)		'L1 2nd (4.53	Nev 7/2 -)
θ c. m $d\sigma/d\Omega$ And (deg) (mb/sr)	alyzing θc.m. Power (deg)	dσ/dΩ (ub/sr)	Analyzing power	θ c.m. (deg)	dσ/dΩ (ub/sr)	Analyzing Power
22.7 423.6 ± 12.0 - 0.10 34.0 261.7 ± 5.2 - 0.13 45.2 138.3 ± 2.8 - 0.20 56.2 61.9 ± 1.2 - 0.26 67.1 23.6 ± 0.48 - 0.27 77.7 11.1 ± 0.23 0.09 88.1 10.7 ± 0.28 0.30 108.2 15.2 ± 0.31 0.17 117.8 14.7 ± 0.30 0.12 127.2 12.5 ± 0.26 0.14 136.4 10.0 ± 0.21 0.23 145.4 7.89 ± 0.16 0.42 154.2 6.97 ± 0.15 0.57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} - 0.061 \pm 0.017 \\ - 0.059 \pm 0.014 \\ - 0.076 \pm 0.011 \\ - 0.075 \pm 0.009 \\ - 0.129 \pm 0.011 \\ - 0.165 \pm 0.013 \\ - 0.218 \pm 0.016 \\ - 0.218 \pm 0.016 \\ - 0.216 \pm 0.017 \\ - 0.241 \pm 0.016 \\ - 0.225 \pm 0.016 \\ - 0.186 \pm 0.015 \\ - 0.169 \pm 0.016 \\ - 0.126 \pm 0.016 \\ - 0.097 \pm 0.016 \\ - 0.097 \pm 0.016 \\ - 0.096 \pm 0.016 \\ - 0.0$	23.7 35.4 47.0 58.4 69.5 80.3 90.8 101.0 111.0 120.5 129.6 138.5 147.2 155.6 163.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.035 \pm 0.014 \\ - 0.0085 \pm 0.013 \\ - 0.064 \pm 0.015 \\ - 0.110 \pm 0.011 \\ - 0.150 \pm 0.013 \\ - 0.122 \pm 0.012 \\ - 0.083 \pm 0.012 \\ - 0.0037 \pm 0.098 \\ 0.012 \pm 0.105 \\ 0.007 \pm 0.018 \\ 0.090 \pm 0.018 \\ 0.0029 \pm 0.018 \\ 0.029 \pm 0.078 \\ 0.059 \pm 0.078 \\ 0.065 \\ - 0.085 \\ 0.050 \pm 0.085 \end{array}$

Appendix 7-1 Differential cross sections and analyzing powers of the ⁷Li(p,p')⁷Li* reaction at 12 MeV.

	7Li ground (3	/2 -)		'Li 1st (0.478	HeV 1/2 -)		7Li 2nd (4.63	HeV 7/2 -)
θc.m (deg)	dơ/dΩ (mb/sr)	Analyzing Power	θ C.B.	dσ/dΩ (=k/e=)	Analyzing	θ с	do/dΩ	Analyzing
			11-0/		Tamod	(3an)	(IS/OE)	LOAGL
22.6	414.3 ±12.7	-0.068 ± 0.051	22.7	6.25 ± 0.32	- 0.067 ± 0.083	23.3	7.10 + 0.15	- 0 0074 + 0 036
33.9	253.0 ± 5.1	-0.080 ± 0.025	34.0	6.19 ± 0.31	-0.116 ± 0.064	34 9	7.92 + 0.16	- 0 064 + 0 026
45.1	115.2 ± 2.3	-0.224 ± 0.025	45.2	5.82 ± 0.29	-0.242 ± 0.065	46.3	A 23 + 0 17	- 0 147 + 0 020 0 147 + 0 020
56.2	41.8 ± 0.84	-0.273 ± 0.026	56.3	5.29 ± 0.27	-0.103 ± 0.078	57.6	9.05 ± 0.11	C70.0 T 111.0 -
67.0	13.7 ± 0.28	-0.281 ± 0.026	67.1	4.52 ± 0.092	-0.218 ± 0.026	68-6	$A_1 1 2 + 0 16$	020:0 + 866 0 -
77.6	7.25 ± 0.15	0.275 ± 0.042	77.7	3.20 ± 0.065	-0.206 ± 0.029	79_3	$6_{23} + 0_{15}$	- 0 100 + 0 024
88.0	8.00 ± 0.16	0.468 ± 0.027	88.1	2.34 ± 0.049	-0.217 ± 0.026	69.8	4.95 ± 0.13	-0.104 + 0.033
98.1	9.51 ± 0.19	0.343 ± 0.044	98.3	1.93 ± 0.040	-0.163 ± 0.031	100.0	4.12 ± 0.085	0.038 + 0.036
108.0	9.47 ± 0.19	0.185 ± 0.026	108.1	1.71 ± 0.036	-0.118 ± 0.027	109.8	3.76 ± 0.11	
117.6	8.37 ± 0.18	0.038 ± 0.034	117.8	1.63 ± 0.040	-0.085 ± 0.042	119.4	3.82 ± 0.12	0.111 + 0.049
127.0	6.45 ± 0.13	0.041 ± 0.025	127.1	1.43 ± 0.031	-0.039 ± 0.027	128.6	3.94 ± 0.12	0.118 ± 0.039
136.2	4.60 X 0.094	0.106 ± 0.032	136.3	1.23 ± 0.027	-0.028 ± 0.038	137.6	3.74 ± 0.078	0.014 ± 0.036
145.2	3.33 ± 0.069	0.415 ± 0.027	145.3	1.07 ± 0.024	0.018 ± 0.027	146.4	3.53 ± 0.074	0.033 + 0.027
124.0	2.78 ± 0.058	0.653 ± 0.017	154.1	1.06 ± 0.023	0.046 ± 0.037	154.9	2.99 ± 0.064	- 0.0098+ 0.037
102.7	2.92 ± 0.061	0.642 ± 0.029	162.7	1.14 ± 0.025	0.023 ± 0.028	163.3	2.63 ± 0.057	-0.030 + 0.027
107.0	J.UB I U.U64	0.502 ± 0.021	167.0	1.20 ± 0.026	0.020 ± 0.037	167.5	2.49 ± 0.054	- 0.043 ± 0.038

Appendix 7-2 Differential cross sections and analyzing powers of the ⁷Li(p,p')⁷Li* reaction at 16 MeV.